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Volumetric method for calculating the flow around moving objects in lattice-Boltzmann schemes

M. Rohde, J. J. Derksen, and H. E. A. Van den Akker
Kramers Laboratorium voor Fysische Technologie, Delft University of Technology, Prins Bernhardlaan 6, 2628 BW Delft,

The Netherlands
~Received 24 August 2001; published 23 April 2002!

A method for calculating the fluid flow around moving objects is presented, based on a volumetric repre-
sentation of the lattice-Boltzmann scheme and surfaces defined by facets. It enables us to move objects of
arbitrary shape and orientation independent of the position of the grid nodes. To represent the motion of the
object, additional momentum is added to the reflected particles from each facet in the propagation step. These
particles are redistributed on nodes in the vicinity of the surface, depending on the position and orientation of
the facet. Because the surface is considered to be closed, additional techniques need to be used to guarantee the
conservation of mass. The flow field of a moving periodic cubic array of cubes at two Re numbers (Re
50.5 and Re550) is compared with that of a fixed array. For Re50.5, no significant deviations are found for
the velocity field, pressure field, and the drag force. For Re550, the drag and pressure field exhibit small
fluctuations that relate to the position of the surface relative to the position of the grid. However, the influence
of the pressure fluctuations on the velocity field is very small. Results on the velocity for a moving array of
cubes show second-order accuracy in the lattice spacing. For physical consistency, the drag force on a periodic
cubic array of moving spheres at Re50.5 is compared with Hasimoto’s analytical solution. The dependence on
the grid spacing, the resolution of the surface of the object, and the viscosity have been studied. The discrep-
ancies between simulations and the analytical results are smaller than 1.5%. For Re550, the drag force, the
streamline pattern, and the pressure field around a moving sphere in a large periodic domain showed good
agreement with data from literature on a single sphere in an infinitely large flow field.

DOI: 10.1103/PhysRevE.65.056701 PACS number~s!: 02.70.2c, 05.20.Dd, 45.50.2j, 47.11.1j
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I. INTRODUCTION

Objects moving in a fluid can be found in many situ
tions, such as rotating impellers in stirred vessels or parti
moving in suspensions. Although the physics of the fl
around a moving surface is well understood, setting u
numerical scheme for simulating it requires careful mod
ing. In conventional computational fluid dynamics~CFD!,
moving or deforming grids and, in some special cases, s
ing meshes are often employed. In the case of moving
deforming grids, the grid geometry is constantly adjusted
the changing position of the surface~see, e.g., Refs.@1,2#!.

Just as in conventional CFD, lattice-Boltzmann simu
tions require specific techniques if the moving surfaces a
part of the flow problem. Although the lattice-Boltzman
methods are significantly different from the convention
CFD techniques, similar issues need to be studied in orde
impose the appropriate boundary condition at the surfa
They relate to the adaptation of the grid geometry to
position of the object and the conservation of mass and
mentum.

As far as imposing the no-slip boundary condition f
moving surfaces in lattice-Boltzmann schemes is concern
a lot of pioneering work has been carried out by Ladd@3,4#.
In his technique, the no-slip boundary condition is recove
by transferring an extra amount of mass across the surf
which is proportional to the velocity of the particle. Th
addition or subtraction of mass must be balanced in so
way in order to conserve mass. For staircase shaped ob
grid nodes inside the moving object~i.e., internal fluid! were
used to establish mass conservation@3#. A drawback is that
this may cause stability problems in the case of freely m
1063-651X/2002/65~5!/056701~11!/$20.00 65 0567
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ing low-density objects@4#. Several extensions to the metho
were proposed, such that the arbitrary density ratios could
simulated@5,6#. Aidun et al. @5# excluded the internal fluid
by considering the surface to be closed. Although the ad
tion of mass on the fluid node cannot be balanced by
subtraction of mass on a node inside the object, simulati
showed no significant global mass change in the comp
tional domain. Aidunet al. also proposed a technique to d
termine the mass distributions on new nodes that were
merly covered by the object.

As in these methods the surface is located exactly
tween the grid nodes, inclined and curved surfaces are
cretized into staircase shapes. This implies that the surfac
the object cannot be positioned accurately at every time s
because it is directly related to the position of the grid nod
Especially for curved and inclined surfaces, this causes
shape to change during its motion, which might cause s
nificant fluctuations in the hydrodynamics. In addition,
may inherit the accuracy problems of the bounce-back r
for fixed objects@7–9#.

Using a more accurate definition of the moving surfa
and its position would prevent the problems mention
above. For fixed surfaces, methods were developed w
the surface can be defined independently of the grid ge
etry @10–13#. Chen et al. @12# proposed avolumetric ap-
proach, where the surface is defined by a set of facets and
grid by cubic grid cells ~rather than nodes!. The surface
‘‘cuts’’ some of the grid cells that become noncubic. Th
overall grid geometry remains cubic, which is very conv
nient ~but not a prerequisite! for lattice-Boltzmann simula-
tions. By setting up a geometry-dependent bounce-back
for these cells, accurate calculations could be carried out
©2002 The American Physical Society01-1
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M. ROHDE, J. J. DERKSEN, AND H. E. A. Van den AKKER PHYSICAL REVIEW E65 056701
fixed surfaces of arbitrary position and shape. Another
proach that already has been applied for moving surfa
defines the surface by means of a set of points in sp
independent of the grid@14#. With this method, simulations
of fluid flow at high Re numbers (Re5105) have been per-
formed, exhibiting a maximum difference of 5% betwe
the actual and the prescribed velocities at the surface.
position of the surface, however, could not be determin
exactly due to interpolation of the hydrodynamical quantit
to grid nodes adjacent to the moving surface.

In this paper, we present a method for dealing with mo
ing surfaces of arbitrary shape and position with respec
the grid. It combines the ideas of Chen regarding the surf
definition by a set of facets with the method of Ladd
impose a no-slip boundary condition for a moving surfa
As the surface is considered to be closed, no internal flui
used. Additional techniques are proposed, which deal w
mass conservation.

The main advantages of our approach are the followi
~i! The shape of the surface does not change during its
tion; this may avoid unwanted fluctuations.~ii ! The method
is found to be second-order accurate in the velocity for
simulations performed in this paper, irrespective of the po
tion of the surface.~iii ! The resolution of the surface is a
additional parameter for increasing the accuracy of the si
lations. ~iv! The flux of momentum~i.e., the force! can be
calculated separately for each facet; this makes it possib
determine the tangential and normal forces acting on the
face locally and accurately.

The paper is organized as follows. In Sec. II, we brie
describe the technique as proposed by Chenet al. for fixed
surfaces. Then, the method for moving surfaces is presen
preceded by a brief description of the method of Ladd.
Sec. III, the method is validated for numerical consistency
addition, simulations are compared with experimental a
simulation data from literature.

II. THEORY

To employ the lattice-Boltzmann techniques for simul
ing the flow around moving objects without the use of
staircase shaped object, several issues need to be addr
First, the surface of the object must be defined in such a
that it is independent of the position of the grid nodes. Co
pared to the staircase shaped surfaces, this results in a
detailed description of the surface and it makes it possibl
position such a surface more accurately in the computatio
domain. Second, a method for establishing the no-
boundary condition at a fixed surface must be found, wh
takes the grid-independent surface definition into acco
This method has to be extended to moving surfaces. Fin
the varying position of the surface with respect to the g
requires a special treatment of the mass distribution on
grid nodes adjacent to the surface.

In Sec. II A and Sec. II B, we describe the accurate d
nition of the surface geometry and a method for establish
the no-slip boundary condition for such surfaces at a fix
position. It essentially represents a modified bounce-b
rule for grid nodes in the vicinity of the surface. In Sec. II
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these ideas are extended to moving surfaces.

A. Surface geometry

The surface of an object in the computational domain c
be defined by facetsSa with areaAa and a surface normalnW a

~see Figs. 1 and 2!. These facets can be placed in the doma
independently of the grid geometry. Each grid nodexW is situ-
ated in the center of a cubic cell~i.e., grid cell! with size
Dx5Dy5Dz. The mass, usually located on the grid node
the lattice-Boltzmann simulations, is now considered to
uniformly distributed throughout the cell. All grid cells ar
cubic, except for the cells that are cut by the surface of
object. These cells have a volumeDV(xW ) and contain mass
that is equal to( i 51, . . . ,bNi(xW ,t)5DV(xW )( i 51, . . . ,bni(xW ,t),
where ni(xW ,t) represents the density distribution of th

FIG. 1. A surface consisting of triangular facets.~a! A sphere
with 360 facets.~b! A detailed view of a faceta and its surface
normal.

FIG. 2. Two-dimensional representation of the volumesF i
a ,

Vi
a(xW ), andDV(xW ). a1 , a2, anda3 are the facets of the surface.xW1

andxW2 are boundary cells.
1-2
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VOLUMETRIC METHOD FOR CALCULATING THE FLOW . . . PHYSICAL REVIEW E65 056701
lattice-Boltzmann scheme in velocity directioni at position
xW . The number of velocity directions is equal tob. Grid cells
that are situated completely inside the object do not take
in the calculations.

B. No-slip boundary condition for fixed surfaces

An accurate method for calculating the flow around
fixed object according to the geometrical definition in t
preceding section has been described by Chenet al. @12#.
The main idea of this method is that the no-slip bound
condition is enforced by applying a modified bounce-ba
rule reflecting the definition of the surface. The main poi
of Chen’s method are explained in this section.

During the propagation step, a fraction of the mass in
cells adjacent to the surface~i.e., boundary cells! hits the
surface of the object. When this mass moves with velocitycW i
and hits facetSa, it must move within a parallelepiped, ex
truded from the facetSa in directioni * (cW i* [2cW i) ~see Fig.
2!. The volume of this parallelepiped is equal toF i a

5ucW i* •nW auAaDt5ucW i•nW auAaDt. Because the parallelepipe
may intersect several grid cells, the mass that moves wi
the parallelepiped may originate from different cells. The
fore, we also need to calculate the volume of the inters
tions of the parallelepiped and the cubic cellsxW separately.
These volumes are defined asVi

a(xW ) @5V
i *
a

(xW )#.
With the definitions stated above, an adjusted latti

Boltzmann equation for boundary cells can be deriv
which accounts for the geometrical definition of the surfa
described in the preceding section. This adjusted equa
reads

Ni~xW1cW iDt,t1Dt !5Pi
undist~xW !Ni8~xW ,t !1Qi~xW1cW iDt,t !,

~2.1!

whereNi8(xW ,t)[Ni(xW ,t)1V i(xW ,t) is the right-hand side o
the ‘‘normal’’ lattice-Boltzmann equation for a cubic grid
Pi

undist(xW ) represents the fraction of mass that does not
the surface during the propagation step. This fraction mo
undisturbed from cellxW to cell xW1cW iDt. The term Qi(xW

1cW iDt,t) is the mass that is reflected from the surface a
arrives in cell xW1cW iDt. When no mass hits the surfac

@Pi
undist(xW )51# and, consequently, no mass is reflected fr

the surface @Qi(xW1cW iDt,t)50#, the ‘‘normal’’ lattice-
Boltzmann equation is recovered.

The undisturbed fraction of massPi
undist(xW ) can be deter-

mined by calculating thedisturbedfraction. The fraction of
mass located in cellxW that moves in the directioni and hits
any facetSa of the object is

Pi
dist~xW !5(

a

Vi
a~xW !

DV~xW !
[(

a
Pi

a~xW ! ~cW i•nW a,0!.

~2.2!

From Eq.~2.2! we obtain
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Pi
undist~xW !512Pi

dist~xW ! ~cW i•nW a,0!. ~2.3!

To determine the amount of mass that reflects from
surfaceQi(xW1cW iDt,t), the total incoming mass per facetSa

must be calculated first. This mass, moving in the directioi,
can be calculated fromPi

a(xW ) and reads

G i
in,a~ t !5(

xW
Pi

a~xW !Ni~xW ,t ! ~cW i•nW a,0!. ~2.4!

Additionally, we must define how this mass is reflect
into the fluid. In the case of the no-slip boundary condition
the surface, the bounce-back rule can be applied. In this c
the massG i

in,a(t) is reflected back in the opposite directio
i * . Consequently,

G
i *
out,a

~ t !5G i
in,a~ t !, ~2.5!

whereG
i *
out,a

(t) represents the mass that is reflected from
facet Sa in the directioni * . If we further assume that the
reflected mass isuniformly distributed in the parallelepiped
with volumeF i

a , the termQi(xW1cW iDt,t) can be calculated
according to

Qi~xW1cW iDt,t !5(
a

Vi
a~xW1cW iDt !

F i
a

G i
out,a~ t ! ~cW i•nW a.0!.

~2.6!

Now thatPi
undist(xW ) andQi(xW1cW iDt,t) are known, Eq.~2.1!

can be used as the lattice-Boltzmann equation for bound
cells.

C. No-slip boundary condition for moving surfaces

We now consider the implementation of the method d
scribed in the previous sections for an object moving throu
a fluid with a velocityuW b . A modified set of equations fo
boundary cells can be set up, which is dependent on
geometrical quantitiesDV(xW ,t), F i

a(t), Vi
a(xW ,t), andnW a(t)

~the quantities are time dependent in the case of a mov
surface!. One of the equations represents the collision a
propagation steps of the lattice-Boltzmann scheme and i
extended version of Eq.~2.1!. The other equations relate t
the changing position of the surface relative to the grid ce
Due to the motion of the surface, volumes of boundary ce
change, new cells may appear and some cells may disap
into the object. Mass in these cells must be properly adjus
in order to avoid unphysical density fluctuations around
object.

1. Modification of the propagation rule

In order to establish the no-slip boundary condition fo
moving surface, Eq.~2.1! is adjusted according to th
method of Ladd for moving staircase shaped surfaces.
briefly describe this method first.
1-3
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In the method of Ladd@3#, the surface is situated exact
in between two grid nodes. During the propagation st
mass on a grid node adjacent to the surface is not only
flected into the fluid, but extra mass is transferred across
surface of the object to~or from! a grid nodeinside the
object. When this amount of mass transferred is proportio
to the surface velocityuW b , the no-slip boundary condition i
established at the surface on the macroscopic level. By
plying this procedure also for the grid node inside the obj
and by introducing fluid grid nodes throughout theentire
object, mass is conserved. The modified propagation rule
the grid nodes adjacent to the surface inside and outside
object ~in terms of densities! reads

ni~xW1cW iDt,t1Dt !5ni * ~xW1cW iDt,t1!12tp,ir~xW ,t !

3~uW b•cW i !/cs
2 ,

ni * ~xW ,t1Dt !5ni~xW ,t1!22tp,ir~xW ,t !~uW b•cW i * !/cs
2 ,

~2.7!

where thet1 indicates the moment after the collision b
before the propagation step. The speed of sound is den
by cs and tp,i represents a direction dependent weight fac
originating from the lattice-Boltzmann scheme~see also Sec
III A !.

Analogous to the method of Ladd, Eq.~2.1! can be modi-
fied such that the velocityuW b at the surface is recovered. Th
modified equation reads

Ni~xW1cW iDt,t* !5Pi
undist~xW !Ni8~xW ,t !1Qi~xW1cW iDt,t !

1Bi~xW1cW iDt,t !. ~2.8!
as

ne
c
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Equation~2.8! represents the collision and propagation ste
during a time shiftt→t*, where t* denotes the momen
before the surface is moved to a new position. The new te

Bi(xW1cW iDt,t) is comparable with 2tp,ir(xW ,t)(uW b•cW i)/cs
2 in

Eq. ~2.7!, but is also dependent on geometrical quantities

To enforce a velocityuW b(t) at a facetSa, an extra amount
of mass must be added to~or removed from! boundary cells.

This extra amount of massDG i
out,a(xW ,t) is proportional to

uW b(t) and the volume fractionVi
a(xW ,t)/DV(xW ,t) and is equal

to

DG i
out,a~xW ,t !52tp,i

Vi
a~xW ,t !

DV~xW ,t !
M ~xW ,t !@uW b~ t !•cW i #Y cs

2

@cW i•nW a~ t !.0#, ~2.9!

with M (xW ,t*) 5( iNi(xW ,t*). Thus the extra mass, originatin
from all contributing facets to cellxW1cW iDt and moving in
direction i reads

Bi~xW1cW iDt,t !5(
a

DG i
out,a~xW1cW iDt,t ! @cW i•nW a~ t !.0#.

~2.10!

Following Aidun et al. @5#, the total massM (xW ,t*) in cell xW
on t5t* is used in equation~2.9!. This mass reads
M ~xW ,t* !5
M̃ ~xW ,t* !

122(
a

(
i PcW i•nW a(t).0

$Vi
a~xW ,t !/DV~xW ,t !tp,i@uW b~ t !•cW i #/cs

2%

, ~2.11!
ues
the

y

e
-

the
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tep
whereM̃ (xW ,t*) represents the total mass in cellxW after the
collision and propagation steps but without the extra m
term Bi(xW1cW iDt,t).

From the mass distribution in the boundary cells, the
flux of momentum, and therefore the net forces on each fa
Sa can be calculated following

FW a~ t !5
1

DtAa F (
i P c→ i•nW a(t)<0

cW iG i
in,a~ t !

2 (
i PcW i•nW a(t).0

cW i@G i
out,a~ t !1DG i

out,a~ t !#G .

~2.12!
s

t
et

2. Adjustment of the mass distribution function
in boundary cells

After the collision and propagation steps ont5t*, the

object is shifted over a finite distanceDxW5uW b(t)Dt. Con-
cerning this finite displacement of the object, three iss
must be considered with respect to the mass balance in
boundary cells.~i! The volume of the boundary cells ma
change.~ii ! New cells may appear and cells~and thus mass!
may disappear.~iii ! In contrast to the method of Ladd, th
addition ofBi(xW1cW iDt,t) is not balanced by a grid cell in
side the object. These issues are discussed below.

First, the volume of boundary cells may change when
surface is shifted. Not adjusting the mass in these cells
accordance with the volume change during one time s
1-4
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VOLUMETRIC METHOD FOR CALCULATING THE FLOW . . . PHYSICAL REVIEW E65 056701
may result in large unphysical density fluctuations~and
therefore pressure fluctuations!. The mass in the boundar
cells has to be adjusted such that the density in the cel
not affected by the discrete displacement of the surfa
Hence

Ni~xW ,t1Dt !5
DV~xW ,t1Dt !

DV~xW ,t !
Ni~xW ,t* !. ~2.13!

Second, new cells may appear and some cells may disap
during one time step. As proposed by Aidunet al. @5#, new
cells are filled with the equilibrium mass distribution, bas
on the surface velocityuW b(t) and the averaged density of th
surrounding cells. For new cells, the mass distribution re

Ni~xW f luid ,t1Dt !5Ni
eq~xW f luid ,t1Dt !. ~2.14!

This may result in small physical errors, because the phys
state of the fluid close to the surface is far from equilibriu
However, Aidunet al. found that applying the equilibrium
distribution does not result in significant nonphysical fluctu
tions, although staircase shaped surfaces were used
might expect that using the equilibrium distribution with th
volumetric method presented in this paper will result in ev
smaller errors. When a new cell appears, its volume is v
small. This implies a very small contribution of this cell
the volumetric bounce-back process. As a result, we m
expect that the small nonphysical effects die away quic
after a few time steps.

The mass in the disappearing cells is considered to
lost,

Ni~xWob ject,t1Dt !50. ~2.15!

Third, in contrast to the method of Ladd@Eq. ~2.7!# cells
inside the object are not taken into account. Mass, re
sented by Eq.~2.10!, is added to~or removed from! bound-
ary cells outside the surface, which is not balanced by
inner grid cell. Consequently, mass in the computational
main is nota priori conserved globally.

Referring to the three issues concerning the mass bal
in boundary cells, mass is added and removed, depende
the position of the boundary cells with respect to the ori
tation of the surface. For closed surfaces~i.e., objects!, the
global mass change is very small. When density differen
are small around the object, the mass added at one sid
almost equal to the mass removed at the other side. It
been found that application of Eqs.~2.8!, ~2.13!, ~2.14!, and
~2.15! does not produce a significant extra amount of m
~see also Sec. III B!.

3. Steps of the method

For each time step, the flow field around a moving obj
is calculated according to the following procedure.

~1! Calculate the geometrical quantitiesDV(xW ,t), F i
a(t),

Vi
a(xW ,t), andnW a(t). In cases where the trajectory of the o

ject is known, these quantities can also be determined
stored before carrying out the simulations.
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~2! Calculate the flow field for a fixed object, using th
no-slip boundary technique described in Sec. II B.

~3! CalculateNi(xW ,t*) in the boundary cells with Eq.
~2.8! by adding the new termBi(xW1cW iDt,t) to the mass
distribution.

~4! Move the object over a distanceDxW5uW b(t)Dt.
~5! Calculate the mass distributionNi(xW ,t1Dt) in the

boundary cells according to Eqs.~2.13!, ~2.14!, and~2.15!.

III. SIMULATIONS

A number of simulations at Re50.5 and Re550 were
performed to study the numerical consistency of the met
and to compare the results with physical reality. All simu
tions relate to a periodic array of cubes or spheres, mov
with a constant velocityuW b5@ub,x,0,0#. The computational
domain containedNx3Ny3Nz grid cells and was periodic to
all sides ~see Fig. 3!. A time-dependent body forcefW(t)
5@fx(t),0,0# enforced the average fluid velocity in thex di-
rectionūx to be equal to zero at every cross-sectional area
the flow field~i.e., all fluid nodes in they andz directions for
a certain value ofx). This body force was updated at eve
time step according tofW(t1Dt)5@aūx1b f x(t),0,0#. An ad-
equate rate of convergence was reached forb50.95 anda
520.5(Re50.5) or a520.005(Re550). The time neces-
sary to assume the system to be converged was roughly e
to 3Nx /ub,x time steps.

For the validation of the numerical consistency, a movi
array of cubes was chosen. The order of accuracy, the
dency towards grid independence, global mass conserva
and the dependence on the size of the facets were studie
addition, comparisons were made to afixed array of cubes
immersed in a flow with a constant cross-sectional veloc
ūx52ub,x . A cube was chosen here because the shape
cube is not affected by the size of the facets.

FIG. 3. Geometry moving with velocityub,x in a fully periodic

computational domain. A time-dependent body forcefW(t)
5@ f x(t),0,0# enforced the average fluid velocity in thex direction

ūx to be equal to zero at every cross-sectional area of the flow fi
1-5



M. ROHDE, J. J. DERKSEN, AND H. E. A. Van den AKKER PHYSICAL REVIEW E65 056701
TABLE I. Overview of the tests performed on numerical consistency.

Case Objective Re ub,x n D Nx3Ny3Nz D f

1 Mass conservation 0.5,50 1
1728, . . . , 1

25
1

96 , . . . ,2
3 4, . . . ,32 163, . . . ,1283 0.3, . . .,5.0

2.1 Moving vs fixed 0.5 1
96

1
6 8 323 1.0

2.2 Moving vs fixed 50 1
25

4
625 8 96332332 1.0

3 Drag force test 0.5,50 1
1728, . . . , 1

25
1

96 , . . . ,2
3 4, . . . ,32 163, . . . ,1283 0.3, . . . ,5.0

4 Grid independence
and accuracy

0.5 1
48, . . . , 1

384
1
6 4, . . . ,32 163, . . . ,1283 1.0
a
tic
el
ng

s,

th
p

io

e

d
th

ce

ual
e

1
ct

ov-

e
o

d is
s ex-
s

Re
rder
me-
ed

the
of
ain

d in
t of
nu-

can
uta-
nt
ary.

of

ld

tic
For physical validation, a moving array of spheres w
chosen. Extensive and detailed experimental data, analy
solutions, and reliable computational data on the flow fi
properties around a periodic array of spheres and a si
sphere are available in literature~see Refs.@15–18# and ref-
erences therein!. The data comprise drag coefficient
streamline patterns, and pressure fields.

A. Numerical setup

The Navier-Stokes equation was solved by means of
lattice-Boltzmann method. The scheme used in this pa
was a 15-speed Bhatnagar-Gross-Krook~BGK! model @19#
with a collision operator

V i~xW ,t !52v@Ni~xW ,t !2Ni
eq~xW ,t !#. ~3.1!

For all simulations,Dx5Dy5Dz51 andDt51. The dis-
cretized particle velocitiescW i are defined as follows:

cW i5H ~0,0,0! for i 50,

~61,0,0!,~0,61,0!,~0,0,61! for i 51, . . . ,6,

~61,61,61! for i 57, . . . ,14.
~3.2!

In the BGK scheme used here, the equilibrium distribut
Ni

eq is equal to

Ni
eq~xW ,t !5tp,iM ~xW ,t !S 113~cW i•uW !1

9

2
~cW i•uW !22

3

2
uW 2D ,

~3.3!

where tp,i5
2
9 for i 50, tp,i5

1
9 for i 51, . . . ,6, andtp,i

5 1
72 for i 57, . . . ,14.
The speed of sound for this scheme is equal tocs5A1/3.

The pressure is calculated following the equation of statp
5rcs

2 . The viscosity amounts ton5 1
6 (2/v21). The abso-

lute value of the velocitiesuuW u in this paper did not excee
0.15; this constraint is necessary to approximately solve
incompressible Navier-Stokes equation with the latti
Boltzmann scheme.1

1All quantities in this paper were expressed in terms of the lat
units ~l.s. lattice spacing! and ~l.t. lattice time!. Both l.s. and l.t.
equal unity.
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The grid used had a maximum size of 12831283128
cells. The surface of the geometry~cube or sphere! was de-
fined by the triangular facets with edges of roughly eq
sizeD f ~see Fig. 1!. The effect of the size of the facets on th
flow field was studied by varyingD f between 0.3 l.s. and
5.0 l.s.

The code was written inFORTRAN 77. The simulations
were carried out on a Pentium III 700 MHz processor with
GB of memory capacity. A simulation of a moving obje
consisting of 360 facets, in a grid of 1.283106 grid cells,
took about 25 h~wall clock time! for 20 000 time steps.

B. Numerical aspects

For studying the numerical aspects of the method, a m
ing array of cubes was chosen. The size of the cubeD, its
velocity, the size of the computational domain with volum
Vdomain5Nx3Ny3Nz and the viscosity were varied. Tw
Re numbers were used: Re5ub,xD/n50.5 and Re550. An
overview of the tests performed can be found in Table I.

Case 1 refers to tests on global mass conservation, an
necessary because the method does not conserve mas
plicitly ~see Sec. II C 2!. Comparison between simulation
with a fixed and a moving periodic array of cubes at
50.5 showed that the increase of mass was of the same o
of magnitude in both cases, though the increase was so
what larger for a moving array. For all simulations perform
in this paper, the extra mass created per time step was in
order of 1023. No significant dependence on the velocity
the cube, on its size, the viscosity, and the size of the dom
was found. It may be concluded that the method describe
this paper does not produce a significantly extra amoun
mass and that the increase in mass may be attributed to
merical noise.

Although the mass increase is very small, pressures
be corrected for the change of total mass in the comp
tional domain. Especially when pressure fields from differe
simulations are compared, a correction may be necess
For a change in the total massMtot with DMtot , the average
density in the domain equals rcorr5(Mtot
1DMtot)/Vdomain, thus the pressure in each grid cell isp
5(r2rcorr)cs

2 .
In case 2, the steady-state flow field of a moving array

cubes was compared with that of a fixed array at Re50.5 and
Re550. The pressure field, drag force, and velocity fie

e

1-6
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were studied. The flow field around the fixed array was c
culated with the method for fixed objects~described in Sec
II B !. Therefore, deviations between both cases may s
additional effects caused by the extra term in Eq.~2.8! and
the mass equations~2.13!, ~2.14!, and ~2.15!. For the fixed
array, the cross sectional average velocity wasūx52ub,x .
By applying the transformationux→ux2ub,x in the case of a
moving array of cubes, both flow fields could be compared
a steady-state situation.

Case 2.1, where Re50.5, showed practically identica
pressure contours for the moving and fixed arrays. The
locity profiles were almost identical as well, with very sma
deviations close to the surface of the cube~Fig. 4!. The drag
forces in both cases differed by 0.3% only.

In case 2.2 (Re550), small pressure fluctuations with
frequencyt215ub,x /Dx5 1

25 were observed for the movin
array of cubes, which were not present in the case of a fi
array. These fluctuations are a numerical artifact and rela
the varying volume of the boundary cells and the surfa
velocity uW b . For boundary cells withDV(xW ,t) close to 0 or
1, the pressure in these cells was somewhat lower than
DV(xW ,t) close to 0.5. In addition, the amplitude of the
pressure fluctuations appeared to depend on the surfac
locity ub,x . When the pressure field was compared to ca
with the same Re number and geometrical setup, but wi
lower velocity, it was found that increasing the surface v
locity increases the amplitude. This might explain the f
that these fluctuations were not observed in case 2.1, w
the velocity was significantly lower (ub,x5 1

96 ). When the
pressure field was averaged overt time steps, a pressur
field very similar to that around a fixed cube was obtaine

The velocity field of the moving cube was almost iden
cal to that of the fixed cube, in spite of the small press
fluctuations. To study the influence of the pressure fluct
tions on the velocity field, the pressure gradient te

FIG. 4. Pressure and velocity contour plots around a fixed~a!
and a moving~b! cube at Re50.5. D58, Nx5Ny5Nz532, n
5

1
6 , andub,x5

1
96. In the case of a moving cube, the velocity fie

was transformed byux→ux2ub,x . For the fixed cube, the averag

cross-sectional velocity was equal toūx52ub,x .
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2(1/r)(dp/dx) in the Navier-Stokes equation was exam
ined. These local pressure gradients, which represent
fluctuating forces, caused a fluid element to be accelera
during 1

2 t time steps and then decelerated during the sa
number of time steps. This acceleration~deceleration! re-

sulted in an increase~decrease! Dux;2(1/r)(dp/dx) 1
2 t of

the local velocityux . For the simulation carried out here, th
relative change in velocity compared to the local veloc
amounted toDux /ux,1%. Moreover, fluid elements wer
accelerated and then decelerated, causing the net vel
change to be even smaller.

The drag force on the cube showed oscillations with
same frequencyt21 as the pressure field and the same d
pendence on the surface velocity and the position of the
face relative to the grid cells. However, when the drag fo
under steady-state conditions was averaged over a relat
large period (Dt@Dx/ub,x), the drag force on the moving
cube deviated only 0.4% from the drag force on a fixed cu

In case 3, the equation for the total force acting on ea
facet @Eq. ~2.12!# was tested by comparing it to the force
derived from the total force balance in the domain. Acco
ing to Eq.~2.12!, the total force acting on the cube amoun
to FW cube(t)5(aFW a(t). BecauseFW cube(t) is the sum of the
drag force and the buoyancy force@caused by the body force
f x(t) acting on the fluid#, the drag force readsFW d,1(t)
5FW cube(t)/(12D3/Vdomain).

The drag force can also be derived from the total fo
balance. The force balance in the domain readsFW d,2(t)
1FW buoyancy1FW body50, hence the drag force isFW d,2(t)
5VdomainfW(t).

For most simulations performed in this paper, the dr
forces FW d,1(t) and FW d,2(t) were compared. For all simula
tions, the deviation was smaller than 0.1%. We may the
fore conclude that Eq.~2.12! accurately describes the forc
acting on a moving object.

In case 4, grid independence and accuracy in the d
force and velocity were examined. To this end, the resolut
of the grid, the size of the domainNx5Ny5Nz5L, the size
of the cube, and its velocity were varied, while the Re nu
ber, the kinematic viscosity, the size of the facetsD f , and the
geometrical ratioD/L were kept constant (D/L5 1

4 ). The
drag forceFD on the cube and the velocity on several fix
points in the domain were recorded until a steady-state s
ation was reached. The smallest grid comprisedNx3Ny
3Nz516316316 cells, the largest 12831283128 cells.
The accuracy was calculated for the drag forceFd acting on
the cube and for the velocityu(xW )5uuW (xW )u. The error in the
drag forceEd5(Fd2Fd* )/Fd* and the error in the velocity

Eu5@u(xW )2u* (xW )#/u* (xW ), were plotted on logarithmic
scales against the relative grid spacingDx/Nx51/Nx . Fd*

andu* (xW ) represent the drag force and the velocity, resp
tively, both calculated on the grid with the highest resoluti
(L5L* 5128). The parameterEd showed a deviation of
0.08% from the second highest resolution; forEu , the de-
viation amounted to 0.1%. The order of accuracy was de
mined by calculating the slope, which is about 2.8 forEd
1-7



ea
e
t

v
nn
th
cu
rd

ty

fo
T

e

of
s
ay

f

ets
at a
he
de-

ter
er-

o

of
nt
lin
ifi-

ic

M. ROHDE, J. J. DERKSEN, AND H. E. A. Van den AKKER PHYSICAL REVIEW E65 056701
~Fig. 5! and 2.2 forEu ~Fig. 6!. In contrast to the error in the
drag force, the values ofEu did not fall on a straight line.
Because the velocity converged more slowly to the r
~physical! solution than the drag force, calculations at ev
higher resolutions should be performed. Nevertheless, as
slope did not change significantly forL* >64, the slope may
remain about 2 forL* .128 ~Fig. 7!. It may be concluded
that the simulations exhibit second-order accuracy in the
locity. Apparently, the accuracy of the lattice-Boltzma
scheme in the fluid is not degraded to a lower order by
boundary conditions. The simulations show third-order ac
racy in the drag force and show a clear tendency towa
grid independence.

C. Physical consistency

In order to compare the simulations with physical reali
two cases at different Re numbers were selected (Re50.5
and Re550). In both cases, calculations were performed
a periodic array of spheres under steady-state conditions.

FIG. 5. Relative error in the drag force on a periodic array
cubes for different grid resolutions (Re50.5, n5

1
6 , andD f51.0).

The geometrical ratioD/L was kept constant (D/L5
1
4 ), hence

ub,x5Dx2/3LDt. Grid sizes in the range fromL516 to L5128
were used.

FIG. 6. Relative error in the velocity for a periodic array
cubes at different grid resolutions. The order of accuracy amou
to 2.2, though the points were not situated exactly on a straight
However, the use of higher resolutions will not result in a sign
cant change of the slope~see also Fig. 10!, hence the order of
accuracy was approximately 2.
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diameterD, the velocityub,x of the sphere, the size of th
facets D f , and the size of the computational domainNx
3Ny3Nz were varied~see Table II!.

In case 5, the drag force on a periodic cubic array
moving spheres at Re50.5 was compared with Hasimoto’
analytical solution of the drag force for a dilute cubic arr
of spheres at Stokes flow@15#. The analytical drag force on a
cubic array of moving spheres with diameterD and velocity
ub,x , in a domain of sizeNx5Ny5Nz5L and with a cross-
sectional average velocityūx50, reads

Fd,Has53prnDub,x~121.7601A3 f1f21.5593f2

1••• !21, ~3.4!

where f5pD3/6L3 represents the volume fraction o
spheres in the array.

For the simulations, spheres consisting of triangular fac
Sa were used. The corners of the facets were situated
distanceD from the center of the triangulated sphere. T
equivalent diameter of such a triangulated sphere can be
rived from its surface and reads

FIG. 8. The relative deviation of the hydrodynamic diame
from the equivalent diameter of a sphere in a cubic array for diff
ent grid spacingsDx/D and dimensionless facet sizesD f /Dx
(Re50.5, n5

1
6 , f58.1831023).

f

ed
e.

FIG. 7. Slope of the relative error in the velocity for a period
array of cubes for different maximum grid sizesL* ~e.g.,
for L* 548, only the velocities for the grid sizesL516, 24, 32,
and 40 are taken into account!. For L* >64, the slope remained
approximately 2.
1-8



VOLUMETRIC METHOD FOR CALCULATING THE FLOW . . . PHYSICAL REVIEW E65 056701
TABLE II. Overview of the tests on physical consistency.

Case Objective Compared with Re

5.1 Numerical effect ofn
5.2 Dependence onDx, D f Hasimoto@15# 0.5
5.3 Drag for a range off

6.1 Streamline pattern Taneda@16#

6.2 Drag force Roos and Willmarth@17# 50
6.3 Pressure field Johnson and Patel@18#
be
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A(

a
Aa

p
. ~3.5!

To simulate Stokes flow properly, a suitable Re num
had to be found first. For practical reasons, a velocityub,x as
high as possible was preferred, because this reduces the
ber of positions of the sphere that needs to be calculated.
viscosity was equal to1

6 , hence a Re number as high
possible had to be found. ForD58, L532, andD f52.0,
simulations were performed for Re numbers ranging fr
0.1 to 1.0. No significant change in the drag force was
served for Re<0.5. Hence, Re50.5 was small enough to
consider the flow to be in the Stokes regime.

When the simulated drag forceFd,sim was compared with
the analytical drag forceFd,Has , dependence was observe
on the grid spacingDx/D, the size of the facetsD f and the
viscosity n. The influence of these numerical effects had
be investigated first. Then,Fd,sim andFd,Has were compared
for a range of volume fractions.

In case 5.1, the dependence on the viscosity at Re50.5
was studied. It is known that the bounce-back principle
sults in an unphysical dependence on the viscosity, wh
depends on the geometry of the surface~see, e.g., Refs
@7,9#!. n was varied within a range of196 to 2

3 . The drag force
at small viscosities resulted in a too high value ofFd,sim ,
while at high viscosities the simulated drag force was
low. The results are shown in Table III. Forn5 1

6 , the devia-
tion was very small. This tendency was also found by La
@3#, who compared the volume averaged diameter of
sphere with the hydrodynamic diameterDhydr , resulting

TABLE III. Influence of the viscosityn on the simulated drag
force Fd,sim and the hydrodynamic diameterDhydr of the sphere
(D59, DA58.95, D f51.0, Re50.5, L532).

n Fd,sim Fd,Has Dhydr

1
96 7.77031023 6.67931023 9.88
1

21 0.1530 0.1396 9.52
1

12 0.4523 0.4275 9.32
1
6 1.720 1.710 9.04
1
3 6.229 6.839 8.48
2
3 20.37 27.36 7.42
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from the simulations. The hydrodynamic diameter can
obtained with Eq.~3.4!, by inserting the simulated dra
force.

In case 5.2, the dependence on the grid spacing and
facet size was studied. This was done by plotting the rela
deviation from the equivalent diameterED5(Dhydr
2DA)/DA for different values ofDx/D and D f @D/L5 1

4 ,
ub,x5(Dx)2/3LDt, n5 1

6 #. ForD f52.0, the grid spacing was
varied within the range of128 to 1

4 . It was found thatED was
constant forDx/D, 1

16 . Therefore,ED was determined for
1

16 ,Dx/D, 1
4 for other values ofD f . The results for a range

of Dx/D andD f are shown in Fig. 8.ED depends linearly on
the facet size, the slope of this linearity varying with the g
spacing. A larger value ofDx/D resulted in a steeper slope
Thus, for small geometries~relative to the grid spacing!, the
effect of reducing the facet size on the calculations w
stronger than in the case of large ones. From Fig. 8 we
might expect that forDx/D, 1

16 andD f→0, ED is more or
less independent of the grid spacing and the facet size. In
case, the remaining deviation amounted to approxima
1.5%. This deviation is likely to be caused by the unphysi
dependence on the viscosity, originating from the boun
back principle applied in the method presented in this pa
The question remains, however,to what extentthe viscosity
is responsible for this deviation. For practical situations,
equivalent diameterDA can be corrected for this effect b
introducing a hydrodynamic diameterDhydr . This hydrody-

FIG. 9. Comparison of the analytically obtained and simula

drag force@in terms of drag coefficientsCd5Fd /( 1
8 rub,x

2 pD2)# for
a range of volume fractions in a cubic array of spheres. Simulati
were carried out for differentD, L, and ub,x . The viscosityn
amounted to1

6 and Re was equal to 0.5.
1-9
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namic diameter must be determined first from simulatio
similar to case 5.1.

In case 5.3, the analytically obtained drag force was co
pared with the force resulting from the simulations for
range of volume fractionsf ~Fig. 9!. The simulated drag
force was not corrected by the introduction of a hydrod
namic diameter. It was found that the difference between
simulated and the analytical drag forces was smaller t
1.5% for volume fractionsf,0.05. Forf50.1, the differ-
ence amounted to 3.8%, which may be due to Hasimo
solution being only applicable to dilute systems.

In case 6, the flow field of an array of moving spheres
Re550 was compared with the experimental and the sim
lation data on a fixed single sphere in a moving infinite m
dium @16–18#. The length of the grid (Nx) was increased to
examine whether the flow field would approach the case
single sphere because of the increasing distance betwee
spheres. At Re550, the flow field is steady and axisymme
ric. The flow field properties considered are the drag fo
Fd , the pressure field, and some characteristics of
streamline pattern~see Fig. 10!. Simulations were performed
for D520, ub,x5 1

25 , D f52.0, andn5 2
125. The equivalent

diameterDA of the sphere was 19.92, where Re549.8. The
length of the grid ranged fromNx5100 to Nx5300. The
other dimensions were fixed:Ny5Nz580.

TABLE IV. Drag force and streamline characteristics for
sphere in flow field of different lengthsNx at Re549.8.

Nx Fd Cd s/D d* /D l /D u

100 2.12 1.06 0.33 0.37 0.11 36
150 2.48 1.23 0.37 0.40 0.13 37
200 2.90 1.44 0.39 0.41 0.14 38
300 3.22 1.60 0.42 0.41 0.15 39

Infinite field 3.24 1.61a 0.42b 0.42b 0.14b 40b

aRoos and Willmarth@17#.
bTaneda@16#.

FIG. 10. The characteristic streamline pattern around a fi
sphere in an infinite flow field, resulting from a lattice-Boltzma
simulation at Re550. The angle where the flow separates from
surface of the sphereu, the separation lengths/D, the distance
between the two vorticesd* /D, and the distancel /D are shown.
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For the cases 6.1 and 6.2, it was found that, forNx
5300, the drag force and the streamline properties sho
good agreement with the experimental data from literat
~see Table IV!. In contrast to the moving array of spheres
Re50.5 ~case 5!, no significant numerical effect of the vis
cosity on the hydrodynamic diameter was found. A possi
explanation is that at Re549.8, the effect of the viscou
forces on the flow is small compared to that of the inert
forces.

For the pressure field~case 6.3!, simulation data were
used from Johnson and Patel@18# who performed very accu
rate calculations on the flow field properties around a sin
fixed sphere. They calculated the total pressure coeffici

Cp* 5(p* 2p*̀ )/ 1
2 rU`

2 . Because of the presence of a bo
force, the total pressure coefficient in this paper was

Cp* 5
p2 f xx2p*̀

1

2
rub,x

2

, ~3.6!

with p*̀ as a reference pressure. The total pressure co
cient resulting from the simulations showed a similar patt
@Fig. 11~b!# and a reasonable agreement with the results fr
Johnson and Patel@Fig. 11~a!#. The pressure field resulting
from our simulations was somewhat more stretched, beca
of the relatively small distance between the spheres in thy
and z directions. In this case, the velocity of the fluid
higher between the spheres and results in a local reductio
the pressure.

IV. CONCLUSIONS AND OUTLOOK

A method for moving objects in the lattice-Boltzman
schemes has been presented. In this method, objects of
trary shape and size can move through the grid indepen
of the position of the nodes. Simulations demonstrate a g
agreement with real life concerning the drag force acting
the object, the velocity field, and the pressure. Results on
velocity for a moving array of cubes show second-order

FIG. 11. Contour plots of the pressure coefficient around
sphere.~a! In an infinite field at Re550 ~Johnson and Patel!. ~b! In
a field of sizeNx3Ny3Nz5300380380 at Re549.8~this paper!.
D520, DA519.92,ub,x5

1
25, andn5

2
125.d
1-10
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curacy, the drag force acting on the cubes third-order ac
racy in the grid spacing. The accuracy appeared to be in
pendent of the position of the surface and therefore does
decrease the order of accuracy of the lattice-Boltzm
scheme itself~which is of second order!. Next to the grid
spacing, the resolution of the surface can be used as an
ditional parameter to increase the accuracy, because the
face resolution is decoupled from the grid resolution. Es
cially for small curved objects~compared to the grid
spacing!, the effect of the surface resolution on the accura
is most profound.

The method develops small fluctuations in the press
field that depends on the surface velocity. It is shown that
velocity field is not significantly affected by these fluctu
tions. The correct pressure field is obtained by averaging
pressure over the period of one fluctuation. While the hyd
dynamic diameter depends on the viscosity at Re50.5, this
numerical artifact is not found in the case of Re550; this
might be due to the small impact of the viscosity on the fl
for Re@1. For lower Re numbers, a correction on the hyd
dynamic diameter may compensate for this numerical a
fact.

Our method can easily be extended to systems with fre
moving objects, where the motion of the object is determin
by the flow. With Eq.~2.12!, the force acting on the objec
can be accurately calculated. As a result, the translational
rotational motion of a particle moving freely through th
fluid can be simulated at great accuracy. In systems w
hundreds of particles~e.g., suspensions of particles!, our
r

-

n
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method may be computationally too demanding because
geometrical quantitiesDV(xW ,t), F i

a(t), Vi
a(xW ,t), andnW a(t)

have to be recalculated for each time step. In the case
equally sized particles, however, these geometrical quant
can be calculated for a fixed number of positions and sto
before the simulation is carried out, since only the positio
relative to the grid cellshave to be calculated@e.g., a particle
at position xW5(x1 ,y1 ,z1) results in the same geometric
quantities as a particle at positionxW5(x161,y161,z161)#.

For turbulent flow around moving surfaces~e.g., an im-
peller in a stirred vessel!, an additional algorithm can be
implemented, which accounts for the turbulent bound
layer at a solid wall@12#. This algorithm enables us to im
pose a tangential force at the surface as an arbitrary func
of the flow field properties in the vicinity of the surface. I
this way, wall functions can be applied.

Scalar transport around moving boundaries can be ea
introduced in the method. Due to the exact definition of t
surface, the scalar quantity can be accurately determine
the surface. No unphysical transport occurs from the fluid
the nodes inside the object, because the surface is clo
This enables us to treat the scalar transport inside the ob
separately if necessary.
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