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Volumetric method for calculating the flow around moving objects in lattice-Boltzmann schemes
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A method for calculating the fluid flow around moving objects is presented, based on a volumetric repre-
sentation of the lattice-Boltzmann scheme and surfaces defined by facets. It enables us to move objects of
arbitrary shape and orientation independent of the position of the grid nodes. To represent the motion of the
object, additional momentum is added to the reflected particles from each facet in the propagation step. These
particles are redistributed on nodes in the vicinity of the surface, depending on the position and orientation of
the facet. Because the surface is considered to be closed, additional techniques need to be used to guarantee the
conservation of mass. The flow field of a moving periodic cubic array of cubes at two Re numbers (Re
=0.5 and Re-50) is compared with that of a fixed array. For=R@.5, no significant deviations are found for
the velocity field, pressure field, and the drag force. For-B@, the drag and pressure field exhibit small
fluctuations that relate to the position of the surface relative to the position of the grid. However, the influence
of the pressure fluctuations on the velocity field is very small. Results on the velocity for a moving array of
cubes show second-order accuracy in the lattice spacing. For physical consistency, the drag force on a periodic
cubic array of moving spheres at R6.5 is compared with Hasimoto’s analytical solution. The dependence on
the grid spacing, the resolution of the surface of the object, and the viscosity have been studied. The discrep-
ancies between simulations and the analytical results are smaller than 1.5%.-F60,Rbe drag force, the
streamline pattern, and the pressure field around a moving sphere in a large periodic domain showed good
agreement with data from literature on a single sphere in an infinitely large flow field.
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[. INTRODUCTION ing low-density object§4]. Several extensions to the method
were proposed, such that the arbitrary density ratios could be
Objects moving in a fluid can be found in many situa- simulated[5,6]. Aidun et al. [5] excluded the internal fluid
tions, such as rotating impellers in stirred vessels or particleby considering the surface to be closed. Although the addi-
moving in suspensions. Although the physics of the flowtion of mass on the fluid node cannot be balanced by the
around a moving surface is well understood, setting up &ubtraction of mass on a node inside the object, simulations
numerical scheme for simulating it requires careful model-showed no significant global mass change in the computa-
ing. In conventional computational fluid dynami¢§FD),  tional domain. Aiduret al. also proposed a technique to de-
moving or deforming grids and, in some special cases, slidtermine the mass distributions on new nodes that were for-
ing meshes are often employed. In the case of moving omerly covered by the object.
deforming grids, the grid geometry is constantly adjusted to As in these methods the surface is located exactly be-
the changing position of the surfa¢see, e.g., Refgl1,2]). tween the grid nodes, inclined and curved surfaces are dis-
Just as in conventional CFD, lattice-Boltzmann simula-cretized into staircase shapes. This implies that the surface of
tions require specific techniques if the moving surfaces are the object cannot be positioned accurately at every time step,
part of the flow problem. Although the lattice-Boltzmann because it is directly related to the position of the grid nodes.
methods are significantly different from the conventionalEspecially for curved and inclined surfaces, this causes its
CFD techniques, similar issues need to be studied in order tshape to change during its motion, which might cause sig-
impose the appropriate boundary condition at the surfacenificant fluctuations in the hydrodynamics. In addition, it
They relate to the adaptation of the grid geometry to themay inherit the accuracy problems of the bounce-back rule
position of the object and the conservation of mass and mdor fixed objecty7-9].
mentum. Using a more accurate definition of the moving surface
As far as imposing the no-slip boundary condition forand its position would prevent the problems mentioned
moving surfaces in lattice-Boltzmann schemes is concerne@bove. For fixed surfaces, methods were developed where
a lot of pioneering work has been carried out by La8g. the surface can be defined independently of the grid geom-
In his technique, the no-slip boundary condition is recoveredtry [10—13. Chenet al. [12] proposed avolumetric ap-
by transferring an extra amount of mass across the surfacproach, where the surface is defined by a set of facets and the
which is proportional to the velocity of the particle. This grid by cubic grid cells (rather than nodes The surface
addition or subtraction of mass must be balanced in somecuts” some of the grid cells that become noncubic. The
way in order to conserve mass. For staircase shaped objectsserall grid geometry remains cubic, which is very conve-
grid nodes inside the moving objegte., internal fluid were  nient (but not a prerequisijefor lattice-Boltzmann simula-
used to establish mass conservatiBh A drawback is that tions. By setting up a geometry-dependent bounce-back rule
this may cause stability problems in the case of freely movfor these cells, accurate calculations could be carried out for
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fixed surfaces of arbitrary position and shape. Another ap-
proach that already has been applied for moving surfaces
defines the surface by means of a set of points in space,
independent of the grifiL4]. With this method, simulations
of fluid flow at high Re numbers (Rel0) have been per-
formed, exhibiting a maximum difference of 5% between
the actual and the prescribed velocities at the surface. The
position of the surface, however, could not be determined
exactly due to interpolation of the hydrodynamical quantities
to grid nodes adjacent to the moving surface.

In this paper, we present a method for dealing with mov-
ing surfaces of arbitrary shape and position with respect to (a) (b)
the grid. It combines the ideas of Chen regarding the surface
definition by a set of facets with the method of Ladd to FIG. 1. A surface consisting of triangular faceta) A sphere
impose a no-slip boundary condition for a moving surfacewith 360 facets.(b) A detailed view of a facetr and its surface
As the surface is considered to be closed, no internal fluid igormal.
used. Additional techniques are proposed, which deal with

mass conservation. these ideas are extended to moving surfaces.
The main advantages of our approach are the following.
(i) The shape of the surface does not change during its mo- A. Surface geometry

tion; this may avoid unwanted fluctuatiori,) The method The surface of an object in the computational domain can
is found to be second-order accurate in the velocity for theDe defined by facets® with areaA® and a surface normar
simulations performed in this paper, irrespective of the posi- . y . .
tion of the surface(iii) The resolution of the surface is an .(see Figs. 1 and)2Thes§ facets can be place.d mfhe dpmam,
additional parameter for increasing the accuracy of the simuindependently of the grid geometry. Each grid neds situ-
lations. (iv) The flux of momentunti.e., the forcg can be ated in the center of a cubic cdile., grid cell) Wlt_h size
calculated separately for each facet; this makes it possible t§X=Ay=Az. The mass, usually located on the grid node in
determine the tangential and normal forces acting on the sufti€ lattice-Boltzmann simulations, is now considered to be
face locally and accurately. unn‘_ormly distributed throughout the cell. All grid cells are
The paper is organized as follows. In Sec. Il, we brieﬂyCUbIC, except for the cells that are cgt by the surface of the
describe the technique as proposed by Céeal. for fixed  object. These cells have a volumé/(x) and contain mass
surfaces. Then, th_e methoq fc_)r moving surfaces is presenteghat is equal to>;_; bNi()_()at):AV()—())Eizl ____ bni(it),
preceded by a brief description of the method of Ladd. Inyhere n (x t) represents the density distribution of the
Sec. lll, the method is validated for numerical consistency. In
addition, simulations are compared with experimental and |
simulation data from literature.

.....

ClAt
Il. THEORY ¢ Cix §
To employ the lattice-Boltzmann techniques for simulat- > ¢ oM
ing the flow around moving objects without the use of a a

staircase shaped object, several issues need to be address
First, the surface of the object must be defined in such a way
that it is independent of the position of the grid nodes. Com- AV (z1)
pared to the staircase shaped surfaces, this results in a mo /

detailed description of the surface and it makes it possible to
position such a surface more accurately in the computationa
domain. Second, a method for establishing the no-slip Ty
boundary condition at a fixed surface must be found, which
takes the grid-independent surface definition into account. V(%)
This method has to be extended to moving surfaces. Finally. a2
the varying position of the surface with respect to the grid
requires a special treatment of the mass distribution on the -
grid nodes adjacent to the surface. >

In Sec. Il A and Sec. II B, we describe the accurate defi- \ \3\\
nition of the surface geometry and a method for establishing
the no-slip boundary condition for such surfaces at a fixed FIG. 2. Two-dimensional representation of the volunis,
position. It essentially represents a modified bounce-backi'(x), andAV(x). a1, a5, anda; are the facets of the surface,
rule for grid nodes in the vicinity of the surface. In Sec. Il C, andx, are boundary cells.
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lattice-Boltzmann scheme in velocity directiorat position Pundist()'(’)zl_ Pdist()‘(’) (Ei ne<0) 2.3

v 1 I . .

X. The number of velocity directions is equallioGrid cells

that are situated completely inside the object do not take part Tq determine the amount of mass that reflects from the

in the calculations. surfaceQ;(x+ C;At,t), the total incoming mass per facst
must be calculated first. This mass, moving in the diredtion

B. No-slip boundary condition for fixed surfaces can be calculated frorﬁ’i“()Z) and reads

An accurate method for calculating the flow around a
fixed object according to the geometrical definition in the _ . . ..
preceding section has been described by Céteal. [12]. I (t)=2 PFOONi(X,t) (G-n*<0). (2.9
The main idea of this method is that the no-slip boundary x
condition is enforced by applying a modified bounce-back

rule reflecting the definition of the surface. The main points Additionally, we must define how this mass is reflected
of Chen’s method are explained in this section. into the fluid. In the case of the no-slip boundary condition at

During the propagation step, a fraction of the mass in thdhe surfaC(?r,1 the b.ounce-back rule can be applieq. In.this'case,
cells adjacent to the surfadee., boundary cells hits the  the masd’i"“(t) is reflected back in the opposite direction

- i*

surface of the object. When this mass moves with velazity I*. Consequently,
and hits faceS%, it must move within a parallelepiped, ex- out _

@i itk (D2 ; L) =r"e(t) (2.5
truded from the face$” in directioni* (c;«=—c¢;) (see Fig. [ i '
2). The volume of this parallelepiped is equal tbi“
=|Cix - N*|AAt=|C;-n*|A®At. Because the parallelepiped Wherel“?*m’“(t) represents the mass that is reflected from the
may intersect several grid cells, the mass that moves withifacet S* in the directioni*. If we further assume that the
the parallelepiped may originate from different cells. There-reflected mass isiniformly distributed in the parallelepiped

fore, we also need to calculate the volume of the intersecyith volume ®® . the teeri(>?+ EiAt t) can be calculated
- [ 1
tions of the parallelepiped and the cubic cellseparately. according to

These volumes are defined W§(x) [ =V (x)].

With the definitions stated above, an adjusted lattice- . _ VE(X+CiAt)
Boltzmann equation for boundary cells can be derived,Qi(XJrCiAt,t):E Tf
which accounts for the geometrical definition of the surface “ i
described in the preceding section. This adjusted equation

reads

PU(t)  (¢-n*>0).

(2.6

Now thatP!"%'s(x) andQ;(x+ c;At,t) are known, Eq(2.1)
Ni(X+ At t+At)=PUNISIX)N/ (X,t) + Q;(X+ CAt, 1), can be used as the lattice-Boltzmann equation for boundary
(2.2 cells.

where Ni’()zyt)ENi()Z't) +Qi(§,t) is the right-hand side of C. No-slip boundary condition for moving surfaces
the "_no[mal" lattice-Boltzmann equation for a cubic grid.  we now consider the implementation of the method de-
PUndisix) represents the fraction of mass that does not hiscribed in the previous sections for an object moving through
the surface during the propagation step. This fraction movesg fluid with a velocityu,. A modified set of equations for
undisturbed from cellx to cell x+c;At. The term Q;(x boundary cells can be set up, which is dependent on the
+EiAt,t) is the mass that is reflected from the surface andyeometrical quantitieaV(x,t), ®{*(t), V{(x,t), andn“(t)
arrives in cell x+c;At. When no mass hits the surface (the quantities are time dependent in the case of a moving
[Piundlst()‘(’)zl] and, consequently, no mass is reflected fromsurface). _One of the equations represents the collision _and
- s _ . , ) propagation steps of the lattice-Boltzmann scheme and is an
the surface [Q;(x+c;At,t)=0], the “normal” lattice-  gytended version of Eq2.1). The other equations relate to
Boltzmann equation is rgcovered. it the changing position of the surface relative to the grid cells.
‘The undisturbed fraction of ma#%"“'*{(x) can be deter- Due to the motion of the surface, volumes of boundary cells
mined by calculating thelisturbedfraction. The fraction of change, new cells may appear and some cells may disappear
mass located in celt that moves in the directionand hits  into the object. Mass in these cells must be properly adjusted

any facetS* of the object is in order to avoid unphysical density fluctuations around the
object.
o VE(X) R Lo L .
Pglst(x):z i ~ Ez P(X) (G-nv<0). 1. Modification of the propagation rule
« AV(X) o In order to establish the no-slip boundary condition for a

(2.2) moving surface, Eq.2.1) is adjusted according to the
method of Ladd for moving staircase shaped surfaces. We
From Eq.(2.2) we obtain briefly describe this method first.
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In the method of Laddi3], the surface is situated exactly Equation(2.8) represents the collision and propagation steps
in between two grid nodes. During the propagation stepduring a time shiftt—t*, where t* denotes the moment
mass on a grid node adjacent to the surface is not only rebefore the surface is moved to a new position. The new term
flected into the fluid, but extra mass is transferred across thgi(§+6iAt,t) is comparable with %,ip(;vt)(ﬁb’éi)/cg in

S“Tface of the .ObJECt tdor from) a grid node!n5|de the_ g. (2.7), but is also dependent on geometrical quantities.
object. When this amount of mass transferred is proportiona 2
To enforce a velocity,(t) at a facetS®, an extra amount

to the surface velocity,, the no-slip boundary condition is

established at the surface on the macroscopic level. By ap?—f mass must be added tor rem(t)vegl fro.n)1 boundqry cells.
plying this procedure also for the grid node inside the objecthis extra amount of mas&['P**“(x,t) is proportional to
and by introducing fluid grid nodes throughout teatire  uy(t) and the volume fractiolW(x,t)/AV(x,t) and is equal
object, mass is conserved. The modified propagation rule faio

the grid nodes adjacent to the surface inside and outside the

object(in terms of densitigsreads

.. - . N VXt
Ni(X+ G AL t+At) =np(X+ ALt ) +2t, ip(X,t) A]“i‘““v“(x,t)=2tpi i _ )
"AV(X,t)

M (X,H)[Up(t)- ;] / cs

X (Up- )/, ..
[ci-n%(t)>0], (2.9
N+ (X, t+ A =ni(X, 4 ) — 2t ip(X, 1) (Up- Ci*)/c2,
(2.7

where thet, indicates the moment after the collision but fr
before the propagation step. The speed of sound is denot%ﬁfr)
by cs andt, ; represents a direction dependent weight factor
originating from the lattice-Boltzmann scherfgee also Sec.
A).

Analogous to the method of Ladd, E@.1) can be modi- .- B outar . 2 s 2
fied such that the velocity,, at the surface is recovered. The B‘(X+Cim’t)_§ AT+ GALY - [c-n(t)>0].
modified equation reads (2.10

with M(x,t*) =3;N;(x,t*). Thus the extra mass, originating
m all contributing facets to cek+c;At and moving in
ectioni reads

N;(X+ AL, t*) = PUNISTON! (X, 1) + Qi (X+ GiAL, 1) N .
o Following Aidun et al. [5], the total mas# (x,t*) in cell x
+B;(X+CAt,t). (2.8 ont=t*is used in equatiorf2.9). This mass reads

M (x,t*)

1-2> X {V?<i,t>/AV<i,t>tp,i[Gbm-Ei]/ci}’

@ jeci-n¥(t)>0

M(X,t*)= (2.11)

where M (x,t*) represents the total mass in callafter the 2. Adjustment of the mass distribution function
collision and propagation steps but without the extra mass in boundary cells
term Bi(>?+6iAt,t). After the collision and propagation steps ost*, the

From the mass distribution in the boundary cells, the ”ebbject is shifted over a finite distandex= Jb(t)At. Con-
flux of momentum, and therefore the net forces on each fac%lerning this finite displacement of the object, three issues

S* can be calculated following must be considered with respect to the mass balance in the
boundary cells(i) The volume of the boundary cells may
-, 1 - ina change(ii) New cells may appear and celsnd thus mags
Fot)= —— > Gl (t) may disappeariii) In contrast to the method of Ladd, the

AtACY ieﬁi-ﬁ“(t)so .. - - . . .
addition of B;(x+ c;At,t) is not balanced by a grid cell in-

> oute outa side the object. These issues are discussed below.
oL 2 Gl (O +ATH(0]]. First, the volume of boundary cells may change when the
teci-n()=0 surface is shifted. Not adjusting the mass in these cells in
(2.12 accordance with the volume change during one time step
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may result in large unphysical density fluctuatiofend
therefore pressure fluctuationd’he mass in the boundary
cells has to be adjusted such that the density in the cells it
not affected by the discrete displacement of the surface.
Hence

AV(X,t+At) .
———INi(x,t*).  (2.13

Ni(X,t+At)= .
AV(X,t) Up,

Second, new cells may appear and some cells may disappei? Fo(t) €—
during one time step. As proposed by Aidanbal. [5], new N
cells are filled with the equilibrium mass distribution, based Y

on the surface velocitﬁb(t) and the averaged density of the
surrounding cells. For new cells, the mass distribution reads z ¥ )

N; (Xfiuig ,t+ At) = N Xgyuiq , 1+ AL). (2.14

. . ) ) FIG. 3. Geometry moving with velocityy, , in a fully periodic
This may resul_t in small physical errors, because the_ PhYSIC%omputational domain. A time-dependent body fordgt)
state of the fluid close to the surface is far from eqU|I|br|um.:[fX(t)'O,0] enforced the average fluid velocity in thedirection

However, Aidunet al. found that applying the equilibrium ! )
S Lo : u, to be equal to zero at every cross-sectional area of the flow field.

distribution does not result in significant nonphysical fluctua-

tions, although staircase shaped surfaces were used. We ) . . .

might expect that using the equilibrium distribution with the (2). Calculate the ﬂO\.N field for a flxgd object, using the

volumetric method presented in this paper will result in ever10-slip boundary teghnlque described in Sec. II B.

smaller errors. When a new cell appears, its volume is very (3) CalculateN;(x,t*) in the boundary cells with Eq.

small. This implies a very small contribution of this cell to (2.8) by adding the new ternB;(x+c;At,t) to the mass

the volumetric bounce-back process. As a result, we mightlistribution.

expect that the small nonphysical effects die away quickly (4) Move the object over a distandex=up(t)At.

after a few time steps. (5) Calculate the mass distributioN;(x,t+At) in the

The mass in the disappearing cells is considered to b :
lost, Boundary cells according to EgR.13), (2.14), and(2.15.

Ni(Xopject,t+ A1) =0. (2.15 IIl. SIMULATIONS

Third, in contrast to the method of Ladéq. (2.7)] cells A number of simulations at Re0.5 and Re=50 were

inside the object are not taken into account. Mass, r‘_;,pre,oerformed to study the numerical consistency of the method

sented by Eq(2.10, is added toor removed from bound- and to compare the results with physical reality. All simula-

ary cells outside the surface, which is not balanced by afons relate to a periodic array of cubes or spheres, moving

inner grid cell. Consequently, mass in the computational dowith a constant velocity,=[uy, 4,0,0]. The computational

main is nota priori conserved globally. domain containe, X N, X N, grid cells and was periodic to
Referring to the three issues concerning the mass balanegl sides (see Fig. 3 A time-dependent body forcé(t)

in boundary cells, mass is added and removed, dependent a#f (1),0,0] enforced the average fluid velocity in thedi-

thg pos;uc;n of t?e bom::ndar?/ celclis W':,h r_especé.to thehor'en'rectionux to be equal to zero at every cross-sectional area of

tation of the surface. For closed surfades., objects, the the flow field(i.e., all fluid nodes in thg andz directions for

global mass change is very small. When density differencea certain value ok). This body force was updated at every
are small around the object, the mass added at one side Is s —
e step according tb(t+ At) =[ au,+ Bf,(t),0,0]. An ad-

almost equal to the mass removed at the other side. It hdin h q
been found that application of Eq2.8), (2.13, (2.14, and equate rate of convergence was reachedsfer0.95 anda

(2.15 does not produce a significant extra amount of mass™ ~ 0-2(R€=0.5) ora=—0.005(Re=50). The time neces-
(see also Sec. Il B sary to assume the system to be converged was roughly equal

to 3N, /uy, 4 time steps.
3. Steps of the method For the validation of the numerical consistency, a moving
i i . _array of cubes was chosen. The order of accuracy, the ten-
~ For each time step, the flow field around a moving objectyency towards grid independence, global mass conservation,
is calculated according to the following procedure. and the dependence on the size of the facets were studied. In
(1) Calculate the geometrical quantitias/(x,t), (), addition, comparisons were made tdixed array of cubes

V{’()Z,t), andn“(t). In cases where the trajectory of the ob- immersed in a flow with a constant cross-sectional velocity
ject is known, these quantities can also be determined anak=—uy . A cube was chosen here because the shape of a
stored before carrying out the simulations. cube is not affected by the size of the facets.
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TABLE |. Overview of the tests performed on numerical consistency.

Case Objective Re Up x v D Ny X Ny XN, As
1 Mass conservation 0550 1355 ....35 = ... 53 4,...,32 18, ...,128 0.3,...5.0
2.1 Moving vs fixed 0.5 = 3 8 32 1.0
2.2 Moving vs fixed 50 7 3z 8 96X 32x 32 1.0
3 Drag force test 0550 195 ....55 &, ... .5 4,...,32 18, ...,128 0.3,...,5.0
4 Grid independence 0.5 31 382 i 4,...,32 18, ...,128 1.0

and accuracy

For physical validation, a moving array of spheres was The grid used had a maximum size of X828x 128
chosen. Extensive and detailed experimental data, analyticaklls. The surface of the geometigube or sphejewas de-
solutions, and reliable computational data on the flow fieldfined by the triangular facets with edges of roughly equal
properties around a periodic array of spheres and a singleizeA; (see Fig. L The effect of the size of the facets on the
sphere are available in literatufeee Refs[15-18 and ref-  flow field was studied by varyingd\; between 0.3 l.s. and
erences therejn The data comprise drag coefficients, 5.0 I.s.

streamline patterns, and pressure fields. The code was written iFORTRAN 77 The simulations
were carried out on a Pentium Ill 700 MHz processor with 1
A. Numerical setup GB of memory capacity. A simulation of a moving object

onsisting of 360 facets, in a grid of 1.240° grid cells,

The Navier-Stokes equation was solved by means of th ok about 25 hwall clock time for 20000 time steps.

lattice-Boltzmann method. The scheme used in this pape
was a 15-speed Bhatnagar-Gross-Kr@BK:K) model [19]

with a collision operator B. Numerical aspects

Qi(X,1) = — o[ N;(X,t) = N&%(x,1)]. (3. For studying the numerical aspects of the method, a mov-
_ _ _ ing array of cubes was chosen. The size of the ddbés
For all simulationsAx=Ay=Az=1 andAt=1. The dis- velocity, the size of the computational domain with volume

cretized particle velocitieéi are defined as follows: Vgomain= NxX Ny XN, and the viscosity were varied. Two
) Re numbers were used: Rei, ,D/v=0.5 and Re=50. An
(0,0,0 for i=0, overview of the tests performed can be found in Table I.
¢ =4 (£1,0,0,(0,£1,0,(0,0+1) for i=1,...,6, Case 1 refers to tests on global mass conservation, and is

14141 for =7 14 necessary because the method does not conserve mass ex-
(£1+121) ori=#,... ’(3 '2) plicitly (see Sec. Il CR Comparison between simulations
' with a fixed and a moving periodic array of cubes at Re

In the BGK scheme used here, the equilibrium distribution=0-5 showed that the increase of mass was of the same order

N®%is equal to of magnitude in both cases, though the increase was some-
what larger for a moving array. For all simulations performed

eq 2 - - - - -, 3, in this paper, the extra mass created per time step was in the
NP, D) =1tp i M(x, )| 1+3(ci-u)+ 5 (Ci-u)"= 5u% ), order of 10 2. No significant dependence on the velocity of

(3.3  thecube, on its size, the viscosity, and the size of the domain
was found. It may be concluded that the method described in
where t, ;=% for i=0, t,;=35 for i=1,...,6, andt,; this paper does not produce a significantly extra amount of
=7; fori=7,...,14. mass and that the increase in mass may be attributed to nu-
The speed of sound for this scheme is equaide1/3.  merical noise.
The pressure is calculated following the equation of spate Although the mass increase is very small, pressures can
=pc2. The viscosity amounts te=(2/w—1). The abso- be corrected for the change of total mass in the computa-

lute value of the velocitiel| in this paper did not exceed tional domain. Especially when pressure fields from different

0.15; this constraint is necessary to approximately solve théimulations are compared, a correction may be necessary.
incompressible Navier-Stokes equation with the lattice-FOr @ change in the total mab, with AM,, the average

Boltzmann schemeé. density in the domain  equals pcorr=(Mio
+AM o)/ Vgomain: thus the pressure in each grid cellgs
= (P_Pcorr)CS'

'All quantities in this paper were expressed in terms of the lattice N case 2, the steady-state flow field of a moving array of
units (I.s. lattice spacingand (Lt. lattice tim@. Both I.s. and It. cubes was compared with that of a fixed array at-Re and
equal unity. Re=50. The pressure field, drag force, and velocity field
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0.00 —(1/p)(dp/dx) in the Navier-Stokes equation was exam-
ined. These local pressure gradients, which represent the
fluctuating forces, caused a fluid element to be accelerated

Uy [Up g during 3 r time steps and then decelerated during the same
number of time steps. This accelerati¢teceleratioh re-

sulted in an increas@ecreaseAu,~ — (1/p)(dp/dx) 3 7 of
~1.95 the local velocityu, . For the simulation carried out here, the

16.12 relative change in velocity compared to the local velocity
amounted toAu,/u,<1%. Moreover, fluid elements were
accelerated and then decelerated, causing the net velocity

3 change to be even smaller.

p(107%) The drag force on the cube showed oscillations with the
same frequency ! as the pressure field and the same de-
pendence on the surface velocity and the position of the sur-

—5.97 face relative to the grid cells. However, when the drag force

(b) under steady-state conditions was averaged over a relatively
large period At>Ax/uy,), the drag force on the moving
FIG. 4. Pressure and velocity contour plots around a fiée@d  cube deviated only 0.4% from the drag force on a fixed cube.
and a moving(b) cube at Re-0.5. D=8, Ny=N,=N,=32, v In case 3, the equation for the total force acting on each
=3, anduy «= g5. In the case of a moving cube, the velocity field facet [Eq. (2.12] was tested by comparing it to the forces
was transformed by,— u,—up, .. For the fixed cube, the average derived from the total force balance in the domain. Accord-
cross-sectional velocity was equaliQ= —Up . ing to Eq.(2.12), the total force acting on the cube amounts

were studied. The flow field around the fixed array was calt0 Feund)=2,F*(1). BecauseFeupdl) is the sum of the

culated with the method for fixed objedtdescribed in Sec. drag forcg and the buoygncy forfeaused by the bog y force

Il B). Therefore, deviations between both cases may shofx(t) acting on the fluid the drag force reads i(t)
additional effects caused by the extra term in B8 and = Fcubdt)/(1=D*Vomain -

the mass equation®.13), (2.14), and(2.15. For the fixed The drag force can also be derived from the total force

array, the cross sectional average velocity u\_@_g—ub’x_ balance. The force balance in the domain ref@sz(t)

By applying the transformation,— u,—uy, , in the case of & +F o ancyt Fhoay=0, hence the drag force i (1)
moving array of cubes, both flow fields could be compared at_ VdomainF(t)-

a steady-state situation. , o For most simulations performed in this paper, the drag
Case 2.1, where Re0.5, showed practically identical = = .
forces Fy,(t) and Fq,(t) were compared. For all simula-

pressure contours for the moving and fixed arrays. The Ve'fions, the deviation was smaller than 0.1%. We may there-
locity profiles were almost identical as well, with very small

deviations close to the surface of the cuBig. 4). The drag fore conclude that Eq2.12 accurately describes the force

forces in both cases differed by 0.3% only. acting on a moving object.

. . In case 4, grid independence and accuracy in the drag
In case 8'12 (Re 50), sgnall pressure fluctuations W't.h 2 force and velocity were examined. To this end, the resolution
frequencyr “=uy ,/Ax= 35 were observed for the moving

( i =~ _of the grid, the size of the domaM,=N,=N,=L, the size
array of cubes, Wh'ch were not present in th_e case of a fixe f the cube, and its velocity were varied, while the Re num-
array. These fluctuations are a numerical artifact and relate t8 ' '

. er, the kinematic viscosity, the size of the fackts and the
the varying volume of the boundary cells and the surface . . ™
ol , = geometrical ratioD/L were kept constantQ{/L=3). The
velocity u,. For boundary cells witlAV(x,t) close to O or

" drag forceF on the cube and the velocity on several fixed
1, the pressure in these cells was somewhat lower than fq§oints in the domain were recorded until a steady-state situ-
AV(x,t) close to 0.5. In addition, the amplitude of theseation was reached. The smallest grid comprigédx N,
pressure fluctuations appeared to depend on the surface veN,=16x 16x 16 cells, the largest 128128x 128 cells.
locity up, . When the pressure field was compared to case§he accuracy was calculated for the drag fofgeacting on
with the same Re number and g(_eometn(_:al setup, but with &,a cube and for the velocity(X) =|d(x)|. The error in the
Iower yelouty, it was found that increasing the s.urface Ve'drag forceEq= (F4—F%)/F% and the error in the velocity,
locity increases the amplitude. This might explain the fact_ =~ -~ " "=  ~> L
that these fluctuations were not observed in case 2.1, whefeu=[U(X) —u* (X)]/u*(x), were plotted on Iogarltthc
the velocity was significantly lowerug ,=3s). When the scales against the relative grid spacidg/N,=1/Ny. Fg
pressure field was averaged overtime steps, a pressure andu*(x) represent the drag force and the velocity, respec-
field very similar to that around a fixed cube was obtained.tively, both calculated on the grid with the highest resolution
The velocity field of the moving cube was almost identi- (L=L*=128). The parameteEy showed a deviation of
cal to that of the fixed cube, in spite of the small pressuré).08% from the second highest resolution; &y, the de-
fluctuations. To study the influence of the pressure fluctuaviation amounted to 0.1%. The order of accuracy was deter-
tions on the velocity field, the pressure gradient termmined by calculating the slope, which is about 2.8 Ky
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FIG. 7. Slope of the relative error in the velocity for a periodic
array of cubes for different maximum grid sizds* (e.g.,
for L* =48, only the velocities for the grid sizds=16, 24, 32,
and 40 are taken into accoynfor L* =64, the slope remained
approximately 2.

FIG. 5. Relative error in the drag force on a periodic array of
cubes for different grid resolutions (R®.5, v= % andA;=1.0).
The geometrical ratidD/L was kept constant[I/L=%), hence
ubyszx2/3LAt. Grid sizes in the range frorh=16 to L=128
were used.

(Fig. 5 and 2.2 forE, (Fig. 6). In contrast to the error in the diameterD, the velocityu, . of the sphere, the size of the
drag force, the values d&, did not fall on a straight line. facetsA¢, and the size of the computational domaily
Because the velocity converged more slowly to the reai<NyX N, were varied(see Table )i o _

(physica) solution than the drag force, calculations at even N case 5, the drag force on a periodic cubic array of
higher resolutions should be performed. Nevertheless, as tHBOVing spheres at Re0.5 was compared with Hasimoto's
slope did not change significantly fo* =64, the slope may analytical solution of the drag force for_ a dilute cubic array
remain about 2 folL* >128 (Fig. 7). It may be concluded ©Of spheres at Stokes floM5]. The analytical drag force on a
that the simulations exhibit second-order accuracy in the vecUbic array of moving spheres with diamef2rand velocity
locity. Apparently, the accuracy of the lattice-Boltzmann Usx» in & domain of size\,=N,=N,=L and with a cross-
scheme in the fluid is not degraded to a lower order by thesectional average velocity,=0, reads

boundary conditions. The simulations show third-order accu-
racy in the drag force and show a clear tendency towards
grid independence.

Fanas=3mprDup (1—1.7608/¢p+ ¢p— 1.5593)°

+..974 (3.9

C. Physical consistency where ¢==D3/6L% represents the volume fraction of

In order to compare the simulations with physical reality, SPheres in the array. o .
two cases at different Re numbers were selected=RE For the simulations, spheres consisting of triangular facets
and Re=50). In both cases, calculations were performed forS" were used. The corners of the facets were situated at a

a periodic array of spheres under steady-state conditions. TréstanceD from the center of the triangulated sphere. The
equivalent diameter of such a triangulated sphere can be de-

, rived from its surface and reads

-1 T T T T T T T T -
15 /,//jl- 4 0.015 - | T T T T T T T
A 0.01F T .
2k # _ TR
5 + 0005 |- " i
0 + .7 ok T i
= 2.5 ,,/’ slope = 2.2 - < X L
+ 5 -0.005 ~, .
] . 001F 4
/,/’ ot 1/4 +
<74 -0.015 |- .. 176 x -
-3.5 1 1 1 1 ] 1 ] 1 ] \ 178 %
21 -2 -19 -1.8 -1.7 -16 -15 -14 -13 -12 -11 -0.02 * %% E —
log 1/N, 0.025 1 1 1 1 ] L1 Ly
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
FIG. 6. Relative error in the velocity for a periodic array of Ng/Az

cubes at different grid resolutions. The order of accuracy amounted

to 2.2, though the points were not situated exactly on a straight line. FIG. 8. The relative deviation of the hydrodynamic diameter
However, the use of higher resolutions will not result in a signifi- from the equivalent diameter of a sphere in a cubic array for differ-
cant change of the slopgsee also Fig. 10 hence the order of ent grid spacingsAx/D and dimensionless facet sizel;/Ax
accuracy was approximately 2. (Re=0.5, v= % $»=8.18<1079).
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TABLE Il. Overview of the tests on physical consistency.

Case Objective Compared with Re
5.1 Numerical effect of
5.2 Dependence ofix, A¢ Hasimoto[15] 0.5
5.3 Drag for a range o
6.1 Streamline pattern TaneflB6]
6.2 Drag force Roos and Willmar{i7] 50
6.3 Pressure field Johnson and Patd]
from the simulations. The hydrodynamic diameter can be
> A® obtained with Eq.(3.4), by inserting the simulated drag
D,= ¢ (3.5 force.
A .

w

In case 5.2, the dependence on the grid spacing and the
facet size was studied. This was done by plotting the relative
deviation from the equivalent diameteEp=(Dyyq4,

To simulate Stokes flow properly, a suitable Re number D,)/D, for different values ofAx/D and A, [D/L =2
41

had to be found first. For practical reasons, a velogjty as
high as possible was preferred, because this reduces the nu
ber of positions of the sphere that needs to be calculated. Tf}:%ns
viscosity was equal t¢, hence a Re number as high as
possible had to be found. F&=8, L=32, andA;=2.0,
simulations were performed for Re numbers ranging from[
0.1 to 1.0. No significant change in the drag force was ob
served for Res0.5. Hence, Re 0.5 was small enough to
consider the flow to be in the Stokes regime.

When the simulated drag forde, s, was compared with
the analytical drag forc& 4,5, dependence was observed
on the grid spacing\x/D, the size of the facetd; and the
viscosity v. The influence of these numerical effects had to
be investigated first. Theiffy sjm andF4 a5 Were compared

for a range of volume fractions.

In case 5.1, the dependence on the viscosity at ®RE
was studied. It is known that the bounce-back principle re-rp
sults in an unphysical dependence on the viscosity, whicli‘g
depends on the geometry of the surfasee, e.g., Refs.
[7,9]). v was varied within a range af to 5. The drag force
at small viscosities resulted in a too high valueFf i,
while at high viscosities the simulated drag force was too 9

Uy = (Ax)?/3LAt, v=2%]. ForA;=2.0, the grid spacing was
Uglried within the range of; to 7. It was found thaEp was

tant forAx/D< 75. Therefore,Ep was determined for
=< Ax/D<3 for other values ofA;. The results for a range

of Ax/D andA; are shown in Fig. 8E depends linearly on

he facet size, the slope of this linearity varying with the grid
spacing. A larger value afx/D resulted in a steeper slope.
Thus, for small geometriggelative to the grid spacingthe
effect of reducing the facet size on the calculations was
stronger than in the case of large ones. From Fig. 8 we also
might expect that fonx/D <+ andA;—0, Ep is more or
less independent of the grid spacing and the facet size. In this
case, the remaining deviation amounted to approximately
1.5%. This deviation is likely to be caused by the unphysical
dependence on the viscosity, originating from the bounce-
back principle applied in the method presented in this paper.
e question remains, howevéo, what extenthe viscosity
responsible for this deviation. For practical situations, the
equivalent diameteD, can be corrected for this effect by
introducing a hydrodynamic diametBx,q,. This hydrody-

. 1 . T T T
low. The results are shown in Table Ill. For=g, the devia- Simulation ® »
tion was very small. This tendency was also found by Ladd Hasimoto ----- /
[3], who compared the volume averaged diameter of the 150 7 ]
sphere with the hydrodynamic diamet®,,q,, resulting -/
S 100 o s
TABLE Ill. Influence of the viscosityr on the simulated drag e
force Fy sim and the hydrodynamic diamet&r,,q, of the sphere - -
(D=9, D,=8.95,A;=1.0, Re=0.5, L=32). 50 - .
v Fd,sim Fd Has Dhyar o . " oy
% 7.770< 1073 6.679¢ 1073 0.88 0.0001 0.001 ’ 0.01 0.1
= 0.1530 0.1396 9.52
i 0.4523 0.4275 9.32 FIG. 9. Comparison of the analytically obtained and simulated
g 1.720 1.710 9.04 drag forcefin terms of drag coefficient§,=F4/(§pu? ,mD?)] for
% 6.229 6.839 8.48 a range of volume fractions in a cubic array of spheres. Simulations
z 20.37 27.36 7.42 were carried out for differenD, L, and u,. The viscosity v

amounted tog and Re was equal to 0.5.
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(a)

FIG. 11. Contour plots of the pressure coefficient around a
sphere(a) In an infinite field at Re=50 (Johnson and Pajel(b) In
a field of sizeN, X N, X N,=300x 80X 80 at Re=49.8(this pape).

FIG. 10. The characteristic streamline pattern around a fixed> =20, D,= 19_92,ub’X=21—5, and v = 12z.
sphere in an infinite flow field, resulting from a lattice-Boltzmann
simulation at Re=50. The angle where the flow separates from the
surface of the spheré, the separation lengtk/D, the distance
between the two vorticed*/D, and the distancb/D are shown.

For the cases 6.1 and 6.2, it was found that, fgr
=300, the drag force and the streamline properties showed
good agreement with the experimental data from literature
namic diameter must be determined first from simulationgsee Table IV. In contrast to the moving array of spheres at
similar to case 5.1. Re=0.5 (case 5, no significant numerical effect of the vis-

In case 5.3, the analytically obtained drag force was comeosity on the hydrodynamic diameter was found. A possible
pared with the force resulting from the simulations for aexplanation is that at Re49.8, the effect of the viscous
range of volume fractiongy (Fig. 9. The simulated drag forces on the flow is small compared to that of the inertial
force was not corrected by the introduction of a hydrody-forces.
namic diameter. It was found that the difference between the For the pressure fieldcase 6.3 simulation data were
simulated and the analytical drag forces was smaller thansed from Johnson and Paf&B] who performed very accu-
1.5% for volume fractiongh<<0.05. For¢=0.1, the differ- rate calculations on the flow field properties around a single
ence amounted to 3.8%), which may be due to Hasimoto’éixed sphere. They calculated the total pressure coefficient,

solution being only applicable to dilute systems. Cp=(p* - pi)/%pUi- Because of the presence of a body

In case 6, the flow field of an array of moving spheres aforce, the total pressure coefficient in this paper was
Re=50 was compared with the experimental and the simu-

lation data on a fixed single sphere in a moving infinite me-

dium[16-18. The length of the grid,) was increased to p—f.x—px
examine whether the flow field would approach the case of a Cpr= -1 (3.6
single sphere because of the increasing distance between the Epuéx

spheres. At Re 50, the flow field is steady and axisymmet-

ric. The flow field properties considered are the drag force

Fq, the pressure field, and some characteristics of th@ith p* as a reference pressure. The total pressure coeffi-
streamline patterfsee Fig. 101 Simulations were performed  cjent resulting from the simulations showed a similar pattern
for D=20, up =2, Ar=2.0, andv=135. The equivalent [Fjg 11(b)]and a reasonable agreement with the results from
diameterD , of the sphere was 19.92, where-R49.8. The  johnson and PatéFig. 11(a)]. The pressure field resulting
length of the grid ranged fronN,=100 to Nx=300. The  from our simulations was somewhat more stretched, because

other dimensions were fixedl,=N,=80. of the relatively small distance between the spheres irythe
TABLE IV. Drag force and streamline characteristics for aa_nd z directions. In this case, the veloplty of the ﬂu'd, 1S
sphere in flow field of different length, at Re=49.8, higher between the spheres and results in a local reduction of
the pressure.
N, Fq Cqy s/ID d*/D I/D 0
100 2.12 1.06 0.33 0.37 0.11 36 IV. CONCLUSIONS AND OUTLOOK
150 248 1.23 0.37 0.40 0.13 37 . . . .
A method for moving objects in the lattice-Boltzmann
200 2.90 144039 041 014 38 schemes has been presented. In this method, objects of arbi-
300 322 160 042 041 015 39 P ' » 90)

trary shape and size can move through the grid independent
Infinite field 3.24 162 042 042 0148 a0 of the position of the nodes. Simulations demonstrate a good
agreement with real life concerning the drag force acting on
®Roos and Willmart{17]. the object, the velocity field, and the pressure. Results on the
bTanedd16]. velocity for a moving array of cubes show second-order ac-

056701-10



VOLUMETRIC METHOD FOR CALCULATING THE FLOW ... PHYSICAL REVIEW E65 056701

curacy, the drag force acting on the cubes third-order accunethod may be computationally too demanding because the
racy in the grid spacing. The accuracy appeared to be indgeometrical quantitied V(x,t), ®&(t), VI (x,t), andn(t)
pendent of the position of the surface and therefore does nefave to be recalculated for each time step. In the case of
decrease the order of accuracy of the lattice-Boltzmaniqually sized particles, however, these geometrical quantities
scheme itselffwhich is of second ordgr Next to the grid  can be calculated for a fixed number of positions and stored
spacing, the resolution of the surface can be used as an agefore the simulation is carried out, since only the positions
ditional parameter to increase the accuracy, because the sygiative to the grid cellhave to be calculatel.g., a particle
face resolution is decoupled from the grid resolution. Espe:,Jlt position X=(x,y1,z;) results in the same geometrical

cially for small curved objects(compared to the grid . ; > N N N
spacing, the effect of the surface resolution on the accuracyluantities as a particle at positior= (x; =1y, =12, 1),

is most profound. For _turbule_nt flow around mov_ing surfac(as_.g., an im-
The method develops small fluctuations in the pressuré’e”er in a stlrred_ vessglan additional algorithm can be
field that depends on the surface velocity. It is shown that thdmPlemented, ‘which accounts for the turbulent boundary

velocity field is not significantly affected by these fluctua- [2Yer at a solid wal[12]. This algorithm enables us to im-

tions. The correct pressure field is obtained by averaging thBOS€ @ tangential force at the surface as an arbitrary function

pressure over the period of one fluctuation. While the hydro©f the flow field properties in the vicinity of the surface. In

dynamic diameter depends on the viscosity atRes, this  HiS way, wall functions can be applied. .
numerical artifact is not found in the case of RgO; this . Scalar trfansport around moving boundaries can be easily
might be due to the small impact of the viscosity on the ﬂowmtroduced in the method. Due to the exact definition of the
for Re>1. For lower Re numbers. a correction on the hydro-S“rface' the scalar quantity can be accurately determined at
dynamic diameter may compensate for this numerical arti:[he surface: N.O unphysmgl transport occurs from ‘h?‘ fluid to
fact the nodes inside the object, because the surface is closed.

Our method can easily be extended to systems with freelghis enable_s us to treat the scalar transport inside the object
moving objects, where the motion of the object is determinec€Parately if necessary.

by the flow. With Eq.(2.12), the force acting on the object
can be accurately calculated. As a result, the translational and
rotational motion of a particle moving freely through the
fluid can be simulated at great accuracy. In systems with The authors would like to thank Dr. L.M. Portela and Dr.
hundreds of particlede.g., suspensions of particjesour  D. Kandhai for their valuable input and discussions.
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