
Delft University of Technology

Bachelor thesis

Numerical simulations for type II
superconductors

Finite Element Method for the time-dependent
Ginzburg-Landau equations

Tobias Bonsen

supervised by
Dr.ir. F.J. Vermolen

Dr.ir. K. van Hoogdalem

November 14, 2017

Abstract

Superconductivity was discovered in 1911 and since then it has become indis-
pensable in a wide range of fields. It is often accompanied by strong magnetic
fields which can do away with the superconducting properties of the material.
This process is described by the Ginzburg-Landau theory of superconductivity.
In this report, this theory is discussed at length. The result is a system of two
coupled, time-dependent partial differential equations that can be solved using
numerical methods. A finite element method is constructed using standard La-
grangian and curl-conforming Nédélec elements. Numerical simulations were
performed with Lagrangian and Nédélec elements in COMSOL and MATLAB
respectively. Using Lagrangian elements delivers flawed results. Using Nédélec
elements should improve these results but so far only parts of the problem have
successfully been solved using these elements.

Contents

1 Introduction 3

2 Theory 4
2.1 Phenomena in Superconductivity 4
2.2 Theories of superconductivity . 5
2.3 Ginzburg-Landau theory of superconductivity 6

2.3.1 The GL Differential Equations 8
2.3.2 The Ginzburg-Landau Coherence length 9

2.4 Type I and Type II Superconductors 10
2.5 Normalization and Gauge Invariance 12
2.6 Partial Differential Equations . 14
2.7 Finite Element Method . 14

2.7.1 Weak formulation . 14
2.7.2 Function spaces . 17
2.7.3 Basis functions . 18
2.7.4 Numerical integration . 25

2.8 Finite difference method . 26

3 Finite Element Method for the GL-equations 27
3.1 COMSOL Multiphysics . 27

3.1.1 GL-equations in COMSOL 27
3.1.2 Numerical simulations . 29

3.2 FEM implementation in MATLAB 31
3.2.1 Discretization . 31
3.2.2 Matrix and vector assembly 33

4 Numerical Simulations 37
4.1 First GL equation . 37

4.1.1 Term-wise solutions . 38
4.1.2 Additional tests . 42

4.2 Second GL equation . 45
4.2.1 Term-wise solutions . 45
4.2.2 Additional tests . 48

5 Conclusions 49

6 Future Research 49

Appendices 50

A Description of the MATLAB code 50

1 Introduction

The phenomenon of superconductivity was discovered in 1911 by Kamerlingh
Onnes in Leiden. After he succeeded in producing liquid Helium, he was re-
searching the properties of several metals at low temperatures (just a few
Kelvin). He discovered that below a certain temperature, the metal’s elec-
trical resistance completely vanished. Since then, a lot of research has been
conducted into this phenomenon and nowadays superconducting materials at
higher temperatures are also available.

The property of no resistance means that very high currents can be achieved,
which is useful in a wide range of fields. For example, MRI machines use su-
perconducting magnets to create images of a person’s body. Another important
application is the usage of superconductors to create a Josephson junction. This
consists of two superconductors, coupled by a weak link, and are the building
blocks of very sensitive sensors or single-electron transistors. These junctions
are also integral in quantum computing.

Superconductors are often used to achieve high currents, but according to the
Maxwell equations, this results in high magnetic fields in and near the material
as well. Superconductors have the property of excluding magnetic fields up to a
certain strength. When the field exceeds this strength, it intrudes the material.

This process is modelled by a set of equations called the Ginzburg-Landau
equations. These are a set of two coupled non-linear partial differential equa-
tions that can’t be solved generally using analytical methods. Hence numerical
approximations are needed. This is done by using the Finite Element Method,
where a domain is divided into small elements and the solutions are approxi-
mated on each of these elements.

Such a model was already constructed by Alstrøm et al. [1] using the COM-
SOL Multiphysics [2] software, but the obtained results turn out to be flawed.
The goal of this report is to get a good understanding of the Ginzburg-Landau
model and to improve the existing FEM model using MATLAB.

To be able to develop a FEM model and properly interpret the results,
some of the theory behind superconductivity will be discussed in chapter 2
and the process of creating a Finite Element model will be introduced. In
Chapter 3, some of the results of Alstrøm et al. [1] will be reproduced using
COMSOL Multiphysics and the flaws of these results will be discussed along
with their possible causes. Then a FEM will be created for the Ginzburg-
Landau equations in MATLAB [3]. In chapter 4, numerical simulations will be
done using the program and the results will be compared to the ones obtained
by using COMSOL. Finally, several conclusions will be drawn in chapter 5 and
recommendations for future research will be made in chapter 6.

3

2 Theory

In this first section, some theoretical background will be discussed. Firstly, the
derivation of the Ginzburg-Landau equations will be treated briefly and some
insight will be given into the physical meaning of the terms that occur in these
equations. Next, the equations will be simplified through normalization and
gauge invariance. Finally, some general theory about differential equations such
as the Ginzburg-Landau and a method to solve them will be discussed. As a
main guideline for the physics section of this chapter, the book Introduction to
superconductivity by M. Tinkham [4] was used. For the mathematical part, the
book Numerical methods in scientific computing by J. van Kan et al. [5] was
used as a reference.

2.1 Phenomena in Superconductivity

Superconductivity was first discovered by Kamerlingh Onnes in 1911 in his
laboratory in Leiden. Just 3 years after he had succeeded in producing liquid
Helium, he used this discovery to study the properties of metals at temperatures
of just a few Kelvin. He discovered that the electrical resistance of certain metals
completely vanished when cooled below a critical temperature, Tc, which differs
for different materials. Experiments on superconducting current loops have
shown that the lower bound for their decay is in the order of 105 years.[4]

Another important property of superconducting materials is that they ex-
clude magnetic fields even when the sample was already in a magnetic field
before it was cooled through Tc. This phenomenon was discovered by Meissner
and Ochsenfeld and is called the Meissner effect. However, as shown in Figure
2.1, the magnetic field is able to intrude the superconducting sample to a certain
depth, called the penetration depth λ. This effect is broken when the sample
becomes subject to a certain critical magnetic field Hc.

Figure 2.1: The Meissner effect: the applied magnetic field is screened from the
interior of the superconductor by a penetration depth λ. [4]

4

2.2 Theories of superconductivity

After the discovery of superconductivity by Kamerlingh Onnes, much research
has been conducted into this phenomenon, both on an experimental and a the-
oretical level. This research resulted into the development of several theories of
superconductivity.

The first model that gave a good description of superconductivity was pro-
vided by the brothers F. and H. London [6]. They proposed two equations based
on a phenomenological derivation.

E =
∂

∂t
(ΛJs) , (2.1)

h = −c ∇× (ΛJs) , (2.2)

where

Λ =
4πλ2L
c2

=
m

nse2
. (2.3)

In these equations E and h are respectively the electric field and magnetic
flux, Js is the superconducting current density, e and m are the electron charge
and mass, c is the speed of light, ns is the number density of superconducting
electrons and λL is a new parameter called the London penetration depth.

These equations, combined with the Maxwell equations, predicted that ns
would vary continuously from zero at the critical temperature to a limiting value
of the order of the total number of conduction electrons for lower temperatures.
The Meissner effect was also described by their model, predicting that a mag-
netic field would be exponentially screened from the interior of a superconductor
with a certain penetration depth λL, given by:

λL =

(
mc2

4πnse2

)1/2

. (2.4)

The London equations provided a good description for superconducting phe-
nomena. Inserting the maximal value for ns, namely the total number of con-
ducting electrons n, an ideal theoretical limit λL(0) for the penetration depth as
T → 0 is found. However, experimental data found that the penetration depth
λ is always larger than λL(0). This called for a new concept, the coherence
length, which was introduced by Pippard. [7]

Pippard proposed a nonlocal generalization of the London theory. The basis
for this principle was the postulate that the superconducting current at a point
r depends on the magnetic vector potential A(r′) in a volume of radius ξ0
around r. This ξ0 was called the coherence length.

He derived this new coherence length from a uncertainty argument: since
only electrons within kTc of the Fermi energy can participate in a phenomenon
which occurs at Tc, their momentum range will be: ∆p ≈ kTc/vF where vF
is the Fermi velocity, Tc is the critical temperature and k is the Boltzmann
constant. This results in:

5

∆x ≳ h̄vF /kTc,

where h̄ is the reduced constant of Planck. This leads to the definition of
the coherence length:

ξ0 = a
h̄vF
kTc

, (2.5)

with a a constant in the order of 1 yet to be determined. Usually, ξ0 ≫ λ and
it represents the smallest size of a wave packet that the superconducting charge
carriers can form (approximately). For a vector potential that does not maintain
its full value over a volume of radius ξ0, one would thus expect a weakened
supercurrent. In the experiments, A(r) decreased sharply over a length λ≪ ξ0,
a weakened supercurrent resulted in an increased field penetration, and thus an
increased apparent penetration depth. Pippard found that his new concept
could fit the experimental data with a = 0.15, which was later validated by the
microscopic theory.

Subsequent experiments on superconducting materials established the ex-
istence of an energy gap ∆ between the ground state and the quasi-particle
excitations of the system. Measurements on the specific heat of these materials
showed that the minimum excitation energy per particle was about 1.5kTc. At
about the same time, measurements of electromagnetic absorption in the region
of h̄ω ∼ kTc could be interpreted in terms of an energy gap of 3 to 4 times kTc.
This would mean the excitations were produced by pairs.

At this point, in 1957, BCS theory came along. Bardeen, Cooper and Schri-
effer [8] postulated that weak attractions between electron’s, caused by electron-
phonon interaction , causes the formation of electron pairs, called Cooper pairs
at low temperatures. These pairs, with equal and opposite momentum and spin,
can be seen as the superconducting charge carriers that were anticipated in the
phenomenological theories. The predictions of this theory, for example the size
of the band gap, were in agreement with the experimental data.

2.3 Ginzburg-Landau theory of superconductivity

In 1950, seven years before the introduction of BCS theory, another phenomeno-
logical theory was produced by Ginzburg and Landau [9]. It focused on the
superconducting electrons rather than on the excitations and it introduced a
complex valued order parameter ψ. This parameter describes the local density
of superconducting electrons by the following relation:

ns = |ψ(x)|2. (2.6)

The main idea in deriving the so-called Ginzburg-Landau equations was that
they were a result of using a variational principle of the free energy. Under the
assumption that |ψ| is small and so is its gradient, the free energy density of
the system can be expanded in powers of |ψ|2:

6

f = fn0 + α|ψ|2+β
2
|ψ|4+ 1

2m∗

∣∣∣∣(h̄i∇− e∗

c
A

)
ψ

∣∣∣∣2 + h2

8π
, (2.7)

where α and β are to be determined constants, m∗ and e∗ are the effective
charge carrier mass and charge respectively and h is Planck’s constant.

For ψ = 0, this reduces to f = fn0 + h2/8π which is the free energy of the
non-superconducting state with fn0(T) = fn0(0)− 1

2γT
2. The remaining terms

describe superconducting behaviour. They will now be discussed, along with
their physical meaning.

The second and third term on the right hand side are a series expansion of
the free energy in powers of |ψ|2 or ns, in which only the first two terms are
retained. This is a sufficient approximation as long as the temperature does
not deviate too much from Tc, where |ψ|2→ 0. It is immediately evident that
in this expansion, β has to be greater than zero, for if this is not the case, the
minimum free energy occurs at very large |ψ|2, where the approximation clearly
does not hold.

Now there are two possible situations, as shown in Figure 2.2. For α > 0
the minimum free energy is found for |ψ|2= 0, corresponding to the normal
state. For α < 0, the minimum is found at |ψ|2= −α

β , which gives the following

minimum free energy(in the absence of fields and gradients):

fs − fn =
−α2

2β
. (2.8)

Figure 2.2: The free energy for cases α > 0 and α < 0, corresponding to
respectively the normal and superconducting state. [4]

From this it becoomes clear that α is negative for T < Tc, the supercon-
ducting state and positive for T > Tc, the normal state. Performing a Taylor’s
series expansion of α(T) about Tc, neglecting higher order terms gives:

α(T) = α′
(
T

Tc
− 1

)
α′ > 0. (2.9)

The final term in Equation (2.7) deals with fields and gradients. To make
discussing this term more manageable, ψ = |ψ|eiϕ is used. This leaves the final
term as:

7

1

2m∗

[
h̄2(∇|ψ|)2 +

(
h̄∇ϕ− e∗A

c

)2

|ψ|2
]
. (2.10)

In this equation, the first term gives the energy associated with gradients
in the order parameter. The second term stands for the kinetic energy of the
supercurrent in gauge-invariant form. Further A stands for the magnetic vector
potential and is related to the magnetic and electric fields by:

B = ∇×A, E = −∇ϕ− ∂A

∂t
, (2.11)

where ϕ is the electric potential(a scalar field).[10]
In the London theory discussed before, the gauge is constant so the term

∇ϕ disappears. Equating the remainder to the kinetic energy for a supercurrent
based on the London theory (A2/8πλ2eff), the following effective penetration
depth is found:

λ2eff =
m∗c2

4π|ψ|2e∗2
, (2.12)

which is in agreement with Equation (2.4), considering ns = |ψ(x)|2, except
now the mass and charge are replaced by their effective counterparts. These
effective values were determined by looking at the experimental data. It turns
out that the combination e∗ = 2e, m∗ = 2m and ns = 1

2n fitted the data best.
Eventually these values were also verified by derivation from the microscopic
theory, corresponding to the Cooper pairs mentioned before.

2.3.1 The GL Differential Equations

The minimization of the free energy in Equation (2.7) was already discussed in
the absence of fields, currents or gradients. Now, if these are imposed, ψ(r) =
|ψ(r, t)|eiϕ(r,t) has to minimize the overall free energy, given by the volume
integral of Equation (2.7). Carrying out this process turns out to be very difficult
and is beyond the scope of this project. Assuming a gapless density of state
spectrum, Gor’kov and Eliashberg[11] were able to obtain the time-dependent
Ginzburg-Landau equations given below:

h̄2

2m∗D

(
∂

∂t
+ i

e∗

h̄
ϕ

)
ψ = −αψ − β

2
|ψ|2ψ − 1

2m∗

(
h̄

i
∇− e∗

c
A

)2

ψ. (2.13)

σ

(
∂A

∂t
+∇ϕ

)
=

e∗h̄

2m∗i
(ψ∗∇ψ − ψ∇ψ∗)− e∗2

m∗ |ψ|
2A− 1

µ0
∇×∇×A. (2.14)

In order for the problem to be well-defined, appropriate boundary conditions
need to be specified. The three conditions that are required are listed below.

8

(
h̄

i
∇ψ − e∗

c
Aψ

)
· n = 0, on ∂Ω, (2.15)

which is related to the superconducting current. It says no superconducting
current is allowed to pass the surface. Later on, it was shown that a term
ih̄
b ψ should be added to the right hand side of this equation to account for a
proximity effect. (

∂A

∂t
+∇ϕ

)
· n = 0, on ∂Ω, (2.16)

which restricts the regular current on the boundary. It says E ·n = 0 on ∂Ω
so no normal current Jn = σE passes through the surface.

∇×A = Ba, on ∂Ω, (2.17)

where Ba is the applied magnetic field on the boundary.

The great advantage of these equations is that they are able to describe
the intermediate state where both the superconducting and normal states exist,
that is near Hc. The interface between two such states is shown schematically
in Figure 2.3.

Figure 2.3: Interface between a superconducting and normal state. Here λ is
the penetration depth and ξ is the coherence length, which will be discussed
below. Here h denotes the one dimensional magnetic flux. [4]

2.3.2 The Ginzburg-Landau Coherence length

An important result of the differential equations is the Ginzburg-Landau co-
herence length. The argument that leads to this parameter goes as follows:
consider the simplified case where no fields are present. ψ can then be taken to
be real and the normalized wave function f = ψ/ψ∞ can be introduced, where
ψ2
∞ = −α/β > 0. Equation (2.34) then becomes(in one dimension):

d2f

dx2
+ f − f3 = 0. (2.18)

This shows that ψ varies over a volume with the characteristic length of:

9

ξ2(T) =
h̄2

2m∗|α(T)|
∝ 1

1− T/Tc
. (2.19)

This is called the Ginzburg-Landau coherence length. It is generally not the
same as the Pippard coherence length ξ0 that has been discussed before. To see
how they are related a linearized solution of Equation (2.18) is found. For this,
f(x) = 1 + g(x) where g(x) ≪ 1 is substituted to find:

g(x) ∼ e±
√
2x/ξ(T). (2.20)

This shows that a small disturbance in the wave function ψ from ψ∞ will
decay in a length of order ξ(T).

Using results from the microscopic BCS theory, the value of ξ(T) was calcu-
lated in terms of ξ0. For pure superconductors at very low temperatures (≪ Tc)
this resulted in ξ(T) ≈ ξ0. At temperatures near Tc, this led to:

ξ(T) = 0.74
ξ0

(1− T/Tc)1/2
. (2.21)

Finally, a very important dimensionless parameter κ is introduced, using
both the coherence length and another length that is closely related to the
London penetration depth. This new length is also a result from BCS theory
and is denoted by λeff. The dimensionless parameter κ is now defined as follows:

κ =
λeff(T)

ξ(T)
. (2.22)

Using the numerical results for pure superconductors this definition leads to:

κ = 0.96
λL(0)

ξ0
. (2.23)

2.4 Type I and Type II Superconductors

The parameter κ from the last section plays an important role in the behavior
of superconducting materials. To see the influence of this parameter on the
behavior of a superconductor, two cases are considered: κ ≪ 1 and κ ≫ 1.
Superconductors with these values for κ are respectively called type I and type
II superconductors. For these two cases, the interface between normal and su-
perconducting states is depicted in one dimension in Figure 2.4.

10

Figure 2.4: The interface between normal and superconducting states for type
I (left) and type II (right) superconductors. [4]

These types react differently to an external magnetic field. To see why an
additional concept is introduced: the surface energy γ. This is a phenomeno-
logical energy term associated with the NS interface. This term is derived from
a free energy minimization argument and is:

γ =
H2

C

8π
δ, (2.24)

where δ ≈ ξ − λ. For type I superconductors δ is positive, which leads
to a positive surface energy associated with the boundary. The interfaces will
arrange themselves in a way to minimize the overall energy. In this case this
means a minimization of the interface area. An example of this for an infinite flat
slab is shown below. An external magnetic field Ba is applied. This magnetic
field is screened from the interior of superconducting regions, but some holes
arise where the magnetic field penetrates the sample. These are regions in the
normal state and are arranged in such a way that the interface area is minimal.
These regions are in this case of macroscopic dimensions.

Figure 2.5: Field penetration for an infinite slab with κ≪ 1. The NS interface
area is minimized. The normal region thickness DN is of macroscopic size. [4]

For type II superconductors however, δ becomes negative and so does the
surface energy. This leads to an overall maximization of the interface area. This
is achieved through having a great number of microscopic non-superconducting

11

holes in the sample. In theory the area would become infinite with an infinite
number of infinitely small holes. However, there is a limit to the size of these
holes. This limit is determined by magnetic flux quantization, which prescribes
the minimal magnetic flux through a hole. This magnetic flux quantum is
defined as:

Φ0 =
hc

2e
. (2.25)

The resulting non-superconducting holes are called Abrikosov vertices and
contain a single flux quantum each. An example of such an arrangement is
shown below. The holes are now on the microscopic scale.

Figure 2.6: Abrikosov vertices in in 200 nm thick YBCO film taken by Scanning
SQUID Microscopy after field cooling at 6.93 T to 4 K. [12]

2.5 Normalization and Gauge Invariance

To make the mathematics in the remainder of this report more clear, the GL-
equations will be normalized and later a gauge will be chosen. For the normal-
ization, the following transformations are used, where the primes mark dimen-
sionless variables[1]:

(x, y, z, t) =

(
λx′, λy′, λz′,

ξ2

D
t′
)
, A =

ch̄

e∗ξ
A′

ψ =

√
−α
β
ψ′, ϕ = −αDκ2

√
2µ0

b
ϕ′, σ =

1

µ0Dκ2
σ′.

(2.26)

Substituting these dimensionless variables, the normalized GL-equations are:(
∂

∂t
+ iκϕ

)
ψ = −

(
i

κ
∇+A

)2

ψ − ψ − |ψ|2ψ. (2.27)

σ

(
∂A

∂t
+∇ϕ

)
=

1

2iκ
(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2A−∇×∇×A. (2.28)

and the boundary conditions transform into:

12

(
h̄

i
∇ψ +Aψ

)
· n = 0, on ∂Ω. (2.29)

(
∂A

∂t
+∇ϕ

)
· n = 0, on ∂Ω. (2.30)

∇×A = Ba, on ∂Ω. (2.31)

These equations have the property of gauge invariance. This means any
particular gauge can be chosen, leading to the same outcome in the measurable
physical quantities. This freedom of choice is due to the fact that quantities
like A are not directly measurable. Only the magnetic field B = ∇ × A is
measurable, and therefore it is fixed. This leaves infinite choices for A, which is
called gauge freedom. One can perform so called gauge transformations on the
different potentials, without changing the physical outcome. In this case the
gauge transformation is defined by a scalar function χ(x, y, z, t): [1][13]

ψ̃ = ψeiκχ, Ã = A+∇χ, ϕ̃ = ϕ− ∂χ

∂t
. (2.32)

To obtain the final version of the GL-equations that will later be numerically
solved, a convenient gauge is chosen. This gauge is the one with zero electrical
potential, that is ϕ̃ = 0. This means that:

∂χ

∂t
= ϕ. (2.33)

Applying this transformation, the final version of the dimensionless time-
dependent Ginzburg-Landau differential equations is found. The tildes are omit-
ted for ease.

∂ψ

∂t
= −

(
i

κ
∇−A

)2

ψ + ψ − |ψ|2 ψ. (2.34)

σ
∂A

∂t
=

1

2ik
(ψ∗ ∇ψ − ψ ∇ψ∗)− |ψ|2 A−∇× ∇× A. (2.35)

∇ψ · n = 0, on ∂Ω. (2.36)

∇×A = Ba, on ∂Ω. (2.37)

A · n = 0, on ∂Ω. (2.38)

13

2.6 Partial Differential Equations

A Partial Differential Equation (PDE) is an equation in which one or more mul-
tivariate functions and their partial derivatives with respect to these different
variables appear. Such equations describe most physical processes and can be
solved analytically only in very special cases. The GL-equations form a perfect
example of such a physical process. In this case, the functions are ψ and A and
they are both dependent on the spatial variables and time. Unfortunately, in
this case there is no way to derive a solution to this problem through analytic
methods. Therefore, a solution will have to be found numerically. There are
several numerical methods that are used in solving PDE’s. These include the fi-
nite element method (FEM), finite volume methods (FVM) and finite difference
methods (FDM). In this report, the finite element method is used for the spatial
variables and a finite difference method will be used for the time derivatives.
Both of these methods will be described below.

2.7 Finite Element Method

The finite element method, FEM for short, is a numerical method for solving
problems in a wide range of fields. It subdivides the problem into smaller
problems which are called elements. FEM formulates the problem as a system
of algebraic equations, through which the solution is approximated at a discrete
number of points over the domain.[14]

In the process of developing a finite element model, the first step is to express
the problem in its weak formulation. In this section, the weak formulation for the
time-dependent GL-equations will be obtained. Next, the unknown functions
or variables in the problem are approximated by a linear combination of a set of
basis functions. The choice of these functions depends on the type of problem
and has to do with certain function spaces, which will be briefly discussed after.
Furthermore, the proper choice of basis functions for the problem at hand will
be discussed.

2.7.1 Weak formulation

Once a partial differential equation is expressed in its so-called weak formulation,
it is no longer required to hold absolutely and the solutions to the obtained
problem are only with respect to certain test functions.[15] This means that some
of the requirements implied in the differential equation such as differentiability
are no longer required to hold. For example, the solution of the heat equation
in its weak form is only required to be differentiable once, while the original
formulation the solution has to be twice differentiable. [5]

To obtain the weak formulation of a partial differential equation, it is multi-
plied by an arbitrary test function η in the so called solution space Σ. Eventually
the solution will be approximated by functions from the same space. This choice
of the same space for test and basis functions is what makes the FEM in this
report a standard Galerkin method. The proper choice of this space will be

14

discussed in the next section. The equation is then integrated over the domain
Ω.

Weak formulation for the time-dependent GL-equations

This procedure will now be carried out for the time-dependent Ginzburg-
Landau equations. For the first equation, this results in:∫
Ω

∂ψ

∂t
η dΩ =

∫
Ω

(
1

κ2
∆ψ− i

κ
∇ · (Aψ)− i

κ
A · ∇ψ−A2ψ+ψ− |ψ|2 ψ

)
η dΩ,

which leads to:∫
Ω

∂ψ

∂t
η dΩ =

∫
Ω

1

κ2
∆ψ η dΩ−

∫
Ω

i

κ
∇ · (Aψ) η dΩ

−
∫
Ω

i

κ
A · ∇ψ η dΩ+

∫
Ω

(
1−A2 − |ψ|2

)
ψ η dΩ.

Through Green’s first identity[16] the first term on the right hand side is
rewritten and the product rule is used to expand the ∇ · (Aψ)-term:∫

Ω

∂ψ

∂t
η dΩ = − 1

κ2

∫
Ω

∇η · ∇ψ dΩ+
1

κ2

∮
∂Ω

η (∇ψ · n) d (∂Ω)

−
∫
Ω

i

κ
(∇ ·A)ψ η dΩ−

∫
Ω

2i

κ
A · ∇ψ η dΩ

+

∫
Ω

(
1−A2 − |ψ|2

)
ψ η dΩ.

Boundary condition (2.36) then completes the weak formulation of Equation
(2.34):

(2.39)

∫
Ω

∂ψ

∂t
η dΩ = − 1

κ2

∫
Ω

∇η · ∇ψ dΩ+−
∫
Ω

i

κ
(∇ ·A)ψ η dΩ

−
∫
Ω

2i

κ
A · ∇ψ η dΩ+

∫
Ω

(
1−A2 − |ψ|2

)
ψ η dΩ.

For the second equation which is vector valued, a vector valued test function
η has to be used, which has to be part of a different function space, which will
be discussed later on. The inner product of this function with both the left and
right hand side of the equation is taken and the result is integrated over Ω:

σ

∫
Ω

∂A

∂t
· η dΩ =

1

2ik

∫
Ω

(ψ∗ ∇ψ − ψ ∇ψ∗) · η dΩ

−
∫
Ω

|ψ|2 A · η dΩ−
∫
Ω

(∇×∇×A) · η dΩ.

To deal with the last term on in this equation, a rule for the curl-curl is
needed that is similar to the green identity that was used for the Laplacian in
Equation (2.34). This rule is the following:

15

Theorem 1. For smooth functions u and v on a domain Ω the following inte-
gration by parts formula holds:∫

Ω

(∇× u) · v dΩ =

∫
Ω

u · (∇× v) dΩ−
∮
∂Ω

(u× n) · v d (∂Ω) ,

where n is the outward pointing normal vector on ∂Ω.

Proof. The statement is derived from a standard identity in vector calculus:

∇ · (u× v) = (∇× u) · v − (∇× v) · u.

This is integrated over the domain to obtain:∫
Ω

∇ · (u× v) dΩ =

∫
Ω

((∇× u) · v − (∇× v) · u) dΩ.

Using Gauss’s theorem this leads to:∮
∂Ω

n · (u× v) d (∂Ω) =
∫
Ω

((∇× u) · v − (∇× v) · u) dΩ.

Because a scalar triple product is invariant under a circular shift, the follow-
ing also holds:

n · (u× v) = v · (n× u) = u · (v × n).

Combining these two results obtains:∫
Ω

v · (n× u) dΩ =

∫
Ω

((∇× u) · v − (∇× v) · u) dΩ.

This leads to the required equality.

We apply Theorem (1) to the previous result with u = ∇×A and v = η to
obtain:

σ

∫
Ω

∂A

∂t
· η dΩ =

1

2ik

∫
Ω

(ψ∗ ∇ψ − ψ ∇ψ∗) · η dΩ−
∫
Ω

|ψ|2 A · η dΩ

−
∫
Ω

(∇×A) · (∇× η) dΩ+

∮
∂Ω

((∇×A)× n) · η d (∂Ω) .

Boundary condition (2.37) then leaves us with:

(2.40)
σ

∫
Ω

∂A

∂t
· η dΩ =

1

2ik

∫
Ω

(ψ∗ ∇ψ − ψ ∇ψ∗) · η dΩ−
∫
Ω

|ψ|2 A · η dΩ

−
∫
Ω

(∇×A) · (∇×η) dΩ+

∮
∂Ω

(Ba ×n) ·η d (∂Ω) .

16

2.7.2 Function spaces

In deriving the weak formulation of the GL-equations, some assumptions are
made about the used test functions. For example, in the derivation of Equation
(2.39), it is assumed that ∇η exists and is square integrable over the domain.
These requirements determine the solution space, the set of functions the test
and later basis functions are chosen from. In deriving the weak formulation of
the GL-equations, two function spaces turn up. They are called Sobolev spaces
and have to do with the existence and integrability of the curl and gradient.
First, an auxiliary space of all Lebesque integrable functions is defined as:

L2(Ω) =

{
v(x) : Ω → R :

∫
Ω

|v|2dΩ <∞
}
, (2.41)

The Sobolev space related to the first GL-equation then becomes:

H1(Ω) =

{
v(x) ∈ L2(Ω,Rd) :

∂v

∂xi
∈ L2(Ω,Rd)

}
, (2.42)

for the first equation. Here L2 denotes the space of all square integrable
functions. For the second equation the curl of the test functions are required
to exist and be square integrable. For complete clarity, a distinction has to be
made between the rotation in 2D and 3D. The used definitions for the curl of a
vector valued function w : Ω → Rd are:

2D: curl w =
∂w2

∂x
− ∂w1

∂y

3D: curl w =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

w1 w2 w3

∣∣∣∣∣∣ =
w3,y − w2,z

w1,z − w3,x

w2,x − w1,y

 . (2.43)

Now, the Sobolev spaces related to the curl are:

Hcurl(Ω) =

{{
v(x) ∈ L2(Ω,R2) : curl v ∈ L2(Ω)

}
, if d = 2{

v(x) ∈ L2(Ω,R3) : curl v ∈ L2(Ω,R3)
}
, if d = 3

. (2.44)

It should be clear that H1(Ω) ⊆ Hcurl(Ω). The test functions for the first
and second GL-equation will respectively have to be chosen from spaces H1 and
Hcurl.

17

2.7.3 Basis functions

Eventually, the approximation of the problem will be made by a linear combi-
nation of basis functions, which are chosen from the same function space as the
test functions that are used. So, eventually, a typical approximation will be of
the form:

u =
n∑

i=1

aiηi, (2.45)

where u is the unknown in the original problem, ηi are the basis functions
with their corresponding coefficients ai. These coefficients are the degrees of
freedom (dof) of the problem. To approximate the solution of the problem,
Equation (2.45) is then substituted into the weak formulation of the problem.
Finally, substituting the same basis functions one by one as test function leads
to a system of linear equations that can be solved for the unknown coefficients
ai.

It is the goal of this section to find appropriate basis functions for each of
the GL-equations.

Mesh
Before the choice of basis functions can be discussed, the concept of a mesh
needs to be explained. The reason for this is that the definition of the basis
functions relies on this mesh. A mesh is a partition of the entire domain Ω. A
part of this partition is called an element and how this mesh is constructed is
dependent on the dimension. The simplest example is a uniform mesh in the
1D case, which for Ω = [0, 1] is shown in Figure 2.7.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Figure 2.7: Uniform 11 point mesh on Ω = [0, 1], where 0 = x0 < x1 < . . . <
xn+1 = 1.

Hence the total interval is divided into N subintervals, or elements ek =
[xk−1, xk]. In general an element is a simplex in Rd. The union of all elements
in the mesh should form the entire domain. In 2D, the most popular elements
are triangular elements and in 3D tetrahedral elements are often used. In 2D,
a possible mesh for Ω = [−1, 1] × [−1, 1] is shown in Figure 2.8. The elements
are now formed by triangular control volumes.

18

Figure 2.8: Example of a 2D mesh on the domain Ω = [−1, 1] × [−1, 1]. The
mesh was constructed using the pde mesher tool of MATLAB.[3]

As can be seen, this mesh is no longer uniform over the domain. This is
because the mesh was constructed by the pde mesher of MATLAB [3]. This
program uses Delaunay triangulation to create the mesh. [17] This algorithm
maximizes the minimal angle of all triangles in the mesh. This avoids discretiza-
tion errors and large errors in the derivative of the solution. [18] The result is
a set of Np points xi and Ne edges rm between these points, forming the N
triangular elements ek.

Based on the constructed mesh, basis functions are formulated. They are
often defined element-wisely and are nonzero only in a particular set of elements.
Basis functions can be defined point-wisely or edge-wisely, which means they
will have a dof related to a certain point or edge of the mesh. The way this
works will be the subject of the remainder of this section.

Lagrangian P1 basis
If the approximated solution exists in the spaceH1(Ω), a common choice of basis
functions is Lagrangian polynomials, that are defined element-wisely. Depending
on the required accuracy, a certain order of polynomials can be chosen. The most
simple choice is first order. The basis functions are then called linear Lagrangian
interpolating polynomials and to define them the following subspace of H1(Ω)
is introduced:

V 1(Ω) =
{
v ∈ H1(Ω) : v|ek∈ P1(ek), 1 ≤ k ≤ N

}
, (2.46)

where Pm(ek) denotes the space of all polynomials of order m on element
ek.

19

The Lagrangian basis functions li(x) are then defined by the following [5]:

(1) li(x) ∈ V 1(Ω)

(2) li(xj) = δij ,
(2.47)

where i, j ∈ 1, ..., Np. This means that each point in the mesh corresponds
to a basis function and the coefficient of this basis function is the value of the
unknown that is solved for in point xi. A linear Lagrangian polynomial in 1D
is shown in Figure 2.9.

xi−1 xi xi+1

li(x)

Figure 2.9: Linear Lagrangian polynomial on a uniform mesh in 1D.

This corresponds to the following functions on the domain:

li(x) =

x−xi−1

xi−xi−1
, x ∈ [xi−1, xi]

xi+1−x
xi+1−xi

, x ∈ [xi, xi+1]

0, elsewhere.

(2.48)

In 2D, the same definition (2.47) is used. Again, these polynomials are
defined element-wisely. A typical triangular element is shown in Figure 2.10.

x1

x2

x3

Figure 2.10: Element of a 2D mesh.

A linear polynomial in 2D is defined by:

li(x) = bi0 + bi1x+ bi2y. (2.49)

To define the linear Lagrangian polynomials in 2D, the parameters bij should
be computed. Using Definition (2.47), this is done by solving the following
system of linear equations (which can easily be done):1 x1 y1

1 x2 y2

1 x3 y3

b10 b20 b30
b11 b21 b31
b12 b22 b32

 =

1 0 0
0 1 0
0 0 1

 . (2.50)

20

The resulting polynomial is shown in Figure 2.11.

li(x)

Figure 2.11: Linear Lagrangian polynomial on a 2D mesh.

Nédélec linear basis
For solutions that exist in Hcurl(Ω), one could use the same set of nodal basis
functions, since H1(Ω) ⊆ Hcurl(Ω). However, to find a more accurate ap-
proximation of the solution, different so-called curl-conforming basis functions
can be used. These basis functions span a bigger part of Hcurl(Ω) than a La-
grangian basis would. The most commonly used curl-conforming basis is called
the Nédélec basis and will be defined in this section. [19]

Tangential continuity

A very important assumption that was made in Theorem (1) is that u× n
is continuous over the domain. If this is not the case, the integral would not
be well-defined. One could divide the domain into different sub-domains and
carry out the same integration by parts formula and obtain additional terms in
the process. From this follows that the tangential component of u should be
continuous over the domain. This is a less strict requirement than in the case of
H1(Ω) conforming elements, where the functions are required to be continuous
component-wise.

Reference elements

Like the Lagrangian polynomials, the Nédélec basis functions are defined
element-wisely. The most convenient way to do this is to first define them on a
certain reference element K̂, and then to map these functions onto the elements
ek in the real domain Ω. The reference elements K̂ for d = 2 and d = 3 are
shown in Figure 2.12.

21

(0,0) (1,0)

(0,1)

x̂1

x̂2

(a) Unit triangle.

(1,0,0)

(1,0,0)

(0,0,1)

(0,0,0)
x̂1

x̂2

x̂3

(b) Unit tetrahedron.

Figure 2.12: Reference elements K̂ in 2D and 3D. [20]

The coordinates in these reference elements can then be mapped onto coor-
dinates in the real domain by the following transformation:

x = Fek(x̂) = Bek x̂+ bek , (2.51)

where Bek is a d× d matrix and bek is a d× 1 vector.

Function spaces

As stated before, the most important requirement on curl-conforming ele-
ments is their tangential continuity. To obtain a proper basis, the goal of this
section is therefore to find a set of basis functions that are tangentially contin-
uous over the element edges.

In the construction of the Lagrange basis, each basis function was related
to a certain node in the mesh. In the case of Nédélec elements, each function
will be related to an edge in the mesh. To find these functions, it will be
useful to find a set of linearly independent functions that each have a nonzero
tangential component on one of the edges. To find general functions that meet
this requirement, some additional function spaces are defined:

P̃m(K̂) =

{
p(x) =

∑n
j=1 αj x̂

aj
1

1 x̂
aj
2

2 . . . x̂
aj
d

d : α ∈ R, n ∈ N,
∑d

i=1 a
j
i = m ∀j = 1 . . . n

}
, (2.52)

which is the space of homogeneous polynomials of degreem. It has dimension
m+1 for d = 2, so in the case of m = 1 an additional auxiliary space is required
to in the end find the three independent basis functions related to each edge in
the reference element [19]:

Sm(K̂) =

{
p ∈

(
P̃m(K̂)

)d
: p · x̂ = 0,∀x̂ ∈ K̂

}
. (2.53)

The dimension of this space ism for d = 2 andm(m+2) for d = 3. This space
is needed because it contains functions that have nonzero tangential component

22

on the edge from (1, 0) to (0, 1) in the reference element, while it is perpendicular
to the other two edges (in the case of d = 2). The function space with functions
that have nonzero tangential components on each of the three edges can then
be defined as:

Rm =
(
Pm−1(K̂)

)d
⊕ Sm. (2.54)

This is the space from which the Nédélec basis functions will be chosen. In
this report, the discussion will be limited to the case where d = 2. In this case,
the following theorem holds:

Theorem 2. [19] For d = 2, Rm can be written as:

Rm =
(
Pm−1(K̂)

)d
⊕ P̃m−1(K̂)

[
x̂2
−x̂1

]
. (2.55)

Proof. The dimension of the space P̃m−1(K̂) in 2 variables is m. As stated
before, so is the dimension of Sm for d = 2. To prove the stated equivalent, all
that remains to be demonstrated is:

P̃m−1(K̂)

[
x̂2
−x̂1

]
⊆ Sm.

To prove this, take p ∈ P̃m−1(K̂). The following then holds:

p

[
x̂2
−x̂1

]
· x̂ = 0,

so p

[
x̂2
−x̂1

]
∈ Sm and this concludes the proof.

In this report, linear Nédélec basis functions will be used. This means order
m = 1 is chosen and this results in the following function space:

R1 =

⟨[
1
0

]
,

[
0
1

]
,

[
x̂2
−x̂1

]⟩
. (2.56)

Nédélec basis functions of first order
Based on function space R1, the Nédélec basis functions of first order will now
be constructed. This is done by first defining a set of degrees of freedom. These
degrees of freedom are related to the edges of the reference element. The num-
bering and orientation of these edges is shown in Figure 2.13.

23

(0,0) (1,0)

(0,1)

x̂1

x̂2

r̂3

r̂2

r̂3

Figure 2.13: Orientation and numbering of edges in the 2D reference element.

The set of degrees of freedom related to these edges for u ∈ R1 then becomes:

Â =

{
α̂(u) =

∫
r̂i

t̂i · u dŝ, i ∈ {1, 2, 3}
}
, (2.57)

where t̂i is the tangential unit vector of the edge r̂i. Finally, the Nédélec
basis functions on the reference element η̂i are defined by:

(1) η̂i(x) ∈ R1(Ω)

(2) α̂i(η̂j) = δij ,
(2.58)

which results in the following three basis functions on reference element K̂:

η̂1 =

[
−x̂2
x̂1

]
, η̂2 =

[
−x̂2
x̂1 − 1

]
, η̂3 =

[
1− x̂2
x̂1

]
. (2.59)

Piola transformation
To obtain basis functions on a general element ek, the functions on the reference
element have to be mapped onto the real domain Ω. Normally, one would expect
this is done by:

η(x) =
(
η̂ ◦ F−1

ek

)
(x), (2.60)

but the problem with this approach is that the pull-back of a Hcurl(K̂)-
function isn’t necessarily a part of Hcurl(ek). [19] Instead, the following trans-
formation, called a Piola transformation is used. It is defined by the following:

η(x) = Pek(η̂) =
(
D̂F−T

ek
η̂
)
◦ F−1

ek
(x), (2.61)

where D̂Fek is the Jacobian of the element map. Using this definition and
the element map from equation (2.51), the following is obtained for the Nédélec
basis functions on the element ek:

η(x) = B−T
ek

(
η̂ ◦ F−1

ek

)
(x). (2.62)

24

The rotation of these functions, which is needed in the weak formulation of
the GL-equations, is mapped onto element ek as follows:

curl η(x) =
1

det Bek

curl
(
η̂ ◦ F−1

ek

)
(x). (2.63)

Tangential continuity
The last step in obtaining the Nédélec basis functions of first order that are
globally defined on the entire domain Ω, is assuring they satisfy tangential
continuity. The basis functions were defined by the tangential unit vectors t̂i
on the reference element K̂. In order for the global basis functions to be well
defined, the used element mapping needs to assure that the tangential unit
vectors elements that share an edge have the same orientation on that edge,
which is not necessarily so in case of the Piola mapping discussed in the previous
section. To make this right, additional signs need to be added to certain basis
functions that will assure tangential continuity on the entire domain. For two
neighbouring elements ek and el, that share an edge rm, the following mapping
is used:

ηm(x) =

Bek

|det Bek
|

(
D̂F−T

ek
η̂i

)
◦ F−1

ek
(x), on ek

− Bel

|det Bel
|

(
D̂F−T

ek
η̂j

)
◦ F−1

el
(x), on el

0, elsewhere.

(2.64)

Here i and j are the number of the edge rm on the reference element K̂ for
respectively real elements ek and el.

This defines all linear Nédélec basis functions on the entire domain Ω. This
result will later be used for modelling the second Ginzburg-Landau equation in
its weak formulation (Equation (2.40)).

2.7.4 Numerical integration

As has been shown in Section 2.7.1, the weak formulation consists of definite
integrals over a certain domain. To be able to compute these integrals in MAT-
LAB, numerical quadrature rules are required, which approximate these inte-
grals. The general form of such a rule on a domain Ω is shown in Equation
(2.65). [5] ∫

Ω

f(x) dΩ ≈
M∑
i=1

wif(xi), (2.65)

where M is the used number of integration points and wi are the weights
of the integration points xi. There are many choices for the integration points.
A common group is known as the Gaussian quadrature rules. These are con-
structed to yield an exact result for polynomials of a certain degree. [21] The
integration points and weights are found by using Equation (2.65) and assuming

25

f is a general polynomial of a certain degree. More on this process can be read
in [22] or [23]. There are plenty of MATLAB programs that provide the set of
integration points and weights for a certain order Gaussian quadrature.

2.8 Finite difference method

As stated before, for the time derivatives in the Ginzburg-Landau equations
a finite difference method will be used. This means the time derivative of
functions will be approximated by evaluating the function on discrete times,
using a constant time interval dt. There is a wide range of possible methods to
do this, but in this report a simple backwards difference method will be used.
The time derivative of a function will then be approximated as follows:

∂f

∂t
(x, y, z, t) =

f(x, y, z, t)− f(x, y, z, t− dt)

dt
. (2.66)

26

3 Finite Element Method for the GL-equations

The goal of this chapter is to develop an accurate numerical method for solv-
ing the time-dependent Ginzburg-Landau equations that were presented in the
previous chapter. The simulations will be performed in 2D. To this end, the
finite element method, that has been introduced in the previous chapter, will
be used. Firstly, the program COMSOL Multiphysics[2] will be used to develop
this model and some results will be presented. However, it turns out that these
results are flawed. The likely cause of these flaws will be discussed and the
remainder of this chapter is devoted to obtaining a more accurate model using
different basis functions in MATLAB[3].

3.1 COMSOL Multiphysics

COMSOL Multiphysics is a finite element analysis, solver and simulation soft-
ware package for various physics and engineering applications, especially cou-
pled phenomena, or multiphysics. In addition to conventional physics-based
user interfaces, COMSOL Multiphysics also allows entering coupled systems of
partial differential equations (PDE’s).[24] This functionality was used to model
the time-dependent Ginzburg-Landau equations.

3.1.1 GL-equations in COMSOL

COMSOL uses piecewise linear basis functions to approximate all degrees of
freedom on the points of a generated mesh. To write the equations in the
proper form, both ψ and A are divided into two components. For ψ these are
the real and imaginary parts and for A these are the x- and y-component. This
leaves four independent variables u1...4. The following substitutions are made
[1]:

ψ = u1 + u2i, A =

[
u3
u4

]
. (3.1)

Substituting this into Equation (2.34), the following is obtained:

d(u1 + u2i)

dt
= −

(
i

κ
∇+A

)2

(u1 + u2i) + ψ − |u1 + u2i|2 (u1 + u2i). (3.2)

Simplifying and splitting the final equation into the real and imaginary part
results in:

du1
dt

=
∆u1
κ2

+
2

κ
(u3u2,x+u4u2,y)+

1

κ
(u3,x+u4,y)u2−(u23+u

2
4)u1−u1−(u21+u

2
2)u1,

(3.3)

27

du2
dt

=
∆u2
κ2

− 2

κ
(u3u1,x+u4u1,y)−

1

κ
(u3,x+u4,y)u1−(u23+u

2
4)u2−u2−(u21+u

2
2)u2.

(3.4)
To implement the second equation along with the boundary conditions a

fifth auxiliary variable u5 is introduced, satisfying the equation:

∇ ·
[
u3
u4

]
= u3,x + u4,y + u5. (3.5)

To implement the boundary conditions, in the second equation, a term ∇×
Ba is added where Ba = (0, 0, Ba).

σ
du3
dt

=
1

κ
(u1u2,x − u2u1,x)− (u21 + u22)u3 +

d

dx
(u4,x − u3,y)−Ba, (3.6)

σ
du4
dt

=
1

κ
(u1u2,x − u2u1,x)− (u21 + u22)u4 +

d

dy
(−u4,x + u3,y) +Ba. (3.7)

The general form of a PDE in COMSOL is shown below. A Neumann
boundary condition is used, which is also given below.

ea
d2u

dt2
+ da

du

dt
+∇ · Γ = F. (3.8)

In Equation (3.6), the matrix ea contains only zeros. The remaining matrices
and vectors are inserted as:

−n · Γ = G, on dΩ. (3.9)

da =

1 0 0 0 0
0 1 0 0 0
0 0 σ 0 0
0 0 0 σ 0
0 0 0 0 0

 , (3.10)

Γ =

[−u1,x/κ2,−u1,y/κ2]T
[−u2,x/κ2,−u2,y/κ2]T
[0, u4,x − u3,y −Ba]

T

[−u4,x + u3,y +Ba, 0]
T

[u3, u4]
T

 , (3.11)

F =

2(u3u2,x + u4u2,y)/κ+ (u3,x + u4,y)u2/κ− (u23 + u24)u1 + u1 − (u21 + u22)u1
−2(u3u1,x + u4u1,y)/κ− (u3,x + u4,y)u1/κ− (u23 + u24)u2 + u2 − (u21 + u22)u2

(u1u2,x − u2u1,x)/κ− (u21 + u22)u3
(u1u2,y − u2u1,y)/κ− (u21 + u22)u4

u3,x + u4,y + u5

 .
(3.12)

28

3.1.2 Numerical simulations

Since the focus in this report is on type II superconductors, this type will also
be used in the simulations. Therefore, a κ > 1/

√
2 is chosen. Furthermore, to

investigate the magnetic field penetration on the domain properly, the applied
magnetic field has to be near the critical field Hc. σ is chosen to be 1 and it
turned out that a dt of 0.1 s was required for convergence of the results. In
summary:

• κ = 4

• Ba = 1

• σ = 1

• dt = 0.1

The equations were solved on the geometry and mesh of Figure 3.1. The
dimensions were chosen such that Abrikosov vortices should arise on the domain.
An indentation is added to see what effect this has on the field penetration.

Figure 3.1: Mesh on a 2 by 2 square with an indentation.

The results are shown in Figures 3.2 and 3.3. The modulus of the order
parameter and the magnetic field in the z-direction are plotted for certain points
in time.

29

Figure 3.2: Modulus of the order parameter (|ψ|) as results from the time-
dependent solution of the GL equations using COMSOL.

Figure 3.3: Magnetic field in the z-direction as results from the time-dependent
solution of the GL equations using COMSOL.

Discussion of the results
As it can be seen, at first |ψ| equals 1 on the entire domain, which corresponds
to the superconducting state. As time progresses, the applied magnetic field
starts to intrude the sample and vortices arise where the order parameter is
close to zero. These vortices originate at the end of the indentation, where they
grow until they enter and find another spot on the domain. Finally no more
vortices arise and the vortices are slightly relocated and finally the system is at
a steady-state, which corresponds to the last plot in Figure 3.2.

Most of these results agree with measurements and predictions. However,
there are some flaws. The most important one is the vortex entry. As it can be
seen in the third plot, it takes a relatively large vortex to enter the material.
This behaviour is nonphysical and it turns out that for more complex geometries,
problems become even larger. [25]

A possible solution for this problem would be to refine the mesh, but it
turns out that the mesh convergence for this particular problem is very slow,
indicating that for accurate results an unrealistically high resolution has to be
used. A different, and better approach is to use a different set of basis functions,
which are curl-conforming. An example of these elements are Nédélec elements,
which have been discussed in Section 2.7.3 and in the remainder of this chapter
such a model will be constructed using MATLAB.

30

3.2 FEM implementation in MATLAB

In the previous4 chapter, the time-dependent Ginzburg-Landau equations were
expressed in their weak formulations(Equations (2.39) and (2.40)). The goal of
this section is to finalize this groundwork and develop a finite element model
for the problem using MATLAB[3].

3.2.1 Discretization

As stated in Section 2.7.3, the final step in constructing a finite element model
for the problem is inserting the approximations for A and ψ and then insert the
basis functions one by one as test functions to create a system of equations.

First GL-equation
Since the equations are coupled, in solving each of the equations some assump-
tions need to be made. In the first equation, A and |ψ|2 are assumed to be
known. They will be approximated by an iterative process. The basis that is
used for ψ is the Lagrangian linear basis, which has been discussed at length in
Section 2.7.3. The approximation then becomes:

ψ(x) ≈
Np∑
i=1

ψi(t)li(x), (3.13)

where we recall Np is the number of points in the mesh, li(x) is the La-
grangian basis function related to the point xi and ψi(t) is the time-dependent
coefficient of that basis function. By recalling Definition (2.47), it is noted that
this is also the approximation value of ψ(xi). Inserting this into Equation (2.39)
and replacing the test function by lj(x) for j = 1, 2, . . . , Np results in:

∫
Ω

d
(∑Np

i=1 ψi(t)li(x)
)

dt
lj(x) dΩ = − 1

κ2

∫
Ω

∇lj(x) · ∇

 Np∑
i=1

ψi(t)li(x)

 dΩ−
∫
Ω

i

κ
(∇ ·A)

 Np∑
i=1

ψi(t)li(x)

 lj(x) dΩ

−
∫
Ω

2i

κ
A · ∇

 Np∑
i=1

ψi(t)li(x)

 lj(x) dΩ+

∫
Ω

(
1−A2 − |ψ|2

) Np∑
i=1

ψi(t)li(x)

 lj(x) dΩ.

Simplifying:

d
∑Np

i=1 ψi(t)

dt

∫
Ω

li(x)lj(x) dΩ = − 1

κ2

Np∑
i=1

ψi(t)

∫
Ω

∇lj(x) · ∇li(x) dΩ− i

κ

Np∑
i=1

ψi(t)

∫
Ω

(∇ ·A) li(x)lj(x) dΩ

−2i

κ

Np∑
i=1

ψi(t)

∫
Ω

(A · ∇li(x)) lj(x) dΩ+

Np∑
i=1

ψi(t)

∫
Ω

(
1−A2 − |ψ|2

)
li(x)lj(x) dΩ.

Finally, a backwards finite difference method in the time-domain is used to
obtain:

31

∑Np

i=1 ψi(t)−
∑Np

i=1 ψi(t− dt)

dt

∫
Ω

li(x)lj(x) dΩ

=− 1

κ2

Np∑
i=1

ψi(t)

∫
Ω

∇lj(x) · ∇li(x) dΩ− i

κ

Np∑
i=1

ψi(t)

∫
Ω

(∇ ·A) li(x)lj(x) dΩ

− 2i

κ

Np∑
i=1

ψi(t)

∫
Ω

(A · ∇li(x)) lj(x) dΩ+

Np∑
i=1

ψi(t)

∫
Ω

(
1−A2 − |ψ|2

)
li(x)lj(x) dΩ.

Simplifying:

Np∑
i=1

(∫
Ω

li(x)lj(x) dΩ+

(
1

κ2

∫
Ω

∇lj(x) · ∇li(x) dΩ+
i

κ

∫
Ω

(∇ ·A) li(x)lj(x) dΩ+
2i

κ

∫
Ω

(A · ∇li(x)) lj(x) dΩ

−
∫
Ω

(
1−A2 − |ψ|2

)
li(x)lj(x) dΩ

)
dt

)
ψi(t) =

Np∑
i=1

(∫
Ω

li(x)lj(x) dΩ

)
ψi(t− dt).

(3.14)
This is a system of Np equations with Np unknowns ψi(t) for each t, which

can be solved in MATLAB by using an iterative process and defining an initial
values ψi(t = 0). As stated before, in this process A and |ψ|2 are assumed to
be known and are taken as their values from the previous iteration step.

Second GL-equation
In solving the second equation, ψ and |ψ|2 are assumed to be known and will
be approximated in the same way as before. The solution for A of the weak
form of the second Equation (2.40) exists in the Hcurl(Ω) space and therefore
A is approximated by using the Nédélec basis discussed in Section 2.7.3. The
approximation then becomes:

A(x) ≈
Ne∑
i=1

Ai(t)ηi(x), (3.15)

where Ne is the number of edges in the mesh, ηi(x) is the Nédélec basis
function related to the edge ri and Ai(t) is the time-dependent coefficient of
that basis function. Now the same process is carried out, the approximation is
substituted into Equation (2.40), along with ηj(x) for j = 1, 2, . . . , Ne as test
functions. This results in:

σ

∫
Ω

d
(∑Ne

i=1Ai(t)ηi(x)
)

dt
· ηj(x) dΩ =

1

2ik

∫
Ω

(ψ∗ ∇ψ − ψ ∇ψ∗) · ηj(x) dΩ−
∫
Ω

|ψ|2
(

Ne∑
i=1

Ai(t)ηi(x)

)
· ηj(x) dΩ

−
∫
Ω

(
∇×

(
Ne∑
i=1

Ai(t)ηi(x)

))
· (∇× ηj(x)) dΩ+

∮
dΩ

(Ba × n) · ηj(x) d (dΩ) .

Again applying a backwards finite difference method in the time domain
delivers:

32

σ

∫
Ω

(∑Ne

i=1Ai(t)ηi(x)−
∑Ne

i=1Ai(t− dt)ηi(x)
)

dt
· ηj(x) dΩ =

1

2ik

∫
Ω

(ψ∗ ∇ψ − ψ ∇ψ∗) · ηj(x) dΩ

−
Ne∑
i=1

Ai(t)

∫
Ω

|ψ|2 ηi(x) · ηj(x) dΩ−
Ne∑
i=1

Ai(t)

∫
Ω

(∇× ηi(x)) · (∇× ηj(x)) dΩ+

∮
dΩ

(Ba × n) · ηj(x) d (dΩ) .

Simplifying:

Ne∑
i=1

(
σ

∫
Ω

ηi(x) · ηj(x) dΩ+

(∫
Ω

|ψ|2 ηi(x) · ηj(x) dΩ+

∫
Ω

(∇× ηi(x)) · (∇× ηj(x)) dΩ
)
dt

)
Ai(t)

= σ

Ne∑
i=1

Ai(t− dt)

∫
Ω

ηi(x) · ηj(x) dΩ+

(
1

2ik

∫
Ω

(ψ∗ ∇ψ − ψ ∇ψ∗) · ηj(x) dΩ+

∮
dΩ

(Ba × n) · ηj(x) d (dΩ)
)
dt.

(3.16)
This is a system of Ne equations with Ne unknowns Ai(t) for each t which

can be solved in MATLAB by an iterative process by defining initial values
Ai(t = 0). The values for ψ and |ψ|2 are taken from the solution of the first
equation.

3.2.2 Matrix and vector assembly

The last section provides a set of two systems of equations for each t. To be
able to solve these systems efficiently in MATLAB, they will now be presented
in matrix-vector notation.

Matrix-vector notation
The systems of equation given in Equations (3.14) and (3.16) can respectively
be written in matrix-vector notation as:

(M + (P + S) dt)ψt =Mψt−dt, (3.17)

with:

• M a (Np ×Np) matrix with elements Mji =
∫
Ω
li(x)lj(x) dΩ

• P a (Np×Np) matrix with elements Pji =
∫
Ω

(
i
κ∇ ·A− 1 +A2 + |ψ|2

)
li(x)lj(x) dΩ

• S a (Np × Np) matrix with elements Sji = 1
κ2

∫
Ω
∇li(x) · ∇lj(x) dΩ +

2i
κ

∫
Ω
(A · ∇li(x)) lj(x) dΩ

• ψt a (Np × 1) vector with elements ψt
i = ψi(t).

And:

(σMNed + (T +Q) dt)At = σMNedAt−dt + (f + b) dt, (3.18)

with:

33

• MNed a (Ne ×Ne) matrix with elements MNed
ji =

∫
Ω
ηi(x) · ηj(x) dΩ

• T a (Ne ×Ne) matrix with elements Tji =
∫
Ω
|ψ|2 ηi(x) · ηj(x) dΩ

• Q a (Ne×Ne) matrix with elements Qji =
∫
Ω
(∇× ηi(x))·(∇× ηj(x)) dΩ

• f a (Ne×1) vector with elements fi =
1

2ik

∫
Ω
(ψ∗ ∇ψ − ψ ∇ψ∗) ·ηi(x) dΩ

• b a (Ne × 1) vector with elements bi =
∮
dΩ

(Ba × n) · ηi(x) d (dΩ)

• At a (Ne × 1) vector with elements At
i = Ai(t).

Element matrices and vectors
Since the basis functions are defined element-wisely, the integrals in Equations
(3.17) and (3.18) will have to be computed per element:∫

Ω

f(x) dΩ =

N∑
k=1

∫
ek

f(x)dΩ. (3.19)

This appears to be a cumbersome procedure, but in fact only some of the
integrals in Equation (3.19) are different from zero. The reason for this is that
they all contain the basis functions, which are nonzero only on certain elements
of the mesh. In 2D, only three of the basis functions are nonzero on each
element.

Because of this, an efficient way of assembling the required matrices and
vectors is done by using element matrices and vectors. The matrix, respectively
vector entries that need to be computed are in general given by:

Hij =

∫
Ω

h(x,ϕi(x),ϕj(x)) dΩ, (3.20)

gi =

∫
Ω

g(x,ϕi(x)) dΩ. (3.21)

for some functions g and h.
Here ϕ is a general basis function. Equation (3.19) is applied for both cases.

On each element ek, for the vector and matrix case only three and nine integrals
are nonzero respectively. This gives raise to the concepts element matrix and
element vector. The element matrix in the 2D case is a (3× 3) matrix Hek and
the element vector is a (3× 1) vector gek . Their elements are defined by:

Hek
ij =

∫
ek

h(x,ϕi(x),ϕj(x)) dΩ, (3.22)

geki =

∫
ek

g(x,ϕi(x)) dΩ. (3.23)

Finally, the elements of these element matrices and vectors are added to
their corresponding element in the large vectors and matrices.

34

Boundary vector
There is one exception to the general forms stated in Equations (3.20) and
(3.21), which is the boundary vector b. The form of this integral is similar, only
now the domain of the integral is dΩ. A similar integration method is used, only
now the domain is divided into the K edges that are on the boundary. This set
of boundary edges will be denoted by B(Ω). For 2D simulations, this becomes a
line integral along the boundary:

bi =

∮
dΩ

(Ba × n) · ηi(x) d (dΩ) =
∑

rk∈B(Ω)

∫
rk

(Ba × n) · ηi(x) d (dΩ) . (3.24)

Again, only some of the integrals in Equation (3.24) are different from zero.
In fact, in this case only one is. This is due to the definition of the Nédélec basis
functions, which can be found in Equation (2.58). It is noted that since Ba is
in the z-direction, Ba × n will be along the edge, i.e.:

Ba × n = |Ba|t. (3.25)

Now, using Definition (2.58), this means that on edge rk, the integral is only
nonzero for basis function ηk. So in this case an element vector is not required
and the elements of the boundary vector are simply given by:

bi =

{∫
ri
(Ba × n) · ηi(x) d (dΩ) , ri ∈ B(Ω)

0, otherwise.
(3.26)

Numerical integration
To compute all of the boundary vector elements, numerical integration is used.
The Gaussian integration quadrature, that was discussed in Section 2.7.4, of
order 5 is used. The integration points on the reference element for 1D and 2D
integrals are shown in Figure 3.4.

Figure 3.4: Integration quadratures on the reference element for 1D(left) and
2D(right) integrals. [3]

35

As it has been discussed in the previous chapter, a weight is assigned to the
integrand values at each of these points and the results are then summed over
all points. The weights for the points above are:

xi wi

0.05 0.12
0.23 0.24
0.50 0.28
0.77 0.24
0.95 0.12

Table 1: 1D quadrature

xi yi wi

0.33 0.33 0.11
0.47 0.06 0.07
0.10 0.80 0.06
0.06 0.47 0.07
0.80 0.10 0.06
0.47 0.47 0.07
0.10 0.10 0.06

Table 2: 2D quadrature

The integrals are then computed by using Equation (2.65).

36

4 Numerical Simulations

In this chapter, numerical simulations using the MATLAB model described in
the last chapter will be presented. Since the coding of the entire problem is very
sensitive to making small mistakes, the problem is divided into sub-problems.
Each of these sub-problems was solved in both COMSOL and MATLAB and
the results of these simulations will be compared and discussed in this chapter.
The full coupled problem has not been solved in MATLAB yet, but large parts
of the separate equations have been numerically solved with success. Therefore,
the aim of this chapter is to show what has been achieved so far and give insight
into what parts of the code still need improvement.

4.1 First GL equation

The first GL-equation will first be solved. Because of the reasons discussed
above, this is done term by term. The same parameters are used as before, so
κ = 4, σ = 1 and dt = 0.1. As an initial value for ψ, the following function is
used:

ψinit =
1 + i√

2
e−(x2+y2) ∀ x, y ∈ Ω. (4.1)

The sub-problems of this section are all solved on the same mesh, which
is again a square. Only now the indentation is removed because this equation
solves for the order parameter ψ, and therefore there is no concern for field
penetration in this case. The indentation will return in the simulation of the
second equation.

Figure 4.1: Mesh used for the numerical simulations of the first GL equation.

37

4.1.1 Term-wise solutions

The first problem that was solved is the heat equation, shown in Equation (4.2).

∂ψ

∂t
=

1

κ2
∆ψ. (4.2)

The resulting modulus of the order parameter on the domain for five different
times are shown in Figures 4.2 and 4.3 for MATLAB and COMSOL respectively.

Figure 4.2: Modulus of the order parameter (|ψ|) as results from the time-
dependent solution of Equation (4.2) using MATLAB.

Figure 4.3: Modulus of the order parameter (|ψ|) as results from the time-
dependent solution of Equation (4.2) using COMSOL.

As it can be seen, the results are very similar. Over time, |ψ| is spread
out over the domain until it is constant. This is the steady-state solution on
the right. Small differences are observed on the intermediate time steps. The
solution of COMSOL seems to reach the steady-state slightly faster. This could
be explained by differences in the finite difference method in the time domain
between COMSOL and MATLAB. However, the observed behavior is the same
so this is not investigated further.

Next, the following two terms are added:

∂ψ

∂t
=

1

κ2
∆ψ + ψ − |ψ|2 ψ. (4.3)

The results are shown in the same way in Figures 4.4 and 4.5.

38

Figure 4.4: Modulus of the order parameter (|ψ|) as results from the time-
dependent solution of Equation (4.3) using MATLAB.

Figure 4.5: Modulus of the order parameter (|ψ|) as results from the time-
dependent solution of Equation (4.3) using COMSOL.

The results are again in agreement. The modulus of the order parameter
now increases over time and is again spread out over the domain until it is
constant. As it can be seen, the steady-state solution is |ψ|= 1 everywhere. To
see why this result is in agreement with expectation, assume a constant ψ over
the domain with a modulus below 1. ∂ψ/∂t is then positive so the solution is not
steady state and |ψ| will increase. The same argument leads to a decrease for
|ψ|> 1 so the final steady-state solution should indeed be a constant modulus of
1 everywhere. Again, the COMSOL result seems to reach steady-state slightly
faster.

Next, the quadratic term involving the magnetic vector potential is added to
the equation. In this part of the process, A is a given function on the domain:

A = [−y, x]T ∀ x, y ∈ Ω. (4.4)

The equation that will be solved is:

∂f

∂t
=

1

κ2
∆ψ + ψ − |ψ|2 ψ −A2ψ. (4.5)

It turned out that to properly evaluate the time dependent behavior of the
solution, a different initial value for ψ should be used. It is given below.

ψinit =
1 + i√

2
e−10(x2+y2) ∀ x, y ∈ Ω. (4.6)

With the constant potential given above the time dependent result of solving
these equations are shown in Figures 4.6 and 4.7.

39

Figure 4.6: Modulus of the order parameter (|ψ|) as results from the time-
dependent solution of Equation (4.5) using MATLAB.

Figure 4.7: Modulus of the order parameter (|ψ|) as results from the time-
dependent solution of Equation (4.5) using COMSOL.

Again, similar behavior is observed in both solutions. The steady-state so-
lution is now non-constant over the domain. This is to be expected since the
added term favors the decrease of |ψ| and has a magnitude that squares with
the distance to the origin. In the origin, this extra term is zero so the solution
again approaches |ψ|= 1. Far away from the origin, this term is relatively large
and so the solution approaches |ψ|= 0. The steady-state is the same for both
solutions, but again this state is approached faster by COMSOL.

Next, one of the complex cross terms of the equation is also added. The
values for A and the initial value of ψ are the same as in the previous step.

∂ψ

∂t
=

1

κ2
∆ψ + ψ − |ψ|2 ψ −A2ψ − i

κ
A · ∇ψ. (4.7)

The results are:

Figure 4.8: Modulus of the order parameter (|ψ|) as results from the time-
dependent solution of Equation (4.7) using MATLAB.

40

Figure 4.9: Modulus of the order parameter (|ψ|) as results from the time-
dependent solution of Equation (4.7) using COMSOL.

The results are similar to the previous ones, and again MATLAB and COM-
SOL agree.

Finally, the other complex term is added. Notice the used A is divergence
free so the last term is negligible.

∂ψ

∂t
=

1

κ2
∆ψ + ψ − |ψ|2 ψ −A2ψ − 2i

κ
A · ∇ψ − i

κ
ψ∇ ·A. (4.8)

In presenting the results, larger time intervals are now used to obtain:

Figure 4.10: Modulus of the order parameter (|ψ|) as results from the time-
dependent solution of Equation (4.8) using MATLAB.

Figure 4.11: Modulus of the order parameter (|ψ|) as results from the time-
dependent solution of Equation (4.8) using COMSOL.

In this final step, differences are observed between the solutions. Until a time
of about 20 s the solutions agree, but after that vortices of low |ψ| start to arise
on the domain. The size of these vortices is the same for both solutions, but in
the solution of COMSOL, the amount of vortices is higher. The steady-states
of these solutions now also differ. In the MATLAB solution the final amount
of vortices is four, while in COMSOL it is twenty. Furthermore, the solution of

41

COMSOL is not symmetrical while the one of MATLAB is. The cause of these
differences is still unclear and should be investigated further.

4.1.2 Additional tests

To gain a better insight to the behavior of the different solvers and to find
possible mistakes, some additional tests were performed on the solutions of the
entire first GL equation. The results of these tests are discussed in this section.

As it has been discussed, when A = 0 on the domain, the steady-state
solution should be |ψ|= 1 everywhere on the domain. To check this, the first
GL equation is solved with zero magnetic vector potential and a perturbed
initial ψ, given by:

ψinit =
1 + i√

2

(
1 + e−(x2+y2)

)
∀ x, y ∈ Ω. (4.9)

The used mesh and parameters are the same as before. The results are
shown in Figures 4.12 and 4.13.

Figure 4.12: Modulus of the order parameter (|ψ|) as results from the time-
dependent solution of the first GL equation with zero magnetic vector potential
and a perturbed initial ψ using COMSOL.

Figure 4.13: Modulus of the order parameter (|ψ|) as results from the time-
dependent solution of the first GL equation with zero magnetic vector potential
and a perturbed initial ψ using MATLAB.

As it can be seen, the results are similar and as expected: the modulus of
the order parameter decreases and reaches its steady-state when it is 1 on the
entire domain.

As it has been seen in the previous section, differences between the COMSOL
and MATLAB results only arise when the complex terms involving the magnetic

42

vector potential are added. Therefore, more extensive tests have been performed
on these differences.

Firstly, the behavior of the solvers for a type I superconductor, i.e. κ < 1, is
checked. With the same given magnetic vector potential as before and a constant
initial ψ, this should result in a steady-state that has |ψ|= 0 everywhere. This
means the field penetrates the entire sample and the superconducting properties
are lost. The mesh and other parameters stay the same and the chosen value of
κ = 0.25. The results are shown below.

Figure 4.14: Modulus of the order parameter (|ψ|) as results from the time-
dependent solution of the first GL equation with a constant magnetic field and
κ = 0.25 using COMSOL.

Figure 4.15: Modulus of the order parameter (|ψ|) as results from the time-
dependent solution of the first GL equation with a constant magnetic field and
κ = 0.25 using MATLAB.

The results are as expected. Due to the low κ, the complex terms that cause
the vortices to arise are less dominant so the steady-state solution is indeed zero
everywhere.

Finally, a test was ran on the full equation for type II superconductors on a
longer time interval. All parameters and the mesh are the same as before, only
now a constant initial ψ is used. In Figures 4.16 and 4.17, the results are shown.

43

Figure 4.16: Modulus(top), real part(middle) and imaginary part(bottom) of
the order parameter (|ψ|) as results from the time-dependent solution of the
first GL equation with a constant magnetic field and κ = 4 using COMSOL.

Figure 4.17: Modulus(top), real part(middle) and imaginary part(bottom) of
the order parameter (|ψ|) as results from the time-dependent solution of the
first GL equation with a constant magnetic field and κ = 4 using MATLAB.

Same as before, big differences are observed. Vortices arise but in the COM-
SOL the amount is higher than in the MATLAB results. It seems in MATLAB
the region of non-zero |ψ| is contained within a certain radius from the origin,
while in COMSOL this region stretches to the boundaries of the domain. The
reason for these differences is yet unclear and should be investigated further.
Possibly, it could have been caused by a difference in the computation of the
matrix en vector entries. At the moment no statement can be made on which re-

44

sult is physically correct. The COMSOL result is trusted more as it was already
used for a succesful model of the fully coupled GL equations.

4.2 Second GL equation

The same process is performed for the second GL-equation. Now, different basis
functions are used in the programs. MATLAB uses, as described, Nédélec basis
functions to approximate A while COMSOL uses the Lagrangian linear basis for
both components of A. Three partial problems where solved by both programs
and the results are presented below. The parameters and initial values that
were used are:

• κ = 4

• σ = 1

• Ba = 1

• dt = 0.01

• Ainit = 0 ∀ x, y ∈ Ω

• ψ = x+ yi ∀ x, y ∈ Ω

This again corresponds to a type II superconductor with an applied magnetic
field that is near Hc. To evaluate the penetration of this field, the indentation
is again added to the geometry and the mesh becomes:

Figure 4.18: Mesh used for the numerical simulations of the second GL equation.

4.2.1 Term-wise solutions

The first problem that was solved is:

45

σ
∂A

∂t
= −∇× ∇× A. (4.10)

Shown in the figures below is the curl of A, which is the magnetic field in
the z-direction, for five different points in time.

Figure 4.19: Bz = ∇×A, according to the time-dependent solution of Equation
(4.10) using COMSOL.

Figure 4.20: Bz = ∇×A, according to the time-dependent solution of Equation
(4.10) using MATLAB.

As it can be seen, the results are very similar. The magnetic field penetrates
the entire domain, which is the physical result, as the superconducting shielding
terms are not yet taken into account.

Now, |ψ| is added to the equation:

σ
∂A

∂t
= −∇× ∇× A− |ψ|2 A. (4.11)

The results are:

Figure 4.21: Bz = ∇×A, according to the time-dependent solution of Equation
(4.11) using MATLAB.

46

Figure 4.22: Bz = ∇×A, according to the time-dependent solution of Equation
(4.11) using COMSOL.

Again, the magnetic field intrudes the domain. Only now a steady-state is
reached where the magnetic field does not penetrate the sample entirely, but it
is screened from certain parts of the interior. Close to the origin this screening
effect is weaker, as it is proportional to the square of the distance to the origin,
and therefore the field is able to penetrate deeper into the sample in this region.
The results from the COMSOL and MATLAB implementations are the same.

Finally, the equation is completed by adding the final term:

(4.12)σ
∂A

∂t
=

1

2ik
(ψ∗ ∇ψ − ψ ∇ψ∗)− |ψ|2 A−∇× ∇× A.

The results are:

Figure 4.23: Bz = ∇×A, according to the time-dependent solution of Equation
(4.12) using MATLAB.

Figure 4.24: Bz = ∇×A, according to the time-dependent solution of Equation
(4.12) using COMSOL.

The results are similar to the previous ones and are again in agreement.
Adding the last term in this case has a very small effect on the results. This
could be explained by the fact that the spatial differentials of ψ are relatively
small.

47

4.2.2 Additional tests

As a final test on the implementation of the second GL equation, the penetration
of a magnetic field in an entirely superconducting sample is simulated. For this,
the same values as before are used, except for the given ψ. This now becomes:

ψ =
1 + i√

2
∀ x, y ∈ Ω. (4.13)

Also, a larger geometry is used:

Figure 4.25: Mesh for the test on the penetration of a magnetic field into a
superconducting sample.

As it can be seen in the results below, the results are in agreement. The
magnetic field is screened from the interior of the sample. The penetration
depth is around λ, which is in agreement with the physical expectations.

Figure 4.26: Bz = ∇ × A, according to the time-dependent solution of the
second GL equation for a superconducting sample using COMSOL.

Figure 4.27: Bz = ∇ × A, according to the time-dependent solution of the
second GL equation for a superconducting sample using MATLAB.

48

5 Conclusions

The behavior of superconductors in the presence of magnetic fields is accurately
described by the time dependent Ginzburg-Landau equations. Using finite ele-
ment methods with Lagrangian elements of the first order in 2D to solve these
equations shows that vortices of non-superconducting material arise when the
applied magnetic field exceeds the critical magnetic field for type II supercon-
ductors.

Results obtained by using Lagrangian elements turn out to be flawed, so
other curl-conforming elements need to be used, which are provided by the
Nédélec basis. Using these elements, the second GL-equation and parts of the
first GL equation have been modelled successfully. A working MATLAB model
using these elements for the full problem has not yet been achieved.

6 Future Research

To obtain a working model for the time dependent GL equations, more research
has to be done into the differences in the results that were presented in this
report. In this final section, some suggestions are made for possible causes of
these differences.

The differences arose when the factor in front of the complex term of the
first GL equation was changed from 1 to 2. Research could be done into what
value between 1 and 2 is the tipping point for these differences. Also, a mesh
convergence study can be performed on both the COMSOL and the MATLAB
model to see if the results change on an even finer mesh. The same can be done
for higher order elements.

Furthermore, research can be done into the way MATLAB handles linear
systems of equations with complex degrees of freedom, as is the case in the first
GL equation. In the implementation in COMSOL, the real and imaginary parts
were divided into two dof’s, but in MATLAB this was not the case and the way
MATLAB handles this might be a cause for the differences.

Finally, in the MATLAB code the coupling of the two equations was initially
done in a very rough manner by just taking the values from the previous iteration
as given in solving the next time step. An iterative scheme can be added to
refine these results.

Once a working model has been achieved, this model will need to be validated
with physical measurements. When this is done, the model can be used to
make predictions on the behavior of actual superconducting components and
eventually it can be extended to three spatial dimensions.

49

Appendices

A Description of the MATLAB code

Finally, to get an idea of the actual implementation in MATLAB, some of the
used code will be presented. First, the main code will be briefly discussed and
then an example is given on how the large matrices and vectors are assembled.

1 %Loading mesh data
2 load (’Mesh squarewithslit COMSOL .mat ’)
3 x = coo rd ina t e s (: , 1) ; y = coo rd ina t e s (: , 2) ;
4 n = length (coo rd ina t e s (: , 1)) ;
5

6 %get e lements edgewise
7 [e lems2edges , edges2nodes] = ge t edge s (elems2nodes) ;
8 ne=length (edges2nodes (: , 1)) ;
9

10 %ca l c u l a t e a f f i n e t rans f o rmat i ons f o r e lements
11 [B K , b k , B K det] = a f f i n e t r a n s f o rma t i o n s (coord inate s , e lems2nodes)

;
12 % s i gn s in 2d f o r the Nedelec ba s i s f un c t i on s de f ined on edges
13 s i g n s = s i gn s edg e s (elems2nodes) ;
14

15 %Def in ing parameters and i n i t i a l va lue s
16 topo logy = 3 ; topologybnd = 2 ; dt = 0 . 1 ; n i t e r = 25 ; Q p = 1 ; dim=2;
17 kappa=4; sigma=1;Ba=1;
18 Ain i t=ze ro s (ne , 1) ;
19 P s i i n i t=ones (n , 1) ;
20 Psi (: , 1)=P s i i n i t ;
21 A=ze ro s (ne , n i t e r +1) ;
22 A(: , 1)=Ain i t ;
23

24 %Get i n t e g r a t i o n quadrature f o r the un i t t r i a n g l e
25 [ip , w, nip] = intquad (5 , 2) ;
26 %Get i n t e g r a t i o n quadrature f o r the i n t e r v a l [0 , 1]
27 [ip1D ,w1D]=intquad1D (5 , 0 , 1) ;
28

29 %Computation o f s o l u t i o n s
30 Bui ldmatr i c e sandvector s ;
31 Buildboundaryvector ;
32 i t e r =1;
33 Generate Ps i func
34 f o r i t e r = 1 : n i t e r
35 di sp ([’ Progres s : ’ , num2str (i t e r / n i t e r ∗100) , ’%’]) ;
36 Generate Afunc ;
37 Bui ldmatr i c e sandvec to r s eq1 ;
38 Psi (: , i t e r +1) = (M+(S) ∗dt) \ (M∗Psi (: , i t e r)) ;
39 Generate Ps i func ;
40 Bui ldmatr i c e sandvec to r s eq2 ;
41 A(: , i t e r +1) = (sigma∗Mned+(K+T) ∗dt) \ (sigma∗Mned∗A(: , i t e r)+(f+

b) ∗dt) ;
42 end ;

50

As it can be seen on the previous page, the first part of the code is dedicated
to constructing the mesh, calculating the transformations from the reference
element onto the elements in the mesh, and defining the basis. Then, all pa-
rameters and the initial values for ψ and A are defined. Here, ψinit = 1 is
chosen on the entire domain, which corresponds to a superconducting state,
and Ainit = 0. The applied magnetic field Ba = 1 on the entire boundary. The
integration quadratures of specified order are defined and finally the solutions
are computed.

For this computation, first the boundary vector and some matrices are con-
structed that are independent of time. The “Generate func” commands define
functions to compute the values for ψ and A respectively for each time step.
Then, for each of the defined time steps, the time dependent matrices and vectors
are constructed and the systems of equations are solved by using MATLAB’s
“\”-command.

As stated before the large matrices and vectors are constructed by using
element matrices and vectors. The code that is used for this process is shown
for the matrix M from Equation (3.17). The large matrix is assembled by the
code below. Here “elems2nodes” denotes a (Np× 3) matrix with containing the
elements of the mesh by their nodes.

1 M = spar s e (N p , N p) ;
2

3 f o r i = 1 : l ength (elems2nodes (: , 1)) % f o r a l l i n t e r n a l e lements
4 GenerateElementMatrix ; % Melem
5

6 f o r ind1 = 1 : topology
7 f o r ind2 = 1 : topology
8 M(elems2nodes (i , ind1) , e lems2nodes (i , ind2)) = M(

elems2nodes (i , ind1) , e lems2nodes (i , ind2)) + Melem(
ind1 , ind2) ;

9 end ;
10 end ;
11 end ;

In this code, “GenerateElementMatrix” computes the elementmatrix for el-
ement ei of the mesh. The code for this is shown below. Here l(i,index) denotes
the index’th lagrangian linear basis function on the element.

1 Melem=ze ro s (3 , 3) ;
2 f o r index1 = 1 : topology
3 f o r index2 = 1 : topology
4 Melem(index1 , index2)=abs (det (B K (: , : , i))) ∗sum(w. ∗ (l (ip ,

index1) .∗ l (ip , index2))) ;
5 end ;
6 end ;

51

References

[1] Pedersen N. F. Madsen S. Sørensen M. P. Alstrøm, T. S. Magnetic Flux
Lines in Complex Geometry Type-II Superconductors Studied by the Time
Dependent Ginzburg-Landau Equation. Acta Applicandae Mathematicae,
2010.

[2] COMSOL. -. COMSOL, Inc., Burlington, Massachusetts, USA, -.

[3] MATLAB. version 7.10.0 (R2016b). The MathWorks Inc., Natick, Mas-
sachusetts, USA, 2016.

[4] M. Tinkham. Introduction to Superconductivity. McGraw-Hill, 1996.

[5] Segal A. Vermolen F. van Kan, J. Numerical Methods in Scientific Com-
puting. VSSD, 2005.

[6] F. London and H. London. The electromagnetic equations of the supra-
conductor. Proceedings: Mathematical, Physical and Engineering Sciences
149(866):71, 1935.

[7] A.B. Pippard. The coherence concept in superconductivity. Physica,
19(1):765 – 774, 1953.

[8] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of superconductivity.
Phys. Rev., 108:1175–1204, Dec 1957.

[9] V. L. Ginzburg and L. D. Landau. On the Theory of Superconductivity,
pages 113–137. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[10] Wikipedia. Magnetic potential — Wikipedia, the free encyclopedia, 2017.
[Online; accessed 27-June-2017].

[11] Éliashberg G.M. Gor’kov, L.P. Dynamical properties of gapless supercon-
ductors. Zh. Eksperim. i Teor. Fiz. 54, 612, 1968.

[12] Pan A. V. Wang X. R. Fedoseev S. A. Hilgenkamp H. Wells, F. S.
Analysis of low-field isotropic vortex glass containing vortex groups in
YBa˙2Cu˙3O˙7x thin films visualized by scanning SQUID microscopy. Sci-
entific Reports, 5 8677, 2015.

[13] R.G. Brown. Gauge transformations, 2014. [Online; accessed 27-June-
2017].

[14] Wikipedia. Finite element method — Wikipedia, the free encyclopedia,
2017. [Online; accessed 27-June-2017].

[15] E.W. Weisstein. Gaussian quadrature – mathworld, 2017. [Online; accessed
27-June-2017].

52

[16] Wikipedia. Green’s identities — Wikipedia, the free encyclopedia, 2017.
[Online; accessed 27-June-2017].

[17] Wikipedia. Delaunay triangulation — Wikipedia, the free encyclopedia,
2017. [Online; accessed 29-October-2017].

[18] J.R. Shewchuk. Lecture Notes on Delaunay Mesh Generation. University
of California at Berkeley, 1999.

[19] A. Schneebeli. An H(curl;Ω)-conforming FEM: Nédélec’s elements of first
type. . Technical report, 2003.

[20] Valdman J. Anjam, T. Fast MATLAB assembly of FEM matrices in 2D
and 3D: Edge elements. 2015.

[21] Wikipedia. Gaussian quadrature —Wikipedia, the free encyclopedia, 2017.
[Online; accessed 30-June-2017].

[22] D.A. Dunavant. High degree efficient symmetrical gaussian quadrature
rules for the triangle. Int. J. Num. Methods, 1985.

[23] Wikipedia. Weak formulation — Wikipedia, the free encyclopedia, 2017.
[Online; accessed 30-June-2017].

[24] Wikipedia. Comsol multiphysics — Wikipedia, the free encyclopedia, 2017.
[Online; accessed 27-June-2017].

[25] T. Garaud. Benchmarking dynamical processes in Ginzburg-Landau the-
ory. KTH-Royal institute of Technology, Stockholm, 2016.

53

