
 
 

Delft University of Technology

WISExome
A within-sample comparison approach to detect copy number variations in whole exome
sequencing data
Straver, Roy; Weiss, Marjan M.; Waisfisz, Quinten; Sistermans, Erik A.; Reinders, Marcel

DOI
10.1038/s41431-017-0005-2
Publication date
2017
Document Version
Final published version
Published in
European Journal of Human Genetics

Citation (APA)
Straver, R., Weiss, M. M., Waisfisz, Q., Sistermans, E. A., & Reinders, M. (2017). WISExome: A within-
sample comparison approach to detect copy number variations in whole exome sequencing data .
European Journal of Human Genetics, 25, 1354-1363. https://doi.org/10.1038/s41431-017-0005-2

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1038/s41431-017-0005-2
https://doi.org/10.1038/s41431-017-0005-2


European Journal of Human Genetics (2017) 25:1354–1363
https://doi.org/10.1038/s41431-017-0005-2

ARTICLE

WISExome: a within-sample comparison approach to detect
copy number variations in whole exome sequencing data

Roy Straver1 ● Marjan M. Weiss1 ● Quinten Waisfisz1 ● Erik A. Sistermans1 ● Marcel J. T. Reinders 1,2

Received: 21 February 2017 / Revised: 1 July 2017 / Accepted: 1 August 2017 / Published online: 8 November 2017
© The Author(s) 2017. This article is published with open access

Abstract
In clinical genetics, detection of single nucleotide polymorphisms (SNVs) as well as copy number variations (CNVs) is
essential for patient genotyping. Obtaining both CNV and SNV information from WES data would significantly simplify
clinical workflow. Unfortunately, the sequence reads obtained with WES vary between samples, complicating accurate CNV
detection with WES. To avoid being dependent on other samples, we developed a within-sample comparison approach
(WISExome). For every (WES) target region on the genome, we identified a set of reference target regions elsewhere on the
genome with similar read frequency behavior. For a new sample, aberrations are detected by comparing the read frequency
of a target region with the distribution of read frequencies in the reference set. WISExome correctly identifies known
pathogenic CNVs (range 4 Kb–5.2 Mb). Moreover, WISExome prioritizes pathogenic CNVs by sorting them on quality and
annotations of overlapping genes in OMIM. When comparing WISExome to four existing CNV detection tools, we found
that CoNIFER detects much fewer CNVs and XHMM breaks calls made by other tools into smaller calls (fragmentation).
CODEX and CLAMMS seem to perform more similar to WISExome. CODEX finds all known pathogenic CNVs, but
detects much more calls than all other methods. CLAMMS and WISExome agree the most. CLAMMS does, however, miss
one of the known CNVs and shows slightly more fragmentation. Taken together, WISExome is a promising tool for genome
diagnostics laboratories as the workflow can be solely based on WES data.

Introduction

Recent technological breakthroughs in DNA analysis
methods have not only had a huge impact on genetic
research, but also on genome diagnostics. Finding a genetic
diagnosis is important as it helps patients and family
members in understanding the disease, supports the search
for possible treatments, and determines reproductive options
in subsequent pregnancies [1]. Currently, most patients with
genetic disorders are tested through standard practices such

as array-based techniques for detecting copy number var-
iations (either by array comparative genomic hybridization,
array-CGH, or by a single nucleotide polymorphism array,
SNP-array) [2], or Sanger sequencing of single genes [3, 4],
but these methods do not always provide a diagnosis. This
has recently changed through the upswing of next-
generation sequencing (NGS), which allows for the paral-
lel sequencing of gene panels, whole exomes (WES, whole-
exome sequencing), or whole genomes (WGS, whole-
genome sequencing). Although WGS obtains nearly the
whole-genomic sequence of a patient, its costs are currently
still too high for routine testing. As an affordable alter-
native, WES captures exon-specific regions, called targets,
and uses target-specific probe sets to read out these targets
(Fig. 1a). While providing a highly accurate way to obtain
single nucleotide variation (SNV) information [5], WES
data does not allow for straightforward copy number var-
iation (CNV) analysis. The main reason being the non-
uniform distribution of reads because: (1) target regions
cover only 2% of the genome [6, 7], and (2) the varying
amplification efficiency of target regions [8–10]. Moreover,
this effect is not consistent over different samples as quality
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Fig. 1 a Overview of all regions of importance for WES data. Genes
(gray boxes) consist of exons (orange boxes), which are covered by
target regions (light orange boxes), for which probes are designed (red
boxes) that target a unique sub-sequence of the fragment. Paired-end
reads (blue boxes) cover fragments. b Determination of target region
read count: a detected fragment is mapped on the reference genome,
and consequently assigned to the nearest target region (orange box)
based on the center of the fragment (gray lines). c Selection of refer-
ence target regions based on the difference in read counts over a set of
training samples. For illustrative purposes, we show only one sample
and a few target regions on three different chromosomes. The selected
reference target regions for the target regions on chromosome 2 are
indicated by the straight colored lines. In this example, only reference
target regions are considered when the read count differs at most 1
read. Dotted lines are tested but showed a larger difference. d Sche-
matic overview of the selected reference target regions for the target
regions on chromosome 2 as shown in c. e Based on its reference set, a
z-score for every target region can be calculated (level window size 1).
Z-scores of neighboring target probes are aggregated using a combined
z-score (here Stouffer’s z-score) for different numbers of neighbors,

using odd window sizes from 3 to 15. f Target regions with a sig-
nificant z-score in any of the windows are marked and kept for further
analysis (blue shaded boxes). g For every target region, a final z-score
is determined by taking the maximal (positive or negative) z-score
across all window sizes (at the target region position). h Stretches of
significantly aberrated target regions (blue shaded boxes) are marked as
a putative CNV segment. i, j, k To fine-tune the borders of the CNV,
the putative CNV segment is considered with all non-putative CNV
regions on the same chromosome (i shows the extension, j prunes the
putatively aberrated CNVs, k is the result). l To find the exact borders
of the CNV, the location of borders of the putative CNV are changed
over all possible positions within and directly neighboring the putative
CNV region (shaded blue lines in l). The segment that shows the
largest difference in mean effect size within the segment compared to
the mean effect size outside the segment is selected as the aberrated
CNV segment (dark blue line in l). m For visualization purposes, the z-
scores (vertical axis) for each target region are plotted across their
genomic position (x-axis). Designated aberrated target regions (regions
within a detected CNV segment) are colored blue, others gray. The
bottom line shows the position of the exons (orange boxes).
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of DNA and environmental differences during sample pre-
paration directly influence probe effectiveness [11]. Con-
sequently, additional array analysis is still used to obtain
CNV information for a patient. WES diagnostics would thus
greatly benefit from a reliable tool to obtain CNV infor-
mation from WES data only, as it would eliminate the need
for additional separate analyses.

Basically, CNVs in WES data can be detected by com-
paring the read count for a region to the expected read count
distribution for that region, representing possible variations
in read counts when assuming a diploid genome for that
region. When the observed read count for a region differs
significantly from the expected read count, this region is
designated to be aberrant, either amplified (when having
more reads than expected) or deleted (when having less).
Generally, the expected read count distribution is derived
from a training set of normal (diploid) samples. Several
methods for CNV detection in WES data have been
developed [12–14], all based on this same principle. For
clinical genetic diagnostics of rare diseases, it is important
to also detect few and small CNVs, as opposed to mostly
large and highly abundant CNVs in cancer [13]. As tools for
cancer diagnostics aim to find the distribution of large
CNVs as well as their ploidy, they lack the precision
required to find intra-genic CNVs. CoNIFER [15] and
XHMM [16] are generally believed to perform well for
identifying CNVs in a genetic diagnosis setting, based on
several comparison studies [10, 17, 18]. Recently,
CLAMMS [19] and CODEX [20] have been introduced that
claim to outperform CoNIFER and XHMM.

CNVs are generally detected using a training set of
normal (diploid) samples to capture the expected read count
distribution. Consequently, next to experimental variation,
the expected read count distribution also captures the
between-sample (biological) variations, which principally
would not be necessary. Avoiding the incorporation of the
between-sample variation in the expected read distribution
potentially increases the sensitivity of CNV detection. We
previously developed WISECONDOR for trisomy detection
on cell-free fetal DNA based on a within-sample compar-
ison to deal with the fluctuations in read distribution [21].
This within-sample comparison approach assumes that all
target region amplifications within a sample undergo the
same experimental variations. Hence, if we know which
target regions, elsewhere on the genome, respond similarly
to the experimental variation, these regions can serve as a
reference set and the expected read count distribution can be
derived from read counts across this set of reference target
regions as measured within the same sample. Here, we
present WISExome: a CNV detection method for WES data
based on this within-sample comparison principle. Figure 1
gives an overview of the complete procedure and a more
elaborate description can be found in the “Methods” section.

We show that WISExome successfully replicates array
analysis and compares favorably to other CNV detection
tools. Together, the results suggest that WISExome can be
used in diagnostics as replacement of array, removing the
requirement for separate array analysis for WES
diagnostics.

Materials and methods

Sample preparation

Whole-exome sequencing was performed as previously
described [22]: Genomic DNA was isolated from blood for
336 samples and prepared using the SeqCap EZ Human
Exome Library v3 kit (Roche, Basel, Switzerland), then
sequenced using an Illumina HiSeq 2500. Reads were
mapped with BWA (0.7.10) to Hg19 [23]. We removed
duplicate reads (as marked by Picard Tools 1.111), reads
with a mapping quality below 30, and reads that were not
part of a read pair. Samples were split into a training set of
319 samples and a test set of 17 samples.

Array analysis

Array analysis was carried out on the high-resolution
CytoScan HD array platform (Affymetrix, a part of Thermo
Fisher Scientific, Santa Clara, CA, USA) according to the
manufacturer’s protocols. This array consists of over 2.6
million copy number markers. Analysis was done using
Nexus software (BioDiscovery, El Segundo, CA, USA),
using SNPRank segmentation with a minimum of 20 probes
per segment and the significance threshold set at 1e-5.

WISExome

WISExome determines excess of target read counts (enri-
ched or depleted) as compared to the expected target read
count based on a reference set of target regions within the
genome. In the following, we explain the different steps of
WISExome, shown in Fig. 1: (1) determining the target
region counts from WES read data; (2) identification of the
set of reference target regions for a target region; (3) CNV
detection; and (4) fine-tuning identified CNVs using a
segmentation algorithm. Finally, we explain WISExome’s
scoring metric for so-called CNVs and its annotation of
CNVs.

Target region read count

In WES data, DNA is fragmented, specific target regions
within exons are captured, and subsequently enriched
before sequencing (Fig. 1a, target level).
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For every target region, there are several probes that are
designed to recognize unique subsequences (Fig. 1a, probe
level). Paired-end sequencing of the probe-selected frag-
ments covers fragments (Fig. 1b), providing mappable
reads. As experimental variation mostly influences the tar-
get region enrichment, we are interested in read counts for
target regions instead of the probe, fragment, or exon level
(the latter is commonly used in other CNV detection tools).
Mapped fragments were linked to the closest target region
based on the distance between the center of the mapped
fragment and the center of a target region (Fig. 1b). To
ensure specificity, we require an overlap of at least 20 bp of
the mapped fragments with the linked target region. Target
region counts, being the sum of mapped fragments linked to
that target region, are normalized by the total target region
count over the whole genome in the sample, resulting in
target region count frequencies.

Creating a reference target region set

The basic idea behind the within-comparison approach is
that for every target region, we find target regions on other
parts of the genome that behave similarly to experimental
variations; the reference target region set. By assuming a
sparse number of CNVs, the target region read counts of the
reference set represent the within-sample variation of a
diploid read count for the associated target region. To find
similarly varying target regions, we make use of a training
set of samples with no known notable phenotypes. Note that
this training set is only used once, to identify reference
target regions. Because of lab-specific changes in read depth
behavior, this set of reference samples is best obtained from
the same lab as the test samples. During testing, we only use
information of the test sample, and not the observed read
counts in the training samples as other CNV detection tools
do. For a target region of consideration, we correlate the
observed read counts over all training samples to the read
counts of all other target regions. Here, we used the squared
Euclidean distance on the target read count frequencies
across the 319 training samples (Fig. 1c), and selected the
100 target regions with the lowest distance to build up the
reference set for the target region of consideration. We do
this for all target regions, so every target region has its own
100 reference target regions. For target regions on the X
chromosome, we find their reference target regions con-
sidering read count variations across female training sam-
ples only. To avoid reference target regions overlapping the
CNV, we require that reference target regions lie on other
chromosomes than the target region for which the reference
set is being build. To avoid that the reference target regions
are not similar enough to the target region of consideration,
we prune the list of 100 reference target regions. First, the
mean and variance of the squared Euclidean distances of the

closest reference target for every target region (i.e., the
distances of the top-1 target regions in each reference set) is
calculated. Then, for every reference set, we remove target
regions from the reference set that have a distance larger
than the mean plus three times the standard deviation of the
top-1 distances (z-score >3). As a result, the number of
reference target regions will differ for every target region,
see Fig. 1d. Those that have less than 10 references are
ignored in further analysis, and are denoted as unreliable
target regions (Supplementary Figs. S1, S2, and S3a show
that results do not change much when varying this setting).

Finding CNVs

For each target region, its own reference set specifies an
expected read count distribution. Hence, we can statistically
test whether the observed read count of the target region
points toward the region being aberrant or not. For this
purpose, we use a z-score with the target region read count
frequency as input, and with the mean and variance esti-
mated from the read count frequencies of the reference
target regions, measured in the same sample. A target region
with a z-score larger than 5.64 (family-wise error rate
(FWER) corrected significance level of 0.05, see Supple-
mentary Section SM1) is considered to be amplified, and a
target region with a z-score smaller than −5.64 is con-
sidered to be deleted. Applying this procedure to the (nor-
mal) training samples showed that some target regions are
frequently being called, probably due to either large varia-
tions in target amplification or because they are part of a
common CNV. We decided to exclude target regions being
called in more than four of the training samples from further
analyses (also denoted as unreliable target regions). This
removed 4226 (1.15%) out of 366,795 target regions
(Supplementary Figs. S1, S2, and S3b show that WISEx-
ome is not sensitive to increasing this threshold). As CNVs
generally will be larger than target regions, we improved
sensitivity by aggregating z-scores of neighboring target
regions. For every target region, we calculated a combined
z-score (here, Stouffer’s Z) for differently sized windows
(odd window sizes up to 15; larger windows did not change
the results, data not shown), see Fig. 1e, f. The z-score for
the target region is then set equal to the largest (positive or
negative) z-score across all windows, see Fig. 1g. A target
region is called aberrant if the aggregated z-score is sig-
nificant (absolute value larger than 5.64), see Fig. 1h.
Consecutive called target regions then make up a CNV.
Finally, we take the effect size of the aberration across the
CNV into account. Hereto, first, the effect size of a target
region is defined by the target region read count divided by
the expected target region read count (based on the refer-
ence set). The effect size of the CNV is subsequently
defined as the median effect size across the target regions it
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covers. Only CNVs that deviate more than (the arbitrarily
chosen) cutoff of 35% from its expectation (i.e., CNV effect
size smaller than 0.65 or larger than 1.35) are considered
true CNVs.

Fine-tuning detected CNVs

Due to the aggregation of neighboring target regions into
the z-score of a target region (the windowing), the borders
of the CNVs will not be precise. For example, a strongly
aberrant target region might cause that the aggregated z-
score of neighboring target regions also becomes sig-
nificant. In other words, the aggregation improved sensi-
tivity at the cost of precision. Hence, we wanted to fine-tune
the borders of every detected CNV to improve the precision
of the CNV calls. For that, we devised a segmentation
algorithm. Every detected CNV is first extended with eight
target regions on each side, Fig. 1i. For all possible seg-
mentations in this region (i.e., all possible start and end
positions of the putative CNV), the mean effect size of
target regions within the segmentation are compared to the
effect sizes of all target regions on the same chromosome
that are called unaberrated, using a Student’s t test with a
pooled variance (Supplementary Section SM2). The seg-
mentation that maximizes this Student’s t test is chosen as
the fine-tuned CNV, see also Fig. 1j–l. Finally, we require
that the mean effect size of the fine-tuned CNV, again to be
at least 35%.

Quality score

Every call is annotated with a quality score reflecting the
percentage of reliable target regions. For this score, we
consider whether the neighboring target regions are unre-
liable. This is done because these unreliable neighboring
target regions influence the fine-tuning of the CNV borders.
The quality score for the CNV is then the number of reliable
target regions minus the sum of the number of unreliable
target regions covered by the CNV and the number of all
unreliable neighboring target regions. Hence, a detected
CNV with many unreliable neighboring target regions, or a
detected CNV with many scattered unreliable target regions
within the CNV will get low scores. The default setting for
the CNV quality score we used was 6 (six more reliable
target calls than unreliable calls).

CNV annotation

Additionally, calls are annotated with OMIM phenotype
key scores of all (partially) overlapping genes using the
OMIM API [24], i.e., the OMIM score for the CNV equals
the maximum OMIM phenotype scores of the genes that

overlap with the CNV. This score describes which method
is used to link the gene to the disorder and reflects the
certainty of a gene causing a specific disorder. For example,
if the molecular basis of the disorder is known, this key is 3.
If the gene is linked to a disorder through statistical methods
only, the key is 2.

Other tools

We ran XHMM (downloaded from GitHub @ 18 June
2015), CoNIFER (version 0.2.2; released 17 September
2012), CODEX (GitHub, commit 3d40ac9 @ 7 April
2017), and CLAMMS (GitHub, commit 3e19892 @ 10
April 2017) according to their default settings. All tools
were run on the same samples as WISExome, as described
in “Sample preparation” section. XHMM and CoNIFER do
not distinguish between training and test samples, CODEX
and CLAMMS used the same division in training and test
samples as WISExome. Additional information on deci-
sions and settings can be found in the Supplementary
Section SM3.

Results

Replication array analysis

To test for compliance with array and MLPA analysis, we
tested WISExome on 17 test samples with at least one
known pathogenic CNV each (20 CNVs total) as identified
by array analysis (18 CNVs) or MLPA (2 CNVs, kit P170-
B2 for the APP gene, MRC-Holland, Amsterdam, the
Netherlands). We were able to correctly identify all known
pathogenic CNVs as shown in Supplementary Table S1 and
Supplementary Fig. S4. There are differences in start and
end positions, but these are mostly because the array plat-
form has probes in inter-exonic regions, whereas the WES
probes lie in exons only. On average, WISExome finds 33
calls per sample without size filters, and 15 calls per sample
when filtering at a minimum of 15 Kb (standard array
resolution in current clinical practice), which is comparable
to the array analysis. As several tools have been developed
to call CNVs from exome data, we compared WISExome to
XHMM, CoNIFER, CODEX, and CLAMMS (using default
settings, see “Methods” section). An overview of how their
calls overlap with known CNVs, as validated by array
analysis, is shown in Fig. 2, Supplementary Fig. S4 and
Supplementary Table S1.

CoNIFER made few calls and only five overlapped the
known CNVs in our test data. Adjusting the SVD argument
yielded slight variations in results, but no setting was
satisfactory. One of the few calls CoNIFER did make is
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shown in Fig. 2a. While other tools, except for WISExome,
found a smaller area to be affected by the known CNV,
CoNIFER appears to overestimate the CNV length.

XHMM identified most known CNVs partially (Fig. 2a,
b) and failed to identify one known deletion and three
duplications (numbered 13, 15, 17, and 19 in Supplemen-
tary Table S1, respectively), one missed CNV is shown in
Fig. 2c, all results are shown in Supplementary Fig. S4.
Most notably, XHMM tends to break up single CNV calls
of the array in multiple small regions.

CODEX showed strong similarities to WISExome in
results; it calls all CNVs known from the array analysis
(Supplementary Table S1 and Supplementary Fig. S4).
While generally extremely sensitive, Fig. 2a shows that
CODEX only found the rightmost half of the CNV, while

WISExome, XHMM, and CoNIFER agree on the upstream
start position for this CNV.

CLAMMS also showed very similar behavior to
WISExome (Supplementary Table S1 and Supplementary
Fig. S4). However, CLAMMS was unable to identify one
known CNV in our data set, shown in Fig. 2a. This CNV
was not missed by any of the other tools, including
CoNIFER.

Differences in detected regions

As it is unlikely that the array caught all CNVs in our data,
we extended our comparison to include all calls made by the
selected tools. Figure 3a shows an overview of the size of
the detected regions by the different tools, whereas Fig. 3b

a

b

c

Fig. 2 Detected CNV segments by WISExome (blue), CLAMMS
(orange), CODEX (green), XHMM (red), and CoNIFER (purple) for
three known pathogenic CNVs according to the array analysis
(brown). The region is annotated by the array probes (cyan), genes
(citron), exons (gray), and target regions (pink). CNVs shown here are
marked in Supplementary Table S1 as numbers 18 (a), 7 (b), and 19
(c). a CLAMMS failed to identify this region as aberrated. WISEx-
ome, XHMM, and CoNIFER mark roughly the same area as part of a

CNV, while CODEX made a relatively small call. b WISExome,
CLAMMS, and CODEX are in near-perfect agreement on the CNV.
XHMM shows a very fragmented call, failing to identify several
affected genes in between its calls. CoNIFER does not make a call. c
WISExome, CLAMMS, and CODEX all identify the region to the
right as aberrated, while the CNV should have been shorter according
to the array. Both XHMM and CoNIFER fail to make a call.

Copy number variations from exome sequencing data 1359



shows the number of detected regions. Most tools detect
roughly the same number of regions, except CODEX,
which makes considerably more calls. WISExome and
CoNIFER show relatively few and large calls. CLAMMS
and XHMMs show fragmented calling behavior, which is
reflected by their small median call size (Fig. 3a and Sup-
plementary Fig. S5).

To find out how the detected regions differ between
tools, we compared the size of the union of the exons
detected by a set of tools with the size of the intersection of
the detected exons by these tools. When tools agree, their
intersection should equal their union. The results for every
possible combination of tools are shown in Fig. 4b. The
figure is dominated by the high amount of calls by CODEX

(consistently resulting in a large union), splitting the plot in
combinations that either include or exclude CODEX.
WISExome and CLAMMS show a large agreement in the
detected regions, i.e., their intersection is 1/4th of the union
(dotted line), whereas other tools have intersections lower
than 1/10th of the union (dashed line).

Differences in detected genes and exons

Figure 4a shows the comparisons between WISExome and
any of the other tools with respect to the number of genes
detected as aberrated, whereas Supplementary Fig.
S6 shows these comparisons for aberrated exons. A gene/
exon is called aberrated when a call of a tool shows at least
one base pair overlap with that gene/exon. It immediately
becomes clear that WISExome and CLAMMS behave
relatively similar, although CLAMMS misses a few more
genes found detected by array analysis (Fig. 4a). CODEX
found several of the array-based detected genes missed by
WISExome, but at the cost of a huge set of unique calls.
Both CoNIFER and XHMM miss out on a lot of genes
detected by the array analysis. Fragmentation by
CLAMMS and XHMM can also be seen in the relatively
small number of detected genes and exons (shown in
Supplementary Fig. S7) compared to the total number of
calls as shown in Fig. 3b.

To further zoom in on differences, Supplementary Fig.
S8 shows the overlap between WISExome, CLAMMS,
and CODEX. This figure again shows that CODEX
calls significantly more genes/exons aberrated than other
tools. WISExome and CLAMMS show a larger overlap,
but WISExome’s unique calls are more overlapping
with array results than CLAMMS’ unique calls (also visible
in Fig. 4a).

Prioritizing WISExome calls

Within WISExome, we made it possible to prioritize calls
based on its scoring scheme that measures the difference
between the amount of reliable and unreliable target regions
(“Methods” section, and Supplementary Fig. S9 shows a
distribution of scores). Prioritizing calls based on this score
puts all 20 known pathogenic CNVs at the top of the list
with minor exceptions; one CNV was ranked second (CNV
9 in Supplementary Fig. S4), two CNVs were ranked 5th
(CNV 15 and 18), and the smallest CNV was ranked 25th
(CNV 20). We further annotated calls with their potential
pathogenicity based on the OMIM phenotype key of the
underlying genes (“Methods” section). By lowering CNVs
that have no genes with a high OMIM phenotype key, and
thus are not known to be involved in any syndrome, a large
fraction of the calls can be ignored (Supplementary Fig.

a

b

Fig. 3 a Boxplot showing the size distribution (vertical axis) of calls
made by the five CNV detection tools (horizontal axis). The annotated
numbers next to boxplots show the median size for that tool. CoNIFER
has the least fragmentation in its calls, and XHMM the most.
CLAMMS calls are also fragmented and have a median size of only
1133 bp. To improve visibility of the box plots, outliers above 250,000
were cropped. Supplementary Fig. S5a shows this boxplot without the
crop. b Number of amplifications and deletions per tool after thresh-
olding, clearly showing CODEX’s huge number of calls compared to
other tools.
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S10), leaving only a few calls (5 calls on average) per
sample to be inspected in more detail. Note that this
prioritization will also rank common CNVs lower as those
are not expected to harbor pathogenic genes.

Conclusion

We developed a new CNV detection methodology for WES
data that uses a within-sample comparison approach to
capture the expected read count distributions across the
genome. The benefit of this approach is that we only need to
describe experimental variation and not in-between sample
variation, making the method more accurate than previous
approaches. We have shown that this new methodology,
called WISExome, reliably reproduces array results, open-
ing the possibility to perform genome diagnoses using WES
data exclusively, in contrast to current practice where WES
analysis still has to be combined with array analysis.

We compared WISExome to four existing CNV detec-
tion tools: CoNIFER, XHMM, CODEX, and CLAMMS.
From these tools, CoNIFER deviates the most, calling few
CNVs in general, and it detects only a few CNVs that result
from clinical interpretation of the array analysis. XHMM
breaks calls made by other tools into smaller calls (frag-
mentation) and misses a few CNVs detected by array ana-
lysis. Note that fragmentation of calls might lead to
overlooking pathogenic genes.

CODEX found all CNVs detected by array analysis, but
made significantly more calls than any of the other tools,
resulting in the detection of many more genes and exons
than other tools. CLAMMS showed results similar to
WISExome, both in the start and stop positions of the CNVs
resulting from array analysis, as well as the numbers of
detected genes and exons. Yet, CLAMMS shows more
fragmentation, which can be clearly seen in the size dis-
tribution of the calls. Additionally, CLAMMS missed one
of the CNVs detected by array analysis that was found by
all other tools (sample 18, Fig. 2a).

Fig. 4 a Venn diagrams showing overlap based on the detected
aberrated genes between WISExome and any of the four other CNV
detection tools, as well as overlap with the known CNVs according to
the array analysis. For known CNVs, CLAMMS shows a strong
overlap with WISExome but adds no unique calls that overlap with the
array, whereas WISExome shows 15 unique calls wrt CLAMMS that
do overlap with the array results. CODEX does find 24 more affected
genes (than WISExome) overlapping with the array data, but has a
significantly larger set of affected genes in total. XHMM misses half of
the genes called by the array analysis, and CoNIFER even misses three
quarters of the known aberrated genes. An exon-level-based equivalent
of this figure is shown in Supplementary Fig. S6. b Plot showing the
overlap in detected exons between any combination of tools. The
horizontal axis shows the size of the union of the exons detected by a
set of tools, and the vertical axis shows the size of the intersection of
the exons detected by the same set of tools. Lines marked with
numbers show y= ax, where a is the number shown. When the set of
tools agree the size of the intersection should equal the size of the
union, which would put the marker on the line marked with 1. A
unique color and shape is used for every tool, and plotted on top of
each other for every tool involved in a combination. For example, the
top right is marked by both CLAMMS and CODEX, meaning that the
unions and intersection of these two tools are considered. The bottom
right shows the result when comparing all five tools. Due to the
number of affected exons called by CODEX, two main groups can be
observed: the combinations on the right of the plot that include
CODEX, and the combinations on the left of the plot that exclude
CODEX. Next, vertically another two groups can be observed: all
combinations including CoNIFER or XHMM below an intersection of
size 1000, and combinations between WISExome, CLAMMS, and
CODEX above this line. WISExome and CLAMMS are most similar
since the size of their intersection is ¼ of the size of their union, which
is considerably larger than any other combination. A similar plot
where overlap among genes is considered is shown in Supplementary
Fig. S11.

a

b

Copy number variations from exome sequencing data 1361



From this comparison, we conclude that WISExome
performs consistently well over the different analysis that
we investigated, i.e., it shows a proper balance between
accuracy and specificity, without fragmentation of regions.
These are favorable aspects when applying a CNV detection
tool within the clinic. Nevertheless, we have observed
considerable variability between tools, and we recommend
to run multiple tools in parallel for clinical practice.

Note that the within-comparison approach might suggest
that WISExome is independent for different sequencing or
enrichment protocols, and that it would be possible to run
WISExome without (re)training in different centers. Our
experiences with WISExome and WISECONDOR (the first
method in which we introduced the within-comparison
approach, although designed for detecting chromosomal
aberrations in cell-free DNA) indicates that even the within-
comparison scheme is influenced by differences between
centers. That is, although the within-comparison scheme
works across different centers and sequencing technologies,
we have seen performance improvements when reference
bins are determined using training samples that were pro-
cessed similar to the test cases. This should, however, be
tested more thoroughly by setting up an inter-center com-
parison. For now, we advocate to create a new reference set
table when there is a change in center or protocol. However,
we suspect WISExome can be trained with a relatively
small training set (until now we typically used
200–300 samples). Furthermore, we would like to stress
that by using a within-comparison scheme, our tool is likely
still capable of detecting CNVs in cases where the read
distribution of a sample deviates strongly from the reference
data. More so than when the sample is compared to the
reference set directly, as the reference targets from the
within-comparison scheme vary accordingly within the
sample.

Finally, we introduced two ways to prioritize calls made
by WISExome. One that expresses the quality of the call,
which is directly influenced by the size of the call, the
number of genes and the amount of probe targets, and
another that annotates the call with OMIM phenotype keys.
The prioritization of calls based on their score and anno-
tation, allows geneticists to quickly zoom in on the most
likely candidate genes, making WISExome an extremely
useful diagnostic tool. To even further reduce the overall
time spent per sample for a geneticist additional filtering of
calls might be done by, for example, filtering common
CNVs, or annotating calls using other databases, such as the
CNV in disease database [25] or the database of genomic
variants [26].

Taken together, WISExome provides an alternative to
array analysis with a quick and easy workflow for geneti-
cists that includes a prioritization scheme for calls that
improves the diagnostic relevance.
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