
Touchless Hand Gesture-Based Digit Recognition
using Light-Sensors, Convolutional Neural Networks and a Microcontroller

Winstijn Smit 1

Supervisor(s): Qing Wang, Mingkun Yang, Ran Zhu

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Winstijn Smit
Final project course: CSE3000 Research Project
Thesis committee: Qing Wang, Mingkun Yang, Ran Zhu, Ranga Rao Venkatesha Prasad

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Touchless interaction with computers has become
more important in recent years, especially in the
context of the COVID-19 pandemic. Applications
include situations where touch input is not possi-
ble or not desirable, e.g. for hygienic purposes in
a public setting or a medical setting. Practical ex-
amples for touchless interaction include elevators,
vending machines, and other public devices that are
used by many people. However, most touchless in-
teraction systems are expensive and require signif-
icant computational power. This paper proposes a
bare-bones low-power and low-cost system for rec-
ognizing air-written digits using a microcontroller
and light sensitivity sensors. A proof of concept
has been created and tested in a fixed lighting sce-
nario with a fixed set of gestures for the digits 0
to 9 to show the feasibility of such a system. The
system uses a convolutional neural network to rec-
ognize digits and achieves an average accuracy of
58,8% on a validation set of unseen participants. It
performs significantly better on new samples from
users already seen during training, achieving an av-
erage accuracy of 93,5%.
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Linde and Paco Pronk. Lastly, I want to thank my family and
friends for their support during my studies and this project.

1 Introduction
1.1 Motivation
The interest in touchless interaction with devices has risen in
the last few years. Since the start of the COVID-19 pandemic,
the world was introduced to the concept of social distancing

and therefore we were forced to change the way we interact
with each other and the world around us. This includes the
way we interact with electronic devices, especially the ones
in public. Touching the same surfaces as many other people is
a potential source of infection and plays an important role in
the spread of a virus [1]. The proposed digit recognition sys-
tem of this paper enables touchless interaction with electronic
devices which enables new possibilities.

There are several devices that can benefit of touchless inter-
faces. A vending machine is one such example application.
It is a device that is used in a public space and is touched
by many people, making them a potential source of infec-
tion. The proposed system enables touchless interaction with
vending machines. Another use case is a residential elevator,
where the proposed system enables touchless input of the de-
sired floor. Additionally, the proposed system could be used
in a situation where physical contact is impossible or unde-
sired. For example, in a hospital where a surgeon needs to
interact with a computer during surgery.

Similar systems have been created using cameras and im-
age recognition [2] [3] [4] for a while but require signifi-
cantly more computational power and memory, subsequently
increasing costs. The presented system uses only three light
sensors and a small neural network capable of running on a
microcontroller. This makes the system more efficient and
cheaper which could lead to a wider adoption of such sys-
tems in the future.

1.2 Related work
One year previous, in 2022, the basis for this gesture recogni-
tion system has been laid out by fellow students at the TU
Delft. Dimitar Barantiev, Femi Akadiri, Matthew Lipski,
Stijn van de Water and William Narchi worked together to
create a prototype of the gesture recognition system. It fo-
cused on the recognition of simple hand-gestures, some ex-
amples are: ”Swipe Down”, ”Clockwise Rotation”, ”Zoom
in” [5]. Their contributions to this projects are as follows:

• Dimitar Barantiev created several pieces of software to
interact and develop the gesture recognition system with
the custom hardware. [6]

• Femi Akadiri constructed a dataset to train neural net-
works to recognize gestures made by changes in ambient
light. [7]

• Matthew Lipski made a Recurrent Neural Network
(RNN) architecture to recognize the gestures mentioned
above from the data of the light sensitivity sensors [8].
The CNN-LSTM model had an accuracy of 43%.

• Stijn van de Water created the custom PCB containing
the Arduino Nano 33 BLE and the three OPT101 photo-
diodes [9]. This hardware is used during this project to
collect data and recognize the gestures using the CNN.

• William Narchi worked on a CNN architecture which
could run on the Arduino Nano 33 BLE and recog-
nize several gestures using the signals from the photo-
diodes [5]. His best performing model (Narrow LilConv
Padding Pyramid) achieved an accuracy of 86%. His
work is used as the basis of this research.



1.3 Research Questions
Building on the work of the research mentioned in section 1.2,
the aim is to create a system that could recognize digits (0 to
9) made by gestures. To create such a system, the following
challenges need to be overcome:

• Creation of a dataset of gesture-based digits
To train the neural network, a sizable dataset of high
quality should be created which represents the various
hand-gestures used to represent digits made by various
people. Previously created datasets cannot be used for
this highly specific task. Furthermore, data needs to
be collected in a consistent manner and tools to visual-
ize, compare, analyse and manage the dataset need to be
made or modified. Lastly, the hardware test-bed should
be set up in such a way to collect data for this purpose.

• Creation of convolutional neural network architec-
ture
The convolutional neural network lays at the heart of this
system. It should successfully recognize digits from the
signals received from the light sensors. The performance
of the neural network will be evaluated and compared
to several different architectures and hyperparameters to
conclude which model and architecture perform best.

• Embedding of the Neural Network Model on the Ar-
duino
The neural network should run locally on the Arduino
Nano 33 BLE. This device has limited computational
power and memory, therefore the model should be op-
timized to run on this device. Additionally, detecting the
start of a gestures will be researched to make the system
run continuously.

1.4 Contributions
As mentioned in section 1.2, this paper builds on top of the
work of the previous mentioned research. However, due to
the different type of gesture recognition, digit recognition,
this paper makes the following contributions:

• Creation of a dataset of gesture-based digits
A entirely new dataset for gesture-based digit recogni-
tion is created. This dataset contains over 6000 samples
of several people writing digits from 0 to 9 in the air.
Data augmentation methods that were not used before
was also created. The dataset is created in a consistent
manner and is of high quality.

• Creation of convolutional neural network architec-
ture to recognize gesture-based digits
A new convolutional neural network is created to rec-
ognize digits made by hand gestures with three photo-
diodes. Digit recognition requires more precision than
gesture recognition, due to the small nuances in the
movement and the low amount of photo diodes. The
architecture, pre-processing and methods proposed here
may be useful for other type of gesture recognition sys-
tems using a convolutional neural network.

• Experimentation with sampling rate
Due to a high sampling rate during data collection it is

possible to experiment with different sampling rates by
downsampling. Its effect on the performance of the neu-
ral network and inference times is researched.

2 Background
In order to understand this research, one must be familiar
with the terms and concepts related to a convolution neural
networks. This sections aims to provide the reader with the
necessary background information to understand the rest of
the paper.

2.1 Convolutional Neural Networks
Neural networks are part of the field of machine learning
which studies computer systems that can learn from data.
Machine learning itself is a subfield of artificial intelligence
(AI) in which systems are studied that can perform tasks that
normally require human intelligence. In this section, the con-
cepts of a convolutional neural network (CNN) are explained.

2.1.1 Usage of Convolutional Neural Networks
A convolutional neural network (CNN) is a type of neural net-
work, commonly used for image recognition purposes. It is
able to recognize patterns in large data fed to it, e.g. images,
and is able to extract features from that data, e.g. edges, cor-
ners, and shapes. The network is able to learn to recognize
these features by itself by training on a suitable dataset.

CNNs can also be used to classify time-series data. [10]
Time series data is data that is collected over a period of time,
e.g. sensor readings from a photodiode over time. Features
and patterns embedded in time-series data are able to be rec-
ognized by a CNN, as is shown in [11].

While a CNN has many use cases, it is often used to solve
classification problems. A classification problem is a prob-
lem where a system is expected to label a given input with a
certain class or category. In this research project, the system
is expected to label a gesture with a digit between 0 and 9
when a gesture is performed in front of the system.

2.1.2 Layers
A CNN consist of several layers, each with its own pur-
pose. Layers follow each other in a sequential order, and
each layer takes the output of the previous layer as input.
Passing through a sample to be classified through all layers
is called inference. The following layers are used in this re-
search project:

• Convolutional layer: this layer performs a convolution
on the input data. A series of filters (also called ker-
nels) of a given size are applied to the input data, each
filter extracting a different feature. A convolution is per-
formed by moving the filter over the input data, mul-
tiplying data under the filter with weights in the filter,
and summing the results. The result of a convolution is
called a feature map.

• Pooling Layer: downsamples the input data, reducing
parameters and computation in the network. The most
common type of pooling layer is the max pooling layer,
which takes the maximum value of a given area in the
input data.



• Flatten Layer: flattens the input data in a one-
dimensional array, necessary for the input of a dense
layer.

• Dense Layer: often referred to as a fully connected layer,
this layer connects every neuron in the previous layer to
every neuron in the current layer. This layer will even-
tually output the classification result.

• Dropout Layer: used to prevent overfitting. This layer
randomly drops a percentage of the neurons in the pre-
vious layer, forcing the network to generalize.

2.1.3 Overfitting
Overfitting is a common problem in machine learning, essen-
tially meaning that a model is memorizing the training data
instead of learning to generalize. Failing to generalize causes
the model to perform poorly on unseen data which is undesir-
able. Overfitting can be caused my factors such as noise, too
little data or a model that is too complex [12]. In this research
project, overfitting is prevented by using dropout layers and
data augmentation.

3 Methodology
In this section the methodology of the project is described.
It will go over the hardware used, the dataset and the collec-
tion process, data augmentation and data pre-processing, the
model architecture and evaluation process and finally

3.1 Hardware Overview
As mentioned in section 1.2, the hardware in this project has
been created by Stijn de Water. It consists out of an Arduino
Nano 33 BLE, containing a Cortex MF4 processor running at
64 MHz and 256 KB of SRAM. The micro controller does not
run an operating system, only the compiled C++ code. The
Arduino is connected to three OPT101 photodiodes that can
measure the intensity of ambient light falling on them. The
board also contains three feedback circuits that are used to
control the sensitivity of the photo diodes by combining cer-
tain resistors. This ensures high resolution values in various
lighting conditions. Additionally, it uses low pass filters to
filter out high frequency noise. An image of the board can be
in seen in Figure 1.

Figure 1: The custom PCB with each component labeled

3.2 Air-written digits
The aim is to recognize air-written digits with the hardware
described above. The digits are written in the air by pointing
with the index finger towards the light sensors. The finger is
then moved as if it is a pen writing the digit on a piece of
paper. For this research a map of the digits 0 to 9 has been
created that can be used to perform the gestures, which can be
seen in Figure 2. This map was used during the data collec-
tion process to ensure that the digits written by participants
are consistent.

Figure 2: Map visualizing how digits are written with the index fin-
ger

3.3 Dataset
The quality of the dataset is of utmost importance for the per-
formance of the neural network. The dataset consists out of
samples containing data of gestures representing the digits
0 to 9. Data used for training should be representative of
the real world data that the network will be exposed to. The
dataset should be large enough to be able to train a network
that generalizes well and does not overfit. Furthermore, it
should be balanced, meaning that the number of samples for
each digits should be roughly the same. The following sec-
tions describe the methodology and aspects of the dataset that
have been used in this research.

3.3.1 Samples
The dataset consists out thousands of samples, each of which
represent a single air-written digit. Along side the samples,
various metadata is stored such as the label, the resistance
value controlling the light sensitivity of the sensors, the sam-
pling rate, sample duration and edge detection threshold. A
single gesture sample is a collection of data points of light
sensitivity values of the three sensors over time. Graphs of
these samples for each number can be seen in appendix C.

The amount of data points are collected depends on the
sampling rate and the duration of the gesture. The sampling
rate indicates how many data points are collected per second
per sensor. The sample duration indicates how long a gesture
is performed. Data in the dataset has a sampling rate of 1000
Hz, allowing for experimentation with lower sample rates by
downsampling the data. The duration of a sample is 2 sec-
onds, allowing for enough time to perform digits with a slow
pace.

3.3.2 Fixed environment
To prove the feasibility of the project, control of the envi-
ronment is necessary. If the system is not able to work in a



controlled environment, it will definitely not work in a dy-
namic environment. Therefore, the dataset for this research
has been collected in a fixed environment.

This environment consist of a bright LED lamp that is
placed 30 to 40 cm above the PCB board sensors and a fixed
set of gestures. In appendix B can be seen how the lamp was
placed above the board, and how the board was illuminated.
Different ways of writing digits was not explored in this re-
search and as such the dataset is limited to only one way of
writing digits. Allowing for different ways of writing digits
would increase the complexity of the dataset, essentially cre-
ating more than 10 classes to classify. The fixed gestures for
each digit can be seen in figure 2 and appendix A. Lastly, all
gesture were performed 8 to 15 centimeters above the board
with the right hand and the index finger to write digits.

3.3.3 Data collection
The dataset can be split into two categories: simulated data
and data collected from participants. 50% of samples have
been collected from participants, the other 50% is simulated
data. Samples are collected in a controlled environment and
are saved with the ”Pickle” file format.

During data collection a gesture detection algorithm, as de-
scribed in section 3.9, is used to detect when a gesture is being
performed. This allows for the collection of samples that is
consist with the eventual deployment scenario of the system.
It also makes data collection easier for participants and col-
lectors as there is no manual synchronization between them
needed to collect a sample. Finally, it makes samples more
consistent as the start of a gesture is roughly the same for
each sample per digit.

3.3.4 Simulated data
Simulated data contains samples that are solely created by the
author of this research. The purpose of it is to teach the model
how to separate digits by having a set of samples that are
clean and consistent. This dataset is never used for validation
or testing, only for training purposes.

This simulated dataset can be further split up into the fol-
lowing categories:

• Controlled: samples collected in a controlled environ-
ment, with very slow and deliberate gestures. Every
gesture has been manually checked for correctness and
similarity to the other samples.

• Rough: samples are written in a more rough manner, less
deliberate with slow downs and speed ups in the gesture.

• Sequential: samples were collected in a sequential man-
ner in the same sitting, e.g. first 10 times the digit 0 was
collected, then 10 times digit 1, etc.

• Random: sample were prompted by the computer using
text-to-speech, e.g. ”Please write a 3”. The author then
wrote the digit and the sample was recorded. This was
done for all digits in a seemingly random order but such
that the amount of samples collected per digit stayed
roughly the same.

3.3.5 Participant data
Data collected from participants is used for training and vali-
dation of the model. Participants are asked to follow the digit

map in figure 2. However, they were allowed to vary in the
distance from the sensors, angle of the finger and speed of
the gesture, as long as their samples were consistently rec-
ognizable in their respective graphs. Before collecting data,
participants were asked to perform a few samples to ensure
that their gestures were consistent and recognizable. Partici-
pants were also asked to perform the gestures in a sequential
manner, e.g. first 10 times the digit 0, then 10 times digit 1,
etc.

3.4 Software Tools
In order to collect the data and validate the model, several
small tools have been created in Python. Only roughly 5%
of the code of the previous research was reused, with most
code being rewritten to suit the needs of this research. The
tools are able to communicate with software running on the
microcontroller over a serial connection. Below is a list of the
tools that have been created:

• Data-collector: A tool that is able to create new samples
of gestures for the dataset. It allows for configuring key
parameters such as sample rate and duration, continuous
data collection by detecting the start of a gesture, saving
labeled samples with metadata to the dataset and running
inference while collecting new data. Tools can instruct
the system to recalibrate and collect data for a certain
amount of time at a certain sampling rate.

• Visualizer: used to visualize the data collected in graphs,
with their metadata. Visualisation helps with under-
standing the data and verifying the correctness of data-
processing. Barcode style images can also be created
with the sensor value over time being represented as a
grayscale color, as seen in figure 4.

• Continuous local inference: a tool to test trained ma-
chine learning models without running them on the mi-
crocontroller. It can perform continuous inference lo-
cally on a computer, using the same gesture detection
algorithm and pre-processing as on the microcontroller.
This allowed for quick demonstrations and early testing
with the model.

• Training and validator: tools to train and validate vari-
ous different models. Using Python, Numpy and Ten-
sorflow, models can be trained and validated on the col-
lected dataset. It also allowed for quantization of the
model for deployment on the microcontroller.

Below, in figure 3 the tools can be seen.

3.5 Data Augmentation
Manipulating training data to create new data is called data
augmentation and is a common technique to improve the
general performance of a model. Appropriate augmentation
methods can prevent overfitting of data and improves the neu-
ral network ability to generalize [13]. Note that augmented
samples are never used for validation or testing, only for en-
larging and enhancing the training dataset. To make the re-
sulting model more robust, data is augmented in several ways.



Figure 3: Left: data collection tool - right: local inference with graph
visualisation.

Figure 4: A image visualisation of a sample of the number 8.

• Time Warp: The data is stretched or compressed in time
at multiple intervals of the sample. These warps are ap-
plied to all channels equally, resulting in no loss of syn-
chronization between the channels. It is used to simulate
the effect of a user performing a gesture faster or slower.

• Noise: Random gaussian noise is added to the data, with
a probability of 50%. This is done for each sensor indi-
vidually.

• Drift: Data is drifted randomly and smoothly over time
with a certian trend, applied for all sensors equally.

These augmentation methods are from the Python library
”tsaug”, made available during a study. [10]. A random seed
is used to control the randomness of data augmentation. In
appendix E a single sample is augmented three times using
the above methods.

3.6 Pre-processing of data
As a preparation for insertion into the machine learning
model, the data is pre-processed. It has been shown that pre-
processing of the data has a significant effect on neural net-
work performance. [14] The following pre-processing steps
have been applied to the data:

• Normalization: all data is normalized to a range between
0 and 1. This is done by dividing all values by the max-
imum value received for a certain sensor. It makes dif-
ferences in light intensities between the sensors less sig-
nificant to the model.

• Downsampling: the dataset contains samples with a
sampling rate of 1000 Hz. Using a large sampling rate
results into slower inference time and a larger model.
Therefore, the data is downsampled to 100 Hz, 50 Hz,
25 Hz and 10 Hz, depending on the model. Downsam-
pling to 100 Hz is done by keeping every 10th sample.
The effects of downsampling on the data can be seen in
appendix D.

3.7 Model Design
The convolutional neural network is trained using (aug-
mented) data from the dataset that is pre-processed. The Ten-
sorflow framework together with Numpy and Keras is used to
create and train the network. [15] [16] [17] A trained model
is then converted to a Tensorflow Lite model, which can be
used on the microcontroller.

Since the data is a one-dimensional time series, a 1D con-
volutional neural network seemed suitable. Reshaping into
a 2D image and using a 2D convolutional neural network is
also possible, but this would require proper handling of the
edges of the image, which is not trivial. Each sensor has its
own channel which is processed separately by the network,
only being combined at the end of the network. Several vari-
ations of the network were made by manually changing the
hyperparameters, such as the number of layers, the number
of filters and kernel size. A visualisation of the a model can
be seen in figure 5. Most models are similar to this model,
but with different amounts of layers.

Figure 5: Visualisation of 1D convolutional network, with the input,
convolutional, max pooling, flatten and dense layers respectively.

3.7.1 Model quantization
The model without quantization is too large to run on the mi-
crocontroller, therefore quantization is used. Quantization is
a technique that reduces the model size while trying to main-
tain the performance of the model. This research uses Full
Integer quantization which is applied after the training of the
model. The model performance before and after quantization
is reported together with the model size.

3.8 Evaluation of the machine learning model
In the following sections the way the model is evaluated is
explained, as well as the metrics used to evaluate the model.

3.8.1 Accuracy
The accuracy of a trained model is evaluated using a separate
validation set. This validation set is not used for training and
has not been seen by the model before. Therefore, it can be



used to evaluate the performance of the model on unseen data.
Performance is reported as the accuracy of the model, which
is the percentage of samples from the validation set that are
correctly classified. There are two ways the validation set is
created and they indicate different aspects of the performance
of the model.

• Within participant validation: 20% of the samples from
each participant is removed from the training set and
used in the validation set. This validation method ver-
ifies if the model is able to recognize gestures from a
participant that it has seen before.

• Between participant validation: 20% of participants are
removed from the training set and used as validation set.
This validation method verifies if the model is able to
recognize gestures from a participant that it has not seen
before, i.e. a new user of the system.

3.8.2 K-fold cross validation
A dataset split can introduce a bias during evaluation, since
some samples and participants might be easier to recognize
than others. To prevent this bias, k-fold cross validation is
used. A split is made 5 times, each time with a different ran-
dom seed. For each split a model is trained and validated
using the generated training and validation sets for that split.
The average accuracy of the 5 models is then reported as the
final accuracy of the model. Accuraries can also be reported
per class, which is done using a confusion matrix.

3.8.3 Inference Time
The inference time of the model, referring to the time it takes
to classify a sample, is measured without running on the mi-
crocontroller. Due to time constraints, the model was not run
on the microcontroller itself but on a Apple Macbook Pro
with an M1 Max processor. The inference time reported is
an average of 1000 inferences run for a certain model on the
Macbook Pro.

3.9 Detection of gestures
The start of a gesture should be recognized in order to contin-
uously detect the input digits. Since the neural network has a
fixed input size, the datastream of the sensors needs to be split
into samples of the correct size. However, we do not want to
simply cut the datastream into fixed time intervals because it
could result in to data being cut in the middle of a gesture.

Therefore, a simple algorithm has been created that detects
the start of a gesture. The detection algorithm is written in
Python for use during data-collection and ported to C++ to
run on the microcontroller for actual inference. The algorithm
works as follows:

1. Data is continuously collected from each individual sen-
sor at a determined sampling rate.

2. An edge detector checks each sensor data for a falling or
rising edge with a pre-determined threshold.

3. If an edge is detected, a certain amount of samples be-
fore detection are saved.

4. The remaining data to complete a sample is collected
from the sensors.

5. A sample is created by merging the data pre-detection
and post-detection. A representation of a sample can be
seen in Figure 6.

Figure 6: Visualisation of the merging of pre gesture detection and
post detection data with 100 Hz sampling rate.

4 Experimental Setup and Results
In this chapter several aspects of the experimental setup and
results are elaborated. First the dataset is discussed, then the
model design and training process is discussed, followed by
the performance of the trained models.

4.1 Dataset
A total of 6482 samples have been collected. The final dataset
consists out of samples of air-written digits by the author and
17 other participants, using gesture start detection. Samples
in the dataset are recorded in a fixed lighting condition, with
the hand movements performed approximately 15 cm above
the device. During collection an air-written digit is performed
in front of the device, which is then recorded and stored. The
setup during data collection can be seen in appendix B.

4.1.1 Simulated Data
The simulated part of the dataset was solely created by the
author of this thesis. It consist out of around 3100 samples of
air-written digits, with approximately 300 samples for each
digit. Samples were collected in multiple sessions, spread
over several days, using the methods described in section
3.3.4.

4.1.2 Participants Data
There were 17 participants that have contributed their ges-
tures to the dataset. Ten of which have been collected by the
author his peer group member, Gijs van de Linde, working on
a similar project. The remaining seven participants have been
collected by the author of this thesis. The amount of sam-
ples collected from participants can be seen in table 1. This
does not include the samples collected by the author himself.
Their gestures should match with the ones visualised in the
digit map in figure 2 (and appendix A).

4.1.3 Evening out the dataset
The dataset was not evenly distributed over the digits, with
some digits having more samples than others. This is caused
by some participants recording more samples of a certain
digit than others. Another problem was that some digits were
discarded after the data collection process due to the sample
being of bad quality. To solve this problem, the dataset was
evened out using one of the following methods:



Digit Samples
0 317
1 324
2 320
3 335
4 391
5 339
6 335
7 332
8 337
9 338

Total 3368

Table 1: Samples per digit from participants

• Augmentation: some random samples in the dataset un-
til the number of samples for each digit was matching
the maximum number of samples for a digit.

• Discard: some random samples in the dataset until the
number of samples for each digit was matching the min-
imum number of samples for a digit.

This randomness was controlled with a random seed.

4.1.4 Caching of augmented data
Due to the large dataset size and the several data augmen-
tation techniques used, it is not feasible to generate a lot of
training and data before training. With 5 augmentations per
sample it would take 10 minutes for a dataset of 6000 sam-
ples to be augmented. Augmentation resulted in a dataset of
30.000 samples. Hence, the augmented data together with the
real data, were cached inside a Pickle file in order to speed up
the training process.

4.1.5 Resulting dataset
A dataset containing 12.500 samples was created and used to
evaluate the performance of the models mentioned in Section
4.3. Augmentation was used to evenly distribute the samples
per digit and to increase the size of the dataset with 50%. For
training and testing several splits were created, for between
candidate and within candidate evaluation. A split consist out
of 25% of samples or 25% of participants, used for validation,
depending on the evaluation type.

4.2 Model Design Experimentation
During the course of this research, several models have been
designed, tested and trained. The following variations of will
be discussed in the following sections:

• 1-CNN D1
Single convolutional layer with a single dense layer.

• 2-CNN D1
Two convolutional layers with a single dense layer.

• Tiny 2-CNN D1
Two convolutional layers with a single dense layer, but
with a smaller amount of filters and neurons.

• 2-CNN D2 A
Variation of a two convolutional layers with two dense
layers.

Model Size Inference Time
1-CNN D1 55.816 bytes 4,100 microseconds
2-CNN D1 61.616 bytes 5,777 microseconds

Tiny 2-CNN D1 21.280 bytes 3,831 microseconds
2-CNN D2 A 115.472 bytes 6,500 microseconds
2-CNN D2 B 70.128 bytes 7,004 microseconds

2-CNN D2 XL 132.336 bytes 7,804 microseconds

Table 2: Quantized sizes for each model trained on data with a 25 Hz
sampling rate in bytes. Inference time in microseconds computed by
averaging the classification time of 100 samples with the quantized
model running on a Macbook Pro with a M1 Max CPU.

• 2-CNN D2 B
Variation of two convolutional layers with two dense
layers.

• 2-CNN D2 XL
Variation of two convolutional layers with two dense
layers, but with a larger amount of filters and neurons.

The full design for each of these models can be found in ap-
pendix G.

4.3 Model Performance
In this section the performance of the models mentioned in
section 4.2 are discussed. First the performance between can-
didates is evaluated, then the performance within candidates.
Finally, the performance of the models trained on different
sampling rates is evaluated.

Care was taken to ensure a fair comparison between each
model. Cross validation was used to reduce the influence of a
favourable split influencing the results. The same splits were
used for all models, so that the results are comparable. All
models were trained for 100 epochs, with a learning rate of
0.001, with data being downsampled to 25 Hz. Since models
have to be quantized to run on the microcontroller, the accu-
racy of the quantized models is also reported. This accuracy
is measured by running the quantized model on the same test
set as the original model. All confusion matrices can be found
in appendix F.

4.3.1 Between candidate performance
Between candidate performance represents the ability to rec-
ognize gestures from a participant that was not seen during
training. Therefore it can be seen as a measure of how well
the model generalizes to unseen users. Samples from some
candidates were not used during training, only for verifica-
tion.

From table 3 it can be seen that the best performing quan-
tized model is 2-CNN D2 A, with an quantized accuracy of
58.779% (±2.637%). The confusion matrix for this model
can be found in Figure 7. This is better than randomly guess-
ing, which would result in an accuracy of 10%. However, this
is not an optimal result since new users of the system would
often have to try multiple times before the correct digit is rec-
ognized.

4.3.2 Within candidate performance
Within candidate performance represents the ability to clas-
sify new gestures from a participant that was seen before dur-



Model Accuracy Quantized Accuracy
1-CNN D1 54,198% (±2,825%) 53,903% (±3,081%)
2-CNN D1 57,826% (±3,144%) 56,607% (±3,215%)

Tiny 2-CNN D1 53,189% (±3,703%) 51,613% (±3,678%)
2-CNN D2 A 59,123% (±2,840%) 58,779% (±2,637%)
2-CNN D2 B 58,754% (±4,996%) 58,754% (±5,341%)

2-CNN D2 XL 59,887% (±2,282%) 57,843% (±3,294%)

Table 3: 5-fold between candidate accuracy and quantized accuracy for each model trained on 25 Hz data.

Figure 7: Confusion matrix of the 5-fold within candidate quantized
accuracy of 2-CNN D2 A.

ing training. Hence all candidates were used for training, but
only a subset of their samples were used for validation.

From table 4 it can be seen that the best performing model
is the 2-CNN D2 A model, with a quantized accuracy of
93.448% (±0.444%). The confusion matrix for this model
can be found in Figure 8.

Within candidate performance is significantly better than
the between candidate performance. The proposed system
would therefore work best if the user is already known to the
system beforehand.

4.3.3 Downsampling
The dataset contains samples with a sampling rate of 1000
Hz, which allowed experimentation with different sampling
rates. The effect of downsampling on data can be seen in
appendix D.

The hypothesis was that a lower sampling rate would result
in a smaller model and therfore faster inference time. How-
ever, it was also expected that a lower sampling rate would
result in a lower accuracy of the model. The model 2-CNN
D2 A was trained on datasets with sampling rates of 100 Hz,
50 Hz, 25 Hz, 10 Hz and 5 Hz. Moreover, the candidate and
sample split were kept the same between the different sam-
pling rates, allowing for a fair comparison. The changes in
performance, size and inference time can be found in table 5.

The Arduino has a working memory of 256 KB, therefore
it is unlikely any model above 200 KB will be able to actually

Figure 8: Confusion matrix of the 5-fold within candidate quantized
accuracy of 2-CNN D2 A.

perform inference. Taking the accuracy numbers into account
it seems that the most suitable sampling rate is 25 Hz, as it
has the best performance and is still small enough to fit on
the Arduino.

5 Responsible Research
5.1 Ethics
With the increasing use of machine learning making impact-
ful decisions, it is important to consider the ethical implica-
tions of the use of machine learning. While the proposed
system is not intended to be used in a real-world scenario,
further research might lead to a system that is used in a real-
world scenario. Such scenarios might include the use in an
elevators, vending machines, or even high stake scenarios
like surgery where touch input is not possible. The follow-
ing points are important to consider for a real-world system:

• Inclusivity: bias in the data used to train the model might
lead to bias in the model itself, which might lead to
worse performance for certain groups of people. To pre-
vent this, the dataset should be collected in a way that
is representative of the population that the model is in-
tended to be used on. This includes representing dif-
ferent writing styles, hand postures, gesture speed, left
and right handedness evenly in the dataset and evaluat-
ing performance with respect to these groups.



Model Accuracy Quantized Accuracy
1-CNN D1 89,513% (±0,653%) 89,611% (±0,395%)
2-CNN D1 91,696% (±1,556%) 91,339% (±1,121%)

Tiny 2-CNN D1 84,948% (±8,341%) 84,294% (±8,180%)
2-CNN D2 A 93,399% (±0,392%) 93,448% (±0,444%)
2-CNN D2 B 92,276% (±1,192%) 91,906% (±1,405%)

2-CNN D2 XL 91,795% (±0,948%) 91,610% (±0,894%)

Table 4: 5-fold within candidate accuracy and quantized accuracy for each model trained on 25 Hz data.

Sample rate Between Accuracy Within Accuracy Size (bytes) Inference Time Time % Perf. %
100 Hz 54,543% (±5,243%) 91,314% (±0,583%) 418.576 17,283 100% 97,72%
50 Hz 56,735% (±4,119%) 92,548% (±0,609%) 213.776 9,898 57,27% 99,04%
25 Hz 58,779% (±2,637%) 93,448% (±0,444%) 115.472 6,451 37,33% 100%
10 Hz 56,513% (±3,270%) 89,784% (±0,824%) 49.936 4,365 25,26% 96,08%
5 Hz 45,802% (±4,908%) 76,743% (±3,371%) 33.552 3,657 21,16% 82,12%

Table 5: 5-fold between and within candidate quantized accuracy with model size in bytes and inference time in microseconds for different
sampling rates of 2-CNN D2 A.

• Privacy: the device does not have to store any personal
information about a user to recognize digits. Addition-
ally, all of the processing on the device itself and no data
is sent to a external party. However, the device is prob-
ably connected to another system receiving the digits
which might store personal information about the user.

• High stakes scenarios: high priority should be given to
the safety of the user in such a scenario. The system
should be designed in such a way that predictions are
correct and reliable. In an event of a failure, such as a
wrong prediction, actions should be reversible and non-
destructive.

5.2 Reproducibility
Care has been taken to ensure that the results of this research
are reproducible. As such, most code written, together with
the dataset used for training and validation, is available on
Github.

5.3 Participants and consent
During this research, 17 participants have been involved in
the data collection process. These participants have been
asked to sign a consent form of which an empty example can
be found in appendix H. The participants have been informed
about the purpose of the research, the data collection process
and the use of their data for training a neural network. Fur-
thermore, the privacy of the participants has been protected
by anonymizing the data and not storing any personal infor-
mation about the participants alongside the gesture samples.

6 Discussion
In this section, the process of the research is reflected upon
and the results are discussed.

6.1 Collection of the dataset
The collection of the dataset took longer than initially antic-
ipated. Firstly because the dataset collected in the first half

of the research was discarded. It was collected in a dynamic
environment, meaning that the lighting conditions and digit
writing were not fixed. The fixed environment was introduced
after noticing that this data was very inconsistent and hard to
classify. To be able to still make a minimum working system,
the data collection was reproduced in the fixed environment.
The reasoning was as follows: if a system with a fixed envi-
ronment would not work, a system with a dynamic environ-
ment would definitely not work either.

Additionally, in week 6, the idea came up to use gesture
detection for data collection to remove the need for a button
press by the data collector. This would make the data collec-
tion more consistent and dataset samples more similar to the
real-world use case. The change made classification for the
system easier but also resulted in the removal of samples that
were not collected with the gesture detection algorithm.

6.2 Lack of deployment on microcontroller
Unfortunately, due to time constraints, the deployment of the
model on a microcontroller was not possible. Since deploy-
ment of a CNN had been done in previous work on the sys-
tem, it was not considered a high priority. Time was spent
on other aspects of the research, such as the general feasi-
bility, augmentation methods and experiments with the sam-
pling rate that contribute new insights to the system. Fur-
thermore, demonstrations could still be given to validate the
model performance, with inference running on a laptop and
serial communication to the microcontroller.

6.3 Reflection on performance of the system
The performance of the system seems to be satisfactory due
to the difficulty of the task and constraints of the system. The
system performs well on new samples from participants that
had been seen before, with an accuracy above 90%. Presum-
ably because the model has learned the nuances in writing
style of the candidate and can use this to classify the digits of
the candidate.

https://github.com/winstijn/digit_recognition


For participants that have not been seen before (between
candidate), the performance is significantly worse with an
accuracy drop of roughly 40%. This means the system is
not able to generalize well to new participants and can not
be used in a public real-world scenario with many different
users. Due to the low amount of sensors, small variations in
writing style of the fixed digits gestures and fixed environ-
ment can still cause large variations in the data in the end.
When the model has not seen these variations before, it is not
able to classify the digits correctly and the accuracy drops.
However, the author is confident that the system can be im-
proved by using computer simulated data and some hardware
changes as discussed in the section 7.2.

7 Conclusions and Future Work
7.1 Conclusion
This paper has shown a proof of concept of a low-power and
low-cost system for recognizing air-written digits using only
three light sensitivity sensors. A dataset has been collected
in a fixed lighting scenario and with a fixed set of gestures
to show the feasibility of such a system. Pre-processed and
augmented data has been used to train several convolutional
neural networks that are able to recognize the digits 0 to 9
written in the air.

The best architecture ”2-CNN D2 A” achieved an accu-
racy of 93,48% on unseen samples from participants that have
been seen during training. The performance on entirely un-
seen participants, representative of real world performance,
is lower with an accuracy of 58,78%. Experimentation has
shown that a sampling rate of 25 Hz is most suited for this
system.

Further research is needed to make the system more robust
and usable in real world scenarios. In its current state, the
system is only reliable for a fixed amount of users, that have
input their own samples, in a fixed lighting scenario and with
a fixed set of gestures. However, recognizing digits with only
three light sensitivity sensors, with many variations in writing
style and light environment, is a difficult task.

7.2 Future Work
During this research, several limitations and improvements
have been identified that can be used for future research. The
following sections describe these limitations and possible im-
provements to make the system more robust and usable in real
world scenarios.

7.2.1 Testing inference times on the microcontroller
Time constraints caused by creating the dataset did not allow
for testing the inference times on the microcontroller. The
several models trained and quantized could be ported in the
future to run on the microcontroller, to see if the system is
able to perform inference in real-time. Since running CNN
models on the microcontroller of this system has been done
before, it is expected to be trivial [5] [6].

7.2.2 Adding dynamic environment in the dataset
A real world application would require the system to be able
to recognize digits in a more dynamic environment. How-
ever, the dataset used to train the model has been collected in

a fixed lighting scenario and with a fixed set of gestures. In
turn, the model is only able to recognize digits in this envi-
ronment and with these predetermined gestures. To improve
the model and make it more suitable for real world applica-
tions, new samples should be collected in a more dynamic
environment.

7.2.3 Computer Simulation of the dataset
To create a system that works in a dynamic environment, with
a model that generalizes well and does not overfit, a dataset
of high quality is required. Collection of such a dataset is an
extremely time consuming task, especially when the dataset
needs to be collected in a dynamic environment. A dynamic
environment is often hard to control but in a simulation this
environment can be precisely controlled.

Using a simulation, a large dataset can be generated in a
short amount of time, which can be used to train a model
that generalizes well. The simulation needs to simulate the
photodiodes and several light sources at various positions and
intensities, preferably using ray tracing. It should also simu-
late the finger position, angle of the hand, size of the hand
and a certain writing style. Hand movement might be able
to be generated from the popular MNIST dataset, which con-
tains images of handwritten digits. The simulation can also
be used to research the optimal amount of photodiodes and
the influence of the position of the photodiodes.

7.2.4 Adding more photodiodes
The current system only uses 3 photodiodes, which limits the
resolution and in turn the accuracy of the model, especially
in a more dynamic environment with a complex task such
as recognizing digits. More photodiodes should be added to
the system to increase the resolution making it easier for the
system to recognize digits and thus increasing the system’s
accuracy.

7.2.5 Tracking the finger position using photodiodes
By tracking the finger position over time, a 2D image can
be created of the path the finger has traveled, essentially as
if using a pen on a piece of paper. The way a digit, letter
or word is written would not matter anymore, as long as the
ending image is the same. This image can then be given to a
neural network to recognize the digits, letters or perhaps even
words with possibly higher accuracy. Such a technique has
been used to recognize digits in the air using a camera in [4].

To achieve this with photodiodes, training data would re-
quire position data of the finger position during data collec-
tion and the values of the photodiodes over time. This can be
achieved by using a camera on the device during data collec-
tion, or by using a simulation as described in section above.
The recommendation is to use a simulation and to use a sys-
tem with a grid of photodiodes.

7.2.6 Modification of the device to emit infrared light
The current system relies on ambient light, which limits the
system to a well lit environment. It also makes the system
more susceptible to noise and introduces significant more dif-
ficulty in creation due to the varying light conditions. By
emitting infrared light, that bounces off the finger back to sen-
sors on the board, a theoretical system could be created that



is also able to recognize air-written digits. This system would
be able to work in a dark environment, would be less suscep-
tible to noise and would be easier to create due the fixed light
condition.
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A Digit Legend

Figure 9: Legend describing how digits are expected to be drawn
above the PCB, with dots and arrows indicating starting point and
direction.

B Data Collection Setup

Figure 10: The board illuminated by the lamp from above.

Figure 11: HEMA selfie ring light used for fixing lighting environ-
ment.



C Digit graphs

Figure 12: Graphs of the raw sensor data from the dataset, representing each digit at a 1000 Hz sampling rate and 2 second sample duration.



D Data downsampling

Figure 13: Graphs of the same digit downsampled from 1000 Hz to 50 Hz, 25 Hz, 10 Hz and 5 Hz.

E Augmentation of a sample

Figure 14: Graphs of one original sample (top left) and three augmented samples based on the original sample.



F Model Performances

Figure 15: Confusion matrix of the 5-fold between candidate quan-
tized accuracy of the 1-CNN D1 model.

Figure 16: Confusion matrix of the 5-fold between candidate quan-
tized accuracy of the Tiny 2-CNN D1 model.

Figure 17: Confusion matrix of the 5-fold between candidate quan-
tized accuracy of the 2-CNN D1 model.

Figure 18: Confusion matrix of the 5-fold between candidate quan-
tized accuracy of the 2-CNN D2 A model.



Figure 19: Confusion matrix of the 5-fold between candidate quan-
tized accuracy of the 2-CNN D2 B model.

Figure 20: Confusion matrix of the 5-fold between candidate quan-
tized accuracy of the 2-CNN D2 XL model.

Figure 21: Confusion matrix of the 5-fold within candidate quan-
tized accuracy of the 1-CNN D1 model.

Figure 22: Confusion matrix of the 5-fold within candidate quan-
tized accuracy of the Tiny 2-CNN D1 model.



Figure 23: Confusion matrix of the 5-fold within candidate quan-
tized accuracy of the 2-CNN D1 model.

Figure 24: Confusion matrix of the 5-fold within candidate quan-
tized accuracy of the 2-CNN D2 A model.

Figure 25: Confusion matrix of the 5-fold within candidate quan-
tized accuracy of the 2-CNN D2 B model.

Figure 26: Confusion matrix of the 5-fold within candidate quan-
tized accuracy of the 2-CNN D2 XL model.



G Model Architectures

Figure 27: Architecture of 1-CNN D1.

Figure 28: Architecture of Tiny 2-CNN D1.



Figure 29: Architecture of 2-CNN D1

Figure 30: Architecture of 2-CNN D2 A.



Figure 31: Architecture of 2-CNN D2 B.

Figure 32: Architecture of 2 CNN D2 XL.



Explicit Consent points  
 

Please make sure that you select (and amend as necessary) any Explicit Consent points which are relevant 
to your study and exclude those which do not apply. You should also add further points and necessary to 
address your specific research situation. 

 

 PLEASE TICK THE APPROPRIATE BOXES Yes No 

A: GENERAL AGREEMENT – RESEARCH GOALS, PARTICPANT TASKS AND VOLUNTARY 
PARTICIPATION 

  

1. I have read and understood the study information date [    /    /   ] , or it has been read to me. I 
have been able to ask questions about the study and my questions have been answered to my 
satisfaction.  

☐ ☐ 

2. I consent voluntarily to be a participant in this study and understand that I can refuse to answer 
questions and I can withdraw from the study at any time, without having to give a reason.  

☐ ☐ 

3. I understand that taking part in the study involves collecting hand gesture data for writing digits 
0-9 / letters / different gestures. During the collection, there is no need for collecting participants’ 
personal information such as name, age, etc. And the data is collected by our hardware which will 
be some time-series data. 

☐ ☐ 

 
  

4. I understand that I will be compensated for my participation by some snack, tea or coffee. ☐ ☐ 

 
  

5. I understand that the study will end in 30 mins.   

 
  

B: POTENTIAL RISKS OF PARTICIPATING (INCLUDING DATA PROTECTION)   

6. I understand that taking part in the study involves the following risks [see points below]. I 
understand that these will be mitigated by [see points below] 

☐ ☐ 

Potential risk: That feeling a little tired from writing two minutes for one digit 
Mitigation method: Giving more resting time, or have some snack, or tea/coffee before in-air writing the next digit/letter/gestures.  

  

7. I understand that taking part in the study will NOT involve collecting specific personally 
identifiable information (PII), and NOT associated personally identifiable research data (PIRD), 
WITHOUT the potential risk of my identity being revealed. 

☐ ☐ 

 
  

8. I understand that the following steps will be taken to minimise the threat of a data breach, and 
protect my identity in the event of such a breach  [see points below] 

☐ ☐ 

We do anonymous data collection and after collecting the data, we shuffle the data and save it.   

C: RESEARCH PUBLICATION, DISSEMINATION AND APPLICATION   

9. I understand that after the research study the de-identified information I provide will be used 
for [see points below] 

☐ ☐ 

• Publications.  We will do further research based on this dataset. And it is mainly used for publications.    

D: (LONGTERM) DATA STORAGE, ACCESS AND REUSE   

 PLEASE TICK THE APPROPRIATE BOXES Yes No 

10. I give permission for the de-identified data for in-air writing of digit/letters/gestures] that I 
provide to be archived in surfdrive repository so it can be used for future research and learning.  

☐ ☐ 

11. I understand that access to this repository is managed by the corresponding and responsible 
researchers and will be shared with the research community. 

☐ ☐ 

 
  

 
 

 
 
 
 

 
Signatures 

 
 
__________________________              _________________________ ________  
Name of participant [printed]  Signature   Date 

 
[Add legal representative, and/or amend text for assent where participants cannot give consent 
as applicable]                                       

 

I, as legal representative, have witnessed the accurate reading of the consent form with the 
potential participant and the individual has had the opportunity to ask questions. I confirm that 
the individual has given consent freely. 

 

__________________________             _______________________    _________ 

Name of witness          [printed]               Signature                                     Date 

I, as researcher, have accurately read out the information sheet to the potential participant and, 
to the best of my ability, ensured that the participant understands to what they are freely 
consenting. 

 

________________________  __________________         ________  

Researcher name [printed]  Signature                 Date 

 
Study contact details for further information:  [Name, phone number, email address] 

 
 
 

 
 

H Consent Form
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