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SUMMARY

In the contemporary aircraft design process, the design and integration of the various
(sub)systems is distributed over multiple organisations. This results in a distribution of
knowledge, where collaborations between organisations are required to effectively de-
sign one product. In the design process, the Original Equipment Manufacturer (OEM)
takes the central role of aircraft designer, who aims to deliver the best aircraft to suit mar-
ket demands. The process starts with the conceptual design phase, where OEMs wish to
identify feasible technologies for their new aircraft. To do so, they perform design space
exploration (DSE) using their own, typically lower-fidelity, design methods. When the
OEM is unable to assess a certain technology themselves, Tier-1 suppliers are consulted
to assist the OEM in their DSE. Currently, these consultations are done on a one-at-a-
time basis, preventing an in-depth exploration of the design space.

A closer collaboration would be beneficial for both the OEM and the supplier. The
OEM would then be able to achieve the goal of the collaboration faster, reducing lead
times of the design process. A supplier is able to consolidate their market position, by by
offering this service to the OEM, gaining an advantage over competitors.

However, a number of obstacles restrict such a collaboration in industry use. The
collaboration is often done ad-hoc and is unstructured. Licensing and IP regulations
prevent design tools from directly being shared. The suppliers design tools are often
higher-fidelity and computationally expensive to run. Furthermore, they often require
more input than the OEM has available in the conceptual design phase. This results in a
reliance on assumptions, often leading to iterations later in the design process.

Following this problem definition, the research question is formulated as: How can
a collaborative workflow between an OEM and a Tier-1 supplier be enabled and exploited
to enhance design space exploration in the conceptual design phase?

To answer the research question, certain research projects, such as AGILE, IDEaliSM,
and AGILE 4.0 are investigated. These research projects explored a closer than state-of-
the-art collaboration between aircraft organisations through enabling Multidisciplinary
Design Analysis and Optimisation (MDAO) workflows. In such workflows, computer
aided engineering (CAE) tools, such as Knowledge Based Engineering (KBE) applica-
tions, are used to optimally exploit interactions between several (coupled) disciplines.
Although the developed frameworks were successfully applied in R&D use cases, they
rely on all involved partners to collaborate with one another. Instead, the methodology
of this work revolves around a one-on-one collaboration between an OEM and a sup-
plier.

Taking inspiration from the aforementioned research projects, three methods to en-
able the cross-organisational (in)direct usage of design tools were identified. The first
of these technology sharing methods (TSMs) is for the supplier to share the results of a
design study, specified by the OEM, in a tabular form. Secondly, the supplier can train a
surrogate model (SM) that the OEM can use for their DSE. A surrogate model is an ana-
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lytical model able to predict a more expensive model, based on a collected data set and
an approximation function. The SM hides the underlying methodology of the suppliers
design tool. Moreover, they are significantly cheaper to evaluate than the original tool,
making them attractive to use in MDAO workflows. Lastly, the supplier can facilitate re-
mote access (RA) to the design tool. The OEM can then use the design tool by remotely
providing the input, and receiving the output remotely as well.

In addition, to reduce the lead times of design studies, front-loading principles are
applied. Front-loading was a fundamental aspect of IDEaliSM, and plays a key role in
DEFAINE, the research project in which this thesis is performed. Through front-loading,
the suppliers are able to perform preemptive design studies, reducing the required work
when an OEM issues a request. To apply front-loading to the DSE process, a database
was included, which can be filled when a project starts. Moreover, the database can be
exploited to support the DSE process. In this thesis, three types of post-processing were
proposed: visualisation to quickly identify trends in the data, sensitivity analysis (SA)
to assess the most influential parameters, and a complementary sampling (CS) strategy
to generate sampling plans that avoid already evaluated samples. The proposed com-
plementary sampling strategy relies on adaptive sampling methods used in surrogate
model training.

Using KE-chain as a basis and extending its functionalities with Python scripts where
necessary, the author implemented the framework in a collaborative environment. The
environment enables rapid instantiating of pre-configured workflow templates, stream-
lining the request for new design studies. Furthermore, the results from completed de-
sign studies are automatically collected and can be analysed in the environment.

The framework was applied to two cases. The first case, based on the SSBJ design
problem, was used to determine the feasibility of the three identified TSMs. As all meth-
ods resulted in errors below 4% when compared to direct usage of the design tool, all
methods were deemed technically feasible for the conceptual design phase. Further-
more, a CS grid generated using the proposed strategy, resulted in a more efficient explo-
ration of the design space in a follow-up study when compared to an ordinary sampling
method. Lastly, SA was successfully applied to identify the most influential parameter in
the problem.

The second case was a use case in DEFAINE, concerning the structural design of a
movable, and was used to showcase the framework to the DEFAINE consortium. The
consortiums feedback was gathered using a questionnaire, which revealed that RA is
considered infeasible in industry use due to strict IT policies. There was no unanimous
opinion on which of the other methods was preferable over the other, but IP regulations
were still mentioned as a major challenge to overcome in enabling closer collaborations.
However, the framework could also be envisioned inside of an organisation, implying
that its use is not limited to collaborative scenarios.

Overall, the framework was well received, but can be improved and expanded to in-
crease its benefit. Firstly, the methodology can be expanded to consider optimisation
workflows as well. Furthermore, the CS strategy can be improved to reduce clustering in
the new sampling plan. Lastly, a SA method that can assess both numerical and categori-
cal variables would greatly improve the benefit of SA in mixed-variable design problems.
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1
INTRODUCTION

The contemporary aircraft design process and manufacturing process is distributed over
multiple companies[1]. The many disciplines and various subsystems present in aircraft
make it economically unfeasible for one party to completely design and manufacture
an entire aircraft: the labour required and associated risk are too great. Central to the
design process is the Original Equipment Manufacturer (OEM), who aims to deliver air-
craft to best suit market demands. Based on a market research or customer requests, the
OEM specifies the top level aircraft requirements (TLARs) that will drive the design of
the new (fleet of) aircraft. It is the OEMs challenge to integrate the various components
and (sub)systems into one coherent design that meets the TLARs. To do so, the design
process starts with the conceptual design phase. Here, the best available design options
to meet the TLARs are sought out and identified, and if deemed viable, design space ex-
ploration (DSE) is performed: a set of design parameters is varied in order to study and
quantify the effects on the requirements, in order to find the optimal set of designs for
the aircraft (sub)systems. The collection of solutions of all systems present in the aircraft
forms the conceptual design, and the basis for the more detailed preliminary design.

The design space exploration is primarily done using the OEMs own design meth-
ods. These design tools are typically low-fidelity in nature, such as low level physics and
empirical methods. Such tools are used because they are quick to evaluate, can explore
a wide range of options, and depend only on basic high-level input. At some point, the
OEM may realise that their own design tools are inadequate for the current design prob-
lem. For instance, they may wish to explore novel technologies that cannot be analysed
using their own analysis tools. Another reason may be that they wish to increase the de-
tail of the design, and use a higher-fidelity method to verify the estimations made earlier
in the design process. In such cases, the OEM can consult potential Tier-1 suppliers to in-
volve them in the design process. The Tier-1 suppliers have higher-fidelity analysis tools
that are able to provide the knowledge that the OEM desires. However, higher-fidelity
tools often require more detailed input than is available in the conceptual design phase.
Moreover, they are computationally more expensive to run. Because of these character-
istics, these consultations are currently done on a one-at-a-time basis, where the OEM

1
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provides a single design to be evaluated by the supplier.

In the context of DSE, where the OEM considers a large number of options, this is
not an effective approach. The requirements on which the provided design is based may
change. This would then result in a design iteration, where the supplier is contacted
again to evaluate the updated design. Moreover, if the analysis tool requires more in-
put parameters than the OEM has available, the uncertainty in the unknown parameters
may render the results unusable. The consultations are then not worth the efforts, and
are not performed at all. Innovative concepts that can only be investigated using the
higher-fidelity are thus not properly assessed early on, and are often dismissed due to
their associated risks and uncertainties[2]. Correspondingly, the cost of implementing a
novel technology increases as the design matures, and more changes are needed to pro-
ceed with the implementation[3]. This is schematically visualised in Figure 1.1. This in-
creased cost may outweigh the benefits of switching design options, obstructing a more
optimised design. For this reason, a proper assessment of novel technologies early in the
design process is extremely beneficial.

Figure 1.1: The impact design decisions have is greatest early in the design process[3].

A closer collaboration has the potential to enable the usage of Tier-1 supplier tools
in the design space exploration. Such a collaboration would be favourable for both the
OEM and the supplier. By using the higher-fidelity design tools in the DSE, the OEM can
achieve a higher level of detail at an earlier stage. This prevents design iterations due
to incorrect assumptions, thereby shortening the project lead time. Furthermore, novel
technologies can be properly explored, allowing the OEM to make a more informed de-
sign choice. The supplier can also bring up newer technologies that the OEM is not yet
aware of, ensuring that the most novel technologies are considered in the design. Fi-
nally, by offering the service of performing DSE for OEMs, the supplier gains an edge
over competitors, strengthening their market position.

The concept of a closer collaboration between OEMs and their Tier-1 suppliers is not
new, and has been explored in recent research projects [4–6]. Despite these (successful)
efforts, such collaborations are not yet state-of-the-art. The aim of this thesis is to bridge
the gap between collaborations encountered in literature and the current state-of-the-
art. The scope is limited to design space exploration in the conceptual design phase,
because if successful, this collaboration could result in shorter project lead times as well
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as proper assessment of novel technologies. This in turn has the potential to improve
both the aircraft development process and resulting aircraft design. Furthermore, only
one interaction between a supplier and an OEM is considered. If successful, the OEM
can establish multiple of such interactions to enhance their design process. The research
question of this thesis can thus be formulated as:

How can a collaborative workflow between an OEM and a Tier-1 supplier be enabled and
exploited to enhance design space exploration in the conceptual design phase?

The research question can be divided into the following two sub-questions:

• How can a workflow where an OEM and a Tier-1 supplier collaboratively perform
design space exploration be enabled?

• How can the supplier provide the OEM with high quality data in a reduced lead
time?

In order to answer the posed questions, the report is divided into three parts. Part I
describes the current state of the art of collaborative workflows. This includes an overview
of recent research projects that explored a closer collaboration in aircraft design. Rele-
vant solutions found in these research projects are reused and applied in the methodol-
ogy proposed in this work. Part II describes the main deliverable of this work: a frame-
work to facilitate front-loaded collaboration in design space exploration. An implemen-
tation of the framework used in this thesis is also presented. Finally, Part III describes the
application of the proposed framework on two cases: a test case to simulate the effects
of different collaboration strategies, and a use case within the ongoing DEFAINE (Design
Exploration Framework based on AI for front-loaded Engineering)[7] project, to assess
the applicability of the framework to industry use. The part ends with the conclusion of
the thesis and recommendations for future work.





I
STATE OF THE ART

5





2
COLLABORATIVE WORKFLOWS

The first goal of this thesis is to enable a closer collaboration between the OEM and their
suppliers in the conceptual design phase. As mentioned in the introduction, the concept
of such a closer collaboration has been explored in recent research projects. This chapter
provides an overview of the hurdles encountered in cross-organisational collaborations,
how they have been mitigated in academic work, and how the solutions can be translated
to state-of-the-art industry.

One recent research project investigating a closer collaboration in the aerospace in-
dustry, was AGILE (Aircraft 3rd Generation MDO for Innovative Collaboration of Het-
erogeneous Teams of Experts)[4]. The goal of this project was to "achieve a significant
reduction in aircraft development costs through a more competitive supply chain able to
reduce the time to market of innovative aircraft products". The AGILE project was consid-
ered very successful and has received the ICAS Award for Innovation in Aeronautics, “for
outstanding and innovative contributions to the development of advanced aeronautical
systems”[8]. The AGILE project was succeeded by AGILE 4.0, which aimed to incorporate
the upstream aspects of systems engineering, such as requirement management and
certification, into the process[9, 10].

To identify the obstacles in setting up any collaborative workflow, a questionnaire
was performed at the start of the project[11]. The obstacles most relevant to this thesis
can be categorised as:

• Lack of formalised cross-organisational workflow.

• Protection of IP: limited tool availability/shielding of trade secrets.

• Incomplete or unclear input and output (I/O) definitions.

These hurdles, as well as the solutions provided, are described in the sections below.
This gives an overview of the existing solutions that were considered in this thesis.

7
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2.1. FORMALISING CROSS-ORGANISATIONAL WORKFLOWS
The AGILE project focused on setting up and executing collaborative MDAO workflows.
In Multidisciplinary Design Analysis and Optimisation (MDAO)[12] systems, disciplines
that have strong interactions with each other are strategically ordered and executed to
exploit these interactions. The methodology originated in the 1970s after numerical op-
timisation was performed on the structural design of a wing[13]. Due to the multidis-
ciplinary nature of aircraft design, MDAO is considered a powerful methodology in the
field. However, several technical and non-technical barriers have limited the adoption
of MDAO in industry use[14].

To perform a collaborative MDAO study, a framework was developed for setting up
a "3rd generation" MDO system[15], characterised by the distribution of not only the
analysis, but the complete discipline, including its specialists[16]. This framework was
described as the AGILE paradigm, and is visualised in Figure 2.1. Three levels in the
blueprint can be distinguished:

• At the lowest level, the design competences are present. These represent the indi-
vidual analyses and disciplines relevant to the design problem at hand. An exam-
ple of an analysis is the sizing of a wings primary structures, or the computation of
block fuel mass. The specialists involved are responsible for facilitating the analy-
sis and, together with the collaborative engineers, making the tools required in the
analysis available to the framework.

• In the design and optimisation layer, the MDAO workflow is formulated and even-
tually executed by the integrator. The integrator chooses a suitable MDAO archi-
tecture and specifies the execution order of the disciplines. Depending on the cho-
sen MDAO architecture, the workflow is enriched with a convergence loop or con-
sistency constraints[17].

• In the development process, the overall development process is defined by the
architect. This consists of defining the requirements, identifying the necessary
design competences to solve the problem, and bounding of the design space.

Another research project that explored a collaborative workflow, was IDEaliSM (In-
tegrated and Distributed Engineering Services framework for MDO)[5]. This project had
the goal to "drastically reduce the time-to-market and development cost of high-tech
structures and systems, by delivering a novel product development framework"[3]. The
proposed solution was an integrated and distributed framework, that allows different
parties to practice their disciplines remotely in a collaborative network. The framework
is schematically represented in Figure 2.2, and has the following structure[18]:

• The Engineering Language Workbench (ELW) is the environment which holds all
technical knowledge required to create or modify engineering services. It contains
the high level programming languages in which the engineering services are built,
and the specific domain knowledge. Together, these are used to create so called
engineering services, i.e. the customised tools to be used in the engineering prob-
lems. The ELW is used in the "build" phase, i.e. in preparation of future design
problems.
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Figure 2.1: The AGILE paradigm: a blueprint for collaborative MDO systems[4].

• The Engineering Library is the environment where the engineering services are
stored. Examples of engineering services are Knowledge Based Engineering (KBE)
applications, that enable the automation of certain engineering processes and
thus inclusion in MDAO workflows. It also holds a database of already existing
solutions and workflow templates. The EL is thus the central module that stores
the ingredients to be used in the generation of engineering solutions.

• The Advanced Integration Network is the environment where the design processes
are executed. Here, the engineering services and workflow templates are imported
from the Engineering Library, allowing them to be used by end-users. It consists
of several layers:

– The business process layer provides the interface that end-users will interact
with.

– The simulation process layer is invoked by the business process layer, and
executes MDAO workflows.

– The tool layer hosts all the tools that are used in the workflows.

– The execution infrastructure defines the physical location where the tools are
executed, such as local computer clusters or cloud-based services.

The methodologies for collaborative workflows proposed by these projects were for-
mulated with different intentions. Whereas AGILE focused on how to formulate and
execute a collaborative MDAO workflow, IDEaliSM directed its efforts towards prepar-
ing and (re)using standardised processes. Despite these differences, the methodologies
share some similarities as well. For instance, both methodologies rely on methods to
enable cross-organisational analysis tool usage, and on data standards to ensure consis-
tency. These elements are explored in more depth in the upcoming sections.
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Figure 2.2: The IDEaliSM Framework Architecture[19].

2.2. FACILITATING CROSS-ORGANISATIONAL TOOL USAGE
A commonality found in the research projects described above, is the distribution of dis-
ciplines across different organisations. In order to realise the collaborative workflows
using these disciplines, the required analysis tools must become available for users out-
side of the owned organisation. However, directly sharing the tool is not an option due to
Intellectual Property (IP) policies and/or licensing constraints. Analysis tools take con-
siderable resources to develop, and as such, are not readily shared. Furthermore, if any
proprietary software under a commercial license is used, the tool cannot be shared at all.

To facilitate the use of analysis tools across organisations, three methods were iden-
tified, henceforth called technology sharing methods (TSMs). Their principles are de-
scribed below in the context of this thesis, where an OEM requests the assistance of a
Tier-1 supplier for design space exploration. It is assumed here that the tool in the sup-
pliers possession is of higher-fidelity than the OEMs current methods, and takes more
computational time to run. The technologies used to enable these methods are de-
scribed in Chapter 4.

As these TSMs form a key aspect in enabling a collaborative workflow, it was chosen
to assess them in more depth. The goal of this assessment was to determine which (if
any) TSM is preferable over the others, and in what situation. The setup of the assess-
ment is part of the methodology of this work, presented in Chapter 5.

2.2.1. DIRECT SHARING OF RESULTS
The first strategy is to share a table of results of the analysis tool. This can be considered
the state-of-the-art consultations described in Chapter 1, where instead of only one de-
sign, a collection of designs is requested to be evaluated. In this method, the OEM and
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supplier formulate and agree on the design space to be explored, after which the sup-
plier executes the study and shares the results. The OEM can then use the data for their
design purposes. This strategy is straightforward to implement, since the results are sim-
ply collected from the analysis tool and shared in a tabular format. Sensitive information
generated by the analysis tool can be excluded from sharing, thereby respecting IP reg-
ulations. However, there are several limitations. The first is that this method cannot
straightforwardly be used in MDAO workflows. One of the key benefits of MDAO is the
ability to deal with coupled disciplines, where certain disciplines depend on each others
I/O, by means of a convergence loop. This can result in multiple calls to the involved dis-
ciplines even for evaluation of a single design. The waiting time due to back-and-forth
communication renders this method unfeasible for tools within convergence loops.

2.2.2. SHARING A SURROGATE MODEL

Another possibility is for the supplier to build a surrogate model (SM) of the analysis tool
and share it with the OEM. A surrogate model is an analytical model that can replace a
more complex model by modelling its outcome. Surrogate models can be classified in
two ways: physics-based and data driven[20]. The scope here is limited to data driven
surrogate models, because physical reduction is not always an option to replace a com-
plex analysis tool.

To create a data driven SM, also known as response surface model, a Design of Exper-
iments (DOE) must be set up to generate the data. After the data is generated, it can be
used to train and validate the SM. Several data fitting algorithms exist, such as polyno-
mial fitting, radial basis functions, or kriging[21]. Generally, data fitting algorithms can
be divided in two categories: interpolation and approximation[20]. The former method
ensures that the model fits the sampled points exactly, the latter method approximates
them as well as the space in between. Which data fitting algorithm is viable, depends
largely on the data and is not trivial. The choice of algorithm requires expertise and is
traditionally a manual process, although efforts have been made to automate the algo-
rithm selection[22, 23].

Several aspects make the use of surrogate models attractive in collaborative design
studies[24]. First and foremost, since a SM is essentially a black box that only models
the output, it allows suppliers to share the model without compromising the underlying
methodologies, thus respecting their IP[25]. Furthermore, a SM requires less computa-
tional time to run than the tool (or cluster of tools) that it models[20]. This is important
if the analysis tool is used in a convergence loop, and can be called multiple times in
analysing a single design. Additionally, SMs are only valid for the subset of the design
space explored in the DOE. The use of a SM is thus limited, preventing the model from
becoming a one-to-one copy of the original tool. The AGILE project proved that SMs can
be used as accurate substitutes in MDAO workflows while greatly saving on computa-
tional efforts[26]. Within the DEFAINE project, the Surrogate Advisory System (SAS)[23]
was developed to identify (clusters of) disciplines in an MDAO workflow to replace with
SMs, and train the models consecutively. Despite these recent developments and suc-
cessful applications, SMs are not yet widely used in the aerospace industry[21].
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2.2.3. OFFERING REMOTE ACCESS
A final strategy is to offer the OEM remote access to the design tool. By using a separate,
dedicated tool, the OEM can send a design specification as input to the suppliers analysis
tool. Then, the input is used by the tool, and the results of interest can be shared with the
OEM. This method keeps the analysis tool under control of the supplier, but still provides
a method for the OEM to interact with the tool. By facilitating remote access, the analysis
tool can be used freely by the OEM, and be included in automated workflows, although
the feasibility of this depends largely on the time required to run the design tool. Another
aspect to consider, is the way to facilitate the remote access. To enable remote access,
a dedicated data stream for the I/O should be enabled, possibly by installing certain
software for this purpose. This has to comply with the IT regulations of both the OEM
and the supplier.

2.3. INCOMPLETE DATA DEFINITIONS
Another hurdle encountered in collaborative workflows, is the presence of incomplete
or unclear data definitions. This can be mitigated by using a common data schema. By
agreeing on a common data schema, the parties formally confirm that they understand
the parameters involved in the analysis tool. Additionally, by adhering to a common data
schema, the number of interfaces between different tools can be drastically reduced.
This is useful if multiple analysis tools are used in the same workflow, as the maximum
number of interfaces reduces from N (N−1) to 2N [27], where N is the number of analysis
tools involved. In both AGILE and IDEaliSM, data schema’s/interfaces played a central
role in streamlining the collaboration, as their presence can be seen in both Figure 2.1
and 2.2.



3
REDUCING DESIGN LEAD TIMES

AND COSTS

The second goal of this thesis is to enable the supplier to provide the OEM with high
quality data in a reduced lead time. This is after all the motivation to establish such
a collaboration in the first place. This goal is partially achieved by setting up a more
streamlined collaboration as described in Chapter 2, in which the supplier enables us-
age of their analysis tool by the OEM. The tool can then be used to perform design space
exploration, to analyse designs with a higher level of detail and/or assess novel technolo-
gies that could not be explored with the OEMs own methods. If the higher level of detail is
already present in the design, this prevents iterations later in the design process, thereby
reducing the design lead times and costs. The ability to assess novel technologies allows
the technologies to be properly considered, enabling a better design choice.

However, the feasibility to explore the design space is limited if the tools are of higher-
fidelity. As stated in Chapter 1, such tools often require more comprehensive input than
is available in the conceptual design phase, and they take more time to run. This chapter
presents two methodologies to mitigate these issues.

3.1. FRONT-LOADING
Front-loading is defined as "a strategy that seeks to improve development performance by
shifting the identification and solving of (design) problems to earlier phases of a product
development process"[28]. Thomke and Fujimoto, who originally introduced the term,
describe two ways of applying front-loading: through project-to-project knowledge trans-
fer, and through rapid problem-solving. In their article, they illustrate these methods by
retrospective reports and computer-aided engineering (CAE) tools respectively.

Front-loading principles were a key aspect of the IDEaliSM project[5]. If design pro-
cesses are automated and MDO studies can be performed, such studies can also be per-
formed preemptively, before a project even starts. The results could then be stored in
a front-loaded database of pre-existing solutions, present in the Engineering Library in

13
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Figure 2.2. The effect of front-loading on a project lead time and design maturity is illus-
trated in Figure 3.1.

Figure 3.1: Front-loading enables a higher design maturity in shorter lead times[19].

The front-loaded principles successfully accelerated the use cases in the IDEaliSM
project. One use case showcased the design of a rudder within a month, where that level
of maturity would normally take 2 years[29]. Furthermore, a demonstrator performed in
2017 proved that it was possible to generate detailed designs of a rudder within 30 min-
utes[19]. Overall, the IDEaliSM framework resulted in a reported potential time savings
of 50% overall project time, with time reductions of up to 90% for individual tasks[19].
The reduction in time allowed for a more in depth exploration of the design space, in-
creasing the understanding of design choices, and ultimately lowering risk of the devel-
opment process.

3.2. SENSITIVITY ANALYSIS
When requesting a design from a supplier, the OEM may realise that the assessment
requires more input than they have available. The missing parameters can be estimated,
but this introduces a level of uncertainty, and typically obstructs the usage of such tools
until the required input is known. The effect of this uncertainty (per input parameter)
is determined by two factors: the magnitude of the uncertainty (i.e. how big the range
is in which the parameter is expected to be) and the sensitivity of the design to these
parameters (i.e. how much a change in the parameter changes the properties of the
design). These factors can be assessed using global uncertainty and sensitivity analysis
respectively[30]. The scope in this thesis is limited to sensitivity analysis, where it is
assumed that the uncertainty analysis has been performed, and the ranges, in which the
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uncertain parameters are expected to be, are known.
Sensitivity analysis (SA) can be defined as "The study of how uncertainty in the output

of a model (numerical or otherwise) can be apportioned to different sources of uncertainty
in the model input"[31]. SA thus provides a method to assess which parameters are most
sensitive to the design, i.e. which parameter affects the quantities of interest in the de-
sign the most. SA can be performed to identify the most influential input parameters
and prioritise them, or identify the least influential ones in order to exclude them from
the design problem[32]. In a recent master’s thesis, sensitivity analysis has been per-
formed to identify the least sensitive design variables in a design problem, and set them
constant. The simplified optimisation problem that followed was performed with a time
reduction of 40%, while the optimised value was only increased by less than 0.5%[33].

In the context of collaborative DSE, SA can be used to increase understanding of the
design space. This understanding can be used by the OEM to prioritise their engineering
efforts towards the most sensitive parameters. Moreover, the sensitivity information can
be used by both the OEM and the supplier to assess the criticality of their assumptions.
If the design turns out to be very sensitive to an assumed parameter, that assumption is
very critical to the design and it should a priority to verify this assumption.





4
ENABLING TECHNOLOGIES

During the previously described research projects, a variety of technologies was used to
enable the proposed methodologies. This chapter describes the technologies used, to
give an impression of the used solutions. Some of the technologies described below are
used in the current work as well.

4.1. COLLABORATION PLATFORM
In both AGILE and IDEaliSM, a collaboration platform played a key role in enabling the
collaborative workflow, the hosting of engineering services, and data storage. The collab-
oration platform used in these projects was KE-chain1, a web-based platform developed
by KE-works. With KE-chain, users are able to shape their collaborative work environ-
ment by managing user access, creating workflow templates, and configuring the stor-
age of data. These functionalities allow KE-chain to streamline business processes in a
variety of ways. For example, in AGILE, KE-chain acted as the central location that inte-
grated the experts and engineering services into a single environment[34]. The different
steps in the formulation of an MDAO workflow (such as specifying the available analy-
sis tools, defining design variables and objectives, choosing an MDAO architecture) can
be given separate interfaces, that can be linked in a so-called workflow template. Once
created, the template can be instantiated any number of times, reducing the setup time
for standardised processes significantly. The modules that actually enable these steps
(for instance, KADMOS to generate the specified workflow, see below) can be integrated
by making use of the Python library Pykechain2. This way, the users can interact with
these modules through KE-chain’s front-end, thereby acting as a graphical user interface
(GUI). The modules can either be hosted on KE-chain or, if the module is only avail-
able on a local machine, be linked to KE-chain through so-called KE-node software. The

1KE-chain engineering platform, KE-works, www.ke-chain.com, [Accessed 30/09/2023].
2KE-chain Python SDK, KE-works, https://pykechain.readthedocs.io/en/stable/, [Accessed

30/09/2023].
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module then becomes available as a remote service. KE-chain is also used as the collab-
oration environment in DEFAINE.

4.2. AUTOMATED WORKFLOW FORMULATION
The manual labour involved with formulating and implementing MDAO workflows was
traditionally a major barrier in using MDAO. To reduce this labour, several tools were
developed to assist in the setup of MDAO systems. The most relevant to this thesis is
KADMOS (Knowledge- and graph-based Agile Design for Multidisciplinary Optimization
System)[35], a Python library that is able to automatically formulate MDAO workflows,
and generate the associated graphs and workflows. It was developed by TU Delft as part
of the AGILE project, and is openly available3. The ’agility’ in the software’s name refers
to its ability to rapidly generate new workflows for different purposes. It is not only able
to create new optimisation workflows using a different convergence schema, but also to
formulate workflows with other goals in mind, such as DOEs and convergence schemes
on a single design point. It works in 4 different steps, each step associated with its own
graph:

1. The first step is to define all the design and analysis tools. The tools should all
conform to the same Central Data Schema (CDS). This results in the Repository
Connectivity Graph (RCG) where all tools, including their I/O, are visualised.

2. Then, the MDAO problem can be formulated by specifying the design variables,
objective function, constraints and quantities of interest. This results in the Fun-
damental Problem Graph (FPG) which contains only the tools from the RCG nec-
essary to solve the MDAO problem at hand, and highlights the roles of the relevant
functions and variables.

3. The next step is to choose the MDAO architecture. In this step, the FPG is expanded
with the necessary convergers, optimisers and consistency constraints. This re-
sults in the MDAO Data Graph (MDG).

4. Finally, the MDAO Process Graph can be generated. Here, the variable nodes of
the MDG are left out and the process order of execution are added.

Prior to KADMOS, InFoRMA was developed by TU Delft in IDEaliSM[36], a tool ca-
pable of automatically formalizing of MDAO workflows. InFoRMA also included capa-
bilities to advise the user on which MDO architecture to use, and included a method to
implement the workflow into Optimus (see Section 4.3.1), where the workflow can be ex-
ecuted. The author used the knowledge gained in the development of InFoRMA to assist
in the development of KADMOS. Furthermore, the development of InFoRMA revealed
the need for a neutral format to describe MDAO workflows, resulting in a prototype. In
AGILE, the neutral format was further elaborated by TU Delft into CMDOWS (see Section
4.4.2).

KADMOS is able to generate XDSM (eXtended Design Structure Matrix) diagrams,
which can be considered the standard for visualising MDAO systems[37]. To gener-
ate more interactive visualisation, the accompanying VISTOMS (VISualization TOol for

3Available at https://gitlab.tudelft.nl/lr-fpp-mdo/kadmos/

https://gitlab.tudelft.nl/lr-fpp-mdo/kadmos/
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MDO Systems)[38] tool can be used. VISTOMS is able to read CMDOWS files and visu-
alise them in various forms. The visualisation is done through an HTML page that is ac-
cessible by web browsers. This way, the visualisation is interactive, allowing for more de-
tailed investigation of the system than possible through static images generated by KAD-
MOS. This is especially valuable for large, complex MDAO systems with vast amounts of
disciplines and potentially hundreds or thousands of parameters. VISTOMS is able to
produce three types of diagrams: XDSM diagrams, Edge Bundling diagrams, and Sankey
diagrams.

Another tool that enables the automatic formulation of MDAO workflows is MDAx
(MDAO Workflow Design Accelerator)[39]. It was developed by DLR as a part of AGILE
4.0 (the successor to the AGILE project). Where KADMOS takes a graph-based approach,
MDAx relies on the XDSM representation to build the MDAO systems. MDAx includes
a GUI to interact with, whereas KADMOS is only available as a Python library. However,
MDAx is proprietary to DLR and not openly available.

4.3. WORKFLOW EXECUTION
The realisation of formulated workflows is handled by another set of technologies. The
tools described below facilitate the general execution of workflows, the training and val-
idation of surrogate models, and the ability to provide remote access.

4.3.1. PROCESS INTEGRATION AND DESIGN OPTIMISATION
Process Integration and Design Optimisation (PIDO) software enables the execution of
multidisciplinary workflows. Within the previously described research projects, two PIDO
implementations were used: RCE[40] and Optimus[41]. RCE (Remote Component En-
vironment) was developed by DLR and is open source4, while Optimus is developed by
Noesis Solutions and is available under a commercial licence. Both applications are ca-
pable of linking tools together into workflows, allowing for automated input delivery and
output extraction. This makes it possible to execute the MDAO workflows defined in
the previous steps. The tools also keep track of data and save it for inspection. While
RCE is capable of only executing the workflow, Optimus also has other functionalities
to help the user set up workflows for different purposes, implement different optimisa-
tion strategies, build surrogate models, etc. The generated workflows can be imported
in the CMDOWS format, relieving users from the burden of having to manually config-
ure them. For both RCE and Optimus, extensions have been developed to perform this
conversion[42].

4.3.2. SURROGATE MODELLING
The usage of surrogate models played an important role in AGILE, both as a means to
shorten the execution time of MDAO workflows and to facilitate cross-organisational
usage of analysis tools. To this end, the Surrogate Modelling Repository (SMR)[26] was
developed by NLR[24]. It handles the creation, deployment, and sharing of surrogate
models. The SMR is proprietary to NLR and not openly available.

Within DEFAINE, the Surrogate Advisory System (SAS)[23] was developed to reduce

4Available at https://rcenvironment.de/pages/download.html [Accessed 26-10-2023]

https://rcenvironment.de/pages/download.html
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Figure 4.1: Illustration of a remote access workflow using BRICS. The steps taken at the numbered arrows are
briefly described in the text below.[10]

the efforts in training and using surrogate models in MDAO workflows. SAS is able to
identify disciplines (or groups of disciplines) within a provided workflow suitable for re-
placement with a surrogate model. SAS also handles the subsequent training, validation,
and implementation of the surrogate models. SAS uses KADMOS for the substitution of
the surrogate model into the workflow. For the training of the surrogate models, SAS
makes use of the open source Surrogate Modelling Toolbox (SMT)[43]. The SMT is avail-
able as a Python library and facilitates the training of several types of surrogate models.
Since the release of SMT 2.0 in May 2023, the SMT also includes capabilities to handle
hierarchical variables and mixed-integer design problems, where both continuous and
discrete variables are present.

4.3.3. REMOTE ACCESS

To enable the execution of a cross-organisational distributed workflow, remote access
has been used. In remote access, a dedicated tool sends the input to a remote disci-
pline. The analysis tool then reads the input, executes the analysis, and returns the out-
put via the remote access tool as well. In AGILE, BRICS[44] was developed by NLR to
fulfill this role. BRICS aims to streamline cross-organisational collaborative engineer-
ing work, which is typically prevented by IP and IT security policies. By only sharing the
I/O, the tools and their underlying methodologies are not shared between organisations,
thereby enabling the cross-organisational workflow. Figure 4.1 illustrates how BRICS can
be used to enable remote access. As can be seen, on the client side BRICS sends the input
files to a central data server, and notifies the remote specialist. The specialist retrieves
the input on the server side, starts the analysis, and uploads the output once the analysis
is complete. BRICS can however be configured to automatically execute the tool once
input is received, without the specialist manually starting the analysis[10]. This is ben-
eficial in a distributed MDAO workflow, where the tool may be called numerous times.
BRICS is proprietary to NLR and not openly available.
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4.4. COMMON DATA STANDARDS
To mitigate the issue of incomplete or unclear data definitions, and reduce the number
of interfaces between different applications, several common data standards have been
proposed.

4.4.1. PRODUCT DEFINITION: CPACS
CPACS (Common Parametric Aircraft Configuration Schema) is an XML-based data schema
capable of describing an entire (fleet of) aircraft. It was introduced in 2012 by DLR[45]
and is still undergoing recent developments[27]. Using the tree-like structure of XML,
CPACS offers an organised way of describing an aircraft at all its levels. For example, in
the wing element, which is a child of the aircraft element, the wing parameters such as
root chord, tip chord, leading edge sweep and span can be defined. Airfoils can also be
defined as a set of x and y coordinates. Other non-physical attributes, like flight condi-
tions, can also be stored in the CPACS format. To support the use of CPACS, several other
tools have been developed by DLR, such as TiGL[46] (an application that generates a 3D
geometry based on the CPACS file) and CPACS Creator[47], which facilitates the creation
and modification of CPACS aircraft representations through a graphical interface.

4.4.2. WORKFLOW DEFINITION: CMDOWS
CMDOWS (Common MDO Workflow Schema)[14] is another XML-based convention,
able to describe MDAO workflows. The development of InFoRMA revealed the need for
a neutral format to fulfill this function, resulting in a prototype. In AGILE, the neutral
format was further elaborated by TU Delft into CMDOWS. The data standard serves pur-
poses: to standardise the definition of MDAO workflows for convenient storage and re-
trieval, and to facilitate automatic translation to other applications, such as Process Inte-
gration and Design Optimisation (PIDO) software. The CMDOWS format is able to store
every component of an MDAO workflow, including the analysis tools and their respective
input/output (I/O), convergers, optimisers, and the coordinator.
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5
A METHODOLOGY FOR

COLLABORATIVE FRONT-LOADED

DESIGN SPACE EXPLORATION

In Part I, the state-of-the-art of collaborative workflows was discussed. Recent research
projects such as AGILE and IDEaliSM investigated a collaboration closer than the cur-
rent industry use. The reseach projects resulted in novel frameworks facilitating a closer
collaboration between aircraft organisations, as well as technologies that enabled the
frameworks. The frameworks were successfully applied to industrial R&D use cases and
generally regarded as beneficial compared to the status quo of collaboration.

Despite the benefits of these collaborative workflows, the frameworks are not directly
applicable to industry use. While effective, the described multi-organisational workflows
require all involved partners to collaborate with each other. In the industry, it is more
conventional for the OEM to take the role of the central designer and engage in one-
on-one collaborations with their suppliers. Furthermore, the workflows were applied
in R&D context, where exceptions can be made to IP and IT regulations to enable the
specific data streams[19]. This means that the demonstrated workflows are not straight-
forwardly applicable to regular industry use.

As mentioned in the introduction, the aim of this thesis is to bridge the gap be-
tween the previously investigated collaborations encountered in literature, and current
industry use. This chapter presents the proposed methodology of this work. To adhere
closely to the state-of-the-art in industry, the methodology is aimed at a one-on-one col-
laboration between an OEM and a supplier. The methodology draws inspiration from
the aforementioned research projects to enable and streamline this collaboration, ul-
timately to achieve the goal of this collaboration (e.g. a proper assessment of a novel
technology or a higher detailed design) in a reduced lead time. Key insights gained from
literature are applied in the following ways:

• A central data schema has proven to prevent the input/output (I/O) from being
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incomplete or unclear. Moreover, a central data schema reduces the number of in-
terfaces between applications, thereby enabling a more scalable exchange of data
across multiple stakeholders. Although the methodology is intended for a one-on-
one collaboration, the OEM may wish to set up multiple of such collaborations.
Finally, data consistency is also an important factor to consider when reusing data
from past projects. For these reasons, a central data schema will be used in the
methodology.

• Taking inspiration from AGILE and IDEaliSM, the methodology explores a one-
on-one collaboration between an OEM and a supplier. In this scenario, the OEM
wishes to leverage the suppliers design tools for their DSE purposes. To facilitate
this cross-organisational tool usage, three methods, describe in Section 2.2 were
identified in the aforementioned research projects: sharing tabular data directly,
sharing a surrogate model, and providing remote access. Section 5.1 applies these
methods to a collaborative DSE workflow, and discusses their implications on ex-
isting workflows of the OEM. To do so, a general DSE workflow is first described,
where DSE is performed in the form of one or more DOEs.

• In IDEaliSM, front-loaded principles were successfully applied to reduce the lead
times and costs of design studies. The methodology will prescribe how these prin-
ciples can be used to support the DSE process. To do so, Section 5.2 describes how
the collaborative DSE process can be expanded with front-loaded principles.

The chapter ends with Section 5.3, where an overview of the proposed framework for
collaborative front-loaded design space exploration is presented.

5.1. COLLABORATIVE DESIGN SPACE EXPLORATION
The design space exploration process is initiated by the OEM during the conceptual de-
sign phase, to find a collection of feasible designs, so that an informed design choice can
be made. In DSE, designs are generated by systematically varying parameters of interest.
In the modern engineering environment, this is done using Computer Aided Engineer-
ing (CAE), where the designs are modelled and assessed using computer applications.
Efforts are often directed towards a design space of interest using optimising methods,
because an exhaustive search of the design space is often not feasible[48]. However,
optimising an unknown design problem is not a trivial task either, and can bring great
difficulties if done incorrectly. For example, the choice of optimisation algorithm may
depend on the behaviour of the model, and if the number of input parameters is great,
it can be challenging to choose the right design variables to optimise for. Instead, to ini-
tially scout the design space, it is more feasible to use a Design of Experiments (DOE),
where a predefined sampling plan is followed to generate the data. Moreover, the sup-
plier may not wish to facilitate an optimisation workflow, where the number of itera-
tions is not known beforehand. Therefore, DOEs are assumed for the remainder of this
methodology.

Section 5.1.1 briefly describes the steps taken in a DOE. The workflow presented here
will be used as a basis for the rest of this methodology. Section 5.1.2 then discusses how
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this workflow is modified when applying the technology sharing methods (TSMs) de-
scribed in Section 2.2, and how the work is shared between the OEM and the supplier.

5.1.1. A GENERAL DOE WORKFLOW
To understand how a collaborative DSE in the form of DOEs can be enabled, one must
first be aware of the steps taken in a DOE in general. Figure 5.1 shows a general workflow
for perforing DSE using DOEs. The steps can be further described as follows:

• Define problem
The first step is to determine what the overall goal of the DSE is, i.e. what knowl-
edge the DSE should deliver. An example is to find the effect of material choices
of an aircraft component on its mass and cost. Here, the material choices are the
design variables, and the mass and costs the quantities of interests (QOI’s).

• Identify design space of interest
With the problem defined, the design space of interest can now be specified. The
design space to be explored can be defined by the design variables and their bounds
or possible values. Bounds are used to limit the design space of numerical vari-
ables, whereas the design space of categorical and ordinal variables is defined by
their possible values.

• Create sampling plan
To populate the design space of interest, a sampling plan can be generated. In a
sampling plan, design points are intelligently chosen, such that the gained knowl-
edge is maximised for the number of experiments. The sampling plan depends on
the the chosen sampling strategy (such as factorial design, random sampling, or
Latin Hypercube Sampling[49]), and the number of samples to be evaluated. The
number of samples is typically driven by a time or budget constraint.

• Execute design study
The design points in the sampling plan are evaluated using an analysis workflow.
The workflow consists of one or more analysis tools. Examples of analysis tools
are aerodynamic or structural solvers. To reduce analysis setup times and prevent
human errors, such workflows are typically automated as much as possible.

• Evaluate results
Finally, the results of the design study are evaluated. If the results are sufficient for
the OEM to perform their technology assessment, the goal of the DSE is achieved.
Otherwise, an iteration may be necessary. In an iteration, the OEM may wish to ex-
plore a new section of the design space, or explore an already investigated section
in more depth.

5.1.2. TECHNOLOGY SHARING METHODS
To enable usage the suppliers design tool into the OEMs workflow, a technology sharing
method (TSM) must be chosen. The three identified TSMs, namely sharing tabular data
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Figure 5.1: The steps taken in design space exploration using DOEs.

directly, sharing a surrogate model, and providing remote access, were described in Sec-
tion 2.2. These methods (partially) enable a collaboration, but impact the way in which
the design tool can be integrated into the OEMs workflow. Following the three identified
TSMs, the process can be distributed between the OEM and the supplier in the following
manners.

SHARING TABULAR RESULTS OF THE DATA

In the first method, the results of the design study are shared directly with the OEM. In
such a case, the OEM specifies the design space they wish to explore to the supplier.
Depending on preference of the involved parties, the sampling plan can be provided by
the OEM, or generated by the supplier based on the requested design space of interest.
Once the sampling plan is made available to the supplier, the DOE can be executed, after
which the results are shared with the OEM.

Figure 5.2: A collaborative DSE where the results are shared in tabular form.

SHARING A SURROGATE MODEL

Alternatively, the OEM and supplier could agree upon the creation of a surrogate model,
that models a certain subset of the design space with an agreed upon level of accuracy.
After completing the design space definition with additional assumptions, the supplier
can then perform the DOE (or DOE’s) to gather the required training data to build the
SM. Once the SM becomes available, it can directly be integrated into the workflow of
the OEM. The model then be freely1 used by the OEM to use in their workflow.

PROVIDING REMOTE ACCESS

Finally, remote access can be used to facilitated cross-organisational tool usage. The
OEM and supplier agree on a dedicated method to facilitate remote use of the supplier

1Depending on the agreement made with the supplier: the model can be offered as a service, where the OEM
is charged for the number of times the SM is invoked.
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Figure 5.3: A collaborative DSE where a surrogate model is built by the supplier and shared with the OEM.

tool. Once remote access is established, the design tool can be straightforwardly be used
for their design studies.

Figure 5.4: A collaborative DSE where remote access enables direct usage of the supplier owned tool by the
OEM.

IMPLICATIONS ON EXISTING WORKFLOWS

Given the emergence of MDAO workflows, it is important to consider the effects of the
TSMs on an existing workflow.

• In case of sharing tabular data, the supplier is provided with a sampling plan to
evaluate. The design tool evaluates the samples, and the numerical results are
provided back to the OEM. The singular exchange of data renders the use of a con-
vergence loop, if present, infeasible, due to the required waiting time between the
request and availability of the results. The OEM can pre-process the input with
their own analysis modules, before submitting the sampling grid to the supplier.
Alternatively, the output of the supplier can be post-processed, depending on the
order of operations in the workflow. Whichever option is chosen, the omitting
of the convergence loop introduces a certain discrepancy in the results, since the
data no longer consistent.

• In case of sharing a surrogate model, the supplier provides the OEM with a SM that
can be implemented in the OEMs workflow. Once trained, the SM can directly be
integrated into the workflow of the OEM. The SM is only valid in the design space
of its training data, and is possibly subject to a set of limitations. The OEM should
be made aware of these limitations to prevent misuse of the SM. However, even
with correct usage, it can be reasonably assumed that for a given sample outside
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of the training data, the SM will not result in the same value as the original design
tool, thereby resulting a certain error.

• In case of remote access, the workflow is expanded with two actions, namely the
sending of input to the supplier and the fetching of the output once ready. How-
ever, since these actions are always and only called when the suppliers tool is
called, they can simply be integrated into the suppliers discipline. Assuming the
sending and fetching of I/O can be automated, remote access has no effect on an
existing workflow. This TSM can thus be considered virtually identical to owning
the tool itself, in terms of effects on workflows.

As can be seen, the third scenario results in an workflow identical to the scenario
where the OEM actually owns the tool, and therefore yields the highest level of accuracy
possible. The other use cases might introduce a certain error through their implemen-
tation. To assess the magnitude of these errors, a test case was developed, involving an
aircraft design scenario. This test case and the corresponding results are presented in
Section 7.2.

5.2. APPLYING FRONT-LOADING PRINCIPLES
To enable the reduction of design study lead times and costs, the application of front-
loaded principles is proposed. Section 3.1 presented the front-loading aspects used in
the IDEaliSM project and the benefits it yielded. Front-loading will be applied in a sim-
ilar way to support design space exploration. Section 5.2.1 describes how front-loaded
principles can be enabled by involving a database in the collaborative DSE workflow.
Section 5.2.2 proposes several post-processing methods to further assist the DSE pro-
cess.

5.2.1. INCLUSION OF A DATABASE

To enable the re-use of design study results, the DSE process visualised in Figure 5.1
is expanded with a database. Past results can be stored in the database at the start of a
collaborative design study, thereby kick-starting the process. Such a process is visualised
by the flowchart in Figure 5.5. The database can then be used to enhance the design
space exploration process in several ways. The first way, is to search the database for
feasible designs. If an adequate design is already present, it can be directly retrieved,
without performing new studies. The database can also be used in the generation of new
sampling plans, ensuring that new design studies take existing data into account and
shifting efforts towards unexplored sections of the design space. The proposed methods
to support the inspection of the database and its use in sampling plan generation are
described in Section 5.2.2.

The inclusion of a database, in which results from past design studies can be stored,
enables suppliers to perform design studies preemptively, without a specific request at
hand. When an OEM requests a design study, the results can then directly be used,
thereby lowering their lead times of such studies and shortening the suppliers response
time. This way, the supplier front-loads the design study and gains an edge over com-
petitors by being able to help the OEM in a reduced lead time. For the OEM, this results
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Figure 5.5: The inclusion of a database to the design space exploration process.

in a reduced lead time in their design study as well. Figure 5.6 illustrates how the supplier
can perform a preemptive design study, and how this reduces the number of steps taken
once the OEM issues a request. This method is only applicable to the sharing of data and
surrogate models, since the facilitation of remote access cannot be front-loaded in this
way.

(a) A front-loaded DSE process where a supplier shares tabular data with the OEM.

(b) A front-loaded DSE process where a supplier shares a pre-built surrogate model with the OEM.

Figure 5.6: Methods for a supplier to front-load future design studies by performing preemptive design studies.

The scenarios illustrated in Figure 5.6 are idealised, assuming that the supplier has
exactly what the OEM is looking for. Nevertheless, if the preemptive design studies result
in a subset of the required data, the effort in the design study at hand is reduced.

These preemptive design studies are possible due to the current under-utilisation of
existing resources (e.g. computational hardware and software licenses (if any)) involved
in the execution of the design tool. If currently the design tool is only used for design
studies at hand, there are likely some periods in which the design tool is not used. These
periods can be utilised to explore a design space that has a high potential to be inter-
esting for future customers. Considering that such design studies use existing resources,
these design studies should be able to be performed at a minimal cost.
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5.2.2. EXPLOITING THE DATABASE FOR DESIGN SPACE EXPLORATION
The inclusion of a front-loaded database can reduce the workload of design studies if
any relevant data is already present in the database. However, the data can also be used
in other ways to support the DSE process. In this thesis, three types of analysis or post-
processing are proposed: visualisation, complementary sampling, and sensitivity analy-
sis.

VISUALISATION

An intuitive way to quickly identify trends in data, is through visual representation. Com-
mon visualisations such as scatter plots and line graphs are useful methods to do so.
However, these methods can only visualise a handful of variables at a time, whereas in-
dustrial design problems often contain a much larger number of variables. Moreover,
design problems often contain categorical variables, that only take discrete values and
are difficult to represent in conventional graphs. In a scatter plot, for instance, categor-
ical values can be represented through the colors and shapes of the data points. If any
other variables are present in the data, they cannot be visualised, meaning that the visu-
alisation does not give a complete overview of the data. For these reasons, only certain
types of plots were considered for the generic visualisation of data.

The first type is the parallel coordinate plot. In a parallel coordinate plot, several axes
are placed parallel next to each other, where each axis represents a dimension. Samples
can be represented as lines that cross these axes, where each intersection represents the
value of that dimension for that sample. Ticks can be used to indicate the values of the
parameters, for both numerical and categorical parameters. This method thus allows for
rapid visualisation of higher dimensional, mixed data. A parallel plot generated during
AGILE is presented in Figure 6.6.

Figure 5.7: A parallel plot generated in AGILE, based on an optimisation study. Here, the colors indicate the
iteration number, revealing the progression of the parameters from the initial values to the optimised ones[50].

Another plot type able to visualise multiple dimensions, is the scatterplot matrix.
In this plot, the dimensions of the dataset are systematically visualised in scatterplots
next to each other in a matrix. The units and the scale of the dimensions are shown
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along the edges of the matrix. Furthermore, a categorical variable can be used to classify
the data according to that variable. The plots along the diagonal of the matrix show a
frequency plot of the different classifications. This plot provides an more intuitive way to
identify direct interactions between two variables compared to the parallel coordinates
plot. However, only one categorical variable can be visualised at a time, possibly not
giving a complete overview of the dataset. A scatterplot matrix generated in this work is
shown below in Figure 5.8.

Figure 5.8: A scatterplot matrix based on the movable design case (see Section 6.1).

COMPLEMENTARY SAMPLING

When performing a new design study, the goal is to maximise the knowledge gained
from that study. If no data is available in the design space of interest, a DOE can be set
up straightforwardly. However, if past results are already present in the design space of
interest, these samples should be avoided in future sampling plans, and efforts should
instead be directed towards exploring the design space that remains unknown, or to-
wards a subset of the design space that seems particularly promising. In order to assist
in this process, a complementary sampling (CS) strategy can be used.

The CS strategies proposed in this work make use of adaptive sampling methods.
Adaptive sampling refers to a collection of sampling methods that take already available
samples into account[51]. Such methods are typically used in the creation of surrogate
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models. In such cases, an initial sampling plan is created using a fraction of the total
sampling budget (typically 10% of the total budget). After the initial samples are anal-
ysed by the tool to be modelled, a SM is built and used to find the sample with the great-
est so-called refinement criterion (RC). The RC is a metric of how valuable that sample
is to include in the training data. Different adaptive sampling methods have different
definitions for the RC, resulting in different characteristics; for example, some sampling
methods have more exploring characteristics, meaning they aim to lower the overall un-
certainty of the selected design space, whereas others have more exploiting characteris-
tics, where the new samples are placed near optima in the model output. The adaptive
sampling method (and corresponding RC) should thus be chosen to suit the purpose of
the SM.

After the sample with the greatest RC is found, the sample is analysed by the tool, and
the results are added to the training data. A new SM is then built and the process iterates
until the budget is met. This way, the sampling plan adapts to the result of present data,
and this typically results in more accurate SMs for the same number of training samples
compared to conventional sampling methods.

In the case of a collaborative DSE, where sampling plans are evaluated by another
party, it may not be feasible to take this iterative approach due to the frequent back-
and-forth communication required. In this case, it is more convenient to create a fixed
sampling plan to be evaluated in the new DOE. In this work, the following strategy is
proposed:

1. Train a surrogate model based on the existing data.

2. Choose the number of samples in the new sampling plan. Let this number be n.

3. Choose an adaptive sampling method and the corresponding RC.

4. Generate a sampling plan of m samples using an ordinary sampling technique,
such as LHS.

5. Evaluate the RC of the m samples using the SM.

6. Select the n samples with the highest RC. This is now the new sampling plan for
the new DOE.

Although the strategy makes use of adaptive sampling methods, the sampling plan
does not adapt in any way. Instead, it is chosen in such a way that it should comple-
ment the existing database the best, and therefore the term complementary sampling
was chosen for this strategy.

The adaptive sampling methods considered in this research are:

• Variance-based sampling
A simple method to improve the accuracy of a SM, is to identify the regions with
the greatest variance. These are, by definition, the regions with the greatest un-
certainty. Variances are readily retrieved from Kriging models[51], meaning this
method can straightforwardly be implemented. The RC is shown in Equation 5.1

RCvar (x) =σ2
Ŷ

(x) (5.1)
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where σ2
Ŷ

(x) is the variance of a sample x, retrieved from the surrogate model.

• Expected Improvement for Global Fit
Another method is the so-called Expected Improvement for Global Fit (EIGF) method.
This method is an adaptation of the Expected Improvement (EI) method[52], which
determines the expected improvement in finding the minima of the output. EIGF
is adapted from EI to have the surrogate model accurately describe the entire do-
main, rather than only finding the minima. EIGF considers both the variance
and the difference in output value with the nearest training sample. This way,
the method has both exploring and exploiting characteristics. The RC is shown
in Equation 5.2.

RCE IGF (x) = (
M̂ (x)− y(x⋆)

)2 +σ2
Ŷ

(x) (5.2)

where M̂ (x) is the SM evaluation of a sample x, and y(x⋆) is the value of the nearest
training sample. σ2

Ŷ
(x) is again the variance of a sample x.

The proposed CS strategy can be useful when the OEM and supplier exchange data in
the form of tabular data. The OEM can then generate a sampling plan using this strategy,
and send it to the supplier to evaluate. If the chosen technology TSM is the sharing of
surrogate models, this strategy is less useful. Instead, the supplier can locally use the
adaptive sampling methods and iterate whenever a new sample is added to the training
data. This updates the surrogate model more frequently, and should thus result in a
more accurate surrogate model. In case remote access is chosen as the TSM, the OEM
can use adaptive sampling by evaluating individual samples, and using the data to train
their own surrogate model.

SENSITIVITY ANALYSIS

As a final analysis method, sensitivity analysis (SA) is proposed. SA can be used for a
variety of reasons. For instance, the OEM may wish to simplify the design problem, and
exclude the least influential design parameters. Another example, is that either the OEM
or supplier (or both) has made certain assumptions to complete a design definition, in
order to use the higher-fidelity analysis tool. SA can then be used to assess the impact of
these assumptions.

There are a variety of SA methods that can be used to perform SA. However, some
methods require a specific sampling plan to be executed. For example, in the Morris
method[53], parameters are varied one-at-a-time around a certain starting value. To fit
the front-loaded methodology, only SA methods that do not require a specific sampling
were considered. This way, the SA can be performed regardless of the sampling plan
present in the database.

The following methods of sensitivity analysis were considered:

1. Sobol analysis
The Sobol method[54] is one of the most widespread methods for global SA. In
Sobol analysis, a function is decomposed into its principal components, mean-
ing every contribution to the function is modelled separately. This decomposition
allows the variance of the function to be decoupled as well. The relative contribu-
tions of these decomposed variances to the overall variance are expressed by the
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Sobol indices. The total Sobol indices[55] sum the contributions of one variable
and its interactions with other variables.

By considering the analysis tool as a black-box function, the Sobol indices can be
determined numerically. To do so, a DOE is performed to sample the function
and obtain the data. For the DOE, any random sampling method can be used, al-
though it is recommended to use a pseudo-random sampling method such as the
Sobol sampling method[56]. This method makes use of Sobol sequences and re-
sult in a sampling plan with a lower discrepancy than if pure random sampling was
used[57]. In turn, this results in a faster convergence of the Sobol indices to their
true values compared to other random methods[58]. Nevertheless, this means that
Sobol analysis can done on any dataset.

Aside from the Sobol indices, estimators can be used to determine the confidence
interval of the sensitivity indices[58]. This can help to determine if the calculated
sensitivity index is reliable enough, or if a larger sampling plan is required (the
confidence interval reduces with sample size).

2. High Dimensionsal Model Representation
A known limitation of the Sobol method, is the high computational demands re-
quired to be accurate[59]. Therefore, a method known as High Dimensional Model
Representation (HDMR) was considered[60]. HDMR is a surrogate modelling tech-
nique where, like Sobol analysis, a function is decomposed into its principal com-
ponents. However, this method can also be used to estimate sensitivity indices.
The use of the surrogate models promises accurate results even with a relatively
low number of samples. Moreover, HDMR can be used on any data set regardless
of the sampling plan used.

3. Statistical power analysis
The methods presented above are only applicable to continuous, numerical vari-
ables. Therefore, these methods are not applicable to categorical variables. To as-
sess the effect of these variables, statistical power analysis can be used[61]. In sta-
tistical power analysis, the data set of size n is divided into k subsets based on the
chosen categorical variable. For example, if the categorical variable has 5 possible
values, 5 subsets are created. A statistical test can then be performed to determine
the likelihood that a given categorical level has a different mean than the global
mean, and thus significantly affects the design. Because this is a likelihood, this
method cannot be used to quantify the influence of variables against one another.
Nevertheless, it still provides a way to rank variables.

5.3. FRAMEWORK OVERVIEW
To implement the methodology described above, a framework was developed. The frame-
work provides a guide on how to enable the collaboration and apply the front-loaded
principles, as described above. This section gives a high-level overview of the framework
and its components. The usage of the framework can roughly be categorised in three
phases: the Build, Operate and Analyse phases. A general overview of the framework is
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presented in Figure 5.9. The steps taken throughout the different phases are described
in more depth in the sections below.

Figure 5.9: An overview of the proposed framework for collaborative front-loaded design space exploration.

5.3.1. BUILD
In the Build phase, the OEM and supplier perform the preparatory work to streamline
the DSE process. An overview of the steps taken in this phase is shown in Figure 5.10.
The steps can be described as follows:

• The OEM and supplier agree upon a central data schema to assure that the OEM
and supplier are aware of the complete data definition used in the interaction.
Moreover, the common data schema ensures consistency of the data across dif-
ferent design studies, which allows them to be combined in the (front-loaded)
database.

• The OEM and supplier agree upon a technology sharing method to enable the col-
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laboration. Once decided, the supplier prepares the design tool for usage following
the agreed upon TSM. If necessary, integration with the collaborative framework
is also configured.

• The OEM and supplier create the design study workflow templates. The templates
prescribe the steps taken in a particular type design study and can be instantiated
later, thereby minimising setup time of new design studies. For each type of design
study, a template can be created. For example, in one template, the OEM can gen-
erate the sampling plan themselves, whereas in another template, the OEM only
specifies the design space of interest, and leaves the generation of the sampling
plan to the supplier. How the workflow templates are specifically designed, de-
pends, among other considerations, on the goals of the design study, the chosen
TSM, and the design tool to be used in the collaboration.

• The analysis types to be used on the database should also be configured in this
phase. As the analysis of the results could benefit both the OEM and the supplier,
both parties can configure the analysis types they deem useful.

Figure 5.10: An overview of steps taken in the Build phase.

5.3.2. OPERATE
In the Operate phase, the design studies are requested by the OEM and executed by the
supplier. This is schematically presented in Figure 5.11. By instantiating the existing
templates, the OEM can issue a request for a new design study to be executed by the
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supplier. The supplier executes the design study using their design tool and prepares the
data for sharing. Every template ends with the storage of results, which follow the pre-
defined data schema. This ensures that the data is consistent, and enables combination
of the data in the front-loaded database.

Figure 5.11: An overview of the steps taken in the Operate phase.

5.3.3. ANALYSE

In the Analyse phase, the results of the design studies performed so far are collected
and can be analysed. An overview of this phase is shown in Figure 5.12 The data can
be analysed using the configured analysis types. In this thesis, three analysis types are
proposed:

• Visualisation provides a quick overview of the current data present.

• Sensitivity analysis helps determine the most sensitive variables present in the de-
sign problem.

• Complementary sampling generates a new sampling plan to maximise the knowl-
edge gained in a new design study.
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Both the OEM and the supplier can utilise the analysis methods to support their tech-
nology assessment or design studies.

Figure 5.12: An overview of the steps taken in the Analyse phase.



6
IMPLEMENTATION

This chapter presents an implementation of the proposed framework, described in Sec-
tion 5.3, used in this thesis. The implementation was realised by creating a collaborative
environment using KE-chain, the collaboration platform previously described in Section
4.1. The implementation was tailored towards a use case within the ongoing DEFAINE
project[7] concerning the structural design of an aileron. A description of this use case is
given in Section 6.1. Then, the implementation of the framework for collaborative front-
loaded design space exploration is presented. The environment was built using the di-
rect sharing of data in tabular form as the chosen technology sharing method. This TSM
was chosen due to the preferences of the involved parties, as well as the straightforward
ability to reuse available data, thereby front-loading the DSE process.

The Build, Operate and Analyse phases are discussed in Section 6.2, 6.3, and 6.3. How
the other TSMs can be realised in a KE-chain environment, is described in Section 6.5.

6.1. CASE DESCRIPTION
The implementation revolves around the design of an aircraft movable, where SAAB acts
as the OEM designing a UAV and GKN Fokker Aerostructures as the Tier 1 supplier of
movables. The OEM reaches out to the supplier because they wish to consider novel ma-
terials such as composites, which they cannot evaluate using their own in-house design
tools. The supplier is thus asked to design a set of movables for some outer dimensions
and aerodynamic loading. The quantities of interest the OEM wishes to know are the
mass, total cost and structural integrity of the movable.

The design variables in this problem are high-level structural variables, such as num-
ber of ribs and choice of material. These parameters drive certain lower-level parame-
ters: the number of ribs, for instance, divides the skin surface into different zones, where
every zone can have a different material thickness. Since these variables all concern the
structural layout of the movable, the supplier specifies the design variables in this case,
with the goal of delivering a set of feasible designs to the OEM. The OEM can then per-
form a trade-off by identifying the Pareto front of the lowest mass and cost.

41
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The movables are designed using the MDM[62] as the design tool. The MDM is a
Knowledge Based Engineering (KBE) application, developed by GKN Fokker Aerostruc-
tures using ParaPy1, able to model aircraft components, and provides an interface for
analysis tools to interact with. This way, an automated workflow can be created to design
and assess structural components of aircraft, based on a given parametrisation. Further-
more, to handle the hierarchy in the design variables, a novel dynamic workflow gener-
ation algorithm was used[63]. The hierarchy in design variables can be specified in a
Design Study Configuration (DSC) file.

An overview of the design process in this use case is presented in Figure 6.1. The
steps can be described as follows:

1. The OEM initialises the design study by specifying the outer dimensions and the
aerodynamic load cases the movable should withstand. These parameters stem
from the OEMs internal design studies and are driven by e.g. manoeuvrability re-
quirements. The OEM also specifies the desired QOIs: mass, cost and structural
integrity. In this case, the structural integrity is expressed as the critical reserve
factor, i.e. smallest reserve factor present in the design. The reserve factor, de-
fined as the ratio between the resistible load and required load, is determined on
every component in the movable. A reserve factor greater than 1 indicates that all
components satisfy the structural requirements.

2. The supplier receives the design study specification, and prepares the model and
analysis tools for the design study. Examples of steps taken here are the importing
of the OEMs specifications into the model, and loading the libraries with proper-
ties of the relevant materials.

3. Then, the design study configuration is initialised. As mentioned before, the high-
level design variables drive certain lower-level parameters. In this step, the sup-
plier defines the design variables and this underlying hierarchy.

4. The supplier executes the design study locally and prepares the results for sharing.
Here, the results are shared in the form of tabular data, so the supplier prepares a
spreadsheet of the results to upload to the KE-chain environment.

5. The OEM is notified that the results are available, and uses the results for their
technology assessment.

6.2. BUILD PHASE
The collaborative environment presented here is created in KE-chain. This means that
a third party is now involved in the collaboration between the OEM and the supplier, to
provide the collaborative environment as a service. This can be realised in a variety of
ways. For example, it could be the supplier who hosts the collaborative environment,
as a means to rapidly respond to potential customers (OEMs). Alternatively, the OEM
could host the collaborative environment, and create different projects to interact with

1“Parapy Software Development Kit”, Parapy B.V., https://parapy.nl/ [Accessed 25/11/2023]

https://parapy.nl/
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Figure 6.1: Overview of the steps taken in a design study in the movable use case.

different suppliers of different types of components, to accelerate their technology as-
sessment. The latter corresponds with the overall scenario of this thesis, and will thus
be used for the rest of this work. Regardless who hosts the collaborative environment,
every project is based on a single OEM-supplier interaction, as this was the focus of the
methodology.

To setup a new project in the collaborative environment, first the hosts invites the
users to the environment and sets the permissions. The users in such cases are the engi-
neers of the OEM and the supplier that will work on the design studies. The experts can
have different roles, such as architect (OEM), integrator (supplier), or discipline experts
(both OEM and supplier), each with their own set of permissions. This streamlines the
division of labour and can be done through KE-chains native accessibility options. An
example of a division in roles and permissions is shown in Table 6.1.

Role Permissions

Architect

Invite users and manage permissions
Set data schema
Create and manage workflow templates
Instantiate new design studies
Work on design studies
Perform analysis on database

Integrator

Set data schema
Upload results directly to database
Adapt workflow templates
Work on design studies
Perform analysis on database

Discipline expert
Work on assigned design studies
Access analysis on database (read-only)

Table 6.1: Example of role division within a collaborative environment.

The suppliers tool should also be prepared for the chosen technology sharing method.
In the case of sharing tabular data, the results can be uploaded to KE-chain as an Excel
sheet. A post-processing script to gather the results and store them in an Excel sheet
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Figure 6.2: Interface for the specification of a data schema in the collaborative environment. The sidebar in
the left is used to navigate to the different phases.

should thus be created, if the analysis tool does not store the results as such by default.

6.2.1. DATA SCHEMA SPECIFICATION

When a new project is created, the data schema should be specified. In the role division
described above, this is done by the architect and the integrator. The schema describes
the parameters used in the interaction, to ensure that the design definition is complete
and can be straightforwardly used by the analysis tool. Parameters are defined with a
name, type (text, integer, decimal, categorical or ordinal), unit and description. Param-
eters can be manually created or altered using the KE-chain interface or by uploading
an Excel spreadsheet. However, as common data schema’s are often XML-based, the
option was implemented to upload an XML-file, and have the parameters created from
the leaf nodes in the file. To enable this functionality, a Python script making use of the
Pykechain library was developed by the author. The script assigns a default parameter
type based on the value the XML-element holds (e.g. 3.14 will be recognised as a deci-
mal). For categorical, ordinal, and textual values, the correct type cannot be determined
based on a single XML-instance, and should thus be adjusted by the architect and/or in-
tegrator. Nevertheless, this method still reduces the manual efforts in creating the data
schema in KE-chain, and reduces risk of human error.

6.2.2. WORKFLOW TEMPLATE CREATION

With the data schema configured, the workflow templates can be created. The templates
are shaped by KE-chains standard widgets and supported by custom Python scripts where
necessary. In the current implementation, this was done by the author, but in a real sce-
nario, this would be done by the architect and integrator. The Python scripts described in
the rest of this chapter were thus developed by the author, and make use of the Pykechain
library to interact with the collaborative environment. Some functionalities make use of
additional libraries, these are specified where relevant.

Every template describes a certain workflow, with one or more steps to be taken in
that workflow. User access can be tailored by the architect and integrator, so that the
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Figure 6.3: Interface for the generation of Design Study Configuration files. Parameters are allocated to the
design steps, indicating hierarchy. The file is generated using a Python script, which is activated upon clicking
the button, after which it can be downloaded from the window at the bottom of the page. CMDOWS files can
also be generated.

discipline experts of the OEM and supplier only have access the relevant interfaces. No-
tifications can also be configured, so that the supplier can be notified if the OEM issued
a design study request or the OEM can be notified if the supplier completed the study
and shared the results.

For every type of workflow, a custom template can be created. For instance, in a DOE
study only the design variables and QOI’s are specified by the OEM, whereas in an op-
timisation study the objective variables and constraints would also be defined. Which
parameters are to be specified by the OEM and which ones are left to the supplier, is de-
pendent on the specific OEM-supplier interaction and the parties preferences. Specific
interfaces can also be included to configure additional settings required to execute the
design study. An example of such an interface is the DSC file generation interface, shown
in Figure 6.3. Here, the supplier discipline experts can specify the hierarchy in the design
variables mentioned in the case description above. Several design steps can be defined,
each step containing a set of allocated parameters. The XML-based DSC file can then be
generated based on this definition, again using a Python script. The DSC file can then be
downloaded and used in the offline workflow of the supplier.

Every template ends with the ability to store the results of the design study. One
workflow template was created with only the results section, thereby providing the sup-
plier the option to upload any preexisting results without a specific request from the
OEM. This rapidly makes the data available for inspection by the OEM, and for the anal-
ysis methods described in Section 6.4.

6.3. OPERATE PHASE

After the build phase, the project is configured, and the operate phase commences. In
the operate phase, the OEM (architect) can request design studies by instantiating the
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configured workflow templates. The interface for this is shown in Figure 6.4. As can be
seen, the configured workflow templates are presented to the user in a drop-down menu.
The templates minimise setup time of new design studies, and the respective partners
are automatically notified if action is required of them.

Figure 6.4: Interface for creating a new design study instance. The user is presented with an overview of the
created workflow templates.

6.4. ANALYSE PHASE
At any point, the users can collect the data by executing the ’Collect data’ script. This
script collects the results of the completed design studies performed within KE-chain,
and stores them separately (in KE-chain) for the analysis scripts to use. This prevents
the need to rerun the data collection script every time an analysis module is executed.
After the script is completed, the user is presented with the overview shown in Figure
6.5. A brief overview of the dataset is shown: which parameters stayed constant and
with what value, and which varied throughout the design studies. The analyse module
does not make a distinction in what is considered as input or output of the design tool,
so it is important for the users to remain aware of this distinction.

6.4.1. VISUALISATION
After data collection, plots can be generated to visualise the collected data. The plot
types mentioned in Section 5.2.2 can be generated through the interface shown in Fig-
ure 6.6. The plot creation script was developed by the author, and makes use of certain
libraries (described below) to facilitate the visualisation.

To generate a plot, user can specify which parameters should be included in the plot.
Additionally, the user can specify a "Variable of interest", which is used in a different way
depending on the plot type. The plots are generated in the following ways:

• The parallel plot is generated using the Plotly[64] library. The script includes a
function to automatically relabel the axes ticks if a categorical variable is repre-
sented, which not offered by Plotly by default. A particularly useful aspect of this
library, is that the plots can be generated as interactive HTML files, which can be
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Figure 6.5: Overview of the parameters after the collection of results. Parameters that stayed constant over the
design studies are displayed left with their respective values. Varying parameters are displayed on the right
with their respective bounds or possible values.

hosted in a KE-chain attachment viewer. This makes the plot interactive in the KE-
chain environment, allowing the user to reorder the axes and filter the data in one
or more dimensions. For the parallel plot, the variable of interest determines the
color of the lines. This way, the effects of the variable of interest can be more easily
traced.

• The scatterplot matrix can be generated with the seaborn[65] library, which gen-
erates static images. The image can be enlarged in the KE-chain window to better
inspect the graph. For this plot, the variable of interest is treated as the categoris-
ing variable. This is the categorical value that determines how the data is labeled
in the plots. A scatterplot of the results from this design study was shown in Fig-
ure 5.8. Here, the skin material was chosen as the categorical variable to group the
data.

Overall, the plots can be generated in a matter of seconds, thereby enabling the ar-
chitect to quickly assess the results of numerous design studies, which contain hundreds
of possible designs. Through visualisation, the OEM can quickly identify which designs
are the most interesting and identify trends, which supports the technology assessment
process.

6.4.2. SENSITIVITY ANALYSIS
In the sensitivity analysis window, the input/output variables to be considered can be se-
lected, as well as the desired methods for analysis. Numerical and categorical variables
are evaluated separately, as the methods are not applicable to one another. The nu-
merical analysis methods used in this work, Sobol analysis and HDMR, make use of the
SAlib[66] Python library for SA. The method for categorical variables, statistical power
analysis as described in [61], was implemented by the author.
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Figure 6.6: Visualisation window in the front-loaded environment. A parallel plot has been generated, where
the mass_total variable determines the color of the lines. A filter has been placed to highlight the designs with
the lowest cost.

After the analysis settings are configured and the script is executed, the results are
updated in the tables at the bottom of the window. Here, the numerical variables are
presented with their sensitivity indices and the corresponding 95% confidence intervals.
Categorical variables are shown with their P-values, representing their likelihood to sig-
nificantly affect the design.

Figure 6.7: Sensitivity analysis window in the front-loaded environment. The sensitivity of the total mass with
respect to the component material choices has been calculated.
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6.4.3. SURROGATE MODELLING AND COMPLEMENTARY SAMPLING

To implement the complementary sampling strategies as described in Section 5.2.2, a
surrogate model must first be trained on the collected data. The adaptive sampling
methods can then be used to propose a new sampling grid for future design studies.
To separate the two processes, a separate environment was created for each process.

SURROGATE MODELLING

In the surrogate model window, a SM can be trained based on the collected data. To do
so, first the input and output variables should be specified in the interface show in Figure
6.8. Then, the SM can be automatically trained by clicking the Generate surrogate model
script. The training of SMs is enabled with the Surrogate Modelling Toolbox (SMT)[43].
The SMT was recently updated to, among other additions, use kernels that can effectively
model mixed-variable design spaces. As not only predicted values, but also variances are
required for the proposed adaptive sampling methods, it was chosen to set the SM type
to Kriging.

Because the SMT module relies on certain libraries that could not be hosted in KE-
chain, a KE-node was used as an interface between the hosted KE-chain environment
and the authors machine, where the surrogate modelling functionalities were locally ex-
ecuted. When the KE-node is running, users can seamlessly train SMs and interact with
them. To store the SM after training, it is serialised as a .pickle file and stored in KE-
chain2. This prevents the model from having to be trained every time a script using the
SM is executed.

With the SM trained, it is possible to use it to make predictions. To interact with the
SM, the table at the bottom of the page can be filled in with the desired samples. The
columns of this table are automatically updated when the surrogate model is trained.
This way, the table always represents the specified I/O of the SM. When the Predict script
is executed, the predicted values and variances are updated in the table, thus providing
a way to interact with the model. This allows the OEM to quickly scout the design space
based on the available data, without requesting a new design study from the supplier.
If the OEM finds a particularly interesting prediction, but the variance is too great, the
OEM can issue a request for a new design study, to verify the prediction.

COMPLEMENTARY SAMPLING

Finally, to support future design studies, the complementary sampling window can be
used. This window is shown in Figure 6.9. To make use of adaptive sampling, a surrogate
model has to be trained. To configure the new sampling plan, then number of samples to
be evaluated and desired number of samples in the sampling plan should be configured
(the aforementioned parameters m and n in Section 5.2.2). Furthermore, the sampling
strategy, i.e. the refinement criterion, should be selected. When the script is run, m ran-
dom samples are evaluated, and the n samples with the highest criterion are returned.
These are presented in a table, which can be downloaded and straightforwardly be used
as the sampling plan for a new design study.

2As recommended by the SMT documentation, see https://smt.readthedocs.io/en/latest/_src_
docs/surrogate_models.html#for-models-written-in-pure-python

https://smt.readthedocs.io/en/latest/_src_docs/surrogate_models.html#for-models-written-in-pure-python
https://smt.readthedocs.io/en/latest/_src_docs/surrogate_models.html#for-models-written-in-pure-python
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Figure 6.8: Surrogate modelling window in the front-loaded environment. A surrogate model has been trained
on a set of input parameters, with the total mass again chosen as the QOI. The table below provides an interface
to interact with the surrogate model. An arbitrarily chosen set of samples has been provided and evaluated by
the surrogate model.

Figure 6.9: Complementary sampling window in the front-loaded environment. Based on the trained surrogate
model and the chosen settings, a grid with proposed samples is generated. The grid can easily be exported to
an Excel spreadsheet.

6.5. ALTERNATIVE SCENARIOS
As mentioned in the introduction, the current implementation is tailored towards the
sharing of results in the form of tabular data. The framework can however be tailored to
suit different needs. To use the other technology sharing methods, the framework can
be adapted as follows:

• In case the technology is made available through surrogate models, the workflow
templates follow a different logic. First, the OEM specifies the design space they
are interested in, as well as the desired accuracy. Once defined, the supplier per-
forms the necessary steps to gather the required training data, trains and validates
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the model, and makes it available for usage. Every requested design study thus
results in a SM that predicts the design space of interest in that study. The OEM
can then interact with the SMs as described in Section 6.4.3. In this case, the anal-
ysis module can be adapted to not collect the results of design studies, but instead
list the trained SMs, and thus subsets of the design space that can be explored.
Moreover, a script could be developed to interface with the SMs from the analy-
sis window. When an evaluation of a design is requested, the script searches the
available SMs for the one that predicts the relevant design space. The visualisation
and SA modules can be then applied to the predictions of the SMs. However, the
training of SMs and CS strategies are not applicable in this case.

• If the technology is made available through remote access, the supplier is much
less involved with the design studies once the connection is setup. The design
study templates then contain an interface to interact with the tool, similar to the
interface for surrogate models described above. In KE-chain, remote access could
be provided by using KE-nodes that locally interact with the suppliers tool. The
OEM can then use different design study workflows to use the suppliers tool for
their purposes, and separate the different results. The analysis module can be used
in its entirety to further inspect the results generated by the different design stud-
ies.

Finally, a scenario can be hypothesised where none of the technology sharing meth-
ods are considered an option by either the OEM or the supplier. Instead, the supplier
can still facilitate the OEM by evaluating a single design, as is the current state-of-the-
art, while also sharing sensitivity indices on certain parameters. This way, if the OEM
has to assume certain parameters to complete the design definition, the OEM can be in-
formed on the consequences of those assumptions. The supplier then performs a DOE
to gather the required data for the SA, without sharing this data with the OEM. After the
supplier performs SA, they only share the results of the evaluated design (the values of
the requested QOIs) with the sensitivity indices of the uncertain parameters. This way,
the OEM can simplify the design problem is some parameters turn out to have a negligi-
ble effect on the QOIs, or prioritise their efforts on the most sensitive parameters.
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7
TEST CASE: SUPERSONIC BUSINESS

JET

To verify the proposed methodology, a test case was developed by the author. This
chapter describes the application of the framework to the developed test case. The test
case simulates a scenario in which an OEM has a workflow with lower-fidelity design
tools, and wishes to incorporate a supplier-owned higher-fidelity tool into the workflow.
The scenario is described in Section 7.1, and will be used to assess three aspects of the
methodology:

• To enable the usage of the supplier-owned tool in the OEMs workflow, a technol-
ogy sharing method must be chosen. Section 5.1.2 described how two TSMs, shar-
ing of tabular data and sharing a surrogate model, alter an existing MDAO work-
flow and introduce a certain error. To quantify this error in the test case, three
separate MDAO workflows were created. The created workflows and the effect of
the TSMs are described in Section 7.2.

• If the OEM wishes to explore a certain explored subset of the design space in more
depth, existing data should be used to avoid similar samples and direct efforts to-
wards interesting regions in the design space. To do so, Section 5.2.2 proposed a
complementary sampling strategy. This allows the OEM to generate more effective
sampling plans for sequential design studies. To verify this CS strategy, described
in Section 7.3.

• To gain insight in the behaviour the design in response to its design variables, sen-
sitivity analysis was proposed in Section 5.2.2. The application of SA can assist the
OEM in identifying the most critical design variables, that should be prioritised in
their design efforts. Furthermore, the impact of assumptions made to complete
the design definition can be assessed. This can assist both the OEM and the sup-
plier, as both may have to make certain assumptions. This test case was used to
verify the proposed SA methods for numerical variables, namely Sobol analysis
and HDMR. This is described in Section 7.4.
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In this chapter, a number of data sets will be generated, compared, and combined.
To assist the reader in keeping an oversight on which data set is used in which cases,
Table 7.1 can be used.

Data set Description Used to
1 DOE simulating the sharing of tabular data.

Shares the same sampling plan as Data set 2
and 3.

Compare TSMs

2 DOE simulating the sharing of a surrogate
model. Shares the same sampling plan as
Data set 1 and 3.

Compare TSMs

3 DOE simulating remote access/ownership
of the tool. Shares the same sampling plan
as Data set 1 and 2.

Compare TSMs
Verify CS
Perform SA

4 DOE using a sampling plan generated the
proposed complementary sampling strat-
egy.

Verify CS
Perform SA

5 DOE using a sampling plan generated using
LHS.

Verify CS

6 DOE using a trained surrogate model based
on Data set 3 and 4

Perform SA

Table 7.1: Overview of the data sets used in this chapter

7.1. CASE DESCRIPTION
The test case describes the scenario in which an OEM is designing a supersonic business
jet. To design the wing, the OEM has set up a workflow using low-fidelity analysis tools,
that describe the wing only in high-level parameters. At some point, the OEM wishes to
verify their results using a higher-fidelity analysis tool, and reach out to a supplier in pos-
session of such a tool. However, the higher-fidelity tool requires the wing to be modelled
in greater detail than the OEM currently has available. For example, the suppliers design
tool requires the position of a kink in the wing to be specified. The test case presented
here revolves around the expansion of the design problem with the parametrisation of
the kink in the wing. In this test case, the author takes on the role of both the OEM and
the supplier.

The test case was based on the supersonic business jet (SSBJ) case, first described by
Sobieszczanski-Sobieski, Agte, and Sandusky to test their decomposition algorithm[67].
The SSBJ case has since been used as a test in other MDAO implementations[68, 69].
In the SSBJ case, the wing of a supersonic business jet is parametrised and optimised
for maximum cruise range, while adhering to constraints. The wing is defined by high-
level parameters shown in Table 7.2. Within the SSBJ case, four analysis disciplines are
present: propulsion, structures, aerodynamics and performance. The disciplines are
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represented using analyses of relatively low fidelity, as typically used in the early con-
ceptual design stage. The implementation of these disciplines, as well as the baseline
values of the parameters in the design problem, was retrieved from the SSBJKADMOS
repository1. A DOE workflow of the SSBJ problem is presented in Figure 7.1.

Symbol Definition Value Unit
λ Taper ratio 0.25 -
Λ Wing sweep angle 55 deg
Sr e f Reference area 1000 ft²
AR Aspect ratio 5.5 -

Table 7.2: The wing parametrisation originally present in the SSBJ problem.

Figure 7.1: XDSM of a DOE workflow in the SSBJ problem. The red circles indicate the drag, and show how the
propulsion and aerodynamics disciplines are coupled. The full XDSM showing all variables can be found in
Appendix B.

The parameters described in Table 7.2 are extracted from the standard SSBJ problem,
and were used to create a top-down wing planform. To enable the usage of the higher
fidelity tool, the wing parametrisation must be expanded to model the kink in the wing.
This was done using the three parameters shown in Table 7.3. The baseline values of the
new parameters were chosen such that the baseline design does not include a kink.

Symbol Definition Value Unit
λki nk Kink taper ratio 0.625 -
Λoutboar d Outboard sweep angle 55 deg
bki nk,nd Spanwise kink location (non-dimensionalised) 0.5 -

Table 7.3: The new design variables of the expanded SSBJ problem.

The higher-fidelity tool implemented in this use case was Panair, an openly available
panel solver capable of describing supersonic flow about arbitrary three-dimensional
geometries. Panair was thus used to replace the low-fidelity aerodynamics discipline
originally present in the SSBJ problem. Choi et al.[70] described Panair as a mid-to-high

1Available at https://bitbucket.org/imcovangent/ssbjkadmos/src/master/ [Accessed 16-10-2023]

https://bitbucket.org/imcovangent/ssbjkadmos/src/master/
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fidelity aerodynamic solver, but Chan[71] validated that the results for cruise conditions
(small disturbance, not transonic, irrotational flow and negligible viscous effect) are very
comparable with higher fidelity solvers, such as Euler CFD simulations.

The implementation of Panair as an aerodynamic solver that can replace the origi-
nal aerodynamics discipline was a lengthy process, described in Appendix A. Once the
higher-fidelity aerodynamic solver was configured, it could substitute the originally present
aerodynamic discipline. This resulted in the workflow visualised in Figure 7.2. The orig-
inal XDSM, as well as the expanded XDSM listing all parameters, are presented in Ap-
pendix B.

Figure 7.2: XDSM of the SSBJ DOE workflow with the higher-fidelity solver (Panair_kink) implemented. Note
how the number of connections between Panair_kink and the DOE is increased. The full XDSM showing all
variables can be found in Appendix B.

With the expanded design problem defined, the OEM is now able to formulate de-
sign studies, and request them from the supplier. An interface for requesting such design
studies in the KE-chain implementation is visualised in Figure 7.3. The window shown
here is an instantiation of a workflow template, which the OEM and supplier have con-
figured in the past. As the author takes on both roles in this test case, this workflow
template was developed solely by the author. The tables shown for design variables,
constants and QOIs, are part of the workflow template, whereas the contents of those
tables are only part of this specific instantiation. This allows the OEM to rapidly set up
separate design studies for different purposes (e.g. different design variables, different
bounds for those variables). Furthermore, the DOE configuration window shown at the
bottom of the figure, allows the OEM to quickly generate a sampling plan based on the
design study specification. In this case, the sampling plan contains 256 samples, uses
Sobol sampling, and only varies the kink related parameters, while keeping the other pa-
rameters constant. The sampling plan (not shown) can be generated by executing the
Generate sampling plan script developed by the author.

7.2. COMPARISON OF TECHNOLOGY SHARING METHODS
With the case prepared, the first test was to identify the effect of the technology shar-
ing methods. Section 5.1.2 described the effect of these technology sharing methods on
existing workflows, and stated that by modifying the workflow, a level of error could be
introduced. To investigate the magnitude of this error, three scenario’s were developed
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Figure 7.3: Interface for the requested design study in the KE-chain environment. The OEM specifies the design
space of interest and which QOI’s to investigate. The parameters are linked to the specified data schema. This
template also provides the option to generate a sampling plan in the KE-chain environment based on the
design study specification.

based on the test case:

• Scenario 1 simulates the usage of design tools through the sharing of tabular data.
As mentioned in Section 5.1.2, this renders the usage of convergence loops unfea-
sible. The workflow shown in Figure 7.2 was thus converted to an non-converging
workflow. The propulsion discipline now uses the initial value for drag,

• In Scenario 2, a surrogate model was trained to replace the Panair_kink tool. To
train the surrogate model, a separate DOE was performed to gather the required
training data. The sampling plan used in this DOE was generated with Latin Hy-
percube Sampling. In addition to the kink parameters, the design space here also
included the total weight of the aircraft with the baseline value ±50%, since the to-
tal weight can vary over the iterations. The surrogate model was trained using the
automatic training functionality provided by the SAS[23]. In this module, several
types of surrogate model are trained and validated, and the most accurate is re-
turned and stored. After the surrogate model was trained, it was saved as a .pickle
so that it can quickly be retrieved.

• Scenario 3 simulates remote access to the design tool. The workflow thus remains
unaltered.

The XDSM’s of the scenario’s can be found in Appendix B. The same sampling plan
was used for all three scenarios, and was generated with the goal to assess the kink pa-
rameters. The sampling plan thus kept the baseline values shown in Table 7.2 constant,
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and varied the kink parameters presented in Table 7.3 with ±20%. The chosen sampling
strategy was the pseudo-random Sobol sampling method, mentioned in Section 5.2.2,
because of its low discrepancy.

The different scenario’s were executed and resulted in Data sets 1, 2 and 3 respec-
tively. Data sets 1 and 2 were compared with Data set 3, since Scenario 3 should provide
the highest level of accuracy. The surrogate model in Scenario 2 was built using a differ-
ent sampling plan than previously described, but with the same number of samples. The
results were compared using the root mean square error (RMSE) and the mean average
error (MAE). The MAE is also expressed as a percentage of the mean range found in the
data. The workflows were executed using RCE as the PIDO software.

Scenario RMSE MAE MAE (%)
1 vs. 3 1.704 0.976 0.664
2 vs. 3 1.563 0.995 0.676

Table 7.4: Accuracy comparison of the technology sharing use cases based on the SSBJ test case (N=256).

The results of the comparison are shown in Table 7.4. As can be seen, Scenario 2 is
more accurate in terms of the RMSE than Scenario 1. However, when comparing the
MAE, the use of the surrogate model seems to result in slightly greater errors.

To investigate the errors in more depth, the histogram of the relative errors was gen-
erated. The histogram is shown in Figure 7.4. The histogram reveals that in Scenario 1,
more samples have an error near 0. On the other hand, the error distribution in Scenario
2 shows a more smooth behaviour, similar to a normal distribution.

Furthermore, the execution logs generated by RCE revealed that in the Scenario 3,
Panair was called 377 times, over the course of 256 samples. This means that at least
for 121 samples, the calculated drag by Panair was within the margin of error, and an
iteration was not necessary to reach convergence. The histogram comparing the relative
error between Scenario 1 and 3 confirms this.

In other words, for almost half of the samples, the workflow in Scenario 1 and 3 was
identical, resulting in no error. Thus, in this scenario, usage of the surrogate model al-
most always resulted in a small error, whereas sharing tabular data sometimes resulted
in no error at all, and in larger errors otherwise.

Overall, with both scenarios resulting in errors below 4%, both technology sharing
methods can be considered feasible for design space exploration in the conceptual de-
sign stage. As such, the OEM and supplier would likely agree on the sharing of tabular
data as the TSM for this use case, as this method is closest to the current state-of-the-art.
However, as roughly half of the samples did not require additional iterations to reach
convergence, the main drawback of sharing tabular data was not relevant for those sam-
ples. If the OEM knows the convergence loop will be necessary due to strong coupling
between the disciplines, the sharing of a surrogate model may be preferable.

7.3. COMPLEMENTARY SAMPLING
With an initial DOE performed, the complementary sampling strategy proposed in Sec-
tion 5.2.2 can now be used to generate a sampling plan, that avoids already available data
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Figure 7.4: Histogram showing the relative error of Scenario 1 and 2.

and shifts efforts towards unexplored regions in the design space. In this section, an ex-
periment is conducted to verify the usage of such a CS plan. To do so, two new sampling
plans were generated in the same design space as the initial DOEs (Scenario’s 1, 2 and
3). One sampling plan was generated using the proposed CS strategy, whereas the other
sampling plan uses an ordinary sampling plan, not taking into account the samples from
the initial DOE. These scenario’s will henceforth be known as Scenario 4 and 5 respec-
tively. Both sampling plans were evaluated using the DOE workflow from Scenario 3,
after which the results were combined with the results from the initial Scenario 3 DOE,
Data set 3. To compare the two sampling plans, two surrogate models will be trained
based on the respective combined data sets. It is assumed here that the accuracy of a
surrogate model represents the quality of the sampling plans, i.e. how well the sampling
plans describe the design space.

To generate the sampling plan for Scenario 4 using the CS strategy, the steps de-
scribed in Section 5.2.2 were taken in the following way:

1. A surrogate model was trained based on the 256 available samples (from Data set
3).

2. It was chosen to have 250 samples in the new sampling plan

3. The chosen adaptive sampling method was EIGF, as this method is regarded as an
easy to implement, but reliable method for adaptive sampling[51].

4. A sampling plan of 2000 samples was created using LHS. For every sample, the
refinement criterion was evaluated using the trained surrogate model.



7

62 7. TEST CASE: SUPERSONIC BUSINESS JET

5. The 250 samples with the greatest RC were selected. This is the new sampling plan
to be used in the upcoming DOE.

The CS plan is visualised over Data set 3 in Figure 7.5a. The ordinary sampling plan
for Scenario 5 was generated using Latin Hypercube Sampling, and also contains 250
samples. The ordinary sampling plan is shown in Figure 7.5b.

To compare the effectiveness of the two sampling plans, the sampling plans were
used in two follow-up DOEs. The DOEs used the same workflow as Scenario 3, and re-
sulted in Data sets 4 and 5. Two surrogate models were trained based these data sets in
combination with Data set 3. The models were validated using k-fold validation, and the
RMSE values of the models were measured to compare the accuracy of the models. The
training and validating of the surrogate models was done using SAS functionalities[23].

Data set RMSE of trained surrogate model
Data set 3 + 4 (complementary sampling) 1.52
Data set 3 + 5 (ordinary sampling) 2.33

Table 7.5: Comparison of complementary sampling versus ordinary sampling.

The results are shown in Table 7.5. As can be seen, the model trained using the CS
strategy has a lower RMSE and can thus be considered more accurate. This verifies that
the CS strategy correctly shifts efforts towards critical or unexplored regions of the design
space, and results in a higher quality data set. However, caution must be taken when
choosing the number of samples to include in the new sampling plan, n, and the number
of samples to evaluate using the surrogate model, m. If the ratio of m to n is too great,
the samples in the new sampling plan will only cluster around the area with the greatest
RC. This is visualised in Figure 7.6, where m was chosen to be 20000, instead of 2000
as before. The ratio of m to n should thus be chosen such that a meaningful selection
can be made out of the m samples, but small enough to avoid clustering. However, an
in-depth investigation to determine the ideal ratio has not been performed.

7.4. SENSITIVITY ANALYSIS
Finally, to gain insight in the behaviour of the newly introduced kink parameters, sensi-
tivity analysis was proposed. When visually inspecting the results of Scenario 3 in Figure
7.5a, it seems that the outboard sweep angle is the most sensitive parameter to the range
of the design. The expectation is thus that sensitivity analysis will reflect this.

The first SA is based on Scenario 3 using Sobol analysis. The results are presented in
Table 7.6. Contrary to the expectation, the outboard sweep is ranked as the variable least
sensitive to the objective. However, it can also be observed that the resulting confidence
interval is quite large. This indicates that a larger data set should be used to obtain more
certainty about the sensitivity indices.

Table 7.7 shows the results of Sobol analysis on combined Data sets 3 and 4, i.e. the
initial DOE and the sequential DOE using CS. The analysis now correctly ranks the out-
board sweep as the most sensitive variables, but only by a small margin. In fact, the
sensitivity index assigned to the variables is roughly equal. This should mean that the
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(a) Complementary sampling grid generated using the EIGF method.

(b) Ordinary sampling grid generated using LHS.

Figure 7.5: Comparison of the sampling grids evaluated in the sequential DOE. The dots represent the results
from the initial DOE, with their colors depending on the QOI value (range) corresponding to that design. The
values associated with the colors are indicated by the legend on the right. The crosses represent the sampling
points in the proposed sampling plan.
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Figure 7.6: The effect of the ratio of evaluated samples to samples in the new grid. If this ratio is too great, the
samples tend to cluster around the regions with the greatest refinement criterion.

Variable Total sensitivity index Confidence interval
bki nk 0.88998 0.34909
Λoutboar d 0.67829 0.3243
λki nk 1.10916 0.2141

Table 7.6: Sobol analysis on the SSBJ test case based on Data set 3.

variables should affect the output of the model equally, which does not appear to be the
case.

Variable Total sensitivity index Confidence interval
bki nk 0.8364 0.2286
Λoutboar d 0.8459 0.291
λki nk 0.7905 0.2141

Table 7.7: Sobol analysis on the SSBJ test case based on Data sets 3 and 4.

Table 7.8 shows the results of HDMR analysis on the combined Data sets 3 and 4.
Using this method, the results of this analysis seem to correspond well with the obser-
vations made before. HDMR analysis was also tried on Data set 3 alone but this was not
possible in the used implementation due to the minimum of 300 required samples2.

2See https://salib.readthedocs.io/en/latest/_modules/SALib/analyze/hdmr.html[Accessed
19-10-2023]

https://salib.readthedocs.io/en/latest/_modules/SALib/analyze/hdmr.html
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Variable Total sensitivity index Confidence interval
bki nk 0.051 0.021
Λoutboar d 0.880 0.023
λki nk 0.017 0.016

Table 7.8: HDMR analysis on the SSBJ test case based on Data sets 3 and 4.

Finally, since HDMR analysis is based on the use of surrogate models, Sobol analysis
was performed using a surrogate model trained on the combined Data sets 3 and 4. The
sampling plan used in the sensitivity analysis was generated using Sobol sampling, and
since the surrogate model can quickly be evaluated, a large number of samples could be
used. The DOE resulted in Data set 6 and contained 8196 samples. The results are shown
in Table 7.9. This time, Sobol analysis correctly indicates the outboard sweep angle as
the most sensitive variable. However, the same conclusion could already be drawn using
HDMR analysis. Considering that an HDMR implementation is readily available, this
can straightforwardly be used, and there is no need for the OEM or supplier to manually
train a surrogate model, and then use it for Sobol analysis.

Variable Total sensitivity index Confidence interval
bki nk 0.038 0.005
Λoutboar d 1.00 0.071
λki nk 0.001 0.0001

Table 7.9: Sobol analysis on the SSBJ test case based on Data set 6.

If done correctly, the conclusions drawn from the sensitivity analysis can assist the
OEM or the supplier in their design problem. In this case, the OEM explored the intro-
duction of a kink to the wing planform, which was not possible with their low-fidelity
analysis tools. Sensitivity analysis revealed that the outboard sweep angle was the most
sensitive parameter, and the positioning of the kink was not as critical. This informa-
tion can be useful when the positioning of the kink is important to other design require-
ments, for instance the positioning of the landing gear. However, the test case has also
shown the sensitivity indices can give the wrong impression, especially when the data
set is small. In order to validate the results of the sensitivity analysis, visual inspection of
the data is still required.

7.5. A CRITICAL REFLECTION ON THE TEST CASE
The test case described in this chapter was developed to verify certain aspects of the
methodology proposed in this thesis. Although these aspects have successfully been
assessed,

First of all, in this test case, only the aerodynamics solver was substituted with a
higher-fidelity analysis tool. The introduction of a kink to the wing planform was used
as the goal of the design studies described above: to explore the effects of adding this
kink to the planform. However, it is likely that the introduction of a kink to the planform
would affect the internal structure as well. In a real scenario, the structures discipline
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should thus also be adapted to account for this.
Furthermore, when comparing the TSMs, it was revealed that 121 samples did not

need an iteration to converge the drag. This is odd, given the usually strong coupling
between aerodynamics and propulsion. After careful inspection of the results, it was
noted that certain combinations of spanwise kink position and kink taper ratio resulted
in a wing with no kink at all. As a matter of fact, one can derive that following the wing
parametrisation used in this chapter, the wing will not have a kink if

λk = 1− (1−λ)bki nk

This means that in the chosen design space, there is a region that describes a very simi-
lar, nearly kinkless, wing. This would explain the relatively low influence of the kink po-
sitioning in the explored design space, and why almost half of the samples in Scenario 3
did not require at least one iteration to converge.

Despite these limitations, the purpose of this test case was not to perform a valid
design study, but to explore a one-on-one collaboration between an OEM and a supplier,
and how CS and SA can support this process. It was therefore chosen to present the test
case as it is. If anything, the flaws should serve as a reminder to carefully consider the
implications of choosing a certain parametrisation, or which disciplines are affected if a
design problem is expanded.



8
DEFAINE USE CASE: UAV

MOVABLE DESIGN

To validate the proposed methodology and its feasibility in industry use, the framework
was also applied to a use case in the DEFAINE project. This case was introduced in
Section 6.1, and has been used to showcase the methodology and the implementation
thereof to industry partners within the DEFAINE consortium. The use case mainly con-
tained categorical variables, and was thus used to verify statistical power analysis as a
sensitivity analysis method for non-numerical variables. The results of this analysis are
presented in Section 8.1. Finally, to qualitatively assess the methodology, a question-
naire was created to gather the feedback of the DEFAINE consortium. The outcome of
this questionnaire is discussed in Section 8.2.

8.1. SENSITIVITY ANALYSIS
In this case, sensitivity analysis was used to identify which choice of material, per com-
ponent type, had the greatest impact on the mass of the movable. It was expected that
the skin material is the most sensitive, considering that the majority of the movable mass
originates from the skin. Since the material choices are categorical variables, statistical
power analysis was used to perform the sensitivity analysis. The results are presented in
Table 8.1. As can be seen, the P-value is lowest for the skin material choice. This means
that, indeed, the skin material has the greatest likelihood of significantly affecting the
mass of the movable. Performing sensitivity analysis in this manner can thus be a way to
quickly identify the most sensitive design variables.

67
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Variable P-value
Skins material 0.055
Ribs material 0.104
Spars material 0.125

Table 8.1: Statistical power analysis on the DEFAINE movable use case.

8.2. QUALITATIVE ASSESSMENT
As the goal of this thesis was bridge the gap between collaborative workflows encoun-
tered in literature and current state-of-the-art in industry, the feasibility of the proposed
methodology is an important aspect of the solution. To assess this aspect, a question-
naire was prepared by the author and answered by industry partners within the DE-
FAINE consortium. The questionnaire contained three parts: the first part inquired
about the usage of the technology sharing methods, whereas the second part investi-
gated the front-loaded methodology and the currently implemented features. The last
part provided the partners the option to express what challenges they felt were not yet
addressed by the methodology and its current implementation.

Table 8.2 represents the opinions of industry partners on the technology sharing
methods considered in this thesis. The partners were asked how much they agreed with
the presented statement, where strong agreement corresponds to a 5 and strong dis-
agreement with a 1. An option to provide qualitative feedback was also provided.

Statement Tabular data Surrogate model Remote access
This method is (or can be made)
compliant with IP our regulations.

4.3 3.3 1.7

Using this method, the other
party’s tool can easily be inte-
grated into my own workflow.

3.33 3.7 1.3

This method can reliably generate
accurate data.

4 4.3 4.7

This method is feasible to imple-
ment in industry use cases, out-
side of research projects such as
DEFAINE.

4 4.3 2.7

Table 8.2: Industry partner opinions on the technology sharing methods. Strong agreement corresponds to a
5 and strong disagreement with a 1.

Overall, the OEM and suppliers in the DEFAINE consortium largely shared the same
opinions on these statements. As can be seen, the sharing of tabular data is considered
the most compliant with current IP regulations. One argument against the use of SMs,
was that SMs enable near infinite evaluation of designs, whereas currently, the number
of designs to be evaluated by a supplier is strictly determined when agreeing on such a
collaboration. On the other hand, it was said that SMs could be preferred to be shared
over a table of results, due to the inherent uncertainty of the SM. There was thus no
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unanimous preference in technology sharing method.
Ease of integration of the other partners design tool was ranked fairly low overall,

indicating that closer collaborative workflows are still considered challenging to set up.
All TSMs were considered able to generate accurate data, with remote access ranking
as the most accurate option. However, IT related issues are considered the main ob-
jection against the use of remote access. The opening of data streams and installation
of dedicated software to do so were mentioned as obstructions that render this method
unfeasible for standard industry use.

Overall, the sharing of tabular data and sharing of surrogate models were considered
a feasible way to facilitate collaboration. However, it was noted that "reliability of gener-
ated data can be related more to the correct use of models than to which of solutions is
implemented".

Table 8.3 shows the results of the second part of the questionnaire. Here, the partners
were asked to rank the usefulness of the modules in the presented methodology on scale
from 1 to 10.

The results indicate that the module considered to be the most useful, is the work-
flow template capabilities. The creation of templates that can be instantiated to reduce
the setup time of new design studies, is thus the most appreciated module. Ranked sec-
ond are the data collection and visualisation capabilities. The data collection capability
includes the ability to upload already available data to the collaborative environment,
thereby front-loading the design process. Then, sensitivity analysis and CS were ranked
equally, with the surrogate modelling capability ranked as the least appreciated. The
surrogate modelling capability here refers to the ability to train a SM based on the data
present in the collaborative environment, and not to the use of surrogate models as a
TSM. Despite the lower ranking, it is important to consider that in order to execute an
CS strategy, a SM must be trained.

Feature Average score
Workflow template creation and instantiation 7.7
Automatic collection of results 7.3
(Interactive) visualisations of the results 7.3
Sensitivity analysis 6.7
Surrogate model training 6
Complementary sampling strategy 6.7

Table 8.3: Industry partner opinions on the collaborative front-loaded methodology. The aspects are rated in
terms of usefulness on a scale from 1 to 10.

The last part of the questionnaire provided the possibility to list remaining challenges
not addressed by the current methodology. The named issues were primarily related to
IT infrastructure, but IP regulations were still mentioned as a challenge. This relates to
the comments listed before regarding the technology sharing methods: despite these
methods reducing the compromised IP, the contemporary IP protocols still prove a ma-
jor obstacle in implementation. Whether the sharing of tabular data or sharing of sur-
rogate models is the preferred method in terms of IP regulations, can be argued from
both sides, and as such, no universal conclusion can be drawn. Moreover, the state-of-
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the-art of collaboration does not consider workflows such as presented in this thesis, or
even explored in recent literature. However, such workflows are considered beneficial in
terms of project lead times/costs and market competitiveness, and so to employ them,
changes in IP policies may be required.

Overall, feedback was positive and it is believed that the methodology can streamline
the collaboration between OEMs and Tier-1 suppliers. Even if usage of SMs or RA as a
way to facilitate cross-organisational tool utilisation is infeasible, the sharing of tabular
data (which can be considered the current state-of-the-art) can also be used. Usage of a
collaborative environment provides a way for OEMs and supplier to structure their col-
laborative designs studies, and streamline the request of design studies through the cre-
ation of workflow templates. Furthermore, the methodology presented a way for suppli-
ers to front-load the design process by performing preemptive design studies. Available
data could then straightforwardly be reused, improving the response time of the sup-
plier and reducing the lead time of the OEMs design studies. Moreover, it was noted that
“front-loading is an accelerator for higher-fidelity technologies, thereby enabling their
usage in the conceptual design phase.”. Applying front-loading principles thus enable
usage of higher-fidelity design tools, which in turn enable a proper assessment of novel
technologies, that can only be analysed with such tools. A final comment made about
the framework noted "that outside of a collaborative environment, similar frameworks
and engineering flows could be envisioned inside an organisation.". The front-loaded
methodology was thus also considered useful outside of a collaborative environment.



9
CONCLUSIONS AND

RECOMMENDATIONS

The goal of this thesis was to explore a closer collaboration between and OEM and their
Tier-1 supplier, with the goal to accelerate the conceptual design phase. To do so, a
methodology for collaborative front-loaded design space exploration was proposed. The
goal of this methodology is to enable a closer collaboration between an OEM and their
suppliers and exploit the collaboration to reduce design lead times and costs. The method-
ology was implemented in a collaborative environment and applied to a test case, as well
as an use case within the DEFAINE research project.

To answer the research question of this thesis, the subquestions can be answered as
follows:

• How can a workflow where an OEM and a Tier-1 supplier collaboratively perform
design space exploration be enabled?
To facilitate the collaboration, several collaborative frameworks developed in re-
cent research projects were investigated. Certain elements, such as the usage of a
common data schema and workflow templates, were reused in this work. To en-
able the usage of design tools across organisations, technology sharing methods
were investigated. The implications of these methods on existing workflows as
well as their applicability in industry use have been researched in this work. It was
found that both the sharing of tabular results and the sharing of a surrogate model
result in a very small error compared to remote access, which is considered equiv-
alent to having actual ownership of the tool. The margin of error was considered
small enough to render all methods technically feasible for design space explo-
ration in the conceptual design phase. However, the implications of the technol-
ogy sharing methods should still be considered: if a strong coupling is known to be
present among certain disciplines, the sharing of tabular data should be avoided as
this renders usage of a convergence loop unfeasible. Furthermore, a survey among
the DEFAINE consortium revealed that remote access is considered infeasible due

71
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to the IT regulations present in the organisations. IP regulations are still consid-
ered the limiting factor in enabling a cross-organisational collaboration, and both
the sharing of tabular data and a surrogate model can be argumented as the pre-
ferred method.

• How can the supplier provide the OEM with high quality data in a reduced lead
time?
To reduce the response time of suppliers, a methodology for design space explo-
ration using front-loaded principles was developed. A front-loaded database al-
lows the supplier to optimally reuse past results in future design studies. Visual-
isation of the database enables an intuitive method to inspect the database, and
browse through the available designs. In particular, the parallel plot was consid-
ered useful due to its interactive implementation, allowing the users to dynami-
cally filter through the data. Aside from the ability to identify trends and find de-
signs through visualisation, the database presents the opportunity to analyse the
results to support the design exploration process. The analysis methods proposed
in this work were sensitivity analysis and a complementary sampling strategy. Sen-
sitivity analysis proved a useful metric to quickly determine the most sensitive
parameters, although manual inspection is still required to validate the results
of the analysis. For numerical variables, HDMR analysis performed better than
Sobol analysis with a small number of samples, and is thus considered the pre-
ferred choice for such use cases. The complementary sampling strategy proposed
aims to take existing samples into account when generating a new sampling plan,
avoiding the evaluation of similar samples and shifting efforts towards unexplored
or critical regions of the design space. The complementary sampling plan gener-
ated in this work resulted in a higher quality data set compared to ordinary sam-
pling methods, measured by comparing the accuracy of trained surrogate models.
The methodology was well received among the DEFAINE consortium and could
also be envisioned outside of a collaborative environment to streamline engineer-
ing workflows within an organisation. It was deemed that the front-loading prin-
ciples accelerate the usage of higher-fidelity tools, thereby enabling them in the
conceptual design phase. In turn, this enables the supplier to perform preemp-
tive design studies, that reduce the required work when an OEM issues a request,
thereby improving their response time.

Overall, the proposed methodology provides a practical guide to implementing a col-
laborative design space exploration in industry use cases. The implementation was set
up in a general way, such that it can be tailored towards the specific interactions, partic-
ularly through the ability to create custom workflow templates.

However, the current IP regulations still remain as a challenge to overcome in such
collaborations. Nevertheless, the methodology for front-loaded design space exploration
could also be envisioned within an organisation to accelerate internal design studies.
This could still improve the collaboration between OEMs and their suppliers if collabo-
rative design space exploration is considered infeasible. To give an example, the supplier
has the option to not only evaluate a single design for the OEM (as is the current state
of the art), but also provide the sensitivities on uncertain parameters, thereby helping
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the OEM in their design problem. Furthermore, the framework enables the supplier to
perform preemptive DOE’s in regions of interest and generate surrogate models, thereby
reducing the response time when the OEM requests a design.

9.1. RECOMMENDATIONS
Based on the work performed in this thesis, several recommendations for future work
can be made.

• Expand the front-loaded methodology for optimisation workflows
The methodology presented here was centred around design space exploration in
the form of DOEs. The methodology can be expanded to include optimisation
workflows as well, storing the results of such design studies in the front-loaded
database. Moreover, the methodology can be expanded to exploit the front-loaded
database when performing optimisation. For instance, the database could be searched
(automatically) for an informed initial guess, potentially reducing computational
time required for the optimisation. Alternatively, a surrogate model can be trained
based on the database and used in the optimisation. Then, during the optimisa-
tion, the surrogate model can first be used to evaluate the sample at hand. If the
variance of the evaluation is within a (configurable) margin of error, that output
value is used and the (expensive) design tool is not called. This could further re-
duce the computational time required for optimisation.

• Improve the complementary sampling strategy
In this work, a complementary sampling strategy was proposed to exploit the database
to generate more effective sampling plans for follow-up DOEs. The strategy proved
more effective than ordinary sampling in such DOEs, but can still be refined to
reduce clustering in the new sampling plan. Furthermore, the strategy currently
relies on a certain ratio between the number of samples to include in the new
sampling plan, and the number of samples to evaluate using the surrogate model
trained for this strategy. A more in-depth investigation could be performed to find
the ideal ratio for which this strategy works best, but a more effective approach
would be to use a more sophisticated strategy, such that the user is no longer re-
quired to provide these values.

• Find sensitivity analysis methods for mixed-variable design problems
Finally, the sensitivity analysis methods presented here were only capable of as-
sessing either numerical or non-numerical variables. As these methods resulted
in different metrics (sensitivity indices for numerical variables, P-values for non-
numerical variables), the resuls of these analyses could not be compared with each
other. A method that could compare both types of variables could greatly increase
the applicability of sensitivity analysis in mixed-variable design problems.
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A
IMPLEMENTATION OF PANAIR IN

THE SSBJ TEST CASE

As mentioned, Panair was chosen as the higher-fidelity aerodynamics solver for this test
case. Panair is openly available as Fortran 90 code1. Panair can solve flows about arbi-
trary geometries and as such, the parametrisation of the design problem, shown in Table
7.2, must be transformed to a 3D geometry. To do so, first some parameters related to the
top-down wing planform were derived, assuming the wing planform to take the shape
of a trapezoid:

b =
√

AR ·Sr e f (A.1)

cr =
2Sr e f

b(1+λ)
(A.2)

ct =λcr (A.3)

Note that the span of one wing is half of the total wing span b. To create a 3D geom-
etry based on this planform, an airfoil must be selected. It was chosen to implement the
NACA 64-206 airfoil2, because of its usage on supersonic aircraft such as the General Dy-
namics F16 Fighting Falcon[72]. The airfoil was scaled to match the thickness to chord
ratio as specified in the design problem.

Panair uses geometry that follows the Langley Wireframe Geometry Standard[73].
For this purpose, the pyPanair module, developed by GitHub user SaTa999, was used3.
An example of a generated wing is visualised in Figure A.2a. Note that only one wing has
to be generated, since symmetry can be imposed in the solver.

1Available at https://www.pdas.com/Panairdownload.html
2Retrieved from http://airfoiltools.com/airfoil/details?airfoil=naca64206-il [Accessed 19-

10-2023]
3Available at https://github.com/SaTa999/pyPanair[Accessed 19-10-2023].
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With the original geometry able to be mapped into Panair, the design problem was
expanded with the kink parameters, shown in Table 7.3. The variables were implemented
in the following way:

bki nk = b

2
·bki nk,nd (A.4)

Λi =Λ (A.5)

ck =λk cr (A.6)

ct =λcr ⇒ cr =
Sr e f

bki nk (1+λk )+ ( b
2 −bki nk )(λk +λ)

(A.7)

The wing planform and its parameters are visualised in Figure A.1. The implementa-
tion of these new variables was chosen to minimise influence on the existing variables.
A 3D geometry based on the expanded design problem is shown in Figure A.2b.

Figure A.1: Overview of the wing planform used in the SSBJ test case.

To analyse the geometry, an auxiliary file has to be generated, which describes the
flow conditions. This is also handled by the pyPanair module. After the geometry and
auxiliary file are generated, the files can be pre-processed by Panin4 and subsequently
be analysed by Panair. Both of these programs are available as Fortran 90 code, and thus
have to be compiled before they can be executed. This was done using Cygwin5 with the
gcc-core and gcc-fortran packages installed. Once compiled, the programs can then be
executed through the Cygwin terminal as well. To automate this process and call it from
Python, a bash script was written. When Panair is executed, the results are dumped in
a text file. The file can straightforwardly be read to retrieve the results. The generation
of geometry, execution of Panin and Panair, and extraction of results were implemented

4Available at https://www.pdas.com/panindownload.html [Accessed 19-10-2023].
5Available at https://www.cygwin.com/ [Accessed 19-10-2023].
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(a) Geometry of the original design problem. (b) Geometry of the expanded design problem.

Figure A.2: Examples of generated 3D geometries to be analysed by Panair.

in a Python module. This module thus enables a fully automated way to analyse a given
wing under certain conditions.

However, to replace the aerodynamics solver in the SSBJ problem, additional func-
tionality was required. The lower-fidelity solver sets the lift equal to the total weight of
the aircraft, and then finds the drag corresponding to that lift using a drag polar. To add
this capability to the new aerodynamics discipline, the angle of attack was systematically
varied using a root finding algorithm on the function:

f (α) =CL(α)− WT

0.5ρV 2Sr e f
(A.8)

where CL(α) was found using Panair and the other variables were derived from the input
parameters. Sr e f is directly used as an input variable, V was determined with the Mach
number and speed of sound. The Mach number is part of the input parameters, and the
flight altitude, also part of the input parameters, was used to derive the speed of sound
and air density ρ based on ISA conditions[74].

After convergence, the drag can be extracted and returned to the user. This means
that for a single evaluation of the new aerodynamic discipline, Panair had to be called
multiple times sequentially. Nevertheless, the evaluation time of the discipline was roughly
15 seconds6, depending on the number of evaluations before convergence of Equation
A.8 is reached. This evaluation time was significantly higher than those of the other dis-
ciplines, but it was still deemed usable for the purposes of this test case.

Considering that the optimisation problem concerns only the design of a wing, it was
chosen to only have the wing modelled in Panair. However, the drag determined by the

6On a machine with an Intel i7 Quad core 2.8GHz processor and 16GB DDR4-2400MHz memory.
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Figure A.3: Flow chart of the higher fidelity aerodynamic solver implemented in the SSBJ test case.

original aerodynamics discipline is the drag of the total aircraft, since the thrust in the
propulsion module is set equal to this drag. For the validity of this test case, the fuselage
drag should thus be modelled. To do so, empirical methods as described in [75] were
used. Interference drag between the fuselage and the wing was assumed to be minimal
and is neglected.

These functionalities were all implemented in a Python script, such that the higher-
fidelity aerodynamics solver fulfills the same role as the lower-fidelity one, and can there-
fore directly replace the lower fidelity module. To fit the existing implementation, where
every discipline in the test case extracts input from and writes output to XML files, wrap-
per functions were written. The tool is now ready, and an overview of all steps taken is
presented in Figure A.3.



B
TEST CASE DIAGRAMS

The following pages contain the full XDSMs of the original SSBJ design problem and the
DOE workflow with the higher-fidelity aerodynamics solver substituting the Aerodynam-
ics module.
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Figure B.1: XDSM of the original SSBJ problem.
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Figure B.2: XDSM of Scenario 1, with Panair_kink replacing the aerodynamics module. The workflow has been converted to an unconverged DOE, because a con-
verged workflow is unfeasible when data is shared in batches.
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Figure B.3: XDSM of Scenario 2, with Panair_SM replacing the aerodynamics module. The surrogate model has been trained a dataset with varying kink parameters
and total aircraft weight.
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Figure B.4: XDSM of Scenario 3, with Panair_kink replacing the aerodynamics module. Remote access enables usage of the tool as if it was in the OEMs possession.
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