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The Singularity of Legendre Functions of the First Kind as a
Consequence of the Symmetry of Legendre’s Equation

Ramses van der Toorn

Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology,
Mekelweg 4, 2628 CD Delft, The Netherlands; r.vanderToorn@TUDelft.nl

Abstract: Legendre’s equation is key in various branches of physics. Its general solution is a linear
function space, spanned by the Legendre functions of the first and second kind. In physics, however,
commonly the only acceptable members of this set are Legendre polynomials. The quantization of
the eigenvalues of Legendre’s operator is a consequence of this. We present and explain a stand-alone
and in-depth argument for rejecting all solutions of Legendre’s equation in physics apart from the
polynomial ones. We show that the combination of the linearity, the mirror symmetry and the
signature of the regular singular points of Legendre’s equation are quintessential to the argument.
We demonstrate that the evenness or oddness of Legendre polynomials is a consequence of the same
premises.

Keywords: Legendre’s equation; Legendre functions; Legendre polynomials; singularities; symmetry

1. Introduction
1.1. Motivation

The ideas presented in this manuscript arrived as a reaction to the following curious
contrast and lacuna. Our point of view is that of mathematical physics.

In mathematical physics, Legendre’s equation is a very important one. Legendre’s
equation has a continuum of solutions, known as Legendre functions. In many applica-
tions in physics, however, of all the Legendre functions, only the discrete set of Legendre
polynomials is acceptable. This is because all other Legendre functions are unbounded on
the closed interval [−1, 1]. As we shall illustrate in Section 1.3, this has far-reaching conse-
quences in physics. Hence, it is important to understand this particular aspect of Legendre
functions. Indeed, there would be added value in explaining their unboundedness, by a
clear identification of the premises that imply it. A particularly valuable explanation, from a
physics point of view, would be one which clarifies the extent to which the aforementioned
phenomena are implied by a symmetry in a physical state space.

The contrast and lacuna mentioned in the opening sentence emerge whenever text-
books in (theoretical) physics appeal to the mathematical literature about special functions,
e.g., [1–5], in order to establish the property of the unboundedness of Legendre functions.
The mismatch occurs because this branch of mathematics, by its history and nature, has a
focus of its own and it keeps up its own values. Naturally, the aim in the mathematics of
special functions is to catalogue, explore, document and unify large families of functions.
This is done, for example, by unifying all functions that are solutions of differential equa-
tions that have similar regular singular points, regardless of the positions of these points in
the complex plane [5]. It is clear that this does not destroy physical symmetries altogether,
but it does not highlight and exploit them either. The mathematical literature about special
functions furthermore hosts a myriad of techniques and algorithms for the evaluation of
special functions. No doubt, one can learn from this literature that Legendre functions
are unbounded on the closed interval [−1, 1]. However, as a means to this particular end,
the mathematical literature about special functions does not seem to be quite apt. Indeed,
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it is not easy to find a tailor-made and efficient argument showing how symmetry in the
physical state space implies the desired conclusion along this route.

Our starting point here therefore is this. What is really needed in many crucial
applications in physics is a tailor-made and clear argument explaining why only the
Legendre polynomials are acceptable solutions of Legendre’s equation. Preferably, the
argument should show to what extend the desired conclusion is implied by a symmetry in
a physical state space. It is the aim of the present manuscript to unearth such an argument.

1.2. Singularities; Fuchsian and Legendre’s Equations
1.2.1. Singularities as a Selection Criterion in Physics

The common argument for rejecting Legendre functions—both of the first and second
kind—as acceptable functions in a given context in physics is that they are indeed singular
and unbounded on the application domain. The possibility of singular solutions is an
important feature of Fuchsian differential equations, of which Legendre’s equation is a
particularly important example.

1.2.2. The Class of Fuchsian Differential Equations

Fuchsian differential equations [6–8] are key in many subdisciplines of mathematical
physics. We here follow the original characterization by Frobenius [9] of this class of
equations. We restrict ourselves to second order equations, which is sufficient for the
purpose of this manuscript.

Consider homogeneous, linear, second order, ordinary differential equations for a
dependent variable y depending on variable ξ, with variable coefficients:

Q(ξ) y′′(ξ) + R(ξ) y′(ξ) + S(ξ) y(ξ) = 0 . (1)

A point at which Q(ξ0) = 0 is called a singular point. A singular point is exceptional
because the differential equation ceases to be a second order equation at such a point and
hence the standard theory of linear, second order differential equations does not apply at
such a point.

To study Equation (1) and its solutions, in the neighborhood of a singular point ξ0,
it is convenient to introduce a shifted coordinate x = ξ − ξ0, so that the singular point
occurs at x = 0. We now adopt the restriction that, in terms of the coordinate x previously
defined, Equation (1) can be rewritten in the form

x2 λ(x) y′′(x) + x p(x) y′(x) + q(x) y(ξ) = 0 , (2)

where it is required that the functions λ(x), p(x) and q(x) be analytic (an analytic function
is one that can be locally represented by a convergent power series (Mclaurin series)), while
λ(0) 6= 0. If ξ = ξ0, or x = 0, is a singular point of Equation (1), while the equation can
thus be rewritten in the form (2), then the point is called a regular singular point. Finally, if
and only if a differential equation of the form (1) can be rewritten in the form (2) for each of
it singular points, it is called Fuchsian [6,7].

1.2.3. Legendre’s Equation

Regular singular points of Fuchsian equations are commonly associated with special
points of curvilinear coordinate systems [3], and hence with the geometry and symmetry of
the physical situation. In this manuscript, we address Legendre’s equation, for dependent
variable y = y(ξ) as a function of independent variable ξ:

(1 − ξ2) y′′ − 2 ξ y′ + ν (ν + 1) y = 0 . (3)

In applications in physics, Equation (3) emerges [3,5] by the procedure of separation
of variables from Laplace’s operator in spheroidal, including spherical, coordinates. Coor-
dinate ξ then is associated with latitude. Its domain is the closed interval [−1, 1] and the
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regular singular points ξ = ±1 are associated with the poles of the spheroidal coordinate
system. Furthermore, Equation (3) then is naturally conceived as an eigenvalue equation
for the differential operator L[y(ξ), ξ], defined as

L[y(ξ), ξ] = − d
dξ

(
(1− ξ2)

d
dξ

y
)

. (4)

In the context of the procedure of separation of variables, the eigenvalues of operator
L[y(ξ), ξ] have the role of separation constants [3,10].

In the context of Laplace’s operator, Equation (3) is actually a special case of the general
or associated Legendre Equation [5]. The solutions of this more general equation are easily
expressed in terms of solutions of Equation (3), and unboundedness really arises if and
only if the involved solutions of Equation (3) are unbounded.

1.3. Implications in the Natural Sciences

The unboundedness of the Legendre functions of the first kind is a crucial argument
in many application domains of mathematical physics for rejecting these functions. It is
the very reason why only the Legendre polynomials remain as the sole physically accept-
able solutions of the (second order) Legendre Equation (3). A direct implication that is
very important for physics is that the parameter ν, and hence the eigenvalues of the Legendre
operator (4) become quantized. It is hardly an exaggeration to mention that this is at the
foundation of our understanding of the periodic system of chemical elements. Indeed, in
the quantum mechanics of atoms, the discrete integer values of the parameter ν are the
quantum numbers of orbital angular momentum [11,12]. In geophysical fluid dynamics,
they label the fundamental modes of the atmosphere, i.e., the planetary Rossby–Haurwitz
waves [13]. In as far as there is value in understanding why such quantization occurs, the
value of any argument that helps explaining it can hardly be exaggerated. Therefore, it is
certainly of value to unearth arguments that imply and explain the unboundedness of the
Legendre functions Pν(ξ), as we aim to do in this manuscript.

1.4. Frobenius’s Theory

It is well-known that solutions to Fuchsian [6,7] differential equations about regular
singular points can have singularities. The local character of selected solutions about regular
singular points can be diagnosed by Frobenius’s theory [9,14,15]. Frobenius’s theory indeed
renders generalized series solutions about regular singular points. The solutions possibly
contain singular factors of the form ξr, in which r is some number, as well as, possibly,
logarithmic factors.

In the case of Legendre’s Equation (3), about ξ = 1, by means of Frobenius’s method,
two solutions are readily found. One solution is analytical, concerned with ξ = 1 (Legendre
function Pν(ξ) of the first kind), whilst the other (Legendre function Qν(ξ) of the second
kind) has a logarithmic singularity. This easily establishes the singularity and indeed the un-
boundedness of Legendre functions of the second kind Qν(ξ). Hence, these mathematically
well-defined solutions Qν(ξ) can be rejected, based on physical arguments, in important
physical application domains. These include quantum mechanics (atomic physics) [11],
electro-magnetism, e.g., [16] and geo- and astrophysical domains, e.g., classical gravitation,
acoustics [17], and fluid dynamics [13,18].

As we just noted, the Legendre functions Pν(ξ) of the first kind are analytical with
regard to ξ = 1, so this case may seem to be more straightforward. However, the situation
here is actually less trivial. Indeed, the decision concerning whether or not these functions
are physically acceptable commonly depends on whether or not they are bounded at the
other regular singular point, ξ = −1. As it is, Frobenius’s theory offers no direct solace
in this respect. Of course, Frobenius, theory does provide series expansions of solutions
about both regular singular points ξ = −1 and ξ = 1. However, at each point, we have
expansions of two linearly independent solutions. The question then remains how all these
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local expansions about distinct points are local manifestations of coherent global functions.
This aspect is not addressed by Frobenius theory.

Only when ν takes integer values n can the series expansions of the Pν(ξ) be shown
to have only a finite number of non-zero terms—thus, they are actually the Legendre
polynomials. Hence, when ν takes integer values, we indeed find physically acceptable
solutions.

In all other cases, one can show that the series expansion about ξ = 1 rendered by
Frobenius’s method for the Pν(ξ) does not converge at ξ = −1. However, then the hurdle
arises that—although some sources [16,19] seem to suggest some argument along this line
of thought—the non-convergence of a series in itself, at some point, provides no convincing
argument for, e.g., the unboundedness of the function it aims to represent. Specifically, in
the case at hand, mere divergence, at ξ = −1, of their series expansions about ξ = 1 does
not provide a truly solid argument, at least not at any elementary level, for rejecting the
functions Pν(ξ) on physical grounds.

1.5. Aim and Prospect

The aim of this manuscript is to present a tailor-made argument at a level that is
as elementary as possible, that shows that, and explains why, Legendre functions of the
first kind, Pν(ξ), are unbounded at ξ = −1. We seek for an explanation that is rooted in a
symmetry in the state space.

We shall show that the reasons include the mirror symmetry of Legendre’s Equation (3)
with regard to ξ = 0 and that the singularity of Pν(ξ) at ξ = −1 is, in that sense, a
consequence of a symmetry. It is indeed in some sense a mirror image of the singularity of
Qν(ξ) at ξ = 1. We shall, as a by-catch, see that the fact that Legendre polynomials are either
even or odd is also implied by the symmetry of Legendre’s equation, but only because this
symmetry is combined with the fact that Qν(ξ) is unbounded.

Hence, assuming an application in physics, the explanation will be rooted in the
symmetry of the physical situation and in the signature, and its consequences, of the
regular singular points. This latter aspect resonates with Gray’s [8] recognition of Fuchs, as
having been the first to see the decisive importance of regular singular points.

2. Form Invariance of an Equation and Implied Transformation Properties of Solutions
2.1. Transformation of Independent Variable

Let

y = y(ξ) := f (ξ), (5)

represents a solution of Equation (3). In expressions (5), the sign “=” means “the value of y
is calculated as a function of ξ" (without specifying what the functional relationship between y
and ξ would be, nor how it would be called). In the second part of expressions (5), the symbol
“:=” specifies that “this value is calculated by some functional expression f ” (note that the
symbol f in itself does not specify which variable would obtain the calculated value). For example,
if y would be the sine of x, f would be ‘sin’.

Now consider the coordinate transform:

ξ = ξ(η) := −η, (6)

which introduces a new independent variable η as an alternative for the old independent
variable ξ. By mere substitution then, we can rewrite any solution (5) of Equation (3) as a
function of the new coordinate η:

y = y(η) := f (ξ(η)) := f (−η) . (7)

In Equation (3), because y is considered to be a function of ξ, primes denote derivatives
with respect to ξ. Using transformation (6) and the chain rule of differentiation, we can
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relate these to derivatives y′(η) of y with respect to the new variable η. We use Leibniz’s
notation, to very explicitly show how this unfolds:

y′(η) =
dy
dη

:=
d f (ξ)

dξ
|ξ=ξ(η)

dξ

dη
:= f ′(ξ(η)) (−1) := − f ′(ξ) =: −y′(ξ), (8)

or:
y′(ξ) = −y′(η). (9)

Differentiating the relation (8) once more with respect to η and applying the same
technique, we can relate the second order derivatives:

y′′(η) =
dy′(η)

dη
:= −d f ′(ξ)

dξ
|ξ=ξ(η)

dξ

dη
:= − f ′′(ξ(η)) (−1) := f ′′(ξ) = y′′(ξ). (10)

Substituting (6), (9) and (10) into Equation (3), we find that, if y = y(ξ) satisfies
Equation (3), then y = y(η) satisfies

(1 − η2) y′′ − 2 η y′ + ν (ν + 1) y = 0; (11)

We stress that this result purely follows from the rules of coordinate transformation,
so essentially, from the principle of substitution and from the chain rule.

2.2. Form Invariance; Mirror Symmetry

The comparison of representations (3) and (11) reveals that both equations are of
exactly the same form: they look as if we have simply used a different symbol for the same
independent variable. In reality, with relation (6), we did introduce a genuinely new
independent variable η. Hence, we observe the non-trivial fact that the form of Legendre’s
equation does not change under the coordinate transformation (6). We say that Legendre’s
equation is form invariant under transformation (6). In this precise sense, Legendre’s
equation is symmetrical under transformation (6). Because transformation (6) geometrically
corresponds to reflection in the vertical axis of the (ξ, y) plane, we shall refer to this
particular symmetry as mirror symmetry. Note that in the applications in physics mentioned
in Section 1.3, this corresponds to a mirror symmetry in the equator of a spheroid. Hence,
as intended, we indeed explore a symmetry in the physical state space.

2.3. Consequences of Symmetry of a Differential Equation for Its Solutions

Because Equations (11) and (3) are equal in form, we can conclude that if y := f (−η)
solves (11), then y := f (−ξ) solves (3).

We may now summarize our results as follows. The form invariance of Legendre’s
equation under transformation (6) implies that, whenever y := f (ξ) is a solution of
Legendre’s Equation (3), then so is y := f (−ξ). N.B: it does not follow that the solutions
themselves are form invariant: we may not conclude that solutions must be even, i.e. it is
not implied (nor excluded) that f (ξ) = f (−ξ).

The argument applies to any differential equation that has the same symmetry. For
example, y′′ − y = 0 is form-invariant under transformation (6); so the fact that y = exp(ξ)
is a solution implies that y = exp(−ξ) is also a solution; however, neither of these functions
is even. In terms of the general form of the differential equation (1), the requirement would
be that Q(ξ) and S(ξ) must be even functions, while R(ξ) should be an odd function of ξ.

3. Mirror Symmetric Fuchsian and Second Order ODEs with Regular Singular Points at
ξ = ±1
3.1. General Result

Now consider a Fuchsian second order differential equation with regular singular
points at ξ = −1 and ξ = 1. Because the equation is linear, its general solution is the span
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of a fundamental set {y1 := f (ξ), y2 := g(ξ)}. Any mirror symmetry of such an equation,
i.e., a form invariance under transformation (6), then implies that

f (−ξ) ∈ span{ y1 := f (ξ), y2 := g(ξ) }, (12)

or
f (−ξ) = α f (ξ) + β g(ξ) , for some numbers α, β. (13)

We now further confine cases to equations for which, as for Legendre’s equation, y2 is
unbounded, while y1 is bounded, for ξ ↑ 1; f (1) is therefore assumed to be finite.

Now, if f (ξ) would be bounded at both regular singular points ξ = ±1, then, consider-
ing (13) in the limit ξ ↑ 1, we conclude that β = 0, because g(ξ) is unbounded in this limit.
Hence, under the adopted restrictions, relation (13) is reduced to

f (−ξ) = α f (ξ) (14)

from which we deduce

f (ξ) = f (−(−ξ)) = α f (−ξ) = α2 f (ξ) (15)

Therefore, we must have α2 = 1, so α = ±1. Hence, with (14), we arrive at the
following

Lemma 1. If a mirror-symmetric, second order Fuchsian ordinary differential equation with regular
singular points at ξ = ±1 has a fundamental solution y2 that is unbounded at the regular singular
point ξ = 1, while the other fundamental solution y1 is bounded at both regular singular points,
then y1 is either even or odd.

3.2. Example: Implied Symmetry of Legendre Polynomials

Legendre polynomials Pn(ξ) are polynomial solutions of Legendre’s Equation (3)
satisfying Pn(1) = 1. Such polynomial solutions exclusively exist for integer values of
parameter ν, as we will conclude from Equation (22), in Section 4.1 [5]. Now, polynomials
are necessarily bounded at both ξ = −1 and ξ = 1. Furthermore, as we will conclude from
Equation (20) in Section 4.1, a second linearly independent solution y2(ξ) of Legendre’s
equation is necessarily unbounded at ξ = 1. Hence we may conclude from lemma 1 that:

Corollary 1. Legendre polynomials must be either even or odd.

This means that the graphs of Legendre polynomials Pn(ξ) are either mirror symmetric
with respect to the vertical axis of the (ξ, y) plane (even) or centrally symmetric with
respect to the origin of this plane (odd). To illustrate these results, the first seven Legendre
polynomials are listed in Table 1. The symmetries of the graphs [20] of these functions are
illustrated in Figure 1.

Table 1. Legendre polynomials Pn(ξ) are polynomial solutions to Legendre’s Equation (3), satisfying
Pn(1) = 1. Such polynomial solutions exclusively exist for integer values of parameter ν. This
table lists the first seven Legendre polynomials. They are either even or odd, in accordance with
Corollary 1.

P0(ξ) = 1
P1(ξ) = ξ

P2(ξ) =
1
2
(
3 ξ2 − 1

)
P3(ξ) =

1
2
(
5 ξ3 − 3 ξ

)
P4(ξ) =

1
8
(
35 ξ4 − 30 ξ2 + 3

)
P5(ξ) =

1
8
(
63 ξ5 − 70 ξ3 + 15 ξ

)
P6(ξ) =

1
16
(
231 ξ6 − 315 ξ4 + 105 ξ2 − 5

)
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Our result here does not lie in the symmetries of these functions as these symmetries
are well-known. Our result is in the fact that these symmetries are implied by the combination
of the mirror symmetry of Legendre’s equation and the unboundedness of its second linearly
independent solution. The significance to physics is that the symmetry of Legendre’s
equation reflects a symmetry in a physical situation.

Figure 1. This figure illustrates Corollary 1: (a) the Legendre polynomials of odd index value are
centrally symmetric with respect to the origin of the (ξ, y) plane. This is illustrated here for index
values 1 (solid), 3 (dashed) and 5 (dotted); and (b) the Legendre polynomials Pn(ξ) that have an even
index n are mirror symmetric with respect to the vertical axis of the (ξ, y) plane. This is illustrated
here for index values 2 (solid), 4 (dashed) and 6 (dotted).

3.3. Reverse Formulation: Absence of Symmetry Implies Unboundedness

A merely reverse formulation of Lemma 1 is:

Corollary 2. If a mirror symmetric second order Fuchsian ordinary differential equation with
regular singular points at ξ = ±1 has a fundamental solution y2 such that limξ↑1 y2(ξ) is
unbounded, while a first solution y1(ξ) is finite at ξ = 1, then, unless y1(ξ) is either even or odd,
limξ↓−1 y1(ξ) is unbounded.

Note that thus, such a singularity of y1(ξ) at ξ = −1 is a consequence of the mirror
symmetry, as well as of the linearity of the Fuchsian differential equation and of the
singularity of the other fundamental solution y2 at the other regular singular point ξ = 1.

As we shall see, this argument applies to the Legendre functions of the first kind, and
hence demonstrates and explains their unboundedness at ξ = −1.

4. Legendre Functions of the First Kind Are Neither Even nor Odd
4.1. Series Expansion about the Origin

From our result in the previous section, it follows that the unboundedness of Legendre
functions of the first kind, Pν(ξ) would be implied by the fact that for non-integer values
of ν, their curves are not mirror symmetric in the vertical axis, nor point symmetric in the
origin of the (ξ, y) plane. That is, to prove that these functions are unbounded at ξ = −1, it
suffices to show that the functions are neither even nor odd. This absence of evenness and
oddness can be confirmed from their series expansions for ξ = 0. We shall explore this in
the present section.

A technical complication is rooted in the fact that Legendre functions of the first kind
Pν(ξ) are defined as those solutions of Legendre’s Equation (3) that take a finite value at the
regular singular point ξ = 1. The functions are conventionally normalized as

Pν(1) = 1, (16)

which sets the leading coefficient of their power series expansion for ξ = 1 equal to a0 = 1.
As a consequence, however, finding their exact value Pν(0) at the origin ξ = 0 is not a trivial
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affair, and hence neither is finding their series expansions about ξ = 0 from scratch, as we
wish to do here, for the sake of offering a self-contained treatment of our topic.

Indeed, because Pν(ξ) is defined as the non-singular solution of Legendre’s Equation (3),
that obeys condition (16), following Frobenius [9,15], we start by looking for generalized
power series solutions

y(x) =
∞

∑
n=0

an xn+r, (17)

of Equation (3), rewritten in terms of a shifted coordinate x

x = ξ − 1. (18)

In terms of x, Equation (3) takes the form

x (x + 2) y′′ + 2 (x + 1) y′ − ν (ν + 1) y = 0. (19)

Following Frobenius’s method [9,10,14,15,19,21–23], we readily find that r needs to
satisfy the indicial Equation [6,7]

F(r) = 0 with F(r) = 2 r2; (20)

here, we follow Boyce and DiPrima [10] in denoting the indicial polynomial by F(r). There
is some historical justification in choosing the symbol F to represent this polynomial, as F
is the initial of both Fuchs and Frobenius, the founders of the theory in which the indicial
polynomial is central [8,15].

From Frobenius’s theory and the fact that the indicial Equation (20) has a double root,
r1 = r2 = 0, it immediately follows that Equation (19) has one analytical solution y1(x) for
the regular singular point x = 0 with y1(x)|x=0 6= 0 while consequently the second, linearly
independent solution is unbounded in the limit x → 0 due to a logarithmic singularity.

Hence, we see that the characters of the Legendre functions of the first and second
kind about the regular singular point x = 0, i.e., ξ = 1, are immediate from the indicial
equation. The same is implied for any Fuchsian differential equation that has (20) as an
indicial equation. Now, in terms of the general form (2) of a Fuchsian differential equation,
the indicial polynomial is given by [15]

F(r) = λ(0) r (r− 1) + p(0) r + q(0). (21)

We observe that whether or not the differential equation has (20) as an indicial equation
only depends on the values of the coefficient functions λ(x), p(x) and q(x) for x = 0.

Proceeding with Frobenius’s method, for the recurrence relation of the coefficients an
for y1(x), as in (17), we readily find:

an+1 = −n (n + 1)− ν (ν + 1)
F(n + 1)

an; (22)

from this, with a0 = 1, all an can be obtained, in principle. The resulting series are the series
expansions of the Legendre functions of the first kind, Pν(x), about the regular singular
point x = 0, or ξ = 1.

From the recurrence relation (22), it follows that the Legendre functions Pν(x) of the
first kind are polynomials PN(x), (the Legendre polynomials indeed), if and only if ν takes
an integer value N. Negative values for such N would not add any independent solutions
that were not already obtained for positive N, while for ν = N and 0 ≤ N, relation (22)
implies that an = 0 for all n, and N < n.
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To decide whether the Legendre functions of the first kind are even or odd, we need
their representation in terms of ξ, so we substitute (18) for x, together with r = 0 into (17)
and expand binomially to find

Pν(ξ) =
∞

∑
n=0

n

∑
m=0

(−1)n−m
(

n
n−m

)
an ξm. (23)

This can be rearranged to

Pν(ξ) =
∞

∑
m=0

∞

∑
n=m

(−1)n−m
(

n
m

)
an ξm, (24)

so that we have

Pν(ξ) =
∞

∑
m=0

cm ξm, (25)

with

ck =
∞

∑
j=k

(−1)j−k
(

j
k

)
aj; (26)

in expressions (23) to (26), we use the notation(
n
i

)
=

n!
i! (n − i)!

. (27)

4.2. Pν(ξ) Is Neither Odd nor Even When ν Is Non-Integer

Because the graph of

f (ν) = ν (ν + 1) (28)

is a parabola, with a minimum for ν = − 1
2 , f (ν) takes all its possible (real) values for

− 1
2 ≤ ν, so we need to consider Pν(ξ) only for these values for ν:

− 1
2
≤ ν. (29)

The function f (ν) then is strictly increasing as a function of ν so that

n < ν implies n (n + 1)− ν (ν + 1) < 0. (30)

We note that 0 ≤ n according to (17). Hence, with (20), we have 0 < F(n + 1). Accord-
ing to the recurrence relation (22) and given that Pν(x)|x=0 = a0 = 1, we conclude that

0 < an for all n < ν. (31)

Now, assume that ν is not an integer and let M be the smallest integer such that ν < M.
Then, from (22), (30) and (31), we find the following sign pattern for the coefficients an:

a0, . . . aM, aM+1, aM+2, . . .
+ + + − + (alternating)

(32)

That is, up until and including aM, all coefficients an will be positive, aM+1 will be
negative, and from then on, the signs of the coefficients will alternate. Furthermore, we may
conclude from the recurrence relation (22) that, for non-integer ν, none of the coefficients
an will take the value zero:

0 6= an, whenever ν is non-integer. (33)
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As a consequence, because (26) implies:

cM =
∞

∑
j=M

(−1)j−M
(

j
M

)
aj, (34)

we may conclude from (32) and (33) that 0 < cM. Similarly, from

cM+1 =
∞

∑
j=M+1

(−1)j−(M+1)
(

j
M + 1

)
aj, (35)

combined with (32) and (33) we conclude that cM+1 < 0.
Therefore, we found two subsequent, non-zero coefficients cn and hence the Legendre

function of the first kind, Pν(ξ), for non-integer ν, is neither odd nor even.
Combined with Corollary 2, this completes our proof that Pν(ξ) is unbounded in the

limit ξ ↓ −1, i.e., at the opposite regular singular point.

4.3. Visualization and Summary

As an example, Figure 2a,b shows how the Legendre polynomials P3(ξ) and P4(ξ)
compare to Legendre functions Pν(ξ) that have index values ν that are slightly smaller
and larger than 3 and 4, respectively. This figure visualizes a summary of our result as
follows. As we concluded from Equation (22), Legendre functions of the first kind Pν(ξ)
are polynomials if and only if the index ν takes an integer value. Because polynomials are
bounded, Lemma 1 implies they must be either even or odd. This was Corollary 1. The
symmetry of the Legendre polynomials was visualized earlier in Figure 1. In Figure 2,
the Legendre polynomials P3(ξ) and P4(ξ) are represented by the dotted curves. In this
figure, they are rather provided as a reference for inspection of the graphs of the other
Legendre functions Pν(ξ). As we proved in Section 4.2, for non-integer values of ν, the
functions Pν(ξ) are neither odd nor even, so their graphs are non-symmetrical. Therefore,
according to the Corollary 2, these functions must be unbounded at ξ = −1. These aspects
of Legendre functions are clearly recognizable in Figure 2.

Figure 2. This figure illustrates our main results: (a) Legendre functions of the first kind Pν(ξ) are
plotted for index values 11/4 (solid), 12/4 (dotted) and 13/4 (dashed); and (b) Legendre functions of
the first kind Pν(ξ) are plotted for index values 15/4 (solid), 16/4 (dotted) and 17/4 (dashed) [20].
Because 12/4 = 3 and 16/4 = 4 are integers, the dotted curves represent polynomials which
are bounded and must hence be symmetrical according to Corollary 1. The other curves are not
symmetrical; hence, they must represent functions that are unbounded at ξ = −1 according to
Corollary 2. The fact that Pν(ξ) is neither even nor odd if ν is not an integer was proven in Section 4.2.

5. Conclusions

To summarize our focus and line of reasoning, we list the following observations.
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In important applications in physics such as atomic physics, electro-magnetism, classi-
cal gravitation, and in astro- and geophysical fluid dynamics, particularly when Laplace’s
operator is involved in spheroidal coordinates, Legendre’s Equation (3) is key.

The mathematical literature about special functions offers the extensive and detailed
documentation of the general solution of this equation in terms of Legendre functions of
the first and second kind.

The complete problem statement in physics, however, often does not merely consist of
Legendre’s equation, but rather of Legendre’s equation supplemented with the requirement
that we are looking for functions that solve this equation while they remain finite throughout
the domain of application. A consequence of this condition is that all Legendre functions
except Legendre polynomials are unacceptable, not as solutions of Legendre’s equation,
but as solutions of the problem statement in physics.

From the point of view of physics, a theoretical treatment that includes detailed
documentation of all Legendre functions is therefore at least uneconomical and risks
missing quintessential arguments.

In the present manuscript, we offer an alternative in the form of an argument in as
elementary terms as possible, that shows and explains why only Legendre polynomials are
bounded and hence acceptable solutions to the stated problem. As a by-catch, we found that
these polynomials must be either even or odd.

There seems to be added value in that our argument shows that these results are all
consequences of a mirror symmetry in the physical state space, but only if and because
this symmetry is combined with the signature of the regular singular points of Legendre’s
equation, as it can be readily obtained from Frobenius’s theory. The fact that the signature
of the regular singular points has such a decisive role in the argument is fully in accordance
with the classical works of Fuchs on the class of differential equations that are now named
after him.
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