
Manage 4D Historical AIS
Data by Space Filling Curve

Jinglan Li
2020

MSc thesis in Geomatics for the Built Environment

MSc thesis in Geomatics

Manage 4D Historical AIS Data by Space
Filling Curve

Jinglan Li

June 2020

A thesis submitted to the Delft University of Technology in partial
fulfillment of the requirements for the degree of Master of Science in

Geomatics

Jinglan Li: Manage 4D Historical AIS Data by Space Filling Curve (2020)
cb This work is licensed under a Creative Commons Attribution 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in the:

Geo-Database Management Centre
Faculty of Architecture & the Built Environment
Delft University of Technology

Supervisors: Dr.ir. Martijn Meijers
Dr. Haicheng Liu

Co-reader: Dr. Ken Arroyo Ohori

http://creativecommons.org/licenses/by/4.0/

Abstract

This MSc thesis aims to research how to efficiently manage 4D AIS data (Longitude, Latitude, Time, and
MMSI (the ID of the vessel)) to do the fast query by using the Space Filling curve in PostgreSQL. The
AIS is the Automatic Identification System which is born because the frequent occurrence of maritime
accidents has caused casualties and economic losses. AIS is intended to assist a vessel’s watchstanding
officers and allow maritime authorities to track and monitor the vessels’ movement.

For now, the AIS has been used in various kinds of fields because the AIS data is really important and
useful. The AIS data contains lots of useful information such as the dynamic information (including
ship location, speed, heading, and so on), the static information (including ship name, ship type...), and
some other types of data. Because of the useful information that AIS includes, there a great many useful
applications based on the AIS data. For example, the AIS data is used for detecting the vessels’ anoma-
lies motions or tracking the vessels. While the studies mainly focus on the applications of the AIS data,
the efficient management of the AIS data is neglected. Hence, I am going to study how to efficiently
manage the multidimensional AIS data.

Space Filling Curve (SFC) will be used to manage the multidimensional AIS data. The SFC is a great
method for indexing the multidimensional data. The SFC can map data in multidimensional space to
1D space. There are lots of kinds of SFC, such as Morton curve, Hilbert curve, Gray curve, and so on.
And the Morton curve and Hilbert curve are used in this thesis because of the property of the locality
form the nD space is preserved in the location on the curve [Dai and Su, 2003] and both are so-called
quadrant recursive curves [Meijers and van Oosterom, 2018] which is the very significant property.

In my research, I proposed two kinds of methods to manage 4D AIS data. One is the 4D integrated
approach that the 4D AIS data is encoded to SFC together. The other is the 3D integrated approach,
only 3D AIS (Longitude, Latitude, and Time) data is encoded. To test the two approaches, bounding
box query (to find the vessels in a given space and time range) and trajectory query (to find the position
information of a specific vessel in a give time range) will be implemented in the database. To verify the
usability and superiority of my approach, the benchmark is set.

The comparison between the two approaches I proposed will be done. And results prove that the SFC
approach I used to manage the 4D AIS data is great after comparing it with the benchmark I put for-
ward.

v

Acknowledgements

With the coming of summer vacation, my time of studying in TU Delft is coming to an end. 2020 is
a turbulent year and also a challenging year. Due to the impact of Coronavirus-19, we can only work
and study at home. Thanks to the help and care given by teachers and friends, I was able to happily
complete my tasks during the outbreak.

First of all, I want to express my thanks to my main mentor, Martijn Meijers. From the beginning of
my topic selection, he showed me the right path. During the completion of the thesis, he tirelessly an-
swered all my questions and urged me to complete the periodic tasks on time. And he unreservedly
passed on to me his technical know-how. His previous works help me to complete my thesis. Then, I
want to give my thank to my second mentor, Haicheng Liu. Thanks him for explaining the things which
I do not understand in detail and sharing his great ideas and comments for my research with me. And
I would also thank my co-reader, Ken Arroyo Ohori. Thanks him for reading my thesis and giving me
useful comments which help me a lot.

Finally, I want to show my thanks to my family and my friends. Thank you for encouraging and com-
forting me when my mood is low. Formally because of your presence, I am more motivated to move
forward.

vii

Contents

1 Introduction 1
1.1 Problem statement . 1
1.2 Research questions . 2
1.3 Thesis outline . 3

2 Related work 5
2.1 Management of moving objects . 5
2.2 Mange and organize data in database . 6

2.2.1 Manage data in relational database . 6
2.2.2 Manage data in Not only SQL (NoSQL) . 10

2.3 One-dimensional indexing technology . 11
2.4 Relevant research . 12

3 Methodology 13
3.1 Data preparation . 13

3.1.1 Decoding AIS data . 14
3.1.2 Loading AIS data . 14

3.2 Clustering and indexing . 14
3.2.1 Space filling curve appraoch . 15
3.2.2 Managing 4D AIS data through SFC approach . 17

3.3 Performance test . 19
3.3.1 Query space filling curve . 19
3.3.2 Query regarding to different indexing approach . 22

4 Implementation 25
4.1 Tools and the datasets . 25

4.1.1 Software . 25
4.1.2 Hardware . 25
4.1.3 Datasets . 26

4.2 Metrics of performance . 26
4.3 Implementation . 27

4.3.1 Data preparation . 27
4.3.2 Clustering and indexing . 28
4.3.3 Querying . 32

4.4 Benchmark . 35

5 Analysis and results 37
5.1 4D integrated SFC approach . 37

5.1.1 Bounding box query . 37
5.1.2 Trajectory query . 42

5.2 3D integrated SFC approach . 43
5.2.1 Bounding box query . 43
5.2.2 Trajectory query . 44

5.3 Benchmark and comparison . 45

6 Conclusion 47
6.1 Research overview . 47
6.2 Future work . 48

ix

List of Figures

2.1 Types of moving objects . 6
2.2 KD Tree . 7
2.3 R Tree(https://www.geeksforgeeks.org/introduction-to-r-tree/) 8
2.4 Point Quadtree [Volker and oliver, 1998] . 8
2.5 Region Quadtree [Volker and oliver, 1998] . 9
2.6 Morton curve . 9
2.7 Hilbert curve . 9
2.8 The hilbert curve in 2D space . 10
2.9 B-tree . 11
2.10 BRIN index . 11

3.1 Flowchart of the approach . 13
3.2 Flowchart of data preparation . 14
3.3 Example of raw AIS data . 14
3.4 Morton curve in 2D space . 15
3.5 Hilbert curve in 2D space . 15
3.6 Principle of bit interleaving . 16
3.7 Process of managing 4D AIS data . 17
3.8 Process of 4D integrated method . 18
3.9 Process of 3D integrated method . 19
3.10 the brief query process . 20
3.11 Example of query SFC . 21
3.12 Query depth =2 . 21
3.13 Query depth = 1 . 21

4.1 Dataset . 26
4.2 Screenshot of the static data . 27
4.3 Screenshot of the dynamic data . 27
4.4 Data to be used in database . 29
4.5 Different query box . 32

5.1 Querying using BRIN index . 38
5.2 Comparison between B-Tree index and BRIN index . 38
5.3 Query using Morton curve and Hilbert curve . 41
5.4 Time needed for each step in query (using query box1) . 41
5.5 Time needed for each step in query (using query box4) . 41
5.6 Bounding box query using 4D integrated approach . 42
5.7 Trajectory query using 4D integrated approach . 43
5.8 The time used in each step . 43
5.9 Bounding box query using 3D integrated approach . 44
5.10 Trajectory query using 3D integrated approach . 45
5.11 The comparison between 3D approach and plain table using bounding box query 46

xi

https://www.geeksforgeeks.org/introduction-to-r-tree/

List of Tables

4.1 Implementation plan . 27
4.2 Decoding process . 28
4.3 Column types in database . 28
4.4 Rows in database . 28
4.5 Scaling Longitude . 29
4.6 Scaling Latitude . 30
4.7 Scaling Time . 30
4.8 Ranges of data in each dimension . 30
4.9 Time spent on encoding SFC key . 31
4.10 The example of bounding box query using 4D integrated approach 33
4.11 The example of bounding box query using 3D integrated approach 34
4.12 The example of trajectory query using 4D integrated approach 35
4.13 The example of trajectory query using 3D integrated approach 35

5.1 B-Tree index and BRIN index . 38
5.2 The time for encoding/decoding SFC . 39
5.3 The number of SFC ranges after filtering step . 40
5.4 The range of SFC keys after query (query box1) . 40
5.5 The range of SFC keys after query (query box4) . 40
5.6 The number of SFC keys after filtering (query box1) . 44
5.7 The number of SFC keys after filtering (query box4) . 44
5.8 Query time using plain table in database (bounding box query) 45
5.9 Query time using plain table in database (trajectory query) 45
5.10 Table size in databse . 46

xiii

1 Introduction

With the growth of the global economy, the global maritime traffic is becoming increasingly busy, and
the frequent occurrence of maritime accidents has caused casualties and economic losses. The ship Au-
tomatic Identification System (AIS) was born in the 1990s [Feng et al., 2019]. The AIS which is installed
on vessels continuously sends ship static information, dynamic information, navigation-related infor-
mation, etc., which greatly facilitates the information exchange between ships and between ships and
shore management stations [Feng et al., 2019]. AIS aims to keep ships safe by avoiding the collision at
sea. In December 2000, International Maritime Organization (IMO) ’s navigation sub-committee offi-
cially issued a proposal on mandatory installation of AIS equipment on ships [Li, 2017]. AIS is really
useful in real life. Generally speaking, AIS is an effective tool for accomplishing navigational safety
goals, and by doing so, can provide critical pre-emptive maritime safety benefits, but also provides a
data opportunity with which to understand and help mitigate the impacts of maritime traffic on the ma-
rine environment [Robards et al., 2016]. AIS is intended to assist a vessel’s watchstanding officers and
allow maritime authorities to track and monitor vessel movements. AIS integrates a standardized VHF1

transceiver with a positioning system such as a Global Positioning System receiver, with other electronic
navigation sensors, such as a gyrocompass or rate of turn indicator. And there are a lot of sources of the
AIS data which are collected at several places around the world. Within Europe, a.o. EMSA, Kystverket,
Hellenic Coastguard, Dirkzwager, and Marine Traffic collect the data 2.

The AIS data is the most important part that is worthy of in-depth studying. Autonomously broadcasted
AIS messages contain dynamic information (including ship location, speed, heading, rate of turn, des-
tination and estimated arrival time) and static information (including ship name, ship MMSI ID, ship
type, ship size and current time), which can be transformed into useful information for intelligent mar-
itime traffic manipulations [Mao et al., 2018]. The AIS data is encoded by the rule ’NMEA-0183, the
useful information is acquired by decoding the different types of raw AIS data. In general, there are 27
kinds of message types in the payload of AIS data, the dynamic information is in the position report
(type 1, 2, 3) which provides a common reporting structure for navigational information3, which are
the most popular information for decoding. And the static information is in the static report (type 5).
Besides, The update frequency of AIS data is very fast. Overall, ship broadcasts AIS information every
2s to 6min while sailing[Liu, 2017]. And the update frequency of different types of data is also different.
Considering the huge number of ships at sea and the extremely fast update frequency of AIS, we can
imagine that the amount of AIS data should be quite large.

1.1 Problem statement

Because of the useful information that AIS includes, a great many useful applications based on the data
from AIS. Especially the application about the analysis of the vessels. [Ristic et al., 2008] uses statisti-
cal analysis of AIS data for the detection of possible anomalies in vessels’ motions. When the normal
behavior of a vessel is assumed, a prediction of future vessel motions shall be made [Meijers et al.,

1VHF: very high frequency is the International Telecommunication Union(ITU) designation for the range of radiofrequency
electromagnetic waves from 30 to 300 megahertz, wich corresponding wavelengths of ten meters to one meter.https://en.
wikipedia.org/wiki/Very_high_frequency

2More information can be found in this website: https://webgate.ec.europa.eu/fpfis/mwikis/essnetbigdata/index.php?
title=Special:Pdfprint&page=WP4_Deliverable_1.

3More information about AIS data type can be found in: https://gpsd.gitlab.io/gpsd/AIVDM.html, which is written by Eric S.
Raymond in Nov 2019.

1

https://en.wikipedia.org/wiki/Very_high_frequency
https://en.wikipedia.org/wiki/Very_high_frequency
https://webgate.ec.europa.eu/fpfis/mwikis/essnetbigdata/index.php?title=Special:Pdfprint&page=WP4_Deliverable_1
https://webgate.ec.europa.eu/fpfis/mwikis/essnetbigdata/index.php?title=Special:Pdfprint&page=WP4_Deliverable_1

1 Introduction

2016]. As Rajabi et al. wrote, the port is an important hub station at sea, it is a connection between the
sea and the land which provides facilities for the ships docking to load and discharge passengers and
cargo. The better decisions could be made by the terminal operators in real-time with the help of data
from AIS. And the smart port could be built which has a great impact on the global economy. Also,
there are many algorithms about the trajectory prediction by using and analyzing the AIS data. As I
mentioned before, the amount of the AIS data is huge, the historical AIS data which means the ’old’
data would be discarded from the memory because they are relatively redundant compared to the real-
time AIS data. While, If these ”expired” data can be used properly, they can also play a considerable
role in reality. Obviously, the value of these historical data has been discovered by quite a few people.
Hexeberg et al. proposes a quite novel data-driven approach to predict the next position of vessels by
recursively using historical AIS data in the neighborhood of a predicted position. Wang et al. through a
large number of AIS data analysis of historical ships, the parameters such as ship traffic flow, navigable
density, and passing capacity were calculated, and the navigable saturation model was built based on
the field of stopped ship’s visual distance. And the AIS data even can be used to forecast the develop-
ment of the maritime industry [Lechtenberg et al., 2019]. From here we can also see the importance of
proper use of AIS data. Although the AIS data can be used in various kinds of applications, there seems
does not exist an approach to store or manage the AIS data. As Mao et al. wrote, there is no existing
standard AIS benchmark database in the maritime research area, which makes it quite inconvenient for
researchers and practitioners in the field since collecting a usable dataset will cost a lot of time and effort.
AndDe Vreede also found this problem that so many researches are mainly focusing on the use of AIS
data, the efficient management of the AIS data is neglected by most people. Fortunately, however, this
area which is neglected when we deal with AIS data is included in the field of moving object 4research.

Management of moving objects and be seen as structuring and storing of moving objects. When facing
the moving objects, space and time data are focused on by people. Moving object data management
is defined as the storage and structuring of data from vessels within a database to support data an-
alyzes[De Vreede, 2016] in this thesis. Lots of research on moving objects found that the DBMS is a
great way to deal with this data of moving objects (longitude, latitude, time). For now, there are some
studies focus on manage the multidimensional AIS data in the database, while, the researches still focus
on managing 3D (longitude, latitude, time) data from AIS data in the database. Based on the above
mentioned and many unmentioned applications of AIS data, we can see that it is far from enough to do
the Spatio-temporal query for AIS data. The storage and query of multidimensional AIS data need to
be discussed in depth. For example, a variety of applications of AIS data for maritime safety is based
on the trajectory analyze which needs 4D data which are the longitude, latitude, timestamp, and the
Maritime Mobile Service Identify (MMSI) of the specific vessel. And there are lots of great methods to
deal with multidimensional data such as R-tree and space filling curve. The space filling curve is a great
way to deal with multidimensional data, it maps the data in multidimensional to 1D space and then the
B-Tree indexing method can be used to support the efficient query. De Vreede used this approach to
deal with the AIS data in MongoDB. This MSc thesis will give a conclusion that whether the 4D histor-
ical AIS data can be efficiently managed in PostgreSQL to support the efficient query. The method will
introduce the way that I am going to deal with 4D AIS data. And the research questions of this thesis
will be introduced in the following part.

1.2 Research questions

This MSc thesis aims to figure out whether 4D AIS data (longitude, latitude, time, MMSI) can be ef-
ficiently stored and indexed by Space filling curve in 1D space to support the fast query. The main
research question is:

How to efficiently manage 4D data (Longitude, Latitude, Time, MMSI) of vessels to do
the fast query by using Space Filling Curve in PostgreSQL?

To answer the main question, the following sub-questions should be focused on:
4Moving objects: objects whose position changes continuously

2

1.3 Thesis outline

• How to better manage the 4D data to support the efficient query? Dealing with the integrated 4D
data or dealing with the integrated 3D data (3D + 1D) ?

• How to scale data in each dimension properly to compute the SFC key?

• Which Space filling curve performs better in the 4D data querying? Morton curve or Hilbert curve?

• How will the BRIN index be applied to columns in database to support the queries? From which
aspects can I compare the indexing method?

1.3 Thesis outline

The rest of the thesis is organized as follows:

• Chapter 2 will give a detailed introduction about the related work of the thesis. Some research on
storing and managing moving objects and some commonly used indexing methods that I will use
in this paper.

• Chapter 3 is going to start with an overview of the Space filling curve approach which describes
the principle of using space filling curve to index multidimensional data and how to query the
data which is encoded in SFC. And then the main methodology I will use to efficiently manage 4D
AIS data to achieve the query which I am going to use will be introduced.

• Chapter 4 covers the description of the implementation of the SFC indexing approach and the
two kinds of queries (bounding box query and trajectory query) will be applied to the different
indexing methods.

• Chapter 5 concludes the methods that are used for managing 4D AIS data and the future work
will be introduced finally.

3

2 Related work

The related work chapter mainly includes the studies which are relevant for the thesis. Section 2.1 is
going to explain the management of data which is included in the research of management and storage
of moving objects firstly. The two kinds of data of moving objects, one is the dynamic or updated
data and the other is the static or historical data, will be introduced. Section 2.2 mainly talks about
the existing way to store and manage the mass dataset in database using various kinds of structure in
database, either the relational or non-relational database will be mentioned. Next, the two indexing
methods which I am going to use in the thesis will be introduced in section2.4. And the chapter will end
with some relevant research on storing and management AIS data in database these years.

2.1 Management of moving objects

The management of moving objects has been intensively studied in recent years. A wide and in-
creasing range of database applications has to deal with spatial objects whose position changes over
time[De Almeida and Güting, 2005]. An infrastructure is emerging that enables data management ap-
plications that rely on the tracking of the locations of moving objects such as vessels, vehicles, and so on
[Jensen et al., 2004]. Indexes for moving objects need to satisfy the efficient query and frequent updates
at the same time. Hence, studies about moving objects were proposed. Moving objects are the most
common and important component in a diverse range of phenomena, such as urban transportation,
ship logistics in the ocean[Feng et al., 2019].

In recent years, database applications are used to deal with these moving objects. The objective of mov-
ing objects databases is to extend database technology to support the representation and querying of
moving objects and their trajectory [Frentzos, 2008]. There are two types of Spatio-temporal objects, one
is discretely moving objects and the other is continuously moving objects. Regarding the first type, for
example, land parcels, roads, pollution areas [Forlizzi et al., 2000], countries, rivers, and so on, which
is quite easy to be managed. The continuously moving objects which change their position in extent
continuously are much more difficult to deal with [Güting et al., 2000]. To efficiently and properly man-
age the moving objects, several major moving objects models have been proposed. The first generation
model offers simple structure objects, which show in figure2.1a, like single points, continuous lines, and
simple regions. To represent a variety of the complex region, the second generation model is proposed.
it includes the complex points, complex lines, and complex, which show in figure2.1b, regions[Praing
and Schneider, 2007]. There are two kinds of models, one works on the present and future positions of
moving objects, and the other works on the past position of objects, asking historical queries[Frentzos,
2008].
And the model for dealing with the historical position is quite different from the model which is used for
present and future positions. For managing historical position, Erwig et al. proposed a novel approach
where moving points and moving regions are viewed as 3D (2D space + time) or higher-dimensional
entities whose structure and behavior is captured by modeling them as the abstract data type. The data
type they defined could be used integrated as the base (attribute) data types into various types of DBMS.
And Erwig et al. also introduced about this methods. Reiss et al. gives an approach that the manage-
ment of historical data from a data stream point of view and implies a solution to manage and query
current and historical data at the same time by using bit map indices [De Vreede, 2016].

With regarding the current and future position of moving objects, many models have also been pro-
posed. The objects Spatio-temporal (MOST) data model is proposed by Sistla et al.. They represent the

5

2 Related work

(a) simple type (b) complex type

Figure 2.1: Types of moving objects

position as a function of time. Moving objects are referred to as dynamic attributes that change over time
even if its position is not updated [De Vreede, 2016]. And the moving objects are always represented
as a series of observations that consist of an id, location, and time in the GIS data model [Hornsby and
Egenhofer, 2002]. While these models need comprehensive and complicated computation to support
and even for the same kind of data, different GIS data models need to be built when applied to different
fields. In recent years, Feng came up with a new methodology to improve this current situation [Feng
et al., 2019]. They used relative space to build the GIS data model. In relative space, relative dynamic re-
lationships between moving objects are easy to build independently of whether they can be geocoded by
coordinates. Importantly, the analysis of moving objects in relative space could easily follow structural
requirements. Hence, the relative space-based GIS data model of moving objects changes the analysis
of current absolute space-based GIS models and facilitates the efficient computation of real-time relative
relationship dynamics [Feng et al., 2019].

With the increasing number of computer applications that rely on large Spatio-temporal data sets, it be-
comes essential to provide efficient query processing techniques for spatio-temporal databases. [Mokbel
et al., 2004]. Benetis et al. propose an algorithm for answering the nearest neighbor query for moving
objects in the plane. Mokbel et al. give an introduction about the scalable incremental hash-based algo-
rithm which is used for evaluating a set of concurrent continuous spatio-temporal queries.

All in all, in maritime, the moving object data model can be applied for assessing collision risk [Bye
and Aalberg, 2018], predicting vessel behavior[Zissis et al., 2016] and path planning[Cummings et al.,
2010]. While the spatial-temporal data is mainly used in the moving object data model. More and more
application in maritime need not only the spatial-temporal data but also the 4D data (with the MMSI)
or even higher-dimensional data.

2.2 Mange and organize data in database

The indexing technology can improve the operation efficiency of the database, and it is the base to real-
ize the efficient storage and query of massive data in the database. The main idea of the indexing is to
avoid the whole table being scanned in order to reduce the query time. There are two types of databases
that are most commonly used. One is the relational database which has been leading within the data
management[De Vreede, 2016], the other is the relatively new NoSQL. In my research, the relational
database will be used. Hence, the detailed approach of structuring and managing data in the relational
database will be introduced.

2.2.1 Manage data in relational database

In traditional RDBMSs, the entries are stored in a table, and an additional spatial index is built sepa-
rately (Fox et al., 2013). The spatial indices are used by spatial databases to optimize the spatial queries
access to relational databases can be divided into two categories according to data types, point access
method (PAM), and spatial access method (SAM) (Hao, 2010). PAMs are used to improve the access
time in collections of spatial points. SAMs are more general and are used to improve the access time in
collections of geographic objects (e.g. points, lines, polygons, etc.) [Volker and oliver, 1998]. With the

6

2.2 Mange and organize data in database

Figure 2.2: KD Tree

development of data quantity and storage, many different index schemes have emerged to help users
access data more quickly and accurately.

Point access methods (PAM)

A point access method is a data structure that supports storage and retrieval of points in a multidimen-
sional space [Shih and Wang, 2004]. Point access methods have primarily been designed to perform
spatial searches on point databases (i.e., databases that store only points) [Volker and oliver, 1998].The
function of the PAMs is to cluster the points which close in nD space into the same areas of the index
structure[Shih and Wang, 2004] which could accelerate the efficiency of queries. There are various PAMs
indexing technologies have been mentioned.

• K-D Tree The K-d-tree is a d-dimensional data structure which shows in figure2.2 and one of the
most prominent PAMs [Brisaboa et al., 2009]. The K-D Tree is a binary search tree that represents a
recursive subdivision of the universe(nD data structure) into subspace utilizing (D-1) dimensional
hyperplanes[Volker and oliver, 1998]. It is a balanced binary search tree, the internal nodes of the
tree represent axisymmetric hyperplanes pace. And the axis of symmetry is the median of the
dimension with the smallest difference among the n dimensions. The axis of symmetry divides
the space represented by its dimension into two halves which correspond to the two children of
the inner node. Then, the recursive method is used to divide each space into several subspaces
and perform relevant search operations in the subspaces[Xu, 2010].

Although KD tree is suitable for discrete points as organizational objects, there are two main dis-
advantages of the KD Tree, One disadvantage of the k-d-tree is that the structure is sensitive to the
order in which the points are inserted. Another one is that data points are scattered all over the
tree[Volker and oliver, 1998].

Spatial access methods (SAM)

The main propose of SAM is to support efficient spatial selection, for example, range queries or nearest
neighbor queries, of spatial objects. Besides, it is also used to implement efficient spatial analysis such
as map overlay, and other types of spatial joins [van Oosterom, 1999]. The first spatial access method
(SAM) was R-tree which was proposed in 1984 by Guttman[Xu, 2010], and then many varieties of R-tree
were evolved according to different needs and application, such as R+-tree, R*tree, etc. Also, R-tree is
the extension of B-tree to multidimensional point data. And the Space Filling Curve is another SAM, it
maps high-dimensional data to one-dimensional data, and then uses one-dimensional index structures
to store the data which improves the performance of the storage of multidimensional data.

• R-Tree
One of the most popular spatial access methods and a paradigmatic example is the R-tree[Guttman,
1997]. The R-tree shows in figure2.3 is an index structure that was defined by Guttman in 1984[van

7

2 Related work

Figure 2.3: R Tree(https://www.geeksforgeeks.org/introduction-to-r-tree/)

Figure 2.4: Point Quadtree [Volker and oliver, 1998]

Oosterom, 1999]. The tree is kept balanced by splitting overflowing nodes and merging under-
flowing nodes. There is an example that describes the R-Tree. Although the R-Tree can organize
any dimensional data, when the data quantity of the index becomes large, the overlap between
the depth of the tree and the index space will increase, and the search performance will decrease
sharply [Kothuri et al., 2002].

Besides, there are many variants of R-Tree, such as R*-Tree, Hilbert R-Tree, and so on, which also
play important roles in various fields.

• Quadtree
The quadtree with its many variants is closely related to the k-d-tree. The Quadtree was definded
by Finkel and Bentley in 1974 [Fox et al., 2013]. A quadtree is a tree where each non-leaf node
has exactly four children. This structure allows one to split a rectangular region into quarters in
a natural way [Fox et al., 2013]. Quadtrees are most often used to partition a two-dimensional
space by recursively subdividing it into four quadrants or regions. The regions may be square
or rectangular or may have arbitrary shapes. Quadtree spatial indexing was explored by lots of
organizations and researchers [Kothuri et al., 2002]. There are lots of variants of Quadtree, such
as point quadtree, region quadtree, PM quadtree. The first quadtree variant is the point quadtree
which is a binary search tree [Volker and oliver, 1998], the figure shows a two-dimensional point
quadtree (in figure2.4). It is very similar to kdtree but has a decisive difference. K-Dtree is the den-
sity balanced tree while Quadtree is the space partitioning tree which could cause the redundant
of the space.

The next variant I am going to introduce is the region quadtree (in 2.5), which is the most famous
one. Region quadtrees are based on a regular decomposition of the universe; that is, the 2d sub-
spaces resulting from a partition are always of equal size[Volker and oliver, 1998]. First, the area of
interest is enclosed by a square. A square is repeatedly divided into four squares of equal size until
it is completely inside (a black leaf) or outside (a white leaf) the polygon or until the maximum
depth of the tree is reached [van Oosterom, 1999].

8

https://www.geeksforgeeks.org/introduction-to-r-tree/

2.2 Mange and organize data in database

Figure 2.5: Region Quadtree [Volker and oliver, 1998]

Figure 2.6: Morton curve

• Space filling curve
A space filling curve is a great method for indexing the multidimensional data and it is also the
method which is important in this thesis. The space filling curves map multidimensional space
into the 1D space. The SFC is a thread that goes through all the points in the space while visiting
each point only one time. Thus, the SFC imposes a linear order of points in the multi-dimensional
space [Mokbel et al., 2003]. There are a variety of kinds of SFC, such as Morton, Hilbert, Gray,
and so on. And the Morton curve (in figure2.6) and Hilbert curve (in figure2.7) are used in this
thesis because of the property of the locality form the nD space is preserved in the location on
the curve [Dai and Su, 2003] and both are so-called quadrant recursive curves [Meijers and van
Oosterom, 2018] which is the very significant property. It is precise because of this property of
these two curves that they can be connected to the quadtree so that the key value of SFC has
a fixed relationship with the code of the quadtree. This is also the basis of the method I will
use in my thesis. This clustering reduces the number of disk accesses and improves the response
time[De Vreede, 2016] At the same time, the SFC can be extended to multidimensional space which
is used to make the index for the multidimensional space.

The Morton curve is relatively easy to make compared with the Hilbert curve. The principle of
making the Morton curve is the bit-interleaving. The data in each dimension should be converted

Figure 2.7: Hilbert curve

9

2 Related work

(a) a (b) b (c) c

Figure 2.8: The hilbert curve in 2D space

to the binary and interleave the bits of each coordinate. For example: (x, y, z) = (2, 6, 1) = (010, 110,
001) = (010 011 100) = 156th cell along the Z curve. While, for the Hilbert curve, it is not very easy
to make. For the data in 2D space. the square is divided into 4 sub-squares, then the rotating and
mirroring need to be done based on the first step. And the Hilbert curve with different depths in
2D space shows in figure2.8.

The great advantage of the SFC is that the one-dimensional data structure method which is more
mature and much easier to implement can be used in the high-dimensional data.

• Relationship betwwen SFC and Quadtree
The principle of decomposition of the space using quadtree or a 2n tree can be combined with the
space filling curve to map the nD space to 1D space [Psomadaki, 2016]. There is an existing rela-
tionship between the Morton keys in 2D space and the quadtree which is proposed by [Gargantini,
1982]. Because the Morton curve and the Hilbert curve are both recursive, the Hilbert key in 2D
space also has a similar relationship with the quadtree.

2.2.2 Manage data in Not only SQL (NoSQL)

A NoSQL originally referring to non SQL or non-relational is a database that provides a mechanism
for storage and retrieval of data. This data is modeled in means other than the tabular relations used in
relational databases https://www.geeksforgeeks.org/introduction-to-nosql/. NoSQL systems are
distributed, non-relational databases designed for large-scale data storage and massively-parallel data
processing across a large number of commodity servers[Moniruzzaman and Hossain, 2013]. Without
exception,non-relational databases abandon the relational model and adopt column storage, key-value
storage, and document-oriented storage, which effectively solves the problem of poor read-write perfor-
mance and scalability in mass data management[PAN et al., 2016]. There are three main characteristics
of NoSQL databases, they are strong consistency, high availability, and partition tolerance[Moniruzzaman
and Hossain, 2013]. MongoDB has become the most widespread and popular solution due to its open
nature, especially the feature of native support for geospatial indexes, which gives it a natural advan-
tage in storing massive distributed geographic information sharing data[PAN et al., 2016]. PAN et al.
proposed using batch data migration to migrate storage and AIS data in the Oracle database to Mon-
goDB database. It uses the characteristics of the MongoDB database to improve the storage performance
of AIS data, but the important export of tedious format data makes the data unavailable. It is used
in applications with high real-time requirements, such as VTS ship monitoring. The rising interest in
NoSQL databases does not mean that such a database is the best suited for all use cases[De Vreede,
2016]. Each database offers different solutions for specific cases. Hence, it is important to choose the
proper database when facing a different situation. The study about the management of AIS data in the
relational database is still important.

10

https://www.geeksforgeeks.org/introduction-to-nosql/

2.3 One-dimensional indexing technology

Figure 2.9: B-tree

Figure 2.10: BRIN index

2.3 One-dimensional indexing technology

• B-Tree
Today almost all database systems use B-trees as their main access method. And the structure
of B-tree shows in figure2.9. It is the binary search tree and can store more than two keys per
node and it is always balanced after insertion, deletion, or updating [Psomadaki, 2016]. A B-tree
of order m is a search tree in which each non-leaf node has up to m children1. Here is a B-Tree
example (m=5):

• BRIN index
BRIN is the Block Range Indexes, which are, as the name implies, the Indexes to sections of a Block
of data. The design idea is very simple, is to scan the whole table, record the data contained in
each fixed section of the maximum and minimum values of the indexed fields, in turn into the
index space. When a query needs to be processed to find records that match the query criteria, the
BRIN index can be used to speed up the lookup by skipping sections that do not match the query
criteria [database kernel group, 2015].

The BRIN index consists of a set of identical index blocks, each containing a fixed number of index
records, each containing a pointer to the most valuable block. Each record in the most valuable
block holds the maximum and minimum values of the extents and the block number of the corre-
sponding data section start block [database kernel group, 2015].

1fromhttps://www.cs.cornell.edu/courses/cs3110/2012sp/recitations/rec25-B-trees/rec25.html

11

https://www.cs.cornell.edu/courses/cs3110/2012sp/recitations/rec25-B-trees/rec25.html

2 Related work

BRIN indexes are efficient if the ordering of the key values follows the organization of blocks in
the storage layer. In the simplest case, this could require the physical ordering of the table, which
is often the creation order of the rows within it, to match the key’s order. Keys on generated
sequence numbers or created data are the best candidates for BRIN index[Augustine, 2019].

2.4 Relevant research

Psomadaki proposes a method that uses a space filling curve for the management of dynamic point
cloud data. De Vreede implemented Python to compute the SFC key technique in combination with the
MongoDB database and tested this with moving ship trajectory data of the Automatic Identification Sys-
tem (system). Meijers and van Oosterom achieves the needed steps for making SFC approach available
fully inside a DBMS, clustering, and indexing historic vessel movement data with SFC. And for now,
the studies are mainly focusing on dealing with 3D data, how to manage the data in higher-dimensional
still needs to be done.

12

3 Methodology

This MSc thesis is going to research how to efficiently manage massive moving objects (vessels) by
using Space Filling Curve to achieve efficient data storage and data query. And the SFC approach will
be fully used inside the DBMS to reduce the costly data transfer in the procedure when dealing with
data. The 4D AIS data (longitude, latitude, MMSI of vessels, and the corresponding time) which is
closely related to the behavior of the ship is the data I am going to deal with. And the bounding box
query and trajectory query will be used to test the efficiency of different methods dealing with 4D AIS
data. This chapter is used to introduce the main steps required to achieve this goal and to introduce the
methods that need to be tested and compared in each step. The approach is divided into 3 main steps:
data preparation, data clustering, and indexing, and performance test. The overflow of the procedure
will be shown below. Section 3.1 introduces the detailed steps will be implemented in preparation of
the AIS data to make it suitable for use in the next steps. Section 3.2 describes the different Space filling
curve indexing methods that will be used to deal with 4D AIS data and the possible alternatives in the
procedure of the SFC approach. Lastly, section 3.3 summarizes the queries which are intended to be
tested and the key performance indicators which need to be compared to give the proper and correct
results. Figure 3.1 shows the overflow of the approach.

3.1 Data preparation

As mentioned in related work, the original AIS is decoded by certain rules, and there is much use-
ful information in the AIS data after interpretation that is of great significance to lots of applications.
To study the moving object (vessels), three attributes need to be focused on, that are the longitude of
vessels, the latitude of vessels, and the corresponding time, which are crucial to the spatial-temporal
analysis. Nowadays, the analysis of the behavior of ships is becoming increasingly important, and
simple spatial-temporal analysis is not enough. The processing of multi-dimensional data is becoming
more and more important. As I mentioned in related work, There have been some studies on how to
use three-dimensional AIS data. The three-dimensional AIS data here refers to the longitude, latitude,
and corresponding time of the vessel. In my research, I will process four-dimensional AIS data (4D AIS
data), adding MMSI data to the original three-dimensional data. Hence, the 4D AIS data I am going to
use refers to the longitude, latitude, corresponding time, and MMSI of the vessel. And more analysis
can be done based on managing 4D AIS data, such as the trajectory analysis of vessels. I am going to
consider the MMSI which is also a piece of useful information together. Therefore, the data I intend

Figure 3.1: Flowchart of the approach

13

3 Methodology

Figure 3.2: Flowchart of data preparation

Figure 3.3: Example of raw AIS data

to use are the longitude and latitude of vessels, the corresponding time, and MMSI of vessels in the
AIS data. To make the SFC approach fully inside the DBMS which is used for avoiding the expensive
data transfer to external programs during use [Meijers and van Oosterom, 2018], the data will be loaded
into the database directly after decoding. And the overall flowchart of data preparation shows in figure
3.2:

3.1.1 Decoding AIS data

The AIS data is decoded by certain rules. AIS receivers report ASCII data packets as a byte stream
over serial or USB lines, using the NMEA 0183 data formats 1. As the figure 3.3 shows below, the AIS
packets usually have the same introducer “!AIVDM” or ‘AIVDO’ 2. These encoded lines of data ask
for decoding and reformatting pursuits before implementation in the specified data organization into
database is needed[De Vreede, 2016]. There are a great many of message type in AIS data, such as
position report (code:1,2,3), base station report (code: 4), static and voyage related data report (code: 5)
and so on https://en.wikipedia.org/wiki/Automatic_identification_system, and each type has
their unique code. Therefore, we can decode the AIS data regarding the rules and acquire a certain type
of data that is needed. In my research, the 4D AIS data is used for analyzing the behavior of vessels.
The position report is the information needed.

3.1.2 Loading AIS data

In order to make space filling curve fully inside database, it is crucial to load the decoded AIS directly to
database. As we all know, the data types of the data need to be explicit when loading data to database.
And the type of data is also important in the following steps. From the previous steps, we can know
that all information in the position report will be loaded when loading. While, the 4D AIS data I want
to use have been clarified in the previous article, in order to lay the groundwork for the subsequent
experiments, I need to clarify the data type of 4D AIS data, e.g. the data type of the MMSI is integer.

3.2 Clustering and indexing

Clustering and indexing are the most important step in the whole process. Retrieving fast output from
queries makes cluster and index techniques for smart storage of the data necessary. Different cluster
and indexing techniques exist to provide close storage on disk for related data and fast retrieval of this
data[De Vreede, 2016]. The Space Filling Curve is the main indexing method I use in this thesis. And

1more information can be found in this website:https://gpsd.gitlab.io/gpsd/AIVDM.html
2More information can be found in this website: https://gpsd.gitlab.io/gpsd/AIVDM.html

14

https://en.wikipedia.org/wiki/Automatic_identification_system
https://gpsd.gitlab.io/gpsd/AIVDM.html
https://gpsd.gitlab.io/gpsd/AIVDM.html

3.2 Clustering and indexing

Figure 3.4: Morton curve in 2D space Figure 3.5: Hilbert curve in 2D space

the B-Tree index and BRIN index are often used as auxiliary indexes of the SFC index method. These
two indexes are made on the SFC key which is in 1D space to support the efficient query. The section
3.2.1 will give the introduction about the Space filling curve approach, the section 3.2.2 will explain
the details about the process of the different clustering and indexing method based on the space filling
curve approach and the possible alternatives during the procedure.

3.2.1 Space filling curve appraoch

The space filling curve approach is one of the greatest indexing methods. Utilizing the SFC, the nD
coordinates are mapped to a 1D coordinates which are the positions on the SFC curve[Meijers and van
Oosterom, 2018], which is helpful when dealing with multidimensional data.

Motivation of using SFC approach

Space filling curves enable higher dimensional objects to be expressed, stored, analyzed, and catego-
rized in one dimensional space[?]. There are many types of SFC, such as Morton curve, Hilbert curve,
Moore curve, and so on. The main reason regarding why I am going to use Space Filling curve is that
the SFC can reduce dimension. A space filling curve (SFC) is a mapping from a multidimensional uni-
verse to a single-dimensional universe. And it usually has great clustering properties. In addition to
that, the SFC as an organization structure is to get fast access to selections of nD points as the records
for the points can be sorted along the curve because of the preservation of the locality[Meijers and van
Oosterom, 2018]. The curves I am going to use in my thesis are Morton curve and Hilbert curve (in
figure 3.5) also because these two curves both have the great characteristic of locality preservation.

Principle of SFC approach

The key point in the SFC approach is the encoding of the data in each dimensional, in other words, it is
to encode multidimensional data into the position on the curve used. There are examples in 2D space
(the level is 3, which will be explained later) describe what encoding means in the SFC approach.

As the figure 3.5 shows, If the horizontal direction is regarded as the x-axis, the vertical direction as the
y-axis, and the lower-left corner as the origin, then the coordinates of the red point in the figure are (1,
6), and the coordinates of the blue point are (3, 3). The red dot has a Morton code of 22 and a Hilbert
code of 23. The blue dot has a Morton code of 15, and its Hilbert code is 10. The data in two dimensional

15

3 Methodology

Figure 3.6: Principle of bit interleaving

converted to the 1D data.

There are already several existing algorithms that could calculate the Morton key and Hilbert key. The
algorithms I am going to use are written by Martijn Meijers, which are fully implemented by python.
The principle to calculate the key of the Morton curve is bit-interleaving. The value in each dimension
has to been converted to binary and then are interleaved with each other. The figure 3.6 shows the prin-
ciple of generating Morton code in 2D space.

And for Hilbert curve, it is the variant of the Peano curve. The method to compute the code for the
Hilbert curve is a bit complex compared to the Morton curve. Lots of rotation and mirroring are needed
when creating the Hilbert curve. It is not difficult to imagine that it takes a lot of loops to calculate the
Hilbert code. In contrast, the Morton code obtained by bit interleaving is easier to obtain. Both Morton
curve and Hilbert curve are so-called quadrant recursive curves[Meijers and van Oosterom, 2018] and
both curves are useful in various kinds of application.

Integrated SFC appraoch and non-integrated SFC appraoch

Psomadaki’s thesis gives a detailed description of these two SFC approaches. In short, the integrated
SFC approach means that each dimension is going to be treated equally in the process of encoding the
SFC key. The data in each dimension will be encoded in SFC key. The non-integrated SFC approach
which means that data in a few dimensions is not encoded into SFC key, but stored as separate columns
in the database. Both methods are the methods I will use when managing 4D AIS data.

Partial resolution key and full resolution key

To using the SFC approach, first of all, we need to be clear whether the SFC key which acquired through
encoding is the full-resolution key or partial resolution key. There are two ways to calculate SFC key.
One is using partial resolution key, the other is using full resolution key. Just as its name implies, full-
resolution key is the key that stores and retain the complete original information. With full resolution
keys the original attribute (= dimension) values can be calculated from the SFC key without loss of in-
formation, in this case, the values for the dimensions do not have to be stored explicitly [van Oosterom
et al., 2018]. For partial resolution key, since we usually zoom out the values of each dimension when
calculating the partial resolution key for efficient storage, and the value of each dimension must be an

16

3.2 Clustering and indexing

Figure 3.7: Process of managing 4D AIS data

integer when calculating the SFC key. Due to the problem of rounding the value, some information
may be lost during scaling. Thus a key may correspond to many pieces of information. Therefore, if
the partial resolution key is used, its original data cannot be discarded and needs to be stored in the
database for the query.

In my research, the approach I am going to use is the full resolution key to avoid too much meaningless
data being selected because their corresponding SFC keys are the same. As mentioned above, when we
use the full resolution key, the values of each dimension can be obtained by decoding the SFC key, so
they do not have been stored explicitly.

3.2.2 Managing 4D AIS data through SFC approach

The core of this thesis is how to efficiently manage 4D AIS data through space filling curve. There are
two main ways to manage 4D AIS data. These methods are to use the 4D integrated SFC approach, 3D
integrated SFC approach. While, there are many uncertain factors in this method, such as how to adjust
and scale the original data of each dimension to calculate the SFC key to achieve fast query. This is also
the part I need to focus on in my paper. And the figure 3.7 shows the brief process of managing 4D AIS
data

• Define the type of SFC key
According to the introduction above, I will use the full resolution key in this paper. And the
integrated SFC approach and non-integrated SFC approach will be used to manage the 4D AIS
data.

• Define the scaling method
In order to keep the complete information and ensure that the value of each dimension is an integer
to calculate the SFC key, the scaling is an important step. First of all, we must follow the principle
when calculating SFC code, that is, the value of data in each dimension must be an integer. The
quality of the scaling method can also determine the quality of the SFC method. There exist a great
many methods to scale the data I am going to use, and the key to the problem is to ensure that
all dimensions in the curve should have a similar size [De Vreede, 2016] which makes the data in
each dimension will be treated equally.

• Define the indexing method
The main indexing and clustering method I am going to use is the SFC approach. The indexing
methods which are made on the SFC key are used for the better querying. B-Tree index and BRIN
index both are great indexing method that utilized in 1D data.

17

3 Methodology

Figure 3.8: Process of 4D integrated method

From the introduction about the whole procedure of managing 4D AIS data, we can know that there are
three main methods to manage the 4D AIS data. And there are two secondary indexes we can choose
to make on SFC key. The comparison of two secondary indexes will be implemented in 4D integrated
SFC approach because there is only one column (4D SFC key) needs to utilize the secondary index, the
results of the comparison will be explicit. The rest method will use the B-Tree index as the secondary
index.

4D integrated SFC approach

The 4D integrated SFC approach is to encode the data in 4 dimensions (longitude, latitude, time, MMSI)
which have been scaled properly together and keep the 4D SFC key only in the database (shows in
figure 3.8). For the 4D integrated SFC approach, the Morton curve and Hilbert curve will be used, and
the comparison between these two curves will be introduced. Also, the B-Tree index and BRIN index
will be made on the 4D SFC key to be compared. For the rest approach, only the Morton curve will
be used and the B-Tree index will be implemented because the Morton curve is easy to implement and
the B-Tree index is more common to be used. The main idea for the thesis is to see whether the SFC
approach can be used to deal with 4D data.

3D integrated SFC approach + 1D data

This is the 4D non-integrated SFC approach, it encodes the data in 3 dimensions (longitude, latitude,
time). I chose to put these three columns together because MMSI is a 9-digit data, and I use the full-
precision SFC key, which will cause the key to be too long and take up too much storage space when
calculating the sfc key. Not only that, but I also considered the query I used. This will also be introduced
in the section 3.3. Hence, as the figure 3.9 shows, there are the 3D SFC key and a separate MMSI column
in database.

18

3.3 Performance test

Figure 3.9: Process of 3D integrated method

3.3 Performance test

The querying is used as the performance test for indexing methodology. In this thesis, I am going to
implement two kinds of query which is useful for lots of applications to test, one is the bounding box
query and the other is the trajectory query. The bounding box query is to find which vessels are in the
give space range during a period. And the trajectory query is to find the historical positions of a specific
vessel in the given time range. The section 3.3.1 introduces the method of querying space filling curve
and the section 3.3.2 gives the overview of the query procedure regarding the different indexing method.

3.3.1 Query space filling curve

To implement the query based on the SFC approach, the quite new but efficient query algorithm is
proposed by [Psomadaki, 2016]. The core of the query algorithm is to connect the Quadtree structures
with SFC curve.

Principle of query SFC

The Quad-code 3 has a special relationship with the Morton curve and Hilbert curve. Psomadaki uses
the corresponding relationship between the quadcode and the SFC key. He used SFC at different levels
to approach the query geometry by decomposing the Minimum Bounding Box of the dataset recur-
sively. The Quadcodes are acquired by checking the spatial relationship between the Quadcode and the
geometry, the Quad code will be selected if the Quadcode intersects with the geometry (see the example
in figure). The quadcode will be transformed to the SFC key and the consecutive keys will be merged
to reduce the time of query. Then we can acquire lots of ranges of SFC key which contains the whole

3Quadtree partition a two-dimensional space by recursively subdividing it into four quadrants or regions 4, Quad-code repre-
sents the 4 quadrants. In this thesis, ’0’ represents the SW quadrant, ‘1’ stands for SE, ‘2’ stands for NW, and ‘3’ stands for NE.
And each successive digit on the string represents the quadrant of a deeper level [Psomadaki, 2016].

19

3 Methodology

Figure 3.10: the brief query process

information after querying.

Process of query SFC

Here is the flow chart of the procedure of the query shows in figure 3.10. We can see from the figure
that the query procedure is mainly divided into two steps: filtering step and the refinement step. And
there are two significant parameters during the process which are the storage depth and query depth.
The definition will be introduced in the following part.

• Filtering step
The first I am going to explain is the storage depth. The Quadtree with a depth of n is used to
represent the region consisting of

2n × 2n

small ranges 5. Because the special characteristic (both are quadrant recursive curves) of the Mor-
ton curve and Hilbert curve, Morton curve and Hilbert curve can also have the different depth to
represent the data (That is why I wrote the ’level 3’ in the previous figure, the depth of the curve
I used is 3). To query the SFC, the specific level used to store the whole information need to be
defined, which is determined by the largest number among each dimension regarding using full
resolution key (the storage depth is 3 in the following figure). The query depth is the depth that I
am going to use when querying.

Here I will give an example to introduces the importance of the storage depth and query depth.
The main difference between these two depths is that the storage depth is determined by data
itself and it is set beforehand. While the query depth can be decided ourselves and the query depth
could influence the results of query. As I mentioned in the previous paragraph, the storage level in
figure 3.11 is 3. Then the query range is given which is the grey polygon. Then the decomposition
algorithm determining the quadcodes strings which represent the query range regarding to the
query depth, and different SFC ranges will be selected because of the query depth. In figure 3.11a
we can see that the query range is cover several quadcode string, they are represented by the
bold numbers in the figure. And then the neighbor will be merged regarding to the query depth,
the query depth in figure 3.11c is 3 which is as same as the storage depth. In the figure 3.11, the
quadcodes are connected with code of Space filling curve (here is the Morton curve). As we can
see that, the quadcode 021 represents the Morton code 9, the quadcode 03 stands for the Morton
range 12- 15, and the rest can be deduced by analogy.

5from Wikipedia(Quadtree)

20

3.3 Performance test

(a) Query range with quadcode
(b) Merge of the consecutive

range (c) Connect with SFC code

Figure 3.11: Example of query SFC

(a) Query range with quadcode
(b) Merge of the consecutive

range

Figure 3.12: Query depth =2

We can see from the figure 3.11 that when the query depth is as same as the storage depth, no
redundant SFC ranges will be selected. While, what happens when the query depth is less than
the depth used for storage, we can see the following example. As the figure 3.12 When the query
depth is 2, the SFC code in the red rectangle will all be select. And when the query depth is 1
(shows in figure 3.13), all SFC code will be selected. In practical applications, when the data is very
large, the depth used when storing data is very large. If we use the same depth when querying,
the query time will be greatly increased. Although the selected SFC code is not redundant, there
will be many SFC ranges used for describing the query range. However, when the query depth is
too small, too many SFC codes will be selected and the query efficiency will be reduced. Therefore,
to improve query efficiency, we should find the proper query depth that best matches the data we
use. And this step which aims to select the real SFC range names filtering step.

Figure 3.13: Query depth = 1

21

3 Methodology

• refinement step
From the above explanation, we can see that as long as the depth of the query is not equivalent
to the depth used for data storage, there will be extra SFC code selected. Therefore, refinement
is necessary, which is to find the SFC code that fully inside the query range. The SFC key will be
decoded back to the original data regarding to the scaling method used before. And the data is
going to be determined whether the point is within a query range (the shape of the query range I
am going to use is a rectangle). Finally, we can get accurate results.

Summary of query steps

In the previous subsection, I introduced how to query SFC. Here I will summarize this process and its
key points.

• Determine the query range

• Clear the storage depth according to dataset
Because I use the full resolution SFC key, the storage depth which is determined by dataset itself
depends on the maximum value in dataset.

• Determine the query depth
The query depth can take any value (its value cannot be greater than storage depth), but it is worth
noting that it will directly affect the efficiency of the query.

• Decompose the space
Regarding to the query depth, the space will be divided into blocks of the same size. e.g. for the
nD data (query depth is s), the space will be divided into

(2s)n

blocks. And each block has its quadcode which could be transformed into SFC key later.

• Determine the relationship between query range and the blocks (filtering step)
Judge the geometric relationship between the query range and the block, and there are several
possible results: intersection, inclusion, and separation. Then we can select the blocks which
intersect with query range or be included in query range. These blocks are what we want.

• Acquire the truly SFC ranges (refinement step)
Although the SFC range intersects with the query box, SFC keys in SFC range may not all in the
query box. Hence, the SFC keys within a SFC range needs to be checked. And the SFC keys needs
to be decoded to give an exact value which is used for the spatial check (whether the point is inside
the query box).

• Decode the SFC ranges to the original data

3.3.2 Query regarding to different indexing approach

In my thesis, the bounding box query and the trajectory query will be implemented to test the efficiency
of managing 4D AIS data I used. And first I will introduce the two queries:

• Bounding box query
The bounding box query is to find all the vessels in an given area and time range.

• Trajectory query
The trajectory query is to acquire the position information (here is the longitude and latitude) of a
specific vessel in a period of time.

22

3.3 Performance test

To achieve these two queries, The data needed is the longitude, latitude, time and ID of the vessels. And
this is also the four-dimensional data we want to process.

The query method is a little bit different when dealing with the different indexing approach. And the
detailed steps will be mentioned in next chapter.

23

4 Implementation

This chapter mainly describes the implementation to present whether the SFC approach can provide
an efficient way to manage the 4D AIS data (longitude, latitude, Time, MMSI). The detailed principle
and the process of the whole approach have been described in the previous chapter. The specific imple-
mentation and testing of the method will be highlighted in this chapter. And the chapter is organized as
follows: The tools and datasets will be firstly introduced in Section4.1. Then, Section 4.2 will mention the
use cases which are used to test the SFC approach. After that, the detailed steps of the implementation
will be given in Section 4.3. Finally the section 4.4 will be shown.

4.1 Tools and the datasets

As mentioned in the previous chapter, some software has been used during the procedure. Some Python
scripts have been used to fulfill the demands. The scripts are used to decode the decoded AIS data and
also used to encode and decode the SFC. In addition, there is also the scripts that select the SFC ranges
according to the given range and query depth. The Python codes are implemented in PostgreSQL by
PL/PYTHON.

4.1.1 Software

The software which is used in this research are:

• PYTHON
The python programming language is used for encoding and decoding the SFC, making the query
range, and selecting the SFC ranges according to the query range. The python scripts are embed-
ded in PostgreSQL through PL/PYTHON extension. The PL/Python allows PostgreSQL functions
to be written in the Python language (https://www.postgresql.org/docs/10/plpython.html).
The version I use is Python3.7

• POSTGRESQL
From the data loading to the query procedure, the whole process is in PostgreSQL. PostgreSQL is
a general-purpose and object-relational database management system, the most advanced open-
source database system 1. And the version I use is PostgreSQL12.1.

4.1.2 Hardware

The laptop I am using is the HP ZBOOK STUDIO G5. The processor is Intel(R) Core(TM) i7-8750H. The
RAM is 16GB and it is the 64-bit operating system.

1from (https://www.postgresqltutorial.com/what-is-postgresql/)

25

https://www.postgresql.org/docs/10/plpython.html
https://www.postgresqltutorial.com/what-is-postgresql/

4 Implementation

Figure 4.1: Dataset

4.1.3 Datasets

I will use the datasets that is the AIS data within 3 days (from 2016-12-10 to 2016-12-13). Here I select
2000 points to show the distribution of the vessels (shows in figure 4.1). And the data I am going to use
is the longitude, latitude, time, and MMSI in AIS data which are acquired after selecting in database.
The exact ranges of data in 4 dimensional are:

longitude: 0.00003 - 5.99999
latitude: 50.00030 - 52.99999

time: 2016-12-09 23:59:59.865 - 2016-12-12 23:59:59.957
MMSI: all 9-digit data

4.2 Metrics of performance

In order to clarify whether the SFC approach can efficiently manage 4D AIS data regarding to the
method I propose, the metrics are important to be set. In my research, four metrics play important
roles: 1. Fetching time, 2. Percentage of redundant points, 3. Query depth. 4. storage size for the data
and index. Whether we can find a balance between these four metrics is our main concern.

Firstly, for querying in the database, fetching time is very important data. A quick query is what we
want to achieve. And to see whether the data is well structured in the database, the fetching time is
a vital key performace indicator(KPI). Then the percentage of the redundant points is another crucial
metric in my research. As I mentioned in the methodology, some points which are not truly inside
the query range will be selected due to the difference between the storage depth and query depth.
Obviously, if the query depth is small, lots of SFC ranges will be selected and the step of the refinement
which is made to select the points truly inside the database will take much more time. Hence, the more
redundant time, the more time will be taken on refinement. From the description above, the importance
of the query depth is clear. So, the balance between the percentage of redundant points and the query
depth is attractive. And it is also interesting to find that whether the data in SFC form can be efficiently
managed.

26

4.3 Implementation

implementation plan
Methods Implementation Number of ranges will be used

4D integrated approach

index comparison (B-Tree/BRIN) 2
SFC comparison (Morton/Hilbert) 2

bounding box query 4
trajectory query 4

3D integrated approach bounding box query 4
trajectory query 4

Table 4.1: Implementation plan

Figure 4.2: Screenshot of the static data

4.3 Implementation

This section will give a detailed description of the method that is theoretically mentioned in the method-
ology. And first I will give the implementation plan in table 4.1 which will give the answer to the main
question and the sub-questions.

4.3.1 Data preparation

This step is the base of the whole process and it includes two parts: decoding data and loading data.
And before that, there is one thing important needed to be done when testing query in database and
that is to make the data use the single query path. The following statement is used:

SET max parallel workers per gather = 0;

• Decoding data
The basic process is like this:

Original data→ Python script→ CSV file
Two kinds of CSV files will be acquired after processing by the python script which is written by
Martijn Meijers. One is the static file (shows in figure 4.2) and the other is the dynamic file (shows
in figure 4.3). The information in the static file is about the static and voyage related data which
gives the such as length, width data of the vessels. And the dynamic data is the navigational
information which includes the longitude, latitude, heading, speed of vessels.

As we can see that the AIS data indeed has a great amount of useful information. As I mentioned
before, the data I am going to use are longitude, latitude, time, and MMSI. Obviously, the file
which includes dynamic information is what I want. Hence, I am going to import the dynamic
data into database through the ’COPY’ sentence and select the data that I use. Here I record the
decoding time of the dataset (shows in table 4.2)which is computed through computing the start
time and end time.

Figure 4.3: Screenshot of the dynamic data

27

4 Implementation

Decoding time Size of dynamic data
591s (9min51s) 812MB

Table 4.2: Decoding process

MMSI Integer
Ts Time without time zone

Longitude real
Latitude real

status integer
turn integer

speed real
course real

heading integer

Table 4.3: Column types in database

import time
start = time.process time()
decoding...
end = time.process time()
decoding time = end - start

• Loading data The basic process is like this:
Create table in PostgreSQL→ Copy data to database→ Create new table→ Extract the information I need

To create a table in the database, we must give the type of each column in the table. Based on the
dynamic information, there are 9 kinds of information in dynamic data and I will assign the fol-
lowing types to each column:

Then we can create the table in database and select the data we need properly:

create table table name(mmsi int, ts timestamp without time zone, longitude real, latitude real,
... , heading integer);

create table table name(select mmsi, longitude, latitude, ts from table(the table created before));

The ’copy’ instruction in PostgreSQL is to copy data between a file and a table which is described
in detail in the PostgreSQL documentation.

\copy file name from ’path’ delimiter e\’t’ csv header;

After extracting the information I need, the table in database looks like in figure 4.4. And we
can also see the total rows that in table 4.4.

4.3.2 Clustering and indexing

The main method I will use in this paper is the space filling curve method. The SFC key will show in a
separate column after computing. And the type of the column is NUMERIC in case the value would be

datasets total rows
small datasets 11389217

Table 4.4: Rows in database

28

4.3 Implementation

Figure 4.4: Data to be used in database

Longitude
Step Example Conversion time in

database
original data 51.51316 0
Multiply 100000 5151316 33.815s
Minus the mini-
mum value of the
column

(5151316 - 5000030)
151286

29.439s

Alter column type Real to Integer 17.010s

Table 4.5: Scaling Longitude

large (using full resolution key).

Encoding data using SFC

The encoding step is an very important step in whole process which is achieved by python scripts. And
the script is used in PostgreSQL through PL\PYthon. Before encoding the data to SFC key, the first thing
to do is to scale the data. The reason why scale data is needed is because there are certain rules when
calculating the SFC key. The most important thing is that the data of each dimension must be an integer.
We can see from the above that the data types of the four-dimensional data I use are different, e.g. the
type of the ’longitude’ is the ’real’, so they need to be unified.

• Scaling data
In order to use the full resolution key, the information in each dimension should not be discarded.
And the value in each dimension should be an integer at the same time. In addition, the size in
each dimension should be similar in order to make the data in each dimension equal. According
to the analysis of the 4D AIS data, MMSI consists of nine digits. The longitude and latitude values
are all five digits after the decimal point and the Time is described by timestamp.

For the longitude and latitude, I multiply 100000 to get the integer and I convert the time into
UNIX time to get the integer. The UNIX time is a way to track time as a running total of seconds
and the count starts at the Unix Epoch on January 1st, 1970 at UTC which has been introduced
detailed in this website (https://www.unixtimestamp.com/). As I mentioned before, the type of
the Time column is the timestamp without the time zone. While I have to create a new column to
store the UNIX time after converting and the type of the new column is double precision. And I
do not scale the MMSI because it is already integer. Because the value is a bit large after encoding
to SFC key, I minus the minimum value of each column to reduce the space the data needs in
database. The steps are the basic scaling method which show in table 4.5, table 4.6, and table 4.7.
And the MMSI does not need scale because it is the 9-digits value and it is discontinuous data.

After the basic scaling of the data in each dimension, some further steps will be implemented.
And for the three methods I am going to use, scaling will be slightly different. In order to make

29

https://www.unixtimestamp.com/

4 Implementation

Latitude
Step Example Conversion time in

database
orginal data 4.22004
Multiply 100000 422004 27.894s
Minus the mini-
mum value of the
column

(422004 - 3) 422001 22.822s

Alter column type Real to Integer 17.113s

Table 4.6: Scaling Latitude

Time
Step Example Time (small

datasets)
orginal data 2016-12-15

00:00:00.034
0

Convert UNIX
time

1481756400.034 34.712s

Multiply 1000 1481756400034 35.050s
Minus the mini-
mum value of the
column

428400169 33.113s

Alter column type Double precision to
Integer

16.312s

Table 4.7: Scaling Time

the data in each dimension equally (in a similar size), some further steps will be done. After the
basic scaling, the range of data in each dimension is different from the past. The new range shows
in table 4.8:

As we mentioned in the methodology, it is important to make the data in each dimension equal
when encoding the SFC. For the different indexing methods, the scaling method is slightly differ-
ent.

– 4D integrated method
When I intend to encoding 4D SFC, the data in 4 dimensional (longitude, latitude, time,
MMSI)should be treated equally. Hence, I multiply 1000 for the longitude and latitude to
make the data have a similar size.

– 3D integrated method
The 3D data (longitude, latitude, time) should be treated equally. Obviously, the longitude
and latitude need to be multiplied by 1000.

• Encoding SFC
As we mentioned before, there will be a new column to store the SFC and the type of the col-
umn is NUMERIC. The SFC I am going to use is the Morton curve and Hilbert curve. There are
the Python scripts named ’test sfc’ about encoding and decoding the SFC and I implemented the

Ranges
Longitude 0 599996
Latitude 0 299969
Time 0 259200092

Table 4.8: Ranges of data in each dimension

30

4.3 Implementation

SFC dataset
Morton key 7min32s
Hilbert key 21min42s

Table 4.9: Time spent on encoding SFC key

scripts in database by PL/PYthon. Here I give an example to describe how I use the PL/PYthon
(the names of python functions which are used for encoding the Morton key and Hilbert key are
nenc and henc):

CREATE FUNCTION hencode (ARR BIGINT []) AS $$
FROM test sfc IMPORT henc
RETURN henc(ARR)
$$ LANGUAGE PLPYTHON3U

After encoding, the multidimensional data is converted to one-dimensional SFC key. Through
4D integrated SFC approach, 4D data (longitude, latitude, time, MMSI) is converted to SFC key.
Similarly, 3D data (longitude, latitude, time) is converted to SFC key by applying 3D integrated
approach. And I also counted the running time of encoding the Morton curve and Hilbert curve
which shows in table 4.9.

Clustering data

I cluster the data by ordering the data in the table based on the SFC key. The ORDER BY operator is
used to cluster the data in the table.

create table table name (select * from orginal table order by SFC key);

Making index

The BRIN index and the B-Tree index are made on SFC key and separate column to support the efficient
query.

To create B-Tree index in PostgreSQL:
create index index name on table name(column name);

To create BRIN index in PostgreSQL:
create index index name on table name using brin (column name) with (pages per range = 32);

As we can see that there is a parameter needed when creating BRIN index. And the parameter is
the pages per range. It is the important parameter which determine the number of data in one block
and it effects the efficiency of query as well. In my research, I will test the BRIN index with different
pages per range to see which one is more suitable for my query. And the BRIN index will be compared
with the B-Tree index in different aspects, such as creating time, storage space, and whether they can
accelerate the query speed. As I mentioned before, I will use 4D integrated approach and 3D integrated
approach. And there are different columns left in database when using different approaches. Hence, I
will introduce the specific method.

• 4D integrated SFC
As I mentioned in the methodology, the comparison of the BRIN index and BTREE index is done
by using 4D integrated SFC. Hence, the BRIN index and BTREE index will be made on SFC key

31

4 Implementation

Figure 4.5: Different query box

one by one. And there is only one column left in database (4D SFC key), the index will be made
on the 4D SFC key.

• 3D integrated SFC
There are two columns (3D SFC key & MMSI) left after the encoding of SFC, the B-Tree index will
be made on MMSI and 3D SFC key.

4.3.3 Querying

The performance of the different indexing approach is going to be tested by implementing the designed
queries. There are two common queries that I am going to use: bounding box query and trajectory
query. The queries are fully executing in PostgreSQL.

Query range

The query boxes show in figure 4.5 is the ranges that I am going to use. The yellow one is the smallest
and the green one is the biggest.

Bounding box query

In order to do the query using SFC, some functions have been proposed to achieve it. Combining the
principle of querying SFC mentioned in Methodology, an important function should be focused on. The
function is to get the SFC ranges according to the given ranges.

The bounding box query is to ask all vessels in a certain range of an area in a period. The data the query
needs is the longitude, latitude, time, and MMSI. The results of the bounding box query can be used to
analyze the channel saturation in a certain area at sea. Because the bounding box query can not ask for
the exact time and the AIS message is sent every 6s to 2 mins according to different types of vessels, the
time interval of 2mins is going to be implemented to find all vessels in a given geographical area. For
the different integrated SFC method, the queries would be a bit different to find the best way to do the
query efficiently.

• 4D integrated approach Only the 4D SFC key is left in database after using 4D integrated approach
and the index is made on the 4D SFC key. As I mentioned the ’summary of the query process’ in
the previous chapter, the following steps need to take to do the bounding box query:

32

4.3 Implementation

dimension minimum value maximum value
longitude lon1 lon2
latitude lat1 lat2

time t1 t2
MMSI 102044598 989799838 (the whole range of MMSI)

Table 4.10: The example of bounding box query using 4D integrated approach

– Create the query box
ultilizing the 4D integrated approach, what I am going to query is the 4D SFC. So the query
box must be the 4D hyper box, that is, I have to give the query range in four dimensions
to generate the 4D query box. The ranges show in figure 4.5 will be implemented. Here I
will give an example to show how to generate the query box. If I am going to query which
vessels are in the area ((lon1, lat1) - (lon2, lat2)) in the time period (t1 - t2), the query range in
4 dimensions will show in table 4.10. And we can find that the whole range of MMSI will be
used to generate the query box because we can not make sure that which vessels are in the
range we want to query. To process the hyper box in program, a special class named ’ndbox’
is created for the hyperbox in Python.

– Filtering step
Filtering step is to find the SFC ranges regarding to the query depth applied by judging the
relationship between the blocks and the query box. As I mentioned before, more SFC ranges
may be selected when query depth is smaller that the storage depth. To acquire the SFC
ranges, the function named ’nquery’ and ’hquery’ in python will be used. These two func-
tions have the same parameters which are the ndbox and the query depth. The function
returns the SFC ranges (by giving the minimum and maximum value of the SFC range) and a
boolean value which means whether the range is fully inside the query box or intersect with
the query box.

def nquery(query, query depth)
...
result = []
result.append((start, end, added value))
return result

Also, the PL\PYthon will be used to allow the function in Python can be used in PostgreSQL.
Here is the code which shows the filtering function when using Morton curve in PostgreSQL:

CREATE FUNCTION sfc nquery (lo integer[], hi integer[], query depth integer)
RETURNS TABLE(lower numeric, upper numeric, in out integer) as $$
from test sfc import nquery
from test relate import relate
import test relate
return nquery(test relate.ndbox(lo, hi), query depth)
$$ LANGUAGE PLPYTHON3U

Hence, we can use the following instruction to acquire the SFC ranges in PostgreSQL:

select * from sfc nquery(array[102044598, lon1, lat1, t1], array[989799838, lon2, lat2, t2],
query depth)

if the query depth is smaller than the storage depth, more SFC ranges will be selected and the
refinement step is needed. Through the above steps, we can get the number of SFC ranges
and the range (minimum and maximum) of each SFC range. In order to understand more

33

4 Implementation

dimension minimum value maximum value
longitude lon1 lon2
latitude lat1 lat2

time t1 t2

Table 4.11: The example of bounding box query using 3D integrated approach

intuitively how many SFC keys are selected in order to better study the efficiency of query,
we can get through the following SQL statement which join the two table together: (the fil-
tering step datasets is the table that includes the SFC ranges, and there are three columns in
this table, they are minimum value, maximum value, and a boolean value which shows the
relationship between the query box and the ranges.)

select SFC key from original dataset a, filtering step datasets b
where a.morton key ≥ b.lower and a.morton key < b.upper;

– Refinement step
The principle of refinement step is to decode the SFC ranges which intersect with the query
box to find the SFC ranges that truly inside the query box. And the principle to find the ’truly
data’ is to find the orginal data according to the SFC keys which is achieved by decoding SFC
keys, and the decoded data in each dimension will be compared to the each dimension of
the query box which is achieved by function ’overlap’. To avoid us decoding all SFC ranges
which acquire from the filtering step, we only decode the SFC ranges which are not fully in-
side the query box (can be known from the in out value). Also, the function of decoding is in
Python, we use it by PL\PYthon.

CREATE FUNCTION ndecode (value numeric, dims integer)
RETURNS bigint[] AS $$
FROM test sfc IMPORT ndec
RETURN ndec(value, dims)
$$ LANGUAGE PLPYTHON3U

And the refinement step will be execute by following instructions. And the function overlap
in following instruction is to judge whether the point is inside the query box.

The function overlap:
CREATE FUNCTION overlap (lo bigint[], hi bigint[], onekey list bigint[])
RETURNS boolean AS $$
1. for i in range (ndims):
2. if onekey list[i] ≥ lo[i]
3. continue
4. else
5. return False
6. return True
$$ LANGUAGE PLPYTHON3U

The refinement instrction:

select SFC key from original dataset a, filtering step datasets b
where (b.in out = 0 and a.morton key ≥ b.lower and a.morton key < b.upper) or
(b.in out = 1 and a.morton key≥ b.lower and a.morton key < b.upper and overlap(array[102044598,
lon1, lat1, t1], array[989799838, lon2, lat2, t2], ndecode(a.morton key, 4));

• 3D integrated approach The 3D integrated approach is similar with the 4D integrated approach.
The difference between these two approach aiming the bounding box query is the query box. For
3D integrated approach, only data in three dimensions is going to generate the 3D hyper box. And
the ranges in each dimensions show in table 4.11.

34

4.4 Benchmark

dimension minimum value maximum value
longitude minimum data maximum data
latitude minimum data maximum data

time t1 t2
MMSI S S+1

Table 4.12: The example of trajectory query using 4D integrated approach

dimension minimum value maximum value
longitude minimum data maximum data
latitude minimum data maximum data

time t1 t2

Table 4.13: The example of trajectory query using 3D integrated approach

Trajectory query

The trajectory query is to find the historical position of vessels in a given time range. The necessary data
to implement the trajectory query is the time and the MMSI.

• 4D integrated approach
For the trajectory query, the different thing is the hyper box. To find the position information of a
specific vessel S in the give time range (t1, t2), the ranges of data in four dimensions show in table
4.12.

• 3D integrated approach
For the 3D integrated approach, to make the query much faster, MMSI will use as the first filter.
Lots of records will be discarded by applying the MMSI filter. And the following step is as the
same as the 4D approach, the ranges of data in three dimensions show in table 4.13

4.4 Benchmark

In order to evaluate the usability and superiority of my method, I will set up a baseline for comparison. I
am going to do the bounding box query and the trajectory query just as the same as I have implemented
by SFC approach on the plain table which does not have any indexes. There are two aspects that we can
compare, one is the query time and the other the storage size of the table that is needed in database.

• Bounding box query
In order to find the vessels in the space (lon 1 - lon 2 and lat 1 - lat 2) and time range (ts 1 - ts 2).
I will use the following statement to query the plain table. And the original table is the table that
has 4 columns (longitude, latitude, time, and MMSI).

select mmsi from orginal table where longitude≥ lon 1 and longitude < lon 2 and latitude≥lat 1
and latitude < lat 2 and ts unix ≥ ts 1 and ts unix < ts 2;

• Trajectory query
To find the position information in an give time range (ts 1 - ts 2) of a specific vessel (MMIS = S),
the following statement will be used:

select mmsi from orginal table where mmsi = S and ts unix ≥ ts 1 and ts unix < ts 2;

35

5 Analysis and results

Chapter 4 describes the detailed implementation that I have done. And it also gives a presentation
of the test plan for the comparison of the different approaches (4D integrated method, 3D integrated
method, and 2D integrated method), different SFC (Morton curve and Hilbert curve), and secondary
index (BRIN index and B-Tree index). This chapter will give the results of the comparison in detail.
Section 5.1 will give the results of the comparison of the index. Then the comparison of the SFC will be
shown in section 5.2. The Comparison of the different approach regarding to different SFC method will
present finally.

The memory of the CPU and database should be taken into account because it will influence the fetching
time directly. Therefore, it is necessary to clear the cache every time. The way I am going to use is to
shut down the server every time and clear the cache by using RAMMap 1 at the same time. After a lot
of testing, I think this is a credible method.

5.1 4D integrated SFC approach

The 4D integrated SFC approach is the main approach in my research. The data in four dimensions will
be encoded to the 4D SFC key together to execute the query. As I mentioned in the previous chapter,
the comparison of the Morton curve and Hilbert curve and the comparison of the secondary index will
be implemented in the 4D integrated SFC approach by executing the bounding box query. And also,
the 4D integrated SFC approach will be compared with another method (3D SFC method) regarding to
different query.

5.1.1 Bounding box query

Firstly, the secondary indexes will be compared and then the comparison of the Morton curve and
the Hilbert curve will be presented. Finally, the analysis of the 4D integrated SFC approach about the
bounding box query will be given. And as I mentioned before, there are two steps of the query, one is
the filtering step and the other is refinement step. In order to remove redundant variables to make the
comparison clearer. Some comparisons will only be made in the first step. For example, regarding the
comparison of indexes, only the index variable is used in the filtering step, and the decoding of SFC is
involved in the refinement step. Therefore, the index is only compared in the filtering stage.

Comparison of indexes

The different secondary indexes which are made on columns influence the efficiency of the query di-
rectly. For the BRIN index, an important parameter named ’pages per range’ which influence the size of
the BRIN index and the query efficiency will be introduced and compared.

For the 4D SFC, the B-Tree index, BRIN index(pages per range =32/64) is made on the SFC key. Here
is a table 5.1 describes the time of creating indexes and the size of indexes. It is also worth noting that

1RAMMap is an advanced physical memory usage analysis utility for Windows Vista and higher. It is used to manage the mem-
ory of the system which can be acknowledged further in this website(https://docs.microsoft.com/en-us/sysinternals/
downloads/rammap)

37

https://docs.microsoft.com/en-us/sysinternals/downloads/rammap
https://docs.microsoft.com/en-us/sysinternals/downloads/rammap

5 Analysis and results

index creating time size
B-Tree index 11.185s 441MB

BRIN index (pages per range = 32) 2.461S 184KB
BRIN index (pages per range = 64) 2.851S 112KB

Table 5.1: B-Tree index and BRIN index

(a) BRIN index:pages per range = 32 (b) BRIN index:pages per range = 64

Figure 5.1: Querying using BRIN index

before creating the b-tree and brin index, the table I used was sorted. This is why it takes less time to
create a BRIN index. The table will be sorted automatically when creating B-Tree index while we need
to sort the table ourselves when creating the BRIN index, and the sorting time is about 40s.

Firstly, I should compare the BRIN index with different pages per range in order to select the better
one to make the comparison with the B-Tree index. I use the smallest range (range1) and biggest range
(range4) to compare the BRIN index with different ’pages per range’ in filtering step. The reason why I
just compare the index in filtering step is that the decoding of the SFC is included in the refinement step.
In order to avoid interference with the decoding process, I compare the index in the first step, that is the
filtering step, of the query, which is to find the SFC keys relevant to the query box. The figure 5.1 shows
the results, the line chart in the figure shows the number of SFC keys selected after the first step of query.

As we can see from the picture, the BRIN index with a smaller ’pages per range’ could support a more
efficient query. The principle of the querying using the BRIN index is it divides the data into blocks of
equal size and gives the extreme value of each block. When querying, the machine will first query the
extremum of each block in order. When the value to be queried is within the extremum of the block,
it will access the block and find the value. And when the ’pages per range’ increases, the records in
each block increase, and the number of the blocks decreases. More records will be accessed to do the
same query and the fetching time increases. Although the size of the index would be a little bigger, the
efficiency of the query using the BRIN index with a smaller ’pages per range’ increases greatly.

(a) query box1 (b) query box4

Figure 5.2: Comparison between B-Tree index and BRIN index

38

5.1 4D integrated SFC approach

SFC encoding time decoding time
Morton curve 7min11s 7min40s
Hilbert curve 22min49s 20min09s

Table 5.2: The time for encoding/decoding SFC

The figure 5.2 shows the comparison between the B-Tree and BRIN index. The figure 5.2a shows the
comparison when using a relative small range (range1) and the figure5.2b uses the relative big range
(range4). we already know that the storage space required by the BRIN index (184KB) is much smaller
than the B-Tree index (441MB). For this figure, we can see that the table using the BRIN index, as the
query depth increases, the time required for the query greatly increases. We know that when the query
depth increases, the number of SFC keys filtered out will decrease. However, the number of SFC ranges
filtered out will increase, that is to say, for this query, the number of queries will increase, so its efficiency
will decrease. However, this result is only valid for the filtering stage, because the decoding of SFC key
is involved in the refinement stage. The fewer the number of SFC keys, the less the decoding time
required. Therefore, it is important to find a balance between query depth and query time, which will
also be discussed in the following comparison. If we only focus on comparing the B-Tree index and the
BRIN index in the filtering stage, we can say that the BRIN index is a very good choice, its size is very
small but can still support efficient queries.

Comparison of SFC

The Morton curve and Hilbert curve will be implemented in the filtering step of the bounding box query.
And also, the smallest range (range1) and the biggest range (range2) will be used to test. To use the SFC
approach, the encoding and decoding step is necessary. Here is the table 5.2 shows the time of encoding
and decoding the 4D SFC (encoding/decoding all data in dataset).

In order to comprehensively compare the Morton curve and Hilbert curve, I will elaborate from the
following three aspects: Locality, Compaction, and Fetching time.

• Locality
The reason why I choose the Morton curve and Hilbert curve is that both curves have the great
locality attribution which preserve the positions of the point in reality. And the this attribution
could help increase the efficiency of the query at the hardware level. As I mentioned before, the
SFC ranges will be obtained after filtering step. And the number of the ranges could convey an
important information, that is the locality of the curve. For the same query range, if the number
of SFC ranges is large, it reflects that these SFC keys are not compact, and it also indicates the bad
locality. Also, the number of the ranges has the relationship with the query depth. Hence, the
table 5.3 shows the number of the ranges I get after first filtering step by using the query box1 and
query box4 with different query depth. From the table 5.3 we can find that the number of Morton
ranges and Hilbert ranges we obtain is equal when facing different query depth. And the reason
is that the storage depth of our dataset is quite big (storage depth = 30). The query depth we use
is from 4 to 7 which is much smaller than the storage depth which led to the entire SFC keys being
selected (the explanation is shown in figure 3.12 and 3.13). In this way, the locality of morton curve
and hilbert curve cannot be analyzed. Hence, the analysis of the final results by using these two
curves is needed.

To get the final results, we need to do not only filtering step but also the refinement step. Because
the final results will be the same when using the same query box to do the query. Hence, I use the
query box1 and query box4 to do the bounding box query (with query depth = 5). And the SFC
keys will be obtained after the query. I find that there is no continuous SFC keys, which shows that
there are too few vessels in this range. However, from the range of the obtained SFC keys, it can
reflect a little difference in the locality of these two curves. The table 5.4 and 5.5 show the range of
the SFC keys we get after query. And we can find that the Hilbert curve has the better locality.

39

5 Analysis and results

query box query depth Morton ranges Hilbert ranges

query box1

4 28 28
5 108 108
6 318 318
7 848 848

query box4

4 84 84
5 432 432
6 2597 2597
7 17914 17914

Table 5.3: The number of SFC ranges after filtering step

curve (max-min) value
Morton curve 1211695934967726734307607836323712
Hilbert curve 289221564322095599394595202981386

Table 5.4: The range of SFC keys after query (query box1)

• Fetching time
The fetching time is the crucial indicator for the query. The efficient query also means the fast
query. And as I mentioned before, the query depth effects the efficiency of the query, to find the
balance between query depth and the fetching time is what I have done. To compare the fetching
time of the bounding box query by using Morton key/Hilbert key, similarly, the query box1 and
the query box4 will be used. The figure 5.3 shows the results. And we can see from the figure that
the fetching time is much smaller when using Morton curve.

And as I mentioned in subsection4.3.3, there are two main steps in query. One is the filtering step
and the other is the refinement step, and the range selecting and table joining are in the filtering
step. To find out why the fetching time is quite large when using Hilbert curve, the time required
for each step in the query needs to be clear. The figure 5.4 and 5.5 shows the time required for each
step in the query. Similarly, I still use query box1 and query box4 for the query.

The Hilbert curve is as good as the Morton curve when facing the filtering step. While the fetching
time increases greatly when the refinement step is done by using the Hilbert curve. Through my
analysis, I think the reason for the increase in fetching time is mainly because a lot of time is spent
decoding SFC key. As we mentioned before, compared to the Morton curve, the encoding and
decoding of the Hilbert curve are more complicated, because the Hilbert curve is obtained by a
series of mirroring and rotation. Due to a large amount of time spent in the decoding process,
the overall query efficiency is reduced. We can think that the Hilbert curve is not suitable for the
query we used.

Query results

Finally, I am going to use the Morton curve and B-Tree index to do the bounding box query. And I use
4 query ranges that in different sizes to do the bounding box query to test the 4D integrated method.
And for the bounding box query, we want to know which vessels are in the given space and time range.
Hence, the whole range of MMSI should be put in the hyper box which is not very efficient. The fig-
ures 5.6 shows the fetching time that the query required. The rate of the redundant point represents the

curve (max-min) value
Morton curve 663351605602299167786941580690847624
Hilbert curve 209941383916602208768840196479418653

Table 5.5: The range of SFC keys after query (query box4)

40

5.1 4D integrated SFC approach

(a) querybox1 (b) querybox4

Figure 5.3: Query using Morton curve and Hilbert curve

(a) Using Morton curve (b) Using Hilbert curve

Figure 5.4: Time needed for each step in query (using query box1)

(a) Using Morton curve (b) Using Hilbert curve

Figure 5.5: Time needed for each step in query (using query box4)

41

5 Analysis and results

(a) Query box1 (b) Query box2

(c) Query box3 (d) Query box4

Figure 5.6: Bounding box query using 4D integrated approach

proportion of the SFC keys obtained in the filtering phase in the final selected SFC key. The formula to
compute the rate of the redundant point is shows below. At the same time, it can reflect the proportion
of SFC keys selected in the filtering stage for different query depths.

rate of redundant point = (SFCkeys(final result)) ÷ (SFCkeys(filtering step)) .

We can see that the query depth plays an important role in querying and it influences the efficiency of
the query greatly. From the test I do, the query is most efficient when the query depth is 7. When the
query depth is not enough large, lots of the SFC key will be selected after filtering, So a lot of time is
spent on refinement due to the decoding. While if the query depth is quite large, the time of generating
SFC ranges in filtering step will increase. And the rate of the redundant point is also very important.
As we can see in the figure 5.6, the rate of the redundant point is quite low. While, if the rate increases,
the efficiency of the query won’t keep increasing. Therefore, for different queries, the best proportion of
redundant points will also change, but eventually it will reach a balance at a certain point in the query.

5.1.2 Trajectory query

The trajectory query is to find the position information of a specific vessel. For the trajectory query, the
data needed is MMSI and time range. If we use the 4D integrated method, the 4D hyper box should be
given. While there are data in two dimensions (longitude and latitude) that we cannot give the range.
Hence, the whole range of the data should be used to compute the query range. Obviously, the hyper
box will be super large and the efficiency might be influenced. Hence, I will give a small time range (1
hour) to test if the 4D integrated SFC approach can be used to do the trajectory query. The following
test is to find the historical positions of a specified vessel whose MMSI is 244670079 in 1 hour (from
2016-12-09 23:59:59.865 UTC - 2016-12-10 0:59:59.865 UTC). And the figure 5.7 shows the results.

As we can see, even I only ask for the positions of a vessel in 1 hour, the query is not very efficient. To
figure out which step takes too much step, I record the time for generating the SFC ranges and joining
the table which is to obtain the SFC keys. The figure 5.7 shows the result. And as we can see that, these
two steps does not take too much time. And we can find that too many SFC keys which is because
of the query box which is used for the trajectory query. To use the 4D integrated approach to do the
trajectory query, the whole range of longitude and latitude should be considered in generating the 4D
query box. Lots of redundant SFC keys will be selected. And the decoding of the SFC keys in refinement

42

5.2 3D integrated SFC approach

Figure 5.7: Trajectory query using 4D integrated approach

Figure 5.8: The time used in each step

step takes lots of time which makes the query inefficient. Hence, I think the 4D integrated method does
not suitable for trajectory query.

5.2 3D integrated SFC approach

The 3D integrated SFC approach means that the data in three dimensions (longitude, latitude, time) will
be encoded to the 3D SFC key to execute the query. The SFC that I am going to use is the Morton curve
and the index I will use is the B-Tree index. And for the query range, I will use the same range as I use
in the 4D integrated approach in order to make a reliable comparison.

5.2.1 Bounding box query

For the bounding box query, I use the same query range in 4D integrated approach to test. The MMSI
do not have to make the query hyperbox. And the efficiency of the query might be higher. And the
results shows in the figure 5.9:

It is not difficult to find that the efficiency of the query is very high whether it is aimed at a large range
or a small range. I think this is because, in the 3D integrated method, we only use longitude, latitude,
and time to determine the 3D hyper box. We no longer add the entire MMSI to it. This greatly reduces
the SFC keys we get in the filtering step, and the time for decoding SFC keys in refinement step reduces.
That is why query is more efficient. And to proof my idea, here is the table 5.6 and 5.7 shows the
number of SFC keys obtained after filtering step. Hence, if we can choose a suitable query box which
means that the data in each dimension should to be meaningful, the efficiency of the query will increase.
For example, for the bounding box query, we want to query which vessels are in the given space and

43

5 Analysis and results

(a) Query box1 (b) Query box2

(c) Query box3 (d) Query box4

Figure 5.9: Bounding box query using 3D integrated approach

query depth 4D integrated SFC approach 3D integrated SFC approach
4 1148980 297461
5 295511 29077
6 29076 7700
7 7699 2334
8 2334 1088

Table 5.6: The number of SFC keys after filtering (query box1)

time range. If we use the 4D SFC approach, we have to make the 4D query box to do the query. The
MMSI here is meaningless because we have put the whole range of the MMSI into query box. On the
contrary, only the 3D query box is used when using 3D SFC approach to do the bounding box query.
The meaningless data (MMSI) which is used for generating query box can be discarded. Hence, there
are fewer redundant SFC keys, thus, the query become efficient.

5.2.2 Trajectory query

For the trajectory query using 3D integrated SFC approach. The first I am going to do is to update
the table by filtering the table using MMSI. Then the records in the table will decrease sharply. In the
following test, only 3187 records left in 11329211 records after filtering by using ’select morton key from
table where mmsi = 244670079’. Then the B-Tree index is created on the morton key in the new table. I
still use the same time range as I use in 4D integrated approach (1 hour). The result show in figure 5.10.
The efficiency of the trajectory increases compared with using 4D integrated approach.

query depth 4D integrated SFC approach 3D integrated SFC approach
4 1931178 903096
5 896306 435338
6 431965 210739
7 209068 102517
8 101715 50842

Table 5.7: The number of SFC keys after filtering (query box4)

44

5.3 Benchmark and comparison

Figure 5.10: Trajectory query using 3D integrated approach

query box query time (s) number of records(final result)
query box1 3.286 39
query box2 3.279 90
query box3 3.339 1787
query box4 3.608 2846

Table 5.8: Query time using plain table in database (bounding box query)

Obviously, the efficiency of the trajectory query is high, it is a good way to do the trajectory query. The
reason why the efficiency increases is because the total number of the SFC keys reduces by filtering the
MMSI. It is undeniable that this is indeed a way to improve efficiency of the trajectory query. But what I
want to say is that if the data set after filtering is still very large, this method can only relatively improve
the efficiency of the trajectory query (compared with using the original data set). Using the full range of
longitude and latitude to generate the query box is still not very good.

5.3 Benchmark and comparison

In order to explain the superiority of the SFC approach I proposed. I set the plain table as the baseline
to do the comparison. As I mentioned in section 4.4, I will compare the query time and the storage size
of the table in PostgreSQL. The query box I use is as the sam as I used in SFC approach, and the four
query box will be tested.

For the bounding box query, the result shows in table 5.8. And the comparison will be done between
the 3D SFC approach (better than 4D SFC approach) and the plain table, the result shows in figure 5.11.
We can clearly see from the figure that the query time is shorter when using 3D SFC approach. For the
trajectory query, the result shows in table 5.9. In addition, using these two methods, the final result I get
is the same, it can also be said that the SFC approach is feasible. Obviously, the SFC approach performs
better.

As I wrote before, the SFC key I used in thesis is the full resolution SFC key and that means that the

query approach query time (s)
3D SFC approach 0.155

plain table 3.560

Table 5.9: Query time using plain table in database (trajectory query)

45

5 Analysis and results

Figure 5.11: The comparison between 3D approach and plain table using bounding box query

query approach table size
3D SFC approach 567MB

plain table 1724MB

Table 5.10: Table size in databse

data which is encoded in the SFC keys can be discarded. For the 3D integrated method, there are only
two columns kept in database (mmsi, 3D SFC key). And for the plain table, all the columns should be
stored in database. The storage size of the table is shown in table 5.10. In summary, the SFC approach is
a great approach that deal with the 4D AIS data.

46

6 Conclusion

This thesis has researched whether the Space filling curve can be used to manage the 4D AIS data in
database to support the efficient query. Concluding will be done by answering the research questions
that I proposed firstly and the pros and cons of the approach will subsequently be discussed. Finally,
the ideas about future work based on my research will be mentioned.

6.1 Research overview

For now, the proposed methodology has been tested by using the bounding box query and trajectory
box with different size of query box. It is nesessary to review the research questioned that I mentioned
at the beginning. One main question and four sub-questions will be answered one by one. And the
main question is:

How to efficiently manage 4D AIS data (Longitude, Latitude, Time, MMSI) of vessels to do
the fast query by using Space Filling Curve in PostgreSQL?

For efficiently manage 4D AIS data, clustering and indexing is significant. Firstly, the type of the space
filling curve is crucial. The Morton curve and Hilbert curve are chosen because of the locality and
recursive attribution of these two curves. Secondly, how to organize the 4D data is important. I used
the 4D integrated approach which encoding the data in four dimensions to the SFC keys. And the 3D
integrated approach which put the longitude, latitude, and time together to compute the SFC keys.
Then, the indexing technology is also necessary, B-Tree index and BRIN index are both great for our
methodology. Therefore, selecting the proper curve (Morton key/Hilbert key) and the clustering and
indexing method (B-Tree index and BRIN index) are important for doing the fast query. And the sub-
questions will be answered following:

• How to manage the 4D AIS data to support the efficient query? Using 4D integrated approach or
3D integrated approach?

For how to manage the four-dimensional AIS data, there are several ways to manage 4D AIS data,
such as regarding the 4D AIS data as a whole, just like the 4D integrated method I used in the
thesis. Or we can think of the 3D data as a whole, or 2D data as a whole. For the 3D intergated
method or the 2D integrated method, which of the 4D data is considered as a whole still need
to think. Taking the data I used in the thesis (MMSI, longitude, latitude, time) as the example, I
integrated longitude, latitude, and time when using the 3D integrated method and kept MMSI as
the separate column. Because whether it is for the bounding box query or the trajectory query I
want to do, MMSI is relatively independent. For example, in the bounding box query, I want to
know which vessels are within the specific query range. MMSI has nothing to do with the query
conditions. And in trajectory query, I can use MMSI to filter the data set first to improve query
efficiency. I think which data can be taken as a whole depends on the type of query. For different
queries, we can combine different data into a whole.

In my thesis, I used two kinds of approach to manage the 4D AIS data, one is the 4D integrated
SFC approach and the other is the 3D integrated SFC approach.

47

6 Conclusion

In order to determine which method I proposed can manage 4D data well, I used two queries to
test, one is bounding box query and the other is trajectory query. Judging from the fetching time
the query needs, it is better to use 3D integrated approach. Of course, this result is not absolute.
It depends on the specific method I use. For example, when using the 3D integrated approach for
trajectory query, I first filter the entire table through MMSI, the query efficiency increases because
the total data volume is greatly reduced. But if I use the 3d SFC key to query first and then filter
the MMSI, the efficiency of the entire query will be affected. Therefore, aiming at the method I
use, the 3D integrated method performs better.

• How to scale data in each dimension properly to compute the SFC key?
I converted it to an integer based on retaining all its information, which is also what must be done
to calculate the SFC key. Secondly, to make the query selective and more efficient, what I have to
do is to ensure that the data size of each dimension has roughly equal bit length. The SFC key
calculated in this way can make the query more efficient.

However, If the dimensions of data increase, the full resolution key would be super large and it
will be hard to store. And as we mentioned before, in order to make the data support the efficient
query, the data in each dimension should in roughly equal bit length which may increase the value
of the SFC key. And the storage size will increase as well. Therefore, if the data in each dimension
is too large, scaling the data to a small range is also a good choice.

• Which Space Filling Curve performs better?
Both the Morton curve and Hilbert curve can be used to manage the 4D AIS data. I have compared
these two curves in two aspects. One is the fetching time of the bounding box query when by
using Morton curve and Hilbert curve, the other is the locality of the curve which can preserve the
positions of the points. From the first aspect, Morton curve performs better. This is because the
decoding of Hilbert keys spends lots of time. For the second aspect, I would say that the Hilbert
curve performs better.

• How about the BRIN index and B-Tree index?
The BRIN index is great due to the small size of itself and it also can support the efficient query. We
can see that the creating B-Tree index and BRIN index take almost the same time because I ordered
the Morton/Hilbert key first which cost around 40s. If the Morton key/Hilbert key is unordered,
B-Tree index is created faster than BRIN index. The very small storage space required by the brin
index is enough to show that it is a good index and is very suitable for assisting the SFC method
we use.

6.2 Future work

• The data may not only be limited to AIS data or the data I use. There is a lot of useful information
in the AIS data, which can be used as research objects.

• The geometry of the query range could be changed in order to be suitable for the different kinds of
query. What I used is the hyper box, query boxes of other shapes can also be studied, for example,
the circle, the triangle and so on.

48

Bibliography

Augustine, J. (2019). Brin index for postgresql: Don’t forget the benefits.

Benetis, R., Jensen, C. S., Karciauskas, G., and Saltenis, S. (2002). Nearest neighbor and reverse nearest
neighbor queries for moving objects. In Proceedings International Database Engineering and Applications
Symposium, pages 44–53. IEEE.

Brisaboa, N. R., Luaces, M. R., Navarro, G., and Seco, D. (2009). A new point access method based on
wavelet trees. In Heuser, C. A. and Pernul, G., editors, Advances in Conceptual Modeling - Challenging
Perspectives, pages 297–306, Berlin, Heidelberg. Springer Berlin Heidelberg.

Bye, R. J. and Aalberg, A. L. (2018). Maritime navigation accidents and risk indicators: An exploratory
statistical analysis using ais data and accident reports. Reliability Engineering & System Safety, 176:174–
186.

Cummings, M. L., Buchin, M., Carrigan, G., and Donmez, B. (2010). Supporting intelligent and trustwor-
thy maritime path planning decisions. International journal of human-computer studies, 68(10):616–626.

Dai, H.-K. and Su, H.-C. (2003). On the locality properties of space-filling curves. In International Sym-
posium on Algorithms and Computation, pages 385–394. Springer.

database kernel group, C. R. (2015). 9.5 new features - brin index. http://mysql.taobao.org/monthly/
2015/05/05/.

De Almeida, V. T. and Güting, R. H. (2005). Indexing the trajectories of moving objects in networks.
GeoInformatica, 9(1):33–60.

De Vreede, I. (2016). Managing historic automatic identification system data by using a proper database
management system structure.

Erwig, M., Güting, R. H., Schneider, M., and Vazirgiannis, M. (1998). Abstract and discrete modeling
of spatio-temporal data types. In Proceedings of the 6th ACM international symposium on Advances in
geographic information systems, pages 131–136.

Feng, M., Shaw, S.-L., Fang, Z., and Cheng, H. (2019). Relative space-based gis data model to analyze the
group dynamics of moving objects. ISPRS Journal of Photogrammetry and Remote Sensing, 153:74–95.

Forlizzi, L., Güting, R. H., Nardelli, E., and Schneider, M. (2000). A data model and data structures for
moving objects databases. ACM SIGMOD Record, 29(2):319–330.

Fox, A., Eichelberger, C., Hughes, J., and Lyon, S. (2013). Spatio-temporal indexing in non-relational
distributed databases. In 2013 IEEE International Conference on Big Data, pages 291–299. IEEE.

Frentzos, E. (2008). Trajectory data management in moving object databases. PhD Book, Department of
Informatics, University of Piraeus, 10.

Gargantini, I. (1982). An effective way to represent quadtrees. Communications of the ACM, 25(12):905–
910.

Güting, R. H., Böhlen, M. H., Erwig, M., Jensen, C. S., Lorentzos, N. A., Schneider, M., and Vazirgiannis,
M. (2000). A foundation for representing and querying moving objects. ACM Transactions on Database
Systems (TODS), 25(1):1–42.

Guttman, A. (1997). A dynamic index structure for spatial searching. In Proceedings of the 13th ACM
SIGMOD International Conference on Management of Data, pages 47–57.

49

http://mysql.taobao.org/monthly/2015/05/05/
http://mysql.taobao.org/monthly/2015/05/05/

Bibliography

Hexeberg, S., Flåten, A. L., Eriksen, B. H., and Brekke, E. F. (2017). Ais-based vessel trajectory prediction.
In 2017 20th International Conference on Information Fusion (Fusion), pages 1–8.

Hornsby, K. and Egenhofer, M. J. (2002). Modeling moving objects over multiple granularities. Annals
of Mathematics and Artificial Intelligence, 36(1-2):177–194.

Jensen, C. S., Lin, D., and Ooi, B. C. (2004). Query and update efficient b+-tree based indexing of moving
objects. In Proceedings of the Thirtieth international conference on Very large data bases-Volume 30, pages
768–779. VLDB Endowment.

Kothuri, R. K. V., Ravada, S., and Abugov, D. (2002). Quadtree and r-tree indexes in oracle spatial: a
comparison using gis data. In Proceedings of the 2002 ACM SIGMOD international conference on Man-
agement of data, pages 546–557.

Lechtenberg, S., Braga, D., and Hellingrath, B. (2019). Automatic identification system (ais) data based
ship-supply forecasting.

Li, d. (2017). Research on dangerous encounter hotspots mining based on ais big data. Master’s thesis,
South China University of Technology.

Liu, t. (2017). Research on storage and indexing technology of ais data in cloud environment. Master’s
thesis, Wuhan University of Technology.

Mao, S., Tu, E., Zhang, G., Rachmawati, L., Rajabally, E., and Huang, G.-B. (2018). An automatic iden-
tification system (ais) database for maritime trajectory prediction and data mining. In Proceedings of
ELM-2016, pages 241–257. Springer.

Meijers, M. and van Oosterom, P. (2018). Clustering and indexing historic vessel movement data with
space filling curves. International Archives of the Photogrammetry, Remote Sensing & Spatial Information
Sciences, 42(4).

Meijers, M., van Oosterom, P., and Quak, W. (2016). Management of ais messages in a geo-dbms. Tech-
nical report, Technical report, Delft University of Technology.

Mokbel, M. F., Aref, W. G., and Kamel, I. (2003). Analysis of multi-dimensional space-filling curves.
GeoInformatica, 7(3):179–209.

Mokbel, M. F., Xiong, X., and Aref, W. G. (2004). Sina: Scalable incremental processing of continuous
queries in spatio-temporal databases. In Proceedings of the 2004 ACM SIGMOD international conference
on Management of data, pages 623–634.

Moniruzzaman, A. and Hossain, S. A. (2013). Nosql database: New era of databases for big data
analytics-classification, characteristics and comparison. arXiv preprint arXiv:1307.0191.

PAN, M., GAO, L., SONG, P., and ZHAO, L. (2016). Mongodb based ship database construction and
batch migration technology of its data. Journal of Dalian Maritime University, pages 39–44.

Praing, R. and Schneider, M. (2007). Modeling historical and future movements of spatio-temporal
objects in moving objects databases. pages 183–192.

Psomadaki, S. (2016). Using a space filling curve for the management of dynamic point cloud data in a
relational dbms.

Rajabi, A., Saryazdi, A. K., Belfkih, A., and Duvallet, C. (2018). Towards smart port: An application of
ais data. In 2018 IEEE 20th International Conference on High Performance Computing and Communications;
IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), pages 1414–1421. IEEE.

Reiss, F., Stockinger, K., Wu, K., Shoshani, A., and Hellerstein, J. M. (2007). Enabling real-time querying
of live and historical stream data. In 19th International Conference on Scientific and Statistical Database
Management (SSDBM 2007), pages 28–28. IEEE.

50

Bibliography

Ristic, B., La Scala, B., Morelande, M., and Gordon, N. (2008). Statistical analysis of motion patterns in
ais data: Anomaly detection and motion prediction. In 2008 11th International Conference on Information
Fusion, pages 1–7.

Robards, M., Silber, G., Adams, J., Arroyo, J., Lorenzini, D., Schwehr, K., and Amos, J. (2016). Conser-
vation science and policy applications of the marine vessel automatic identification system (ais)—a
review. Bulletin of Marine Science, 92(1):75–103.

Shih, T. K. and Wang, P. P. (2004). Intelligent Virtual World: Technologies and Applications in Distributed
Virtual Environment. World Scientific.

Sistla, A. P., Wolfson, O., Chamberlain, S., and Dao, S. (1997). Modeling and querying moving objects.
In Proceedings 13th International Conference on Data Engineering, pages 422–432. IEEE.

van Oosterom, P. (1999). Spatial access methods. Geographical Information Systems Principles, Technical
Issues, Management Issues, and Applications, 1:385–400.

van Oosterom, P., MEIJERS, M., VERBREE, E., LIU, H., and TIJSSEN, T. (2018). Towards a relational
database space filling curve (sfc) interface specification for managing nd-pointclouds.

Volker, g. and oliver, g. (1998). Multidimensional access methods. ACM Computing Surveys, 30(2).

Wang, w., Chu, x., Jiang, z., and Liu, l. (2019). analysis of traffic saturation of bridge waters based on
historical ais data. Journal of Transport Information and Safety.

Xu, h. (2010). Research of High-Dimensional Space Query Algorithm Based on Space Filling Curves. PhD
thesis, Harbin University of Science and Technology.

Zissis, D., Xidias, E. K., and Lekkas, D. (2016). Real-time vessel behavior prediction. Evolving Systems,
7(1):29–40.

51

Colophon

This document was typeset using LATEX, using the KOMA-Script class scrbook. The main font is Palatino.

	Introduction
	Problem statement
	Research questions
	Thesis outline

	Related work
	Management of moving objects
	Mange and organize data in database
	Manage data in relational database
	Manage data in Not only SQL (NoSQL)

	One-dimensional indexing technology
	Relevant research

	Methodology
	Data preparation
	Decoding AIS data
	Loading AIS data

	Clustering and indexing
	Space filling curve appraoch
	Managing 4D AIS data through SFC approach

	Performance test
	Query space filling curve
	Query regarding to different indexing approach

	Implementation
	Tools and the datasets
	Software
	Hardware
	Datasets

	Metrics of performance
	Implementation
	Data preparation
	Clustering and indexing
	Querying

	Benchmark

	Analysis and results
	4D integrated SFC approach
	Bounding box query
	Trajectory query

	3D integrated SFC approach
	Bounding box query
	Trajectory query

	Benchmark and comparison

	Conclusion
	Research overview
	Future work

