
 
 

Delft University of Technology

Characterizing semi-directed phylogenetic networks and their multi-rootable variants

Holtgrefe, Niels; Huber, Katharina T.; van Iersel, Leo; Jones, Mark; Moulton, Vincent

DOI
10.1007/s12064-025-00453-8
Publication date
2026
Document Version
Final published version
Published in
Theory in Biosciences

Citation (APA)
Holtgrefe, N., Huber, K. T., van Iersel, L., Jones, M., & Moulton, V. (2026). Characterizing semi-directed
phylogenetic networks and their multi-rootable variants. Theory in Biosciences, 145(1), Article 4.
https://doi.org/10.1007/s12064-025-00453-8

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s12064-025-00453-8
https://doi.org/10.1007/s12064-025-00453-8


Vol.:(0123456789)

Theory in Biosciences           (2026) 145:4  
https://doi.org/10.1007/s12064-025-00453-8

RESEARCH

Characterizing semi‑directed phylogenetic networks and their 
multi‑rootable variants

Niels Holtgrefe1 · Katharina T. Huber2 · Leo van Iersel1 · Mark Jones1 · Vincent Moulton2

Received: 8 August 2025 / Accepted: 21 November 2025 
© The Author(s) 2025

Abstract
In evolutionary biology, phylogenetic networks are graphs that provide a flexible framework for representing complex evolu-
tionary histories that involve reticulate evolutionary events. Recently, phylogenetic studies have started to focus on a special 
class of such networks called semi-directed networks. These graphs are defined as mixed graphs that can be obtained by de-
orienting some of the arcs in some rooted phylogenetic network, that is, a directed acyclic graph whose leaves correspond to a 
collection of species and that has a single source or root vertex. However, this definition of semi-directed networks is implicit 
in nature since it is not clear when a mixed-graph enjoys this property or not. In this paper, we introduce novel, explicit math-
ematical characterizations of semi-directed networks, and also multi-semi-directed networks, that is mixed graphs that can be 
obtained from directed phylogenetic networks that may have more than one root. In addition, through extending foundational 
tools from the theory of rooted networks into the semi-directed setting—such as cherry picking sequences, omnians, and path 
partitions—we characterize when a (multi-)semi-directed network can be obtained by de-orienting some rooted network that 
is contained in one of the well-known classes of tree-child, orchard, tree-based or forest-based networks. These results address 
structural aspects of (multi-)semi-directed networks and pave the way to improved theoretical and computational analyses 
of such networks, for example, within the development of algebraic evolutionary models that are based on such networks.

Keywords  Mixed graph · Semi-directed phylogenetic network · Tree-based network · Tree-child network · Orchard 
network · Path partitions

Introduction

Phylogenetic networks are a generalization of evolution-
ary trees that are used to represent evolutionary histories 
of organisms such as plants and viruses that can evolve in 
a non-tree-like fashion (see e.g. Huson et al. 2010). In par-
ticular, they permit the representation of reticulate events, 
in which, for example, two species cross with one another 
or transfer genes. There are several classes of phylogenetic 
networks, but in this paper we will mainly focus on rooted 
phylogenetic networks (see e.g. Kong et al. 2022 for a recent 
overview), and some of their recent generalizations. Essen-
tially, a rooted phylogenetic network is a directed acyclic 

graph, usually with a single source or root, whose leaf set 
corresponds to some collection of species or taxa. For exam-
ple, in Fig. 1, D1 is a rooted phylogenetic network for the col-
lection {x1,… , x8} of species. Lately, multi-rooted networks 
have also become of interest, which only differ from rooted 
phylogenetic networks in that they may have multiple roots 
(see e.g. D2 in Fig. 1). Such networks can be used to model 
ancestral relationships between populations (Soraggi and 
Wiuf 2019) and for representing the evolutionary history 
of distantly related groups of species that can still exchange 
genes (Huber et al. 2022; Scholz et al. 2019). In both types 
of networks, vertices with indegree greater than 1 are of spe-
cial interest because they represent reticulate events. Hence, 
such vertices are commonly called reticulations and their 
incoming arcs reticulation arcs.

Recently, a new class of phylogenetic networks called 
semi-directed networks (Solís-Lemus and Ané 2016) has 
started to receive a lot of attention in the literature, both 
from a theoretical (e.g. Baños 2019; Gross and Long 2018; 
Gross et al. 2021; Linz and Wicke 2023; Jingcheng and 
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Ané 2023; Englander et al. 2025) and applied (e.g. Allman 
et al. 2025b; Holtgrefe et al. 2025) point of view. Basi-
cally speaking, these are mixed graphs (i.e. graphs that can 
have a combination of undirected edges and directed arcs), 
which can be obtained by partly deorienting a rooted phy-
logenetic network, that is, by replacing all arcs which are 
not reticulation arcs with an edge, and then suppressing any 
resulting degree-2 vertex that arises from a root. We call 
such a partial deorientation, in which only reticulation arcs 
keep their direction and the root locations are lost, a semi-
deorientation. For example, in Fig. 1, N1 is a semi-directed 
network since it is the semi-deorientation of, e.g., the rooted 
network D1 . In this paper, we will also consider multi-semi-
directed networks, that is, mixed graphs which are the semi-
deorientation of some multi-rooted network. Note that these 
networks were recently considered in Maxfield et al. (2025) 
in the context of defining a dissimilarity measure between 
semi-directed networks. As an example, in Fig. 1, N2 is 
multi-semi-directed since it is the semi-deorientation of D2 . 
In general, in case a (multi-)semi-directed network N is a 
semi-deorientation of a (multi-)rooted network D, we shall 
call D a rooting of N.

Locating the root in a phylogenetic network inferred from 
biological data is often problematic. In particular, without 
asymmetrical models of character change, root placement 
cannot be determined from the data alone and must rely 
on external assumptions (Kinene et al. 2016). Due to more 
favorable identifiability results that circumvent the need for 
root placement (Solís-Lemus and Ané 2016; Gross and Long 

2018; Baños 2019; Gross et al. 2021), semi-directed net-
works have gained importance instead. However, their defi-
nition is somewhat problematic, in that it is given implicitly 
rather than explicitly. For instance, the mixed graph G in 
Fig. 1 is neither semi-directed nor multi-semi-directed, but 
how can this be decided? Of course, one possibility would 
be to develop some algorithm to make this decision, but 
for certain applications it could also be useful to have char-
acterizations for when a mixed graph is semi-directed or 
multi-semi-directed.

In this paper, we shall provide some characterizations 
for semi-directed and multi-semi-directed networks. These 
results reveal combinatorial features of (multi-)semi-directed 
networks that help support further results in this paper and 
may also be helpful for future studies. One of the main tools 
that we use to obtain our characterizations is the concept of a 
semi-directed cycle in a mixed graph, that is, a cycle of arcs 
and edges in the graph whose edges can be oriented so as to 
obtain a directed cycle. Indeed, the exclusion of such cycles 
is a condition in one of our main characterizations (see e.g. 
Theorem 2). As a corollary of our characterizations, in case 
a mixed graph is a (multi-)semi-directed network, we give a 
more general characterization to that given in Maxfield et al. 
(2025) for when a subset of vertices or subdivisions of edges 
or arcs can correspond to a choice of root(s) that leads to a 
rooting of the network.

We shall also explore the consequences of our results for 
some special classes of rooted phylogenetic networks (see 
e.g. Kong et al. 2022 for a recent review of the different 

Fig. 1   Five mixed 
graphs N1,N2,G,D1,D2 . Mixed 
graph N1 is a semi-directed 
network since it is the semi-
deorientation of, for example, 
the rooted network D1 illustrated 
below it. Mixed graph N2 is a 
multi-semi-directed network 
since it is the semi-deorienta-
tion of, for example, the multi-
rooted network D2 illustrated 
below it. However, it can be 
shown that N2 is not a semi-
directed network (since two 
roots are needed). The mixed 
graph G is not semi-directed nor 
multi-semi-directed
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types of rooted networks). In particular, given a fixed class 
of rooted or multi-rooted phylogenetic networks, it is of 
interest to characterize when a (multi-)semi-directed net-
work has a rooting contained in the given class. This could 
be either strongly (all rootings are in the class) or weakly 
(there exists a rooting that is in the class). For example, a 
rooted phylogenetic network is tree-based (Francis and Steel 
2015) if it has a rooted spanning tree with the same leaf set 
as the network. Thus, a semi-directed network is weakly tree-
based if it has a rooting that is tree-based, and it is strongly 
tree-based if all its rootings are tree-based (see e.g. Fig. 2).

Various concepts have been used to characterize when 
a rooted phylogenetic network is contained within a cer-
tain class. For example, the classes of rooted tree-child 
networks  (Cardona et al. 2009) and rooted orchard net-
works (Erdos et al. 2019; Janssen and Murakami 2021) can 
both be characterized using cherry picking sequences (Erdos 
et al. 2019; Janssen and Murakami 2021), eventually lead-
ing to practical software for reconciling phylogenetic trees 
into networks (Bernardini et al. 2023, 2024). On the other 
hand, rooted tree-based networks (Francis and Steel 2015) 
have been characterized using both omnians (Jetten and van 
Iersel 2016) and path partitions (Francis et al. 2018), with 
the latter concept also providing a characterization for rooted 
forest-based networks (Huber et al. 2022). We shall general-
ize some of these concepts to (multi-)semi-directed networks 
and apply them to obtain characterizations for when such a 
network has a rooting that is contained within the classes of 
tree-child, orchard, tree-based or forest-based networks (or 
when all of its rootings are contained within these classes).

Previous work

There is a well-established body of literature devoted to 
the study of rooted phylogenetic networks, with numerous 

structural classes receiving extensive attention (see again 
Kong et al. 2022). In parallel, undirected phylogenetic net-
works have also been studied when no information of direc-
tionality is available (see e.g. Gambette et al. 2012). This has 
led to work that focuses on the relationship between rooted 
and undirected networks. Recent contributions in this area 
include studies such as Huber et al. (2024); Maeda et al. 
(2023); van Iersel et al. (2018); Fischer and Francis (2020); 
Urata et al. (2024); Döcker and Linz (2024, 2025); Demp-
sey et al. (2024); Garvardt et al. (2023), which explore how 
undirected networks can be oriented and when this can be 
done to give rooted networks within specific classes.

In terms of (multi)-semi-directed networks, similar 
structural and graph-theoretical questions remain largely 
unexplored. Indeed, although seemingly related, the partial 
presence of directions within these networks presents fun-
damentally different problems. To date, the only substantial 
work in this direction is by Maxfield et al. (2025). The main 
aim of their work was to introduce an efficiently comput-
able dissimilarity metric between two tree-child multi-semi-
directed networks. To do this they developed some results 
for directing mixed graphs as multi-semi-directed networks. 
There are, however, several important differences between 
their framework and ours. Most notably, our definition of 
(multi-)semi-directed networks allows rootings on edges or 
arcs and we enforce arcs to correspond to reticulation arcs, 
whereas they do not, and they permit parallel edges or arcs, 
whereas we do not. For their type of networks they present 
two results that are related to ours: a characterization for 
when a subset of vertices in a mixed graph gives a root-
ing of the graph [(Maxfield et al. 2025), Proposition 8 and 
Remark 1], and when a mixed graph can be rooted to give a 
tree-child network in case such a rooting exists [(Maxfield 
et al. 2025), Proposition 11]. We give some more details on 
the relationship of these results with ours below.

Fig. 2   Three semi-directed networks  N1 , N2 and N3 . Semi-directed 
network N1 is strongly tree-based since each of its rootings is tree-
based. Semi-directed network  N2 is weakly tree-based, but not 
strongly, since the rooting obtained by directing all edges away from 

the vertex r1 is tree-based, but the rooting obtained in a similar way 
using vertex r2 is not. Semi-directed network N3 is not weakly tree-
based since it has no rooting that is tree-based
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Outline of the paper

We now summarize the contents of the rest of this paper. 
After presenting some preliminaries in Sect. 2, in Sect. 3 
we present some characterizations for when a mixed graph 
is multi-semi- and semi-directed (Theorems 1 & 2 and Cor-
ollary 1, respectively). Then in Sect. 4, we characterize the 
feasible sets of root locations in rootings of the network 
(Theorem 4). At the end of the section we also explain how 
our characterizations lead to an efficient algorithm for decid-
ing if an arbitrary mixed graph is a multi-semi-directed or 
semi-directed network. In Sect. 5 we use omnians to char-
acterize when a (multi)-semi-directed network is strongly 
and weakly tree-child (Theorem 5 and Proposition 1, respec-
tively) and also strongly tree-based (Theorem 6). In Sect. 6 
we use cherry picking sequences to characterize when a 
(multi)-semi-directed network is strongly or weakly orchard 
(Theorem 7 and Theorem 8, respectively), and in Sect. 7 
we use path partitions to characterize when the network is 
weakly forest-based (Theorem 9) or weakly tree-based (Cor-
ollary 4). In Sect. 8, we conclude with some open problems.

Preliminaries

Mixed graphs

A mixed graph is an ordered tuple G = (V ,E,A) where V 
is a nonempty set of vertices,  E is a set of undirected 
edges {u, v} ⊆ V  , u ≠ v , and A is a set of directed arcs (u, v) 
with u, v ∈ V  , u ≠ v , and such that for all arcs (u, v) ∈ A we 
have that {u, v} ∉ E and (v, u) ∉ A . Note that, by definition, 
parallel arcs, parallel edges or parallel edge/arc pairs are not 
allowed in mixed graphs. For an arc (u, v) ∈ A , we call u the 
tail and v the head. If (u, v) ∈ A , we call u a parent of v and v 
a child of u. If there is an edge {u, v} ∈ E or an arc (u, v) ∈ A , 
we call u and v adjacent or neighbours.

Suppose for the following that G = (V ,E,A) is a mixed 
graph. For v ∈ V  , the indegree d−

G
(v) is the number of arcs 

entering v, the outdegree d+
G
(v) is the number of arcs leav-

ing v, and de
G
(v) is the number of edges in E incident to v. 

In addition, the degree dG(v) is the total number of edges 
and arcs incident to v. We will omit the subscript G when 
the graph is clear from the context. We call v a reticulation 
if d−(v) > 1 , a leaf if d(v) = de(v) = 1 or d(v) = d−(v) = 1 
and a root if d+(v) = d(v) . The set of leaves of G is called 
the leaf set of G, and it is denoted by L(G). We say that G is 
binary if d(v) ∈ {1, 2} for each root v ∈ V  and d(v) ∈ {1, 3} 
for each non-root v ∈ V .

A path in G is a sequence of pairwise distinct verti-
ces (v1,… , vp) , p ≥ 1 , such that for all i ∈ {1,… , p − 1} 
either (vi, vi+1) or (vi+1, vi) is an arc in A or {vi, vi+1} is an 
edge in E. Such a sequence is a semi-directed path (from v1 

to vp ) if for all i ∈ {1,… , p − 1} either (vi, vi+1) is an arc 
in A or {vi, vi+1} is an edge in E. A ∧-path (between v1 
and vp ) in G is a path (v1,… , vi,… , vp) of N, p ≥ 1 , such 
that (vi,… , v1) and (vi,… , vp) are semi-directed paths, for 
some i ∈ {1,… , p} . An edge-path in G is a path (v1,… , vp) , 
such that {vi, vi+1} is an edge in E, for all i ∈ {1,… , p − 1} . 
We call the number of vertices on a path P minus 1 the 
length of P and refer to P as a trivial path if the length of 
P is zero. If P is not trivial then we sometimes also say 
that P is non-trivial. We say that G is connected if for any 
two vertices x and y of G there is a path joining x and y

A cycle in G is a sequence of vertices (v1, v2,… , vp = v1) , 
p ≥ 4 , such that  vi ≠ vj for 1 ≤ i < j < p and, for all 
i ∈ {1,… , p − 1} , either (vi, vi+1) or (vi+1, vi) is an arc 
in A or {vi, vi+1} is an edge in E. Note that, since  p ≥ 4 
and vp = v1 , a cycle contains at least three distinct vertices. 
A cycle is called semi-directed if, for all i ∈ {1,… , p − 1} , 
either (vi, vi+1) is an arc in A or {vi, vi+1} is an edge in E. 
A reticulation r of N is a sink of a cycle in N if r = vi 
and (vi−1, vi), (vi+1, vi) ∈ A , for some  i ∈ {1,… , p − 1} , 
with v0 = vp−1 . If G is connected and does not contain a 
cycle, then we call G a tree. If additionally E = � , i.e., G is 
fully directed, and G has a single root, we call G a rooted 
tree. We refer to Fig. 3 for examples that illustrate some of 
the definitions in this and the next subsection.

Multi‑rooted and multi‑semi‑directed networks

Suppose X is a finite set with at least two elements. A 
multi-rooted network (on X) is a mixed graph (V, E, A) 
(with leaf set X), with E = � , no directed cycles, d(v) ≠ 2 
for all non-root vertices v ∈ V  and d−(v) ∈ {0, 1, d(v) − 1} 
for all v ∈ V  . A k-rooted network is a multi-rooted net-
work with precisely k ≥ 1 roots. A 1-rooted network is also 
called a rooted network. A rooted network without any 
reticulations is called a rooted phylogenetic tree.

Consider any mixed graph. Subdividing an edge {u, v} 
replaces the edge {u, v} by two edges {u,w} and {w, v} 
with w a new vertex. Subdividing an arc (u, v) replaces 
the arc (u, v) by an edge {u,w} and an arc (w, v) with w 
a new vertex. Suppressing a degree-2 vertex w is defined 
as follows:

•	 if w has two incident edges {u,w}, {w, v} , replace them 
by a single edge {u, v};

•	 if w has two incident arcs (u, w), (w, v), replace them 
by a single arc (u, v);

•	 if  w has an incident edge {u,w} and an incident 
arc (w, v), replace them by a single arc (u, v);

•	 if  w has an incident arc  (u,  w) and an incident 
edge {w, v} , replace them by a single edge {u, v},
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and in each of these cases also delete w. Note that degree-2 
vertices with two incoming or two outgoing arcs are not 
suppressed.

The semi-deorientation of a multi-rooted network D is 
the result of replacing each arc (u, v) of D by an edge {u, v} 
if d−

D
(v) = 1 and afterwards suppressing any vertex  � 

with dD(�) = 2 . Note that a root with two outgoing arcs in D 
will still be present in the semi-deorientation. Also note that 
a semi-deorientation is not necessarily a mixed graph since 
suppressing roots may lead to parallel arcs. However, we will 
only consider mixed graphs in this paper and hence not con-
sider cases with parallel arcs. A rooting1 of a mixed graph G 
is a multi-rooted network D such that G is the semi-deori-
entation of D. Observe that D can be obtained from G by 
subdividing (zero or more) arcs and/or edges and replacing 
edges by arcs. Note that the subdivision vertices necessarily 
become roots in D and that vertices of G may also become 
roots in D. This also includes the possibility that a root of G 
that is contained in X becomes a leaf in D (see e.g. the vertex 
e in Fig. 3) or that a leaf of G not contained in X becomes an 
outdegree-1 root in D2. However, it is not possible to create 

any new reticulations. A k-semi-directed network (on X) is a 
mixed graph that is the semi-deorientation of some k-rooted 
network (with leaf set X). Note that the leaf set of a k-semi-
directed network on X may not be equal to X, because an 
outdegree-1 root may also be in X (see, for example, the 
vertex e in Fig. 3 again). A multi-semi-directed network is 
a k-semi-directed network for some k ≥ 1 . A semi-directed 
network is a 1-semi-directed network. When drawing multi-
rooted and multi-semi-directed networks, we will often omit 
the leaf labels when they are not relevant. We will reserve 
the letter G for general mixed graphs, D for (multi)-rooted 
networks and N for (multi)-semi-directed networks.

Characterizations of multi‑semi‑directed 
networks

In this section we characterize when a mixed graph is a 
multi-semi-directed network or when it is in fact a semi-
directed network. These characterizations naturally lead 
to algorithms for checking (multi-)semi-directedness. We 
sketch one efficient approach at the end of Sect. 4, which 
outlines a method based on rootings of (multi-)semi-directed 
networks.

Fig. 3   Left: A 2-semi-directed network N on {a, b,… , e} with set of 
reticulations {r1, r2, r3, r4} . The sequence (r1, v2, v5, r2, v3, v4, r3, r4, g) 
is a ∧-path of N and the sequence C = (r2, v3, v4, r3, r4, v7, r2) is a 
cycle of N. The vertices r2 and r4 are sinks of C whereas r3 is not. 
The path (a, v1, v3, v4, v7) is an example of an edge-path. The leaves a 

and b form a cherry, leaves d and g are reticulation leaves, while r1 
and r4 are leaf reticulations. The vertex sets of the source components 
are {a, b, v1, v3, v4, v7} and {e} while the sink components have ver-
tex sets {d, r1} and {g, r4} . Right: A rooting D of N in the form of a 
2-rooted network with roots �1 and �2

1  Rootings were called “rooted partners” in Maxfield et  al. (2025); 
Linz and Wicke (2023).
2  From a biological perspective, turning a leaf in a (multi-)semi-
directed network into a root of a (multi)-rooted network may seem 
problematic. However, since this only applies to leaves of a (multi-)
semi-directed network not in X, which do not correspond to taxa, this 
does not pose a problem. A leaf of a (multi-)semi-directed network 
contained in X cannot be turned into a root of a (multi)-rooted net- work. Instead, its incident edge can be subdivided by a new vertex 

that becomes a root.

Footnote 2 (continued)
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Suppose G = (V ,E,A) is a mixed graph. A cherry of a 
mixed graph is an ordered pair of leaves (x, y) such that there 
is a length-2 path between x and y, either consisting of two 
edges or of two arcs directed towards x and y, respectively. 
For convenience, we also refer to a cherry with leaves x and 
y as a cherry on {x, y} . A leaf reticulation of G is a reticula-
tion of G that is adjacent to a leaf of G and a reticulation 
leaf of G is a leaf of G that is adjacent to a reticulation of G.

An (undirected) sink component of G = (V ,E,A) is a con-
nected component C of the (undirected) graph (V, E) such 
that there are no arcs (u, v) ∈ A with u ∈ C and v ∉ C . For 
example, in Fig. 3, {d, r1} is a sink component since it is a 
connected component of the graph that is obtained by ignor-
ing all arcs, and in G there are no arcs leaving this compo-
nent. Similarly, an (undirected) source component3 of G is 
a connected component C of (V, E) such that there are no 
arcs (u, v) ∈ A with u ∉ C and v ∈ C . A subgraph G′ of G is 
a pendant subtree if G′ is a tree and has at most one vertex 
that has a neighbour in G not in G′.

We start with the following technical result which we 
use to prove our first characterization of multi-semi-directed 
networks.

Lemma 1  Suppose G = (V ,E,A) is a connected mixed graph 
with |V| ≥ 3 . Then G contains either a cherry or a leaf retic-
ulation (or both) if the following properties hold: 

	 (Ci)	 d(v) ≠ 2 and d−(v) ∈ {0, d(v) − 1} for all v ∈ V;
	(Cii)	 each cycle of G contains at least one sink; and
	(Ciii)	 each sink component of G is a pendant subtree.

Proof  Let P be a semi-directed path in G containing a maxi-
mum number of arcs and, over all such paths, containing 
a maximum number of edges. If P contains no arc, then it 
follows that A = � and hence G is a tree by (Cii) and since 
G is connected. Since G has at least three vertices, and no 
degree-2 vertices, it follows that G has a cherry. Therefore, 
we may assume that P contains at least one arc. Let s denote 
the first vertex on P.

We next show that P ends in a leaf or in a reticulation. To 
see this, assume for contradiction that P ends in a vertex v 
with d(v) ≠ 1 and d−(v) = 0 . Then there is an edge {v,w} 
or an arc (v, w) with w not on P (since otherwise we would 
have a cycle without sink, which is not allowed by (Cii)). 
Hence, we can extend P to a semi-directed path containing 
more arcs or the same number of arcs and more edges, by 
appending w in contradiction to the maximality of P. Thus, 
P ends in a leaf or in a reticulation, as required.

To complete the proof, we next show that P ends in a 
reticulation leaf or in a leaf that is in a cherry. To prove 
this, assume that P ends in a reticulation or in a leaf that 
is not a reticulation leaf and not in a cherry. First suppose 
that P ends in a leaf x that is not a reticulation leaf. Then, 
in view of (Ci), there exists a vertex z of N that is not on P 
and, denoting by w the vertex on P that is the predecessor 
of v on P, we have that {w, z} ∈ E or (w, z) ∈ A . Hence, z is 
either also a leaf or it is a reticulation. In the first case, x is 
in a cherry. Therefore, we may and will assume that P ends 
in a reticulation v. Furthermore, there exist arcs entering v 
that are not on P and, by the maximality of P, the last edge/
arc of P is an edge.

Consider the maximal connected subgraph H of G con-
taining v but no arcs. Observe that H is not a pendant subtree 
since it contains at least two vertices with incoming arcs (v 
and the head of the last arc of P). Hence, by (Ciii), H is not 
a sink component. It follows that H has a vertex y with an 
incident outgoing arc a = (y,w) , some w ∈ V  . Hence, the 
subpath of P from s to y extended by w has one more arc 
than P contradicting the assumption that P contains a maxi-
mum number of arcs. 	�  ◻

Theorem 1  A mixed graph G = (V ,E,A) is a multi-semi-
directed network if and only if Properties (Ci) - (Ciii) hold.

Proof  If G is a multi-semi-directed network, then Proper-
ties (Ci) - (Ciii) clearly hold.

To see the converse, assume that Properties (Ci) - (Ciii) 
hold. We perform induction on |A| + |E| . The base case is 
|A| + |E| = 0 . In this case, G is a set of isolated vertices. 
Hence, G is its own semi-deorientation. Thus, G is a multi-
semi-directed network.

For the inductive step, assume that G is such that 
|A| + |E| ≥ 1 . Then G must contain a connected component 
that is not an isolated vertex. In view of the base case it suf-
fices to show that every connected component of G that is 
not an isolated vertex is a multi-semi-directed network. Let 
G′ be a connected component of G that is not an isolated 
vertex. If G′ has exactly two vertices, then they are connected 
by an edge by (Ci) and clearly G′ is (multi-)semi-directed. 
Otherwise, by Lemma 1, G′ must contains either a cherry or 
a leaf reticulation (or both).

Assume first that G′ contains a cherry on {x, y} . Then, 
by (Ci), the length-2 path between x and y consists of two 
edges. In this case, we delete leaf x from this cherry and 
suppress the vertex adjacent to x if this has rendered it a 
vertex of degree two. The resulting graph G′′ is a multi-
semi-directed network by induction. This means that G′′ is 
the semi-deorientation of a multi-rooted network D′′ . Let D′ 
be obtained from D′′ by subdividing the arc entering y by a 
new vertex p and adding leaf x with an arc (p, x). Then D′ 3  Source components were called “root components” in  Maxfield 

et al. (2025).
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is a multi-rooted network and the semi-deorientation of D′ 
is G′ . Hence, G′ is a multi-semi-directed network.

To conclude the proof, assume that G′ contains a retic-
ulation leaf z. Let r be the reticulation adjacent to z and 
let  p1,… , pt be the parents of r (with t = d−(r) ). Let G′′ 
be obtained from G′ by replacing vertices r, z by verti-
ces z1,… , zt and replacing arc (pi, r) by an edge {pi, zi} for 
i ∈ {1,… , t} and deleting edge {r, z} thus reducing |A| + |E| 
by 1. The resulting graph G′′ is a multi-semi-directed net-
work by induction. This means that G′′ is the semi-deori-
entation of a multi-rooted network D′′ . Let D′ be obtained 
from D′′ by merging z1,… , zt into a single vertex r and add-
ing a leaf z with an arc (r, z). Then, D′ is a multi-rooted 
network and the semi-deorientation of D′ is G′ . Hence, G′ is 
a multi-semi-directed network. 	�  ◻

The following lemma can be used to show an alternative 
characterization of multi-semi-directed networks.

Lemma 2  Let C be a cycle in a mixed graph G. If 

(a)	 C is not semi-directed; and
(b)	 C contains no non-trivial edge-path between two reticu-

lations of G,

then C contains at least one sink.
Proof  Let C = (v1, v2,… , vp = v1) , p ≥ 4 . If C is not semi-
directed, then there exist i, j ∈ {1, 2,… , p − 1} distinct such 
that (vi, vi+1) and (vj+1, vj) are arcs on C. Without loss of 
generality, i < j (mod p − 1) . Assume that j and i are such 
that j − i is minimized. If j − i = 1 , then C contains the sink 
vj = vi+1 . Otherwise, j − i > 1 and, so, vi+1 and vj are both 
reticulations of G and C contains a non-trivial edge-path 
between them. 	�  ◻

An alternative characterization of mixed graphs that are 
multi-semi-directed networks is as follows. See Fig. 4 for 
examples that illustrate that Properties (II) and (III) cannot 
be weakened.

Theorem 2  A mixed graph G = (V ,E,A) is a multi-semi-
directed network if and only if 

	 (I)	 d(v) ≠ 2 and d−(v) ∈ {0, d(v) − 1} for all v ∈ V;
	 (II)	 G contains no semi-directed cycle; and
	(III)	 G contains no non-trivial edge-path between two 

reticulations.

Proof  As in the case of Theorem 1, it is straight-forward to 
see that if G is a multi-semi-directed network, then Proper-
ties (I), (II) and (III) hold.

For the converse direction, by Theorem 1, it suffices to 
show that Properties (I), (II) and (III) imply Properties (Ci), 
(Cii) and (Ciii). For this, it suffices to show that Proper-
ties (II) and (III) imply Properties (Cii) and (Ciii).

First observe that Property (III) implies Property (Ciii) 
because any sink component that is not a pendant subtree 
contains two reticulations and a non-trivial edge-path path 

Fig. 4   Two mixed graphs G and G′ that, by Theorem 2, are not multi-
semi-directed networks. The reason is that  G contains the semi-
directed cycle (v1, v2, v3, v4, v1) while G′ contains the non-trivial edge-
path (v1, v2, v3) and v1 and v3 are reticulations

Fig. 5   Left: A mixed graph G1 
which, by Corollary 1, is not 
a semi-directed network since 
there is no ∧-path between v1 
and v2 . Right: A mixed 
graph G2 that, by Corollary 1, 
is not a semi-directed net-
work since it contains a cycle 
(v1, v2, v3, v4, v5, v1) without a 
sink
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joining them. In view of Lemma 2, Properties (II) and (III) 
together imply Property (Cii). 	�  ◻

We will now characterize semi-directed networks. See 
Fig. 5 for examples that illustrate that Properties (2) and (3) 
cannot be weakened. Recall that a semi-directed network 
is the semi-deorientation of some 1-rooted network, i.e. a 
rooted network with a single root.

Corollary 1  A mixed graph G = (V ,E,A) is a semi-directed 
network if and only if 

(1)	 d(v) ≠ 2 and d−(v) ∈ {0, d(v) − 1} for all v ∈ V;
(2)	 each cycle of G contains at least one sink; and
(3)	 G contains a ∧-path between each pair of verti-

ces u, v ∈ V .

Proof  As before, it is easy to see that if G is a semi-directed 
network then Properties (1), (2) and (3) hold.

Now assume that Properties (1), (2) and (3) hold. We first 
show that G is a multi-semi-directed network. In view of 
Theorem 1, it suffices to show that Properties (1) - (3) imply 
Property (Ciii). To this end, suppose that G contains a sink 
component S that is not a pendant subtree. Note that S is a 
tree by Property (2). Since S is not pendant, it contains at 
least two reticulations r1, r2 . Let p1, p2 be parents of r1, r2 , 
respectively, such that p1 ≠ p2 . Note that p1, p2 are not in S. 
By Property (3), there exists a ∧-path P between p1 and p2 . 
Hence, there is a cycle without sink, formed by path P 
together with the arcs (p1, r1), (p2, r2) and the path between r1 
and r2 through S, which is a contradiction to (2). Thus, (Ciii) 
holds, as required.

It remains to show that any rooting of G has a single root. 
Suppose D is a rooting of G with at least two roots �1, �2 . 
Then there is no ∧-path between �1 and �2 in D and hence 
also not in G, contradicting Property (3). Hence, we can 
conclude that G is a semi-directed network. 	� ◻

Rootings of multi‑semi‑directed networks

The following theorem and its corollary show that the 
number of roots of a rooting of a multi-semi-directed net-
work N = (V ,E,A) can be calculated directly from the retic-
ulation number |A| − |R| of N, with R the set of reticulations.

Theorem 3  If N = (V ,E,A) is a k-semi-directed network, 
some k ≥ 1 , then the reticulation number of N equals

|E| + |A| − |V| + k.

Proof  Consider the graph F obtained from N by deleting 
all arcs. Then F is a forest since, by Theorem 2, N does not 
contain any cycles traversing only edges. In any rooting D 
of N, where we root only on vertices of N, each (connected) 
component T of F is oriented as a rooted tree Tr . The root 
of Tr is either a root of D or a reticulation of D. Moreover, 
each vertex of Tr that is not the root of Tr is not a reticula-
tion of D and also not a root of D. Hence, each component 
of F contains exactly one vertex that is a root or a reticula-
tion of D. It follows that the number of components of F 
is precisely |R| + k where R is the set of reticulations of N.

In any forest, the number of components equals the num-
ber of vertices minus the number of edges. Therefore,

implying that

which can be rewritten as

Since |A| − |R| is the reticulation number of N, the theorem 
follows. 	� ◻

As an immediate consequence, we have the following 
result.

Corollary 2  If N = (V ,E,A) is a multi-semi-directed net-
work, then all rootings of N have

roots, with R the set of reticulations of N.

We now prove an auxiliary result that will be useful to 
characterize all possible rootings of a multi-semi-directed 
network.

Lemma 3  Let N be a multi-semi-directed network, R the set 
of reticulations of N, and U ⊆ V(N) such that there is no 
edge-path between any two vertices in U ∪ R . Then there 
exists a rooting of N in which each vertex of U is a root.

Proof  The proof is by induction on  |U|. The base case 
for U = � is trivial. If |U| ≥ 1 , consider a vertex u ∈ U . By 
induction, there exists a rooting D of N in which each vertex 
of U ⧵ {u} is a root. Let Cu be the connected component of 
the graph obtained from N by deleting all arcs, such that Cu 
contains u. First observe that u is the only vertex from U 
in Cu since otherwise there would be an edge-path between 
two vertices in U. Also note that Cu is a source component 
since there is no edge-path between u and any reticulation. 
Moreover, by Theorem 2, N contains no cycle consisting 

|V| − |E| = |R| + k,

|A| + |V| − |E| = |A| + |R| + k,

|A| − |R| = |E| + |A| − |V| + k.

|V| − |R| − |E|
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of only edges. Hence, Cu is a tree. Since no vertex of Cu is 
a reticulation in Cu , it follows that Cu is a rooted tree in D. 
The root u′ of this tree is also a root of D, since D contains 
no arcs whose head is a vertex in Cu but whose tail is not. 
Hence, in D, Cu contains exactly one root u′ . If u� = u then 
u� ∈ U and D is a rooting of N in which u′ is a root. Hence, 
the lemma holds in this case.

If u′ ≠ u then, since Cu is a rooted tree in D, we can 
modify the orientation of D to obtain an alternative rooting 
of N by changing only the orientation of each arc on the 
path between u and u′ in Cu . This gives a rooting D′ of N in 
which u ∈ U is a root. Moreover, all vertices in U ⧵ {u} are 
still roots of D′ , which concludes the proof. 	� ◻

For a rooting  D  of multi-semi-directed net-
work N = (V ,E,A) , define the root configuration as the 
triple (V �,E�,A�) with V ′ ⊆ V  , E′ ⊆ E and  A′ ⊆ A such 
that the roots of D are precisely the vertices in V ′ together 
with vertices subdividing each edge in E′ and arc in A′ . 
In the following theorem, we characterize the valid root 
configurations of a multi-semi-directed network. As noted 
in the introduction, a similar characterization was given 
in  [(Maxfield et  al. 2025), Proposition 8], although it 
was under a slightly different framework (e.g. assuming 
A� = E� = �).

Theorem 4  Let N = (V ,E,A) be a multi-semi-directed net-
work and V ′ ⊆ V  , E′ ⊆ E and A′ ⊆ A . Then there exists a 
rooting D of N with root configuration (V �,E�,A�) if and only 
if

•	 each vertex in V ′ and each edge in E′ is in a source com-
ponent of N and each arc in A′ is an outgoing arc of a 
source component of N; and

•	 each source component of N contains exactly one ele-
ment of V ′ , contains exactly one edge in E′ or has exactly 
one outgoing arc in A′.

Proof  We first prove the “only if” direction. Since N is multi-
semi-directed, there exists a rooting D of N. Let (V ��,E��,A��) 
be its root configuration.

First suppose that there is a  v ∈ V �� that is not in a 
source component of N. Then there exists a reticulation r 
in the component C of the graph (V, E) containing v with 
both incoming arcs of r having their tail outside C. Note 
that v ≠ r . Hence, there exists an edge-path between r and v 
in N. Since v is a root of D, this path is a directed path from v 
to r in D. However, this implies that d−

D
(r) = dD(r) , contra-

dicting the definition of a multi-rooted network. The other 
cases (that there is a e ∈ E�� that is not in a source compo-
nent or an arc a ∈ A�� that is not an outgoing arc of a source 
component) are handled similarly.

Now suppose that there exists a source component C of N 
containing v,w ∈ V �� with v ≠ w . Then there exists an edge-
path between v and w of length at least 2 in N. Since v is a 
root in D, this path is directed from v to w in D. However, 
since w is also a root in D, the path is directed from w to v 
in D, a contradiction. The other cases are again handled 
similarly.

We now prove the “if” direction. Since N is multi-semi-
directed, there exists a rooting D of N. Let (V ��,E��,A��) be 
its root configuration.

For an edge {u, v} of N, clearly, there exists a rooting of N 
with root u if and only if there exists a rooting with root w 
subdividing {u, v} . Similarly, for an arc (u, v) of N, clearly, 
there exists a rooting of N with root u if and only if there 
exists a rooting with root w subdividing (u, v). Hence, we 
may assume E� = A� = E�� = A�� = � . Let R be the set of 
reticulations of N. Since each element of V ′ is in a different 
source component, there is no edge-path between any two 
vertices in R ∪ V � . Then, by Lemma 3, it follows that there 
exists a rooting of N with root configuration (V �,E�,A�) . 	
� ◻

Theorem 4 directly leads to an efficient algorithm taking 
O(|V| + |E| + |A|) time for deciding if an arbitrary mixed 
graph G = (V ,E,A) is a (multi-)semi-directed network (note 
that in [(Maxfield et al. 2025), Remark 1] a similar algo-
rithm is sketched to efficiently find a rooting of a multi-semi-
directed network). First, find all the source components of G 
by traversing the graph in O(|V| + |E| + |A|) time. Second, 
in each source component, pick an arbitrary vertex as root. 
Third, do a breath-first search from each root and orient all 
edges away from the root, again taking O(|V| + |E| + |A|) 
time. Finally, with yet another traversal, check if the result-
ing mixed graph G′ is a multi-rooted directed network and 
whether its semi-deorientation is G. Note that by addition-
ally checking whether or not G′ has a single root, it can also 
be determined if G is semi-directed.

Omnians

In this section, we show how the concept of omnians can 
be used to characterize tree-child (Theorem 5 and Proposi-
tion 1) and tree-based multi-semi-directed networks (Theo-
rem 6). As remarked in the introduction, [(Maxfield et al. 
2025), Proposition 11] gives an alternative characterization 
for the tree-child case where, instead of using omnians the 
concept of the “directed part” of a network is used.

The main definitions of this section are the following. 
We say that a vertex v of a multi-semi-directed network is 
an omnian if d+(v) ≥ 1 and de(v) ≤ 1 , see Fig. 6. We call 
a multi-rooted network D tree-child if each non-leaf ver-
tex of D has at least one child that is not a reticulation. 
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Furthermore, we say that a multi-semi-directed network N 
is weakly tree-child if N has a rooting that is tree-child. In 
this case, we also call such a rooting of N a tree-child root-
ing of N. Finally, we say that N is strongly tree-child if every 
rooting of N is tree-child. See Fig. 7 for examples.

Theorem 5  A multi-semi-directed network N is strongly tree-
child if and only if N has no omnians.

Proof  First assume that  N is strongly tree-child. Sup-
pose that there exists a vertex v ∈ V  that is an omnian, 
i.e., d+(v) ≥ 1 and de(v) ≤ 1 . If de(v) = 0 , then all chil-
dren of  v are reticulations in any rooting of  N and  v 
is not a leaf since d+(v) > 0 . This would contradict 
that N is strongly tree-child. Hence, de(v) = 1 . By The-
orem  1 (Property (Ci)), d−(v) ∈ {0, d(v) − 1} . Since 
d−(v) = d(v) − d+(v) − de(v) ≤ d(v) − 1 − 1 , this means that 
d−(v) = 0 and thus d+(v) = d(v) − 1.

Let e = {u, v} be the edge in N incident to v. Observe that 
all neighbours of v other than u are reticulations. Let D be 
a tree-child rooting of N. Since v has at least one child in D 
that is not a reticulation, the edge e is oriented away from v 
in D. This means that there are two possibilities. Either v is 

a root of D, or there exists a child a of v in N such that the 
arc (v, a) of N leaving v has been subdivided by a root w in 
D and D contains the arcs (w, v) and (w, a). In the first case, 
changing the orientation of the arc (v, u) to (u, v) (making u 
a root) gives a rooting D′ of N that is not tree-child. Also in 
the second case, D′ is a rooting of N that is not tree-child. In 
both cases, we obtain a contradiction, completing the first 
direction of the proof.

For the converse, suppose that N has no omnians, that 
is, de(v) ≥ 2 or d+(v) = 0 for all v ∈ V  . Assume that N is 
not strongly tree-child, i.e., there exists a rooting D of N 
and a non-leaf vertex v of D such that all children of v in D 
are reticulations. If v is a reticulation too, then de

N
(v) = 0 

and d+
N
(v) = 1 . If  v is not a reticulation, then de

N
(v) ≤ 1 

and d+
N
(v) ≥ 2 . In both cases, we obtain a contradiction. 	

� ◻

Proposition 1  Let N = (V ,E,A) be a k-semi-directed net-
work, some k ≥ 1 , with set of reticulations R and set of omni-
ans O. Then, N is weakly tree-child if and only if |O| ≤ k , 
de(v) ≥ 1 for all v ∈ V , and there does not exist a non-trivial 
edge-path between any two vertices in O ∪ R.

Fig. 6   The three possible configurations surrounding an omnian in a 
multi-semi-directed network: (i) one incident edge and at least two 
outgoing arcs, (ii) at least two incoming arcs and one outgoing arc 

and (iii) at least two outgoing arcs (and in all cases no other incident 
edge/arcs). Note that Case (iii) is possible in multi-semi-directed net-
works but not in semi-directed networks

Fig. 7   The semi-directed network N1 on X = {x1,… , x10} is strongly 
tree-child in view of Theorem 5. The semi-directed network N2 also 
on X is weakly tree-child, but not strongly, since the rootings with the 
root subdividing an arc labelled ∗ are tree-child, but all other rootings 

are not tree-child (see Corollary  3). The semi-directed network  N3 
on {x1 … , x8} is not weakly tree-child since the edge {r, o} forms an 
edge-path between a reticulation marked r and an omnian marked o 
(see Corollary 3)
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Proof  Suppose that N is weakly tree-child. Then there exists 
a tree-child rooting D of N. For each vertex u ∈ O , either u is 
a root in D or one of the outgoing arcs of u is subdivided by 
a vertex that is a root in D. Hence, |O| ≤ k . For the second 
condition, assume for contradiction that there exists a vertex 
v ∈ V with de

N
(v) = 0 . Then, by Theorem 2, d+

N
(v) ≥ 1 and in 

any rooting D of N, every child of v is a reticulation. Thus, 
D is not tree-child; a contradiction. Lastly, to prove the third 
condition, assume for contradiction that there exists a non-
trivial edge-path P in N between two vertices in O ∪ R , say 
between s and t. In a tree-child rooting, an edge incident to a 
reticulation must be oriented away from the reticulation and, 
similarly, an edge incident to an omnian must be oriented 
away from the omnian. Hence, the edge of P incident to s is 
oriented away from s in D. Similarly, the edge of P incident 
to t is oriented away from t in D. Therefore, P must contain 
a reticulation in D and hence in N; a contradiction since no 
internal vertex of an edge-path can be a reticulation.

For the other implication, suppose that |O| ≤ k , that 
de(v) ≥ 1 for all v ∈ V  , and that there does not exist a non-
trivial edge-path between any two vertices in O ∪ R . By 
Lemma 3, there exists a rooting D of N such that each vertex 
in O is a root in D. Suppose that D is not tree-child. Let v 
be a non-leaf vertex of D all whose children in D are reticu-
lations. Then, we obtain a contradiction since then either 
de
N
(v) = 0 or v is an omnian of N that is not a root of D. 	

� ◻

We can simplify the characterization in Proposition 1 for 
semi-directed networks as follows, using that, in a (multi-)
semi-directed network, de(v) ≥ 1 holds for any non-omnian 
vertex v and there is no non-trivial edge-path between two 
reticulations (Theorem 2).

Corollary 3  A semi-directed network N is weakly tree-child 
if and only if N has at most one omnian and if there is an 
omnian o, then de(o) ≥ 1 and there is no non-trivial edge-
path between o and a reticulation r of N.

We next turn our attention to tree-based multi-semi-
directed networks. A spanning tree of a mixed graph G is 

a subtree of G that contains all vertices of G and is a tree. 
A multi-rooted network N is tree-based if it has a rooted 
spanning tree that has the same leaf set as N. Clearly, a 
multi-rooted network that is tree-based must be a rooted 
network, since the corresponding spanning tree must have 
a single root. Note that binary rooted tree-based networks 
were introduced in Francis and Steel (2015) and extended 
to non-binary rooted networks in  Jetten and van Iersel 
(2016), who also defined the stricter notion of strictly tree-
basedness, which we do not consider here. A multi-semi-
directed network N is weakly tree-based if N has a root-
ing that is tree-based and N is strongly tree-based if every 
rooting of N is tree-based, see Fig. 8 for an example. Since 
every multi-rooted tree-based network is a rooted network, 
all multi-semi-directed networks that are weakly or strongly 
tree-based are semi-directed networks. Hence, we will focus 
on semi-directed networks for the remainder of this section.

To state our next result, we define for a multi-semi-
directed network N = (V ,E,A) and a subset S of the set of 
omnians of N the set

Hence, �+(S) contains the vertices of N that are the head of 
an arc that starts at an omnian contained in S. Note that by 
definition, �+(S) may contain vertices that are also in S.

Theorem 6  Let N be a semi-directed network with O its set 
of omnians. Then N is strongly tree-based if and only if for 
each S ⊆ O we have that |�+(S)| ≥ |S|.

Proof  Let R be the set of reticulations of N. We follow 
a similar approach as in Jetten and van Iersel (2016) for 
directed networks. More precisely, we first associate a bipar-
tite graph B = (V �,E�) to N that has vertex set V � = R� ∪ O� , 
with R′ containing a copy of each reticulation in R and O′ 
containing a copy of each omnian in O. Hence, a vertex of 
N that is a reticulation as well as an omnian has two cor-
responding vertices in V ′ . For r ∈ R� and o ∈ O� , we define 
{r, o} to be an edge in E′ if (o, r) is an arc in N. Note that, 
by Hall’s marriage theorem (Hall 1987), B has a matching 

�+(S) ∶= {t ∈ V ∣ (s, t) ∈ A for some s ∈ S}.

Fig. 8   A semi-directed 
network N that is weakly 
tree-based but not strongly 
tree-based, along with a root-
ing D for it that is tree-based 
(a spanning tree with leaf set 
L(D) is indicated in bold) and a 
rooting D′ for it that is not tree-
based. Far right: The bipartite 
graph B used in the proof of 
Theorem 6
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that covers O if and only if each subset S ⊆ O′ has at least |S| 
neighbors in B.

To prove the theorem, assume first that N is strongly tree-
based. Consider any rooting D of N with the same vertex 
set as N (which exists because any rooting where the root 
subdivides an edge or arc of N can be easily modified to 
obtain a rooting in which the root is a vertex of N). Let 
� denote the sole root of D. We create a rooting D′ of N 
from D as follows. If � is an omnian in N and de

N
(�) = 1 

then subdivide the edge incident to � in N by a new ver-
tex �′ , make �′ the root of D′ , orient the edge between � 
and �′ as (��, �) , and retain the directions of the remaining 
arcs of D. Otherwise, define D′ to be D. By construction 
of D′ , for each omnian o ∈ O of N, we have that all outgoing 
arcs of o in D are also outgoing arcs of o in N. Since N is 
strongly tree-based, D′ is tree-based. Consider a base tree T ′ 
of D′ . Then, T ′ contains at least one outgoing arc ao (in D′ ), 
for each o ∈ O (the omnians of N). In addition, T ′ contains 
exactly one incoming arc of each reticulation in R. Hence, 
the arcs ao , o ∈ O , form a matching in B that covers O. By 
Hall’s marriage theorem recalled above, this implies that 
each S ⊆ O has at least |S| neighbors in B and hence that 
|�+(S)| ≥ |S|.

Conversely, assume that for each S ⊆ O we have that 
|�+(S)| ≥ |S| . Then, by Hall’s marriage theorem, B has a 
matching M that covers O. Consider any rooting D of N. Let 
� denote the sole root of D. We construct a rooted spanning 
tree T of D with leaf set L(D) as follows, see Fig. 8. For 
each o ∈ O consider the reticulation r ∈ R that o is matched 
to by M. Note that (o, r) may not be an arc of D because it 
could have been subdivided by the root. If (o, r) is an arc 
of D, then include it in T. Otherwise, D contains an arc (�, r) 
which we include in T. For each reticulation in R that does 
not have an incoming arc in T yet, choose one incoming arc 
arbitrarily and add it to T. Finally, add all arcs whose heads 
are not reticulations

also to T. Clearly, T is a rooted spanning tree of D.
It remains to show that T has leaf set L(D). Clearly, each 

leaf of D is a leaf of T. Suppose T has a leaf v that is not a 
leaf in D. Then, in D, v has at least one outgoing arc and the 
head of every outgoing arc of v is a reticulation.

Hence, in N, v has exactly one incident edge, no incom-
ing arcs and at least one outgoing arc. Thus, v is an omnian 
of N. This leads to a contradiction since T contains, for each 
omnian of N, at least one outgoing arc of D. 	� ◻

Intriguingly, characterizing semi-directed networks that 
are weakly tree-based requires a different approach (see Cor-
ollary 4 at the end of Sect. 7).

Cherry picking

In this section we consider another concept, called “cherry 
picking”, that can be used to characterize certain multi-
semi-directed networks. More specifically, we focus on 
how cherry picking can be applied to characterize weakly 
and strongly orchard multi-semi-directed networks, classes 
of networks that can be used to model lateral gene transfer 
(see e.g. van Iersel et al. 2022). To state the main results 
(Theorems 7 and 8), we require some further definitions. 
Recall that a cherry of a mixed graph is an ordered pair of 
leaves (x, y) such that there is a length-2 path between x 
and y, either consisting of two edges or of two arcs directed 
towards x and y, respectively. Reducing a cherry (x, y) is 
defined as deleting x and suppressing any resulting non-root 
degree-2 vertex.

To introduce cherry picking for multi-rooted networks, 
consider a multi-rooted network D on X. A reticulated 
cherry4 of D is an ordered pair of leaves (x, y) such that y is a 
reticulation leaf and there is a length-3 path between x and y. 
Reducing a reticulated cherry (x, y) of D means deleting the 
arc from the parent of x to the parent of y and suppressing 
any resulting non-root degree-2 vertices. Let D(x, y) be the 
result of reducing a cherry or reticulate cherry (x, y) in D. 
Then the leaf set of D(x, y) is either the same as the leaf set 
of D, or, if (x, y) is a cherry of D, then the leaf set of D(x, y) 
is X ⧵ {x} . We say that D is orchard if it can be reduced to a 
disjoint union of arcs using a sequence of cherry reductions 
and reticulated cherry reductions.

Furthermore, we say that a multi-semi-directed network N 
is weakly orchard if N has a rooting that is orchard and 
that N is strongly orchard if every rooting of N is orchard. 
See Fig. 9 for an example of a semi-directed network N that 
is weakly orchard but not strongly orchard.

We now define reticulated cherries and their reductions 
for a multi-semi-directed network N on X. This definition is 
slightly different from the definition above for multi-rooted 
networks since N may have elements of X that are roots, 
see for example root e in the 2-semi-directed network in 
Fig. 3. A reticulated cherry of N is an ordered pair (x, y) 
with x, y ∈ X such that y is a reticulation leaf and there 
is a length-2 or length-3 path between x and y. Reducing 
a reticulated cherry (x, y) of N is defined as deleting the 
arc between the neighbours of x and y or deleting the arc 
between x and the neighbour of y and suppressing any 
resulting non-root degree-2 vertices. See Figs. 10 and 11 
for examples. For (x, y) a reticulated cherry or a cherry of 
N, let N(x, y) denote the resulting mixed graph that is the 

4  Note that this definition is only for multi-rooted networks. Retic-
ulated cherries in multi-semi-directed networks are defined in a 
slightly different way below.
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Fig. 9   A semi-directed net-
work N on X = {a, b, c, d, e, f } 
that is weakly orchard but not 
strongly orchard, along with a 
rooting D1 that is orchard and a 
rooting D2 that is not orchard. 
The rooted network D′

1
 is a 

binary resolution of D1 with 
the gray numbers indicating an 
HGT-consistent labelling for D′

1

Fig. 10   Example of a weakly orchard multi-semi-directed network on X ={a… , e} and a sequence of cherry reductions and reticulated cherry 
reductions. In each case, the (reticulated) cherry that is reduced is indicated below the arrow that indicates the reduction

Fig. 11   An alternative sequence of cherry reductions and reticulated 
cherry reductions for the weakly orchard multi-semi-directed network 
on X = {a… , e} from Fig. 10. In each case, the (reticulated) cherry 
that is reduced is indicated below the arrow that indicates the reduc-

tion. Note that in the bottom-left multi-semi-directed network, a has 
become a root instead of a leaf and that (a, d) is a reticulated cherry 
in that network since a ∈ X.
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result of reducing (x, y) in N. Note that each connected 
component of N(x, y) is either an isolated vertex in X or a 
multi-semi-directed network on a subset of X.

Intriguingly, binary rooted networks that are orchard 
can be characterized in terms of a so-called HGT-con-
sistent labelling (van Iersel et al. 2022). As it turns out, 
this concept can be canonically extended to binary multi-
rooted networks. In turn, this provides us with a tool 
to characterize multi-semi-directed networks that are 
weakly orchard. To make this more precise, suppose that 
D = (V ,A, �) is a binary multi-rooted network. Then we 
call a map t ∶ V → ℕ a HGT-consistent labelling for D if 

1.	 t(u) ≤ t(v) for each arc (u, v) ∈ A;
2.	 t(u) < t(v) for each arc (u, v) ∈ A with v not a reticula-

tion; and
3.	 for each reticulation v it holds that t(u) = t(v) for exactly 

one parent u of v.

See Fig. 9 for an example of a HGT-consistent labelling 
of a 1-rooted network.

We call a rooting D of a multi-semi-directed network N 
on X nice if every root of D is either a vertex of N that is 
not in X or subdivides an arc of N whose tail is in X. We 
will use the following useful fact concerning nice rootings.

Observation 1  Every multi-semi-directed network has a nice 
rooting.

Proof  Suppose that N is a multi-semi-directed network. Con-
sider an arbitrary rooting D of N. If a root � of D is not a 
vertex of N, then it subdivides an edge e or an arc a of N. If � 
subdivides e, we can make any vertex incident with e a root 
instead of � . If � subdivides an arc a whose tail is not in X, 
then we can make the tail of a a root instead of � . 	�  ◻

We now define a binary resolution of a multi-rooted 
network N = (V ,A) which we shall need to state our next 
result. This is the binary multi-rooted network obtained 
from N by (i) replacing every vertex v with d+

N
(v) ≥ 3 and 

its set of outgoing arcs by a rooted binary tree T with root 
v, so that all arcs in T are directed away from v, and the 
leaf set of T consists of those w ∈ V  such that (v,w) ∈ A , 
and (ii) replacing every vertex w in N with d−

N
(w) ≥ 3 and 

its set of incoming arcs by a rooted binary tree T with root 
w, in which the directions of all arcs in T are reversed so 
that they are all directed towards w and the leaf set of T 
consists of those v ∈ V  with (v,w) ∈ A . See Fig. 9 for an 
example.

To simplify the exposition of the remainder of this sec-
tion, we shall from now on assume, without loss of general-
ity, that multi-rooted and multi-semi-directed networks have 
no isolated vertices.

Theorem 7  Given a multi-semi-directed network N on X, the 
following are equivalent. 

(1)	 N is weakly orchard;
(2)	 there exists a sequence of cherry reductions and reticu-

lated cherry reductions that reduces N to a forest in 
which each tree is either a single edge whose two adja-
cent vertices are in X or a single vertex that is in X;

(3)	 N has a rooting that has a binary resolution that admits 
an HGT-consistent labelling;

(4)	 every nice rooting of N is orchard;
(5)	 N(x, y) is weakly orchard for some cherry or reticulated 

cherry (x, y).

Proof  That (4) implies (1) is trivial, given that N has at least 
one nice rooting by Observation 1.

We now show that (1) implies (3). If N is weakly orchard, 
then it has a rooting D that is orchard. Since D is a multi-
rooted network, we can obtain a rooted network D′ from D 
by adding a new root � with an arc to each root or D. Con-
sider any sequence of cherry and reticulated cherry reduc-
tions that transforms D into a disjoint union U of arcs the 
heads of which are elements in X. The same sequence trans-
forms D′ into a rooted star tree S, that is, the tree obtained 
from U as follows. First, add a root �′ to U. Next, add an 
arc from �′ to the tail ta of each arc a in U. Finally, sup-
press all vertices ta . Clearly, S can easily be transformed 
into a single arc whose head is in X by cherry reductions. 
Hence, D′ is also orchard and, by [(van Iersel et al. 2022), 
Theorem 2], D′ has a binary resolution D′

b
 that admits a 

HGT-consistent labelling. Deleting all vertices and arcs of 
D′

b
 that where added to D′ to obtain a binary resolution of � 

as part of obtaining D′
b
 then gives a binary resolution of D 

with a HGT-consistent labelling, completing the proof that 
(1) implies (3). The converse direction, i.e. that (3) implies 
(1), can be shown in a similar manner.

We now prove that (1) implies (2). Let D be a rooting of N 
that is orchard. Consider a sequence � of cherry and retic-
ulated cherry reductions that transforms D into a disjoint 
union of arcs the heads of which are elements in X. A cherry 
(x, y) that can be reduced in D can also be reduced in N 
unless the path between x and y in D contains a root of D 
and this root is not a vertex of N (i.e. it is suppressed when 
semi-deorienting D to obtain N). In this case, N contains a 
connected component consisting of only the edge {x, y} . A 
reticulated cherry (x, y) that can be reduced in D can also 
be reduced in N. The outcome of reducing (x, y) in N and 
in D in this case, respectively, is the same (up to taking the 
semi-deorientation) unless the path between x and y in D 
contains a root of D and this root is not a vertex of N (i.e. 
it is suppressed when semi-deorienting D to obtain N). In 
this case, the reduced version of D contains a connected 
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component consisting of a single arc whose head is in X, 
while the reduced version of N contains a connected com-
ponent consisting of a single vertex in X. Hence, � reduces 
N to a forest in which each connected component is either a 
single edge whose two incident vertices are in X or a single 
vertex that is in X.

We now show that (2) implies (4). Let D be a nice root-
ing of N. We prove by induction on the number m of ver-
tices of D that D is orchard. Since |X| ≥ 2 , the bases case 
is m = 2 and is trivial. Assume that the stated implication 
holds for all multi-semi-directed networks that have a nice 
rooting with 2 ≤ l ≤ m vertices and that N is such that D has 
m + 1 vertices. Let (x, y) be a cherry or reticulated cherry 
in N. Then (x, y) is also a cherry or reticulated cherry of D 
because D is a nice rooting of N. Note that it is possible 
that N contains a length-2 path between x and y while D 
contains a length-3 path between x and y. This can happen 
if d(x) = d+(x) = 1 . In this case, dN(x,y)(x) = 0 and so x is an 
isolated vertex in N(x, y) while D(x, y) contains a connected 
component in the form of an arc from a root of D(x, y) to x. 
In this case, let D′,N′ be D(x, y), N(x, y), respectively, with 
the connected component containing x removed. Otherwise, 
simply let D� = D(x, y) and N� = N(x, y) . Then D′ is a nice 
rooting of N′ . By induction, it follows that D′ is orchard, 
from which we can conclude that D is orchard.

By the equivalence of (1) and (2) shown above, it follows 
easily that (5) implies (1).

It remains to prove that (1) implies (5). Suppose that N 
is weakly orchard and that (x, y) is a cherry or reticulated 
cherry of N. By Observation 1, N has a nice rooting D. 
Then D is orchard by the equivalence of (1) and (4). Fur-
thermore, (x, y) is a cherry or reticulated cherry also in D. 
Let D′ be the rooted network obtained from D by adding a 
new root � with an arc to each previous root and suppress-
ing any resulting non-root degree-2 vertices. Then (x, y) 
is also a cherry or reticulated cherry in D′ and D′ is also 
orchard. Hence, by [(Janssen and Murakami 2021), Proposi-
tion 1], D�(x, y) is orchard. Thus, D(x, y) is orchard. It fol-
lows that N(x, y) has a rooting that is orchard. Hence, N(x, y) 
is weakly orchard. 	�  ◻

From Theorem 7, it follows that one can decide in linear 
time whether a given multi-semi-directed network is weakly 
orchard since, just as for rooted networks, cherries and retic-
ulated cherries can be reduced in arbitrary order.

To state the second main result of this section which 
concerns semi-directed networks, we require some further 
definitions. Suppose N is a semi-directed network on X. A 
cherry picking sequence of N is a sequence (s1,… , sk) of 
ordered pairs of elements of X, such that s1 is a cherry or 
reticulated cherry of N0 ∶= N and, for all i ∈ {1,… , k − 1} , 
the pair si+1 is a cherry or reticulated cherry in Ni ∶= Ni−1(si) 

and Nk ∶= Nk−1(sk) is a graph in which each connected com-
ponent is either an isolated vertex in X or an edge such that 
both incident vertices are contained in X. Note that in case 
we want to emphasize the order in which the pairs si are 
reduced, we also write N◦(s1,… , si) for Ni.

Lemma 4  Let N be a semi-directed network and let (x, y) be 
a cherry or a reticulated cherry of N. If N is strongly orchard 
then N(x, y) is strongly orchard.

Proof  Let D be any rooting of N(x, y). Then a rooting D′ of N 
can be obtained from D by the following small modifica-
tions. If (x, y) is a cherry and x was deleted in the construc-
tion of N(x, y) from N, then D′ is obtained from D by subdi-
viding the arc incident to y by a vertex w and adding leaf x 
with an arc (w, x). If (x, y) is a reticulated cherry, then D′ is 
obtained from D by subdividing the arc incident to y by a 
vertex v and the arc incident to x by a vertex u and adding 
an arc (u, v). Since N is strongly orchard, D′ is orchard. It 
then follows that D is orchard. Hence, N(x, y) is strongly 
orchard. 	� ◻

The converse of the Lemma 4 does not hold in general, 
see Fig. 12. Motivated by this, we define an scr-cherry 
(source component reticulated cherry) of a semi-directed 
network N as a reticulated cherry (x, y) such that x is in a 
source component of the network.

The next lemma, combined with Lemma 4, shows that 
cherries and reticulated cherries that are not scr-cherries can 
be reduced in arbitrary order.

Lemma 5  Let N be a semi-directed network and let (x, y) be 
a cherry or a reticulated cherry of N that is not a scr-cherry. 
If N(x, y) is strongly orchard then N is strongly orchard.

Proof  Assume that N(x, y) is strongly orchard. Let D be any 
rooting of N. We distinguish between the cases that (x, y) is 
a cherry or reticulated cherry in D or that this is not the case.

First suppose that (x, y) is a cherry or reticulated cherry 
in D. Then D(x, y) is a rooting of N(x, y) since (x, y) is not 
an scr-cherry. Since N(x, y) is strongly orchard, D(x, y) must 
be orchard. Hence, D is orchard. So N is strongly orchard.

Now suppose that (x, y) is neither a cherry nor a reticu-
lated cherry of D. This can only happen if (x, y) is a cherry 
of N that is in a source component of N and the single root 
of D subdivides an edge on the path between x and y in N. 
Then modify D to a rooting D′ by making the internal vertex 
of this path the root. Then we can use the argument from the 
previous paragraph to show that N is strongly orchard. 	
� ◻

Remark  It follows from Theorem 7, Lemmas 4 and 5, and 
Fig. 12 that there is a key distinction between the weakly 



	 Theory in Biosciences           (2026) 145:4     4   Page 16 of 21

and strongly orchard properties concerning the reduction 
of (reticulated) cherries in arbitrary order. Specifically, the 
property of a multi-semi-directed network being weakly 
orchard is preserved under arbitrarily reducing both cher-
ries and reticulated cherries. In contrast, a semi-directed 
network being strongly orchard is preserved only under 
arbitrarily reducing cherries and reticulated cherries that 
are not scr-cherries.

We call a cherry picking sequence s = (s1,… , sk) of 
N0 = N strong if, for each i ∈ {1,… , k} , it holds that if Ni−1 
has at least one scr-cherry, then si is an scr-cherry of Ni−1 . 
Note that if Ni−1 has no scr-cherries then, by definition of a 
cherry picking sequence, si is a cherry or reticulated cherry 
of Ni−1 . We now state the second main result of this section.

Theorem 8  Let N be a semi-directed network N on X. Then N 
is strongly orchard if and only if, for each strong cherry pick-
ing sequence s = (s1,… , sk) of N and for each i ∈ {1,… , k} , 
it holds that if si is an scr-cherry of Ni−1 = N◦(s1,… , si−1) 
then Ni−1 has at least two scr-cherries where we put N0 = N.

Proof  First suppose that N is strongly orchard and assume 
for contradiction that there exists a strong cherry picking 
sequence s = (s1,… , sk) of N such that there exists some 
1 ≤ i ≤ k such that si is a scr-cherry of Ni−1 = N◦(s1,… , si−1) 
and  Ni−1 has no other scr-cherries. Since  s is strong, 
Ni−1 has no cherries or reticulated cherries apart from si . 
Since si = (x, y) is an scr-cherry, there exists a rooting Di−1 
of Ni−1 where the root subdivides the edge of Ni−1 incident 

to x. Consequently, Di−1 has no cherries or reticulated cher-
ries and is therefore not orchard. Hence, Ni−1 is not strongly 
orchard and, by Lemma 4, N is not strongly orchard, a 
contradiction.

The other direction of the proof is by induction 
on k = |X| + |R| − 2 , with R the set of reticulations of N. 
For k = 0 the statement is trivially true. Assume k ≥ 1 and 
that for each strong cherry picking sequence s = (s1,… , sk) 
of N0 = N and for each i ∈ {1,… , k} , it holds that if si is an 
scr-cherry of Ni−1 = N◦(s1,… , si−1) then Ni−1 has at least 
two scr-cherries.

First suppose that  N has a cherry or a reticulated 
cherry  (x,  y) that is not an scr-cherry. Since  N(x,  y) is 
strongly orchard by induction, it follows that N is strongly 
orchard by Lemma 5.

Now suppose that N has no cherries or reticulated cherries 
that are not scr-cherries. Then N has at least two scr-cherries 
(x, y) and (w, z) (possibly, z = y ). Consider any rooting D 
of N. Then at least one of (x, y) and (w, z) is a reticulated 
cherry in D. Assume without loss of generality that (x, y) is 
a reticulated cherry of D. Since N(x, y) is strongly orchard 
by induction, each rooting of N(x, y) is orchard. In particular, 
D(x, y) is orchard. Hence, D is orchard. Since D was arbi-
trary, it follows that N is strongly orchard. 	�  ◻

The example in Fig. 12 shows why in the character-
ization in Theorem 8 “for each” cannot be replaced by 
“there exists”. Even though there exists a cherry picking 
sequence of the required type in the depicted semi-directed 
network N, N is not strongly orchard. Indeed, N also has a 

Fig. 12   A semi-directed network  N on {a, b, c, d, e} that is weakly 
orchard but not strongly orchard, along with a rooting D that is not 
orchard. This is easy to see since D has no cherry, (a, b) is the only 
reticulated cherry of D, and the depicted network D(a, b) has no cher-

ries or reticulated cherries. The bottom row of networks shows the 
first 4 networks obtain when reducing N by the strong cherry picking 
sequence ((d, e), (d, e), (c, e), (b, e), (a, b), (b, d)) of N 
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strong cherry picking sequence that is not of the required 
type.

Path partitions

We now turn to our final concept for characterizing classes 
of (multi-)semi-directed networks called path partitions, 
see also Francis et al. (2018); Lafond and Moulton (2025); 
Huber et al. (2022). Basically speaking, for a multi-rooted 
network, this is a partition of the vertex set of the network 
whose parts induce a collection of directed paths each of 
which must end in a leaf. Multi-rooted networks that enjoy 
this property are called forest-based networks and can be 
used to model introgression (Scholz et al. 2019); they are 
considered in more depth in Lafond and Moulton (2025); 
Huber et al. (2022). In this section, we extend the theory of 
path partitions from multi-rooted networks to (multi-)semi-
directed networks and shall see that having a path partition 
characterizes weakly tree-based semi-directed networks 
(Corollary 4).

We begin with some definitions. Suppose that G is a 
mixed graph. We call G a forest if it does not contain a 
cycle. If D is a multi-rooted network on X, then we call D 
forest-based if there exists a subgraph F of D in the form 
of a forest such that F spans V(D) and has leaf set X and, 

for each arc (u, v) ∈ A(D) ⧵ A(F) , the vertices u and v are 
in different trees of F. In this case, we call F a support 
forest of D. Note that an element T ∈ F might be a single 
vertex or T might contain a vertex v such that dT (v) = 2 . 
If N is a multi-semi-directed network on X, then we say 
that N is weakly forest-based if N has a rooting D that is 
forest-based.

Note that since the leaf sets of D and N coincide, no leaf 
of N can be a root in D. If every rooting of N with leaf set 
X is forest-based, then we call N strongly forest-based. See 
Fig. 14 for some examples to illustrate these definitions. 
Note if N is semi-directed, then by [(Huber et al. 2022), 
Theorem 1] it follows that if N is weakly (resp. strongly) 
forest-based then it is weakly (resp. strongly) tree-based, 
but not conversely (see Fig. 13).

Now, suppose that N is a multi-semi-directed net-
work on X. For x ∈ X  , let P be either a semi-directed 
path (u1 = u, u2,… , uk = x) , k ≥ 2 , in N joining a vertex 
u ∈ V(N) − X to x or the trivial path (u = x) . Then we call 
u the handy vertex of P. In addition, for a collection P of 
semi-directed paths in N, we call a maximal connected 
subgraph containing only edges {u, v} of N with u, v in 
different semi-directed paths of P a cross component of P . 
We now show that a special type of path partition arises 
from weakly forest-based multi-semi-directed networks 
(see Fig. 15).

Fig. 13   The semi-directed network  N1 on X = {a, b, c, d} is weakly 
tree-child, weakly forest-based and weakly tree-based. In each case, 
the rooting is obtained by subdividing the edge labelled ∗ to obtain 
the root. The semi-directed network N2 on X is weakly forest-based 
and weakly tree-based (since the rooting with the root subdividing the 

edge labelled ∗ is forest-based and tree-based), but not weakly tree-
child. The semi-directed network N3 on {a, b, c} is weakly tree-based 
(since the rooting with the root subdividing the edge labelled ∗ is tree-
based), but not weakly tree-child and not weakly forest-based

Fig. 14   A multi-semi-directed 
network N that is weakly forest-
based but not strongly forest-
based, along with a rooting D 
of N that is forest-based (the 
dashed and dotted paths are the 
trees that make up the support 
forest) and a rooting D′ of N 
that is not forest-based
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Lemma 6  Let N be a multi-semi-directed network N on X 
that has a rooting D with leaf set X that is forest-based. 
Then there exists a collection P of semi-directed paths in 
N such that 

	 (P1)	 each vertex of N is in exactly one semi-directed 
path in P;

	 (P2)	 each semi-directed path in P is either a trivial 
path (x) with x ∈ X or a semi-directed path from a 
vertex in V(N) − X to some element in X;

	 (P3)	 each cross component of P contains at most one 
vertex that is not the handy vertex of a semi-directed 
path in P.

Moreover, if F is a support forest for D then, for each arc 
(u, v) ∈ A(D) ⧵ A(F) , we have that 
	 (P4)	 if {u, v} is an edge or (u,  v) is an arc of  N 

and u, v ∈ P ∈ P then u and v appear consecutive 
on P.

Proof  Suppose that F is a support forest for D. We can 
decompose F into a set S of (directed) paths by, for each 
vertex of F with outdegree greater than 1 in F, arbitrarily 
deleting all but one outgoing arc from F. Let P denote the 
collection of semi-directed paths in N that corresponds to S . 
Note that the first arc of a path in S might be different from 
the first arc of the corresponding semi-directed path in P . 
We show that Properties (P1)-(P3) are satisfied by P.

Clearly, P satisfies Properties (P1) and (P2). To see that 
P satisfies Property (P3), we claim first that for every edge e 
in a cross component of P one of the vertices incident with 

e must be the handy vertex of a semi-directed path in P . 
To see this, assume for contradiction that e is an edge in a 
cross component of P and none of the vertices incident with 
e, call them u and v, is the handy vertex of a semi-directed 
path in P . Then u and v must be an interior vertex of the 
semi-directed path in P that contains it, respectively. Since 
F is a forest spanning V(D), it follows that one of u and v 
must be a reticulation in N. Hence (u, v) or (v, u) must be 
an arc in N; a contradiction as {u, v} is an edge in N. Hence, 
the claim holds

Assume for contradiction, that Property (P3) does not 
hold. Then there exists a cross component C of P that con-
tains two or more vertices that are not the handy vertex of 
the semi-directed path in P that contains them. Let u and u′ 
denote two such vertices of C and let v and v′ be the vertices 
of N such that {u, v} and {u�, v�} are edges in C and u and 
v are in different semi-directed paths of P and u′ and v′ are 
in different semi-directed paths of P . Note that the semi-
directed paths in P that contain u and u′ might be the same. 
Then, by the previous claim, v and v′ must be the handy 
vertices of semi-directed paths in P . Since, by Theorem 2, 
N cannot contain a semi-directed cycle, it follows that C is 
a tree. Therefore, there exists a path U in C joining u and u′ . 
Replacing, if necessary, v with the vertex on U adjacent with 
u and v′ with the vertex on U adjacent with u′ , it follows that 
U has the form (u, v,… , v�, u�).

Since both {u, v} and {u�, v�} are edges of N and so must 
be oriented in any rooting of N and, in combination, Prop-
erties (P1) and (P2) imply that any arc on a path P in P is 
oriented towards the handy vertex of P, it follows that {u, v} 
and {u�, v�} must be oriented towards each other in the orien-
tation of C induced by D. If v ≠ v′ this is not possible since 

Fig. 15   A semi-directed network N on X = {a,… , g} that is weakly 
forest-based as D is a rooting of N that is forest-based. The trivial 
paths (a), (b) and (g) along with the four semi-directed paths made 
up by the thin black edges and arcs form a collection of semi-directed 
paths P in N that satisfies Properties (P1)-(P3) of Lemma 6. The ver-

tices a, b, v1 , v4 , v6 , v9 and g are the handy vertices of the paths that 
contain them. The dotted thick black edges make up the three cross 
components of P , while the thin black, dotted arcs are neither in a 
semi-directed path of P nor in a cross component
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it implies that some edges in U must have been arcs in N. 
If v = v� then v is a reticulation in N. Hence, N contains the 
arcs (u, v) and (u�, v) as it is a multi-semi-directed network; 
a contradiction since, by assumption, {u, v} and {u�, v} are 
edges in C and therefore in N.

The remainder is an immediate consequence of the fact 
that F is a support forest for D. 	�  ◻

Using Lemma 6, we can now characterize multi-semi-
directed networks that are weakly forest-based (note that this 
is an analogue of [(Huber et al. 2022), Theorem 1]).

Theorem 9  A multi-semi-directed network N on X is weakly 
forest-based if and only if there exists a collection P of 
semi-directed paths in N satisfying Properties (P1)-(P4) of 
Lemma 6.

Proof  By Lemma 6, it suffices to show that if N has a collec-
tion of semi-directed paths that satisfies Properties (P1)-(P4) 
then N must be weakly forest-based. So suppose that P is 
a collection of semi-directed paths in N that satisfies these 
properties.

We start with associating a directed graph D to N and 
then show that D is in fact a rooting of N that is forest-based.

To obtain D, we employ Property (P2) and orient, for 
each non-trivial semi-directed path P ∈ P , all edges on P 
towards the unique element in X it contains.

For each cross component C in P , we do the following. 
Let vC be the unique vertex in C that is not a handy vertex 
of a semi-directed path in P (Property (P3)), if it exists. 
Otherwise, choose an arbitrary non-leaf vertex v in C to 
play the role of vC.

In either case, we then orient all edges in C away from vC . 
Observe that this is well-defined since C is a tree by Theo-
rem 2. The obtained directed graph is D.

We now show that D is a rooting of N. To this end, we 
need to show that D is a multi-rooted network such that N is 
a semi-deorientation of D. Clearly, D is a multi-rooted net-
work since it cannot contain a directed cycle as otherwise N 
would have contained a semi-directed cycle, which is not 
allowed by Theorem 2. To see that N is a semi-deorientation 
of N, we need to show that the reticulations of D are pre-
cisely the reticulations of N. Since every reticulation of N is 
also a reticulation of D, it suffices to show that every reticu-
lation of D is also a reticulation of N. Assume for contradic-
tion that D contains a reticulation r that is not a reticulation 
of N. Then since neither a leaf nor a root of N can be a 
reticulation in D, it follows that de

N
(r) = dN(r) ≥ 3 . Hence, 

at least one of the edges incident to r in N is in a cross com-
ponent C of P , and so r is a vertex in C. By Property (P3), 
it follows that r is a handy vertex of some semi-directed 
path in P or r = vC holds. Hence, C is oriented in D in such 
a way that r has exactly one incoming arc. Consequently, r 

cannot be a reticulation in D, a contradiction. Thus, D must 
be a rooting of N.

It remains to show that D is forest-based. Let P′ denote 
the collections of semi-directed paths in D induced by P . 
Then Property  (P1) implies that P′ is a forest spanning 
V(D). Furthermore, Property (P2) implies that the leaf set 
of D is X. Lastly, Property (P4) implies that, for each arc 
a ∈ A(D) ⧵ A(P�) , the head of a and the tail of a are in dif-
ferent semi-directed paths of P′ . Hence, P′ is a support forest 
for D. It follows that N is weakly forest-based. 	�  ◻

As it turns out, in multi-semi-directed networks that are 
forest-based, collections of semi-directed paths that satisfy 
Properties (P1)-(P3) in Lemma 6 also turn out to hold the 
key for our characterization of semi-directed networks that 
are weakly tree-based.

Corollary 4  A semi-directed network N on X is weakly tree-
based if and only if there exists a collection P of semi-
directed paths in  N satisfying Properties  (P1)-(P3) of 
Lemma 6.

Proof  By the definition of weakly tree-based and Lemma 6, 
it suffices to show that if N contains a collection of semi-
directed paths that satisfy Properties (P1)-(P3) of Lemma 6 
then N is weakly tree-based. Suppose that P is a collection 
of semi-directed paths in N that satisfies these properties

We create a rooting D of N as in the proof of Theorem 9. 
Note that D now has a single root because N is semi-directed. 
To see that D is tree-based, observe that P again spans V(D) 
(by Property (P1)) and has leaf set X (by Property (P2)). By 
[(Francis et al. 2018), Theorem 2.1], this means that D is 
tree-based. Hence, N is weakly tree-based. 	�  ◻

Discussion

In this paper, we have introduced new explicit mathemati-
cal characterizations of multi-semi-directed networks, 
overcoming the need to implicitly define such networks 
through their rooted counterparts. By extending exist-
ing concepts for rooted networks—such as cherry pick-
ing sequences, omnians and path partitions—we have 
been able to explicitly characterize when a multi-semi-
directed network has a rooting that is within some com-
monly studied classes of rooted networks. In particular, 
with the growing interest in semi-directed networks (see 
e.g. Baños 2019; Gross and Long 2018; Gross et al. 2021; 
Linz and Wicke 2023; Jingcheng and Ané 2023; Holtgrefe 
et al. 2025), our characterizations have the potential to 
make the mathematical analysis of the algebraic models 
associated with semi-directed networks more tractable (see 
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e.g. Maxfield et al. 2025; Englander et al. 2025; Allman 
et al. 2025a).

Although we have presented some characterizations for 
when a multi-semi-directed network is contained within 
a certain class, there remain some open questions in this 
direction. For example, generalizing our characterization 
of strongly orchard semi-directed networks (Theorem 8) 
to multi-semi-directed networks, deciding whether or not 
strongly forest-based networks can be characterized with 
path partitions, and seeing if weakly orchard networks can 
be characterized in terms of an HGT-consistent labelling 
directly applied to the multi-semi-directed network are all 
interesting questions. In addition, similar questions could 
be investigated for other well-known network classes, 
including but not limited to proper-forest-based, normal, 
reticulation visible and tree-sibling networks (Kong et al. 
2022).

Finally, our results open up a number of interesting 
algorithmic questions. We have already sketched an effi-
cient algorithm to check if a mixed graph is a (multi-)
semi-directed network (see the end of Sect. 4). Develop-
ing efficient algorithms to check whether a given (multi-)
semi-directed network lies within a fixed class would be a 
logical next step. For some classes efficient algorithms fol-
low directly from our results (see e.g. Theorem 5). However, 
for other classes the existence of efficient algorithms is not 
immediately obvious. For example, it would be interesting to 
determine whether or not there exists a linear time algorithm 
to check if a semi-directed network is strongly orchard. This 
question can be answered affirmatively for rooted networks, 
but for semi-directed networks a naive algorithm takes quad-
ratic time (by checking every possible rooting).

Acknowledgements  This paper is based on research that was partly 
carried out while the authors were in residence at the Institute for Com-
putational and Experimental Research in Mathematics (ICERM) in 
Providence, RI, during the semester program on “Theory, Methods, and 
Applications of Quantitative Phylogenomics”. We thank the organizers 
for organizing this semester program. We thank Cécile Ané for pos-
ing an open question during this semester program regarding weakly 
and strongly tree-child semi-directed networks, which motivated part 
of this research. We thank the reviewers for their valuable comments 
and suggestions.

Author Contributions  All authors contributed equally.

Funding  This material is based upon work supported by the National 
Science Foundation (NSF) under Grant No. DMS-1929284 while 
the authors were in residence at the Institute for Computational and 
Experimental Research in Mathematics (ICERM) in Providence, RI, 
during the semester program on “Theory, Methods, and Applications 
of Quantitative Phylogenomics”. NH, LvI & MJ were supported by the 
Dutch Research Council (NWO) under Grant No. OCENW.M.21.306, 
and LvI & MJ also under Grant No. OCENW.KLEIN.125.

Data Availability  No datasets were generated or analysed during the 
current study.

Declarations 

 Conflict of interest  The authors declare no Conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Allman ES, Ané C, Baños H, Rhodes JA (2025a) Beyond level-1: iden-
tifiability of a class of galled tree-child networks. Bull Math Biol 
87(11):166

Allman ES, Baños H, Rhodes JA, Wicke K (2025b) NANUQ+: a 
divide-and-conquer approach to network estimation. Algorithms 
Mol Biol 20(1):14

Baños H (2019) Identifying species network features from gene tree 
quartets under the coalescent model. Bull Math Biol 81:494–534

Bernardini G, van Iersel L, Julien E, Stougie L (2023) Constructing 
phylogenetic networks via cherry picking and machine learning. 
Algorithms Mol Biol 18(1):13

Bernardini G, van Iersel L, Julien E, Stougie L (2024) Inferring phylo-
genetic networks from multifurcating trees via cherry picking and 
machine learning. Mol Phylogenetics Evol 199:108137

Cardona G, Rosselló F, Valiente G (2009) Comparison of tree-child 
phylogenetic networks. IEEE/ACM Trans Comput Biol Bioinform 
6(4):552–569

Dempsey J, van Iersel L, Jones M, Murakami Y, Zeh N (2024) A wild 
sheep chase through an orchard. arXiv preprint arXiv:​2408.​10769

Döcker J, Linz S (2024) Characterising rooted and unrooted tree-child 
networks. arXiv preprint arXiv:​2408.​17105

Döcker J, Linz S (2025) On the existence of funneled orientations 
for classes of rooted phylogenetic networks. Theor Comput Sci 
1023:114908

Englander AK, Frohn M, Gross E, Holtgrefe N, van Iersel L, Jones M, 
Sullivant S (2025) Identifiability of phylogenetic level-2 networks 
under the jukes-cantor model. bioRxiv, pages 2025–04

Erdos PL, Semple C, Steel M (2019) A class of phylogenetic networks 
reconstructable from ancestral profiles. Math Biosci 313:33–40

Fischer M, Francis A (2020) How tree-based is my network? proxim-
ity measures for unrooted phylogenetic networks. Discrete Appl 
Math 283:98–114

Francis A, Semple C, Steel M (2018) New characterisations of 
tree-based networks and proximity measures. Adv Appl Math 
93:93–107

Francis AR, Steel M (2015) Which phylogenetic networks are merely 
trees with additional arcs? Syst Biol 64(5):768–777

Gambette P, Berry V, Paul C (2012) Quartets and unrooted phyloge-
netic networks. J Bioinform Comput Biol 10(04):1250004

Garvardt J, Renken M, Schestag J, Weller M (2023) Finding degree-
constrained acyclic orientations. In: 18th International sympo-
sium on parameterized and exact computation (IPEC 2023), pages 
19–1. Schloss Dagstuhl–Leibniz-Zentrum für Informatik

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2408.10769
http://arxiv.org/abs/2408.17105


Theory in Biosciences           (2026) 145:4 	 Page 21 of 21      4 

Gross E, Long C (2018) Distinguishing phylogenetic networks. SIAM 
J Appl Algebra Geom 2(1):72–93

Gross E, van Iersel L, Janssen R, Jones M, Long C, Murakami Y (2021) 
Distinguishing level-1 phylogenetic networks on the basis of data 
generated by markov processes. J Math Biol 83:1–24

Hall P (1987) On representatives of subsets. Classic papers in Combi-
natorics, pages 58–62

Holtgrefe N, Huber KT, van Iersel L, Jones M, Martin S, Moulton V 
(2025) Squirrel: reconstructing semi-directed phylogenetic level-1 
networks from four-leaved networks or sequence alignments. Mol 
Biol Evol 42(4):msaf067

Huber KT, Moulton V, Scholz GE (2022) Forest-based networks. Bull 
Math Biol 84(10):119

Huber KT, van Iersel L, Janssen R, Jones M, Moulton V, Murakami Y, 
Semple C (2024) Orienting undirected phylogenetic networks. J 
Comput Syst Sci 140:103480

Huson DH, Rupp R, Scornavacca C (2010) Phylogenetic networks: 
concepts, algorithms and applications. Cambridge University 
Press

Janssen R, Murakami Y (2021) On cherry-picking and network con-
tainment. Theor Comput Sci 856:121–150

Jetten L, van Iersel L (2016) Nonbinary tree-based phylogenetic net-
works. IEEE/ACM Trans Comput Biol Bioinform 15(1):205–217

Kinene T, Wainaina J, Maina S, Boykin LM (2016) Rooting trees, 
methods for. Encyclopedia of evolutionary biology, page 489

Kong S, Pons JC, Kubatko L, Wicke K (2022) Classes of explicit phy-
logenetic networks and their biological and mathematical signifi-
cance. J Math Biol 84(6):47

Lafond M, Moulton V (2025) Path partitions of phylogenetic networks. 
Theor Comput Sci 1024:114907

Linz S, Wicke K (2023) Exploring spaces of semi-directed level-1 
networks. J Math Biol 87(5):70

Maeda S, Kaneko Y, Muramatsu H, Murakami Y, Hayamizu M (2023) 
Orienting undirected phylogenetic networks to tree-child network. 
arXiv preprint arXiv:​2305.​10162

Maxfield M, Jingcheng X, Ané C (2025) A dissimilarity measure 
for semidirected networks. IEEE Trans Comput Biol Bioinform 
22(2):684–696

Scholz GE, Popescu A-A, Taylor MI, Moulton V, Huber KT (2019) 
Osf-builder: a new tool for constructing and representing evolu-
tionary histories involving introgression. Syst Biol 68(5):717–729

Solís-Lemus C, Ané C (2016) Inferring phylogenetic networks with 
maximum pseudolikelihood under incomplete lineage sorting. 
PLoS Genet 12(3):e1005896

Soraggi S, Wiuf C (2019) General theory for stochastic admixture 
graphs and f-statistics. Theor Popul Biol 125:56–66

Urata T, Yokoyama M, Miyaji H, Hayamizu M (2024) Orientability 
of undirected phylogenetic networks to a desired class: practical 
algorithms and application to tree-child orientation. arXiv preprint 
arXiv:​2407.​09776

van Iersel L, Janssen R, Jones M, Murakami Y (2022) Orchard net-
works are trees with additional horizontal arcs. Bull Math Biol 
84(8):76

van Iersel L, Kelk S, Stamoulis G, Stougie L, Boes O (2018) On 
unrooted and root-uncertain variants of several well-known phy-
logenetic network problems. Algorithmica 80:2993–3022

Jingcheng X, Ané C (2023) Identifiability of local and global features 
of phylogenetic networks from average distances. J Math Biol 
86(1):12

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2305.10162
http://arxiv.org/abs/2407.09776

	Characterizing semi-directed phylogenetic networks and their multi-rootable variants
	Abstract
	Introduction
	Previous work
	Outline of the paper

	Preliminaries
	Mixed graphs
	Multi-rooted and multi-semi-directed networks

	Characterizations of multi-semi-directed networks
	Rootings of multi-semi-directed networks
	Omnians
	Cherry picking
	Path partitions
	Discussion
	Acknowledgements 
	References


