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Abstract

In evolutionary biology, phylogenetic networks are graphs that provide a flexible framework for representing complex evolu-
tionary histories that involve reticulate evolutionary events. Recently, phylogenetic studies have started to focus on a special
class of such networks called semi-directed networks. These graphs are defined as mixed graphs that can be obtained by de-
orienting some of the arcs in some rooted phylogenetic network, that is, a directed acyclic graph whose leaves correspond to a
collection of species and that has a single source or root vertex. However, this definition of semi-directed networks is implicit
in nature since it is not clear when a mixed-graph enjoys this property or not. In this paper, we introduce novel, explicit math-
ematical characterizations of semi-directed networks, and also multi-semi-directed networks, that is mixed graphs that can be
obtained from directed phylogenetic networks that may have more than one root. In addition, through extending foundational
tools from the theory of rooted networks into the semi-directed setting—such as cherry picking sequences, omnians, and path
partitions—we characterize when a (multi-)semi-directed network can be obtained by de-orienting some rooted network that
is contained in one of the well-known classes of tree-child, orchard, tree-based or forest-based networks. These results address
structural aspects of (multi-)semi-directed networks and pave the way to improved theoretical and computational analyses
of such networks, for example, within the development of algebraic evolutionary models that are based on such networks.

Keywords Mixed graph - Semi-directed phylogenetic network - Tree-based network - Tree-child network - Orchard
network - Path partitions

Introduction

Phylogenetic networks are a generalization of evolution-
ary trees that are used to represent evolutionary histories
of organisms such as plants and viruses that can evolve in
a non-tree-like fashion (see e.g. Huson et al. 2010). In par-
ticular, they permit the representation of reticulate events,
in which, for example, two species cross with one another
or transfer genes. There are several classes of phylogenetic
networks, but in this paper we will mainly focus on rooted
phylogenetic networks (see e.g. Kong et al. 2022 for a recent
overview), and some of their recent generalizations. Essen-
tially, a rooted phylogenetic network is a directed acyclic
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graph, usually with a single source or root, whose leaf set
corresponds to some collection of species or taxa. For exam-
ple, in Fig. 1, D, is a rooted phylogenetic network for the col-
lection {x,, ..., xg } of species. Lately, multi-rooted networks
have also become of interest, which only differ from rooted
phylogenetic networks in that they may have multiple roots
(see e.g. D, in Fig. 1). Such networks can be used to model
ancestral relationships between populations (Soraggi and
Wiuf 2019) and for representing the evolutionary history
of distantly related groups of species that can still exchange
genes (Huber et al. 2022; Scholz et al. 2019). In both types
of networks, vertices with indegree greater than 1 are of spe-
cial interest because they represent reticulate events. Hence,
such vertices are commonly called reticulations and their
incoming arcs reticulation arcs.

Recently, a new class of phylogenetic networks called
semi-directed networks (Solis-Lemus and Ané 2016) has
started to receive a lot of attention in the literature, both
from a theoretical (e.g. Bafios 2019; Gross and Long 2018;
Gross et al. 2021; Linz and Wicke 2023; Jingcheng and
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Fig. 1 Five mixed T

graphs N, N,, G, D,, D,. Mixed T8 To
graph N, is a semi-directed
network since it is the semi-
deorientation of, for example,
the rooted network D, illustrated
below it. Mixed graph N, is a
multi-semi-directed network
since it is the semi-deorienta- 2 24
tion of, for example, the multi-
rooted network D, illustrated
below it. However, it can be Ny
shown that N, is not a semi-

directed network (since two

roots are needed). The mixed
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multi-semi-directed

z7 x3

Ts

xs
T Ty
T2
e X3

Tyq
Ts5

Dy

Ané 2023; Englander et al. 2025) and applied (e.g. Allman
et al. 2025b; Holtgrefe et al. 2025) point of view. Basi-
cally speaking, these are mixed graphs (i.e. graphs that can
have a combination of undirected edges and directed arcs),
which can be obtained by partly deorienting a rooted phy-
logenetic network, that is, by replacing all arcs which are
not reticulation arcs with an edge, and then suppressing any
resulting degree-2 vertex that arises from a root. We call
such a partial deorientation, in which only reticulation arcs
keep their direction and the root locations are lost, a semi-
deorientation. For example, in Fig. 1, N, is a semi-directed
network since it is the semi-deorientation of, e.g., the rooted
network D;. In this paper, we will also consider multi-semi-
directed networks, that is, mixed graphs which are the semi-
deorientation of some multi-rooted network. Note that these
networks were recently considered in Maxfield et al. (2025)
in the context of defining a dissimilarity measure between
semi-directed networks. As an example, in Fig. 1, N, is
multi-semi-directed since it is the semi-deorientation of D,.
In general, in case a (multi-)semi-directed network N is a
semi-deorientation of a (multi-)rooted network D, we shall
call D a rooting of N.

Locating the root in a phylogenetic network inferred from
biological data is often problematic. In particular, without
asymmetrical models of character change, root placement
cannot be determined from the data alone and must rely
on external assumptions (Kinene et al. 2016). Due to more
favorable identifiability results that circumvent the need for
root placement (Solis-Lemus and Ané 2016; Gross and Long
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2018; Baifios 2019; Gross et al. 2021), semi-directed net-
works have gained importance instead. However, their defi-
nition is somewhat problematic, in that it is given implicitly
rather than explicitly. For instance, the mixed graph G in
Fig. 1 is neither semi-directed nor multi-semi-directed, but
how can this be decided? Of course, one possibility would
be to develop some algorithm to make this decision, but
for certain applications it could also be useful to have char-
acterizations for when a mixed graph is semi-directed or
multi-semi-directed.

In this paper, we shall provide some characterizations
for semi-directed and multi-semi-directed networks. These
results reveal combinatorial features of (multi-)semi-directed
networks that help support further results in this paper and
may also be helpful for future studies. One of the main tools
that we use to obtain our characterizations is the concept of a
semi-directed cycle in a mixed graph, that is, a cycle of arcs
and edges in the graph whose edges can be oriented so as to
obtain a directed cycle. Indeed, the exclusion of such cycles
is a condition in one of our main characterizations (see e.g.
Theorem 2). As a corollary of our characterizations, in case
a mixed graph is a (multi-)semi-directed network, we give a
more general characterization to that given in Maxfield et al.
(2025) for when a subset of vertices or subdivisions of edges
or arcs can correspond to a choice of root(s) that leads to a
rooting of the network.

We shall also explore the consequences of our results for
some special classes of rooted phylogenetic networks (see
e.g. Kong et al. 2022 for a recent review of the different
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types of rooted networks). In particular, given a fixed class
of rooted or multi-rooted phylogenetic networks, it is of
interest to characterize when a (multi-)semi-directed net-
work has a rooting contained in the given class. This could
be either strongly (all rootings are in the class) or weakly
(there exists a rooting that is in the class). For example, a
rooted phylogenetic network is tree-based (Francis and Steel
2015) if it has a rooted spanning tree with the same leaf set
as the network. Thus, a semi-directed network is weakly tree-
based if it has a rooting that is tree-based, and it is strongly
tree-based if all its rootings are tree-based (see e.g. Fig. 2).

Various concepts have been used to characterize when
a rooted phylogenetic network is contained within a cer-
tain class. For example, the classes of rooted tree-child
networks (Cardona et al. 2009) and rooted orchard net-
works (Erdos et al. 2019; Janssen and Murakami 2021) can
both be characterized using cherry picking sequences (Erdos
et al. 2019; Janssen and Murakami 2021), eventually lead-
ing to practical software for reconciling phylogenetic trees
into networks (Bernardini et al. 2023, 2024). On the other
hand, rooted tree-based networks (Francis and Steel 2015)
have been characterized using both omnians (Jetten and van
Iersel 2016) and path partitions (Francis et al. 2018), with
the latter concept also providing a characterization for rooted
forest-based networks (Huber et al. 2022). We shall general-
ize some of these concepts to (multi-)semi-directed networks
and apply them to obtain characterizations for when such a
network has a rooting that is contained within the classes of
tree-child, orchard, tree-based or forest-based networks (or
when all of its rootings are contained within these classes).

Previous work

There is a well-established body of literature devoted to
the study of rooted phylogenetic networks, with numerous

T4
)
3 Ze6 1
2 N2
x1

Fig.2 Three semi-directed networks N,, N, and N;. Semi-directed
network N, is strongly tree-based since each of its rootings is tree-
based. Semi-directed network N, is weakly tree-based, but not
strongly, since the rooting obtained by directing all edges away from

structural classes receiving extensive attention (see again
Kong et al. 2022). In parallel, undirected phylogenetic net-
works have also been studied when no information of direc-
tionality is available (see e.g. Gambette et al. 2012). This has
led to work that focuses on the relationship between rooted
and undirected networks. Recent contributions in this area
include studies such as Huber et al. (2024); Maeda et al.
(2023); van Iersel et al. (2018); Fischer and Francis (2020);
Urata et al. (2024); Docker and Linz (2024, 2025); Demp-
sey et al. (2024); Garvardt et al. (2023), which explore how
undirected networks can be oriented and when this can be
done to give rooted networks within specific classes.

In terms of (multi)-semi-directed networks, similar
structural and graph-theoretical questions remain largely
unexplored. Indeed, although seemingly related, the partial
presence of directions within these networks presents fun-
damentally different problems. To date, the only substantial
work in this direction is by Maxfield et al. (2025). The main
aim of their work was to introduce an efficiently comput-
able dissimilarity metric between two tree-child multi-semi-
directed networks. To do this they developed some results
for directing mixed graphs as multi-semi-directed networks.
There are, however, several important differences between
their framework and ours. Most notably, our definition of
(multi-)semi-directed networks allows rootings on edges or
arcs and we enforce arcs to correspond to reticulation arcs,
whereas they do not, and they permit parallel edges or arcs,
whereas we do not. For their type of networks they present
two results that are related to ours: a characterization for
when a subset of vertices in a mixed graph gives a root-
ing of the graph [(Maxfield et al. 2025), Proposition 8 and
Remark 1], and when a mixed graph can be rooted to give a
tree-child network in case such a rooting exists [(Maxfield
et al. 2025), Proposition 11]. We give some more details on
the relationship of these results with ours below.
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the vertex r; is tree-based, but the rooting obtained in a similar way
using vertex r, is not. Semi-directed network Nj is not weakly tree-
based since it has no rooting that is tree-based
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Outline of the paper

We now summarize the contents of the rest of this paper.
After presenting some preliminaries in Sect. 2, in Sect. 3
we present some characterizations for when a mixed graph
is multi-semi- and semi-directed (Theorems 1 & 2 and Cor-
ollary 1, respectively). Then in Sect. 4, we characterize the
feasible sets of root locations in rootings of the network
(Theorem 4). At the end of the section we also explain how
our characterizations lead to an efficient algorithm for decid-
ing if an arbitrary mixed graph is a multi-semi-directed or
semi-directed network. In Sect. 5 we use omnians to char-
acterize when a (multi)-semi-directed network is strongly
and weakly tree-child (Theorem 5 and Proposition 1, respec-
tively) and also strongly tree-based (Theorem 6). In Sect. 6
we use cherry picking sequences to characterize when a
(multi)-semi-directed network is strongly or weakly orchard
(Theorem 7 and Theorem 8, respectively), and in Sect. 7
we use path partitions to characterize when the network is
weakly forest-based (Theorem 9) or weakly tree-based (Cor-
ollary 4). In Sect. 8, we conclude with some open problems.

Preliminaries
Mixed graphs

A mixed graph is an ordered tuple G = (V, E,A) where V
is a nonempty set of vertices, E is a set of undirected
edges{u,v} C V,u # v,and A is a set of directed arcs (u, v)
withu,v € V, u # v, and such that for all arcs (i, v) € A we
have that {u, v} € E and (v, u) € A. Note that, by definition,
parallel arcs, parallel edges or parallel edge/arc pairs are not
allowed in mixed graphs. For an arc (i, v) € A, we call u the
tail and v the head. If (u,v) € A, we call u a parent of v and v
a child of u. If there is an edge {u, v} € E or an arc (u,v) € A,
we call u and v adjacent or neighbours.

Suppose for the following that G = (V,E,A) is a mixed
graph. For v € V, the indegree d_(v) is the number of arcs
entering v, the outdegree dg(v) is the number of arcs leav-
ing v, and dg(v) is the number of edges in E incident to v.
In addition, the degree d;(v) is the total number of edges
and arcs incident to v. We will omit the subscript G when
the graph is clear from the context. We call v a reticulation
ifd~(v) > 1,aleafif dv)=d‘(v)=1lord(v)=d (v)=1
and a root if d*(v) = d(v). The set of leaves of G is called
the leaf set of G, and it is denoted by L(G). We say that G is
binary if d(v) € {1,2}for eachrootv € V andd(v) € {1, 3}
for each non-rootv € V.

A path in G is a sequence of pairwise distinct verti-
ces (v, ... ,vp), p =1, such that for alli € {1,...,p—1}
either (v;,v;, ;) or (v;;,Vv;) is an arc in A or {v;,v;,;} is an
edge in E. Such a sequence is a semi-directed path (from v,

@ Springer

to vp) if for all i € {1,...,p — 1} either (v;,v;,;) is an arc
in A or {v;,v;,;} is an edge in E. A A-path (between v,
and vp) in G is a path (v, ..., v, ... ,vp) of N, p > 1, such
that (v;, ..., v;) and (v;, ... ,vp) are semi-directed paths, for
somei € {1,...,p}. An edge-pathin Gis a path (v, ... ,vp),
such that {v;,v;,;}isanedgein E, foralli € {1,...,p - 1}.
We call the number of vertices on a path P minus 1 the
length of P and refer to P as a trivial path if the length of
P is zero. If P is not trivial then we sometimes also say
that P is non-trivial. We say that G is connected if for any
two vertices x and y of G there is a path joining x and y

A cycle in G is a sequence of vertices (v, Vs, ..., v, = v,
p =4, such that v; #v; for 1 <i<j<p and, for all
i€{l,...,p—1}, either (v;,v;) or (v;;,v;) is an arc
in A or {v;,v;,;} is an edge in E. Note that, since p > 4
and v, =V, a cycle contains at least three distinct vertices.
A cycle is called semi-directed if, for alli € {1,...,p — 1},
either (v;,v;,;) is an arc in A or {v;,v;.;}1s an edge in E.
A reticulation r of N is a sink of a cycle in N if r=v;,
and (vi_;,v;), (v, v;) €A, for some i€ {1,...,p—1},
with vy = v, ;. If G is connected and does not contain a
cycle, then we call G a tree. If additionally E = @, i.e., G is
fully directed, and G has a single root, we call G a rooted
tree. We refer to Fig. 3 for examples that illustrate some of
the definitions in this and the next subsection.

Multi-rooted and multi-semi-directed networks

Suppose X is a finite set with at least two elements. A
multi-rooted network (on X) is a mixed graph (V, E, A)
(with leaf set X), with E = @, no directed cycles, d(v) # 2
for all non-root verticesv € Vand d~(v) € {0,1,d(v) — 1}
for all v € V. A k-rooted network is a multi-rooted net-
work with precisely k > 1roots. A 1-rooted network is also
called a rooted network. A rooted network without any
reticulations is called a rooted phylogenetic tree.

Consider any mixed graph. Subdividing an edge {u,v}
replaces the edge {u,v} by two edges {u,w} and {w, v}
with w a new vertex. Subdividing an arc (u, v) replaces
the arc (u, v) by an edge {u, w} and an arc (w, v) with w
a new vertex. Suppressing a degree-2 vertex w is defined
as follows:

e if w has two incident edges {u, w}, {w, v}, replace them
by a single edge {u,v};

e if w has two incident arcs (u, w), (w, v), replace them
by a single arc (u, v);

e if w has an incident edge {u,w} and an incident
arc (w, v), replace them by a single arc (u, v);

e if w has an incident arc (u#, w) and an incident
edge {w, v}, replace them by a single edge {u, v},
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Fig.3 Left: A 2-semi-directed network N on {a, b, ..., e} with set of
reticulations {ry, r,, 3,7, }. The sequence (1|, v,, Vs, 1, V3, V4, 13,74, 8)
is a A-path of N and the sequence C = (ry,V3,Vy, 73,74, V7,15) 1S @
cycle of N. The vertices r, and r, are sinks of C whereas r; is not.
The path (a, v, v, v,, v7) is an example of an edge-path. The leaves a

and in each of these cases also delete w. Note that degree-2
vertices with two incoming or two outgoing arcs are not
suppressed.

The semi-deorientation of a multi-rooted network D is
the result of replacing each arc (u, v) of D by an edge {u, v}
if d(v) =1 and afterwards suppressing any vertex p
with dj,(p) = 2. Note that a root with two outgoing arcs in D
will still be present in the semi-deorientation. Also note that
a semi-deorientation is not necessarily a mixed graph since
suppressing roots may lead to parallel arcs. However, we will
only consider mixed graphs in this paper and hence not con-
sider cases with parallel arcs. A rooting' of a mixed graph G
is a multi-rooted network D such that G is the semi-deori-
entation of D. Observe that D can be obtained from G by
subdividing (zero or more) arcs and/or edges and replacing
edges by arcs. Note that the subdivision vertices necessarily
become roots in D and that vertices of G may also become
roots in D. This also includes the possibility that a root of G
that is contained in X becomes a leaf in D (see e.g. the vertex
e in Fig. 3) or that a leaf of G not contained in X becomes an
outdegree-1 root in D?. However, it is not possible to create

! Rootings were called “rooted partners” in Maxfield et al. (2025);
Linz and Wicke (2023).

2 From a biological perspective, turning a leaf in a (multi-)semi-
directed network into a root of a (multi)-rooted network may seem
problematic. However, since this only applies to leaves of a (multi-)
semi-directed network not in X, which do not correspond to taxa, this
does not pose a problem. A leaf of a (multi-)semi-directed network
contained in X cannot be turned into a root of a (multi)-rooted net-

and b form a cherry, leaves d and g are reticulation leaves, while r;
and r, are leaf reticulations. The vertex sets of the source components
are {a,b,v,,v;,v,,v7} and {e} while the sink components have ver-
tex sets {d,r;} and {g,r,}. Right: A rooting D of N in the form of a
2-rooted network with roots p, and p,

any new reticulations. A k-semi-directed network (on X) is a
mixed graph that is the semi-deorientation of some k-rooted
network (with leaf set X). Note that the leaf set of a k-semi-
directed network on X may not be equal to X, because an
outdegree-1 root may also be in X (see, for example, the
vertex e in Fig. 3 again). A multi-semi-directed network is
a k-semi-directed network for some k > 1. A semi-directed
network is a 1-semi-directed network. When drawing multi-
rooted and multi-semi-directed networks, we will often omit
the leaf labels when they are not relevant. We will reserve
the letter G for general mixed graphs, D for (multi)-rooted
networks and N for (multi)-semi-directed networks.

Characterizations of multi-semi-directed
networks

In this section we characterize when a mixed graph is a
multi-semi-directed network or when it is in fact a semi-
directed network. These characterizations naturally lead
to algorithms for checking (multi-)semi-directedness. We
sketch one efficient approach at the end of Sect. 4, which
outlines a method based on rootings of (multi-)semi-directed
networks.

Footnote 2 (continued)

work. Instead, its incident edge can be subdivided by a new vertex
that becomes a root.

@ Springer
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Suppose G = (V,E,A) is a mixed graph. A cherry of a
mixed graph is an ordered pair of leaves (x, y) such that there
is a length-2 path between x and y, either consisting of two
edges or of two arcs directed towards x and y, respectively.
For convenience, we also refer to a cherry with leaves x and
y as a cherry on {x, y}. A leaf reticulation of G is a reticula-
tion of G that is adjacent to a leaf of G and a reticulation
leaf of G is a leaf of G that is adjacent to a reticulation of G.

An (undirected) sink component of G = (V, E,A)is a con-
nected component C of the (undirected) graph (V, E) such
that there are no arcs (u,v) € A withu € C and v ¢ C. For
example, in Fig. 3, {d, r, } is a sink component since it is a
connected component of the graph that is obtained by ignor-
ing all arcs, and in G there are no arcs leaving this compo-
nent. Similarly, an (undirected) source component® of G is
a connected component C of (V, E) such that there are no
arcs (u,v) € Awithu & Candv € C. A subgraph G’ of G is
a pendant subtree if G’ is a tree and has at most one vertex
that has a neighbour in G not in G'.

We start with the following technical result which we
use to prove our first characterization of multi-semi-directed
networks.

Lemma1 Suppose G = (V, E,A)is a connected mixed graph
with|V| > 3. Then G contains either a cherry or a leaf retic-
ulation (or both) if the following properties hold:

(C1) d(v)#2andd (v) € {0,d(v)— 1}forallv €V,
(Cii) each cycle of G contains at least one sink; and
(Ciii) each sink component of G is a pendant subtree.

Proof Let P be a semi-directed path in G containing a maxi-
mum number of arcs and, over all such paths, containing
a maximum number of edges. If P contains no arc, then it
follows that A = (J and hence G is a tree by (Cii) and since
G is connected. Since G has at least three vertices, and no
degree-2 vertices, it follows that G has a cherry. Therefore,
we may assume that P contains at least one arc. Let s denote
the first vertex on P.

We next show that P ends in a leaf or in a reticulation. To
see this, assume for contradiction that P ends in a vertex v
with d(v) # 1 and d~(v) = 0. Then there is an edge {v, w}
or an arc (v, w) with w not on P (since otherwise we would
have a cycle without sink, which is not allowed by (Cii)).
Hence, we can extend P to a semi-directed path containing
more arcs or the same number of arcs and more edges, by
appending w in contradiction to the maximality of P. Thus,
P ends in a leaf or in a reticulation, as required.

3 Source components were called “root components” in Maxfield
et al. (2025).
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To complete the proof, we next show that P ends in a
reticulation leaf or in a leaf that is in a cherry. To prove
this, assume that P ends in a reticulation or in a leaf that
is not a reticulation leaf and not in a cherry. First suppose
that P ends in a leaf x that is not a reticulation leaf. Then,
in view of (Ci), there exists a vertex z of N that is not on P
and, denoting by w the vertex on P that is the predecessor
of v on P, we have that {w, z} € E or (w,z) € A. Hence, zis
either also a leaf or it is a reticulation. In the first case, x is
in a cherry. Therefore, we may and will assume that P ends
in a reticulation v. Furthermore, there exist arcs entering v
that are not on P and, by the maximality of P, the last edge/
arc of P is an edge.

Consider the maximal connected subgraph H of G con-
taining v but no arcs. Observe that H is not a pendant subtree
since it contains at least two vertices with incoming arcs (v
and the head of the last arc of P). Hence, by (Ciii), H is not
a sink component. It follows that H has a vertex y with an
incident outgoing arc a = (y,w), some w € V. Hence, the
subpath of P from s to y extended by w has one more arc
than P contradicting the assumption that P contains a maxi-
mum number of arcs. O

Theorem 1 A mixed graph G = (V,E,A) is a multi-semi-
directed network if and only if Properties (Ci) - (Ciii) hold.

Proof If G is a multi-semi-directed network, then Proper-
ties (Ci) - (Ciii) clearly hold.

To see the converse, assume that Properties (Ci) - (Ciii)
hold. We perform induction on |A| + |E|. The base case is
|A| + |E|] = 0. In this case, G is a set of isolated vertices.
Hence, G is its own semi-deorientation. Thus, G is a multi-
semi-directed network.

For the inductive step, assume that G is such that
|A| + |E| > 1. Then G must contain a connected component
that is not an isolated vertex. In view of the base case it suf-
fices to show that every connected component of G that is
not an isolated vertex is a multi-semi-directed network. Let
G’ be a connected component of G that is not an isolated
vertex. If G’ has exactly two vertices, then they are connected
by an edge by (Ci) and clearly G’ is (multi-)semi-directed.
Otherwise, by Lemma 1, G’ must contains either a cherry or
a leaf reticulation (or both).

Assume first that G’ contains a cherry on {x,y}. Then,
by (Ci), the length-2 path between x and y consists of two
edges. In this case, we delete leaf x from this cherry and
suppress the vertex adjacent to x if this has rendered it a
vertex of degree two. The resulting graph G” is a multi-
semi-directed network by induction. This means that G” is
the semi-deorientation of a multi-rooted network D”. Let D’
be obtained from D" by subdividing the arc entering y by a
new vertex p and adding leaf x with an arc (p, x). Then D’



Theory in Biosciences (2026) 145:4

Page 7 of 21 4

is a multi-rooted network and the semi-deorientation of D’
is G'. Hence, G’ is a multi-semi-directed network.

To conclude the proof, assume that G’ contains a retic-
ulation leaf z. Let r be the reticulation adjacent to z and
let py,...,p, be the parents of r (with t = d~(r)). Let G”
be obtained from G’ by replacing vertices r, z by verti-
ces z;, ..., g, and replacing arc (p;, r) by an edge {p;,z,;} for
i € {l,...,t}and deleting edge {r, z} thus reducing |A| + |E|
by 1. The resulting graph G” is a multi-semi-directed net-
work by induction. This means that G” is the semi-deori-
entation of a multi-rooted network D”. Let D’ be obtained
from D" by merging z,, ..., z, into a single vertex r and add-
ing a leaf z with an arc (r, z). Then, D’ is a multi-rooted
network and the semi-deorientation of D’ is G’. Hence, G’ is
a multi-semi-directed network. O

The following lemma can be used to show an alternative
characterization of multi-semi-directed networks.

Lemma 2 Let C be a cycle in a mixed graph G. If

U1

(%
(%] U1

k!

U3

G G’

Fig.4 Two mixed graphs G and G’ that, by Theorem 2, are not multi-
semi-directed networks. The reason is that G contains the semi-
directed cycle (v, v,,v3, vy, v;) while G’ contains the non-trivial edge-
path (v, v,,v3) and v, and v; are reticulations

Fig.5 Left: A mixed graph G,

which, by Corollary 1, is not

a semi-directed network since

there is no A-path between v,

and v,. Right: A mixed

graph G, that, by Corollary 1,

is not a semi-directed net-

work since it contains a cycle

(1, v, V3, V4, Vs, V) Without a V1
sink

(a) Cis not semi-directed; and
(b) C contains no non-trivial edge-path between two reticu-
lations of G,

then C contains at least one sink.

Proof LetC = (v, v,, ..., v, = v, p = 4. If C is not semi-
directed, then there existi,j € {1,2,...,p — 1} distinct such
that (v;,v;y1) and (v, v)) are arcs on C. Without loss of
generality, i < j (mod p — 1). Assume that j and i are such
that j — i is minimized. If j — i = 1, then C contains the sink
V; = V. Otherwise, j—i> 1and, so, v, and v; are both
reticulations of G and C contains a non-trivial edge-path
between them. O

An alternative characterization of mixed graphs that are
multi-semi-directed networks is as follows. See Fig. 4 for
examples that illustrate that Properties (II) and (III) cannot
be weakened.

Theorem 2 A mixed graph G = (V,E,A) is a multi-semi-
directed network if and only if

D dv)#2andd (v) € {0,d(v) — 1} forallv € V,
(D) G contains no semi-directed cycle; and
() G contains no non-trivial edge-path between two
reticulations.

Proof As in the case of Theorem 1, it is straight-forward to
see that if G is a multi-semi-directed network, then Proper-
ties (I), (IT) and (III) hold.

For the converse direction, by Theorem 1, it suffices to
show that Properties (I), (I) and (IIT) imply Properties (Ci),
(Cii) and (Ciii). For this, it suffices to show that Proper-
ties (IT) and (III) imply Properties (Cii) and (Ciii).

First observe that Property (III) implies Property (Ciii)
because any sink component that is not a pendant subtree
contains two reticulations and a non-trivial edge-path path

(%] (%3]

U3 V4

V2
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joining them. In view of Lemma 2, Properties (II) and (IIT)
together imply Property (Cii). O

We will now characterize semi-directed networks. See
Fig. 5 for examples that illustrate that Properties (2) and (3)
cannot be weakened. Recall that a semi-directed network
is the semi-deorientation of some 1-rooted network, i.e. a
rooted network with a single root.

Corollary 1 A mixed graph G = (V,E,A) is a semi-directed
network if and only if

(1) dv)#2andd (v) € {0,d(v) — 1} forallv € V;

(2) each cycle of G contains at least one sink; and

(3) G contains a A-path between each pair of verti-
cesu,vevV.

Proof As before, it is easy to see that if G is a semi-directed
network then Properties (1), (2) and (3) hold.

Now assume that Properties (1), (2) and (3) hold. We first
show that G is a multi-semi-directed network. In view of
Theorem 1, it suffices to show that Properties (1) - (3) imply
Property (Ciii). To this end, suppose that G contains a sink
component S that is not a pendant subtree. Note that S is a
tree by Property (2). Since S is not pendant, it contains at
least two reticulations r, r,. Let p,, p, be parents of r, r,,
respectively, such that p; # p,. Note that p,, p, are not in S.
By Property (3), there exists a A-path P between p; and p,.
Hence, there is a cycle without sink, formed by path P
together with the arcs (p,, r,), (p,, 1) and the path between 7,
and r, through S, which is a contradiction to (2). Thus, (Ciii)
holds, as required.

It remains to show that any rooting of G has a single root.
Suppose D is a rooting of G with at least two roots p,, p,.
Then there is no A-path between p; and p, in D and hence
also not in G, contradicting Property (3). Hence, we can
conclude that G is a semi-directed network. O

Rootings of multi-semi-directed networks

The following theorem and its corollary show that the
number of roots of a rooting of a multi-semi-directed net-
work N = (V, E, A) can be calculated directly from the retic-
ulation number|A| — |R| of N, with R the set of reticulations.

Theorem 3 If N = (V,E,A) is a k-semi-directed network,
some k > 1, then the reticulation number of N equals

|E| + |A| = |V| + k.

@ Springer

Proof Consider the graph F obtained from N by deleting
all arcs. Then F is a forest since, by Theorem 2, N does not
contain any cycles traversing only edges. In any rooting D
of N, where we root only on vertices of N, each (connected)
component 7" of F is oriented as a rooted tree 7”. The root
of 7" is either a root of D or a reticulation of D. Moreover,
each vertex of 7" that is not the root of 7" is not a reticula-
tion of D and also not a root of D. Hence, each component
of F contains exactly one vertex that is a root or a reticula-
tion of D. It follows that the number of components of F
is precisely |R| + k where R is the set of reticulations of N.

In any forest, the number of components equals the num-
ber of vertices minus the number of edges. Therefore,

VI - |El = |R| +k,

implying that

|Al+ V] = |El = |A] + |R| + &,
which can be rewritten as

|Al = IRl = |E| + |A] = V] + k.

Since |A| — |R] is the reticulation number of N, the theorem
follows. O

As an immediate consequence, we have the following
result.

Corollary 2 If N = (V,E,A) is a multi-semi-directed net-
work, then all rootings of N have

IVl = IR| - |E|

roots, with R the set of reticulations of N.

We now prove an auxiliary result that will be useful to
characterize all possible rootings of a multi-semi-directed
network.

Lemma 3 Let N be a multi-semi-directed network, R the set
of reticulations of N, and U C V(N) such that there is no
edge-path between any two vertices in U U R. Then there
exists a rooting of N in which each vertex of U is a root.

Proof The proof is by induction on IUl. The base case
for U = @ is trivial. If |U| > 1, consider a vertex u € U. By
induction, there exists a rooting D of N in which each vertex
of U \ {u}is a root. Let C, be the connected component of
the graph obtained from N by deleting all arcs, such that C,
contains u. First observe that u is the only vertex from U
in C,, since otherwise there would be an edge-path between
two vertices in U. Also note that C, is a source component
since there is no edge-path between u and any reticulation.
Moreover, by Theorem 2, N contains no cycle consisting
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of only edges. Hence, C, is a tree. Since no vertex of C,, is
a reticulation in C,, it follows that C,, is a rooted tree in D.
The root u’ of this tree is also a root of D, since D contains
no arcs whose head is a vertex in C, but whose tail is not.
Hence, in D, C, contains exactly one root «’. If ¥’ = u then
u' € U and D is a rooting of N in which «’ is a root. Hence,
the lemma holds in this case.

If ' # u then, since C, is a rooted tree in D, we can
modify the orientation of D to obtain an alternative rooting
of N by changing only the orientation of each arc on the
path between u and «’ in C,. This gives a rooting D’ of N in
which u € U is a root. Moreover, all vertices inU \ {u} are
still roots of D', which concludes the proof. O

For a rooting D of multi-semi-directed net-
work N = (V,E,A), define the root configuration as the
triple (V/,E’,A’) with V' CV, E' CE and A’ C A such
that the roots of D are precisely the vertices in V' together
with vertices subdividing each edge in E’ and arc in A’.
In the following theorem, we characterize the valid root
configurations of a multi-semi-directed network. As noted
in the introduction, a similar characterization was given
in [(Maxfield et al. 2025), Proposition 8], although it
was under a slightly different framework (e.g. assuming
A'=F =90).

Theorem 4 Let N = (V,E,A) be a multi-semi-directed net-
work and V' CV,E' CE and A’ C A. Then there exists a
rooting D of N with root configuration (V' E',A") if and only
if

o each vertex in V’ and each edge in E’ is in a source com-
ponent of N and each arc in A’ is an outgoing arc of a
source component of N; and

e each source component of N contains exactly one ele-
ment of V’, contains exactly one edge in E’ or has exactly
one outgoing arc in A’.

Proof We first prove the “only if” direction. Since N is multi-
semi-directed, there exists a rooting D of N. Let (V" E"',A")
be its root configuration.

First suppose that there is a v € V" that is not in a
source component of N. Then there exists a reticulation r
in the component C of the graph (V, E) containing v with
both incoming arcs of » having their tail outside C. Note
that v # r. Hence, there exists an edge-path between » and v
in N. Since v is a root of D, this path is a directed path from v
to r in D. However, this implies that dg(r) = dj(r), contra-
dicting the definition of a multi-rooted network. The other
cases (that there is a e € E” that is not in a source compo-
nent or an arc a € A” that is not an outgoing arc of a source
component) are handled similarly.

Now suppose that there exists a source component C of N
containing v, w € V" with v # w. Then there exists an edge-
path between v and w of length at least 2 in N. Since v is a
root in D, this path is directed from v to w in D. However,
since w is also a root in D, the path is directed from w to v
in D, a contradiction. The other cases are again handled
similarly.

We now prove the “if”” direction. Since N is multi-semi-
directed, there exists a rooting D of N. Let (V",E”,A"”) be
its root configuration.

For an edge {u, v} of N, clearly, there exists a rooting of N
with root u if and only if there exists a rooting with root w
subdividing {u, v}. Similarly, for an arc (u, v) of N, clearly,
there exists a rooting of N with root « if and only if there
exists a rooting with root w subdividing (u, v). Hence, we
may assume E' = A’ = E’" = A” = . Let R be the set of
reticulations of N. Since each element of V' is in a different
source component, there is no edge-path between any two
vertices in R U V. Then, by Lemma 3, it follows that there
exists a rooting of N with root configuration (V', E’, A").

O

Theorem 4 directly leads to an efficient algorithm taking
O(|V| + |E| + |A]) time for deciding if an arbitrary mixed
graph G = (V, E, A) is a (multi-)semi-directed network (note
that in [(Maxfield et al. 2025), Remark 1] a similar algo-
rithm is sketched to efficiently find a rooting of a multi-semi-
directed network). First, find all the source components of G
by traversing the graph in O(|V| + |E| + |A|) time. Second,
in each source component, pick an arbitrary vertex as root.
Third, do a breath-first search from each root and orient all
edges away from the root, again taking O(|V| + |E| + |A])
time. Finally, with yet another traversal, check if the result-
ing mixed graph G’ is a multi-rooted directed network and
whether its semi-deorientation is G. Note that by addition-
ally checking whether or not G’ has a single root, it can also
be determined if G is semi-directed.

Omnians

In this section, we show how the concept of omnians can
be used to characterize tree-child (Theorem 5 and Proposi-
tion 1) and tree-based multi-semi-directed networks (Theo-
rem 6). As remarked in the introduction, [(Maxfield et al.
2025), Proposition 11] gives an alternative characterization
for the tree-child case where, instead of using omnians the
concept of the “directed part” of a network is used.

The main definitions of this section are the following.
We say that a vertex v of a multi-semi-directed network is
an omnian if d*(v) > 1 and d°(v) < 1, see Fig. 6. We call
a multi-rooted network D tree-child if each non-leaf ver-
tex of D has at least one child that is not a reticulation.
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(

Fig.6 The three possible configurations surrounding an omnian in a
multi-semi-directed network: (i) one incident edge and at least two
outgoing arcs, (ii) at least two incoming arcs and one outgoing arc

Furthermore, we say that a multi-semi-directed network N
is weakly tree-child if N has a rooting that is tree-child. In
this case, we also call such a rooting of N a tree-child root-
ing of N. Finally, we say that N is strongly tree-child if every
rooting of N is tree-child. See Fig. 7 for examples.

Theorem 5 A multi-semi-directed network N is strongly tree-
child if and only if N has no omnians.

Proof First assume that N is strongly tree-child. Sup-
pose that there exists a vertex v € V that is an omnian,
i.e., dt(v) > 1 and d¢(v) < 1. If d¢(v) =0, then all chil-
dren of v are reticulations in any rooting of N and v
is not a leaf since d*(v) > 0. This would contradict
that N is strongly tree-child. Hence, d°(v) = 1. By The-
orem 1 (Property (Ci)), d~(v) € {0,d(v) —1}. Since
d~(v) =dW) —d*(v) — d*(v) £ d(v) — 1 — 1, this means that
d~(v) =0and thusd*(v) =d(v) — 1.

Lete = {u, v} be the edge in N incident to v. Observe that
all neighbours of v other than u are reticulations. Let D be
a tree-child rooting of N. Since v has at least one child in D
that is not a reticulation, the edge e is oriented away from v
in D. This means that there are two possibilities. Either v is

Ty )

X9 Ty

xs Ts

x7 Te

Ny

Fig.7 The semi-directed network N, on X = {x, ..

., X0} 1s strongly
tree-child in view of Theorem 5. The semi-directed network N, also
on X is weakly tree-child, but not strongly, since the rootings with the
root subdividing an arc labelled  are tree-child, but all other rootings
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(i)

and (iii) at least two outgoing arcs (and in all cases no other incident
edge/arcs). Note that Case (iii) is possible in multi-semi-directed net-
works but not in semi-directed networks

a root of D, or there exists a child a of v in N such that the
arc (v, a) of N leaving v has been subdivided by a root w in
D and D contains the arcs (w, v) and (w, a). In the first case,
changing the orientation of the arc (v, u) to (&, v) (making u
a root) gives a rooting D’ of N that is not tree-child. Also in
the second case, D’ is a rooting of N that is not tree-child. In
both cases, we obtain a contradiction, completing the first
direction of the proof.

For the converse, suppose that N has no omnians, that
is, d*(v) > 2 or d*(v) = 0 for all v € V. Assume that N is
not strongly tree-child, i.e., there exists a rooting D of N
and a non-leaf vertex v of D such that all children of v in D
are reticulations. If v is a reticulation too, then d}(v) = 0
and d;{,(v) = 1. If v is not a reticulation, then df\,(v) <1
and d;(v) > 2. In both cases, we obtain a contradiction.

O

Proposition 1 Let N = (V,E, A) be a k-semi-directed net-
work, some k > 1, with set of reticulations R and set of omni-
ans O. Then, N is weakly tree-child if and only if |O| < k,
d¢(v) > 1 forallv € V, and there does not exist a non-trivial
edge-path between any two vertices in O U R.

Ty X7

N3

are not tree-child (see Corollary 3). The semi-directed network N
on {x; ...,xg} is not weakly tree-child since the edge {r, 0} forms an
edge-path between a reticulation marked r and an omnian marked o
(see Corollary 3)
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Proof Suppose that N is weakly tree-child. Then there exists
a tree-child rooting D of N. For each vertex u € O, either u is
aroot in D or one of the outgoing arcs of u is subdivided by
a vertex that is a root in D. Hence, |O| < k. For the second
condition, assume for contradiction that there exists a vertex
v € V with d},(v) = 0. Then, by Theorem 2, d;(v) > landin
any rooting D of N, every child of v is a reticulation. Thus,
D is not tree-child; a contradiction. Lastly, to prove the third
condition, assume for contradiction that there exists a non-
trivial edge-path P in N between two vertices in O U R, say
between s and 7. In a tree-child rooting, an edge incident to a
reticulation must be oriented away from the reticulation and,
similarly, an edge incident to an omnian must be oriented
away from the omnian. Hence, the edge of P incident to s is
oriented away from s in D. Similarly, the edge of P incident
to t is oriented away from ¢ in D. Therefore, P must contain
a reticulation in D and hence in N; a contradiction since no
internal vertex of an edge-path can be a reticulation.

For the other implication, suppose that |O| < k, that
d®(v) > 1for all v € V, and that there does not exist a non-
trivial edge-path between any two vertices in O UR. By
Lemma 3, there exists a rooting D of N such that each vertex
in O is a root in D. Suppose that D is not tree-child. Let v
be a non-leaf vertex of D all whose children in D are reticu-
lations. Then, we obtain a contradiction since then either
dy,(v) = 0 or v is an omnian of N that is not a root of D.

O

We can simplify the characterization in Proposition 1 for
semi-directed networks as follows, using that, in a (multi-)
semi-directed network, d°(v) > 1 holds for any non-omnian
vertex v and there is no non-trivial edge-path between two
reticulations (Theorem 2).

Corollary 3 A semi-directed network N is weakly tree-child
if and only if N has at most one omnian and if there is an
omnian o, then d°(o) > 1 and there is no non-trivial edge-
path between o and a reticulation r of N.

We next turn our attention to tree-based multi-semi-
directed networks. A spanning tree of a mixed graph G is

Fig.8 A semi-directed
network N that is weakly
tree-based but not strongly
tree-based, along with a root-
ing D for it that is tree-based

(a spanning tree with leaf set
L(D) is indicated in bold) and a
rooting D’ for it that is not tree-
based. Far right: The bipartite
graph B used in the proof of
Theorem 6

a b a b ¢ d
e d W
N D D’

a subtree of G that contains all vertices of G and is a tree.
A multi-rooted network N is tree-based if it has a rooted
spanning tree that has the same leaf set as N. Clearly, a
multi-rooted network that is tree-based must be a rooted
network, since the corresponding spanning tree must have
a single root. Note that binary rooted tree-based networks
were introduced in Francis and Steel (2015) and extended
to non-binary rooted networks in Jetten and van lersel
(2016), who also defined the stricter notion of strictly tree-
basedness, which we do not consider here. A multi-semi-
directed network N is weakly tree-based if N has a root-
ing that is tree-based and N is strongly tree-based if every
rooting of N is tree-based, see Fig. 8 for an example. Since
every multi-rooted tree-based network is a rooted network,
all multi-semi-directed networks that are weakly or strongly
tree-based are semi-directed networks. Hence, we will focus
on semi-directed networks for the remainder of this section.

To state our next result, we define for a multi-semi-
directed network N = (V,E,A) and a subset S of the set of
omnians of N the set

61(S) :={te V| (s,t) € Afor somes e S}.

Hence, 6%(S) contains the vertices of N that are the head of
an arc that starts at an omnian contained in S. Note that by
definition, §7(S) may contain vertices that are also in S.

Theorem 6 Let N be a semi-directed network with O its set
of omnians. Then N is strongly tree-based if and only if for
each S C O we have that |57 (S)| > |S|.

Proof Let R be the set of reticulations of N. We follow
a similar approach as in Jetten and van Iersel (2016) for
directed networks. More precisely, we first associate a bipar-
tite graph B = (V’, E’) to N that has vertex setV/ = R' U O’
with R’ containing a copy of each reticulation in R and O’
containing a copy of each omnian in O. Hence, a vertex of
N that is a reticulation as well as an omnian has two cor-
responding vertices in V'. For r € R’ and 0 € O’, we define
{r,o0} to be an edge in E’ if (o, r) is an arc in N. Note that,
by Hall’s marriage theorem (Hall 1987), B has a matching

B
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that covers O if and only if each subset S C O’ has at least IS|
neighbors in B.

To prove the theorem, assume first that N is strongly tree-
based. Consider any rooting D of N with the same vertex
set as N (which exists because any rooting where the root
subdivides an edge or arc of N can be easily modified to
obtain a rooting in which the root is a vertex of N). Let
p denote the sole root of D. We create a rooting D’ of N
from D as follows. If p is an omnian in N and d},(p) = 1
then subdivide the edge incident to p in N by a new ver-
tex p’, make p’ the root of D/, orient the edge between p
and p’ as (p’, p), and retain the directions of the remaining
arcs of D. Otherwise, define D’ to be D. By construction
of D', for each omnian 0 € O of N, we have that all outgoing
arcs of o in D are also outgoing arcs of o in N. Since N is
strongly tree-based, D’ is tree-based. Consider a base tree 7’
of D'. Then, T’ contains at least one outgoing arc a, (in D’),
for each 0 € O (the omnians of N). In addition, T’ contains
exactly one incoming arc of each reticulation in R. Hence,
the arcs a,, o € O, form a matching in B that covers O. By
Hall’s marriage theorem recalled above, this implies that
each S C O has at least IS| neighbors in B and hence that
16%(S)] > ISI.

Conversely, assume that for each S C O we have that
[67(S)| > |S|. Then, by Hall’s marriage theorem, B has a
matching M that covers O. Consider any rooting D of N. Let
p denote the sole root of D. We construct a rooted spanning
tree T of D with leaf set L(D) as follows, see Fig. 8. For
each o € O consider the reticulation » € R that o is matched
to by M. Note that (o, r) may not be an arc of D because it
could have been subdivided by the root. If (o, r) is an arc
of D, then include it in 7. Otherwise, D contains an arc (p, r)
which we include in 7. For each reticulation in R that does
not have an incoming arc in 7 yet, choose one incoming arc
arbitrarily and add it to 7. Finally, add all arcs whose heads
are not reticulations

also to 7. Clearly, T is a rooted spanning tree of D.

It remains to show that T has leaf set L(D). Clearly, each
leaf of D is a leaf of 7. Suppose T has a leaf v that is not a
leaf in D. Then, in D, v has at least one outgoing arc and the
head of every outgoing arc of v is a reticulation.

Hence, in N, v has exactly one incident edge, no incom-
ing arcs and at least one outgoing arc. Thus, v is an omnian
of N. This leads to a contradiction since T contains, for each
omnian of N, at least one outgoing arc of D. O

Intriguingly, characterizing semi-directed networks that

are weakly tree-based requires a different approach (see Cor-
ollary 4 at the end of Sect. 7).
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Cherry picking

In this section we consider another concept, called “cherry
picking”, that can be used to characterize certain multi-
semi-directed networks. More specifically, we focus on
how cherry picking can be applied to characterize weakly
and strongly orchard multi-semi-directed networks, classes
of networks that can be used to model lateral gene transfer
(see e.g. van lersel et al. 2022). To state the main results
(Theorems 7 and 8), we require some further definitions.
Recall that a cherry of a mixed graph is an ordered pair of
leaves (x, y) such that there is a length-2 path between x
and y, either consisting of two edges or of two arcs directed
towards x and y, respectively. Reducing a cherry (x, y) is
defined as deleting x and suppressing any resulting non-root
degree-2 vertex.

To introduce cherry picking for multi-rooted networks,
consider a multi-rooted network D on X. A reticulated
cherry* of D is an ordered pair of leaves (x, y) such that y is a
reticulation leaf and there is a length-3 path between x and y.
Reducing areticulated cherry (x, y) of D means deleting the
arc from the parent of x to the parent of y and suppressing
any resulting non-root degree-2 vertices. Let D(x, y) be the
result of reducing a cherry or reticulate cherry (x, y) in D.
Then the leaf set of D(x, y) is either the same as the leaf set
of D, or, if (x, y) is a cherry of D, then the leaf set of D(x, y)
is X \ {x}. We say that D is orchard if it can be reduced to a
disjoint union of arcs using a sequence of cherry reductions
and reticulated cherry reductions.

Furthermore, we say that a multi-semi-directed network N
is weakly orchard if N has a rooting that is orchard and
that N is strongly orchard if every rooting of N is orchard.
See Fig. 9 for an example of a semi-directed network N that
is weakly orchard but not strongly orchard.

We now define reticulated cherries and their reductions
for a multi-semi-directed network N on X. This definition is
slightly different from the definition above for multi-rooted
networks since N may have elements of X that are roots,
see for example root e in the 2-semi-directed network in
Fig. 3. A reticulated cherry of N is an ordered pair (x, y)
with x,y € X such that y is a reticulation leaf and there
is a length-2 or length-3 path between x and y. Reducing
a reticulated cherry (x, y) of N is defined as deleting the
arc between the neighbours of x and y or deleting the arc
between x and the neighbour of y and suppressing any
resulting non-root degree-2 vertices. See Figs. 10 and 11
for examples. For (x, y) a reticulated cherry or a cherry of
N, let N(x, y) denote the resulting mixed graph that is the

# Note that this definition is only for multi-rooted networks. Retic-
ulated cherries in multi-semi-directed networks are defined in a
slightly different way below.
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Fig.9 A semi-directed net-
work Non X = {a,b,c,d,e,f}
that is weakly orchard but not
strongly orchard, along with a
rooting D, that is orchard and a
rooting D, that is not orchard.
The rooted network D/, is a
binary resolution of D, with
the gray numbers indicating an

HGT-consistent labelling for D)

QL O = R

_Q O > Q

a a

—>

_>
(a, d) b (e a

28
L

Fig. 10 Example of a weakly orchard multi-semi-directed network on X ={a ...

< 1.
-] 1.

(c d) W (e, d)

a e

b e

C @

d f
Dy

QU O o 9

a

/l/b(j)?) b

C

,e} and a sequence of cherry reductions and reticulated cherry

reductions. In each case, the (reticulated) cherry that is reduced is indicated below the arrow that indicates the reduction

a a
d C

a
[ ]
—>
(a d)

d

Fig. 11 An alternative sequence of cherry reductions and reticulated
cherry reductions for the weakly orchard multi-semi-directed network
on X ={a...,e} from Fig. 10. In each case, the (reticulated) cherry
that is reduced is indicated below the arrow that indicates the reduc-

d C
a a
[ ] [ ]
b (. a b (o b
d C C

tion. Note that in the bottom-left multi-semi-directed network, a has
become a root instead of a leaf and that (a, d) is a reticulated cherry
in that network since a € X.
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result of reducing (x, y) in N. Note that each connected
component of N(x, y) is either an isolated vertex in X or a
multi-semi-directed network on a subset of X.
Intriguingly, binary rooted networks that are orchard
can be characterized in terms of a so-called HGT-con-
sistent labelling (van lersel et al. 2022). As it turns out,
this concept can be canonically extended to binary multi-
rooted networks. In turn, this provides us with a tool
to characterize multi-semi-directed networks that are
weakly orchard. To make this more precise, suppose that
D = (V,A, ) is a binary multi-rooted network. Then we
callamapt : V —» Na HGT-consistent labelling for D if

1. t(u) < t(v)for each arc (u,v) € A,

2. t(u) < t(v) for each arc (u,v) € A with v not a reticula-
tion; and

3. for each reticulation v it holds that #(#) = #(v) for exactly
one parent u of v.

See Fig. 9 for an example of a HGT-consistent labelling
of a 1-rooted network.

We call a rooting D of a multi-semi-directed network N
on X nice if every root of D is either a vertex of N that is
not in X or subdivides an arc of N whose tail is in X. We
will use the following useful fact concerning nice rootings.

Observation 1 Every multi-semi-directed network has a nice
rooting.

Proof Suppose that N is a multi-semi-directed network. Con-
sider an arbitrary rooting D of N. If a root p of D is not a
vertex of N, then it subdivides an edge e or an arc a of N. If p
subdivides e, we can make any vertex incident with e a root
instead of p. If p subdivides an arc a whose tail is not in X,
then we can make the tail of a a root instead of p. O

We now define a binary resolution of a multi-rooted
network N = (V,A) which we shall need to state our next
result. This is the binary multi-rooted network obtained
from N by (i) replacing every vertex v with d;;(v) > 3and
its set of outgoing arcs by a rooted binary tree T with root
v, so that all arcs in T are directed away from v, and the
leaf set of T consists of those w € V such that (v,w) € A,
and (ii) replacing every vertex w in N with dy(w) > 3 and
its set of incoming arcs by a rooted binary tree T with root
w, in which the directions of all arcs in T are reversed so
that they are all directed towards w and the leaf set of T
consists of those v € V with (v,w) € A. See Fig. 9 for an
example.

To simplify the exposition of the remainder of this sec-
tion, we shall from now on assume, without loss of general-
ity, that multi-rooted and multi-semi-directed networks have
no isolated vertices.

@ Springer

Theorem 7 Given a multi-semi-directed network N on X, the
following are equivalent.

(1) Nis weakly orchard,

(2) there exists a sequence of cherry reductions and reticu-
lated cherry reductions that reduces N to a forest in
which each tree is either a single edge whose two adja-
cent vertices are in X or a single vertex that is in X;

(3) N has a rooting that has a binary resolution that admits
an HGT-consistent labelling;

(4) every nice rooting of N is orchard,

(5) N(x,y) is weakly orchard for some cherry or reticulated
cherry (x, y).

Proof That (4) implies (1) is trivial, given that N has at least
one nice rooting by Observation 1.

We now show that (1) implies (3). If N is weakly orchard,
then it has a rooting D that is orchard. Since D is a multi-
rooted network, we can obtain a rooted network D’ from D
by adding a new root p with an arc to each root or D. Con-
sider any sequence of cherry and reticulated cherry reduc-
tions that transforms D into a disjoint union U of arcs the
heads of which are elements in X. The same sequence trans-
forms D’ into a rooted star tree S, that is, the tree obtained
from U as follows. First, add a root p’ to U. Next, add an
arc from p’ to the tail ¢, of each arc a in U. Finally, sup-
press all vertices ¢,. Clearly, S can easily be transformed
into a single arc whose head is in X by cherry reductions.
Hence, D’ is also orchard and, by [(van Iersel et al. 2022),
Theorem 2], D’ has a binary resolution D;} that admits a
HGT-consistent labelling. Deleting all vertices and arcs of
D) that where added to D’ to obtain a binary resolution of p
as part of obtaining D) then gives a binary resolution of D
with a HGT-consistent labelling, completing the proof that
(1) implies (3). The converse direction, i.e. that (3) implies
(1), can be shown in a similar manner.

We now prove that (1) implies (2). Let D be a rooting of N
that is orchard. Consider a sequence ¢ of cherry and retic-
ulated cherry reductions that transforms D into a disjoint
union of arcs the heads of which are elements in X. A cherry
(x, y) that can be reduced in D can also be reduced in N
unless the path between x and y in D contains a root of D
and this root is not a vertex of N (i.e. it is suppressed when
semi-deorienting D to obtain N). In this case, N contains a
connected component consisting of only the edge {x,y}. A
reticulated cherry (x, y) that can be reduced in D can also
be reduced in N. The outcome of reducing (x, y) in N and
in D in this case, respectively, is the same (up to taking the
semi-deorientation) unless the path between x and y in D
contains a root of D and this root is not a vertex of N (i.e.
it is suppressed when semi-deorienting D to obtain N). In
this case, the reduced version of D contains a connected
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component consisting of a single arc whose head is in X,
while the reduced version of N contains a connected com-
ponent consisting of a single vertex in X. Hence, o reduces
N to a forest in which each connected component is either a
single edge whose two incident vertices are in X or a single
vertex that is in X.

We now show that (2) implies (4). Let D be a nice root-
ing of N. We prove by induction on the number m of ver-
tices of D that D is orchard. Since |X| > 2, the bases case
is m = 2 and is trivial. Assume that the stated implication
holds for all multi-semi-directed networks that have a nice
rooting with 2 < [ < m vertices and that N is such that D has
m + 1 vertices. Let (x, y) be a cherry or reticulated cherry
in N. Then (x, y) is also a cherry or reticulated cherry of D
because D is a nice rooting of N. Note that it is possible
that N contains a length-2 path between x and y while D
contains a length-3 path between x and y. This can happen
if d(x) = d*(x) = 1. In this case, dy(xy)®) = 0 and so x is an
isolated vertex in N(x, y) while D(x, y) contains a connected
component in the form of an arc from a root of D(x, y) to x.
In this case, let D’, N' be D(x, y), N(x, y), respectively, with
the connected component containing x removed. Otherwise,
simply let D’ = D(x,y) and N’ = N(x,y). Then D’ is a nice
rooting of N’. By induction, it follows that D' is orchard,
from which we can conclude that D is orchard.

By the equivalence of (1) and (2) shown above, it follows
easily that (5) implies (1).

It remains to prove that (1) implies (5). Suppose that N
is weakly orchard and that (x, y) is a cherry or reticulated
cherry of N. By Observation 1, N has a nice rooting D.
Then D is orchard by the equivalence of (1) and (4). Fur-
thermore, (x, y) is a cherry or reticulated cherry also in D.
Let D’ be the rooted network obtained from D by adding a
new root p with an arc to each previous root and suppress-
ing any resulting non-root degree-2 vertices. Then (x, y)
is also a cherry or reticulated cherry in D’ and D’ is also
orchard. Hence, by [(Janssen and Murakami 2021), Proposi-
tion 1], D'(x,y) is orchard. Thus, D(x, y) is orchard. It fol-
lows that N(x, y) has a rooting that is orchard. Hence, N(x, y)
is weakly orchard. O

From Theorem 7, it follows that one can decide in linear
time whether a given multi-semi-directed network is weakly
orchard since, just as for rooted networks, cherries and retic-
ulated cherries can be reduced in arbitrary order.

To state the second main result of this section which
concerns semi-directed networks, we require some further
definitions. Suppose N is a semi-directed network on X. A
cherry picking sequence of N is a sequence (sy, ..., s;) of
ordered pairs of elements of X, such that s, is a cherry or
reticulated cherry of Ny := N and, foralli € {1, ...,k -1},
the pair s, is a cherry or reticulated cherry in N; := N,_;(s;)

and N, := N,_,(s;)is a graph in which each connected com-
ponent is either an isolated vertex in X or an edge such that
both incident vertices are contained in X. Note that in case
we want to emphasize the order in which the pairs s; are
reduced, we also write No(s, ..., s;) for N;.

Lemma4 Let N be a semi-directed network and let (x, y) be
a cherry or a reticulated cherry of N. If N is strongly orchard
then N(x, y) is strongly orchard.

Proof Let D be any rooting of N(x, y). Then a rooting D’ of N
can be obtained from D by the following small modifica-
tions. If (x, y) is a cherry and x was deleted in the construc-
tion of N(x, y) from N, then D’ is obtained from D by subdi-
viding the arc incident to y by a vertex w and adding leaf x
with an arc (w, x). If (x, y) is a reticulated cherry, then D’ is
obtained from D by subdividing the arc incident to y by a
vertex v and the arc incident to x by a vertex u# and adding
an arc (u, v). Since N is strongly orchard, D’ is orchard. It
then follows that D is orchard. Hence, N(x, y) is strongly
orchard. O

The converse of the Lemma 4 does not hold in general,
see Fig. 12. Motivated by this, we define an scr-cherry
(source component reticulated cherry) of a semi-directed
network N as a reticulated cherry (x, y) such that x is in a
source component of the network.

The next lemma, combined with Lemma 4, shows that
cherries and reticulated cherries that are not scr-cherries can
be reduced in arbitrary order.

Lemma5 Let N be a semi-directed network and let (x, y) be
a cherry or a reticulated cherry of N that is not a scr-cherry.
If N(x, y) is strongly orchard then N is strongly orchard.

Proof Assume that N(x, y) is strongly orchard. Let D be any
rooting of N. We distinguish between the cases that (x, y) is
a cherry or reticulated cherry in D or that this is not the case.
First suppose that (x, y) is a cherry or reticulated cherry
in D. Then D(x, y) is a rooting of N(x, y) since (x, y) is not
an scr-cherry. Since N(x, y) is strongly orchard, D(x, y) must
be orchard. Hence, D is orchard. So N is strongly orchard.
Now suppose that (x, y) is neither a cherry nor a reticu-
lated cherry of D. This can only happen if (x, y) is a cherry
of N that is in a source component of N and the single root
of D subdivides an edge on the path between x and y in N.
Then modify D to a rooting D' by making the internal vertex
of this path the root. Then we can use the argument from the
previous paragraph to show that N is strongly orchard.
O

Remark 1t follows from Theorem 7, Lemmas 4 and 5, and
Fig. 12 that there is a key distinction between the weakly
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Fig.12 A semi-directed network N on {a,b,c,d, e} that is weakly
orchard but not strongly orchard, along with a rooting D that is not
orchard. This is easy to see since D has no cherry, (a, b) is the only
reticulated cherry of D, and the depicted network D(a, b) has no cher-

and strongly orchard properties concerning the reduction
of (reticulated) cherries in arbitrary order. Specifically, the
property of a multi-semi-directed network being weakly
orchard is preserved under arbitrarily reducing both cher-
ries and reticulated cherries. In contrast, a semi-directed
network being strongly orchard is preserved only under
arbitrarily reducing cherries and reticulated cherries that
are not scr-cherries.

We call a cherry picking sequence s = (sy, ..., s;) of
N, = N strong if, for eachi € {1, ..., k}, it holds that if N,_,
has at least one scr-cherry, then s, is an scr-cherry of N,_,.
Note that if N,_; has no scr-cherries then, by definition of a
cherry picking sequence, s, is a cherry or reticulated cherry
of N,_,. We now state the second main result of this section.

Theorem 8 Let N be a semi-directed network N on X. Then N
is strongly orchard if and only if, for each strong cherry pick-
ing sequence s = (sy, ..., S;)of N and for eachi € {1, ... ,k},
it holds that if s; is an scr-cherry of N;_; = No(sy, ..., S;_;)
then N,_, has at least two scr-cherries where we put Ny = N.

Proof First suppose that N is strongly orchard and assume
for contradiction that there exists a strong cherry picking
sequence s = (sy,...,5;) of N such that there exists some
1 <i < ksuch thats;is a scr-cherry of N;_; = No(sy, ..., 5,_;)
and N,_; has no other scr-cherries. Since s is strong,
N;_, has no cherries or reticulated cherries apart from s;.
Since s; = (x,y) is an scr-cherry, there exists a rooting D;_,
of N;_; where the root subdivides the edge of N,_; incident
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ries or reticulated cherries. The bottom row of networks shows the
first 4 networks obtain when reducing N by the strong cherry picking
sequence ((d, ), (d, e), (c, ¢), (b, e), (a, b), (b, d)) of N

to x. Consequently, D,_, has no cherries or reticulated cher-
ries and is therefore not orchard. Hence, N,_, is not strongly
orchard and, by Lemma 4, N is not strongly orchard, a
contradiction.

The other direction of the proof is by induction
on k = |X| + |R| — 2, with R the set of reticulations of N.
For k = 0 the statement is trivially true. Assume k > 1 and
that for each strong cherry picking sequence s = (s, ..., 5;)
of Ny = N and foreachi € {1, ...k}, it holds that if 5; is an
scr-cherry of N;_; = No(s,...,s;_;) then N,_; has at least
two scr-cherries.

First suppose that N has a cherry or a reticulated
cherry (x, y) that is not an scr-cherry. Since N(x, y) is
strongly orchard by induction, it follows that N is strongly
orchard by Lemma 5.

Now suppose that N has no cherries or reticulated cherries
that are not scr-cherries. Then N has at least two scr-cherries
(x, ¥) and (w, z) (possibly, z = y). Consider any rooting D
of N. Then at least one of (x, y) and (w, z) is a reticulated
cherry in D. Assume without loss of generality that (x, y) is
a reticulated cherry of D. Since N(x, y) is strongly orchard
by induction, each rooting of N(x, y) is orchard. In particular,
D(x, y) is orchard. Hence, D is orchard. Since D was arbi-
trary, it follows that N is strongly orchard. O

The example in Fig. 12 shows why in the character-
ization in Theorem 8 “for each” cannot be replaced by
“there exists”. Even though there exists a cherry picking
sequence of the required type in the depicted semi-directed
network N, N is not strongly orchard. Indeed, N also has a
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strong cherry picking sequence that is not of the required
type.

Path partitions

We now turn to our final concept for characterizing classes
of (multi-)semi-directed networks called path partitions,
see also Francis et al. (2018); Lafond and Moulton (2025);
Huber et al. (2022). Basically speaking, for a multi-rooted
network, this is a partition of the vertex set of the network
whose parts induce a collection of directed paths each of
which must end in a leaf. Multi-rooted networks that enjoy
this property are called forest-based networks and can be
used to model introgression (Scholz et al. 2019); they are
considered in more depth in Lafond and Moulton (2025);
Huber et al. (2022). In this section, we extend the theory of
path partitions from multi-rooted networks to (multi-)semi-
directed networks and shall see that having a path partition
characterizes weakly tree-based semi-directed networks
(Corollary 4).

We begin with some definitions. Suppose that G is a
mixed graph. We call G a forest if it does not contain a
cycle. If D is a multi-rooted network on X, then we call D
forest-based if there exists a subgraph F of D in the form
of a forest such that F spans V(D) and has leaf set X and,

Fig. 13 The semi-directed network N, on X = {a,b,c,d} is weakly
tree-child, weakly forest-based and weakly tree-based. In each case,
the rooting is obtained by subdividing the edge labelled s to obtain
the root. The semi-directed network N, on X is weakly forest-based
and weakly tree-based (since the rooting with the root subdividing the

Fig. 14 A multi-semi-directed
network N that is weakly forest-
based but not strongly forest-
based, along with a rooting D
of N that is forest-based (the
dashed and dotted paths are the
trees that make up the support
forest) and a rooting D’ of N
that is not forest-based

for each arc (u,v) € A(D) \ A(F), the vertices u and v are
in different trees of F. In this case, we call F a support
forest of D. Note that an element 7 € F might be a single
vertex or 7 might contain a vertex v such that d;(v) = 2.
If N is a multi-semi-directed network on X, then we say
that N is weakly forest-based if N has a rooting D that is
forest-based.

Note that since the leaf sets of D and N coincide, no leaf
of N can be a root in D. If every rooting of N with leaf set
X is forest-based, then we call N strongly forest-based. See
Fig. 14 for some examples to illustrate these definitions.
Note if N is semi-directed, then by [(Huber et al. 2022),
Theorem 1] it follows that if N is weakly (resp. strongly)
forest-based then it is weakly (resp. strongly) tree-based,
but not conversely (see Fig. 13).

Now, suppose that N is a multi-semi-directed net-
work on X. For x € X, let P be either a semi-directed
path (u; = u,u,,...,u, =x), k > 2, in N joining a vertex
u € V(N) — X to x or the trivial path (u = x). Then we call
u the handy vertex of P. In addition, for a collection P of
semi-directed paths in N, we call a maximal connected
subgraph containing only edges {u,v} of N with u, v in
different semi-directed paths of P a cross component of P.
We now show that a special type of path partition arises
from weakly forest-based multi-semi-directed networks
(see Fig. 15).

4
4
[ XeY

edge labelled * is forest-based and tree-based), but not weakly tree-
child. The semi-directed network N; on {a, b, c} is weakly tree-based
(since the rooting with the root subdividing the edge labelled * is tree-
based), but not weakly tree-child and not weakly forest-based

“

AN

D D’
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Fig. 15 A semi-directed network N on X = {aq, ..., g} that is weakly
forest-based as D is a rooting of N that is forest-based. The trivial
paths (a), (b) and (g) along with the four semi-directed paths made
up by the thin black edges and arcs form a collection of semi-directed
paths P in N that satisfies Properties (P1)-(P3) of Lemma 6. The ver-

Lemma 6 Let N be a multi-semi-directed network N on X
that has a rooting D with leaf set X that is forest-based.
Then there exists a collection P of semi-directed paths in
N such that

(P1) each vertex of N is in exactly one semi-directed
path in P,

(P2) each semi-directed path in P is either a trivial
path (x) with x € X or a semi-directed path from a
vertex in V(N) — X to some element in X,

(P3) each cross component of P contains at most one
vertex that is not the handy vertex of a semi-directed
path in P.

Moreover, if F is a support forest for D then, for each arc
(u,v) € A(D) \ A(F), we have that
P4) if {u,v} is an edge or (u, v) is an arc of N
and u,v € P € P then u and v appear consecutive
onP.

Proof Suppose that F is a support forest for D. We can
decompose F into a set S of (directed) paths by, for each
vertex of F' with outdegree greater than 1 in F, arbitrarily
deleting all but one outgoing arc from F. Let P denote the
collection of semi-directed paths in N that corresponds to S.
Note that the first arc of a path in S might be different from
the first arc of the corresponding semi-directed path in P.
We show that Properties (P1)-(P3) are satisfied by P.
Clearly, P satisfies Properties (P1) and (P2). To see that
P satisfies Property (P3), we claim first that for every edge e
in a cross component of P one of the vertices incident with
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tices a, b, v, vy, V4, Vg and g are the handy vertices of the paths that
contain them. The dotted thick black edges make up the three cross
components of P, while the thin black, dotted arcs are neither in a
semi-directed path of P nor in a cross component

e must be the handy vertex of a semi-directed path in P.
To see this, assume for contradiction that e is an edge in a
cross component of P and none of the vertices incident with
e, call them u and v, is the handy vertex of a semi-directed
path in P. Then u and v must be an interior vertex of the
semi-directed path in P that contains it, respectively. Since
F is a forest spanning V(D), it follows that one of u and v
must be a reticulation in N. Hence (u, v) or (v, u) must be
an arc in N; a contradiction as {u, v} is an edge in N. Hence,
the claim holds

Assume for contradiction, that Property (P3) does not
hold. Then there exists a cross component C of P that con-
tains two or more vertices that are not the handy vertex of
the semi-directed path in P that contains them. Let u and v’
denote two such vertices of C and let v and V' be the vertices
of N such that {u, v} and {u’,V'} are edges in C and u and
v are in different semi-directed paths of P and u’ and V' are
in different semi-directed paths of P. Note that the semi-
directed paths in P that contain u and u’ might be the same.
Then, by the previous claim, v and v/ must be the handy
vertices of semi-directed paths in P. Since, by Theorem 2,
N cannot contain a semi-directed cycle, it follows that C is
a tree. Therefore, there exists a path U in C joining u and u’'.
Replacing, if necessary, v with the vertex on U adjacent with
u and v’ with the vertex on U adjacent with «, it follows that
U has the form (u, v, ..., V', u').

Since both {u, v} and {u’,V'} are edges of N and so must
be oriented in any rooting of N and, in combination, Prop-
erties (P1) and (P2) imply that any arc on a path P in P is
oriented towards the handy vertex of P, it follows that {u, v}
and {«’,V' } must be oriented towards each other in the orien-
tation of C induced by D. If v # V' this is not possible since
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it implies that some edges in U must have been arcs in N.
If v = v/ then v is a reticulation in N. Hence, N contains the
arcs (u, v) and (/, v) as it is a multi-semi-directed network;
a contradiction since, by assumption, {u, v} and {«, v} are
edges in C and therefore in N.

The remainder is an immediate consequence of the fact
that F is a support forest for D. O

Using Lemma 6, we can now characterize multi-semi-
directed networks that are weakly forest-based (note that this
is an analogue of [(Huber et al. 2022), Theorem 1]).

Theorem 9 A multi-semi-directed network N on X is weakly
forest-based if and only if there exists a collection P of
semi-directed paths in N satisfying Properties (P1)-(P4) of
Lemma 6.

Proof By Lemma 6, it suffices to show that if N has a collec-
tion of semi-directed paths that satisfies Properties (P1)-(P4)
then N must be weakly forest-based. So suppose that P is
a collection of semi-directed paths in N that satisfies these
properties.

We start with associating a directed graph D to N and
then show that D is in fact a rooting of N that is forest-based.

To obtain D, we employ Property (P2) and orient, for
each non-trivial semi-directed path P € P, all edges on P
towards the unique element in X it contains.

For each cross component C in P, we do the following.
Let v be the unique vertex in C that is not a handy vertex
of a semi-directed path in P (Property (P3)), if it exists.
Otherwise, choose an arbitrary non-leaf vertex v in C to
play the role of v.

In either case, we then orient all edges in C away from v..
Observe that this is well-defined since C is a tree by Theo-
rem 2. The obtained directed graph is D.

We now show that D is a rooting of N. To this end, we
need to show that D is a multi-rooted network such that N is
a semi-deorientation of D. Clearly, D is a multi-rooted net-
work since it cannot contain a directed cycle as otherwise N
would have contained a semi-directed cycle, which is not
allowed by Theorem 2. To see that N is a semi-deorientation
of N, we need to show that the reticulations of D are pre-
cisely the reticulations of N. Since every reticulation of N is
also a reticulation of D, it suffices to show that every reticu-
lation of D is also a reticulation of N. Assume for contradic-
tion that D contains a reticulation r that is not a reticulation
of N. Then since neither a leaf nor a root of N can be a
reticulation in D, it follows that d},(r) = dy(r) > 3. Hence,
at least one of the edges incident to r in N is in a cross com-
ponent C of P, and so r is a vertex in C. By Property (P3),
it follows that r is a handy vertex of some semi-directed
path in P or r = v holds. Hence, C is oriented in D in such
a way that r has exactly one incoming arc. Consequently, r

cannot be a reticulation in D, a contradiction. Thus, D must
be a rooting of N.

It remains to show that D is forest-based. Let 7’ denote
the collections of semi-directed paths in D induced by P.
Then Property (P1) implies that 7' is a forest spanning
V(D). Furthermore, Property (P2) implies that the leaf set
of D is X. Lastly, Property (P4) implies that, for each arc
a € A(D) \ A(P), the head of a and the tail of a are in dif-
ferent semi-directed paths of 7. Hence, P’ is a support forest
for D. It follows that N is weakly forest-based. O

As it turns out, in multi-semi-directed networks that are
forest-based, collections of semi-directed paths that satisfy
Properties (P1)-(P3) in Lemma 6 also turn out to hold the
key for our characterization of semi-directed networks that
are weakly tree-based.

Corollary 4 A semi-directed network N on X is weakly tree-
based if and only if there exists a collection P of semi-
directed paths in N satisfying Properties (P1)-(P3) of
Lemma 6.

Proof By the definition of weakly tree-based and Lemma 6,
it suffices to show that if N contains a collection of semi-
directed paths that satisfy Properties (P1)-(P3) of Lemma 6
then N is weakly tree-based. Suppose that P is a collection
of semi-directed paths in N that satisfies these properties
We create a rooting D of N as in the proof of Theorem 9.
Note that D now has a single root because N is semi-directed.
To see that D is tree-based, observe that P again spans V(D)
(by Property (P1)) and has leaf set X (by Property (P2)). By
[(Francis et al. 2018), Theorem 2.1], this means that D is
tree-based. Hence, N is weakly tree-based. O

Discussion

In this paper, we have introduced new explicit mathemati-
cal characterizations of multi-semi-directed networks,
overcoming the need to implicitly define such networks
through their rooted counterparts. By extending exist-
ing concepts for rooted networks—such as cherry pick-
ing sequences, omnians and path partitions—we have
been able to explicitly characterize when a multi-semi-
directed network has a rooting that is within some com-
monly studied classes of rooted networks. In particular,
with the growing interest in semi-directed networks (see
e.g. Bafios 2019; Gross and Long 2018; Gross et al. 2021;
Linz and Wicke 2023; Jingcheng and Ané 2023; Holtgrefe
et al. 2025), our characterizations have the potential to
make the mathematical analysis of the algebraic models
associated with semi-directed networks more tractable (see
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e.g. Maxfield et al. 2025; Englander et al. 2025; Allman
et al. 2025a).

Although we have presented some characterizations for
when a multi-semi-directed network is contained within
a certain class, there remain some open questions in this
direction. For example, generalizing our characterization
of strongly orchard semi-directed networks (Theorem 8)
to multi-semi-directed networks, deciding whether or not
strongly forest-based networks can be characterized with
path partitions, and seeing if weakly orchard networks can
be characterized in terms of an HGT-consistent labelling
directly applied to the multi-semi-directed network are all
interesting questions. In addition, similar questions could
be investigated for other well-known network classes,
including but not limited to proper-forest-based, normal,
reticulation visible and tree-sibling networks (Kong et al.
2022).

Finally, our results open up a number of interesting
algorithmic questions. We have already sketched an effi-
cient algorithm to check if a mixed graph is a (multi-)
semi-directed network (see the end of Sect. 4). Develop-
ing efficient algorithms to check whether a given (multi-)
semi-directed network lies within a fixed class would be a
logical next step. For some classes efficient algorithms fol-
low directly from our results (see e.g. Theorem 5). However,
for other classes the existence of efficient algorithms is not
immediately obvious. For example, it would be interesting to
determine whether or not there exists a linear time algorithm
to check if a semi-directed network is strongly orchard. This
question can be answered affirmatively for rooted networks,
but for semi-directed networks a naive algorithm takes quad-
ratic time (by checking every possible rooting).
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