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A B S T R A C T 

Surface gravity waves breaking in the nearshore region force a longshore 

surf zone current. This current can be unstable to longshore periodic perturba­

tions. The continuity and momentum conservation equations averaged over the 

short wave time scales and over depth present a suitable basis for the modeling of 

these motions. The governing equations are in the form of the well-known shal­

low water equations with additional terms accounting for short wave forcing and 

dissipational effects. The objective of this study is to analyze the finite ampli­

tude behavior of instabilities of the surf zone longshore current utilizing numerical 

experiments. 

For this purpose a solution method for the shallow water equations govern­

ing wave motions in the nearshore environment is developed. Spatial derivatives 

contained in these equations are computed using spectral collocation methods. A 

high-order time integration scheme is used to compute the time evolution of the 

velocities and water surface elevation given initial conditions. The model domain 

extends from the shoreline to a desired distance offshore and is periodic in the 

longshore direction. Properly posed boundary conditions for the governing equa­

tions are discussed. A curviHnear moving boundary condition is incorporated at 

the shoreline to account for wave runup. An absorbing-generating boundary is 

incorporated offshore. The boundary treatments are tested using analytical and 

numerical results. The model is applied to the prediction of neutral stability 

xxi 



boundaries and equilibrium amplitudes of subharmonic edge waves. Numerical 

results are compared to weakly nonlinear theory and are found to reproduce the 

theory well. 

The solution method is utilized to simulate instabilities of an analytic long­

shore current profile over a plane beach. The instabilities are observed to grow and 

equilibrate at amplitudes up to 50% of the original peak mean longshore current. 

For long domains in the longshore direction the long time behavior is observed to 

be dominated by subharmonic transitions that result in a reduction of the number 

of waves in the domain. The resulting longshore periodic fiow structures exhibit 

strong offshore directed velocities and propagate in the longshore direction at a 

fraction of the peak current speed. Details of the subharmonic transitions as well 

as the effect of nonlinearity on the flow structures are analyzed. 

Next, the shear instability climate during the SUPERDUCK field experiment 

is simulated. Observations of undulations in the longshore current were first made 

during this field experiment by Oltman-Shay et al. (1989), who stated that the 

frequency range less than 0.01 Hz is dominated by these motions. Due to uncer­

tainties in the friction and lateral mixing coefficients, numerical simulations are 

carried out for a realistic range of values for these coefficients. The resulting flow 

structures can be characterized as unsteady vortices propagating in the longshore 

direction. These vortices interact, occasionally merge and are shed offshore. Dur­

ing the shedding process, locally strong offshore directed currents are generated. 

Lateral mixing induced by the finite amplitude shear instabilities is analyzed and 

found to be of comparable magnitude to other mixing processes in the surf zone. 

Results from simulations of shear instabilities on plane and barred beaches 

show the existence of localized, migrating, offshore directed currents. Since the 
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short wave field can be affected by these flow features, the modeling effort is ex­

tended to include the effects of time-varying short wave forcing and interactions 

between the short wave and current fields. The extension involves the solution 

of the time-dependent energy equation for the short wave motions and refrac­

tion equation due to variations in the bathymetry as well as current fields. The 

inclusion of a more realistic bottom friction treatment is also discussed. 
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Chapter 1 

I N T R O D U C T I O N 

As water waves approach the shore they shoal and break. The region 

between the breaker line and the shoreline is referred to as the surf zone. The 

surf zone is an energetic region of the ocean where motions at many time scales, 

generated and sustained by different processes, coexist and interact. I t is also a 

very dynamic coastal region where sediment transport and bathymetry changes 

are driven by breaking waves as well as wave-driven currents. 

Gravity waves approaching the shore at an oblique angle are most easily 

noticed by an observer since they break as they approach the shore. They typically 

display time scales of order 10 sec and consist of wind waves and swell. In this 

study these waves wil l be referred to as "short waves". The wave breaking process 

induces a decay in wave height towards the shore and can be violent, involving 

air entrapment and generation of turbulence. The wave-induced turbulence can 

serve as a mixing mechanism in the surf zone. 

Gravity waves propagating parallel to the shoreline also exist and are re­

ferred to as "edge waves" since their amplitude is largest at the shoreline and 

decays in the offshore direction. Edge waves are often observed at time scales of 

order 100 sec and are, therefore, also referred to as "infragravity" waves. Forced 

long waves (such as surf beat), edge waves and leaky waves fall into this category. 
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Energy in the infragravity band of the frequency spectrum can be dominant in 

the region close to the shoreline where the short waves have been dissipated by 

the breaking process (Wright et a/., 1982). 

Recently, motions with time scales up to order 1000 sec have been identified 

(Oltman-Shay et ai, 1989) during the SUPERDUCK field experiment. Observations 

showed that the length scales associated with these waves are too short to sat­

isfy gravity wave dynamics. They are, therefore, not gravity waves. Since they 

occupy the lower region of the infragravity frequencies they have been termed 

"far-infragravity waves" (Bowen and Holman, 1989). They are also often referred 

to as "shear waves" since their dynamics was observed to be linked to the presence 

of a longshore current with a pronounced shear structure. 

The steady circulation system in the surf zone consists of short wave-driven 

currents, tidal currents and wind-driven currents. Short wave-driven currents are 

generated when the short waves break, their wave height decays and their excess 

energy and momentum is released into the surf zone. The excess momentum of the 

short waves induces currents and a change in the mean water level, or setup, in the 

nearshore region (Longuet-Higgins and Stewart, 1964). In the absence of longshore 

variations in the bathymetry, a stationary long crested wave field approaching the 

shore at oblique incidence generates a longshore current and a steady setup. The 

longshore current is generally relatively constant over depth. Wave-driven currents 

are also generated when shoreward mass transport attributed to the incoming 

short waves is returned offshore in the form of a depth-varying cross-shore flow 

referred to as the "undertow". This return flow can also be established in the 

form of a locahzed offshore directed jet or "rip current". Spatial and temporal 

variations in the short wave field, in the form of wave groups, induce variations 

in this steady system causing motions such as forced infragravity waves (Schaffer, 
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1993, 1994) and possibly forced far-infragravity waves (Haller et al, 1997). 

Although, breaking gravity waves are the most dramatic feature in the 

surf zone, the processes of wave-driven time-varying nearshore circulation display 

higher correlations with sediment and pollution transport in the nearshore region. 

Accurate prediction of sediment transport in the nearshore region is, therefore, 

directly linked to a good understanding of the wave induced nearshore circulation 

system consisting of steady currents as well as time dependent variations of the 

current velocities due to infragravity or far-infragravity motions. 

Nearshore circulation is generally modeled using the mass and momentum 

conservation equations that have been integrated over the short wave time scale. 

Effects of processes at the short wave time scale enter the equations of motion 

through radiation stress gradient terms. This concept was first introduced by 

Longuet-Higgins and Stewart (1962, 1963, 1964) and was applied to the predic­

tion of steady depth-uniform longshore currents and wave setup by several in­

vestigators including Bowen (1969), Longuet-Higgins (1970), Thornton and Guza 

(1986) and Larson and Krauss (1991). These equations can also be applied to 

a two-dimensional-horizontal (2DH) domain to study steady or time-dependent 

depth-uniform nearshore circulation. Examples of such studies are Noda (1974), 

Birkemeier and Dalrymple (1975), Keely and Bowen (1977), Ebersole and Dal­

rymple (1979) and Wind and Vreugdenhill (1986). 

Although longshore currents are relatively uniform over depth, the under­

tow profiles exhibit strong variations in depth inside the surf zone. The quasi-

three-dimensional (quasi-3D) approach has been used in recent studies to obtain 

information about the vertical variations of the currents without the complications 

of a fu l l 3D model. The quasi-3D approach involves calculating the depth-averaged 
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current velocities using depth- and time-averaged mass and momentum conser­

vation equations. The results for the depth-averaged velocities are then utilized 

to compute the local velocity profile from a separate profile model. Such studies 

have been carried out by De Vriend and Stive (1987), Svendsen and Lorenz (1989), 

Svendsen and Putrevu (1990), Sanchez-Arcilla et al. (1992), Van Dongeren et al. 

(1994) and Faria et al. (1995). 

1.1 Linear Instability of Longshore Currents 

Since the longshore current is only weakly dependent on depth, it can be 

approximated as a two-dimensional flow. Although two-dimensional flows in fluid 

mechanics have often been observed to be unstable (see Drazin and Reid, 1982), 

the need to analyze the stability characteristics of the longshore current did not 

arise until Oltman-Shay et al. (1989) observed a meandering of the longshore 

current during the SuPERDU.CK field experiment. Observations showed that the 

undulations propagated in the direction of the longshore current and did not 

satisfy gravity wave dynamics. Therefore, alternate mechanisms were sought to 

explain the observations. 

Bowen and Holman (1989) performed an analytic study of an idealized 

longshore current profile over constant depth using the "rigid l id" assumption 

and identified a mechanism well studied in larger-scale physical oceanography, 

but new to the nearshore: a shear instability of the mean longshore current. 

They showed that the shear instability can reproduce the nondispersive character 

and meandering nature of the motions observed by Oltman-Shay et al. (1989). 

The restoring mechanism for these alongshore propagating motions, termed shear 

waves, is potential vorticity where the background vorticity is supplied by the 

shear structure of the mean longshore current in analogy to the effect of the 
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Earth's rotation in larger scale applications. 

Several other mechanisms have been proposed to explain the experimental 

observations by Oltman-Shay et al. (1989). Shemer et al. (1991) suggested that 

oscillations in the longshore current and radiation stresses may be due to the long 

time evolution of a three-wave system, composed of a carrier wave and the two 

most unstable Benjamin-Feir sidebands. Tang and Dalrymple (1989) and Fowler 

and Dalrymple (1990), in turn, showed that wave trains incident at slightly dif­

ferent angles to the beach can generate rip currents that migrate in the longshore 

direction at slow time scales. More recently, Haller et al. (1997) suggested that off­

shore wave groups can directly force low frequency vorticity motions. A l l of these 

approaches assume the observed oscillations to be forced phenomena whereas the 

linear instability theory proposes eigenmodes of resonance resulting in free oscil­

lations. I t should also be taken into account that the forced oscillation theories 

can provide the necessary perturbations for the eigenmodes associated with the 

linear instability theory. 

The instability theory has, so far, been the most studied alternative for 

explaining the observations by Oltman-Shay et al. (1989). Since the pioneering 

work by Bowen and Holman (1989) and Oltman-Shay et al. (1989), several subse­

quent investigators applied the linear instability theory to more realistic current 

and bottom profiles. Dodd and Thornton (1990) performed an analytical study 

analyzing the energy transfer between the mean current and the shear instabilities 

and extended the theory by Bowen and Holman (1989) by applying the analysis to 

a simplified current profile over nonconstant depth. Putrevu and Svendsen (1992) 

carried out a numerical study applying the instability theory to realistic current 

and bottom profiles including plane and barred beaches. They observed that the 

instability is stronger on barred beaches. 
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In the same year, Dodd et al. (1992) hfted one more Hmitation of the orig­

inal shear instability theory by introducing bottom friction. They simulated the 

linear shear wave climate for several days of the S u P E R D U C K experiment where 

energetic meandering of the longshore current was originally observed. They found 

good agreement with the observed range of frequencies and propagation speeds 

of shear waves. Results from this study seemed to suggest that the observed fluc­

tuations were weakly nonlinear equilibrated shear instabilities but no conclusive 

information about the final amplitudes of the shear instabilities could be deduced 

due to the linearity assumption. 

Church et al. (1992) performed a linear instability study simulating the 

D E L I L A H experiment and inferred the amplitudes of the oscillations by scaling 

the computed energy density of the oscillations to reproduce the observed energy 

density. They found that velocity fluctuations with the inferred amplitudes can 

cause significant lateral mixing in the surf zone. 

Later, Falqués and Iranzo (1994) analyzed the effects of bottom friction and 

turbulent momentum mixing, and also confirmed the applicability of the "rigid 

l id" assumption for longshore currents with small Froude numbers. Finally, Dodd 

(1994) analyzed in further detail the effect of bottom friction on the instability 

and showed that increasing the friction coefficient results in a weakening of the 

instability and a slight shift in the most unstable wavenumber. 

1.2 Nonlinear Instability of Longshore Currents 

In order to study the disturbances as they reach finite amplitude, a nonlin­

ear analysis needed to be employed. Analytical studies utilizing weakly nonlinear 

theories were carried out by Dodd and Thornton (1992) and Feddersen (1996) 
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who examined weakly unstable longshore currents on a beach and found that 

the instabilities reach finite amplitude and have the potential to alter the mean 

longshore current profile. 

Falqués et al. (1994) modeled the nonlinear shallow water equations uti­

lizing a "rigid l id" assumption and performed numerical experiments for a plane 

beach geometry incorporating bottom friction and lateral mixing. They found 

that the instabilities equilibrate with constant or modulated amplitudes and ob­

served that the period of the disturbances increased with increasing amplitude. 

Allen et al. (1996) carried out a detailed numerical study of the effects of 

varying the bottom friction coefficient as well as the longshore width of the mod­

eling domain. They neglected lateral mixing and generated an initial longshore 

current profile and observed the subsequent temporal growth of the shear insta­

bilities. They found that finite amplitude disturbances with constant amplitudes 

result for high values of the friction factor corresponding to a weakly unstable 

longshore current. The computed final amplitudes and cross-shore distributions 

of the shear instabilities agree with analytical results by Feddersen (1996). As 

the friction factor is decreased the disturbances display modulated amplitudes, 

period doubling bifurcations and, eventually, chaotic behavior. When the width 

of the modeling domain is increased the behavior is dominated by the transition 

of the motions to larger scale nonlinear propagating disturbances. This behavior 

was also observed by Özkan and Kirby (1995). Allen et al. (1996) furthermore 

found that fully developed shear instabilities alter the mean longshore current 

profile significantly. In the presence of the finite amplitude disturbances the mean 

longshore current displays marginal stability even though the initial mean current 

was strongly unstable. This is an important finding since measured mean current 
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profiles in reality correspond to the final mean current in the presence of the fiuc-

tuations and could display much different stability characteristics than the often 

unknown, but relevant, fluctuation-free initial state. 

More recently, Ozkan-HaUer and Kirby (1996a, 1996b) simulated shear in­

stabilities for the S u P E R D U C K experiment using the nonhnear shaUow water equa­

tions including the effects of bottom friction and lateral mixing. They compared 

the predicted velocity spectra, the obtained propagation speeds of the disturbances 

as well as the final mean longshore current profiles to data. They found that the 

lateral mixing caused by the fully developed shear instabilities is of comparable 

magnitude to mixing due to more traditional mechanisms such as turbulence or 

the Taylor dispersion process outlined by Svendsen and Putrevu (1994). 

Most recently, Shnn et al. (1997) examined the nonlinear instability of the 

longshore current over a barred topography including bottom friction and neglect­

ing lateral mixing. They found equilibrated shear waves for high values of bottom 

friction and irregular fluctuations for lower values of the frictional coefficient and 

showed that these instabilities cause substantial lateral mixing of momentum in 

the surf zone and alter the initial current profile significantly. They carried out 

linear instability analyses of the initial fluctuation-free current profile as well as 

the final mean longshore current in the presence of the fluctuations. The results 

for the two current profiles show that the range of unstable wavenumbers as well 

as the most unstable wavenumber agree approximately for cases involving irreg­

ular fluctuations. The growth rates in the former current profile are an order of 

magnitude larger than in the latter. This observation provides an explanation to 

the fact that results of linear instability analyses of measured currents can produce 

good agreement for the range of unstable wavenumbers and propagation speeds. 

Slinn et al. (1997) also state that good reproduction of the propagation speeds 

8 



by linear theory does, therefore, not necessarily imply a weakly nonlinear flow 

regime. 

In all the studies outlined above, the spirit of the linear instability analysis 

by Bowen and Holman (1989) is preserved since an initial current is generated 

and subsequently the temporal growth of the instabilities to finite amplitude is 

observed. In contrast, Deigaard et al. (1994) performed a study where the spatial 

growth of the instabilities was observed. 

In addition to observations during field experiments, low frequency oscilla­

tions of the longshore current have also been observed in the laboratory by Reniers 

et al. (1994). In this study a longshore current was generated in a wave basin by 

obliquely incident waves, the apparent mean longshore current at the downstream 

end of the basin was recirculated and reintroduced at the upstream end. Spatial 

growth of instabihties was observed. Dodd and Falqués (1996) showed that the 

simpler temporal instability analysis, utilized in the linear instability studies out­

lined above, can be used in place of the more complicated spatial instability theory 

to obtain good indications of the instability properties in cases where a spatial 

growth of instabilities is observed. Therefore, Reniers et al. (1997) applied the 

temporal instability analysis to the measured current profile and obtained good 

predictions of the range of unstable wavenumbers and the propagation speeds of 

the instabilities but underpredicted the growth rates. Reniers and Battjes (1996) 

recently found that the measured motions have a potential to cause lateral mix­

ing in the surf zone. However, the current recirculating system in the basin was 

designed to obtain a longshore uniform current, making it impossible to observe 

changes in the mean longshore current profile as the instabilities grew with long­

shore distance. The measured longshore current profile is likely to include the 
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effects of mixing due to shear instabilities. Therefore, i t is hkely that the mea­

sured current displays a weaker instability than the relevant fluctuation-free initial 

current. Analysis of this unknown initial state could produce the observed growth 

rates. 

1,3 Scope of Present Study 

In this study, we seek to assess the importance of shear instabhties of 

the longshore current in the surf zone. Our approach is to carry out numerical 

simulations of shear instabilities for realistic situations. This dissertation contains 

work prepared for various conferences and journal publications. 

In Chapter 2 the mechanisms causing a short wave-induced longshore cur­

rent are reviewed, the conditions leading to the instability of wave-induced long­

shore currents are discussed. The linear instability theory of Bowen and Holman 

(1989) is derived. 

The boundary value problem for the nonlinear instability calculations is 

stated is Chapter 3. The incorporation of a moving shoreline boundary, an 

absorbing-generating offshore boundary as well as periodic longshore boundaries 

is described. Chapter 3 also details the solution method to predict the time de­

pendent behavior of the current velocities and the mean surface elevation. 

Chapter 4 documents the testing of the model. The test cases include 

simulations of single wave runup on beaches with and without longshore variations 

as well as generation and absorption of long gravity waves at the offshore boundary. 

As a final test case edge waves resulting from an instability of a normally incident 

(and refiected) long wave are simulated. The results are compared to the weakly 

nonlinear theory by Guza and Bowen (1976). 
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Having verified the solution technique, we first choose to simulate shear 

instabilities of the longshore current in the simplest possible mathematical setting. 

These simulations are documented in Chapter 5. An analytical current profile on 

a plane slope is considered. The simplest possible mathematical representation 

of dissipation due to bottom friction is included and a finite domain width in 

the longshore direction is chosen. Simulations are carried out for a fixed bottom 

frictional coefficient with the objective of evaluating the appropriateness of the 

remaining simplifying assumptions. 

Since several mechanisms have been proposed to explain the observations 

by Oltman-Shay et al. (1989) we further seek to find out i f instabilities of the 

longshore current can account for the low frequency energy observed during the 

S u P E R D U C K experiment and to assess the importance of lateral mixing caused 

by shear instabihties. For this purpose, in Chapter 6, we choose to simulate the 

rather distinct low frequency climate observed at S U P E R D U C K during the period 

of October 15 through October 18, 1986 where the frequencies less than 0.01 Hz 

were dominated by shear waves. Linear instability calculations for these days 

were previously carried out by Dodd et al. (1992) assuming straight and parallel 

bottom contours and a stationary short wave field, resulting in good predictions 

of the observed range of wavenumbers and propagation speeds. Here, the analysis 

by Dodd et al. (1992) is taken one step further by carrying out a similar analysis 

using nonlinear computations. The assumptions of straight and parallel bottom 

contours and a stationary wave field are retained. The effects of bottom friction as 

well as lateral momentum mixing are included using simple parameterizations. A 

bottom friction coefficient ( c f ) and a mixing coefficient (M) to be defined later are 

the free parameters of the model. Simulations are carried out for several values of 

the free parameters. The instabilities are observed to grow to a finite amplitude, 

the mean longshore current is also observed to change suggesting that the finite 
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amplitude shear instabilities induce additional lateral mixing in the surf zone. 

In Chapter 7 we state the necessary extensions to the modeling effort in 

order to consider temporal and spatial variations in the short wave field as well as 

interactions between the time dependent short wave and current fields. By lifting 

the assumption of a stationary short wave field we can analyze the possibility of 

coherent variations in the short wave field to cause forced fluctuations at the time 

scales of far-infragravity waves. Furthermore, by including the effect of the current 

field on the short waves, the extent to which fully developed shear instabilities 

can alter the incident short wave field can be assessed. In Chapter 8, the results 

from the study are summarized and suggestions for future study are made. 
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Chapter 2 

G E N E R A T I O N AND S T A B I L I T Y O F T H E 

L O N G S H O R E C U R R E N T 

2.1 Introduction 

The transition of laminar flow to turbulent flow in a two-dimensional flow 

field is often attributed to an instability mechanism. If the two-dimensional flow 

is stable, small wavelike disturbances that are inevitably present in any natural 

system remain small and the flow is steady. However, i f the flow is unstable 

the disturbances will grow and reach finite amplitude. The fiow will exhibit a 

time varying character and the mean fiow can be affected by the presence of the 

wavelike motions. Therefore, the mean flow in the presence of fluctuations can 

be drastically different from the initial flow (or basic state) that developed the 

instabilities. 

Observations of laminar flows developing wavelike finite amplitude fluctua­

tions were made as early as 1883 (Reynolds, 1883). Theories that predict whether 

or not small perturbations will grow for a given flow field date as far back as 1868 

(Helmholtz, 1868). I t was several years later that Rayleigh (1880) formulated 

the linear instability problem for the inviscid flow of an incompressible fluid of 

constant density and obtained an important result. He stated that a necessary 

condition for an instability to exist is the presence of an inflection point in the flow 
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profile. The wave-induced longshore current in the surf zone is often considered 

to be invariant over depth and therefore constitutes a two-dimensional flow. The 

linear instabihty theory of Rayleigh (1880) can be used with minor modifications 

to study the stability characteristics of the longshore current. 

In order to carry out an instability analysis of the surf zone longshore 

current, the basic state consisting of a steady cross-shore variable current profile 

is considered. This basic state is created when obliquely incident, long crested 

short waves approach the shore and break a certain distance off'shore, exerting a 

net force on the water column due to the decrease in the radiation stress (Longuet-

Higgins and Stewart, 1963, 1964). The longshore component of this force causes 

a current in the longshore direction that is balanced by bottom friction. The 

longshore current is also diffused by mixing processes in the surf zone due to 

motions such as turbulence. The excess momentum due to the breaking waves in 

the cross-shore direction causes a setup of the mean surface elevation. I f the wave 

field is stationary the setup and longshore current are expected to be steady and 

longshore-invariant. Whether or not wavelike disturbances in the current velocity 

become unstable and grow can be determined utilizing a linear instability analysis. 

I f the basic state consisting of a steady longshore current is unstable to longshore 

periodic perturbations, the perturbations will grow and be observable as finite 

amplitude undulations in the current velocities. In order to analyze the behavior 

of the perturbations once they reach finite amplitude, a nonlinear analysis must 

be employed. 

In this chapter, the momentum balance resulting in a steady longshore 

current is reviewed and the linear instability theory of a steady longshore current 

is derived following Bowen and Holman (1989). The derivation results in an 

instability equation similar to the equation by Rayleigh (1880) for the stability of 
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a two-dimensional flow. Necessary conditions for instability are stated. 

2,2 Longshore Current Generation 

The horizontal momentum balance equations and the continuity equation 

averaged over the short wave time scales and over depth form a two-dimensional 

model for the time varying behavior of surf zone currents. They are in the form 

of the shallow water equations with additional terms to account for the effects of 

motions at shorter time scales (short waves and turbulence) as well as dissipation 

effects in the form of bottom friction. 

Tt + + = 0 

du du du dri ^ . 
W + + = + + 

dv dv dv dn „ , . . , 

Here, rj is the short wave-averaged water surface elevation above the still water 

level, h is the water depth with respect to the still water level, d = (h + rj) is the 

total water depth, u and v are the depth-averaged current velocities in the x and 

y directions, respectively, where x points offshore and y points in the longshore 

direction. 

The parameters and fy represent short wave forcing effects, and 

represent the effects of lateral mixing due to turbulence or other mechanisms. 

Bottom friction effects are included through the terms Xfca, and Uy. The subscripts 

denote the direction in which the stresses act. The specification of these terms is 

discussed in the next subsections. 
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2.2.1 Short Wave Forcing 

As the short waves approach the shore they break, releasing their momen­

tum into the surf zone as their wave height decays. This excess momentum, re­

ferred to as the radiation stress (Longuet-Higgins and Stewart, 1964), constitutes 

a mechanism that can force current motions. The short wave forcing terms and 

fy can be modeled utihzing the radiation stress formulation of Longuet-Higgins 

and Stewart (1964) as 

1 dS^r. 
Trr = —- + 

ds-xy 

dy pd \ dx 

1 (dSxy . dS, 

+ 'yy 

pd \ dx dy 

This expression can be written in index notation as 

1 dSoil3 

(2.2) 

(2.3) 
pd dxp ' 

where the indices a,0 represent the x,y directions and repeated indices are as­

sumed to be summed. The radiation stress components Sap are defined in terms of 

the orbital wave velocities (ü, v) and can be computed utilizing an appropriate wa­

ter wave theory. In this study we use hnear water wave theory. For monochromatic 

waves with wave height H, frequency ƒ and angle of incidence 0, the radiation 

stress components computed from linear theory can be written as 

E | ( c o s ' « + l ) - i 
r 

2 J ' 

Sxy = E - f sinÖcosÖ, 

Syy = E (2.4) 

where the wave energy density E is given by 

E = '-pgH' (2.5) 
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and the short wave celerity c = (27r/)//c, where the wavenumber k can be com­

puted from the linear dispersion relationship 

{2TTfY = gktanhkh. (2.6) 

The group velocity is defined as Cg = nc where 

I f 2kh \ 
n = - 1 + ^ (2.7) 

2 \ sinh2fc/i/ 

For random waves, the directional spectrum is considered to be made up 

of discrete components of height Hi, frequency and angle of incidence Oi. The 

radiation stress can then be defined as the sum of the radiation stresses due to all 

wave components. 

5'., = ^Ei\ni{cos^ei + l ) - ^ 
i 

Sxy = '^EiUi sin di cos 9i, 
i 

Syy = + (2-8) 

where Ei = (l/8)pgHf is the energy of each component and Ui is computed from 

(2.7) for the wavenumber ki of the component. The total energy in the spectrum 

is 

E = EEi = lp9HLs, (2.9) 

where Hrms is the root-mean-square (rms) wave height. 

Higgins et al. (1981) stated that the forcing due to a random sea with a 

narrow banded spectrum can be collapsed into forcing due to an equivalent plane 

wave. The equivalent wave train is chosen such that i t has the energy of the entire 

spectrum and a direction 0 that yields the total radiation stress S^y- Therefore, 
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the equivalent wave has wave height Hrms-, its frequency is equal to the peak 

frequency fp of the spectrum and its direction is given by 

^ = ^ a r c s i n f — ( 2 . 1 0 ) 

where c and Cg are evaluated for the frequency fp. The radiation stress components 

for a narrow banded sea can be computed using this equivalent wave and utilizing 

methods for monochromatic waves. 

In order to specify the radiation stress forcing using the above formulations 

for monochromatic or random waves, the wave height H, the wavenumber k and 

the angle of incidence d of the waves have to be known as a function of space 

and time. Given the offshore values of these parameters they can be obtained for 

the entire domain from the calculation of the short wave transformation due to 

depth-limited shoaling, refraction, diffraction and breaking. In general, the short 

wave field will be affected by the current field i t generates. In the case of obliquely 

incident long crested waves forcing a surf zone longshore current, computations 

have shown that this effect is minimal (Thornton and Guza, 1986). However, 

localized cross-shore currents such as rip currents can cause significant changes 

in the short wave field due to processes such as current-limited refraction and 

breaking. In practice, however, the possible interaction between the short wave 

field and the wave-induced current field is often neglected. The radiation stress 

forcing can then be computed externally and the forcing terms fx and fy can be 

specified. 
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2.2.2 Lateral Momentum Mixing 

The parameters and Ty in (2.1) represent the eiïects of lateral momentum 

mixing in the surf zone. One source of mixing in the surf zone arises due to gradi­

ents of turbulence-induced momentum fluxes (depth-integrated Reynolds' stresses 

S'). The turbulence-induced stresses and Ty in the momentum equations are 

given by 

rL = - - / - i ^ (2.11) 

The depth-integrated Reynolds' stresses S'^^ are defined as 

S'a0 = f_^P<u'pdz (2.12) 

where r] is the instantaneous water surface elevation, and is the velocity compo­

nent due to turbulence. The overbar denotes time averaging over the time scale of 

the short waves. Since the turbulent velocities are in general not known, the depth-

integrated Reynolds' stresses are often linked to the mean flow by parameterizing 

the stresses using an eddy viscosity. A popular eddy viscosity parameterization is 

given by 

where (u„,u^) = {u,v) are the current velocities. The parameter Vt is the turbu­

lent eddy viscosity. 

Another important source of lateral mixing in the surf zone is analogous to 

the Taylor dispersion process of dissolved matter in pipe flow (Taylor, 1954). This 

process was identified by Svendsen and Putrevu (1994) who considered the case of 

a steady longshore current and parabolic undertow profile on a longshore uniform 

beach. They found that the depth nonuniformity of the nearshore currents leads 

to additional terms in the depth-averaged momentum equations. The extension of 

the theory to unsteady fiow over arbitrary bathymetry was performed by Putrevu 
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and Svendsen (1997). The form of the momentum equations with the additional 

terms is stated in Putrevu and Svendsen (1997) as 

duoi duot drj 1 dS^s 1 d 

dt dxp dxa pd dxp ddx^ 

1 d 

i^td ^ + ^ 
\OX^ OXa ̂  

ddx 0 

71 ƒ . , / _ dUa dug _ dus 
Ma/3 + Aa0SUs - d D^p + Dsa ^ 7 " + Bafi " 

- Ua 

(2.14) 
dxs dxs dxs 

where the coefficients Ma/3, ^«^05) Da/s and 8^/} are functions of the depth varia­

tions of the current velocities. Their specification requires the prediction of the 

vertical structure of the longshore and cross-shore currents. Considering a depth-

uniform return flow to compensate for the wave-induced volume flux Qwa, Putrevu 

and Svendsen (1997) argue that the dominant effects are due to the Da/i terms 

in the above equation. Therefore, in the remainder of the discussion, we only 

consider the effects due to the terms. 

In the general case, Dap is a function of the turbulent eddy viscosity and 

the depth variations of the currents. Since undertow profiles are strongly curved 

in the surf zone but not outside the surf zone. Da/} varies with cross-shore dis­

tance. The specification of Dafi, therefore, requires knowledge about the local 

depth profiles of the velocities. The quasi-three-dimensional approach has been 

used in recent studies to obtain information about the vertical variations of the 

currents without the complications of a fu l l 3D model (e.g. De Vriend and Stive, 

1987; Svendsen and Lorenz, 1989; Svendsen and Putrevu, 1990; Sanchez-Arcilla 

et al, 1992; Svendsen and Putrevu, 1994; Van Dongeren et a/., 1994). The quasi-

3D approach involves calculating the depth-averaged current velocities using the 

depth-averaged momentum equations and utilizing the results to compute the lo­

cal velocity profiles from a separate profile model. Since such computations are 

beyond the scope of this study, we seek to include the effects of the Da/3 terms to 

leading order by estimating the order of magnitude of the coefficients Da/3 along 

with a reasonable variation in the cross-shore direction. 
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Putrevu and Svendsen (1997) stated that for a depth-uniform return fiow, 

the coefficient matrix Da/s is proportional to the wave-induced fluxes in the hori­

zontal directions such that 

_ Q^aQw/3 ,2.15) 

For short waves obliquely incident to the beach at small angles the volume flux 

due to the waves will occur mostly in the x direction so that 

Qwx » Qwy. (2.16) 

Under this assumption, D^x > Dxy > Dyy. Note that the subscripts do not denote 

differentiation but the plane and direction of action. As a first approximation, we 

retain terms with the coefficient Dxx only. The momentum equations then reduce 

to 

du du du dri 1 (dSxx , dSxy\ 

dt dx dy dx pd \ dx dy J 

1 d ( ,du\ 2 a A , , „ .du\ I d _ .dv\ 
-^1^ di^t + Dxx)^ + - 7 ^ dii^t + Dxx)^ , 

ddy \ dy J ddx \ dx J ddy \ dx) 

dv dv dv _ dri_ l_ (dSxy dSyy\ _ 

ö^ + ^ ö ^ + ^ a y - ^dy pd[dx ^ dy ) 

1 d ( ^du\ 2 d f ,dv\ 1 5 / . _ ^dv\ 
+ 1 ^ ^td^ + 1 ^ ^t^^ + 1 ^ dii't + D x x ) ^ • 2.17) ddx \ dy J ddx \ dy J ddx \ dx J 

I t is evident from (2.17) that the Dxx terms act to reinforce the turbulent mo­

mentum mixing in certain directions. The coefficient of these combined terms is 

a composite eddy viscosity u = Ut + D^x- Svendsen and Putrevu (1994) show that 

the value of the coefficient Dxx (termed Dc in Svendsen and Putrevu (1994)) can 

be orders of magnitude larger than Ut- Therefore, we only retain the mixing terms 

that are premultiplied by {ut + Dxx), effectively neglecting turbulent momentum 

mixing unless it is reinforced by the dispersion process. 
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As a result, the lateral mixing terms in the momentum equations can be 

expressed as 

, 2 d ( 8u\ 1 d ( ,dv\ , 1 d ( dv\ 
Tx = ^d— + -— ud— , r ' = - — ud— , (2.18) 

ddx\ dx) ddy\ dx)' ^ ddx\ dx)' ^ ' 

where u = ut^r D^x-

Since both Ut as well as Dxx are more pronounced in the surf zone, u 

will also be more pronounced inside the surf zone. To obtain a reasonable cross-

shore variation, it is convenient to parameterize the total horizontal eddy viscosity 

following Battjes (1975) as 

u = Md\^-^j , (2.19) 

where M is an 0(1) coefficient and ej, is the ensemble-averaged energy dissipation 

due to wave breaking. This relationship was originally formulated to account for 

the cross-shore variation of the turbulent eddy viscosity Ut. Therefore, the order of 

magnitude of M needs to be reevaluated to account for mixing due to turbulence 

as well as the Taylor dispersion process. 

In order to estimate the order of magnitude of M for field applications, we 

focus our attention to the inner surf zone and use linear shallow water theory to 

construct a simple expression for given by 

" = i ( j"»'^'^) • (2.20) 

where H is the wave height and c is the short wave celerity. Assuming wave 

breaking in a saturated surf zone, we can use (H/h) = 7 and write 

( ^ ) ' ^ ' = ( ^ 7 X ) ^ / ' V 5 ^ , (2.21) 

where hx is the bottom slope. An average bottom slope of 0.05 applies to field 

experiments at Duck, NC. Furthermore, Thornton and Guza (1983) found good 
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agreement with measured wave height variations in field applications for a value 

for 7 of 0.42. With these values the order of magnitude of v can be estimated to 

be 

V ^ O.UMh^. (2.22) 

On the other hand, u is composed of the turbulent mixing coefficient Ut 

and the Taylor dispersion coefficient Dxx- A typical value of the turbulent eddy 

viscosity coefficient i^t derived from laboratory studies by Svendsen et al. (1987) 

is 0.01 hy/gh. However, George et al. (1994) state that this estimate should be 

reduced by | to | for field applications. A reasonable range of values for Ut in the 

field is then 

0.0025/iy^ <ut< 0 .005/iy^. (2.23) 

Svendsen and Putrevu (1994) state that a crude estimate of the magnitude 

of Dxx is given by 

Dxx = =:^, . (2.24) 

where Q-^x is the wave volume flux in the cross-shore direction with typical values 

in the range (see e.g. Svendsen et al, 1987) 

0.03 ( ^ ) \ j ^ < Q w x < 0.1 (2.25) 

Once again we can use (H/h) = 7 = 0.42 and get 

O.OOhhxfgh < Q^x < O.OlShJgh. (2.26) 

The effective eddy viscosity u is given by the sum of Ut and Dxx- For the 

range of values stated above, reasonable values for u will be in the range 

O.OOShJgh <u < 0.067hJgh. (2.27) 
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Comparing (2.22) and (2.27), the order of magnitude of the mixing coefficient M 

can be stated as 

0.06 <M < 0.48, (2.28) 

when lateral mixing due to turbulence as well as the dispersion mechanism de­

scribed by Svendsen and Putrevu (1994) are taken into account in a rudimentary 

fashion. 

2.2.3 Bottom Friction 

The bottom friction terms can in general be written as 

Ux = ^Cf\Ü+Ü\{u + Ü), 

Uy = -Cf\i2+u\{v + v), (2.29) 
a 

where Cf is a friction coefficient. Furthermore, ü and v denote the components in 

the X and y directions, respectively, of the short wave orbital velocity vector Ü. 

Similarly, u and v denote the x and y components of the current velocity vector u. 

The overbar denotes time averaging over the time scale of the short waves. The 

simplest formulation for the bottom friction can be obtained by assuming that 

short waves approach the shore at small angles of incidence and the maximum 

orbital velocity UQ associated with the short waves is much larger than the mean 

current (Longuet-Higgins, 1970). Linearizing with respect to uo results in linear 

damping terms in the momentum equations. Linear damping terms in the x and y 

momentum equations are the mathematically simplest frictional resistance terms 

and can be expressed as 

Ux = ^u, Uy = ^ u , (2.30) 

where 
2 

= -CfUo. (2.31) 
TT 

24 



The orbital velocity is a function of offshore distance and can be specified 

according to the wave theory used to compute the short wave climate. The sim­

plest formulation can be obtained when linear shallow water waves are assumed 

in the surf zone. For monochromatic waves, this assumption gives 

Uo = (2.32) 

For random waves with Rayleigh distributed wave heights, the relationship is 

uo = \^Hrms. (2.33) 

I t is noted that the above formulation for bottom friction is rudimentary. 

The assumption regarding the strength of the current in relation to the wave 

orbital velocity as well as the incorporation of linear shallow water theory for 

the computation of uo is highly restrictive and often unrealistic. The size of the 

friction coefficient c/ is also a major source of uncertainty. However, the goal is 

to obtain an estimate of the order of magnitude of the dissipative terms so that 

the dynamics of shear instabilities can be analyzed in a mathematically simple 

setting. Furthermore, the formulation given by (2.30) has so far been used by 

a number of investigators for linear (Dodd et al., 1992) and nonlinear (Allen et 

al, 1996; Slinn et al, 1997) shear instability computations. Therefore, retaining 

this simple formulation facilitates comparisons to other studies. For these reasons 

we continue to use (2.30) for simulations of shear instabilities over plane and 

barred beaches discussed herein. Extension of the model to incorporate the fu l l 

formulation (2.29) is discussed in Chapter 7. 

We substitute the expressions for the forcing and damping terms Tq., and 

Tioc into the governing equations (2.1) and obtain 

^ u— V— - 1 fdSxx ^ dSxy\ fi^ 
dt ^ dx ^ dy ^ dx pd\ dx dy J d 
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d d x \ dx J d d y \ dx j 

dv ^ dv ^ dv dr, 1 (dSxy dSyy\ fl 

dt dx dy dy pd \ dx dy J d 

1 d ( dv\ , , 

^dTx[''Tx)- (2-^^) 

We first seek the steady momentum balance. For the case of a stationary short 

wave field and straight-and-parallel bottom contours this balance reduces to 

dri 1 dSxx 
9 dx pd dx 

-— ud — +IJ.V = 2.35 

dx \ \dx J J p dx 

These equations describe a steady short wave-induced longshore current V and 

a steady short wave-induced setup f j . The longshore current described by the 

longshore momentum balance constitutes the fluctuation-free basic state. The 

stability of this basic state will be analyzed next. 

2.3 Linear Instability Theory 

Following the development by Bowen and Holman (1989), we perturb the 

basic flow consisting of a steady longshore current V{x) and steady setup f){x) 

such that 

ri{x,y,t) = fi{x) + r,'{x,y,t) 

u{x,y,t) = 0 + u'{x,y,t) 

vix,y,t) = V{x) + v'{x,y,t), (2.36) 

The perturbations u', v' and rj' are assumed to be small. Therefore, the relation­

ships 
u' v' n' 
- < 1, - < 1 and ^ < 1 (2.37) 
V V r} 
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hold. 

Subtracting the momentum balance given by (2.35) from the governing 

equations (2.34) and linearizing in the perturbation variables 77', u' and v' results 

in a system of equations for the perturbations consisting of the continuity equation 

f + | : ( * " ' ) + | ( * " ' ' = '' ' (2-'^) 

and the x and y momentum equations 

du' ,,du' dr,' fl , 2 d ( ^du'\ 1 d ( ^dv'\ 

dt dy dx h hdx \ dx J hdy \ dx J 

dv' , ,dV , ^^dv' dr,' fx . 1 d ( ,dv'\ 

dt dx dy dy h hdx \ dx J 

Since the waves observed by Oltman-Shay et al. (1989) are too short to 

satisfy gravity wave dynamics, Bowen and Holman (1989) searched for alternate 

solutions to the equations of motions. In particular, they searched for motions 

under the nondivergent, or "rigid l id" , assumption. In this case, accelerations 

of the flow are driven by inertial terms involving the mean longshore current. 

The "rigid l id" assumption involves assuming that the term ^ in the continuity 

equation (2.38) is negligible in comparison to the horizontal fluxes. The continuity 

equation then reads 

| ( W ) + | ( W ) = 0 (2.40) 

and a streamfunction ^ can be defined to satisfy this equation exactly. 

d^ a* 
("»') = (^"') = (2-«) 

In their discussion, Bowen and Holman (1989) neglected the dissipational 

terms in the perturbation equations and cross-differentiated (2.39) to eliminate 

77'. Substituting the definition of the streamfunction results in 
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where subscripts in this equation denote differentiation. Bowen and Holman 

(1989) pointed out that this equation is the linearized version of the equation 

for the conservation of potential vorticity H, 

dn dn du ^ , , 

where u = u' and v = V + v' are the total current velocities and H is defined as 

h \dx dy J h \ dx \dx d y ) ) ' 

In analogy to the Coriolis parameter in larger scale geophysical fiows, the back­

ground vorticity in this flow is provided by the shear of the longshore current 

{dVjdx). 

Bowen and Holman (1989) proceeded with the hnear instabihty analysis 

by assuming a solution of the form 

^ = 3?e {V'e'(^^-'^*)} (2.45) 

where the longshore wavenumber A is assumed to be real, but a may be complex 

such that a = (Tre + io-im- In this case the resulting solutions are in the form of 

progressive waves with speed c = are IA and an exponentially growing amplitude 

with growth rate aim-

Substituting this form into (2.42) results in 

( T ^ - c ) U . . - f U . - A ^ V = h i ^ ] ^ . (2.46) 

I t should be noted that in the absence of bottom variation (2.46) reduces to the 

well-known Rayleigh equation (Rayleigh, 1880) for two-dimensional flow, 

(V - c) [^x. - h^.^) - Vxx^ = 0 (2.47) 

For Rayleigh's equation Fj0rtoft's theorem states that a necessary (but not suffi­

cient) condition for instability is that an inflection point exists in the basic flow so 
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Figure 2.1: (a) Stable: V^x < 0; (b) stable:T4a; > 0; (c) stable: = 0 at 
Xs but Vxx{V - Vs) > 0; (d) possibly unstable: = 0 at Xs but 
Vxx{V — Vs)<0 (reproduced from Drazin and Howard, 1966). 

that Kx = 0 at a point Xs- Furthermore, V^xiV -Vg) < 0 somewhere in the field 

of flow, where K = V { x s ) . Examples of two-dimensional flows that are stable 

or possibly unstable are given in Drazin and Howard (1966) and reproduced in 

Figure 2.1. 

The equivalent condition for the stability of the longshore current (2.46) 

was derived by Putrevu and Svendsen (1992) and states that for instability {Vx/h) 

must have an extremum so that {Vx/h)x = 0 at a point Xg with the condition 

Vxx{V - Vs) < 0, where K = V { x s ) . A typical longshore current profile often 

observed on natural beaches is shown in Figure 2.2, the shoreline is located at 
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Figure 2.2: Generic longshore current profile. 

a; = 0. An inflection point is often present at the point of maximum shear; 

therefore, the longshore current is possibly unstable. 

Bowen and Holman (1989) solved (2.46) analytically for the simple geome­

try of a constant depth bottom and a piecewise smooth longshore current profile. 

They obtained solutions for the eigenvectors 0̂ with complex eigenvalues cr for a 

range of values of A and thereby showed that instabilities of the longshore cur­

rent exist. However, (2.46) is difficult to solve analytically for a general velocity 

distribution and bathymetry. Therefore, several investigators (e.g. Putrevu and 

Svendsen, 1992; Dodd tt al, 1992; Falqués and Iranzo, 1994) used various nu­

merical solution methods to solve (2.46) as well as its counterpart including the 
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effects of dissipation due to bottom friction or lateral mixing. 

Putrevu and Svendsen (1992) solved tlie instability equation including the 

effects of linear bottom friction given by 

where fj, is a, constant linear friction coefficient and i = is the unit imag­

inary number. The solution method by Putrevu and Svendsen (1992) utilized 

finite difference approximations of the spatial derivatives. The resulting matrix 

equation was solved for the eigenvalues and eigenvectors for a given wavenumber 

A. Their solution method will be used in this study to compute linear instability 

characteristics of current profiles whenever necessary. The reader is referred to Pu­

trevu and Svendsen (1992) for further information about the numerical methods 

implemented. 

A generic case of a longshore current profile over a beach profile with 

straight-and-parallel contours is shown in Figure 2.3. A numerical solution of 

the linear instability equations for such a basic state results in predictions of the 

complex frequency a for each value of the wavenumber A. Often a range of un­

stable wavenumbers exists, perturbations at these wavenumbers are expected to 

display temporal growth. The imaginary part of the frequency aim then provides 

an estimate of the strength of the instability at a wavenumber, the real part are 

can be used to compute the speed at which the instabilities propagate alongshore 

as they grow. Typical graphs of the real and imaginary frequency as a function of 

wavenumber are shown in Figure 2.3. The wavenumber at which the maximum 

growth rate occurs is referred to as Xmax and is considered to be representative of 

the length scale of the motions. 
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Figure 2.3: Typical results from an instability analysis. 

Studies carried out by Dodd (1994) and Falqués and Iranzo (1994) analyz­

ing the effects of linear bottom friction and lateral diffusion suggested that the 

dissipational terms affect the instability characteristics of a basic state by reduc­

ing the growth rates. The location of the most unstable wavenumber, however, is 

altered only slightly. Therefore, for the purposes of identifying the most unstable 

wavenumber, linear instability calculations for the inviscid case are useful. How­

ever, when estimates of the linear growth rates are needed, the viscous problem 

has to be considered. 
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2.4 Nonlinear Instability 

An important assumption that was made during the derivation of the sta­

bihty equation states that the perturbations to the basic velocity profile are small. 

However, once the instability is initiated, the growth rates are often large enough 

(Bowen and Holman, 1989; Dodd et al, 1994) for the perturbations to reach f i ­

nite amplitude relatively quickly. The perturbations are then no longer small in 

relation to the basic current and a nonlinear analysis is necessary to investigate 

the behavior of the resulting undulating currents. Such an analysis involves the 

solution of the fu l l problem given by (2.34). 

To date, studies solving the nonlinear equations often retained the "rigid 

l id" assumption (e.g. Allen et al, 1996; Falqués and Iranzo, 1994). Various studies 

reviewed in Chapter 1 include the effects of bottom friction, lateral mixing or 

both. Al l have chosen rudimentary representations for the dissipational terms 

as well as the short wave forcing terms and have assumed a stationary short 

wave field neglecting any effects of wave-current interactions. In spite of these 

simplifying assumptions the resulting finite amplitude instabilities were seen to 

exhibit complicated behavior. 

In this study we construct a time domain model of the governing equa­

tions (2.1). The "rigid l id" assumption will not be invoked, instead the time 

dependent behavior of the surface is computed along with the velocity compo­

nents. The linear bottom friction formulation (2.30) is used along with an eddy 

viscosity parameterization of lateral mixing. The short wave field is considered to 

be stationary and all interactions between the short wave and current fields are 

neglected. These simple representations of the forcing and damping effects are 

purposefully chosen to study the resulting motions in the simplest possible math­

ematical setting. Future studies can then identify the features caused by more 
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complicated and complete representations of dissipational effects. The detailed 

description of the specification of the forcing and dissipational terms is given in 

Chapters 5 and 6 where simulations of shear instabilities on a plane and barred 

beach are simulated, respectively. 

The instability theory considers a steady longshore current created by a 

stationary wave field and analyzes the stability of this basic state. In reality, 

however, the incident wave field is rarely stationary. Observations from the Su­

PERDUCK experiment (Oltman-Shay et a/., 1989) show that when a wave field 

becomes more energetic due to a local storm, amplitudes of the longshore current 

velocities as well as undulation velocities are seen to increase simultaneously. The 

response of the instabilities to time varying short wave forcing is, therefore, rele­

vant. Furthermore, spatially and temporally coherent variations in the short wave 

climate, for example in the form of wave groups, are known to force infragravity 

motions (Schaffer, 1993, 1994). Such variations in the short wave climate also 

have the potential to cause lower frequency vorticity motions (Haller et al, 1997). 

The investigation of these issues involves considering the effects of a time varying 

short wave field on the currents by lifting the assumption of a stationary short 

wave field. 

In turn, the effect of the surf zone currents on the short wave field is of 

equal importance. The short wave field can be altered by the underlying current 

field due to current limited diffraction and breaking. I f the currents are time-

dependent the short wave field will lose its stationary character and the problems 

of short wave transformation and current generation can no longer be decoupled. 

The inclusion of a time dependent calculation of the short wave field is, therefore, 

of interest and will be described in Chapter 7. 
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Chapter 3 

B O U N D A R Y V A L U E P R O B L E M A N D S O L U T I O N 

M E T H O D 

A solution method for the shallow water equations governing wave motions 

in the nearshore environment is presented. The model domain extends from the 

shoreline to a desired distance offshore and is periodic in the longshore direction. 

Properly posed boundary conditions for the governing equations are discussed. A 

curvilinear moving boundary condition is incorporated at the shoreline to account 

for wave runup. An absorbing-generating boundary based on a method by Van 

Dongeren and Svendsen (1997) is constructed offshore. Spatial derivatives con­

tained in the governing equations are computed using spectral collocation meth­

ods. A high-order time integration scheme is used to compute the time evolution 

of the velocities and water surface elevation given initial conditions. 

3.1 Introduction 

The nonlinear shallow water equations are a set of coupled hyperbolic equa­

tions governing many types of processes in the nearshore region. They have been 

widely employed to model long wave propagation in a variety of cases includ­

ing tsunami propagation or tidal oscillations. They may also be utilized to model 

short surface wave propagation, if provision is made to account for dissipation due 
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to wave breaking. Finally, they provide a theoretical basis for modeling currents 

and other quasi-steady flows. 

Recently, it has been demonstrated that longshore currents induced by 

obliquely-incident waves breaking on a beach may be unstable to perturbations 

that induce undulating flow patterns in the longshore direction and time (Oltman-

Shay et al, 1989; Bowen and Holman, 1989). The nonlinear shallow water equa­

tions provide a good basis for modeling the long-time evolution of these instabil­

ities. Viewed in isolation, these instabilities induce flow perturbations which are 

primarily horizontal in nature (with vorticity as the primary restoring force), and 

thus can be studied using rigid-lid models (Allen et al, 1996). However, these 

motions occur in a complex surf zone environment characterized by a number of 

additional low frequency motions, including edge waves and surf beat, which are 

primarily gravity dominated. The nonlinear shallow water equations provide the 

leading order approximation of the free surface effects needed to study vorticity 

and gravity-dominated motions in tandem. 

In this chapter, we present a numerical treatment of the nonlinear shallow 

water equations which is specialized to motions which can be assumed to be 

periodic in the longshore direction. Our aim in this and the following chapter 

is to describe the numerical approach and verify i t in comparison to analytical 

results for the case of gravity wave motion. Tests involving vorticity waves are not 

described here, as there are no documented "correct" answers that would serve as a 

basis-for model verification. Instead, results on the evolution of shear instabilities 

of longshore currents in the surf zone will be described in later chapters. 

First, a solution method for the nonlinear shallow water equations using 

Chebyshev collocation in the shore-normal direction in conjunction with Fourier 

36 



collocation in the shore-parallel direction is presented. The properly posed bound­

ary treatments for these equations are discussed. A curvilinear moving boundary 

condition at the shorehne is constructed using an Eulerian model in conjunction 

with a moving grid. This boundary condition is tested for both one and two-

dimensional shoreline runup. 

An absorbing-generating boundary condition at the offshore boundary is 

derived based on the method of characteristics following Van Dongeren and Svend­

sen (1997). I t is tested for waves leaving the domain at normal or oblique incidence 

to the artificial offshore boundary. 

As we are primarily interested in using the solution method developed here 

to study the onset and evolution of instabilities of the surf zone longshore current, 

the question of whether the method is capable of reproducing unstable behavior 

in a well understood case is of extreme importance. We thus conclude the chapter 

with an analysis of the growth of subharmonic standing edge waves, which evolve 

on a long straight beach as a result of an instability of a normally incident (and 

reflected) long-crested wave. This instability has been studied extensively, and 

predictions for equilibrium edge wave amplitudes as a function of incident wave 

conditions and frictional damping rates are available. We show that the present 

method is capable of reproducing the neutral stability boundaries and equilibrium 

amplitude predictions for this particular class of motions. 

3.2 Governing Equations 

In this study, a two-dimensional horizontal model of the non-dispersive 

continuity and momentum equations is used. The governing equations, given 
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below, are the nonlinear shallow water equations. 

dt + {ud)x + (vd) y 0 (3.1) 

(3.2) Ut + UUx + VUy 

Vt + UVx + W y 

-gr}x + F{x,y,t) 

-griy + G{x,y,t). (3.3) 

Here, rj is the water surface elevation above the still water level, h is the still water 

depth, d = h-\-r] is the total water depth, u and v are the velocity components in 

the x and y directions, respectively, where x points offshore and y points in the 

longshore direction. The functions F and G represent external forcing effects as 

well as dissipational effects. 

The domain in which these equations are solved is shown in Figure 3.1. I t 

is bounded by a curvilinear moving shoreline at a; = C{y,t). This representation 

of the shorehne boundary imposes the restriction that the shoreline position be 

single valued. The kinematic condition for the shoreline dictates that 

where the superscript s denotes that the variables are evaluated at the shoreline. 

The physical requirement for a shoreline to exist is 

Furthermore, the domain is bounded by an open boundary at x = L^. The 

characteristic horizontal length scale is denoted by L. Periodicity is assumed in 

the y direction. 

Using spectral collocation schemes to determine the spatial derivatives and 

an explicit time stepping scheme, the most straightforward boundary treatment 

at, say, x = would be to specify one of the unknowns at the boundary (e.g. 

(3.4) 

d = h + rj = 0 on X = ({y, t). (3.5) 
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Figure 3.1: Physical Domain 

u) and update the other two unknowns (u and d) at the boundary using (3.1), 

(3.2) and (3.3). Although this type of approach may not lead to problems when 

using finite difference methods, it is strongly unstable when spectral collocation 

methods are used (Gottlieb et a/., 1982). The reason is that the use of (3.1) and 

(3.3) for the evolution of d and v is an incorrect extrapolation of the equations to 

the boundary. 

In order to impose the onshore and offshore boundary conditions properly, 

we use the method of characteristics and rewrite the governing equations in the 

unknowns u, v and d in terms of variables that carry information across the 

onshore and offshore boundaries (herein called the /3-characteristic variables) as 

well as along those boundaries (herein called the 7-characteristic variable). This 

manipulation is similar to the derivation of Abbott (1979) and is carried out 

following Van Dongeren et al. (1994). 

The governing equations can be written in matrix form as 

q, + A q , + B q = C . (3.6) 
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where 

d u d 0 V 0 

u , A = 9 u 0 , B = 0 V 0 

V 0 0 u 9 0 V 

and C = I ghx + F 

ghy + G 

The eigenvector matrix P of the matrix A is given by 

P = 

• | \ / ^ \ ^ 9 0 

2 2 ^ 

0 0 1 

Premultiplying (3.6) by the inverse matrix P~-̂  gives 

p-^q, + (P -^AP) p-^q, + ( P - ^ B P ) p-^q^ = p -^C. 

Algebraic manipulation of this equation results in 

Wt H- A 'w^ + B 'wy = C'. 

where 

A' = 

u - ^ / g d 0 0 

0 u + ^/gd 0 

0 0 u 

and C' = 

B' = 

V 0 

0 V 

-\\^gd 

- y / g d 

Vgd 

ghx + F 

gK + F 

ghy + G 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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The unknown vector w is defined by 

u — 

w = u + = 

V 7 

can now b e written as 

(3.13) 

/ ? -+ (u - c ) ^ ; + y/?; - = 2coCô  + F 

/?++ (u + c)/3++ + C7y = 2coCo, + F 

7i + w7x + «7y = -9Vy + G. 

(3.14) 

(3.15) 

(3.16) 

Here, c is the nonhnear shallow water wave speed y/gd = yfg{h + rj) and CQ 

is the linear shallow water wave speed \/gh. Note that, in the absence of longshore 

variability, the above equations reduce to uncoupled one-way wave equations. As 

desired, the variables I3~ and carry information across the onshore and offshore 

boundaries whereas the variable 7 carries information along those boundaries. 

Note that the equation governing /?+ = u -\-2c {I3~ = u - 2c) carries 

information in the +x {—x) direction and is therefore valid everywhere inside the 

domain and on the right (left) boundary point but not on the left (right) boundary 

point. The equation governing the evolution of the glancing variable 7 = u is valid 

everywhere in the domain including the boundary points. 

In order to impose the boundary condition &i x = Lx properly, the incom­

ing yS-variable /?~ has to be specified, while the outgoing /^-variable /?+ and the 

glancing variable 7 can be computed using (3.15) and (3.16), respectively. The 

simplest boundary that can be constructed in this manner at, say, a; = I-j; is a fully 

refiective wall boundary, where /?+ and 7 are calculated using (3.15) and (3.16) 

and j3~ is specified as j3~ = —/?"̂ . Numerical calculations using this condition 

lead to stable solutions. 

41 



3.3 Treatment of Moving Shoreline 

Gravity driven motions in the nearshore region have significant shorehne 

runup associated with them. The most commonly used techniques to model shore­

line runup are Eulerian models with fixed numerical grids or meshes. Examples 

of the implementation of such methods can be found in studies of solitary wave 

and tsunami runup such as Liu et al. (1995). In these methods the shoreline is 

defined as the interface between wet and dry cells; therefore, it is usually defined 

within the accuracy of the grid size. The shoreline is advanced or retreated in 

discrete steps. The amount of movement is dictated by the volume flux at the 

last wet point. These methods are fairly straightforward to implement. However, 

the impulsive filling of a cell with fluid can lead to numerical problems or time 

step constraints unless treated carefully. Also, an a priori estimate of the max­

imum runup needs to be available in order to keep the domain large enough to 

accommodate i t . 

Lagrangian methods are very well suited for the treatment of moving 

boundaries. In these methods, the fluid is represented as a large number of fluid 

particles. Tracking the position of a particle at the shoreline is in general no 

more difficult than tracking a particle in the interior of the fluid. Examples of 

computations for solitary wave runup using Lagrangian methods are presented by 

Pedersen and Gjevik (1983) and Zelt and Raichlen (1990). However, Lagrangian 

methods employed in regions with a net streaming velocity (such as the longshore 

current in the surf zone) may require frequent regridding, since the computational 

grid would tend to be advected and sheared by the steady flow. 

Eulerian models with deforming grids are less frequently used in association 

with long wave runup. Lynch and Gray (1980) and Gopalakrishnan and Tung 

(1983) reported techniques whereby moving boundaries can be treated by finite 
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element Eulerian models. They involve moving grids where one boundary of the 

grid tracks the position of the shoreline, and are more difficult to implement 

than methods involving a fixed grid. However, they do not exhibit the problems 

associated with grid draining and filling in fixed grid models, and would not 

experience the difficulties associated with steady flows in a purely Lagrangian 

model. Therefore, we have chosen to develop an Eulerian model with a moving 

grid for application to the surf zone in the present study. 

The problem at hand consists of solving a set of well-known governing 

equations (3.14), (3.15) and (3.16) in a complicated physical domain bounded by 

one curvilinear moving boundary defined by (3.4) and (3.5) and three stationary 

boundaries. The challenge of modeling the moving boundary can be overcome by 

mapping the variable size domain onto a fixed domain. Such a transformation will 

lead to a grid that follows the shoreline with one grid boundary and wil l introduce 

additional terms into the governing equation. 

The coordinate transformation from the physical variables x G [ ( (y , t ) , La; 

and y € [0, Ly] to the intermediate variables ^ G [0, L^] and i/) € [0, Ly] used here 

is given by 

x = 4>+(:{y,t)e-'''^\ y = ^. (3.17) 

A stationary orthogonal grid in the {4>, tp) domain corresponds to a physical 

grid that is following the shorehne (see Figure 3.2). The movement of the grid 

lines is damped out exponentially with offshore distance so that the grid is almost 

stationary at a certain distance offshore. This distance is dictated by the value of 

the parameter a. As a result of the transformation, the derivatives in the governing 

equations are altered, resulting in a few additional terms. The derivatives i n the 
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governing equations now become 

i)t\x = i)t\^ + {)4'^t 

( ) . = i U . 

i)y = + (3.18) 

where (f>{x,y,t) is given by (3.17) and ( )(|^ and ( )t\^ denote time derivatives in 

a reference frame where x and 4> are fixed, respectively. 

Figure 3.2: Shorehne Boundary Condition: Transformation from the physical 
to the intermediate domain 

The intermediate grid in the variables cj) G [0, L^] and ip G [0, Ly] obtained 

above is next mapped onto a computational grid in the variables s G [—1,1] and 

r G [0,Ly] (see Figure 3.3). Given the positions of the computational points in 

the (5,r) domain, a variety of coordinate transformations can be used depending 

on the desired distribution of the interior points in the {(p, tp) domain. Examples 

of frequently used transformations are given in Boyd (1988). One of the simplest 

transformations is 

(P = L{l + s), tP = r. (3.19) 

Since a hnear relationship between the intermediate variables (<p>, ip) and the com­

putational variables {s,r) is dictated by this transformation, the grid point dis­

tributions chosen for s and r are preserved in the physical grid. 
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The coordinate transformation 

(f> = L ^ - ^ , iP = r (3.20) 
So - s 

has the effect of concentrating grid points in the physical domain in the vicinity 

of the shoreline and is used for the runup simulations in Section 4.1. This trans­

formation also presents the opportunity of modeling a domain where the offshore 

boundary is located at infinity since the location of the offshore boundary is dic­

tated by the value of the parameter S Q . I f the offshore boundary is located at 

infinity 5o equals unity. In this case a physical domain in the shape of a semi-

infinite strip is modeled while the computations are carried out in a box-shaped 

domain. For a finite offshore width 5o > 1- Shear instabihty computations for a 

plane beach documented in Chapter 5 were carried out using a value of 2 for 5o 

in (3.20). 

A grid of nearly uniformly spaced collocation points in the cross-shore 

direction along with a uniform grid in the longshore direction is used in Chapter 

6. The transformation 

arccos(-p.)-arccos(p)^ ^ = , (3.21) 
arccos (—p) — arccos (p) 

is utilized with p = 0.999. Many other transformations are possible and their in­

corporation into the solution scheme is trivial, so that the grid point distributions 

can be tailored to the case at hand. 

As a result of this second transformation the derivatives in the governing 

equation are further modified and become, 

( )x = ( )sS4>^x 

{ ) y = { ) r + {)sS^cPy, (3.22) 
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-1 +1 

Figure 3.3: Transformation from the intermediate to the computational domain 

where ( denotes time derivatives at fixed values of s. 

As a result of the two coordinate transformations the governing equations 

now read 

+ i^t + Sxiu -c) + Syv] (3J + v/?- - - SyC-fs = 2sxCQCog + F (3.23) 

/?+ + [st + S ^ ( M + c) + Syv] /3+ + vf3f + + Syc-ys = 2SXCOCQS + F (3.24) 

7( + [st + SxU + Syü] 7, + v^r = - g r j r - gSyTis + G. (3.25) 

At the shoreline c = ^/gR = 0, and the equations in the /3-variables collapse 

into one redundant equation and no information about the values of the /?-variables 

can be deduced. However, the velocity at the shoreline can be determined using 

the a;-momentum equation 

ul + [st + Sxu' + Syv'] ul + vu' = -gsxiql -f F% (3.26) 

where the superscript s denotes that the variables are evaluated at the shoreline. 

After applying the two coordinate transformations the kinematic condition (3.4) 

reads 

Ct = - v%r. (3.27) 
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The physical requirement (3.5) for a shoreline to exist becomes 

d = h + r] = 0 on 5 = — 1 . (3.28) 

The evolution of the wave field is calculated by time stepping (3.23), (3.24) 

and (3.25) along with (3.26) and (3.27) while imposing the condition stated in 

(3.28) and an offshore boundary condition to be discussed next. 

In the following sections, i t will be shown that this boundary treatment 

compares favorably to analytical and other numerical results. However, in some 

situations, especially when steep waves are involved, it causes grid points to run 

up the shore to form a very thin film of water on the beach. As a result grid points 

are lost to the beach and the resolution of the solution is decreased. Therefore, 

it is necessary to prevent the occurrence of a thin film which is evidenced by 

more than one grid point with d < c?thresh associated with them. The parameter 

(^thresh is a threshold value appropriate for the application and should be chosen in 

relation to the runup amplitude and beach slope associated with the application 

as well as the grid point distribution. Care should be taken to choose c?thresh to 

be significantly smaller than the depth value at the first grid point seaward of the 

shoreline at the initial time level. 

If the occurrence of a thin film is detected during a simulation, the shoreline 

position is redefined as the average of the positions of the most seaward point with 

d < (ithresh and the next offshore point with d > (^thresh- The row at the longshore 

positions where the thin film was detected is then regridded. In order to minimize 

computational time, in this study a nonzero value for c?thresh is only used if visual 

inspection of preliminary results for a case shows the occurrence of a thin film. 
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3.4 Offshore Absorbing-Generating Boundary 

An absorbing-generating boundary condition needs to be specified at the 

off'shore boundary to simultaneously allow waves to exit the domain of interest 

with minimum reflection as well as specify incoming waves at the offshore bound­

ary. The logic of the absorbing-generating boundary condition can be best under­

stood when the problem is reduced to a one-dimensional case. The extension to 

the two-dimensional problem follows in a straightforward manner. 

3.4.1 One-Dimensional Problem 

In one dimension and in the absence of any forcing terms F and G, the 

governing equations at the offshore boundary x = reduce to 

which are uncoupled one-way wave equations. The characteristic variables are 

given by /5~ = u — 2c traveling in the —x direction and /3+ = u -|- 2c traveling in 

the -\-x direction. 

I f an outgoing wave exists in the absence of an incoming wave, the incoming 

characteristic will carry no information and will reduce to /3~ = u — 2c = — 2co. 

Therefore, the particle velocity associated with the outgoing wave is Uout = 2cout — 

2co, where Cout = ydi^ + rjout)- In this case the boundary condition at the offshore 

boundary x = would be constructed by computing the outgoing characteristic 

/?+ using (3.30) and specifying the incoming characteristic /3~ as -2co. 

In turn, i f an incoming wave exists in the absence of an outgoing wave, 

the outgoing characteristic will carry no information and will reduce to /?+ = 

(3- + {u-c)f3; = 2coCo^ 

(3.30) 

(3.29) 
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u+2c = 2co. The particle velocity associated with the incoming wave is then Uin = 

—2Qn + 2co, where q n = ydih + vïn)- The specification of the boundary condition 

is again straightforward; /?''' can be computed using the governing equation and 

/3~ has to be specified as the incoming wave. 

Assuming that the incoming and outgoing waves exist simultaneously but 

that their particle velocities are independent of each other the observed velocity at 

the boundary is u = Uin + Uont = 2(cout — Qn) and the total water surface elevation 

is 7] = rjin + r]out- This assumption is equivalent to superimposing the incoming 

and outgoing waves at the boundary. However, this superposition does not imply 

a linearization of the problem at the boundary since the velocities associated 

with the waves are calculated using the nonlinear equations. As a result, the 

interactions between the incoming and outgoing waves are neglected while the 

self-interactions of these waves are included. 

3.4.2 Two-Dimensional Problem 

The extension of the above ideas to the two-dimensional case has previously 

been presented by Verboom and Slob (1984) for the case of wave absorption for a 

viscous fluid. The following technique has been developed by Van Dongeren and 

Svendsen (1997) for simultaneous absorption-generation in the context of long 

wave propagation and is used here with minor modifications. 

The technique involves defining the particle velocities of the incoming and 

outgoing waves as Uin and i7out, respectively, along with their components in 

the X direction Ujn and Uout and their components in the y direction Vin and 

Vout (see Figure 3.4). Known quantities at the offshore boundary x = Lx are 

variables associated with the known incoming wave Uin, Uin and rjin as well variables 
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determined from the governing equations v = Vin + Vout and /S"*" = w + 2c where 

u = (nin + Uout) and c = ^g{h -f r]in + rjout)- The unknowns are the a;-component 

of the outgoing wave particle velocity Uout and its propagation speed Cout, which 

is defined above. 

Outgoing wave 

X 

Incoming wave 

x=Lx 

Figure 3.4: Sketch of the offshore boundary 

The total celerity c can be rewritten as 

„2 _ 2 , 2 _ 2 
^ — 4 n ^out ^0-

Since /3+ = u + 2c is known, we can write. 

4 c L = ( / ^ + - « ) ' - 4 c L + 4cg. 

(3.31) 

(3.32) 

From the discussion about the one-dimensional problem, we can deduce that in 

the absence of any interaction with the incoming wave, the particle velocity of the 

outgoing wave in the propagation direction is given by, 

Uout = 2cout — 2cn (3.33) 

or, 
4(,2 / r r , r>_ \2 

^out {Uout + 2coy 
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Equating the right hand sides of (3.32) and (3.34), rearranging and using u = 

(Uin + Uont) gives, 

11/2 
«out = (yÖ+ - Win) - t̂ out + 4[/outCo + 4 q (3.35) 

Using geometrical arguments (see Figure 3.4), it can be stated that U^^^ — «^ut + 

•Ug f̂. Substituting the expression for Uout given in (3.35) and rearranging gives 

+ eUout + ƒ = 0, (3.36) 

where. 

d = 

e = 

( / 5 + - « i n - 2 C o ) ( / ? + - U i n + 2Co) 

\2 „2 A„i 

ƒ 

2co [ ( /?+ - Win) 

-l\{(3+-Uin-2cin)^ + v, 2 
out 

; [ ( / ? + - W i n + 2cin)' + v y . (3.37) 

Now, the unknown particle velocity Uout can be found to be 

( -e ± Ve^ - 4 # ) / { 2 d ) for J 7^ 0 

Therefore, 

U out 
- f / e foT d = 0 

(3.38) 

Uout = Sgn(C/'out)\/C^out -

Cout = Co + - C o u t -

The incoming ^-variable can be specified as 

2 
out 

(3.39) 

/? = {Uin + Wout) - 2c, (3.40) 

where c is given by (3.31). 
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3.5 Numerical Solution Method 

Traditionally, the most straightforward method to solve the shallow water 

equations has involved making finite difference approximations of spatial deriva­

tives in conjunction with an explicit or implicit time stepping scheme. The ac­

curacy of such methods is limited due to truncation errors associated with the 

difference approximations. These errors usually arise in the form of dispersion or 

dissipation errors. More recently, spectral and pseudospectral methods have be­

come more popular. A wide variety of spectral schemes exist and are reviewed in 

Canuto et al (1987) and Boyd (1988). A recent apphcation of spectral schemes to 

water wave propagation problems has been performed by Panchang and Kopriva 

(1989) who used a Chebyshev collocation method to analyze short wave propaga­

tion over complicated bathymetry. In addition, Falqués and Iranzo (1992) applied 

spectral collocation methods to the linear shallow water equations for the pur­

pose of simulating edge waves. Dalrymple et al (1994) compared several spectral 

methods in the context of forward propagating water waves. 

When compared to finite difference methods, spectral methods give more 

accurate approximations for spatial derivatives, as they have no truncation errors 

and therefore lead to more accurate solutions with less dispersion and dissipation 

errors. For smooth solutions, the error in the derivatives asymptotically decays 

faster than any order polynomial (see Canuto et al, 1987) compared to a low fixed 

order polynomial for finite difference derivatives. Furthermore, spectral methods 

can be tailored to suit the motions of interest since basis functions for the spec­

tral derivatives can be chosen to naturally satisfy the boundary conditions, and 

variable grid spacing can easily be incorporated to achieve high resolution where 

steep solutions are expected. In this manner a solution of the desired accuracy 

can be achieved with far less spatial points and therefore, less computational time 
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than with finite difference schemes. Since these are desired features of the solution 

method developed here, spectral collocation schemes are employed herein for the 

computation of the spatial derivatives. 

Given initial conditions for the water surface elevation 77 and the velocities 

u and V, the governing equations given in (3.23), (3.24) and (3.25) are integrated 

in time using an explicit third order Adams-Bashforth scheme. The governing 

equations can be written in the form 

/?r = Fr{r,,u,v) (3.41) 

(S+ = F2{v,u,v) (3.42) 

7t = Fs{ri,u,v). (3.43) 

The definitions for Fi(?7, u, v), F2{r], u, v) and ^3(77, u, v) contain spatial derivatives 

of their arguments and can be obtained by comparing (3.41) through (3.43) to 

(3.23) through (3.25). 

The spatial derivatives contained in the functions Fi, F2 and F3 wil l be 

evaluated using spectral collocation. Since the resulting differentiation matrix for 

a system of ordinary differential equations such as (3.41) through (3.43) is fu l l , 

the system is typically integrated using explicit methods. An appropriate time 

integration scheme often used in advection problems in conjunction with Fourier or 

Chebyshev collocation is the Adams-Bashforth method (see Canuto et al, 1987). 

Since the second order Adams-Bashforth scheme displays a slow growth rate when 

used with Fourier collocation methods, the third order Adams-Bashforth scheme 

is chosen. This scheme is given by 

= [f3-y + ^[23F^-16Fr'+5Fr'] (3.44) 

(^+)"^' = (/?+)"+ ^ [ 2 3 F 2 " - 1 6 F r ' + 5 F r ' ] (3.45) 

7"+i = ^" + ^ [23F3" - 16Fr' + 5Fr^] . (3.46) 
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The superscripts denote the time level at which the terms are evaluated with n 

being the present, known time level. 

In order to apply spectral methods to the problem at hand, the domain of 

interest is discretized into an {NX + 1) x {NY + 1) point mesh. The collocation 

points in the offshore direction s are chosen as the reversed Gauss-Lobatto points 

given by Si = - cos{7ri/NX) {i = 0, ... ,NX). This choice ensures that the grid 

points in the physical domain are concentrated close to the shoreline. Using these 

collocation points, the Chebyshev collocation calculations can also be carried out 

using efficient Fast Fourier Transform (FFT) routines. 

The collocation points in the longshore direction r are chosen to be equally 

spaced so that rj = jAy ( j = 0, . . . ,NY). Fourier collocation is applied in this di­

rection since the Fourier basis functions naturally satisfy the periodicity boundary 

condition imposed in the longshore direction. Note that any desired grid point 

distribution in the physical domain (s,y) can be obtained by choosing appropri­

ate transformation functions from the physical to the computational domain as 

described in Section 3.3. 

Let Q represent one of the variables /3~, /?+ or 7 at a certain time level. 

Using Fourier collocation for the r direction derivatives in the governing equations 

and a Chebyshev collocation method for the .s direction derivatives, Q wil l be 

approximated by 

NY/2-1 NX 

Q{s, r) « Qp{s, r ) = E E önmT„(s)e^-*='- (3.47) 
m=-NY/2n=0 

where Tn{s),n = 0 , 1 , . . . are Chebyshev polynomials of the first kind and are 

given by 

Tn{s) = cosnÖ, 0 = arccos(-s). (3.48) 
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Approximations to the derivatives in the longshore direction r are com­

puted by differentiating (3.47) with respect to r. Rewriting the equation gives 

NY/2-1 NX 

Q p { s , r ) = Am{s)e'"'''\ where Amis) = Y.^nmTnis). (3.49) 
m = - N Y / 2 n=0 

The function Am{s) is known since it is the Fourier transform of Qp in r at a fixed 

s location. Differentiating the above equation yields 

a NY/2-1 

^ ( Q P M ) = J2 A'Js)e'"^'\ where A ' J s ) = zmkAm{s) (3.50) 
'̂ '̂  m=-NY/2 

Thus, inverse Fourier transforming A^(s) gives the desired spatial derivative. Note 

that the r derivative of Qp at an s location is a function of the values of Qp at all 

the r locations, and hence the derivative has a global character. Furthermore, the 

procedure defines the values of the derivatives at all mesh points, so no special 

procedure is required to evaluate derivatives at the boundaries. 

The derivatives in the s direction are computed using Chebyshev colloca­

tion. The procedure is much like that described above for Fourier collocation. 

Rewriting (3.47) yields 

NX NY/2 -1 

Qpi^^r) = £ Bn{r)T4s), where B^r) = a„^e'"^'=^ (3.51) 
n=0 m = - N Y / 2 

The function J5„(r) is known as the Chebyshev transform of Qp in 5 at a fixed r 

location. Differentiating with respect to s gives 

8 ivx 

^ i Q p { s , r ) ) = j : B ' ^ { r ) T M - (3-52) 

Using the definition for the Chebyshev polynomials given in (3.48) and the trigono­

metric identity 2 sin 9 cos n9 = sin(n - | -1)9 — sin(n — 1)9, the coefficients B'^{r) can. 

be computed in decreasing order by the recurrence relation 

c M r ) = B'^^^ir) - 2(n + l )B„+i(r ) , (3.53) 
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where 

< 

2 if n = O 

1 i f n > 1 
and B'„{r) = 0 foi n > NX (3.54) 

Once again, no special boundary treatment is needed. Both methods of 

differentiation are described in detail by Canuto et al. (1987). 

A type of instability in the time integration of nonlinear systems is caused 

by the process known as ahasing. The onset of the ahasing instability is character­

ized by the excitement of waves at the limit of the resolution. These waves have 

wavelengths L of 2Ax where A x represents the grid spacing in the computational 

grid. In the simulations shown here, a solution smoothing technique involving 

a high order filter developed by Shapiro (1970) is used to prevent the spurious 

growth of these shortest waves that can be resolved. The one-dimensional form of 

the filtering technique involves replacing a variable Q at a grid point by a weighted 

average of its (2A'' -|-1) neighbors centered around the grid point. The new value 

of the variable at the grid point is referred to as Q* and the response of the filter 

is quantified using an amplification factor (or response function) defined as the 

quotient of the filtered value Q* to the original value Q , 

Shapiro (1970) devised a method of evaluating the weighting coefficients such that 

the response function R is given by 

where M = L/Ax is the number of grid points per wavelength. The value 2N is 

referred to as the order of the filtering method and only assumes the values 

(3.55) 

(3.56) 

{2N) = 2' i = l , 2 , 3 , . . . (3.57) 
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Figure 3.5: Response function for Shapiro filters of order 2N=2 ( • • • ) , 4 (— —), 
8 ( - . - ) , 16 ( ), 32 ( . . . ) . 

The response function R is depicted in Figure 3.5 as a function of the resolution 

M for different orders 2N. Waves at the linxit of resolution have M = 2 and 

are eliminated completely since the response function is equal to zero for M = 2 

for all N. For waves with longer wavelengths (higher M values) the value of 

the response function R approaches one. Therefore, longer waves are filtered 

less. The transition from R = 0 io R = 1 occurs faster for higher order filters. As 

suggested by Shapiro (1970), the filtering technique is extended to two dimensions 

by sequentially applying a one-dimensional filter in the x and y directions. 

3.6 Summary 

In this chapter, a solution method for the nonlinear shallow water equa­

tions has been developed with the objective of studying low frequency motions 

in the surf and swash zones. The solution method involves a high order time 
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integration scheme in conjunction with spectral collocation for the calculation of 

spatial derivatives. Two-dimensional shoreline runup is modeled using an Eule­

rian shoreline model in conjunction with a moving grid. An absorbing-generating 

boundary condition originally developed by Van Dongeren and Svendsen (1997) 

is used at the offshore boundary. 

In the Chapter 4, the solution method is tested for gravity wave mo­

tions. Additional terms accounting for dissipational and external forcing effects 

are added in Chapter 5 and the method is used to simulate vorticity motions as 

documented in Chapters 5 and 6. The model is extended further in Chapter 7 

to include the effects of time varying external forcing by short waves as well as 

interactions between the short wave climate and the currents. 
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Chapter 4 

T E S T C A S E S 

In this section, the accuracy of the boundary treatments is verified using 

analytical and numerical results. First the shoreline boundary condition is tested 

for one-dimensional as well as two-dimensional runup. The offshore boundary is 

tested for waves leaving the domain of interest at normal incidence or at an angle 

to the offshore direction. The developed method is then applied to the prediction 

of neutral stability boundaries and equilibrium amplitudes of subharmonic edge 

waves. Numerical results are compared to weakly nonlinear theory and are found 

to reproduce the theory very well. 

4.1 Shoreline Boundary 

4.1.1 I D Runup 

An analytical solution for single wave runup on a sloping beach by Carrier 

and Greenspan (1958) is used to verify the accuracy of the shoreline treatment. 

This example corresponds to the physical problem in which the water level at the 

shoreline is depressed, the fluid is held motionless and then released. The shoreline 

water level climbs to a position higher than the still water level, and then slowly 

settles back to i t . 
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The initial water surface elevation 77 as a function of offshore distance x 

can be expressed in parametric form as 

for ^ > 0, where a — 1.5(1 + 0.9e)^/^. The parameter e is the maximum nondi­

mensional water surface elevation, m is the beach slope, L is a cross-shore length 

scale. The water surface elevation approaches the still water level far from the 

shoreline. 

In order to simulate this situation in dimensional space a beach slope m of 

0.02 and a length scale L of 20 m is chosen. The parameter e is given by 0.2 in 

the simulation shown. The theory by Carrier and Greenspan (1958) predicts that 

a surging breaker results i f the initial nondimensional depression is 0.23. 

In this simulation the parameter SQ in (3.20) is chosen to be unity so that 

the domain extends to infinity in the offshore direction. The parameter a in 

(3.17) is specified as 2.76 x 10"^ so that the movement of the grid 50 m offshore 

is damped to only 0.1% of the runup amplitude. The depth threshold value at 

the shoreline ĉ thresh discussed in Section 3.3 is chosen as zero for this application. 

The simulation is carried out using 128 collocation points in the x direction with 

a time step of 0.01 s. A 16th order Shapiro filter is apphed. Figure 4.1 (a) shows 

snapshots of the water surface elevation 77 as a function of offshore distance every 

1.6 seconds, with t = 0 s corresponding to the initial depression of the water 

surface and the maximum rundown position, and t = 19.2 s corresponding to the 

maximum runup position. Figure 4.1 (b) shows the time series of the shoreline 

position. The numerical and analytical solutions are seen to agree to within visual 

resolution. 

2 (a2 + ^2)3/2 2 (a2 -f P)5/2 

X (4.1) 
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4.1.2 2D Runup 

The second test case for the shorehne boundary condition involves solitary 

wave runup on a bay with a sloping bottom. The test case geometry combines 

a curved still water shoreline with a sloping nearshore bathymetry that merges 

with a constant depth region offshore. This geometry was used by Zelt (1986) 

in the context of the response of harbors with sloping boundaries to long wave 

excitation. The geometry is depicted in Figure 4.2. The still water surface is 

outlined with a single closed thick hne above the bottom. The curved portion of 

the shoreline traces a period of a cosine curve. I t is given by 

C(2/,i = 0) = Co(y) = - - c o s 7 (4.2) 
TT L 

where L is the half-width of the bay and is chosen to be 20 m. The depth grid is 

given by 
( - ^ 

ho - ho \ i for x<^ 
h = i Coiv)- f - ^ (4.3) 

ho for x> ^ 
V TT 

where ho = OAL/n. A resulting maximum bottom slope of 1:5 occurs at y = ±L, 

a minimum bottom slope of 1:10 occurs at y = 0. 

The incoming wave is specified as a solitary wave. The dispersive parameter 

(3 given by (ho/L)^ is fixed at (OA/TTY following the choice for ho and the wave 

height to offshore water depth ratio a' = (H/ho) of 0.02 is used. The incident 

wave on the constant depth region is then given by 

1 = «'Ao sech^ l ^ x ( t + , ; ) I . (4.4) 

where 
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Figure 4.2: Bathymetry of the 2D runup test case. 

Computations previously carried out by Zelt (1986) for this case show that 

breaking waves result if the wave height to water depth ratio is increased to 0.03. 

Zelt's calculations were carried out using a fully Lagrangian finite element model, 

and the results show pronounced two-dimensional runup. 

In this simulation the parameter SQ in (3.20) is chosen to be unity. There­

fore, the domain extends to infinity in the offshore direction. The parameter or in 

(3.17) is specified as 2.76 x 10"^. The shorehne threshold depth cZthresh is chosen 

to be zero. The computations are carried out using 128 X 64 collocation points 

with a time step of 0.01 s, and a 16th order filter is applied in both horizontal 

directions. 

Figure 4.3a shows normalized runup in the cross-shore direction as a func­

tion of the nondimensional time scale t' = ty^gho/L at different locations along 
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the bay, where y = 0 denotes the midpoint of the bay and y = ±L denote the 

boundaries in the longshore direction. Figure 4.3b shows the normalized maxi­

mum runup and rundown in the cross-shore direction as a function of longshore 

location. The present method is seen to compare well with results by Zelt (1986). 

t' K 
L 

Figure 4.3: (a) Runup in 2D: Time series of runup along y. (b) Maximum runup 
and rundown. Zelt ( ), present method (— —). 

4.2 Absorbing-Generating Boundary 

4.2.1 I D Absorption-Generation: A Group of Waves 

The first test case for the offshore boundary condition involves the specifi­

cation of a group of 12 waves at the offshore boundary of a constant depth (h =1 

m) domain that is bounded onshore by a wall. The wave packet is expected to un­

dergo a fu l l reflection at the wall and travel back out of the domain at the offshore 

64 



boundary. The packet is made up of sufficiently many waves so that a standing 

wave pattern will be formed. Eventually, no more incoming waves are present 

and the last waves reflect off the wall and leave the domain through the offshore 

boundary. Using this test, the error at the offshore boundary can be quantified 

since the wave height of the individual incident (Hin) and refiected (iïout) waves 

are expected to be the same although the shape of the waves is expected to change 

as they travel through the domain. The error can be quantified in the form of a 

reflection coefficient for simultaneous absorption-generation defined as 

R., = (4.6) 
.«in 

Once the theoretical amount of time for the wave packet to leave the domain has 

elapsed, any disturbances left in the domain are errors in the absorption process 

only as no generation is present at that time. Therefore, the reflection due to only 

absorption can be quantified as 

i ! . = # (4.7) 

where Hi is the height of any leftover disturbance in the domain. 

Figure 4.4 shows time series at the offshore boundary of the incident pre­

scribed wave and the outgoing wave. The associated reflection coefficients, Rag 

and i2a, are given in the caption of the flgure and are about 0.06% and 0.02%, 

respectively. The reflection due to only absorption Ra, is seen to be significantly 

lower than the refiection due to simultaneous absorption-generation Rag. Since 

this is a consistent result of this and other similar test cases not shown here, re­

sults for only Rag wil l be shown in the following test cases that focus on the effect 

of oblique incidence. 
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Figure 4.4: Simultaneous absorption-generation: Incoming wave ( ) and out­
going wave ( ). Rag = 6.3 x 10"^, R^ = 1.9 x 10"^ 

4.2.2 2D Absorption-Generation: Obliquely Incident Waves 

Keeping the same domain as in the previous test case, incoming waves 

are now specified at the offshore boundary at an angle to the offshore direction. 

Furthermore, the standing wave system that results from the reflection of such 

a wave from the wall is specified as an initial condition. The propagation and 

evolution of this system is then observed by continuing to specify the incoming 

wave and allowing the reflected wave to leave the domain. Several test cases 

involving different angles of incidence ranging from 0° to 67.5° are carried out. 

The reflection coefficient at the boundary i?ag is computed as before and is shown 

as a function of angle of incidence in Figure 4.5. I t is seen to increase with angle 

of incidence but to remain below 1% for a wide range of angles. 

4.3 Application: Subharmonic Edge Waves 

We now consider whether the present method is intrinsically stable and 

non-dissipative enough to reproduce the analytically known properties of a certain 

nonlinear instability mechanism, in which- subharmonic edge waves are excited by 

normally-incident, cleanly-refiected surface waves. 

66 



0.01 r 

0.008 • 

y. 0.006 • 

0.004 

0.002 

0 20 40 60 80 
e ( ") 

Figure 4.5: Simultaneous absorption-generation: Reflection as a function of in­
cident angle 6. 

Guza and Davis (1974) showed that a monochromatic wave train, normally 

incident on a beach and strongly reflected, is unstable to edge wave perturbations, 

identifying a mechanism of edge wave generation through resonant interactions 

between the incident wave and the resulting edge waves. They also derived growth 

rates of the initially small edge wave perturbations and showed that the strongest 

resonance arises between the incident wave of period and two mode zero edge 

waves of period Te = 2Ti traveling in opposite directions along the beach, forming 

a standing edge wave. This standing edge wave is hence a subharmonic of the 

incident wave. Guza and Bowen (1976) further analyzed this mechanism and 

identified three processes that may limit edge wave growth: further nonlinear 

edge wave-edge wave interactions leading to the radiation of edge wave energy 

into the far field, finite amplitude demodulation due to the fact that the natural 

frequency of the edge wave erf increases with amplitude and eventually detunes 

such that the forcing frequency ceases to l ie within the resonant bandwidth, and 

viscosity. 

67 



Using nonlinear perturbation analysis, Guza and Bowen (1976) showed 

that radiation and detuning are of comparable importance in limiting edge wave 

growth and that viscosity is relatively unimportant, once edge wave growth is 

initiated. In their analysis, the lowest order potential is described as the sum of 

the normally incident wave at frequency 2(T and the standing edge wave at the 

subharmonic frequency a such that 

<̂ 0 = 0i + 4>e (4.8) 

where 

A J ( s . ^ . 2 4(2(j)2a; 
(t>i = —Mx) sm2(Tt, x =——— 

Za gm 

(f>e = ^ e - ^ ^ c o s A j / cos{at + e), (4.9) 

where m is the beach slope and A is the edge wave wavenumber. The variable 6 

is the phase difference between the incident and edge waves and and ae are the 

amplitudes of the water surface elevations of the lowest order incident and edge 

wave, respectively, at the still water shoreline. 

The theory by Guza and Bowen (1976) predicts that the frequency band 

within which edge waves will grow for a given wavelength in the absence of vis­

cosity is centered on ao = gmX, where the initial growth rate is maximum, and 

has the bandwidth 

(1 - 0.0338ei)<7/ < a < (1 + 0.0338ei)(T/. (4.10) 

The parameter e, is a measure of the nonlinearity of the incident wave and is given 

. = ( 4 . 1 1 ) 

Perturbation analysis predicts the natural edge wave frequency a/ as 

af = (1 + 0.055el)ao. (4.12) 
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where 

is a measure of the nonlinearity of the edge wave. 

Their results further indicate an upper hmit on the possible maximum edge 

wave amplitude for a given frequency a due to the effects of radiation and detuning 

in the absence of viscosity. This upper limit is given by 

ee = 0 . 7 6 7 ( 4 . 1 4 ) 

This edge wave amplitude occurs when the forced edge wave has frequency o-f 

given by (4.12) as (1 + 0.0324ei)(7o, as stated by Rockliff (1978). The phase of 

the edge wave in relation to the incoming wave can also be determined. The 

maximum nondimensional edge wave amplitudes and the phase differences are 

given in Figure 4.6 as a function of a nondimensional detuning parameter A . The 

actual edge wave frequency is given by 

a = (l + 0.0338Aei)(To. (4.15) 

The maximum response occurs at A = 0.96. 

Existing laboratory experiments (Bowen and Inman, 1971; Guza and In-

man, 1975) confirm that edge wave amphtudes substantially larger than the in­

coming wave amplitude at the shoreline occur when the incoming wave is strongly 

reflected by the beach. However, the subharmonic resonance ceases when the wave 

breaks, which occurs at = 2 (Guza and Inman, 1975). 

The numerical solution method of the nonlinear shallow water equations 

described in Chapter 3 is expected to reproduce the theoretically predicted and 

experimentally observed phenomenon of the generation of subharmonic edge waves 

and their growth to finite amplitude. For a simulation, a beach slope of 0.1 is 
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Figure 4.6: Equilibrium nondimensional amplitude of a subharmonic edge wave 
and its phase 0 in relation to the incoming wave as a function of 
edge wave frequency detuning. 

chosen, the longshore width Ly of the domain is chosen to be (27r /A), where A 

is determined such that the natural frequency of a small amplitude edge wave is 

(To = 27r/20 rad/sec. The amphtude of the incident wave is specified as A = 0.01 m 

at the offshore boundary located at a; = 100 m. Since the lowest order water 

surface elevation of the incident wave is given by 

i]i = a,-Jo(x) cos 2cri, (4-16) 

tti can be determined to be 0.091 m. Furthermore, an initial perturbation at the 

subharmonic edge wave wavenumber is introduced by specifying the initial water 

surface elevation to be 

r,e{x, y, 0) = aefi-^^ cos Ay. (4.17) 

The initial amplitude «e = O(10~^) and u = v = 0 are also specified and the 

growth of the edge wave amplitude üe is observed. Edge waves of different periods 

can be forced by varying the period of the incoming wave. The physical domain 
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is modeled using 64 X 32 collocation points with a time step of 0.003 s. An 8th 

order Shapiro filter is applied in both horizontal directions, the parameter a in 

(3.17) is specified as 0.001 and the depth threshold value at the shoreline (ithresh 

discussed in Section 3.3 is chosen as 1 mm. This value is found to be large enough 

to prevent the occurrence of a thin film that can be detected by visual inspection 

of the results. 

Since a complete time series is not available at the still water shoreline as i t 

becomes dry during the rundown period, time series at rc = 6 m are used to deter­

mine the equilibrium amplitude of the edge wave. Figure 4.7 shows the theoretical 

maximum edge wave amplitude at x = 6 m as a function of the nondimensional 

detuning parameter A . 

Figure 4.7: Equilibrium amplitude of a subharmonic edge wave at a; = 6 m 
and its phase 6 in relation to the incoming wave as a function of 
edge wave frequency detuning. Perturbation theory ( ), present 
method (•) . 

Time series for edge waves corresponding to a number of A values ranging 
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from -1.06 to 1.04 have been simulated. Figure 4.8 shows time series for several A 

values recorded at y = 0 where maximum runup of the standing edge wave occurs. 

I t can be observed that the equilibrium amplitude is reached most rapidly for 

A = 0, corresponding to an edge wave at the linear natural period of Te = 20 sec, 

where the initial growth rate of the instability is highest. I t can be noted that 

the maximum amplitude is reached later for cases corresponding to higher | A 

values. This is consistent with theory since the initial growth rates decrease with 

increasing | A |. The instability ceases to exist altogether for | A | > 1. 
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Figure 4.8: Water surface elevation r) at (x, y) = (6,0) m for various A values 

The computed maximum edge wave amplitude is found for comparison 

with theory by isolating the linear edge wave component at the frequency ƒ = 
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(7/27r by bandpassing the computed time series of the water surface elevation at 

[x,y) = (6m, Om) using a bandwidth of 0.02 Hz. Furthermore, the phase relation 

between the bandpassed edge wave and the lowest order incident wave given in 

(4.16) can also be determined by observing the time lag between zero-up crossings 

of the incident and edge wave. 

Figure 4.7 also shows the nondimensional maximum edge wave amplitude 

for results from the present solution method for the cases seen in Figure 4.8 as 

well as two additional cases. I t can be observed that the low and high frequency 

cut-offs of the unstable motion below and above which edge wave perturbations 

are stable are predicted. Also shown are the phase differences between the edge 

wave and the incoming wave predicted by theory and numerical computations. I t 

is seen that the phase lag increases with increasing A. 

4.4 Summary 

In this chapter, the solution method for the shallow water equations is 

applied to several test cases concerning gravity wave motions. Two-dimensional 

shoreline runup is modeled using an Eulerian shoreline model in conjunction with a 

moving grid. This method compares favorably to analytical and numerical results 

for both one-dimensional and two-dimensional shoreline runup. An absorbing-

generating boundary condition originally developed by Van Dongeren and Svend­

sen (1997) is used at the offshore boundary. It is shown that errors (in the form 

of partially reflected waves) remain small for a wide range of incident angles. 

The developed method is used to predict the growth of subharmonic edge 

waves to finite amplitude. This application is physically representative of the com­

plexity of motions in the surf and swash zones since onshore and longshore directed 
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motions coexist and interact to create a wave field with significant two-dimensional 

shoreline runup. It also constitutes a severe and physically relevant test of the 

method. Since high amplitude edge waves cause significant two-dimensional shore­

line runup, an accurate shoreline treatment is important. Since the edge wave 

amphtudes are limited by the loss of energy to waves radiating offshore, the ab­

sorbing boundary condition is essential. Furthermore, since the maximum edge 

wave amplitude is reached at large time scales with respect to the periods involved, 

low dispersion and dissipation errors are desired. 

The growth of subharmonic edge waves to finite amplitude is successfully 

simulated. The equilibrium edge wave amplitudes and phases are predicted with 

satisfactory agreement to weakly nonlinear theory. Neutral stability characteris­

tics of the motion are also reproduced since a high frequency and low frequency 

cut-off are predicted and edge waves with frequencies beyond the unstable fre­

quency band are observed to be stable. Since the predicted motion results from a 

physical instability of the basic state, the predicted low and high frequency cut­

off points demonstrate that the method reproduces physical instabilities while 

remaining numerically stable. 

It can be concluded that the developed numerical method is suitable for the 

further study of complex low frequency surf zone phenomena such as longshore 

and cross-shore directed currents, edge waves and shear instabilities of longshore 

currents and the nonlinear interactions between them. The next chapters wi l l 

document the application of the solution method to vorticity motions. 

74 



Chapter 5 

S H E A R I N S T A B I L I T I E S OF T H E L O N G S H O R E 

C U R R E N T ON A P L A N E B E A C H 

In this chapter the solution method of the shallow water equations de­

scribed in Chapter 3 and tested in Chapter 4 is utilized to study the nonlinear 

evolution of shear instabilities of the longshore current on a plane beach. The ex­

ternal forcing terms discussed in Chapter 2 are introduced into the shallow water 

equations to account for the effects of short wave forcing as well as damping due 

to bottom friction. Lateral momentum mixing due to turbulence or other mech­

anisms is neglected. We are purposefully choosing simple formulations for the 

bottom friction and forcing terms as well as the geometry of the case so that we 

can identify the resulting motions in the simplest possible mathematical setting. 

The domain is chosen to be of finite length in the offshore direction and 

periodic in the longshore direction. The domain length in the longshore direction 

is chosen to be an integer multiple of the wavelength associated with the most un­

stable wavenumber. For a domain length equal to the most unstable wavelength, 

i t is seen that for the chosen friction coefficient equilibrated finite amplitude long­

shore propagating disturbances with modulated amplitudes result. As the length 

of the domain in the longshore direction is increased the long term evolution of 

the disturbances is strongly dominated by subharmonic transitions that give flow 

structures that could be characterized as migrating rip currents. The nature of 
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the transitions is analyzed and conclusions about the natural longshore length 

scales of the motions are made. 

5.1 Introduction 

Observations by Oltman-Shay et al. (1989) were obtained for conditions 

where a shore-parallel bar formation was present in the surf zone. However, the 

instability theory by Bowen and Holman (1989) does not require the presence 

of such complicating bottom features. One of the simplest yet reahstic beach 

geometries to which the instability mechanism applies is a plane beach. As a 

first step i t seems appropriate to study the simpler case of a plane beach so that 

the characteristics of the resulting motions can be identified for simple geometry. 

Subsequent simulations for bottom bathymetries including complicating features 

such as bars can then be interpreted in light of the results for the simpler case. 

In this chapter we do not seek to simulate actual events as they occurred at 

SUPERDUCK or other experiments but deal with fictional, yet realistic, bottom 

and current profiles. The long time evolution of fully developed shear instabilities 

is studied in some detail. Comparisons are made to other studies incorporating 

the same or similar current and bottom profiles (e.g. Falqués and Iranzo, 1994; 

Allen et al, 1996) to identify the effects of the different assumptions made in the 

various studies. The following issues will be addressed in this chapter. 

In most finite amplitude shear instability studies carried out to date (see 

the review in Chapter 1), the steady setup resulting from short wave forcing in the 

cross-shore direction is neglected on the grounds that it only changes the mean 

water depth by less than 20% and has a minor effect on the linear instability 

properties of a given current profile. Once the steady setup is neglected by ab­

sorbing its effects into the water depth, the "rigid l id" assumption suggested by 
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Bowen and Holman (1989) and further justified by Falqués and Iranzo (1994) is 

invoked. One of the aims of this chapter is to identify the vahdity of both of these 

assumptions by comparing results from simulations that do or do not invoke the 

assumptions. 

Most nonlinear instability studies (except Deigaard et al, 1994, as dis­

cussed in the review in Chapter 1) preserve the spirit of a temporal stability 

analysis since an initial longshore current is generated and the temporal growth 

of instabilities that are harmonic in the longshore direction is observed. Therefore, 

periodicity is implied in the longshore direction. The length of the domain in the 

longshore direction is, therefore, a factor in the outcome of the simulations. A 

concern that needs to be addressed is then: How long does the domain have to be 

in the longshore direction so that sufficient number of waves are included in the 

domain yielding reliable estimates of the natural length scales of the motions? 

Once the role of the above simplifying assumptions is identified the nature 

of the resulting motions can be analyzed in more detail. We will identify the effects 

of nonlinearity on the propagation speeds of the disturbances and the nonlinear 

interactions of individual alongshore propagating features. The analysis methods 

that we find useful in the interpretation of the results will be applied to the 

simulation of the SUPERDUCK experiment in the next chapter. 

5.2 Model Formulation 

The continuity and momentum equations governing the evolution of the 

short wave-averaged motions in the surf zone were shown earlier. They are in the 

form of the shallow water equations. In this chapter additional terms are intro­

duced to include the effects of forcing due to incident short waves and damping 
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in the form of bottom friction. The governing equations are given by 

du du du drj 

dt ^ dx ^ dy ^ dx '^^ 
dv dv dv dri ^ ,^ 

Here, rj is the water surface elevation above the still water level, h is the water 

depth, u and v are the velocity components in the x and y directions, respectively, 

where x points offshore and y points in the longshore direction. The parameters 

Thx and Thy represent the effects of bottom friction in the x and y directions, 

respectively. Furthermore, and fy represent the effect of short wave forcing in 

both horizontal directions. 

In order to simulate growth of shear instabilities to finite amplitude, a 

plane beach geometry with a slope of m = 0.05 is chosen. This bottom slope is 

similar to an average slope of the bathymetry at SUPERDUCK. 

The bottom friction is modeled using a linear representation (see Chapter 

2), such that TI,X and r^y are given by 

Ux = ^w, Uy = ^v, (5.2) 

where 
2 

jj, = -CfUo- (5.3) 
TT 

Here, Cf is a friction coefficient and uo is the horizontal orbital velocity of the 

short waves. For the simulations shown in this chapter, a fixed friction coefficient 

jj, of 0.006 m/s is used. This value was chosen in light of results by Dodd et al. 

(1992) and Allen et al. (1996) and represents the correct order of magnitude of 

friction present on natural beaches. 

78 



5.2.1 Short Wave Forcing 

As reviewed in Chapter 2, the short wave forcing terms f^ and fy can be 

modeled utilizing the radiation stress formulation by Longuet-Higgins and Stewart 

(1964) as 

^ pd \ dx dy J ' 

^ pd \ dx dy J 

where the radiation stress components S^x, Sxy and Syy can be computed from 

linear water wave theory. 

Since a plane beach geometry is chosen, a stationary offshore wave field 

will exhibit no longshore variations and the y derivatives in the definitions of the 

radiation stresses will vanish. The forcing terms can then be written as 

_1_ fdSxx\ 
pd \ dx / ' 

pd \ dx I 

Tx = 

T, y 

The transformation of a stationary long crested short wave field over straight-

and-parallel contours can be modeled using the energy equation for the short wave 

motions, which, in the absence of any interaction of the short waves with the cur­

rent field, reduces to 
dEcg cos 9 , . 

where represents the energy dissipation due to breaking. Furthermore, the 

refraction of the short wave field over straight-and-parallel contours is described 

by Snell's law 
sm6 sin^o /K-yx 
—:— = const = —— (5.7j 

C Co 
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where the subscripts 0 denote offshore values. 

Using (5.6) and (5.7) in the definition of the forcing terms (5.5) simplifies 

the longshore forcing term to 

1 sin $0 
ry= , . 

pa Co 
(5.8) 

The procedure to compute the steady longshore current and setup resulting 

from the short wave forcing generally involves choosing a model for the energy 

dissipation rate due to breaking et and computing the wave height decay using 

(5.6). Given the variation of the wave height, the forcing terms and fy can be 

computed from (5.5). The steady momentum balance leading to the generation 

of a steady longshore current V and setup f j was derived in Chapter 2. In the 

absence of any lateral mixing mechanisms in the surf zone, this balance is given 

by 

^1 = (5-9) 

2^ = ry. (5.10) 

However, in this study we take an alternate approach by assuming that the 

short waves force a longshore current of the form 

F(a;) = C x 2 e x p { - f - V } , (5.11) 
\OiJ 

with the parameters C and a chosen such that a maximum current velocity of 

1 m/s occurs at x = 90 m. This current profile along with a plane beach geometry 

has also been used by Allen tt al. (1996); therefore, direct comparison of the two 

studies can be made. Such comparisons will aid in the evaluation of the importance 

of the rigid l id assumption, which is used in Allen et aVs (1996) study but not in 

the present study. 
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The wave height decay that can result in the current profile given by (5.11) 

can be back-calculated if the peak frequency and offshore angle of incidence of 

the short waves are assumed. Using (5.8) in (5.10) the necessary dissipation 

rate of the short waves can be determined. Solving the energy equation for the 

short waves (5.6) results in the specification of the wave height decay. Given the 

spatial variation of the wave height, the short wave forcing in the x direction can 

be computed from (5.5). The steady setup associated with the current profile 

described by (5.11) can then be determined from (5.9). 

The water depth h, the current profile given by (5.11) as well as the wave 

height decay and setup for an assumed peak frequency of 0.13 Hz and a mean 

direction of 20° at 18 m water depth are shown in Figure 5.1. The hnear instabihty 

of the chosen current profile for the given bathymetry is computed using the 

solution by Putrevu and Svendsen (1992) for the friction coefficient oi fJ, = 0.006 

m/s. The results for the growth rate aim and frequency are are shown in Figure 

5.2. The system is seen to be unstable for a range of wavenumbers. The largest 

growth rate occurs at Xmax ~ 0.014 rad/m and corresponds to a length scale of 

450 m. 

5.2.2 Modeling domain and solution method 

The domain in which the governing equations (5.1) are solved is bounded 

by a curvilinear moving shoreline at a; = ((?/)*) by an open boundary at 

X = Lx- Periodicity is assumed in the y direction. The offshore boundary is 

placed at = 360 m. The width of the domain in the longshore direction is set 

such that 

= ND X (^) , (5.12) 
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Figure 5.2: Linear instability results for the bottom and current profile shown 
in Figure 5.1. 

where \max is the linearly most unstable wavenumber and ND is an integer. The 

wavelength associated with the most unstable wave is termed Lmax = {2'ïï)l\max-

Due to the periodicity condition in the y direction, the choice of ND dictates the 

wavenumbers that can exist in the domain. For ND=1 only the most unstable 

wavenumber \max and its harmonics can exist in the domain. I f ND=2 is used, 

waves with wavenumbers Xmaxl^., 3Xmax/2, 5Xmax/2,... are also allowed to ex­

ist. Therefore, as ND is increased, the wavenumber spectrum is more densely 

populated with A A = ATOOX/ND, effectively simulating a continuous spectrum. 

The initial condition for the model is obtained using the linear solution by 

Putrevu and Svendsen (1992) for the most unstable wavenumber Xmax, yielding 

the spatial variation of the perturbation velocities ui and Vi. The initial velocities 

and water surface elevation are then prescribed as follows. 

u{x,y,0) = eui{x,y) 

v{x,y,0) = V{x) + evi{x,y) 
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r]{x,y,0) = ri{x), (5.13) 

where e is of O(10~^), and ui and vi are given by the hnear instabihty solution of 

Putrevu and Svendsen (1992). The convective acceleration terms in the governing 

equations can transfer energy to higher harmonics. To facilitate the possible 

energy transfer to lower harmonics in cases where ND>1, the longshore velocity 

is further perturbed at all lower harmonics so that 

where e' = 1 x 10~^. Here, ND is the number of times the most unstable wavelength 

fits into the modeling domain. It should be noted that this initial condition can 

preferentially excite motions at the most unstable wavenumber since the spatial 

distribution of linear solution is specified only at that wavenumber. The subhar­

monic wavenumbers are excited with a cosine variation in y and no variation in 

X. Effects of using different initial conditions wil l be analyzed in Sections 5.3 and 

The solution is performed utihzing 32xND equally spaced collocation points 

in the y direction ensuring a resolution of 32 collocation points per most unstable 

wavelength. In the x direction 32 unequally spaced collocation points are used. 

The distribution of the collocation points in the x direction was stated in Sec­

tion 3.1. Computations were carried out with a time step of 0.1 sec. A 16th 

order Shapiro (1970) filter is used to avoid the excitation of waves at the limit of 

resolution. The filtering technique was discussed in Chapter 3. 

Information about the longshore scale of the motion can be obtained by in­

vestigating the effect of the chosen domain width. This is achieved by successively 

increasing ND. In the following, time series at (x, y) = (90 m, O.bLy), contour plots 

(5.14) 

5.4. 
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of the vorticity 

and plots of circulation patterns wil l be shown for N D = 1 , 2, 4, 8 and 16. 

5.3 Results for Ly = 1 X /Xma^)-- Effects of Shoreline Runup 

Time series of «, v and at a; = 90 m and y = 0.5Ly given in Figure 

5.3 show that the initial perturbations in the most unstable mode grow to finite 

amplitude and form a final steady wave of modulated amplitude. I t can be seen 

that the initial perturbations in u grow to a maximum amplitude of about 20% 

of the maximum longshore current. This is in agreement with observations in the 

field and in the laboratory. The perturbations in v grow to an amplitude of about 

50% of the maximum longshore current. We can also see a shift in the mean 

longshore current at this location. The water surface elevation rj also grows to a 

finite amphtude, however this amplitude is very small ( 0 ( 1 cm)). The horizontal 

runup associated with the fiuctuations is of order 10 cm. A l l three time series 

show that the waves with the highest amplitudes have larger periods, suggesting 

that the larger waves travel slower. 

The rigid lid approximation involves neglecting the steady setup as well as 

the temporal variations of the surface elevation due to the shear instabilities. Ne­

glecting the steady setup involves subtracting the equation for the steady balance 

(5.9) from the fuU equations (5.1) resulting in 

- f + — M + ^b^^ = 0 
ot ox oy 
du du du dr] /J, 

dt ^ dx ^ dy ^ dx d 
dv dv dv drj ^ a 
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where rj is now the water surface elevation with respect to the mean water level 

and fy = {iJ,/d)V from (5.10). The contribution of the setup to the mean water 

level is also neglected so that h still describes a plane beach and d = h + rj is the 

total water depth excluding the steady setup. 

Results from simulations carried out neglecting the steady setup but re­

taining the effects of shoreline runup due to the surface fluctuations associated 

with the shear instabihties are shown in Figure 5.4 in comparison to results from 

the ful l problem. Time series for the velocities show relatively minor differences, 

time series of r] confirm that the total water surface elevation has decreased by the 

amount of the steady setup at this location. Shoreline runup due to the steady 

setup is not included anymore, however the fluctuations due to shear instabilities 

are of the same magnitude. Differences in the velocities and surface elevation are 

expected to be more pronounced near the shoreline. However, we can state that 

the general pattern of the flow is not altered by the exclusion of the steady setup. 

Encouraged by the relatively minor effect of neglecting the steady setup, 

shoreline runup due to the fluctuations is also neglected by placing a wall bound­

ary at a water depth of 0.01 m. A consequence of this assumption is that less 

computational time is required for the simulations. Comparison of time series 

of the velocities and water surface elevation from this simulation to simulations 

including shoreline runup due to the fluctuations agree within visual resolution 

(see Figure 5.5) at a; = 90 m. 

The effect of neglecting the steady setup is seen to be minor for this case. A 

more conclusive statement about the effect of the setup on the instability mech­

anisms can, however, not be made. Dalrymple and Lozano (1978) previously 

showed that, in addition to the solution consisting of a steady setup, neutrally 

stable solutions in the form of steady rip current circulation cells exist for normally 
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Figure 5.4: ND=1: Time series of u, v, rj at {x,y) = (90 m,Q.5Ly) and ( at 
y = 0.5Ly. Steady setup included ( ) and excluded (— •-) . 
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Figure 5.5: ND=1: Time series of u, v, T] at {x,y) = (90 m,0.5Ly) and ( at 
y = O.bLy. Steady setup excluded but shoreline runup included 
( ) and excluded (— —). 
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incident waves over straight-and-parallel contours. Neutral or unstable solutions 

of this kind can exist on a plane beach. A detailed analysis of the stability charac­

teristics of the wave induced setup or the interaction between the shear instabilities 

and the setup has to be conducted in order to draw more robust conclusions about 

the importance of setup in the problem at hand. 

Based on the observation that the effect of shoreline runup due to the 

shear instabihties is small, simulations in the remainder of this dissertation will 

be carried out with a wall boundary at the shorehne. The steady setup wil l be 

neglected but the time dependent behavior of the surface fluctuations due to the 

shear instabilities will be included. The governing equations are given by (5.16). 

Results for the velocity components can be compared to computations by 

Allen et al. (1996) who carried out simulations for the same velocity and current 

profiles for a range of values of the hnear friction coefl&cient yU incorporating the 

rigid hd assumption. Results from Allen et al.'s (1996) study for the cross-shore 

velocities are shown in Figure 5.6. For /«=0.006, Allen et al. (1996) obtain fi­

nite amplitude shear instabilities with modulated amplitudes. The cross-shore 

velocities reach values up to 0.2 m/s. The modulation cycle is about 3 hrs long. 

The results from the present study display the same character but have a shorter 

modulational time scale. 

To investigate this difference, simulations were carried out with an initial 

condition given by 

and several different resolutions in the y direction. The results for the cross-shore 

u{x,y,0) 0, 

(5.17) 
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H = 0.0075 

H = 0.006 

H = 0.0028 

=0.001 

r(h) 

Figure 5.6: Time series of u at x=90 m from simulations by Allen et al. (1996) 
for several values of jx (from Allen et a/., 1996). 
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velocities are shown in Figure 5.7. Resolutions of 8, 16, 32 and 64 collocation 

points were used. Since a Fourier collocation method is used in the longshore 

direction, the number of collocation points in the domain corresponds to the 

number of harmonics of the most unstable wavenumber that are included in the 

computations. Figure 5.7 shows that the modulation cycles are about 3 hrs for 

NY=8 but are shorter when higher resolutions are used. Since the time scale of 

modulation is not altered for NY>32, 32 collocation points per most unstable 

wavelength is considered an appropriate resolution. 

Comparison of Figure 5.7(c) and Figure 5.3 also gives insight into the effect 

of different initial conditions. It can be seen that the shear instabilities reach finite 

amplitude faster i f the spatial distribution predicted by linear instability calcula­

tions is initially specified. However, once the instabilities reach finite amplitude 

they display the same behavior. The effect of specifying different initial conditions 

in computations with longer longshore domain widths is investigated in the next 

section. 

We note that the behavior of the results obtained in this study corresponds 

closely to Allen et al.'s (1996) results for //=0.006, obtained using the rigid hd 

assumption. In both studies, equilibrated motions with modulated amplitudes are 

predicted. The periods of the motions are observed to be larger during the large 

amplitude portion of the modulational cycle, suggesting that larger disturbances 

have lower propagation speeds. These results also qualitatively correspond to 

computations carried out by Falqués et al. (1994) for a similar current profile 

using the rigid lid assumption. In addition, computations in this study show that 

the surface elevation due to the instabilities r, only reaches values of (9(1 cm). I t 

can be concluded that the rigid l id assumption is reasonable for this case. 
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t (hrs) 

Figure 5.7: Time series of u at x=90 m for different resolution in the y direction 
(a) NY=8 (b) NY=16 (c) NY=32 (d) NY=64 
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Figure 5.8: ND=2: Time series of u, v and 77 at {x,y) = (90 m,0.5Ly). 

5.4 Results for Ly = 2 X {2TV/Xmax)'- Effects of the Initial Condition 

and Variations in the Mean Current 

In this case the domain is twice as wide as the length of the initially most 

unstable wave. Therefore, waves with wavenumbers Xmax/2, Xmax,3\max/2,2\max, 

can exist in the domain. Time series of u, v and 77 given in Figure 5.8 show that 

the behavior is initially very similar to that of the previous case with ND=1. The 

amplitudes equilibrate and form a final steady wave of modulated amplitude. 

The spatial structure of the flow can be observed utilizing snapshots of the 

flow pattern. Pseudocolor contour plots of the vorticity q before the instabilities 

are initiated and after they have reached finite amplitude are shown in Figure 5.9. 

Vector plots of the circulation pattern and streamlines for the same time levels 
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are depicted in Figures 5.10 and 5.11, respectively. Since the initial current profile 

has a region of positive gradient for 0 < a; < 90 m, the vorticity at i = 0 hrs is 

observed to be positive in that region. The initial velocity profile has a negative 

gradient for 90 < a; < 200 m where negative vorticity is observed. Further offshore 

the vorticity is zero. Therefore, the vorticity pattern at t = 0 hrs depicts a 

uniform flow in the y direction with the maximum flow occurring on the blue line 

between the regions of positive (pink) and negative (yellow and orange) vorticity. 

These observations are confirmed with the circulation plots and streamlines in 

Figures 5.10 and 5.11, respectively. At i = 5.14 hrs, the vorticity pattern has 

developed two regions of stronger negative vorticity, indicating clockwise rotation. 

The vorticity field is strongest at the locations where maximum curvature in the 

streamlines can be observed. The vorticity contours, the circulation patterns 

as well as the streamlines show that the flow has slowed down away from the 

regions of concentrated negative vorticity with a somewhat broader peak around 

X = 100 m. The offshore extend of the current has increased. The peak of the 

current profile (indicated by the blue line in Figure 5.9) undulates in the longshore 

direction. The current speeds up around the region of the strong negative vorticity. 

This is especially evident in Figure 5.11 since the streamlines are closer together at 

this location. The flow pattern has the nature of a meandering longshore current. 

Contour plots of vorticity convey all the necessary information about the 

flow pattern with the most amount of detail. Therefore, vorticity plots will be 

shown in the remainder of the dissertation when snapshots of the flow field are 

analyzed. Circulation patterns or streamlines wil l be shown to clarify the nature 

of certain features in the flow. 

Returning to the time series in Figure 5.8, i t can be observed that the waves 

undergo a subharmonic transition after about five modulation cycles at t ~ 11 
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Figure 5.9: ND=2; Snapshots of contour plots of vorticity q (1/s) 
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hrs and evolve into propagating disturbances with the wavenumber Xmax/2. The 

water surface elevation is again observed to be small and wil l not be shown for 

the simulations in the remainder of this chapter. 

The subharmonic transition can be observed in the sequence of snapshots 

given in Figures 5.12 and 5.13. Figure 5.12 depicts pseudocolor contour plots 

of the vorticity, while streamlines are constructed and plotted in Figure 5.13. 

The disturbances in these plots are traveling in the +y direction. It can be seen 

that once the disturbances reach finite amplitude one of the two disturbances 

develops a larger amplitude and consequently slows down. The smaller amplitude 

disturbance behind it catches up with the larger amplitude disturbance and merges 

with i t , forming a circulation pattern with stronger offshore directed flow. We 

investigate this pairing process further in the next sections. 

To investigate the effect of the chosen initial condition on the final flow 

pattern, a simulation with ND=2 is carried out with a different initial condition. 

The initial condition used is given by 

»(x,!, , i = 0) = n x ) + ; ^ / (5.18) 

where e = 1 x 10"^ and the function ƒ is given by 

/ = ^ c o s ^ + 27r<̂ ,- . (5.19) 
i=i \ / 

where represents a random phase function between —1 and 1. The horizontal 

velocity u and the surface elevation r, are specified to be zero initially. This initial 

condition ensures that the resulting longshore current is perturbed equally at the 

most unstable wavelength as well as all longer wavelengths that can exist in the 

modeling domain. 

The time series of the velocities for this simulation (Figure 5.14) shows that, 

as before, the most unstable wavenumber grows first. However, the time needed 
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Figure 5.12: ND=2: Snapshots of contour plots of vorticity q (1/s) 
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Figure 5.14: ND=2: Time series of u, v and (v) ( ) at {x,y) = (90 m,0.5Ly). 
Alternate initial condition used. 

for the instability to reach finite amplitude is longer. The subharmonic transition 

occurs after about 4 modulation cycles and, as before, at about i = 11 hrs. As 

before, the final flow pattern consists of one propagating disturbance. Results for 

this as well as other simulations with different initial conditions suggest that the 

initial condition only affects the initial growth of the instabihties but not the final 

flow pattern. 

Figure 5.14 also depicts the longshore mean of the longshore velocity (v) 

defined as 

{v)(x,t)^^ ['^\{x,y,t)dy. (5.20) 
Ly Jo 

Due to the periodicity condition this quantity is a well-defined mean. Time series 

of (v) at X = 90 m are overlayed over the v time series at that location and confirm 

that the maximum mean longshore current is oscillating over the time scale of the 

modulational cycles and equilibrates at about 0.85 m/s. This indicates that the 

mean longshore current in the presence of the fluctuations has a lower maximum 

than the initial current V. 
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A plot of the initial as well as the final mean longshore current given in 

Figure 5.15(a) confirms that the final current has a lower maximum and a milder 

back shear suggesting that the velocities associated with the instabilities induce 

mixing to alter the current profile towards a more stable state. The lateral mixing 

caused by the shear instabilities can be quantified by examining the longshore-

averaged longshore momentum equation given by 

The longshore average is defined as in (5.20). The resulting balance states that 

any change in the mean longshore current profile (last term) is balanced by a time 

variation of the mean current and a mixing term due to the fluctuating velocities 

(first and second terms, respectively). Note that the remaining terms involve y 

derivatives and, therefore, drop out ofthe mean balance. This balance is displayed 

in Figure 5.15(b). It can be seen that the changes in the mean current are mostly 

balanced by mixing induced by the instabilities. 

Since the final profile shown in Figure 5.15(a) displays a lower peak and 

a milder shear, it is expected to be more stable. Results from linear instability 

calculations given in Figure 5.16 show that the final current profile displays a 

much weaker instability than the initial profile. 

5.5 Results for = 4 X (27r/A„,ax): Evolution of "Rips" 

We continue to carry out simulations with successively longer longshore 

length scales. The initial condition given by (5.13) and (5.14) is once again 

adopted and the domain length is chosen, to be four times as wide as the length 

of the initially most unstable wave. Figure 5.17 shows the growth of the initially 

most unstable wavenumber. The instabilities remain at a relatively low amplitude 
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Figure 5.15: ND=2: (a) Initial ( ) and final ( - - ) mean current pro­
files, (b) Longshore-averaged momentum balance, (dv/dt) (- • 
-), {u{dv/dx)) (- -), {ifi/d){v - V)) ( ). 
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Figure 5.16: Linear instability results for the initial ( ) and final (— —) 
current profiles shown in Figure 5.15(a). 

for about 3 hrs. Then the amplitudes increase and we observe once again that 

waves with higher amplitudes have longer periods. In this case the subharmonic 

transition takes place earlier ( i ?s 5 hrs). The resulting disturbance displays a 

wavenumber of Xmaxl^-

The vorticity field at an early time in the simulation {t — 3.3 hrs) depicted 

in the left panel of Figure 5.18 displays a meandering nature. At i = 7.4 hrs 

we observe that one disturbance has gained strength and several weaker distur­

bances are trailing. The smaller disturbances have either dissipated or caught and 

merged with the larger disturbance by t = 15 hrs. In the next section, we find 

that the latter is true. The final disturbance propagates in the -\-y direction and 

exhibits strong offshore directed velocities as is also confirmed by Figure 5.19. The 

fiow structure is reminiscent of a migrating rip current since i t extends offshore 

approximately 2-3 surf zone widths. 
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Figure 5.17: ND=4: Time series of u and v at (x,y) = (90 m, 0.51-^). 

5.6 Results for Ly = S X {^TT/Xmax)' Vortex Pairing Mechanism 

The pairing process is studied in more detail in simulations with a domain 

length of eight times the length of the initially most unstable wave. The time 

series of the velocity components (Figure 5.20) show evidence of subharmonic 

transitions at about 9 hrs. 

Snapshots of the vorticity pattern shown in Figure 5.21 detail one pairing 

event. We follow two disturbances which are located at about y = 1800 m and 

y = 2250 m at t = 7.8 hrs. In 6 minutes {t = 7.9 hrs) the disturbances propagate 

in the y direction so that they are now located at y = 2000 m and y = 2400 

m. The distance between them has decreased suggesting that the weaker second 

disturbance travels faster than the stronger first disturbance. Another 12 minutes 

(t = 8.1 hrs) bring the two fronts closer together, they are now located at y = 2400 

m and y = 2700 m. In another 24 minutes they are observed to have merged and 

one strong disturbance is visible at y = 3400 m. At i = 8.1 hrs another pairing 

process is initiated since the distance between two fronts at y = 900 m and y = 

106 



t = 3.3 hrs i = 7.4 hrs i 
1800 

1600 

1400 

1200 

1000 

0.02 

0.01 

0 

800 -0.01 

«tl l lRï i BflIïSB-! Bl'liMid -0.02 ̂  

2ooBiiilllli BillliS Rilliiff 

0'- -
0 200 0 200 0 200 

X (m) X (m) rt; (m) 

Figure 5,18'; ND=4: Snapshots of contour plots of vorticity q (1 

107 



?/"-—.WW w ̂  ^ 1 

• W WU UI 1 I I 
, M n M111111 

350 

Figure 5.19: ND=4: Circulation pattern at i = 15 hrs. 



1350 m decreases so that at t = 8.5 hrs they are located at y = 1700 m and y = 

2000 m. The trailing disturbance can again be observed to be the weaker one. 

The details of the vortex pairing process can best be observed when exam­

ining the time evolution of the vorticity ^ as a function of longshore distance and 

time at a chosen cross-shore location. In Figure 5.22 we show a contour plot of 

q{xo, y, t) where XQ = 90 m. The blue and pink regions represent positive vorticity, 

the orange regions represent negative vorticity. The left panel of the figure shows 

the time series of q{xo, yo, t) where yo = 1940.6 m. This y location is also marked 

on the contour plot with a thick line. The crests of the vorticity are observed to 

propagate in the +y direction, the milder the slope of the resulting blue line the 

faster the propagation speed given by dy/dt. 

At t = 7.5 hrs all 8 disturbances are observed to travel at the same speed 

of about 0.4 m/s. Around t = 8 hrs one of the disturbances is seen to speed 

up. The time series on the left panel confirms that the amplitude of the faster 

trailing wave is lower than the amplitude of the wave in front of i t . The smaller 

disturbance eventually catches up with the disturbance in front of it and collides 

with it at about y = 3000 m. The resulting disturbance continues to propagate 

at the speed of the slower first wave. This pairing event was also observed in the 

snapshots of vorticity in Figure 5.21. 

This type of pairing occurs again around t = 8.75 hrs and y = 2500 m. 

The time series in the left panel shows that the height difference between the 

two disturbances is larger than in the first merger since these two waves are at a 

later stage in the pairing process. The initial stages of this pairing process were 

observed in Figure 5.21. 

The third pairing evident in Figure 5.22 occurs around t = 9.25 hrs. The 
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Figure 5 .21: ND=8: Snapshots of vorticity q (1/s) 
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details of the process can best be observed in this case even though they are also 

evident in the previous events. It can be seen that as the faster trailing wave 

collides with the slower wave in front of i t , i t gains energy and slows down to the 

speed of the wave in front and propagates as the resulting front. The wave in the 

front, in turn, looses almost all of its amplitude but remains intact, continues to 

propagate at the higher speed of the initially trailing wave and propagates into a 

region of negative vorticity. This weakened wave can be seen in the time series on 

the left panel at t = 9.5 hrs as a small "blip" in the negative vorticity region. I t 

dissipates before i t reaches the next front of positive vorticity. We can conclude 

that the pairing occurs in the form of a collision where most of the energy is 

transferred to the trailing wave which subsequently travels at a slower speed. A 

small phase shift is also introduced at the time of the collision so that the lines 

representing the lower and higher speeds are slightly shifted. One final collision 

is initiated at the end of the time series reducing the number of propagating 

disturbances to four. 

The vorticity field before and after the collisions is shown in Figure 5.23. 

More localized and stronger offshore flow structures result after the collisions. The 

resulting wavenumber is Xmax/2. 

5.7 Results for Ly = 16 X (27r/A^ax): Natural Length Scales 

Simulations for a domain length that corresponds to 16 times the most 

unstable wavelength shows the same type of behavior as for ND=8 (see time 

series in Figure 5.24). Subharmonic transitions once again occur, the number of 

waves is reduced from the initial 16 to 8. 

Contour plots of vorticity before and after the transitions (Figure 5.25) 
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Figure 5.23: ND=S: Snapshots of vorticity q (1/s) 
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Figure 5 . 2 4 : ND=16: Time series of u and v at {x,y) = (90 m,0.5Ly). 

show that 16 waves are initially present in the domain. The resulting flow fleld 

displays eight disturbances. The distances between the fronts are somewhat un­

even. Simulations for another 15 hours were carried out and showed that the 

distances between the fronts evened out in time and no change in the flow pattern 

was observed. 

A circulation plot of the resulting migrating current system is shown in 

Figure 5.26. The final flow structure exhibits a wavenumber of Xmax/2. Since the 

range of possible wavenumbers is densely populated with 

AA = 2Tr/Ly K 8.7 X 10-^rad/m (5.22) 

the simulations show that the resulting wavenumber of the motions in this simu­

lations is {Xmax/2) ± AA. This corresponds to a natural longshore length scale L 

in the range 800 m < L < 1028 m. 
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Figure 5.26: ND=16: Circulation pattern at t = 15 hrs. 
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5.8 Summary 

In this chapter, the developed solution technique has been used to study in­

stabilities of the longshore current over a plane beach. The errors from neglecting 

the wave induced setup as well as the shoreline runup due to surface fluctuations 

associated with the instabilities are found to be minor for this case. In addition, 

the resulting water surface elevations are found to be small. Therefore, the rigid 

lid assumption utilized in other studies is justified. 

It can be seen that the long term evolution of instabilities in the longshore 

current in the considered domain is strongly dominated by subharmonic transi­

tions. These transitions are initiated when the speed of one of the initial waves 

increases as its amplitude is selectively reduced. The smaller disturbance travels 

at a higher speed than the larger ones suggesting that nonlinearity acts to slow 

the waves down. The subharmonic transitions occur in the form of vortex collision 

and pairing, subsequent reduction in the number of waves is evident. The result­

ing flow structures are longshore progressive and exhibit strong offshore directed 

velocities. These results are intriguing and possibly suggestive of a mechanism 

for the formation of migrating rip currents. However, i t is evident that the use of 

more realistic bottom topographies including bars and longshore non-uniformities 

is necessary to compare the trends in the results to observations. 

The resulting flow features are periodic, their effects extend offshore about 

300 m. Simulations by Allen et al. (1996) resulted in the same features. Allen 

et al. (1996) also found that if the value of the friction coefficient is decreased 

the flow exhibits more random behavior. At low friction coefficients the areas of 

concentrated vorticity strengthen further and possibly detach from the surf zone 

and are advected offshore as vortex pairs. This type of behavior will be observed 

and analyzed in the next chapter. 
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Chapter 6 

S H E A R I N S T A B I L I T I E S O F T H E L O N G S H O R E 

C U R R E N T ON A B A R R E D B E A C H 

In this chapter we simulate shear instabilities of the longshore current on a 

barred beach. The effects of bottom friction, lateral momentum mixing and short 

wave forcing are included. Bathymetry and offshore wave data from four days of 

the S u P E R D U C K field experiment are utilized. The shear instability climate for 

the four days is simulated for a realistic range of friction and mixing coefficients. 

We identify the effects of varying the coefficients by examining time series and 

frequency-longshore wavenumber spectra for the simulations as well as for the 

data. We also analyze the mean momentum balance in the longshore direction to 

quantify lateral mixing effects due to the instabilities. The details of the resulting 

flow features are also described. 

6.1 Introduction 

Surf zone current measurements from experiments such as S U P E R D U C K , 

D E L I L A H , NSTS at Leadbetter Beach and others show that a variety of low fre­

quency motions coexist in the surf zone. The existence of infragravity motions 

such as edge waves, leaky waves and surf beat has been known for some time. 
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These motions span the range of frequencies less than 0.05 Hz and are character­

ized as surface gravity waves since the restoring force is due to the gravitational 

acceleration. More recently, Oltman-Shay et al. (1989) observed a meandering of 

the longshore current during the S u P E R D U C K experiment over time scales up to 

0(1000 sec). These motions are, therefore, at the lower end of the traditional 

low frequency limit for gravity waves but were shown to be much shorter than 

gravity waves at those frequencies (Oltman-Shay et al., 1989). They display a 

nondispersive character and dominate the frequencies less than 0.01 Hz. 

Bowen and Holman (1989) in a companion paper performed an analytic 

study and showed that a shear instability of the longshore current can reproduce 

the nondispersive character and meandering nature of the motions observed by 

Oltman-Shay et al. (1989). The restoring mechanism for these alongshore propa­

gating motions, termed shear waves, is potential vorticity where the background 

vorticity is supplied by the shear structure of the mean longshore current in anal­

ogy to the effect of the Earth's rotation in larger scale applications. 

Although several other mechanisms have been proposed to explain the ex­

perimental observations by Oltman-Shay et al. (1989) (see the review in Chapter 

1), the instability theory has, so far, been the most studied alternative. Sev­

eral investigators, whose work is reviewed briefly in Chapter 1, have applied the 

instability theory of Bowen and Holman (1989) to reahstic current and bottom 

profiles and identified the effects of bottom friction. Much has been learned about 

the instability properties of longshore currents as well as the nature of the ful ly 

developed fiuctuations, but an important question remains unanswered: Can fluc­

tuations in the current velocities resulting from fully developed shear instabilities 

alone account for the energy in the shear wave band observed during S U P E R ­

D U C K ? One of the objectives of this chapter is to attempt to answer this question 
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a shore parallel bar formation further offshore and a gentler beach beyond (Crow-

son et a/., 1988). The experiments incorporated an alongshore array of Marsh-

McBirney bidirectional current meters located in the trough shoreward of the bar 

formation. The array was designed to observe primarily low mode progressive 

edge waves (Oltman-Shay et a/., 1989). The incident wave climate was monitored 

from bottom mounted pressure gages at 8 m water depth. Bathymetry data were 

also collected over the region where the surf zone instruments were deployed. 

A cold front passed the experimental site on October 15 resulting in locally 

generated waves from the north quadrant. On this and subsequent days waves at 

about 15° to the beach with a root-mean-square (rms) wave height of about 1 m 

and a peak period of about 5 sec were measured at the 8 m array. These waves 

generated a southward longshore current with a peak of 1 m/s. On the follow­

ing days the waves and currents diminished (Dodd et al., 1992). The nearshore 

bathymetry in the region where the instruments were deployed is depicted in Fig­

ure 6.1 for October 16 and is typical of all four days. The coordinate system in 

Figure 6.1 is that used in the experiment. The dots show the positions of the 

alongshore array of seven current meters. Dodd et al. (1992) state that based on 

both observation and dynamical modeling, longshore variations in the bar regime 

are not significant enough to induce rip currents. Therefore, Dodd et al. (1992) 

carry out linear instability calculations using measured S u P E R D U C K bathymetry 

from one transect assuming that the bottom contours are straight-and-parallel. 

We also adopt this assumption in our nonlinear modeling effort. 

During a period of four days starting on October 15, current measurements 

were obtained using the surf zone current meter array with a sampling frequency 

of 2 Hz for 4 hours centered about low tide. The current meter array was lo­

cated approximately 45 m from the shoreline for October 15, and 35 m from the 
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ure 6 .1: (a) Perspective and (b) Plan view of nearshore bathymetry at Su­
P E R D U C K on October 16 (from Dodd et ai, 1992). The dots show 
the positions of the alongshore array of seven current meters. 
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shoreline for October 16 through October 18. Current and wave measurements 

were also obtained using wave gages and three Marsh-McBirney current meters 

mounted on a sled. The sled was initially deployed offshore of the breaker line in 

a geographic area with the highest degree of straight-and-parallel contours (Whit­

ford and Thornton, 1996). The sled was then gradually pulled onshore collecting 

34 minute time series of current measurements at several cross-shore locations 

including the point of maximum breaking, on top of the nearshore bar, and in 

the nearshore trough. The transects at which data were collected were located 

at 900 m on October 15, 1160 m on October 16 and 1170 m on October 17 and 

18 according to the coordinate system used during the experiment (see Figure 

6.1). Bathymetry measurements were available at those transects. These depth 

measurements are used in our numerical simulations with the assumption that the 

bottom contours are straight-and-parallel. Whitford and Thornton (1996) used 

the current measurements along with wind and wave measurements to determine 

an appropriate friction coefficient by examining the longshore momentum balance 

for the period of October 15 through October 18. They obtained values for the 

friction coefficient c/ in the range 

0.001 <cj < 0.004. (6.1) 

It should be noted that the current measurements obtained from the sled were 

acquired sequentially. Therefore, as Dodd et al. (1992) also point out, the values 

are representative of a distinct space and time location. 

Oltman-Shay et al. (1989) and later Dodd et al. (1992) used measurements 

from five sensors from the surf zone array to construct frequency-wavenumber 

spectra of longshore and cross-shore currents for October 15 through October 

18 using the high resolution Iterative Maximum Likelihood Estimator (IMLE) 

(Pawka, 1983). The procedure consisted of quadratically detrending the time 
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series to remove any effects of tidal variations and constructing spatially lagged 

cross-spectral matrix values. Contour plots of the frequency-longshore wavenum­

ber spectra S ( f , k) for October 15 th rough October 18 are reproduced in Fig­

ures 6.2 through 6.5. Note that, foUowing Oltman-Shay et al. (1989), the cycUc 

wavenumber k is defined as ( l / X ) , where L is the longshore wavelength of the 

motions. 

The edge wave dispersion lines for a 0-mode edge wave for an effective 

plane beach slope of 0.05 are also shown on the frequency-wavenumber plots. 

Shear waves are readily distinguished from edge waves since they lie well outside 

the region bordered by the 0-mode edge wave dispersion curves. The results for 

the longshore velocities on October 17 do not convey conclusive information about 

the nature of the motions. However, cross-shore velocity spectra for this day show 

the presence of an energetic region outside the edge wave dispersion curves. On 

aU four days, we observe that the range of frequencies ƒ < 0.007 Hz is dominated 

by shear wave energy. In contrast to edge waves, shear waves exhibit a nearly 

linear dispersion curve. Taking advantage of the nearly nondispersive character 

of the observed motions, we seek to identify a representative propagation speed 

of the shear waves. 

6.2.1 Estimation of the Propagation Speeds 

For the purpose of identifying the dispersion hne, the energy in the shear 

wave band needs to be identified. Howd et al. (1991) used an energy partitioning 

method between edge waves and shear waves by assuming that all infragravity 

energy lies in the region bordered by the dispersion curves for the 0-mode edge 

waves traveling in the positive and negative directions. Energy outside of this 

region is then attributed to shear waves. Here, a simpler approach is taken. First, 
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an estimate of the shear wave propagation speed Cest is made by inspection. An 

upper cutoff hne with a slope of 2cest intercepting at the origin is defined so that 

on this line ƒ = 2cestk. The lower cutoff line is defined with slope Cest intercepting 

the wavenumber axis at 0.01 (rad/m) so that on this line ƒ = Cest(A; —0.01). These 

hnes are also depicted in the frequency-wavenumber plots shown in Figures 6.2 

through 6.5. A l l energy lying between these lines is attributed to shear waves. 

This method assures that all gravity wave energy is excluded from the estimates 

of shear wave motion (but not the opposite). 

In order to obtain an estimate for the propagation speed of the shear waves, 

a frequency ƒ is defined for every wavenumber k such that 

7(M = stfs(fm 

where the lower and upper limits of integration are chosen such that only shear 

wave energy is included in the estimates. 

0 for < 0.01 (1/m) 

Ce.t(fc - 0.01) for k > 0.01 (1/m) 

fnp = 2cestk. (6.3) 

flow — 

Assuming that the motions are nondispersive, a straight line can then be 

fitted through the points (ƒ, k) by performing a weighted first order polynomial 

fit. The weight of each data point (ƒ, k) is determined by the total energy in that 

wavenumber bin Sf{k) given by 

rfup 
Sf{k)= S { f , k ) d f , (6.4) 

''flow 

where the integration limits fiow and f^p were given in (6.3). 

The slope and intercept values of the obtained linear fit then define the 

propagation speed. The best fit dispersion lines are also shown in Figures 6.2 
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through 6.5. The equation for the dispersion hne is stated in the tit le of each 

figure. The dispersion lines obtained in this manner consistently show a higher 

intercept value for the cross-shore velocities suggesting that the motions are dis­

persive. The slope of the resulting curve is also higher than the curve associated 

with the longshore velocities. Dodd et al. (1992) also make this observation and 

state that the non-zero intercept values in the cross-shore velocity spectra are 

likely to be an artifact of the data analysis. They explain the phenomenon by 

stating that the cross-shore velocity spectrum has a peak at some frequency value 

greater than zero, i t thus preferentially weights motions with larger wavenumbers 

in frequency bins below the peak frequency. The implication is that the apparent 

dispersion line is pulled to an intercept value with the abscissa at wavenumbers 

noticeably different from zero. However, frequency-wavenumber spectra obtained 

using longshore velocities intercept consistently near the origin which agrees with 

the linear instability theory. 

An alternate approach to estimate the propagation speeds is to define a 

wavenumber k for each frequency ƒ as 

w . x f t ' k S ( f , k ) d k , , 

t l S i f , k ) d k ' ^ ^ 

where the lower and upper limits of integration are chosen such that only shear 

wave energy is included in the estimates such that 

f f 
how = — , = — + 0.01. (6.6) 

A linear fit through the points (ƒ, k) weighted by the energy S k ( f ) in each fre­

quency bin given by 

Sk{f)= / .Sif,k)dk, (6.7) 
-'how 

then results in an estimate of the dispersion line. This dispersion line for October 

15 is shown in Figure 6.6. I t is seen that this method results in the prediction 
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Figure 6.2: Frequency-cyclic longshore wavenumber spectra S{f,k) (m^/s) for 
(a) longshore and (b) cross-shore velocities from measurements on 
October 15. Contour levels plotted are (10, 30, 60, 100, 200, 400, 
800). A value of 0.8 m/s is used for Cest in Equation (6.3) to construct 
the upper and lower cut-off lines ( - • - ) of the shear wave energy. 
The equation for the best fi t dispersion line (— —) is noted above 
each plot. The 0-mode edge wave dispersion lines for a plane beach 
slope of 0.05 are also shown (thick ). 
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Figure 6.3: Frequency-cyclic longshore wavenumber spectra S{f,k) (m^/s) for 
(a) longshore and (b) cross-shore velocities from measurements on 
October 16. Contour levels plotted are (10, 30, 60, 100, 200, 400, 
800). A value of 0.8 m/s is used for Cgst in Equation (6.3) to construct 
the upper and lower cut-olf lines ( - • - ) of the shear wave energy. 
The equation for the best fit dispersion line (— —) is noted above 
each plot. The 0-mode edge wave dispersion lines for a plane beach 
slope of 0.05 are also shown (thick ). 
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Figure 6.4: Frequency-cyclic longshore wavenumber spectra S{f,k) (m^/s) for 
(a) longshore and (b) cross-shore velocities from measurements on 
October 17. Contour levels plotted are (10, 30, 60, 100, 200, 400, 
800). A value of 0.6 m/s is used for Cest in Equation (6.3) to construct 
the upper and lower cut-off lines ( - • - ) of the shear wave energy. 
The equation for the best fi t dispersion line (— —) is noted above 
each plot. The 0-mode edge wave dispersion lines for a plane beach 
slope of 0.05 are also shown (thick ). 
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:ure 6.5: Frequency-cyclic longshore wavenumber spectra S{f,k) (m^/s) for 
(a) longshore and (b) cross-shore velocities from measurements on 
October 18. Contour levels plotted are (10, 30, 60, 100, 200, 400, 
800). A value of 0.75 m/s is used for Cest in Equation (6.3) to 
construct the upper and lower cut-off lines ( - • - ) of the shear wave 
energy. The equation for the best fi t dispersion line (— —) is noted 
above each plot. The 0-mode edge wave dispersion lines for a plane 
beach slope of 0.05 are also shown (thick ). 
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Figure 6.6: Frequency-cyclic longshore wavenumber spectra S{f,k) (m^/s) for 
(a) longshore and (b) cross-shore velocities from measurements for 
October 15. The equation for the best fit dispersion line (— —) is 
estimated using the alternate method and is noted above each plot. 

of higher propagation speeds by about 10%. The intercept of the dispersion lines 

with the wavenumber axis also occurs at higher values for both the cross-shore 

and longshore velocity spectra. 

The first method will be used in the remainder of the chapter. However, 

the 10% variation in the prediction of the speeds should be kept in mind when 

interpreting the results. The method outhned here is also used in order to estimate 

the propagation speeds of oscillations arising in the computations. Since model 

computations are carried out with high resolution in both space and time, a direct 

Fourier transform in both space and time is used to obtain the two-dimensional 

spectra from the computed time series. 
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6.3 Model Formulation 

The nonhnear shaUow water equations with short wave forcing, lateral 

momentum mixing and bottom friction terms added provide a good basis for 

modeling the long-time evolution of shear instabilities of the longshore current. 

They were derived in Chapter 2 and are given by 

du ^ du ^ du dr] 1 (dSx. . dSxy\ fi 

dt dx dy dx pd \ dx dy J d 

( ^ ^ ^ ] ^ i i _ (j,d—] (6 9) 
ddx \ dx J ddy \ dx) ' 

dv ^ dv ^ dv dr] 1 fdSxy , dSyy\ ]i 

dt dx dy dy pd \ dx dy J d 

ld_ f^^dv\ ^ 

ddx \ dx) ' 

Here, r] is the short wave-averaged water surface elevation above the still water 

level, h is the depth with respect to the still water level, d = {h + r]) is the total 

water depth, u and v are the depth-aver aged current velocities in the x and y 

directions, respectively, where x points offshore and y points in the longshore 

direction. 

The effects of bottom friction are modeled using a linear damping term. 

The coefficient fj, is defined as 
2 

= -CfUo. 

TT 

Here, c/ is a friction coefficient, uo is the horizontal orbital velocity of the short 

waves and can be expressed in terms of the wave height at a cross-shore location. 

Lateral momentum mixing due to turbulence and the Taylor dispersion 
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process outlined by Svendsen and Putrevu (1994) are considered in a rudimen­

tary fashion. Svendsen and Putrevu (1994) found that the vertical nonuniformity 

of the nearshore currents introduces additional terms into the depth-averaged mo­

mentum equations. They identified the dominant effect of the additional terms 

to be lateral momentum mixing. Other effects such as modifications to the radi­

ation stress terms and the convective acceleration terms exist, but are expected 

to be less important (Putrevu and Svendsen, 1997). Therefore, as a first approx­

imation, only the additional lateral mixing terms are retained. Further assuming 

small angle of incidence of the short waves, the leading order mixing terms reduce 

to two additional terms in the x-momentum equation and one additional term in 

the y-momentum equation. 

Svendsen and Putrevu (1994) further found that the mixing induced by the 

Taylor dispersion process is larger than turbulent momentum mixing. Therefore, 

in this study turbulent mixing is neglected unless i t is reinforced by the Taylor 

dispersion process. The eddy viscosity v in (6.9) and (6.10) represents a combined 

viscosity v = Vt-\- Dxx, where z/j is the turbulent eddy viscosity and Dxx is the 

mixing coefficient identified by Svendsen and Putrevu (1994). The coefficient Dxx 

is a function of the depth profiles of the undertow and the longshore current. Its 

specification requires the computation of the depth profiles using a profile model. 

In this study, we choose to include an order of magnitude estimate of the effect of 

Dxx by parameterizing the combined eddy viscosity u following Battjes (1975) as 

where ef, is the ensemble averaged energy dissipation due to wave breaking and 

M is a mixing coefficient. The order of magnitude of M for field applications is 

estimated to be 

(6.12) 

0.06 <M < 0.48. (6.13) 
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A more detailed discussion of the treatment of the mixing terms as well as the 

estimation of the order of magnitude of M can be found in Chapter 2. 

Results from simulations for shear instabilities on a plane beach showed 

that the presence of a steady setup has relatively minor effects. As a first ap­

proximation, the steady setup is neglected by subtracting the mean momentum 

balance in the absence of fluctuating motion in the x direction 

= + (6 ,4) 
OX pd \ OX oy J 

from the a;-momentum equation. The governing equations are then given by the 

continuity equation 

and the momentum equations 

du du du _ dr} p. 

dt ^ dx ^ dy ^ dx d^ 

2 d ( du\ 1 d I dv\ 
ddx \ dx J ddy \ dx j 

dv dv dv dr, 1 f dS^v dSyA a 
— + M — + u — = - g-^-—j - ^ + ^ -^v 
dt dx dy dy pd \ dx dy J d 

- 3 ^ i^d— , (6.17) 
ddx \ dx J 

where r, should now be interpreted as the water surface elevation above the mean 

water level. 

6.3.1 Short Wave Forcing 

Given the wave field at the 8 m wave array, the transformation of the 

random waves into shallow water is simulated using the wave height transfor­

mation model by Thornton and Guza (1983). In order to apply this model, we 
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assume random waves with a narrow banded spectrum and Rayleigh distributed 

wave heights. The bathymetry transect measured by the sled is used assuming 

straight-and-parallel bottom contours. The applicability of these assumptions to 

the S U P E R D U C K experiment has been addressed by Whitford (1988). 

The random wave transformation model by Thornton and Guza (1983) 

involves approximating the narrow banded sea by a single wave component with a 

frequency corresponding to the peak frequency fp of the spectrum, a wave height 

Hrms and direction 9. The transformation of this representative wave component is 

computed using the energy equation for the short wave motions. For a stationary 

short wave field over straight-and-parallel bottom contours and in the absence of 

any wave-current interactions, this equation is given by 

= e,. (6.18) 

ox 

Here, Cg is the group velocity corresponding to the wavenumber associated with the 

the peak frequency fp. This wavenumber is computed using the linear dispersion 

relationship. 

For straight-and-parallel contours the mean angle of incidence 9 is governed 

by Snell's law 

! ^ . const = ^ (6.19) 
C Co 

where c is the short wave celerity associated with the peak frequency and the 

subscripts 0 denote offshore values. 

The parameter in (6.18) is an ensemble-averaged energy dissipation due 

to wave breaking defined by Thornton and Guza (1983).' The form for ej, suggested 
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by Whitford (1988) for the S U P E R D U C K experiment is used. 

1 1 (6.20) 

where 

Cl = 1 + tanh 8 - 0.99 . (6.21) 
\ \ JJ 

The coefficients used for the wave height transformation model are B = 0.8 (in­

dicating the intensity of wave breaking) and 7 = 0.42. 

Finally, an estimation of the amplitude of the horizontal orbital velocity 

of the short waves is necessary since it enters the definition of the linear friction 

coefficient fJ, in (6.11). For Rayleigh distributed wave heights, the amplitude of 

the horizontal orbital velocity of the short waves can be expressed in terms of 

Hrms (Thornton and Guza, 1983) as 

uo = \\l^Hrms (6.22) 

and is a function of the cross-shore location. 

Given the bathymetry, the rms wave height Hrms, the peak frequency fp 

and the mean angle of incidence 6 at the offshore boundary, the wave height 

transformation of the short waves can be computed using the energy equation 

(6.18) along with the linear dispersion relationship and Snell's law (6.19). The 

values of Hrms-, fp and 9 at the 8 m array for October 15 through October 18 are 

given in Table 6.1. The computed wave height variation for October 15 through 

October 18 along with the bottom bathymetry is shown in Figures 6.7 through 

6.10. 

Once the wave height transformation is computed the short wave forcing 

term in the governing equation for the longshore current motion (6.17) can be 
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Table 6.1: Offshore wave conditions for S U P E R D U C K at 8 m water depth 

Date Hrms (na) fp (Hz) e n 

October 15, 09:45 am 0.93 0.16 14 

October 16, 10:20 am 0.98 0.19 21 

October 17, 11:00 am 0.72 0.17 9 

October 18, 11:40 am 0.93 0.19 16 

1.25 

0 100 200 300 400 500 600 700 

X (m) 

Figure 6.7: Computed wave height decay along with wave height measurements 
from the sled (o) and measured bathymetry for October 15. 
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Figure 6.8: Computed wave height decay along with wave height measurements 
from the sled (o) and measured bathymetry for October 16. 
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Figure 6.9: Computed wave height decay along with wave height measurements 
from the sled (o) and measured bathymetry for October 17. 
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Figure 6.10: Computed wave height decay along with wave height measurements 
from the sled (o) and measured bathymetry for October 18. 

specified. The short wave forcing term in (6.17) contains gradients of the wave-

induced momentum fiuxes in the y direction. It is modeled using a radiation stress 

formulation (Longuet-Higgins and Stewart, 1964) such that the forcing term fy is 

given by 

(6.23) 
1 f d S x y ^ d S y y 

^ p d \ d x ' d y j 

where the radiation stresses herein are modeled using linear theory as 

Sxu = E—svD.6cos6, 
c 

Syy = E l ( s i n ^ ^ - M ) 

(6.24) 

(6.25) 

Due to the assumed longshore uniform nature of the wave field and Snell's law 

(6.19) the forcing term fy can be written as 

Ty = — i — ^ ^ b 6.26 
pd Co 

where the dissipation due to wave breaking et is defined by (6.20). It should be 

noted that the forcing is time-invariant; therefore, wave-current interactions are 

neglected. 
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Figure 6 .11: Computed longshore current for cy = 0.003 along with measure­
ments from the sled (o) and measured bathymetry for October 15 
with M = 0 ( ) and M = 1 ( ). 

6.3.2 Mean Momentum Balance 

In the absence of any fluctuating motions, the steady mean longshore cur­

rent V results from the balance 

d ( J d V \ \ I s inöo 
^d +/"V^= z—%• 

ox \ \ox I I p Co 

(6.27) 

The resulting current proflle V in the absence of any fluctuations is shown in 

Figures 6.11 through 6.14 for M-values of zero (no lateral mixing) and unity for 

October 15 through October 18, respectively. Friction coefiicients suggested by 

Dodd et al (1992) for the four days were used. They are given by 0.003 for 

October 15 and 0.004 for October 16 through October 18. 

In the presence of the fluctuating motions, the mean momentum balance in 

the longshore direction that leads to the generation of a longshore current can be 

obtained by longshore-averaging the j/-momentum equation (6.17). The resulting 
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Figure 6.12: Computed longshore current for Cf = 0.004 along with wave height 
measurements from the sled (o) and measured bathymetry for Oc­
tober 16 with M = 0 ( ) and M = 1 ( ). 

Figure 6.13: Computed longshore current for Cƒ = 0.004 along with wave height 
measurements from the sled (o) and measured bathymetry for Oc­
tober 17 with M = 0 ( ) and M = 1 ( ). 
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Figure 6.14: Computed longshore current for c/ = 0.004 along with wave height 
measurements from the sled (o) and measured bathymetry for Oc­
tober 18 with M = 0 ( ) and M = 1 ( ). 

equation is given by 

0 ( f ) , dv. . . .a . ... 
(6.28) 

In the above equation, the longshore average of a variable Q{x, y, t) is defined by 

{Q)M = ^ f'^" Q{x,y,t)dy. (6.29) 

Ly Jo 

The terms in the y-momentum equation involving y derivatives drop out of the 

mean balance. The short wave forcing fy is given by (6.26) and the lateral mixing 

term in the y direction is given by 

T' --— ud— 
^ ddx \ dx. 

(6.30) 

The effect of slow time variations in the mean longshore current (v) can be 

excluded by further time-averaging (6.28) over time scales much longer than the 

variations in (v). The time average of a variable Q{x,y,t) is defined as 

— 1 /•'ƒ 
Qi^^y) = 77—TT / Qi^,y,t)dt. 

[tf — ti) Jti (tf - ti) 
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Performing the time average of (6.28) the balance 

(n^) + (^-) - (^) = (ry) (6.32) 

can be identified. Note that periodicity and longshore uniformity of the bathymetry 

imply that (u) = 0. Defining the time and longshore-averaged velocities and the 

fluctuating components as 

u = (u) + u' 

V = {v) + v', (6.33) 

the effect of the first term in (6.32) can be identified as lateral momentum mixing 

due to the fluctuating components since 

= (6.34) 

The resulting mean balance given by (6.32) states that the short wave 

forcing (T^) is balanced by bottom friction (^t») and lateral mixing caused by 

the shear instabilities (u^) as well as lateral mixing caused by other processes 

discussed earlier {{Ty)). In Chapter 5 we already established that shear instabilities 

cause lateral momentum mixing in the surf zone. In this chapter we wil l analyze 

the importance of mixing due to the instabilities compared to mixing caused by 

processes such as turbulence and the Taylor dispersion process. 

The mean kinetic energy density in the fluctuating velocity components 

can be defined as 

E'{x) = hT^ + ' ^ ) (6.35) 

and is referred to as the mean perturbation kinetic energy. I t provides a good 

measure of the cross-shore distribution and extent of the fluctuations due to the 

shear instabilities. 
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6.4 Modeling domain and solution method 

The modehng domain extends from the still water shoreline to a certain 

distance offshore. A moving shoreline boundary condition is incorporated at the 

onshore end of the modehng domain. However, for the simulations shown in 

this chapter, a wall boundary is incorporated at the shoreline instead to decrease 

the necessary computational time since the modeled water surface elevations are 

observed to be at the order of 1 cm and the runup associated with these values 

is of minor importance. The moving shoreline will become important when the 

wave-induced setup is included in the model. 

An absorbing boundary condition originally developed by Van Dongeren 

and Svendsen (1997) is incorporated at the offshore boundary to allow transient 

gravity motions to leave the domain of interest. The boundary condition has been 

shown to perform favorably for gravity wave motions exiting the domain of interest 

(see Chapter 4). However, in the simulations shown in this chapter, vortices are 

often advected towards the offshore boundary. I t is observed that the offshore 

boundary is not transparent to these vortices. I f the vortices are weakened by 

bottom friction by the time they reach the boundary, they continue to dissipate 

at the location they encountered the offshore boundary. However, i f the vortices 

are strong when they reach the offshore boundary, they are advected along the 

boundary but remain close to the boundary until they dissipate. Care has to be 

taken to place the offshore boundary far away from the surf zone so that offshore 

advection velocities are small when the vortices reach the offshore boundary. The 

offshore boundary is placed approximately six surf zone widths away from the 

shoreline at 550 m. 
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6.4.1 Longshore Domain Width 

Periodicity is imposed in the longshore direction; therefore, the longshore 

width of the modeling domain needs to be long enough for sufficiently many waves 

to be present in the domain so that reliable statistical estimates can be obtained. 

The width of the domain is chosen using the following argument. 

We wil l employ a linear instability analysis to identify a representative 

longshore length scale of the instabilities. A parameter that supplies such an 

estimate is the most unstable wavenumber X^ax = ^Trkmax- In a linear instability 

analysis, the problems governing the mean longshore current and the perturbation 

velocities are decoupled through linearization. Linear instability studies such as 

Dodd (1994) and Falqués and Iranzo (1994) consider a given basic state (created 

using a fixed friction or mixing coefficient) and examine the effect of varying 

the coefficients in the perturbation equations. They find that the increase of the 

coefficients in the perturbation equations lowers the growth rates of the instability 

and changes the location of the most unstable wavenumber only slightly. 

Dodd et al. (1992) previously applied the hnear instabihty theory to Octo­

ber 15 through October 18 during the S U P E R D U C K experiment using the bathymetry 

transect from sled measurements and assuming straight-and-parallel contours. 

They examined current profiles generated with a mixing coefficient M of unity and 

a friction factor chosen to obtain a best fit with measurements of the mean long­

shore current. They obtained good agreement of the unstable wavenumbers with 

the observed range of wavenumbers and stated that the most unstable wavenum­

ber associated with M = 1 for each day defines a representative length scale for the 

observed motions. Therefore, in our modeling effort the domain length for each 

day is chosen to be 16 times the wavelength that corresponds to this wavenumber 

so that sufficiently many waves can exist in the modeling domain. 
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Figure 6.15: Linear instability results for October 15. 

Table 6.2: Most unstable wavenumbers Xmax and corresponding longshore length 
scale Lmdx for October 15 through October 18. 

Date Xmax (rad/m) Lmax (m) 

October 15, 09:45 am 0.0365 172.14 
October 16, 10:20 am 0.0395 159.06 
October 17, 11:00 am 0.0285 220.46 
October 18, 11:40 am 0.0315 199.47 

Since the prediction for Xmax is only altered slightly by the inclusion of the 

dissipational terms in the perturbation equations, the inviscid equations of Bowen 

and Holman (1989) are used. The current profiles for the four days with M = 1 

were shown in Figures 6.11 through 6.14. The linear instability curves for these 

current profiles are shown in Figures 6.15 through 6.18. The speed of the motions 

predicted by the linear instability theory is given by (<Tre/A) = ( f / k ) . The most 

unstable wavenumber Xmax along with the corresponding longshore length scale 

Lmax are given in Table 6.2 for the four days of the S U P E R D U C K experiment. 

The longshore length scales defined above for each day are used for all 
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Figure 6.16: Linear instability results for October 16. 
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Figure 6.17: Linear instability results for October 17. 
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Figure 6.18: Linear instability results for October 18. 

the simulations for that day even though the values of the friction factor and 

mixing coefficient are varied from one simulation to the next. For the purposes 

of identifying the most unstable wavenumber, the use of the inviscid perturba­

tion equations of Bowen and Holman (1989) is justified. However, changing the 

damping coefficients alters the basic state that should be considered in the in­

stability analysis. Examples of the resulting basic states for two different friction 

coefficients (c/ =0.003, 0.004) for October 16 are shown in Figure 6.19. Linear 

instability analysis (see Figure 6.20) predicts a higher growth rate for the current 

profile resulting from the lower choice of c/ but the most unstable wavenumber 

is not altered much. Note that the shear structure of the current profiles are 

not altered significantly so that the current profile for the lower c/ value has the 

same basic shape but a higher peak value. This result was also obtained by Dodd 

(1994). 

Two basic states resulting from choosing a mixing coefficient M of zero and 

unity for October 16 were shown in Figure 6.12. Decreasing the mixing coefficient 

results in much higher gradients in the current profile along with a higher peak 
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Figure 6,19: Longshore current for October 16 using M = 1. Friction coefficient 
Cf = 0.004 ( ) and Cf = 0.003 ( ). 
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Figure 6.20: Growth rates for current profiles depicted in Figure 6.19. Friction 
coefficient Cf = 0.004 ( ) and Cf = 0.003 ( ), M" = 1. 
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Figure 6.21: Growth rates for current profiles depicted in Figure 6.12. Mixing 
coefficient M = 0 ( ) and M = 1 { ) with Cf = 0.004. 

value. Linear instabihty calculations for these two currents (see Figure 6.21) show 

that the current profile corresponding to M = 0 displays maximum growth rate 

at a higher wavenumber than the current profile with M = 0 resulting in shorter 

length scales for the instabihty. As a result, we can conclude that choosing Xmax 

associated with M = 1 is a conservative choice since the length scale associated 

with this profile is larger than for lower M-values. Therefore, the domain width 

for each day is defined by 

Ly = 16x ( T ^ ) • (6.36) 

where the values for Xmax are given in Table 6.2. 

6.4.2 Initial Conditions 

Given an initial condition in the water surface elevation rj and the velocities 

u and V, the governing equations are integrated in time. In contrast to the sim­

ulations in Chapter 5, the calculations are initiated with the fluid at rest except 
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for small perturbations in the longshore velocities given by 

v{x,y,t = 0) = e (6.37) 
max{/ (y)} 

where e = 1 x 10 and the function f{y) is given by 

ND 
2 i T j y 

f{y) = cos (6.38) 

Here, ND is the number of times the most unstable wavelength fits into the model­

ing domain and is equal to 16, and (f)j represents a random phase function between 

— 1 and 1. This initial condition ensures that the resulting longshore current is 

perturbed at the most unstable wavelength as well as all longer wavelengths that 

can exist in the modeling domain. Nonlinear interaction mechanisms present in 

the model equations will further cause the generation of any superharmonics. 

The time integration of the governing equations is carried out using an ex­

plicit third order Adams-Bashforth scheme. A time step of 0.2 sec is used. Fourier 

and Chebyshev collocation schemes are used to compute spatial derivatives in the 

longshore and cross-shore directions, respectively. In the cross-shore direction 65 

collocation points are used, whereas 512 collocation points are used in the long­

shore direction. The resolution in the y direction corresponds to the inclusion of 

32 harmonics per most unstable wave. A Shapiro (1970) filter of order 16 is used 

in both horizontal directions. For more information about the solution method, 

the reader is referred to Chapters 3 and 4, or to Ozkan-Haller and Kirby (1997). 

Five hour simulations were carried out for each chosen combination of the 

coefficients c/ and M. Effects of varying one of the coefficients while keeping the 

second constant are analyzed. 
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6.5 Effects of Bottom Friction 

We first analyze the effect of varying the friction coefficient from one sim­

ulation to the next. The value of the mixing coefficient M is kept constant at 

M = 0.25 which is an intermediate value in the range of realistic M-values given 

by (6.13). The resulting shear instabilities for each case propagate faster for lower 

values of c/. The optimum choice of Cf is defined such that the propagation speed 

observed in the data is predicted to within 5%. In the next subsections we show 

simulations for October 15 through 18 for friction coefficients bracketing the op­

timum value with which the propagation speed of the disturbances in the data is 

reproduced. 

6.5.1 Simulations of October 15 

Simulations for October 15 were carried out for friction coefficients of 

Cf = 0.0015,0.002,0.003. On this day, the measurement array was located ap­

proximately 45 m offshore of the shoreline in the bar trough region. Time series 

for the simulations at this cross-shore location are shown in Figure 6.22. Also 

shown are velocity time series from the current meter located closest to the cross-

shore transect where the utilized depth profile was measured as well as sled data 

were collected. The current measurements displayed in the lowermost panel of 

Figure 6.22 have been low-pass filtered with a cutoff frequency of 0.01 Hz. 

We observe that the spin-up time of the instabilities is short compared to 

the simulations for the plane beach case documented in Chapter 5. The insta­

bilities reach finite amplitude within an hour of the start of the simulations. As 

the friction coefficient is increased the spin-up time increases slightly. In all three 

time series short scale disturbances are observed to grow initially. The time scales 
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associated with these initial fluctuations are shorter for lower friction factor. Fur­

ther into the simulations large amplitude long time oscillations develop and are 

especially pronounced in the longshore velocities. The time scales associated with 

these oscillations are in excess of 30 min. These long time oscillations are less 

evident in simulations with a high friction coefficient. In general, more energetic 

oscillations are observed for lower friction coefficients. The cross-shore veloci­

ties display periods of small energy fiuctuations (indicating a primarily longshore 

directed flow) followed by periods of high amplitude fluctuations. This type of 

intermittent behavior is more evident for lower friction factor. The time scales 

associated with the intermittent high amplitude fluctuations in u are shorter for 

lower friction factor. Especially evident in the time series for Cf = 0.002 are sit­

uations where a near-zero longshore velocity occurs at the same time as a high 

cross-shore velocity (up to 0.3 m/s) indicating purely offshore directed flow. The 

data, shown in the lowermost panel of Figure 6.22, does not display an intermit­

tent character and also shows no evidence of oscillations with time scales of 30 

minutes or longer. 

The longshore-averaged longshore velocity is observed to stay small until 

the instabilities grow to finite amplitude. A mean current is abruptly generated as 

the instabilities grow. The value of the mean current is higher for lower friction. 

Some time variabihty exists in the longshore-averaged current, especially in the 

case involving a lower friction factor. 

Frequency-longshore wavenumber spectra for the three cases are constructed 

utilizing a Fourier transform in both longshore direction and time. The last 2.7 

hours of the simulations are used. The spectra are calculated using a cosine taper 

on the first and last 10% of the time series. The resulting spectra are smoothed 

by averaging over 8 frequencies and 2 wavenumbers. The spectra obtained using 
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Figure 6.22: October 15: Time series of velocities u, v and {v) (— —) at 
(x, y)=(45 m, Ly/2) and time series of velocities u and v of data. 
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time series of longshore velocities are shown in Figure 6.23, whereas the spectra 

for the cross-shore velocities are shown in Figure 6.24. The frequency-wavenumber 

spectra of the measured velocities are also included for comparison. 

Examining the frequency-wavenumber spectra of the longshore velocities, i t 

is seen that the disturbances travel faster for a lower value of the friction coefficient. 

A 25% reduction in the friction factor from Cf = 0.002 to c/ = 0.0015 results in 

a 30% increase of the propagation speed. On the other hand, a 50% increase in 

the friction coefficient (from c/ = 0.002 to Cf — 0.003) results in a 20% decrease 

in propagation speed. The range of frequencies at which oscillations exists also 

increases with decreasing friction coefficient. The slopes and intercept values of 

the dispersion line predicted for Cf = 0.002 reproduce the data well. The spectra 

of the cross-shore velocities display similar trends. 

The time and longshore-averaged mean longshore current velocities for the 

three cases are shown in Figure 6.25. The longshore averages are performed over 

the entire width of the domain while the time averages are computed using the last 

2.7 hours of the computed time series. The three current profiles display similar 

gradients, but, as expected, a stronger current profile results from the choice of 

a low friction factor. A 25% reduction in the friction factor from c/ = 0.002 

to Cf = 0.0015 results in a 20% increase of the peak current velocity. A 50% 

increase in the friction coefficient (from Cf = 0.002 to c/ = 0.003) results in a 20% 

decrease in the peak current velocity. The current profiles display a broad peak 

located about 100 m offshore and a localized peak close to the shore. Significant 

currents are observed in the trough region. The current resulting from the choice 

Cf — 0.002 reproduces the measured value of the current in the trough region 

whereas the case with Cf = 0.003 reproduces the peak current. Caution should 

be used in interpreting the sled data to model agreement since the measurements 
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Figure 6.23: October 15: Frequency-cyclic wavenumber spectra S{f,k) (m^/s) 
for computed and measured longshore velocity at x =45 m. The 
values for Cest are 1 m/s for = 0.0015, 0.8 m/s for Cf = 0.002, 
0.75 m/s for Cf = 0.0015, and 0.8 m/s for data, and are used in 
Equation (6.3) to construct the upper and lower cut-off lines ( - • 
--) of the shear wave energy. Contour levels plotted are (10, 30, 60, 
100, 200, 400, 800). The equation for the best fit dispersion hne 
(— -•) is noted above each plot. 

156 



0.03 

0.025 

0.02 

"̂ -̂  0.015 

0.01 

0.005 

0 

0.03 

0.025 

0.02 

0.015 

0.01 

0.005 

0 

ƒ = l.lA; + 1.9e-05 

M 
=0.0015 
=0.25 

i •• 1 

' .L/..._ 

/ 
1. 

/ 

/ ' 

/ 

'/a/) 
4 / i G - -

" / • • • • 

1 
i 

fflu) 
WN/ •' ml/ 1 

" / • • • • 

1 
i 

nfw ' 

3r / 
-0.02 0 0.02 

k (1/m) 
ƒ = 0.62/c + 3.4e - 05 

C f . 

M 
=0.003 
=0.25 

• / 

/ 

/ 
/ 

/ 

i 
i 

/ 
/ 

/ 

i 
/ 

: / 
\ / 
': . . . / . -

••'nWii- • 

• / 

0.03 

0.025 

^ 0.02 

"̂^̂  0.015 

0.01 

0.005 

0 

ƒ = 0.88fc - 0.00021 

M 
=0.002 
=0.25 

/ ! 
/' : 

/ , . : I. 

/ \ 

i '; 1 

1 : 

/ . , . . / ; 

•/ 

Ê ^ 

/ 

i 

ifJIll •/ 
mi/Ji /"• 

• M 
§Jr / \ 
Mr ' 

-0.02 0 0.02 
k (1/m) 

ƒ = 0.91A; - 0.0016 

-0.02 0 0.02 
k (1/m) 

-0.02 0 0.02 
k (1/m) 

Figure 6.24: October 15: Frequency-cyclic wavenumber spectra S ( f , k ) [m^/s] 
for computed and measured cross-shore velocity at x =45 m. The 
values for Cest are 1 m/s for Cf = 0.0015, 0.8 m/s for Cf = 0.002, 
0.75 m/s for Cf = 0.0015, and 0.8 m/s for data, and are used in 
Equation (6.3) to construct the upper and lower cut-off lines ( - • 
- ) of the shear wave energy. Contour levels plotted are (10 30 60 
100 200 400 800). The equation for the best fit dispersion line ( -
—) is noted above each plot. 
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Figure 6.25: October 15: Time and longshore-averaged longshore currents (u) 
for C} = 0.0015 ( ), Cf = 0.002 ( ), c/ = 0.003 ( - • - ) and 
sled data (o). 

were carried out sequentially and sled data and model data are based on very 

different averaging periods. 

The cross-shore variation of the perturbation kinetic energy is shown in 

Figure 6.26. We can observe that the motions resulting from the lower choice of 

the friction factor are more energetic. In the case with c/ = 0.0015, the motions 

are energetic at the offshore boundary and are possibly affected by i t , since the 

shape of the curve for Cj = 0.0015 leaves the impression that energy is "piled 

up" against the offshore boundary. Except for the region close to the offshore 

boundary, the curves display similar shapes with two local maxima shoreward 

and seaward of the location of the mean current maximum. Although the mean 

current (v) displays a local maxima close to the shoreline, the perturbation energy 

decreases monotonically inside the surf zone. 

Contour plots of the vorticity 

dv du 

dx dy 
(6.39) 
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Figure 6.26: October 15: Time and longshore-averaged longshore perturbation 
kinetic energy l{u^ + v^) for Cf = 0.0015 ( ), cj = 0.002 ( -
-), Cf = 0.003 ( ). 

at an instant in time are shown for the three cases in Figures 6.27 through 6.29. 

In the simulations of shear instabilities over a plane beach the potential vortic­

ity associated with a longshore uniform longshore current was observed to dis­

play two regions with positive and negative vorticity inshore and offshore of the 

peak current position, respectively. Since the mean current profiles in the present 

simulations display two local maxima, the vorticity field in the absence of any 

fluctuating motions will display four regions of alternating positive and negative 

vorticity. Since the current peak located near the shoreline is very narrow, the 

first two layers of positive and negative vorticity are expected to be confined to a 

small region close to the shoreline. 

Figure 6.27 shows snapshots of the vorticity field at two time levels for the 

simulation with c/ = 0.0015. The first two layers of positive and negative vorticity 

are observed to be closely confined to the shoreline. The outer two layers of 

vorticity display complicated behavior. As in the simulations for the plane beach, 

regions of concentrated positive and negative vorticity are observed. They are, 
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however, irregularly spaced in the longshore direction and display the character of 

vortex pairs. The vorticity in the regions of longshore directed flow between the 

vortex pairs is weak compared to the strength of the vortex pairs. This observation 

suggests that the longshore current profile does not display high gradients in the 

regions between vortex pairs. Vortices appear to be shed offshore, propagating as 

far out as the offshore boundary. The offshore vortices appear in the form of pairs 

(see t = 5 hrs, {x,y) Pzi (400, 2600) m) or single vortices surrounded by a region 

with opposite vorticity (see t = 5 hrs, {x,y) ^ (400, 2000) m). Activity in the 

inner layer of vorticity is especially evident around x w 500 m at i = 5 hrs. 

The vorticity field for c/ = 0.002 shown in Figure 6.28 displays a similar 

character; however, the vortices appear to be slightly weaker. Vortices are shed 

offshore but the build-up of vortices at the offshore boundary is less severe. For 

Cf = 0.003 (see Figure 6.29) the vorticity field is much less energetic. Especially 

the negative vortices appear to be weaker than for the cases involving lower friction 

factors. Vortices are still shed offshore, but judging from the number of offshore 

vortices, the process occurs less often. For the cases involving lower friction, vor­

tices in the nearshore region are observed to appear grouped together, explaining 

the intermittent character of the time series. 

In order to visualize the time dependent character of the fiow, simulations 

were carried out for another hour for the case involving Cf = 0.002 and M = 0.25. 

Simulations are initiated with the vorticity field depicted in Figure 6.29 at t = 5 

hrs. Snapshots of the vorticity field are recorded every 5 minutes and are displayed 

in Figures 6.30 through 6.33. Disturbances seen in the snapshots propagate in the 

-|-j/-direction at the rate of approximately 250 m every 5 min. 

Many interesting events can be observed in the series of snapshots. We wil l 

focus on four sequences. In Figure 6.30 we observe that at i = 0 min, positive and 

160 



-/=3,3 hrs t=ö hrs 

Figure 6.27: October 15: Contour plots of vorticitj^ q (1/s) for c/ = 0.0015 and 
M = 0.25. 
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Figure 6.28: October 15: Contour plots of vorticity q (1/s) for Cf = 0.002 and 
M = 0.25. 
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l i re 6.29: October 15: Contour plots of vorticity q (1/s) for cj = 0.003 and 
M = 0.25. 
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negative vortices occur in a cluster in the nearshore region around y = 1250 m. At 

t = 10 min, the cluster has propagated to y =1750 m and has produced two vortex 

pairs that revolve around each other. Moving to Figure 6.31, we find that at t = 15 

min one of the vortex pairs has intensified and is propelled offshore in a direction 

opposing the mean longshore flow. At i = 20 min, the vortex pair is located at 

(x, y) = (450,1600) m. The vortices of opposite sign appear to be rotating around 

each other. At i = 25 min, their location has not changed significantly; however, 

the two vortices appear to have separated slightly. In Figure 6.32, we notice that 

the positive vortex is located at {x,y) = (400,1500) m at i = 30 min whereas the 

negative vortex is located about 200 m downdrift. They are advected slightly in 

the 10 minutes that follow and can be observed to weaken. In Figure 6.33, their 

location does not change significantly. The negative vortex weakens and joins a 

region of negative vorticity whereas the positive vortex survives until t = 55 min. 

A second relevant observation is related to the vortices that reach the 

offshore boundary. At t = 0 min, a strong positive vortex exists at the offshore 

boundary around y =500 m. Throughout the snapshots, this vortex is observed 

to remain at this location and weaken. Other vortices at the offshore boundary 

around y = 2000 m at i = 0 min are observed to interact with each other as time 

progresses; however, they remain close to their original position. 

The third event details the evolution of a vortex pair that develops on the 

inner layers of negative vorticity. At i = 0 min, the pair is located very close to the 

shoreline at y = 700 m. At t = 5 min the vortex pair is observed to have detached 

from the inner layer but is still located close to the shoreline at y = 1000 m. 

The vortices appear to have drifted apart slightly at i = 10 min and are located 

around y = 1300 m. At t = 15 min the positive vortex appears to be stronger and 

is located around y = 1700 m. It is leaving the negative vortex behind which is 
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observed to weaken. At the same instance the vortex cluster we analyzed before 

is shedding two vortex pairs. The two vortices that we have been following in this 

paragraph propagate faster than the cluster. At t = 20 min, the positive vortex 

is joining the cluster at about y = 2000 m while the negative vortex is located 

just behind i t in the inner surf zone and is weakened significantly. At i = 25 min, 

it is very difficult to pick out the negative vortex, but a strong vortex pair has 

evolved from the cluster and is located at y = 2250 m. ki t — 30 min the vortex 

pair sheds vortices offshore which form a new vortex pair at t = 40 min around 

[x,y) = (400,2500) m. In the next 15 minutes the vortices forming this new pair 

separate and dissipate in a region around (x,y) = (300,2500) m. 

Finally, we follow a disturbance located at y = 200 m at t = 0 min. I t 

appears to be made up of two vortex pairs. One pair is associated with the outer 

layers of positive and negative vorticity, whereas the other is associated with the 

inner layers. At i = 5 min, the vortices have propagated to y = 400 vn. kit = 10 

min, the two pairs have separated slightly and are located around y = 600 m. At 

t — 15 min, the vortex pair associated with the outer layer has strengthened and 

is located at y = 750 m. The other vortex pair is in front of i t at y = 900 m. At 

t = 20 min, the outer vortex pair is in the process of shedding a new vortex pair. 

At f = 25 min, the outer vortex pair is located around y = 1100 m and has shed 

a vortex pair offshore. It appears to be weakened significantly. I t is also observed 

to retreat towards the shoreline. The new vortex pair is active at a; = 250 m 

and y = 1000 m. The set of event outlined here carries the characteristics of a 

migrating transient rip current. 

From our observations of the time-dependent behavior of the instability 

field, we can conclude that the offshore boundary is not transparent to vortex mo­

tions, but that vortices reaching the boundary tend to remain there. The motions 
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at the offshore boundary do not affect the bar trough region, which is located 

about 30-40 m away from the shoreline. Comparisons with field measurements 

will be carried out at this cross-shore location. The vortex structures are highly 

time dependent and, at times, are reminiscent of transient rip currents (see for 

example t = 45 min, y — 750 m). 

6 .5 .2 Simulations of October 16 

Simulations for October 16 were carried out for friction coefficients of 

Cf = 0.003,0.0035,0.Q04. The transect at which the sled measurements and depth 

profile were collected for October 16 was located further north than for October 

15. At this location the measurement array was located approximately 35 m off­

shore of the shoreline. Time series for the simulations at this offshore location 

are shown in Figure 6.34. Also shown are low-pass filtered velocity time series 

from the current meter located closest to the cross-shore transect. The time se­

ries show that the instabilities reach finite amplitude about 30 minutes into the 

simulation. For Cf = 0.003 the instabilities reach finite amplitude shghtly sooner 

than for the other cases. The mean current in each case is generated at the same 

time as the spin-up of the instabilities and displays some time variability. For all 

three cases, short time scale oscillations are observed during the first 30 minutes 

of the simulation after the instabilities are initiated. Further into the simulations, 

oscillations with longer time scales are observed. However, oscillations with time 

scales of 30 minutes, that were seen in time series for October 15, are not observed 

in this case. The longshore current oscillations are very energetic and are negative 

at times. This behavior is not observed in the time series of the data where long­

shore velocities are always observed to be larger than 0.25 m/s. The intermittent 

character of the motions is not as pronounced as for the October 15 simulations. 

The differences between the time series for the three friction coefficient are also 
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Figure 6.30: October 15: Time evolution of vorticity q (1/s) for c/ = 0.002 and 
M = 0.25. 
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Figure 6.31: October 15: Time evolution of vorticity q ( l /s) for cj = 0.002 and 
M = 0.25 (continued). 
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Figure 6.32: October 15: Time evolution of vorticity q (1/s) for Cf = 0.002 and 
M = 0.25 (continued). 
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Figure 6.33: October 15: Time evolution of vorticity q (1/s) for c/ = 0.002 and 
M = 0.25 (continued). 
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not as pronounced. However, i t should be noted that the variation in the friction 

coefficient from the mid value of 0.0035 to the high and low values is only 15%. 

The frequency-longshore wavenumber spectra for the longshore velocities 

are shown in Figure 6.35 along with data. The range of frequencies affected by the 

instabilities is larger for lower friction factor. The intercept values of the best fit 

dispersion lines for the simulations and data are small. The slope of the dispersion 

lines decreases for increasing friction factor. An increase in the friction factor of 

0.0005 from Cf = 0.003 to Cf = 0.0035 causes a decrease in the propagation speed 

of 0.15 m/s. Further increase in the friction factor by 0.0005 only decreases the 

propagation speed by 0.7 m/s suggesting that changes in the friction factor have 

a more pronounced effect for low friction. The slope of the dispersion line for the 

data is best reproduced by simulations for c/ = 0.0035. The frequency-longshore 

wavenumber spectra of the cross-shore velocities shown in Figure 6.36 display 

similar trends. 

The differences between the three cases are most readily observed when 

analyzing the time and longshore-averaged quantities. The mean longshore cur­

rents associated with the three simulations are shown in Figure 6.37. It can be 

observed that the mean current associated with the lowest value of the friction 

factor is most energetic. The three current profiles display similar gradients. The 

longshore current velocity from sled measurements in the trough region (at about 

35 m) is best reproduced by the profile with Cf = 0.0035. The current profiles 

exhibit two peaks. A narrow peak is located close to the shoreline while a broader 

peak is centered around 90 m. 

Cross-shore distributions of the mean perturbation kinetic energy are shown 

in Figure 6.38. The cross-shore distributions are similar for all three cases but the 

kinetic energy associated with c/ = 0.003 is observed to be largest. Its offshore 
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Figure 6.34: October 16: Time series of velocities u, v and (v) (— •-) at 
{x,y)={35 m, Ly/2) and time series of velocities u and v of data. 
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Figure 6.35: October 16: Frequency-cyclic wavenumber spectra 5'(/, A;) (m^/s) 
for computed and measured longshore velocity at x =35 m. The 
values for Cest are 1 m/s for c/ = 0.003, 0.8 m/s for Cf = 0.0035 
and Cj = 0.004, and 0.8 m/s for data, and are used in Equation 
(6.3) to construct the upper and lower cut-off lines ( - • - ) of the 
shear wave energy. Contour levels plotted are (10, 30, 60, 100, 200, 
400, 800). The equation for the best fit dispersion line (— —) is 
noted above each plot. 
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Figure 6.36: October 16: Frequency-cyclic wavenumber spectra S i f , k ) (m^/s) 
for computed and measured cross-shore velocity at x =35 m. The 
values for c^st are 1 m/s for Cf = 0.003, 0.8 m/s for Cf = 0.0035 
and Cf = 0.004, and 0.8 for data, and are used in Equation (6.3) 
to construct the upper and lower cut-off lines ( - • - ) of the shear 
wave energy. Contour levels plotted are (10 30 60 100 200 400 800). 
The equation for the best f i t dispersion line (— —) is noted above 
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Figure 6.37: October 16: Time and longshore-averaged longshore currents (v) 
for Cf = 0.003 ( ), Cf = 0.0035 ( ), Cf = 0.004 ( - • - ) and 
sled data (o). 

extent is not as pronounced as for the low friction case of October 15. The cross-

shore variations are characterized by two peaks just inshore and offshore of the 

mean longshore current maximum. Comparing the two cases that reproduced the 

propagation speeds of the data for October 15 (see Figure 6.26) and 16, i t can be 

observed that the maximum kinetic energy for October 16 is larger. 

The plots of potential vorticity shown in Figure 6.39 for Cf = 0.003 and 

Cf = 0.004 display similar characters. The layers of positive and negative vorticity 

are being mixed. Features with positive and negative potential vorticity are seen 

to pair up to form vortex pairs. Some vortex pairs have previously been released 

offshore and are seen about 400 m offshore. An important difference between the 

two cases is that the vortices are more energetic for Cf = 0.003. This result is 

supported by the analysis of perturbation kinetic energy shown in Figure 6.38 and 

is especially evident offshore since the vortices associated with c/ = 0.004 are seen 

to be weaker. 
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Figure 6.38: October 16: Time and longshore-averaged longshore perturbation 
kinetic energy ^{v/^ +v^) for Cf = 0.003 ( ), = 0.0035 (~ 

Cf = 0.004 ( - . - ) . 

6.5.3 Simulations of October 17 

Simulations for October 17 were carried out for M = 0.25 and two friction 

coefficients given by Cf = 0.001 and Cf — 0.002. Time series were recorded at 

a; = 35 m and are shown in Figure 6.40 along with time series of data from the 

closest current meter. The time series show that no instabilities are observed 

during the first 1.5 hours of the simulation. Instead, the generation of a longshore 

current in the absence of fluctuations is observed. The instabilities reach finite 

amplitude around 1.6 hours. The initial finite amplitude instabilities display a 

time scale similar to data. They quickly evolve into longer time scale disturbances. 

The generated mean current is positive and fairly steady. The mean current 

assessed from the measured time series is small and negative. The computed 

cross-shore velocities are much less energetic than the observed velocities. In 

addition, the value of the mean current is not altered much after the initiation of 

the instabihties. Therefore, the resulting shear instabilities display the character 

of weakly nonlinear equilibrated disturbances. Agreement with data is very poor, 
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Figure 6.39: October 16: Contour plots of vorticity g ( l / s ) at t = 5 hrs for 
Cf = 0.003 and c; = 0.004; M = 0.25 
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Figure 6.40: October 17: Time series of velocities w, v and (v) ( - —) at 
(a;,y)=(35 m, Ly/2) and time series of velocities u and t) of data. 

especially since the direction of the longshore flow is not predicted correctly. 

Contour plots of the computed frequency-wavenumber spectra for the long­

shore and cross-shore velocities are shown in Figures 6.41 and 6.42, respectively. 

Comparison of the spectra for the longshore velocities with data is not possi­

ble since the motions are poorly defined in the data. Therefore, we turn to the 

spectra of the cross-shore velocities. The data to model comparison is difficult 

due to the large intercept value of the best fit dispersion line for the data. The 
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cross-shore data suggests that the motions are dispersive whereas the modeled 

motions are not. As discussed earlier, the large intercept value is likely to be a 

side effect of the data analysis techniques employed to create the estimate for the 

frequency-wavenumber spectrum of the data. Therefore, we proceed by compar­

ing the slope values for the observations and simulations and find that the slope 

is underpredicted for both values of c/. 

Moving on to the mean longshore current displayed in Figure 6.43, we find 

that the predicted mean current profile overpredicts the measured values in the 

region shoreward of the bar. Near-zero velocities were observed during sled mea­

surements in the trough region. The fact that the time series from a fixed current 

meter shown in Figure 6.40 also displays near-zero mean velocities lends confi­

dence to the observation that no current existed in the trough region on October 

17. This suggests that a fundamentally different longshore current generation 

mechanism is at work that the present modeling effort can not reproduce. 

A possible explanation was provided by Whitford (1988) who observed that 

the wave regime on this day consisted of wind waves and less energetic swell ap­

proaching the beach from different directions. Whitford (1988) found evidence 

of intersecting wave trains in data for October 17 and postulated that the wind 

waves approaching the shore from the north quadrant, breaking on the nearshore 

bar and again on the shoreface could indeed be forcing a southward (positive) 

longshore current. However, the swell approaching the shore from the southern 

quadrant can propagate over the bar and break in the nearshore causing a north­

ward swell-induced current that is confined to a narrow region close to the shore­

line. Opposing longshore currents in the bar trough region could then explain the 

observed near-zero current velocities. It should be taken into account that i f the 

events on October 17 are governed by the presence of intersecting wave trains, the 
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Figure 6.41: October 17: Frequency-cyclic wavenumber spectra S ( f , k ) (m^/s) 
for computed and measured longshore velocity at x =35 m. The 
values for Cest are 0.5 m/s for Cf = 0.001, 0.3 m/s for Cf = 0.002, 
and 0.6 m/s for data, and are used in Equation (6.3) to construct 
the upper and lower cut-off lines ( - • - ) of the shear wave energy. 
Contour levels plotted are (10, 30, 60, 100, 200, 400, 800). The 
equation for the best fit dispersion line (— --) is noted above each 
plot. 
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Figure 6.42: October 17: Frequency-cyclic wavenumber spectra 5'(/, fc) (m^/s) 
for computed and measured cross-shore velocity at x =35 m. The 
values for c^st are 0.5 m/s for c/ = 0.001, 0.3 m/s for c/ = 0.002, 
and 0.6 for data, and are used in Equation (6.3) to construct the 
upper and lower cut-off lines ( - • - ) of the shear wave energy. 
Contour levels plotted are (10 30 60 100 200 400 800). The equation 
for the best fit dispersion line (~ —) is noted above each plot. 

181 



O 50 100 150 200 250 300 350 400 450 500 

X (m) 

Figure 6.43: October 17: Time and longshore-averaged longshore currents (v) 
for Cf = 0.001 ( ), Cf = 0.002 ( ) and sled data (o). 

resulting radiation stress forcing terms are possibly longshore and time-varying. 

The simple treatment of the forcing terms employed in this chapter prevents us 

from being able to study this case further. The extension to the model discussed 

in the next chapter wil l give us the opportunity to study this case in more detail 

in the future. 

Although the behavior on October 17 is not reproduced well by the sim­

ulations, the results of the computations are nonetheless of interest since they 

detail the behavior of shear instabilities in a weakly nonlinear regime. The mean 

perturbation kinetic energy displayed in Figure 6.44 shows that the energy asso­

ciated with the motions is much less than for October 15 and 16. The two peaks 

in the kinetic energy distribution observed in previous cases are still evident but 

less pronounced. 

Contour plots of the potential vorticity for the two cases are shown in Figure 

6.45. The vorticity patterns are much weaker than in the previous simulations. 

The layers of positive and negative vorticity do not form distinct vortex pairs in 
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Figure 6.44: October 17: Time and longshore-averaged longshore perturbation 
kinetic energy ^{u^+ ^ ) for Cf = 0.001 ( ) and Cf = 0.002 ( -

- ) • 

the nearshore region. Some vortex shedding occurs, but the offshore vortices do 

not propagate out past 350 m. The patterns are closer in character to the results 

for the plane beach simulations than to results for October 15 or 16. 

6.5.4 Simulations of October 18 

Linear instability computations for October 18 documented in Section 6.4.1 

showed that the instability on October 18 is weaker than the instability on Oc­

tober 16 for the same friction factor. The linear growth rates associated wi th 

October 18 are almost 50% less than the linear growth rates for October 16. 

Therefore, the instabilities are expected to be initiated less rapidly. Time series 

of simulations for three values for the frictional coefficients (see Figure 6.46) show 

that the instabilities reach finite amplitude about 45 minutes after the initiation 

of the simulations. During the time that-passes while the instabilities are small, 

a longshore current is generated at this cross-shore location (a;=35 m) indicat­

ing that the mixing terms associated with turbulence and dispersive mixing are 
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Figure 6.45: October 17: Contour plots of \'orticity q (1/s) at t = 5 hrs for 
Cf = 0.001 and Cf = 0.002, M = 0.25. Note the change in the 
color axis compared to previous vorticity plots. 
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important. The development of a current velocity in the bar trough during the 

spin-up time was not observed for October 15 or 16. The reader is reminded that 

the instabihties fully developed in 30 minutes on October 16 for a similar friction 

factor. 

As for October 16, the range of friction coefficients associated with the sim­

ulations documented in Figure 6.46 is narrow. Therefore, the time series display 

similar characters. The instabilities are generated shghtly earlier for lower fric­

tion coefficient. The initial development is similar in all three cases. The initial 

disturbances display short time scales, subsequently longer time scale motions are 

generated. In contrast to October 17, the time scale of the original instabilities is 

preserved throughout the time series. 

The frequency-longshore wavenumber spectra of the longshore velocities 

shown in Figure 6.47 document similar trends as seen in previous simulations. 

The differences in the propagation speeds for two cases are more pronounced for 

lower friction factor. In fact, spectra for c/ = 0.003 and c/ = 0.0035 only show 

minor differences in propagation speed. The case involving c/ = 0.003 reproduces 

the propagation speed of the data shghtly better. Two-dimensional spectra of the 

cross-shore velocities (see Figure 6.48) show similar trends. 

The time and longshore-averaged longshore current profiles for the three 

cases are shown in Figure 6.49. The current profile associated with c/ = 0.003 is 

seen to reproduce the sled measurements well. However, it is once again noted that 

this agreement has to be interpreted with caution due to the sequential nature of 

the measurements and differences in averaging periods. The presence of a strong 

shoreline jet is evident. 

The average perturbation kinetic energy (see Figure 6.50) shows that the 
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Figure 6.49: October 18: Time and longshore-averaged longshore currents (v) 
for Cf = 0.0025 ( ), Cf = 0.003 ( ), Cf = 0.0035 ( - • - ) and 
sled data (o). 

motions associated with the lowest friction factor are strongest, differences are 

especially evident offshore. In the bar trough region (x pa 35 m), the differences 

in perturbation kinetic energy are minimal. The reader is reminded that the time 

series displayed in Figure 6.46 were collected in the bar trough region. 

Contour plots of vorticity depicted in Figure 6.51 for the lowest and highest 

friction coefficients of c/ = 0.0025 and Cf = 0.0035 show energetic vortex struc­

tures similar to those seen for October 15 and 16. Vortices are seen to pair up in 

the nearshore. The longshore length scales of the motions associated with the two 

cases are similar. Vortex pairs are advected offshore. The case associated with 

Cf = 0.0025 displays more energy offshore whereas for Cf = 0.0035 the vortex 

pairs do not propagate offshore past x = 400 m. 
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Figure 6.50: October 18: Time and longshore-averaged longshore perturbation 
kinetic energy 1 ( ^ + ^ ) for c/ = 0.0025 ( ) and Cf = 0.003 
( ) and CJ = 0.0035 ( - • - ) . 

6.5.5 Summeiry 

In this section we simulated the shear instability climate on October 15 

through 18 at S U P E R D U C K for a range of friction coefiicients. The mixing coeffi­

cient is kept constant for all simulations at M = 0.25. The instabilities are seen to 

grow to finite amplitude rapidly. The resulting motions are in the form of unsteady 

longshore-propagating vortex structures that occasionally pair up, strengthen and 

shed vortices offshore. The evolution is at times reminiscent of transient rip cur­

rents. The offshore velocities associated with the motions can reach up to 0.3 

m/s. These offshore velocities can sometimes occur at instances where near-zero 

longshore velocities are present indicating primarily offshore directed flow. 

The range of friction coefficients is chosen to be narrow about a value 

which is observed to reproduce the propagation speeds of the data. When analyz­

ing cases with different values of the friction coefficient we notice that lowering the 

friction factor results in a more energetic mean longshore current profile as well as 
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more energetic fluctuations. The propagation speed inferred from the frequency-

longshore wavenumber spectrum of the computations is also observed to increase 

with decreasing friction factor. For the narrow range of friction coefficients consid­

ered here, the general character of the flow patterns is not altered since the plots 

of potential vorticity display similar longshore length scales. However, the offshore 

extent of the motions, the amount of vortex shedding as well as the strength of 

the vortices in the nearshore region is decreased for increasing friction coefficient. 

The friction coefficients that reproduce the propagation speed of the data 

are identified as Cƒ — 0.002 for October 15, Cƒ = 0.0035 for October 16 and 

Cf = 0.003 for October 18. The data comparison of computations for October 

17 is poor. It is suspected that the underlying short wave forcing is not modeled 

properly for this day. As Dodd et al. (1992), who considered the hnear instability 

problem for the same days at S u P E R D U C K , we find that a lower friction coefficient 

is required to reproduce behavior on October 15 than for October 16 or 18 and that 

the friction factors for October 16 and October 18 are similar although motions 

on October 18 propagate slower. However, in contrast to Dodd et al.'s (1992) 

suggestion that the motions seen in the data are weakly nonlinear disturbances, 

we find that the motions associated with the chosen frictional values are large 

amplitude disturbances which affect a large region of the nearshore. 
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6.6 Effects of Lateral Mixing 

Next, the friction factor c/ is fixed at the value that reproduces the prop­

agation speed inferred from data. The mixing coefficient M is varied to identify 

the effect of lateral mixing in the surf zone due to processes other than the shear 

instabilities. The range of realistic mixing coefficients in the field was identified 

earlier as 0.06 < M < 0.48. Simulations are carried out for October 15, 16 and 

18 for three values of the mixing coefficient given by 0, 0.25 and 0.5. In addition, 

simulations with M = 1 are carried out for October 15. The simulations with 

M = 0 show the evolution of motions in the absence of any momentum mixing 

process other than the shear instabilities themselves. The M-values of 0.25 and 

0.5 correspond to the range of realistic estimates for mixing including turbulence 

and dispersive mixing. The value of unity is unrealistically high, but simulations 

with this value will aid in the clarification of the trends as M increases. Since 

agreement with observation was poor for October 17, no further simulations for 

that day are carried out. 

We identify the effects of varying the mixing coefficient by analyzing time 

series, two-dimensional spectra as well as cross-shore distributions of the mean 

quantities. We also examine the mean longshore momentum balance in order 

to asses the importance of mixing induced by the instabilities in relation to the 

amount of mixing present in the surf zone due to other processes. 

6.6.1 Simulations of October 15 

We carry out simulations for October 15 with four values for the mixing 

coefficient M of 0, 0.25, 0.5 and 1. The friction coefficient c/ is kept constant 

at 0.002. We first discuss time series of simulations for different values for M . 

193 



The time series of the velocities and data are shown in Figure 6.52. We find 

that the instabilities reach finite amplitude sooner for lower mixing coefficient, 

showing that the response of the motions to lateral mixing during the spin-up 

period is similar to their response to increased friction. Once the instabilities have 

equilibrated (t > 1.5 hrs), the time series for M = 0 display motions at shorter 

time scales than time series for larger M. Long time oscillations are present in all 

time series but are more pronounced as M increases since the higher frequency 

oscillations are not present in time series for high M-values. In the time series for 

M = 1, the generation of a mean current in the absence of fiuctuations can be 

observed during the spin-up period. Once the instabilities are initiated the mean 

longshore current is altered rapidly. The generated mean longshore current is of 

similar magnitude for all M . I t is noted that as M increases, the nature of the 

oscillations corresponds to data progressively less. 

Frequency-longshore wavenumber plots in Figure 6.53 show that an addi­

tional effect of the mixing is to decrease the propagation speed of the motions. 

Varying M through its fu l l range from 0 to 0.5 results in a reduction of the prop­

agation speed of 10%. The size of this variation is equivalent to the uncertainty 

in the estimates of the propagation speed from the two-dimensional spectra (see 

Section 6.2.1). The plots corresponding to M = 0 and M = 0.25 do not show a 

significant change in the propagation speed. However, the spectra corresponding 

to M = 0 displays a broader peak. The spectra for the cross-shore velocities are 

shown in Figure 6.54. The tendency of the motions to extend to higher frequencies 

is seen to be suppressed as M increases. 

Quantitative comparisons to data are made by constructing a frequency 

spectrum that only contains energy due to shear waves. For this purpose, the 

energy in the region bounded by the upper and lower cutoff lines shown on the 
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Figure 6.53: October 15: Frequency-cyclic wavenumber spectra S{f,k) (m^/s) 
for computed longshore velocity at x =45 m. The value for Cest is 
0.8 m/s, and is used in Equation (6.3) to construct the upper and 
lower cut-off lines ( - • - ) of the shear wave energy. Contour levels 
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Figure 6.54: October 15: Frequency-cyclic wavenumber spectra S'(/, fc) (m^/s) 
for computed cross-shore velocity at x =45 m. The value for Cest is 
0.8 m/s, and is used in Equation (6.3) to construct the upper and 
lower cut-off lines ( - • - ) of the shear wave energy. Contour levels 
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best fit dispersion line (— —) is noted above each plot. 
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two-dimensional spectra plots is summed for each frequency bin. The frequency 

spectra is then given by 

S k i f ) = S { f , k ) d k , (6.40) 
•'how 

where 

ƒ f 
how = —, k u p ^ — + 0.01. (6.41) 

The comparison of the frequency spectra for the data and the four cases 

involving different M-values is documented in Figure 6.55. The data is represented 

by the heavy line whereas results from computations are shown as thin lines of 

various types. The frequency spectrum of the longshore velocities shows that 

motions at low frequencies are overpredicted whereas motions with frequencies 

larger than 0.01 Hz are underpredicted. The tail of the spectra for the computed 

velocities displays a faster decay rate for larger M . This result is consistent 

with the observations made during the analysis of the time series, since we saw 

less high frequency oscillations as M increased. Returning to Figure 6.2 for the 

two-dimensional spectrum of the data, we find that shear wave motions are seen 

to be dominant over other low frequency motions in the range of frequencies 

ƒ < 0.007 Hz. Focusing on the range 0.002 < ƒ < 0.007 Hz, we see that the 

frequency spectrum of the observed longshore velocities is overpredicted by M = 0 

and underpredicted by M = 1. Simulations for M = 0.25 and M = 0.5 show 

reasonable agreement with the data. 

Turning to the spectrum of cross-shore velocities we find that the general 

character of the spectrum is reproduced for the range 0 < ƒ < 0.007 by the 

simulations involving M = 0,0.25,0.5. The behavior at these values is similar. 

Once again, M = 0.25 and M = 0.5 display reasonable agreement although the 

peak is underpredicted by all cases. 
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Figure 6.55: October 15: Frequency spectra of (a) longshore and (b) cross-shore 
velocities for data (thick ), c/ = 0.002 and M = 0 (thin ), 
M = 0.25 ( ), M = 0.5 ( - • - ) , M = 1 (• • •) 

The cross-shore distribution of the mean longshore current is shown in 

Figure 6.56. For all four cases, a peak is predicted about 100 m offshore. The 

strength of the peak as well as the offshore shear of the current profiles for different 

M-values are remarkably similar although the instability climates that generated 

them are different. There are differences in the prediction of the size of the 

shoreline jet. The mean longshore current associated with M = 0 exhibits some 

oscillations. The appearance of these oscillations is suspected to be linked to 

the unrealistically high gradients associated with the shoreline jet. This effect is 

especially pronounced for M = 0 since no eddy viscosity mixing mechanism exists 

to smooth the shoreline jet. 

The cross-shore distribution of the turbulent kinetic energy for the four 

cases is shown in Figure 6.57. We can observe that the total perturbation energy 

associated with M = 0 is highest, whereas the energy associated with M = 1 

is lowest. Throughout most of the domain the mean perturbation kinetic energy 

for M = 0 is higher than for lower M-values. However, in a narrow region near 
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Figure 6.56: October 15: Time and longshore-averaged longshore currents (u) 
for Cf = 0.002 and M = 0 ( ), M = 0.25 ( ), M = 0.5 ( - • 
- ) , M = 1 (- • .) and sled data (o). 

the shoreline (x < 40 m) the case associated with M = 1 exhibits the highest 

perturbation kinetic energy. This region corresponds to the part of the surf zone 

affected by the shoreline jet. 

It is instructive to analyze the mean momentum balance that leads to the 

generation of the mean longshore current profiles shown in Figure 6.56 in order 

to asses the roles of momentum mixing due to the instabilities as well as the 

eddy viscosity term. The time and longshore-averaged momentum balance in the 

longshore direction was derived in Section 6.3.2 and is given by 

( - | ^ ) + ( p - ( ^ > = (^>- (6.42) 

In this equation, the first term represents lateral momentum mixing induced by 

the instabilities, the second term represents bottom friction and the third term 

represents the effects of lateral momentum mixing due to processes other than 

the instabilities, herein referred to as the mixing due to the eddy viscosity term. 

These three terms balance the effect of the short wave forcing term on the right 
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Figure 6.57: October 15: Time and longshore-averaged longshore perturbation 
kinetic energy \(vP ^v^^) for Cf = 0.002 and M = 0 ( ), M = 
0.25 ( ), M = 0.5 ( ), M = 1 (• • •). 

hand side. The cross-shore variations of the terms for the four cases involving 

different M-values are shown in Figures 6.58 through 6.61. The longshore averages 

are performed over the entire width of the domain while the time averages are 

computed using the last 2.7 hours of the computed time series. 

For M = 0 (Figure 6.58), the short wave forcing is seen to be balanced 

by bottom friction and mixing induced by the instabilities since other mixing 

mechanisms are neglected. The residual is observed to be small indicating that 

the estimates are statistically steady. The short wave forcing function is seen to 

be localized in two regions causing a shoreline jet and a longshore current peak 

around the bar crest. Mixing due to the instabilities around the shoreline jet is 

small, so the strength of the shoreline jet is not affected by the instabilities. I t 

should be noted that the magnitude of the mixing term due to the instabilities is 

of the same order as the contribution due to bottom friction. 

For M = 0.25 (Figure 6.59), we note that the mixing due to the eddy 
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viscosity term now contributes to the mean balance, especially in the area of the 

shoreline jet where the instabilities are not very active. The magnitude of the 

mixing due to the (r^) term is small. Since the contribution of bottom friction 

is the same, the mixing caused by the instabilities at the current peak is slightly 

less; however, i t is the dominant mixing process. 

For M = 0.5 (Figure 6.59), the contribution of the (7^) term is seen to be 

more pronounced. The shorehne jet is affected by this term. The contribution 

from the instabilities is decreased slightly while the effect of the bottom friction 

has not been altered. 

Finally, for M = 1 (Figure 6.60), the contribution of the (TJ) term is seen to 

be significant. However, the instabilities are still providing the dominant mixing 

effect around the longshore current peak. The bottom friction contribution is 

the same as for the previous cases. This observation indicates that the generated 

longshore current displays the same structure for all cases regardless of the mixing 
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Figure 6.59: October 15: Mean longshore momentum balance for Cf = 0.002, 
M = 0.25. {u{dv/dx)) (thick ), - ( ^ ) ( ), - ( ^ ) (thin ), 

(•^u) (thick— —), residual (thin — —). 

Figure 6.60: October 15: Mean longshore momentum balance for c/ = 0.002, 
M = 0.5. {u{dv/dx)) (thick ), - ( ^ ) ( - • - ) , - ( ^ ) (thin ), 

{•^v) (thick — —), residual (thin — —). 
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Figure 6.61: October 15: Mean longshore momentum balance for Cf = 0.002, 
M = 1. (uidv/dx)) (thick ), -(Ty) ( - . - ) , -(Vl) (thin ), 

(•^v) (thick— —), residual (thin— —). 

coefficient M. This was also observed when analyzing the cross-shore distribution 

of the mean longshore current in Figure 6.56. Especially for M = 0.25, 0.5 and 

1, the longshore current profile in the region offshore of the bar trough displays 

a remarkably similar strength and shape. The momentum mixing required to 

generate this profile is in all three cases provided in different proportions by the 

two lateral mixing terms (r^) and (uidv/dx)). 

The contribution of the mixing term (r^) due to turbulence or the Taylor 

dispersion process to the momentum balance is seen to be small for realistic mixing 

coefficients of M = 0.25 and M = 0.5. Mixing caused by the instabilities is 

observed to be stronger. The contribution of the eddy viscosity term (r^) in the 

absence of shear instabilities can be assessed by confining the longshore length 

scale ofthe domain to prevent the growth of the instabilities, effectively simulating 

the one-dimensional problem. 

The mean momentum balance resulting from such a simulation for M = 
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Figure 6.62: October 15: Mean, longshore momentum balance in the absence of 
shear instabilities for Cf = 0.002 and M = 0.25. - ( ^ ) ( - • - ) , - ( T J ) 
(thin ), (•^v) (thick — —), residual (thin — —). 

0.25 is shown in Figure 6.62 and reveals that in the absence of instabilities the only 

mixing process is due to the (r^) term. The magnitude of the mixing effect around 

the location of the current peak is 0.5 xlO"^ m/s^. The mean longshore current 

profiles resulting from the simulations including and neglecting shear instabilities 

are shown in Figure 6.63 and are seen to be very different, confirming that mixing 

due to the instabilities is significant. These two current profiles can be considered 

to be the profiles before and after the onset of the instabilities. 

Our expectation is that mixing due to the (r^) term, which is present in 

the absence of instabilities, will continue to act in the presence of them while 

the mixing due to the instabilities is added to the system and alters the mean 

current profile further. However, we find that the mixing term (r^) becomes less 

important when the mixing due to the instabilities is considered. A comparison 

of the mixing terms (r^) in the absence and presence of the instabilities is shown 

in Figure 6.64 and shows that the contribution of these terms to the momentum 

balance is reduced significantly when shear instabilities are present. 
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Figure 6.63: October 15: Time and longshore-averaged longshore currents (v) 
for Cf = 0.002 and M = 0.25 suppressing ( ) and including (— 
—) shear instabilities. 
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Figure 6.64: October 15: Contribution to the mean momentum balance of the 
mixing term (r^) for Cf = 0.002 and M = 0.25 in the absence 
( ) and presence (— —) of shear instabilities. 
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Although the contribution of the momentum mixing due to turbulence or 

Taylor dispersion is smaller than the mixing caused by the instabilities themselves, 

the effect of the eddy viscosity mixing on the shear instabilities is significant. 

Mixing due to the instabilities acts on the mean current profile; however, mixing 

due to the eddy viscosity terms in the momentum equations acts on both the 

mean current as well as the shear instabilities. We had already observed that 

large values of M cause the propagation speed of the instabilities to decrease. 

Examining snapshots of the vorticity fields for different M-values we can further 

analyze the dissipative effects of the mixing terms. 

For M = 0, snapshots of the vorticity displayed in Figure 6.65 show the 

presence of strong vortices both in the nearshore as well as offshore whereas vor­

ticity fields for M = 0.5 (Figure 6.66) and M = 1 (Figure 6.67) show that the 

length scales associated with the disturbances increase since the fast oscillations 

are damped out by the diffusional effect of the eddy viscosity mixing term. The 

vortices associated with the higher M-values can also be observed to be weaker. 

6.6.2 Simulations of October 16 

Simulations for October 16 were carried out for three values of the mixing 

coefficient M given by 0, 0.25 and 0.5. The friction coefficient is kept constant 

at Cf = 0.0035. This value for the friction coefficient reproduced the propagation 

speed observed in the data. Time series of the resulting motions are shown in 

Figure 6.68. The time series were obtained in the trough region of the bar where 

measurements from current meters are available. 

The time series depicted in Figure 6.68 show that instabilities reach finite 

amplitude quicker for lower M . In the time series for M = 0.5 the generation of 
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Figure 6.67: October 15: Contour plots of vorticity g ( l /s) for Cj = 0.002, M = 1 
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a longshore current before the onset of instabilities is evident. As the instabilities 

reach finite amplitude, the mean current is also altered rapidly. The time series 

for M = 0 display the initial growth of disturbances with time scales of 200 

sec. Although lower frequency oscillations are evident later in the simulation, 

oscillations at 200 sec persist. As M is increased longer time oscillations become 

more prominent. 

Frequency-longshore wavenumber spectra of the longshore velocities are 

shown for the three cases as well as data in Figure 6.69. I t is observed that 

the propagation speeds decrease by less than 10% for higher values of M . The 

propagation speed inferred from the data is well reproduced. Spectra of the cross-

shore velocities shown in Figure 6.70 also reproduce the propagation speed of the 

data. It is noted that the spectra for the longshore as well as the cross-shore 

velocities do not exhibit significant differences for the different M values. 

Quantitative comparison of the frequency spectra of the computations and 

data are shown in Figure 6.71. As for October 15, we see that the spectrum of 

the longshore velocities is overpredicted for ƒ < 0.01 Hz and underpredicted for 

ƒ > 0.01 Hz. The cases involving different M-values do not exhibit significant 

differences. The energy contained in the shear wave band is similar for all three 

cases. The same statement can be made for the spectra of the cross-shore veloci­

ties. The case involving M = 0 is seen to be less energetic for ƒ < 0.01 Hz. The 

general trends of the spectra of the observed cross-shore velocities is reproduced 

for ƒ < 0.01 Hz; however, the spectra of the computations has a high decay rate 

for high frequencies. 

The time and longshore-averaged longshore currents for the three cases 

involving M = 0,0.25,0.5 are shown in Figure 6.72. Once again we notice that 

the mean current velocities are very similar. Especially the peak current and 
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Figure 6,68: October 16: Time series of velocities «, v and {v) (— —) at 
(a;,2/)=(35 m, Ly/2) and time series of velocities u and v of data. 
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Figure 6.69: October 16: Frequency-cyclic wavenumber spectra S{f,k) (m^/s) 
for computed and measured longsbore velocity at x =35 m. The 
value for Cest is 0.8 m/s, and is used in Equation (6.3) to construct 
the upper and lower cut-off lines ( - • - ) of the shear wave energy. 
Contour levels plotted are (10, 30, 60, 100, 200, 400, 800). The 
equation for the best fi t dispersion line (— —) is noted above each 
plot. 
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Figure 6.70: October 16: Frequency-cyclic wavenumber spectra S { f , k ) (m^/s) 
for computed and measured cross-shore velocity at x =35 m. The 
value for Cest is 0.8 m/s, and is used in Equation (6.3) to construct 
the upper and lower cut-off lines ( - • - ) of the shear wave energy. 
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equation for the best fit dispersion line (— —) is noted above each 
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Figure 6.71: October 16: Frequency spectra of (a) longshore and (b) cross-shore 
velocities for data (thick ), Cf = 0.0035 and M = 0 (thin ), 
M = 0.25 ( - - ) , M = 0.5 ( ) 

the seaward shear of the current profiles are very similar. Some differences exist 

around the area of the shoreline jet. Current measurements from the sled in the 

bar and trough regions are reproduced. The predicted maximum current is also 

of the measured size. 

The mean perturbation kinetic energy for the three cases is shown in Figure 

6.73. We observe the two peaks in the cross-shore distribution of the perturbation 

kinetic energy. The peaks are located around the peak of the mean longshore 

current depicted in Figure 6.72. It is suspected that the two peaks are associated 

with the layers of positive and negative vorticity just shoreward and seaward of the 

longshore current peak. The cross-shore distributions for the different iW-values 

display similar trends as for October 15. We notice that in the region shoreward 

of the longshore current peak and especially around a; = 30 m, the perturbation 

kinetic energy for the cases involving different M-values is very similar. This 

explains the minor differences in the frequency spectra for the different cases since 

time series used to generate the spectra were collected at cc = 35 m. However, 
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Figure 6.72: October 16: Time and longshore-averaged longshore currents {v) 
for Cf = 0.0035 and M = 0 ( ), M = 0.25 ( ), M = 0.5 ( - • 
- ) and sled data (o). 

seaward of the location of the longshore current peak, the energy associated with 

M = 0 is much higher than for lower values of M. Unfortunately, time series of 

current measurements are only available in the trough region of the bar. Therefore, 

we have no means of determining which M-value is more appropriate in this case. 

We wil l examine the mean momentum balance in the longshore direction 

for the three cases utilizing Figure 6.74. The contribution of the bottom friction 

is very similar for all three cases confirming that the resulting mean longshore 

current profile for all the cases should also be similar. The mixing caused by the 

instabihties in the trough region is almost identical in all three cases, confirming 

that differences between the cases should be minor in the bar trough region. 

The short wave forcing term is the same for all three cases. The eddy viscosity 

mixing term (r^) makes no contribution for M = 0. Its contribution increases 

as M increases. The term is especially active around the shoreline jet, where 

the shear instabilities do not induce mixing, and around the longshore current 

peak. We note that the mixing caused by the instabilities is much larger than 
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Figure 6.73: October 16: Time and longshore-averaged longshore perturbation 
kinetic energy | ( u ^ + ^ ) for Cf = 0.0035 and M = 0 ( ), 
M = 0.25 ( ), M = 0.5 ( - • - ) . 

mixing induced due to the (r^) term. However, the contribution due to the shear 

instabilities decreases as the contribution of the (r^) term increases. 

During the simulations for October 15, we found that the contribution of 

the mixing caused by the (r^) ternx is more pronounced in the absence of the 

instabilities. We test this hypothesis once more for October 16. Simulations are 

carried out with a narrow longshore width so that the generation of the instabilities 

is suppressed. The values for the coefficients are chosen as Cf = 0.0035 and 

M = 0.5. The resulting steady longshore current is depicted in Figure 6.76 and 

represents a balance between the short wave forcing, the bottom friction and 

lateral mixing due to turbulence or Taylor dispersion (Figure 6.75). We note that 

the size of the mixing term ( r ^ is 0.001 m/s^. When the shear instabilities are 

included, the resulting momentum balance shown in Figure 6.74 (c) suggests that 

the maximum contribution to the mean balance due to the shear instabilities is 

0.0015 m/s^ whereas the contribution of the ( r ^ term is reduced to 0.0005 m/s^. 

The resulting mean longshore current is shown in Figure 6.76. 
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Figure 6.74: October 16: Mean longshore momentum balance for c/ = 0.0035 
and (a) M = 0, (b) M = 0.25 and (c) ikf = 0.5. {u{dv/dx)) (thick 

), -(fy) ( ) , -(r^) (thin ), i^v) (thick - - ) , residual 
(thin ). 
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Figure 6.75: October 16: Mean longshore momentum balance in the absence of 
shear instabilities for c/ = 0.0035 and M = 0.5. -(T\,) ( - • - ) , - ( T ^ ) 

(thin ), (;§f) (thick — —), residual (thin — —). 

Figure 6.76: October 16: Time and longshore-averaged longshore currents (ü) 
for Cf — 0.0035 and M = 0.5 suppressing ( ) and including ( -
—) shear instabilities. 
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Figure 6.77: October 16: Contribution to the mean momentum balance of the 
mixing term -(TJ) for c/ = 0.0035 and M = 0.5 in the absence 
( ) and presence (— —) of shear instabilities. 

The contribution of the (r^) term in the absence and presence of shear 

instabihties are plotted together in Figure 6.77. The contributions are similar in 

the area of the shoreline jet where the instabilities are not active. However, the 

contribution is decreased by 50% if the instabilities are included. 

Snapshots of the vorticity field are depicted in Figure 6.78 for M =0, 0.25 

and 0.5. We notice that the length scales associated with the motions are larger as 

M increases. The layer of positive vorticity in the nearshore region appears to be of 

similar strength for the three cases. This observation is consistent with the finding 

that the perturbation kinetic energy for the cases does not differ significantly in 

the region shoreward of the longshore current peak. However, the layer of negative 

vorticity appears to be weaker for higher M , consistent with the observation that 

the perturbation kinetic energies for the three cases differ significantly offshore 

of the current peak. The amount of energy close to the offshore boundary also 

decreases for larger M. 
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Figure 6.78: October 16: Contour plots of vorticity q (1/s) at t = 5 hrs for 
Cf = 0.0035 and M = 0,0.25,0.5. 
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6.6.3 Simulations of October 18 

Simulations are carried out for October 18 using a fixed friction coefficient 

Cf of 0.003. The value of the mixing coefficient M is chosen as 0, 0.25 and 0.5. The 

reader is reminded that the instabilities were slightly weaker for October 18 than 

they were for October 15 and 16 and also displayed lower propagation speeds. 

Time series of the computed velocities as well as data are shown in Figure 

6.79. The time series clearly show that the spin-up time is longer for larger M 

confirming the dissipational nature of the mixing terms. The time series show less 

high frequency oscillations as M is increased. Especially the cross-shore velocities 

show that the instabilities have less energy for higher M. The generated mean 

longshore current has similar magnitude in all three cases. However, the longshore 

current generation for M = 0.5 is due in a large measure to the eddy viscosity 

mixing effects since the longshore current is generated prior to the onset of the 

instabilities. Oscillations at the time scale of 300 sec are evident in the time series 

for M = 0 and M = 0.25. Underlying longer oscillation can also be observed. 

Only oscillations with longer time scales are seen for M = 0.5 suggesting that the 

high frequency oscillations are damped out by the eddy viscosity mixing effects. 

We once again observe that near-zero longshore velocities occur for low values of 

M. Simultaneously, high cross-shore velocities are observed suggesting that the 

fiow in the bar trough region becomes offshore directed. 

Frequency-longshore wavenumber plots are depicted in Figures 6.80 and 

6.81 for the longshore and cross-shore velocities, respectively. The spectra of the 

longshore velocities for M = 0 and M = 0.25 do not show significant differences. 

The spectrum for M = 0.5 displays noticeably less energy. The differences in 

energy content for the three cases are especially evident in the spectra of the 

cross-shore velocities. The energy content is seen to decrease significantly as M 
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Figure 6.79: October 18: Time series of velocities u, v and (v) (— —) at 
{x,y)={35 m, Ly/2) and time series of velocities u and v of data. 
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increases. However, variations in the predicted propagation speeds are smalL 

Comparison ofthe computed and measured frequency spectra (Figure 6.82) 

show that the amount of energy in the range 0.002 < ƒ < 0.007 Hz is predicted 

reasonably well for the longshore velocities with M = 0 and M = 0.25. Energy 

at frequencies below this range are again overpredicted whereas energy above this 

range is underpredicted. Turning to the spectra of the cross-shore velocities we 

note that the case involving M = 0 produces results closest to the observations in 

the range 0.002 < ƒ < 0.007 Hz. The cases involving higher values for M cause 

underprediction. 

The time and longshore-averaged mean longshore current shown in Figure 

6.83 confirms that the similarity of the current profiles for different M-values is 

a robust feature. Some variability in the current maximum is observed but the 

overall shapes of the current profiles are seen to agree offshore of the bar trough. 

As seen in the previous days, the predictions for the magnitude of the shoreline 

jet vary. 

Examining Figure 6.84, we note that higher perturbation kinetic energies 

are observed throughout the modeling domain for lower M . The inflection point in 

the curves around the bar trough observed for October 15 and 16 is not observed 

on this day. This is consistent with the fact that significantly different levels of 

energy were observed in the frequency spectra for different M-values. 

The mean longshore momentum balance for the three cases (Figure 6.85) 

shows that the (r^) term is more active in the bar trough region. For M = 0.5, 

the contributions of mixing due to the instabihties and due to the (r^) term are 

closer in magnitude than for the previous days. However, the mixing due to the 

instabilities still dominates in the region of the longshore current peak. In turn, 
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Figure 6.80: October 18: Frequency-cyclic wavenumber spectra S { f , k ) (m^/s) 
for computed and measured longshore velocity at x —35 m. The 
value for Cest is 0.75 m/s, and is used in Equation (6.3) to construct 
the upper and lower cut-off lines ( - • - ) of the shear wave energy. 
Contour levels plotted are (10, 30, 60, 100, 200, 400, 800). The 
equation for the best fit dispersion line (— —) is noted above each 
plot. 
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Figure 6.81: October 18: Frequency-cyclic wavenumber spectra 5 ( / , A;) (m^/s) 
for computed and measured cross-shore velocity at x =35 m. The 
value for c^st is 0.75 m/s, and is used in Equation (6.3) to construct 
the upper and lower cut-off lines ( - • - ) of the shear wave energy. 
Contour levels plotted are (10, 30, 60, 100, 200, 400, 800). The 
equation for the best fit dispersion line (— —) is noted above each 
plot. 
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Figure 6.82: October 18: Frequency spectra of (a) longshore and (b) cross-shore 
velocities for data (thick ), Cf = 0.003 and M = 0 (thin ), 
M = 0.25 ( ), M = 0.5 ( ) 

Figure 6.83: October 18: Time and longshore-averaged longshore currents (v) 
for Cf = 0.003 and M = 0 ( ), M = 0.25 ( ), M = 0.5 ( - • 
- ) and sled data (o). 
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Figure 6.84: October 18: Time and longshore-averaged longshore perturbation 
kinetic energy ^{u^+v^) for Cf = 0.003 and M = 0 ( ), M = 
0.25 ( ), M = 0.5 ( - • - ) . 

the (r^) term is seen to dominate in the region a; < 25 m. 

Snapshots of the vorticity fields are depicted in Figure 6.86. For M = 0, 

we see that a relatively short longshore length scale is evident in the nearshore 

region. The features are energetic and shed vortex pairs offshore. For M = 0.25, 

especially the layer of negative vorticity is weaker. In addition, the length scales 

of the motions are longer. For M = 0.5, the vorticity field is reminiscent of the 

flow features observed during the plane beach simulations. The features have 

long length scales and are primarily conflned to the surf zone. Occasional vortex 

shedding occurs. The increase in the amount of eddy viscosity mixing causes the 

amount of high wavenumber oscillations to decrease. The result is a decrease 

in the number of features in the modeling domain, consequently the apparent 

longshore length scales of the motions increases. The motions are also weakened 

due to the dissipational effect of the mixing. 

228 



Figure 6.85: October 18: Mean longshore momentum balance for c/ = 0.003 
and (a) iW" = 0, (b) M = 0.25 and (c) M = 0.5. {u{dv/dx)) (thick 

), -i^y) ( - • - ) , - ( ^ ) (thin ), {%v) (thick - - ) , residual 
(thin ). 
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Figure 6.86: October 18: Contour plots of vorticity g (1/s) at i = 5 hrs for 
Cf = 0.003 and M = 0,0.25,0.5. 
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6.6.4 Summary 

In this section, we simulated the shear instability climate for October 15, 

16 and 18 at S U P E R D U C K for a fixed friction coefficient and a range of mixing 

coefficients. The choice of the friction coefficient was determined in the previ­

ous section by comparing the predicted and observed propagation speeds of the 

resulting motions. 

In the previous section, simulations were carried out for M = 0.25. The 

friction coefficient that best reproduced the observed propagation speed was deter­

mined. Variations in the predicted propagation speeds were seen to be significant 

when the friction factor was varied. In this section, we find that the predic­

tions of the propagation speed for fixed Cf show relatively minor variations for 

0 < M < 0.5. The variations in the predictions are less than 10%. This value is of 

the same order as the amount of uncertainty in the assessment of the propagation 

speed for a given frequency-wavenumber spectrum. 

As M is varied, the character of the instability chmate is observed to 

change. As M is increased, the spin-up time of the instabilities increases. In 

addition, the motions are weakened due to the diffusive character of the mixing 

terms, their longshore length scales also increase. 

One significant observation is that the longshore current peak and offshore 

shear do not vary for different values of M. Therefore, the total amount of mixing 

due to the instabilities and other processes is constant. Examination of the mean 

longshore momentum balance showed that mixing due to instabilities was the 

dominant effect. However, since the total amount of mixing is constant, the 

mixing due to the instabilities decreases as M is increased. Also noteworthy is 

the finding that the eddy viscosity mixing effects are less active in the presence 
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of the instabihties than they are in the absence of the instabihties. This finding 

indicates that the shear instabihties tend to dominate the longshore momentum 

balance. I f information about the mean current profile is needed, the inclusion 

of the mixing due to the instabilities is crucial. However, i f the nature of the 

instabihties themselves is analyzed, the inclusion of the effects of the eddy viscosity 

terms is important. In other words, the effects of the eddy viscosity terms are 

more pronounced in the shear instabihty climate and less pronounced in the mean 

longshore current. 

For October 15 and 16, the instability climate offshore of the bar trough 

was clearly affected by the choice of M. However, the energy levels in the trough 

region of the bar were similar, making i t difficult to distinguish between the cases 

when comparing to data. For October 18 more energy due to the instabilities was 

observed in the entire modehng domain. The simulations for October 18 show that 

the energy content in the data is best reproduced for M = 0. However, the case 

involving M = 0.5 is also of interest since the resulting motions are reminiscent 

of the motions obtained for a plane beach in Chapter 5. 

Frequency spectra comparisons showed that the shear instabilities appear 

to be energetic enough to account for the amount of energy observed in the mea­

surements. But the distribution of the energy in frequency is weighted towards 

lower frequencies. Data to model correspondence can be observed for the range of 

frequencies given by 0.002 < ƒ < 0.007 Hz. Energy at frequencies below this range 

is consistently overpredicted, whereas energy at frequencies above this range is un­

derpredicted. The modeled frequency spectra have a well defined drop-off with 

increasing frequency. In contrast, the data displays a broader spectral shape. 
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6.7 Discussion of Flow Properties 

In Cliapter 5, we found that the details of vortex interactions were best 

understood when examining the time evolution of the vorticity g as a function 

of longshore distance. Such figures illustrate the propagation speeds as well as 

energetics of the disturbances. In the plane beach simulations that were docu­

mented in Chapter 5, we found periodic disturbances with modulated amplitudes 

that occasionally collided and merged with each other. The details of the colli­

sion processes were examined. In this section we investigate i f similar interactions 

between vortices occur in the case of a barred beach. 

We choose four representative cases from the simulations documented in 

the previous sections. For October 15, we choose a representative case defined 

by the parameter choices c/ = 0.002 and M = 0.25. A sequence of snapshots of 

the vorticity field for this case was discussed in Section 6.5.1. In Figure 6.87 we 

show a contour plot of the vorticity q{xo, y, t) where XQ = 100 m. This cross-shore 

location corresponds to the position of the peak of the mean longshore current. 

The left panel of Figure 6.87 displays a time series of the vorticity g(a;o,yo,i) 

where yo = 860 m. This longshore location is also marked on the contour plot 

with a thick black line. The blue and purple regions represent positive vorticity 

whereas the yellow and orange regions represent negative vorticity. 

In comparison to similar plots obtained for the plane beach simulations. 

Figure 6.87 appears to display an unorganized character. However, the vortex 

interactions can still be picked out. We can see several energetic features with 

positive vorticity that propagate through the domain, the milder the slope of 

the resulting blue line the faster the propagation speed dy/dt. Smaller positive 

vorticity features are frequently observed to catch up with the large vortices. As 

an example, the positive vortex structure that is located at y = 1500 m at i = 2.7 
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hrs experiences about 4 vortex coUision events as i t propagates to y = 2750 m. 

The first coUision event occurs at y = 2200 m around t = 3.2 hrs. Many of 

the features identified for the plane beach simulations apply. The faster positive 

vortex is observed to catch up to the slower vortex in front of i t . As the two 

vortices attempt to merge, the trailing vortex is observed to gain energy and 

slow down. I t takes the place of the vortex in front, which loses almost all of 

its energy and speeds up to the original speed of the traihng wave. A phase 

shift is introduced at the time of the collision since the lines representing the 

lower and higher speeds do not intersect. The weakened disturbance in front 

propagates into a region of negative vorticity and continues to lose energy. Due to 

frequent collisions in the form described above, the pattern in Figure 6.87 displays 

strong propagating positive vortex features with long "streaks" on their left sides, 

representing the faster vortices as they catch up, and small "streaks" on their 

right sides, representing the vortices in front that lose energy but gain speed as a 

result of the interaction. 

The faster vortices appear to originate from regions of negative vorticity. 

As an example, we can observe that a vortex originates in an area of negative 

vorticity at y = 860 m (where the thick black line is located) and t = 3.25 hrs. 

It propagates through the domain and interacts with the slower positive vorticity 

front at y = 2000 m and t = 3.6 hrs. A closer examination of the origin of the 

vortex reveals that i t is actually related to a weakened vortex that has propagated 

into the region of negative vorticity after a collision event that took place at y = 0 

m and t = 3.1 hrs. The vortex propagating away from this earlier collision can be 

observed to weaken further as i t propagates. I t almost disappears around y = 600 

m but then begins to gain energy and forms the vortex at y = 860 m and t = 3.25 

hrs. 
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The interactions described herein also occur in larger scales. A cluster of 

vortices that can be seen at y = 0 m and t = 4 hrs is observed to interact in much 

the same way with the cluster of vortices behind i t . The collision process occurs 

at y = 860 m (where the thick black line is located) and t = 4.5 hrs. The phase 

shift introduced due to the interaction is large. 

For October 16, we choose a representative case defined by Cf = 0.0035 

and M = 0.25. The time and longshore variation of the vorticity q at x = 100 m 

is shown in Figure 6.88. The time series on the left panel is recorded at y = 696 

m. We notice that the qualitative nature of the pattern is similar to October 15. 

The main difference between the patterns for the two days is due to the fact that 

vortices for October 16 do not display the tendency to form clusters. The vortices 

are well defined and very localized as can also be deduced from the time series on 

the left panel of the figure. Collisions of the form observed for October 15 exist. 

Some vortices undergo multiple collisions. The positive vortex located at y = 696 

m and t = 4 hrs undergoes a collision at about y = 1250 m, consequently speeds 

up and loses energy. It encounters another vortex in front of i t , interacts again, 

this time gaining energy and slowing down. In simulations for a plane beach we 

had noticed that the collision processes reduced the number of disturbances in 

the domain. Here we see that the weakened vortices sometimes dissipate and the 

number of disturbances in the domain is reduced. At other times, however, they 

do not disappear and gain energy again. Larger scale collision events also occur. 

One such event can be observed around y = 1000 m and t = 3.8 hrs. 

The number of positive vortices in the domain at any instant can be de­

duced from Figure 6.88 by drawing a horizontal transect at a desired time and 

analyzing the blue or purple lines crossing that transect. In this manner, we can 

observe that the flow field has a transient nature since a horizontal transect drawn 
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Figure 6.87: October 15: Contour plot of vorticity q as a function of y and t at 
a: = 100 m. Cf = 0.002 and M = 0.25. 
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at t = 2.8 hrs, for example, shows the existence of 7 disturbances in the domain 

whereas a transect at i = 3.25 hrs indicates 9 vortices. A snapshot at t = 4.1 

hrs, on the other hand, indicates 6 disturbances. The time dependent behavior, 

therefore, involves the strengthening, weakening and interaction of the vortices 

leading to changes in the number of waves in the domain. 

The vorticity structure for October 18 is analyzed for Cf = 0.003 and two 

values of the mixing coefhcient given by 0 and 0.5. Figure 6.89 shows the vorticity 

pattern for M = 0 as a function of y and t at XQ = 100 m. On October 18, the peak 

of the longshore current occurs about 75 m offshore (see Figure 6.83). Therefore, 

the cross-shore location Xo = 100 m corresponds to the layer of negative vorticity 

seaward of the longshore current peak. The time series shown on the left panel is 

recorded at y = 870 m. In contrast to the previous figures, we observe that more 

disturbances exist in the domain. Broad regions of negative vorticity do not exist. 

Instead, localized positive (purple) and negative (orange) vortices are observed to 

propagate together as pairs. Interactions between vortices occur but are not as 

pronounced as for the previous cases. The interactions do not cause a reduction in 

the number of vortices in the domain. A l l the disturbances appear to propagate 

at similar speeds. I t can be confirmed that this speed is less than the propagation 

speed for October 15 or 16. 

A final case involves a value for the mixing coefficient of M = 0.5. While 

a analyzing snapshot of vorticity for this case (see Figure 6.86), we had observed 

that the behavior in this case is reminiscent of the simulations for a plane beach. 

Contour plots of q{xo,y,t) with XQ = 100 m are shown in Figure 6.90 along 

with a time series of the vorticity at y = 870 m. Positive vortices are localized 

and propagate in the longshore direction. The pattern is indeed similar to the 

pattern observed during the plane beach simulations shown in Figure 5.22. The 
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Figure 6.88: October 16: Contour plot of vorticity g as a function of y and t at 
X = 100 m. Cf = 0.0035 and M = 0.25. 
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Figure 6.89: October 18: Contotir plot of vorticity q as a function of y and t at 
X = 100 m. Cf = 0.003 and M = 0. 

239 



interactions between the vortices are clearh^ visible. In contrast to the plane beach 

simulations, the vortices that axe weakened as a result of the collisions do not 

dissipate in the regions of negative vorticity. Instead, they propagate through the 

regions of negative vorticity and interact with the next region of positive vorticity 

that they encounter. This type of behavior was also observed for October 15 and 

16, but was not as clearly visible. 

6.8 Summary 

In this chapter, numerical simulations have been carried out to model the 

shear instability climate during four days of the SUPERDUCK field experiment. 

The bottom bathymetries for the four simtilated days are characterized by a steep 

foreshore slope and a shore-parallel bar formation. Bathymetry measurements at a 

cross-shore transect axe used, straight-and-pa.rallel bottom contours are assumed. 

The short wave forcing terms in the goAi'erning ecjuations axe specified by 

utilizingthe wave height transformation model by Thornton and Guza (1983). Fol­

lowing Whitford (1988), we assume that the incoming wave spectrum can be char­

acterized as narrow banded and that the wave heights are Rayleigh distribxited. 

The short wave field is considered to be stationary and the time-invariant short 

wa.ve forcing terms in the governing equations are specified using formulations for 

the radiation stress terms given hj linear water wave theory. 

Bottom friction effects are included utilizing linear damping terms in the 

momentum equations. The size of the friction coefficient was deduced from mea.-

surements by Whitford and Thornton (1996) for the four modeled days . Dominant 

effects of the Taylor dispersion process outlined by Svendsen and Putrevu (1994) 

are inchided in a rudimentary fashion. Turbulent momentum mixing is neglected 
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Figure 6.90: October 18: Contour plot of vorticity q as a. function of y and t at 
X = 100 i n . Cf = 0.003 and M = 0.5. 
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unless i t is reinforced by the Taylor dispersion process. The order of magnitude 

of the mixing terms is assessed so that a realistic range for the mixing coefficient 

can be specified. Simulations are carried out for each day for a range of bottom 

friction and mixing coefficients. 

In summary, we find that a stronger mean current, more energetic fluctua­

tions in the velocities, faster propagation speeds and more energetic vortex struc­

tures result as the friction coefficient is decreased. On the other hand, increasing 

the mixing coefficient results in less energetic motions with longer longshore length 

scales since the high wavenumber components are preferentially damped by the 

mixing terms. Even for high values of the mixing coefficient, the lateral momen­

tum mixing caused by the instabilities is found to make an important contribution 

to the mean momentum balance and, therefore, is an important factor in the gen­

eration of a mean longshore current. Remarkably similar mean longshore current 

profiles are obtained for all values of the mixing coefficient. This observation sug­

gests that the total amount of lateral mixing, which is a combination of mixing 

due to the instabilities and other mechanisms in the surf zone, is constant. 

The propagation speed of the shear instabilities agrees well with observa­

tions for a realistic value for the friction coefficient. Frequency spectra comparisons 

of computations to observations show that the energy content in the frequency 

range 0.002 < ƒ < 0.007 Hz can be reproduced. However, energy at lower fre­

quencies is substantially overpredicted whereas energy at higher frequencies is 

underpredicted. The predictions of the peak longshore current values agree wi th 

current measurements from the sled. 

Although the propagation speeds of the instabilities as well as the maxi­

mum longshore current are predicted with satisfactory agreement, the observed 

frequency spectra are not modeled very well. The computed shear instabilities 
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appear to have enough energy to account for the energy present in the shear wave 

band in data; however, the distribution of the energy in the frequency spectrum 

is not reproduced. 

The details of the time-dependent behavior of the flow structures is ana­

lyzed in the last section. We find that vortex collisions of the type observed for 

plane beach simulations occur. The time-dependent nature of the fiow involves 

the strengthening, weakening and interaction of the vortices. Vortices are fre­

quently shed offshore. During this process the fiow structures exhibit properties 

of transient rip currents. 

243 



Chapter 7 

I N T E R A C T I O N S W I T H T H E SHORT W A V E C L I M A T E 

In this chapter we document the extensions to the modehng effort that were 

performed in order to address some of its shortcomings. Example calculations are 

not presented since they are the subject of future investigations. 

7.1 Introduction 

The nonlinear shallow water equations with short wave forcing, momentum 

mixing and bottom friction terms added provide a good basis for modeling the 

long-time evolution of shear instabilities of the longshore current. They were 

derived in Chapter 2 and are given by 

Here, rj is the mean water surface elevation above the still water level, h is the 

water depth with respect to the still water level, d = (h + rj) is the total water 

depth, u and v are the depth-averaged current velocities in the x and y directions, 

respectively, where x points offshore and y points in the longshore direction. 

at ox ay 
du du du drj 

= - g ^ + fx + T ' - Ux 

+ ry + r y - Tiy. (7.1) 

244 



The parameters fx and fy represent short wave forcing effects, and 

represent the effects of lateral mixing due to turbulence or other mechanisms. 

Bottom friction effects are included through the terms TI,X and Thy. The subscripts 

denote the direction in which the stresses act. 

In the previous chapters, the behavior of shear instabilities of the longshore 

current has been analyzed in mathematically simple settings. The longshore cur­

rent has been assumed to be forced by time-invariant forcing terms fx and fy. 

Temporally and spatially coherent features in the short wave field as well as slow 

changes in the wave climate, such as wave groups, have therefore been excluded. 

Furthermore, the effects of the time-varying currents on the wave field have also 

been neglected. Even in the absence of offshore wave groups, this interaction wil l 

cause time variability of the short wave field. Therefore, in order to model a more 

realistic short wave forcing field, the assumption of a stationary wave field has to 

be lifted. This can be achieved by computing the time-dependent short wave field 

utilizing the energy equation for the short wave motions. 

The primary effect of the current field on the short wave motions on an open 

coast is in the form of wave refraction around opposing currents. I f the opposing 

currents are strong, current limited breaking can also occur. The results of the 

computations for shear instabilities on plane and barred beaches display offshore 

directed motions that are potentially strong enough to cause wave refraction. 

The refraction of the short waves around offshore directed currents wi l l , in turn, 

introduce longshore variability of the short wave forcing into the problem. This 

type of feedback is likely to intensify the offshore directed features associated with 

shear instabilities much like rip currents are intensified by wave refraction. The 

inclusion of this effect is likely to improve the spatial distributions of the current 

velocities. 
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Anotiier shortcoming of the modeling effort presented in the previous chap­

ters involves the simphstic treatment of the bottom friction terms and Ux- The 

mathematically simplest formulation for bottom friction was utilized, resulting in 

linear damping terms in the momentum equations. We show in the previous 

chapters that the bottom friction coefhcient is an important factor controlling the 

behavior of the resulting motions. The inclusion of the nonlinear formulation for 

the bottom friction can, therefore, lead to more reahstic simulations. 

In the next sections we discuss the incorporation of the short wave energy 

equation, the short wave refraction equation as well as the incorporation of non­

linear bottom friction into the modeling effort. The effect of the currents will 

be included while modeling the short wave transformation. However, we retain 

the assumption that the wave field is well described by linear water wave theory. 

The treatment of the effects summarized in this section is carried out parallel to 

Ebersole and Dalrymple (1979). 

7.2 Short Wave Transformation in the Presence of Currents 

The shoaling of the short waves is affected by the interaction of waves 

and currents. The effect on the waves can be determined by solving the energy 

equation for the short waves and can be captured even if linear water wave theory 

is used. The linearized form of the energy equation for the short waves including 

the effects of currents has been derived by Phillips (1977) and can be expressed 

as 

^ + [E [u + Cg cos e)] + -^[E{u + Cg sine)' 

^ du • (dv du\ „ dv , , 
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In this equation, E is the short wave energy density, Cg is the group velocity of 

the short waves, 9 is the angle of incidence of the short waves, ef, is the dissipation 

due to wave breaking, and S^x-, S^y and Syy are the components of the radiation 

stress tensor. The cross-shore variations in the wave celerity c, the group velocity 

Cg and the angle of incidence 9 have to be computed accounting for the presence 

of the current velocities. 

The energy equation (7.2) is integrated in time along with the continuity 

and momentum equations (7.1) using an explicit Adams-Bashforth scheme. The 

spatial derivatives contained in (7.2) are computed using a Fourier-Chebyshev 

collocation method as described in Chapter 3. For a smooth start-up of the 

model, the initial conditions are specified such that there is no initial motion in 

the modeling domain. The short waves of wave height H are introduced at the 

offshore boundary utilizing a ramping function in time. 

The refraction of short waves is governed by the irrotationality of the 

wavenumber given by 

^{k sin 9) - ^(k cos 9) = 0. (7.3) 
ox oy 

For straight-and-parallel bottom contours this equation reduces to Snell's law, 

which has been utilized in the computation ofthe wave field in Chapter 6. 

Furthermore, the dispersion relationship for the short waves in the presence 

of currents is given by 

(u) - ku cos 9 - kv sin 9^ = gk tanh kh, (7.4) 

where LO is the absolute frequency (27r/r) and T is the short wave period. After the 

current velocities are computed from the governing equations, the value of k can 

be determined at each time step utilizing a Newton-Raphson iteration method. 
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The refraction equation (7.3) can be rewritten as 

dA_dB_ 

dx dy ^ ' ' 

where A = fcsin(9 and 5 = kcosO. Given the values for k and $ at the offshore 

boundary, the above equation is integrated towards the shoreline with a explicit 

forward stepping scheme. The longshore derivatives in the equation are computed 

using Fourier collocation. The wave direction 9 is then given hy 9 = arcsin(A/^). 

7.3 Bottom Friction Formulation 

The short wave-averaged bottom friction term Tba in the governing equa­

tions (7.1) can be expressed in empirical form as 

T-fcc = ^ C / | t t - | - Ü 6 | ( U „ -h U f c „ ) , (7.6) 

where the index a represents the x and y directions, u is the current vector, Uh 

is the near-bottom short wave orbital velocity vector and the overbar denotes 

time-averaging over the short wave period. The short wave orbital velocity can 

be expressed as 

Üha = UoaCOSc/) (7.7) 

where (f) is the phase function of the short waves. Putrevu and Svendsen (1991) 

derived the form of the bottom friction term for arbitrary wave and current sit­

uations following the derivation by Liu and Dalrymple (1978) by performing the 

time-averaging in (7.6). The resulting expression for the bottom friction term can 

be written as 
1 

[Pl{</>)Ua + M^>oa\ , (7.8) 

where UQ is the magnitude of the wave orbital velocity and 

/?i(<^) = (S^+ 2Scos9cCos^ + cos^(f>y^^ 

H4>) = (3M)cos<t>. (7.9) 
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In the above, 6c is the angle between the current vector and the wave orbital 

velocity vector and can be computed from 

9c = arctan 

and 5 is defined as the ratio of the magnitude of the current vector to the magni­

tude of the wave velocity vector 

«0 

Investigators such as Longuet-Higgins (1970) and Liu and Dalrymple (1978) de­

rived approximations for this expression for several special cases involving only 

longshore directed currents. Weak current-small angle of incidence, weak current-

large angle of incidence or strong current approximations exist. 

Using the above definitions, the nonlinear bottom friction terms in the x 

and y directions will be given by 

1 2 
Uy = -^CfUQ 

l^^f^o TT hcosÖcosc?^ (3i{(j))d(j) , 

a LzTT Jo \Uo / 

1. (— +sin 9 COS A I3i{(t>)d<p\ . (7.12) 
27r Jo Vuo / J 

The orbital velocity UQ is defined utilizing linear theory as discussed in 

Chapter 2. The integrals over phase on the right-hand-sides of these expressions 

have to be evaluated at each time step. Following Ostendorf and Madsen (1979), 

the integrations in (7.12) are carried out using a five point Gaussian quadrature 

formula given by 

— T'' f{4>)d(f> = 0.284/(7r) + 0.239 [/(1.5387r) + /(0.4627r)^ 
27T Jo 

+ 0.118[/(1.9067r) +/(0.0947r)]. (7.13) 
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Figure 7 .1: October 10: Time series of measured longshore current. 

7.4 Suggestions for Appl icat ions 

The extended model described above can be used to simulate vorticity as 

well as gravity-dominated low frequency motions. Three possible applications of 

the extended model are stated in this section and define our short term goals. 

In Chapter 6, we simulated the shear instability climate for realistic barred 

profiles as well as realistic short wave conditions that were derived from observa­

tions made on October 15 through 18 during the SUPERDUCK experiment. On 

these days, the short wave climate was relatively stationary. On other days during 

the experiment, the short wave field exhibited time variations. One such day was 

October 10. Observations reported by Oltman-Shay et al. (1989) show that within 

the course of 4 hours, the offshore significant wind wave height increased from 0.4 

m to 2.1 m. The southward flowing longshore current in the surf zone increased 

from 0.1 m/s to 2 m/s. Time series of the longshore velocities recorded on Octo­

ber 10 (see Figure 7.1) show the generation of the longshore current due to the 

increase in offshore wave heights. The time series also show that the magnitudes 

of the velocity oscillations at the shear wave frequencies dramatically change. The 

generation of the longshore current and the spin-up of low frequency motions is 

observed to occur simultaneously. 
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The observations on October 10 raise questions about the time scales re­

quired for the generation of a longshore current and associated shear instabilities. 

The extensions of the modeling effort outlined in this chapter provide the means 

to study the time-dependent generation of longshore currents and associated shear 

instabilities. The situation on October 10 can be simulated by modeling the time-

dependent short wave forcing terms. The energy dissipation model of Thornton 

and Guza (1983) can again be applied. However, the evolution of a strong shore­

line jet is inevitable. Therefore, it is instructive to study a longshore current and 

shear wave spin-up in a simpler setting first. A realistic plane beach geometry, 

such as the one for the NsTS experiment at Leadbetter beach provides a good 

starting point. Information about the spin-up time scales of a longshore current 

in the absence of shear instabilities should be obtained first. Subsequently, the 

spin-up period in the presence of the instabilities can be simulated to observe i f 

the instabilities alter the spin-up time of the longshore current and if simultaneous 

growth of the longshore current and instabilities occurs. 

The extended model can also be used to investigate the effects of wave-

current interaction on the offshore directed features associated with fully devel­

oped shear instabilities. In order to asses the importance of this effect, the shear 

instability climate in a simple setting can be simulated in the absence as well as 

in the presence of wave-current interaction terms. Simulations for a plane beach 

situation documented in Chapter 5 showed that cross-shore velocities of 0.2 m/s 

can be obtained when the shear instability climate is considered. The plane beach 

geometry for the NSTS experiment at Leadbetter beach can be utilized to study 

the interactions in a realistic setting. 

During the simulations of the S u P E R D U C K experiment, model to data 
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agreement for October 17 was observed to be poor. Observations show near-

zero velocities shoreward of the nearshore bar, whereas model predictions suggest 

that high mean velocities exist in that region. A possible explanation for the 

discrepancy was proposed by Whitford (1988) who stated that the dynamics are 

dictated by intersecting wave trains formed by the wind waves and less energetic 

swell approaching the shore from different directions, causing opposing currents 

in the bar trough. Haller et al. (1997) suggested that in the presence of such 

intersecting wave trains, the radiation stress forcing terms wil l also exhibit long­

shore variations and could directly force motions at the shear wave tinie scales. 

This possibility can be investigated by neglecting wave-current interaction and 

imposing the variable radiation stress forcing. 
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Chapter 8 

S U M M A R Y AND C O N C L U S I O N S 

The focus of this work has been the numerical simulation of nonlinear shear 

instabilities of the surf zone longshore current. For the purposes of analyzing the 

long-time behavior of shear instabilities, equations governing the depth-averaged 

currents in the surf zone were solved numerically. The short wave and depth-

averaged continuity and momentum equations form a two-dimensional model for 

the time-varying behavior of surf zone currents. They are in the form of the 

shallow water equations with additional terms to account for the forcing, damping 

and diffusion of the currents. 

Since the momentum equations are time-averaged over the time scale of 

the short waves, the effects of motions at the short wave time scales are reduced 

to a short wave forcing term, whereas effects at the turbulence time scales are 

reduced to momentum mixing terms. Depth-averaging the resulting equations 

causes the effects of the depth variations in the surf zone currents to be reduced 

to several new terms in the depth-aver aged momentum equations. These terms 

have been identified by Svendsen and Putrevu (1994) and Putrevu and Svendsen 

(1997). The dominant effect due to these terms is additional lateral momentum 

mixing. 
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In the scope of this study, the effects of short wave forcing, bottom friction, 

turbulent momentum mixing as well as the effects of nonuniformities in the current 

velocities were included in a rudimentary fashion. We incorporated simplifying 

assumptions that reduced the effects of these processes to the mathematically sim­

plest formulations. The bottom friction effects were modeled using linear damping 

terms in the momentum equations with an empirical friction coefficient. The mix­

ing processes were parameterized using an eddy viscosity formulation. A mixing 

coefficient was introduced. The short wave forcing effects were modeled utilizing 

linear water wave theory. Although linear wave theory has many limitations in 

the surf zone, the ease of application for a range of conditions has made i t the tool 

of choice. These simple formulations were purposefully incorporated to study the 

evolution of shear instabilities in a mathematically simple setting. 

Spectral collocation methods were used to compute the spatial derivatives 

in the governing equations. Given initial and boundary conditions, the time evolu­

tion of the current field was computed using an explicit time integration method. 

Since our primary interest is in the simulation of temporal instabilities that are 

longshore progressive, periodic boundaries were utilized in the longshore direction. 

A curvilinear moving boundary condition was constructed at the shoreline using 

an Eulerian model in conjunction with a moving grid. The movement of the grid 

was damped with distance from the shoreline. An absorbing-generating boundary 

condition developed by Van Dongeren and Svendsen (1997) was applied at the 

offshore boundary. The boundary condition has been shown to perform well for 

gravity wave motions exiting the domain of interest. However, the boundary was 

not transparent to vorticity motions. 

The question of whether the method is capable of reproducing unstable 

behavior in a well understood case was addressed by modeling the growth of 
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subharmonic standing edge waves. These waves evolve on a beach as a result 

of an instability of a normally incident (and reflected) long-crested wave. This 

instability has been studied extensively, and predictions for equilibrium edge wave 

amplitudes as a function of incident wave conditions and frictional damping rates 

are available. The present method was observed to be capable of reproducing 

the neutral stability boundaries and equihbrium amphtude predictions for this 

particular class of motions. 

The solution method was applied to the simulation of shear instabilities of 

the longshore current on plane and barred beaches. The simulations for a plane 

beach were carried out using an analytic longshore current profile. We found 

that the instabilities grow to finite amplitude. The amplitude of the fiuctuation 

velocity in the longshore direction was observed to reach values of 50% of the peak 

longshore current. The cross-shore velocity amplitudes reached values of 20% of 

the peak longshore current. We also found that the propagation speed associated 

with larger disturbances was lower. This finding suggests that nonlinearity acts 

to reduce the propagation speed of the motions indicating negative amplitude 

dispersion. 

We examined the effect of including the wave-induced steady setup and the 

shoreline fluctuations due to the instabilities. The surface elevations, and hence 

the shoreline runup due to the instabilities was found to be small for this case. 

The presence of the steady setup did not alter the character of the resulting mo­

tions. A more conclusive statement about the effect of the setup on the instability 

mechanism can, however, not be made. Dalrymple and Lozano (1978) previously 

showed that, in addition to the solution consisting of a steady setup, a neutrally 

stable solution in the form of steady rip current circulation cells exist for normally 

incident waves over straight-and-parallel contours. An instability mechanism that 
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can lead to these neutrally stable solutions has not been identified to date. I f such 

a mechanism is present, the existence of a longshore current wil l alter the neutral 

solution and advect features in the longshore direction. This possibility has to be 

investigated. 

Results for the plane beach showed that the initial development of the flow 

is dominated by vortex coUision and pairing events. The resulting flow structures 

exhibit offshore directed velocity vectors and are observed to propagate in the 

longshore direction at a fraction of the longshore current peak. These results 

are intriguing and possibly suggestive of a generation mechanism for migrating 

rip currents. A data set that involved observations of rip currents on a plane 

beach was obtained during the NSTS experiment at Torrey Pines Beach in 1978. 

Tang and Dalrymple (1989) reported that "migrating and pulsating" rip currents 

were observed during this experiment. The migration velocities were such that 

osciUations with time scales of 1000 sec or longer were observed. Simulations for 

the plane beach case documented in this study showed the presence of migrating 

rip-hke features. "Pulsating" motions were not observed since the features in the 

plane beach simulations display a highly periodic character. 

"Pulsating" features were, however, observed during the simulations of 

the SUPERDUCK field experiment, where the bathymetry is characterized by a 

shore-parallel bar formation. Meandering longshore currents were first observed 

by Oltman-Shay et al. (1989) during this experiment. The shear wave chmate at 

SUPERDUCK is very distinct since the shear wave motions dominate the frequencies 

less than 0.01 Hz. Computations have been carried out for four days from the field 

experiment for a realistic range of friction and mixing coefficients in an attempt to 

find the values for the coefficients that best reproduce the observed propagation 

speed and energy content. Measured time series collected in the trough region 
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of the bar formation were utilized for data to model comparisons. A total of 18 

model runs were documented in Chapter 6. 

The results of the simulations showed that vortex collisions of the type 

observed for plane beach simulations occur. The time-dependent nature of the flow 

involves the strengthening, weakening and interaction of the vortices. Vortices are 

frequently shed offshore. During this process the flow structures exhibit properties 

of transient rip currents. 

We found that a stronger mean longshore current, more energetic fluctu­

ation velocities and faster propagation speeds result i f the friction factor is de­

creased. For the narrow range of friction coefficients utilized, the longshore length 

scales of the motions were not affected, but the vortex fields were more energetic 

at all cross-shore locations for smaller friction factor. For three days from the 

S u P E R D U C K data set, observed propagation speeds were reproduced. The gen­

eral shape of the frequency-longshore wavenumber spectra of the velocities was 

reproduced for frequencies less than 0.01 Hz. 

The effects of mixing were analyzed by fixing the friction coefficient at 

the value that reproduced the observed propagation speed. We found that an 

increase in the mixing coefficient causes relatively small variations in the prop­

agation speeds. The resulting motions had longer longshore length scales. The 

total energy in the fluctuations decreased for higher mixing coefficient. However, 

differences in fluctuation energy are less pronounced in the nearshore region, es­

pecially in the bar trough. Since velocity observations during S u P E R D U C K were 

carried out in the bar trough region, i t can at times be difficult to deduce the "cor­

rect" value ofthe mixing coefficient by comparing measurements to computations. 

Time series for a range of mixing coefficients can represent the data in the bar 

trough region with the same degree of accuracy, making i t difficult to discriminate 
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between the cases. Although similar in the bar trough region, the cases associ­

ated with the different mixing coefficients are very different since an increase in 

the mixing coefficient results in longer, less energetic motions with weaker vortices 

throughout most of the modeling domain. The existence of current measurements 

on the bar crest or offshore of the bar crest would be beneficial in order to as­

sess with a higher degree of confidence which mixing coefficient reproduces data 

best. Such measurements were collected during the D E L I L A H experiment, where 

an alongshore array of current meters was deployed offshore of the bar crest. An 

alongshore array of current meters in the bar trough region as well as a cross-

shore current meter array were also deployed during D E L I L A H . The existence of 

the cross-shore array makes i t possible to compare cross-shore profiles of the pre­

dicted mean longshore velocity with data. Such comparisons could only be made 

with sled measurements at SUPERDUCK, but i t was already pointed out that those 

comparisons must be interpreted with care due to the sequential nature of the sled 

data and the different averaging periods associated with sled measurements and 

model results. 

Observations at D E L I L A H showed that the shear instability climate was not 

dominant at low frequencies. Instead, infragravity and far-infragravity motions 

coexisted at low frequencies. The model developed in this study is especially well 

suited for studies where gravity wave motions and vorticity motions are considered 

in tandem. Therefore, simulations of the D E L I L A H experiment are of interest. 

A shortcoming of the current modeling effort is related to the predictions 

of wave height decay. The wave height transformation model by Whitford (1988), 

which is based on Thornton and Guza (1983), is utilized. Since this model as­

sumes that all wave energy is dissipated in the surf zone, a strong jet of longshore 

velocities is predicted close to the shoreline. Given the fact that the foreshore 

258 



slope at SUPERDUCK has a relatively large value of 0.1, the assumption of total 

dissipation might not be entirely justified. In addition, the longshore current ve­

locity is assumed to be zero at the shoreline boundary. This condition might also 

not be reahstic, as discussed by Brochini and Peregrine (1996). As a result, an 

unrealistically high peak and large gradients of the velocities are predicted close 

to the shoreline. Although there is no indication from the computations that the 

shorehne jet contributes to the computed shear instability climate, the modeling 

of the longshore current profile is nonetheless unreasonable. 

As a result of the simulations for the SUPERDUCK experiment, we find that 

the shear instabilities provide a significant amount of lateral momentum mixing. 

The momentum mixing due to the instabilities is especially pronounced around 

the longshore current peak. Mixing is also induced in the bar trough region 

causing the generation of significant mean longshore current velocities even in the 

absence of other more traditional mixing mechanisms. In the presence of other 

mixing mechanisms, that we parameterize using an eddy viscosity formulation, 

the mixing due to the instabihties decreases. We find that the total amount of 

mixing in the surf zone is a constant for a fixed friction coefficient, so that virtually 

the same mean longshore current profile is generated regardless of the value of the 

mixing coefficient. I f the mixing coefficient is increased, the amount of mixing due 

to the instabilities decreases proportionally. 

Examining the mean longshore momentum balance, we found that the mix­

ing induced by the instabilities was larger than mixing due to the eddy viscosity 

terms for reasonable mixing coefficients. In addition, we found that the contri­

bution of the eddy viscosity terms is larger in the absence of instabilities than 

it is in the presence of instabilities. This suggests that in the presence of shear 

instabilities in a surf zone, the mixing associated with the instabilities dominates 
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the momentum mixing process in the surf zone. We note that the cross-shore 

distribution of the momentum mixing due to the instabilities is such that the lo­

cation of the longshore current peak is not altered. For all simulations carried out 

for the SUPERDUCK experiment, the longshore current peak was located over the 

bar crest. Sled measurements during SUPERDUCK also indicate that the current 

maximum occurred on the bar crest. It is noted that a useful engineering tool 

would be obtained if an appropriate parameterization of the mixing induced by 

the shear instabihties can be constructed. The mean longshore current profile 

in the presence of the instabilities can then be computed without carrying out 

lengthy computations of the time-dependent nature of the flow. 

The situations simulated for October 15, 16 and 18 correspond to storm 

events. Results from simulations showed the presence of energetic vortices in the 

surf zone. I t was observed that the vortices frequently detach from the surf zone 

and are shed offshore. These vortices have the potential of transporting sediment 

offshore. In situations where weaker currents are present in the surf zone (such 

as model predictions for October 17) the resulting structures are weaker and only 

occasionally shed vortices offshore, resulting in less potential to transport sediment 

offshore. 

Quantitative comparison of computations and data were carried out by 

examining the computed and measured frequency spectra for the value of the 

friction coefficient that reproduced the observed propagation speeds. We found 

that for all days (except October 17) energy in the frequency range 0.002 < ƒ < 

0.007 Hz was predicted reasonably well, whereas energy at frequencies below this 

range was consistently overpredicted. Energy for ƒ > 0.01 Hz was consistently 

underpredicted. For October 17, data comparison was poor. We suspect that the 

dynamics on this day are dictated by intersecting wave trains at the wind wave 
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and swell frequencies. Such, an offshore wave field has the potential of directly 

forcing low frequency vorticity motions (Haller et a/., 1997). This possibility can 

be explored using the extensions to the model described in Chapter 7. 

The computed shear instabilities appear to have enough energy to account 

for the energy present in the shear wave band in data; however, the distribution 

of the energy in the frequency spectrum is not reproduced. Other mechanisms 

are necessary to distribute the energy to higher frequencies. One such mechanism 

could be provided by interactions of the shear instabilities with the edge wave cli­

mate. Therefore, the low frequency gravity wave and vorticity wave climates need 

to be considered in tandem. The model developed in this study is comprehensive 

so that such interactions can be studied in the future. 
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