Ocean Engineering 88 (2014) 488-498

Contents lists available at ScienceDirect

OCEAN
ESSEeninG

W

Ocean Engineering

journal homepage: www.elsevier.com/locate/oceaneng

A two-time scale control law based on singular perturbations
used in rudder roll stabilization of ships

@ CrossMark

Ru-Yi Ren?, Zao-Jian Zou ** Xue-Gang Wang?

2 School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
b State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

ARTICLE INFO ABSTRACT

Article history:

Received 11 September 2013
Accepted 2 July 2014
Available online 27 July 2014

A two-time scale decomposition method is used to analyze and design the rudder roll stabilization (RRS)
system of ships. In the surge-sway-roll-yaw ship motion system, roll motion is much faster than the
others, the interactions between these fast and slow dynamics cause the non-minimum phase behavior
in roll dynamics, which is regarded as a major challenge in RRS control design. A small parameter € is
introduced to describe the fast roll dynamics by a singular ordinary differential equation. By using
singular perturbation approaches, the system is then decomposed into two different time scale
subsystems, a quasi-steady-state subsystem to describe the slow dynamics, and a boundary layer
subsystem to describe the fast dynamics. Separate control strategy is used to stabilize each subsystem
and the coupling effect between the subsystems is also considered. A Lyapunov function is constructed
for the slow subsystem and robust analysis is made to evaluate the unmodeled dynamics. Simulation
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results show the effectiveness and robustness of this approach used in RRS system.
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1. Introduction /

Due to the relatively small moment of inertia compared to
other degrees of freedom (DOFs), the roll motion of a surface ship
is easily affected by the environmental disturbances such as waves
and wind, and often produces the largest acceleration. Large
roll motion is the main cause of seasickness, can greatly affect
the comfort of the passengers, decrease the work efficiency of the
crew, damage the cargo, and in some extreme cases, may cause the
capsizing of the ship. Therefore, ship roll reduction has become an
active research area since 1970s. Criteria of the maximum roll
angle for different work conditions have been made by Faltinsen
(1993). It is suggested that the maximum root mean square of roll
angle should be less than six degrees for light manual work and
three degrees for intellectual work.

In the past decades, many devices have been designed to
reduce the roll motion, both active control and passive control
devices, such as bilge keels, gyroscopic stabilizers, anti-rolling
tanks, stabilizing fins and moving weights (Treakle et al., 2000;
Gawad et al,, 2001; Perez and Blanke, 2002; Townsend et al., 2007;
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Surendran et al.,, 2007). However, all these approaches need extra
devices and installation costs, thus are usually expensive.

Although the original objective of the rudder is to steer the ship to
a desired course, for most surface ships, rudder action can also cause
certain roll motion. So it is expected that if the rudder is suitably
operated according to the roll motion and the course deviation, the
roll angle may be reduced to some degree, at the same time the
heading is not violently changed. This rudder roll stabilization (RRS)
control strategy needs no extra devices and is relatively cheap, thus
has drawn many researchers' interests in the past decades (Van
Amerongen et al,, 1990; Blanke and Christensen, 1993; Lauvdal and
Fossen, 1998; Perez, 2005). Model experiments and full-scale trails
have been made to evaluate its effectiveness in practice (Van
Amerongen et al., 1990). In RRS control system, rudder is the only
actuator for two outputs (roll and heading), thus sufficient band-
width separation of the two loops has to be guaranteed.

There are also several drawbacks of RRS, such as the ineffi-
ciency at low speed and severe feedback limitations due to rudder
saturation and rate limits. Besides, it is well-known that ships have
non-minimum phase (NMP) behavior in the rudder-to-roll
dynamics, which is considered to be one major challenge for RRS
(Lauvdal and Fossen, 1997; Perez, 2005). NMP systems have an
inverse initial response and large phase lag. The NMP behavior in
roll motion often causes a fundamental limitation in the RRS
system: disturbances attenuation at some frequencies will result
in amplification at other frequencies. This limitation thus poses a
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trade-off between reducing the roll angle at certain frequencies
and amplification at others (Perez, 2005).

The NMP phenomenon often arises from the interaction between
opposite fast and slow dynamic effects in the system (Perez, 2005),
As to the ship, the NMP behavior in roll motion is caused by the fact
that the roll dynamics is much faster than the other DOFs. Singular
perturbation approach is such a method to analyze and separate the
different time scale motions in control problems. In this paper, the
RRS system for ships is decomposed into two different time scale
subsystems, namely the quasi-steady-state (slow) subsystem and
boundary layer (fast) subsystem. The control objectives and control
strategies of the two subsystems are treated separately,

Singular perturbation approaches have been used in aerospace
industry for many years as a time-scale separation technique
(Mehra, 1979; Bertrand et al, 2011; Esteban et al, 2013). For
example, a three-time scale control law is designed for a nonlinear
helicopter model in vertical flight (Esteban et al., 2013). This can be
done due to three different time scales of altitude motion, angular
velocity, and the associated collective pitch angle of blades.
A comprehensive literature review of singular perturbation used
in aircraft control was made by Naidu and Calise (2001). However,
despite of the extensive work in aerospace industry, few work of
singular perturbation and:time scale separation techniques has
been done in ship control community. This is mainly due to the
relatively poor rudder effect and simple control objectives for a ship
control system. However, when a RRS problem is considered, the
traditional 3-DOF model (surge-sway-yaw) is coupled with fast roll
motion, and different time scale motions do exist in this system.
The concept of time scale separation based on singular perturbation
can be used to analyze such problems in a natural and elegant way.

Singular perturbation is a means of taking into account the
often neglected high-frequency phenomena and considering them
in a separate fast time scale (Kokotovic et al.,, 1987). By introducing
a small parameter ¢, the fast varying state variables are described
in the form of singular ordinary differential equations (ODEs), the
equations become singular when & tends to zero, A stretched time
scale is used to describe the fast dynamics and the slow state
variables are regarded to be constant in this time scale. A so-called
quasi-steady-state equilibrium (QSSE) is used to pass information
between different time scale subsystems.

This paper introduces the singular perturbation approach to
analyze the ship RRS problem. There are three major merits of
using this approach in RRS system.

Firstly, more detailed analysis is possible in time domain, such
as stability issues and time domain response. Unlike traditional
analysis methods, whose emphasis is on the bandwidth separation
in Bode diagram considered in frequency domain, this paper
emphasizes the separation of different time scale subsystems in
time domain. The stability and robust analysis are easily conducted
in this model, and the sensitivity analysis to model errors can also
be evaluated within this framework, which are not easily con-
ducted in frequency domain.

Secondly, the time scale decomposition approach and separate
control strategy simplify the control law design for RRS system.
By using singular perturbation method, the original underactuated
RRS system can be decomposed into two single input single output
(SISO) subsystems, thus is relatively easier to obtain the appro-
priate control law that can stabilize each subsystem. Thirdly, the
proposed separate control strategy considers the interaction
between different time-scale subsystems. The coupling effect is
important in some cases, and singular perturbation approach takes
this into consideration though QSSE.

In this paper, a simplified 3-DOF (sway-roll-yaw) linear model
is used to design and analyze the RRS control law. As course
keeping operations are considered in most situations, the linear
model has considerable accuracy in these problems (Perez, 2005).

Li et al. (2009) used a comprehensive 4-DOF (surge-sway-roll-
yaw) nonlinear model as a virtual ship for simulation and
performance evaluation. This nonlinear model was obtained by a
set of captive model tests (Son and Nomoto, 1982). It is selected as
a benchmark model to evaluate the performance of the linear
model in this paper. The different performances between the
linear and nonlinear models are evaluated.

The structure of this paper is as follows. Section 2 introduces
the nonlinear and linearized models of motion of surface ships, the
model of disturbances is also described. Section 3 gives a brief
introduction to the singular perturbation approach, based on
which the RRS control is designed. Robustness analysis of the
unmodeled dynamics is also made in this section. Section 4 gives
the simulation results. Section 5 is the conclusion.

2. Model definition and analysis

In this section, the models of ship motion and environmental
disturbances are described.

2.1. 4-DOF nonlinear model

displacements are used to define the location and three angular
displacements are used to define the orientation. These motions
are often described in two types of reference frame, namely the
inertial frame and body-fixed frame.

As shown in Fig. 1, the location and orientation of the ship are
described in the inertial frame, the translation displacements and
angular displacements are described as [xo,¥g,20]" and [, 8, w1,
where xg, Yo and z are the three coordinates of the ship, ¢, 8 and
y are roll, pitch and yaw angle, respectively. The components of
the force and moment [X, Y, Z]", [K, M, N]", the components of the
translational velocity and the angular velocity [u, v, w], [p,q, 1],
are described in the body-fixed frame, where u,v and w are surge,
sway and heave velocity, and p, q and r are roll, pitch and yaw rate,
respectively. The rudder angle is expressed as &.

In traditional maneuvering issues, such as course-keeping
problem, normally only a 3-DOF model (surge-sway-yaw) is consid-
ered. However, when consider the RRS problem, a 4-DOF model
including the roll motion is needed. In this paper, a comprehensive
4-DOF nonlinear model (surge-sway-roll-yaw) is used to describe the
RRS system (Fossen, 1994):

\
A ship in a seaway moves in 6—?01’5. Three translation

(m+my)il —(m+my)vr=X (1)
(m-+my)V +(m+meur+myayt —myl,p =Y )
Ux+Jp —mylyy —mylur+WGM¢ = K 3)
(4] +myoyV = N—Yx¢ 4

-3 (z w)

Fig. 1. Ship motién in 6-DOE,

'
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where m, I, and I denote the mass and moment of inertia of the
ship. my,my,J,,J; denote the added mass and added moment of
inertia in corresponding directions. W is the ship displacement. GM
is the metacentric height. I, and I, denote the z-coordinates of the
centers of m, and m,, respectively. o, denotes the x-coordinate of the
center of m,. X is the x coordinate of the gravity center. X, Y, Kand N
are the hydrodynamic forces and moments in corresponding direc-
tions, whose detailed expressions in the form of hydrodynamic
coefficients can refer to Fossen's book (Fossen, 1994).

This nonlinear model is regarded as one of the most compre-
hensive models in the open literatures, it captures the essential
characteristics of 4-DOF ship motion. In this paper, this nonlinear
model is used for simulation and performance evaluation.

2.2. 3-DOF linear model and analysis

Although the nonlinear model has a high accuracy, its highly
nonlinearity and complexity make it very difficult to be used to
analyze and design an RRS control law. As the course keeping
operations are considered in most situations, and there are only
small deviations from the steady-state course, the linear model is
expected to have considerable accuracy (Perez, 2005). In fact, most
RRS problems are studied in the framework of linear models in the
open literatures (Blanke and Christensen, 1993; Fang and Luo,
2007). To our knowledge, the only exception is Laudval and
Fossen's work (Lauvdal and Fossen, 1997).

Based on the linear model, transfer function from rudder-to-
roll and rudder-to-yaw loops can be easily obtained. Some impor-
tant concepts in RRS systems, such as non-minimum phase and
bandwidth separation, can be clearly illustrated in the Bode
diagram.

For simplicity, the rudder angle & is regarded as the only input
in this paper, the surge velocity is assumed to be constant when
the propeller speed keeps unchanged (Skjetne and Fossen, 2001).
Therefore, this paper assumes u = ug, where ug is a constant. If we
linearize the nonlinear system locally at the equilibrium point
[Vo, Po»To, Po)" =[0,0,0,0]", the simplified 3-DOF linear model
(sway-roll-yaw) can be obtained (Fossen, 1994):

Mx+Cx=B6 e (5)
where x = [v,p,1,$]", B=[b1, b2, b3,0]"

my1 Mya 0 0
my mypy 0 0
A== 0 0 ms3 O
0 0 0 1
din dip diz dig
c— dyy dyy dyz dy

dyi dy dyz dig
0O 1 0 0

The elements in B, M and C are related with the parameters and
hydrodynamic coefficients in Egs. (1)-(4), and their detailed
expressions of the elements in B, M and C can be found in the
appendix of Fossen's book (Fossen, 1994). Multiplying both sides of
Eq. (5) by M~1, we obtain

*=—-M"1Cx+M~'BS (6)
It follows:

V=auV+anr+ai@+aup+Ysé 7)

= a1 V+axnr+ax3¢+ayup+Nsd (€)

$=p ©

D= A4V + g7+ ds3Q+a4ap +K56 (10)
where a; is the corresponding element in the matrix —M~'C; Y,
N; and K; are the corresponding elements in the vector M~1B,
The linear model equations (7)-(10) are used for the design of RRS
control law in this paper.

Based on this linear model, the rudder-to-roll transfer function
is of the form (Perez, 2005):

D6) _ Kron(qy —S)(@2+5)
66) (P +8) P2 +5)(s2 +28p 05+ @)

(11

where Koy, qy,42,01,02.€p and @y are all positive constants,
whose expressions can be easily derived from the linear model
equations (7)-(10).

Let
N(s) =Kron(@z2+5)
D(s) = (p1 +5) (P2 +5)(s* +2£ 05+ )

Eq. (11) can be written as
#6) _N©G NE)s
D(s)
=T1(5)—=T2(5)

(12)

As shown in Eq. (12), T(s) has a extra s in the numerator, which
is actually a differentiator, thus T,(s) has a larger bandwidth and
faster response than T1(s). In RRS system, T;(s) stands for the slow
dynamics and T5(s) stands for the fast dynamics of the rudder-to-
roll system.

The most distinctive time domain feature of a NMP system is
the inverse initial response, because the terms of T; and T, in
Eq. (12) have the opposite signs. The physical interpretation is that,
if a step-like change in rudder angle is applied to make the ship
take a turn, the roll motion has a much faster response to the rudder
change than other DOFs. However, as long as there is a small heading
deviation, a reaction force induced by hydrodynamic effects is much
larger than that produced by-the rudder, which is also the main force
producing the turn. This effect finally makes the roll angle of the
opposite sign to the initial response (Perez, 2005).

The NMP behavior in roll motion is actually a consequence of
the interaction between fast roll dynamics and slow yaw
dynamics. This paper will show that the singular perturbation
approach can be used to separate these different time scale
motions in a natural and elegant way.

2.3. Disturbance model

The environmental disturbances are very complicated, thus it is
practical to use only certain simplified models to describe the
disturbances. Usually the environmental disturbances refer to
wind forces and wave forces. Wind is often modeled as a
stochastic signal with non-zero mean, which will cause a constant
roll angle and stationary heading error (Van Amerongen et al.,
1990). In this paper, only wave disturbances are considered.

Wave models are usually described by means of frequency
spectrum. In RRS system, high-frequency roll motion must be
reduced, thus 1st-order waves are considered in the simulation
model. This kind of disturbances can be obtained using a 2nd-
order linear approximation of the Pierson-Moskowitz spectral
density function. To find a balance between the simulation validity
and authenticity, many scholars adopted this model to simulate
the wave disturbances in RRS system (Van Amerongen et al., 1990;
Lauvdal and Fossen, 1998; O'Brien, 2009). It is preferred by ship
control engineers, owing to its simplicity and applicability (Fossen,
1994),
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The disturbances of yaw and roll motions w,, and w, are given by
wy = h(s) - wi(s) (13)

Wy =h(s) - W () (14)

where wi(s) and wy(s) are Gaussian white noises, and the shaping
filter h(s) is described as

Kys

52+ 2&0S+ w3 a5

h(s) =
where Ky, &, and wg denote the dominate wave strength coefficient,
the damping coefficient and the encounter wave frequency, respec-
tively. Then wy, and wy, can be regarded as disturbances signals to be
added to the simulation model.

This model produces a narrow band type of disturbances. This
narrow band property is due to the concentration of wave energy
at certain frequency, which is the case in most often adopted wave
spectrum models, such as the Pierson-Moskowitz spectrum and
JONSWAP spectrum (Fossen, 1994). Therefore, the given narrow
band disturbance model is reasonable,

3. Time scale analysis and control design for RRS system

In this section, a brief introduction of singular perturbation and
time scale separation approaches are given. The standard singular
perturbation model for 3-DOF (sway-roll-yaw) ship control system
is also derived, under this model, the slow yaw subsystem and fast
roll subsystem are separated. Control strategies are designed to
stabilize each subsystem, and the final RRS control law is the
combination of the control laws for each subsystem.

3.1. Singular perturbation

This part gives a brief introduction of the main procedure of
singular perturbation used in the control system to separate different
time-scale motion (Kokotovic et al,, 1987). Singular perturbation and
time-scale separation techniques were introduced to control engineer-
ing since late 1960s and have been a common tool for the analysis and
design of control systems (Kokotovic and Sannuti, 1968; Edelbaum
and Kelley, 1970; Kokotovic et al.,, 1987; Esteban et al,, 2013) (Fig. 2).

The standard singular perturbation model is in the explicit
state-variable form in which the derivatives of some state vari-
ables are multiplied by a small positive scalar g, that is:

X =f(X,Z, £, t): X(to) =Xo, XER” (] 6)

e2=g(x,z¢&,t), Z(to)=z9, zeR™ 17)

o e £ e e e e
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where the parameter 0 <é&<1 represents a small constant. x
denotes the slow state variables and z denotes the fast state
variables, It is assumed that throughout the formulation the functions
fand g are smooth, and above ODEs have a unique solution. It is also
assumed that the system has an isolated equilibrium at the origin
x=0,z=0).

In control and system theory, it is often a common engineering
task to get a simplified reduced-order model in practice. The
model equations (16) and (17) are steps toward reduced-order
modeling. Singular perturbation is such an approach to convert
the order reduction into a parameter perturbation problem, called
singular, If set € =0, the dimension of the original system equa-
tions (16) and (17) is reduced from n+m to n, and the singular
differential equation (17) degenerates into the following transcen-
dental equation:

0=¢g(.z,0,1)

where the bar is used to indicate that the variables belong to a
system with € =0. Due to the assumption that the system has an
isolated equilibrium, then from Eq. (18), Z can be described as a
function of X:

Z=h®,t)
where Z = h(x, t) is an associated root of Eq. (18), it represents the
quasi-steady-state equilibrium (QSSE) of the fast dynamics Eq. (17).
To obtain the reduced-order model, substituting Eq. (19) into

Eq. (16), and keeping the same initial condition for the state
variable X(t) as for x(t) :

(18)

(19)

X = f®&, h®;0,1), X(to)=xo (20)
Eq. (20) can be rewritten into a more compact form:
X=f®1b), X(to)=%o @1

This model is called quasi-steady-state subsystem, because z, whose
derivative z = g /¢ is large when ¢ is small, may rapidly converge to
a root of Eq. (18), which is quasi-steady-state form of Eq. (17). This
subsystem describes the slow dynamics of the system and also
takes the fast dynamics into account by substituting the QSSE into
Eq. (16). Stretching the time to 7 =x/¢, the fast system becomes

t

T= (22)

d;
=8(62(z)),

<o

which is also called boundary layer subsystem. It describes the fast
dynamics in a stretched time scale. In this time scale, x can be
treated as a constant parameter and & defines the stretched
time scale.

As long as the system is divided into the slow quasi-steady-state
subsystem and the fast boundary layer subsystem, the control strategy

Slow part

Quasi-steady- [Slow subsystem
state madel control law
%= (x,z;8;t) x=f(x,1) &
x(t) =x, s

Full model
x=f(x,z,6,t)
ez=g(x,z,&,1)

Full model
control law

(f: O-_y)

o=0,+0;

e
Singular ODE| 7= Boundary layer Fast subsystem
6‘ equatlon conlrol law
(S
£i=g(%2,51) L 2o :
RS St =),

Singular perturbation control strategy‘

Fig. 2. Singular perturbation control scheme.
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can be designed separately in each subsystem, The control problem is
thus simplified and the control laws designed to stabilize each
subsystem are relatively easy to obtain. Finally, the control law is
expressed as N

0 =0s5+0f (23)

where o; and of are the control inputs which stabilize the corre-
sponding slow and fast subsystems,

3.2. Time scale decomposition for RRS system

Despite of the large number of literatures published in the field
of aviation control, few works using singular perturbation method
have been done in the ship control community. This is mainly due
to the relatively simple control objectives of ship control such as
course-keeping and path-following, and also because of the poor
rudder effect. However, for the RRS control problems, different
time scale motions do exist in roll motion and other DOFs. As will
be shown, the time scale analysis techniques give a good solution
to these problems. Inspired by previous work (Kokotovic et al.,
1987; Naidu and Calise, 2001; Esteban et al., 2013), this paper uses
singular perturbation method to analyze the RRS system.

In time scale analysis, there are several ad hoc assessments of
variable's speed, which is often defined as the inverse of the time
that a variable takes to €hange across a specified range of values
(Esteban and Rivas, 2012). The special nature of the dynamics of
ships shows that the control signal is allocated into two different
time scale subsystems, that is, a slow subsystem and a fast
subsystem.

Generally speaking, a ship is a slender body, thus Ux+]y) <
(Iz+J;) holds for most surface ships. In fact, (I,+],) is often 40
times larger than (Iy+J,) (Fossen, 1994). Due to the relatively small
moment of inertia and large restoring force in roll motion, the
roll motion has a much faster response speed compared to the
yaw motion. Naturally, we can choose the small parameter ¢ as
&=(Iy+],)/Uz+],) < 1. Then, the roll motion is considered to be
governed by singular ODEs representing a fast subsystem, just by
multiplying the roll dynamics equations by e, The rest of the
motions are considered as slow subsystem. That is,

\.} f](V,l',¢,p,5)

4 r

f' =| fa(v,1,¢,p,5) (24)
2 &p
Ep f3(V, T, ¢»p’8’5)

the linearized singular perturbation ship control system can be
described as the slow part:

V=0a11V+0ai2r +a13¢+a14p+ Y56 @5)
W=r (26)
I'= a1V +0pT+a3¢)+ Aogp+Nsb (27)
and the fast part:

e¢p =tp 28)
ep = AqV+asor+8s3¢p+daap+Ngb (29

where G34 =& = (Ix+J,)/(z+],), (41 = €01, dap = £04p, g3 = 03,
(44 = €044, N5 = eNj. The initial conditions are

[V(to), w(to), 1(to), d(to), p(to)]” = [Vo, Wos Tos g, Dol

The time-scale decomposition is achieved by stretching the fast
subsystem'’s time scale. The stretched time scale is given by

(30)
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T =t/e, resulting in the following boundary layer (fast) subsystem;

d &
d—f=g¢(v, W, 1, ¢,p) = l34p @1
dp
d_T = gp(V: w,r, ¢s P)
= Ay V+agr+d430+0asp+Nsb (32)

Let [4,p]" = h(v,,T,5) € R* represent the QSSE of the boundary
layer subsystem when setting & =0, that is:

84V, W,T,$,p)=0 (33)

%V.¥.7,4,p)=0 (34)
The bar here demonstrates that the variables belong to a system
with & = 0. Then solving the Eqgs. (33) and (34), results in
$ - 6417+&42F+N,;5

= 3
— 43 G

p=0 (36)

Set the values of ¢ and p in the slow subsystem to ¢ and 7, by
substituting Eqs. (35) and (36) into Eqs. (25)-(27), and keeping the
same initial conditions as Eq. (30), the slow quasi-steady-state
subsystem can be obtained:

V=01 V+0127+Y56 (37)
V=T (38)
F= amvwnr{m& (39)
with the initial condition:

[V(to), W (to), T(to)]" = [Vo, W, ol (40)

where V, %, T denote the quasi-steady-state va~riables, 11 =011 —
13041/043, 012 = 1o — 13042 /043, Y5 = Y5 — 13N 5 /g3, Ty = 01 —
U3 (41/0a3,022 = Gy~ G33043/As3, and Ng=Ns—ap3N;s/tia3.

This procedure is actually considering the coupling effect of
the roll motion on the yaw dynamics by substituting the QSSE
of the fast boundary layer subsystem into the slow part of the
system Egs. (25)-(27).

3.3. Control design for RRS system

The main goal for ship control system is to keep the heading at
a desired course. For RRS systems, it is also required to reduce the
roll angle as much as possible, at the constraint of rudder
saturation and speed limit.

In singular perturbation approach, the separate control strategy
is used to design the control law: the quasi-steady-state subsystem
is used to design the yaw dynamics, and the boundary layer
subsystem is used to control the roll motion. Fang and Luo (2007)
also used the concept of separate control in RRS problem, however,
they did not consider the coupling effect in their separate control
strategy. Their work shows that the separate control has better
heading performance but worse roll reduction performance com-
pared to the compact control strategy which considers the
coupling effect. In the present paper, the singular perturbation
method takes into account the coupling effect between roll and
heading by substituting the QSSE into the slow subsystem.

The use of sequential time scale decomposition permits t0
design control strategies for § which is the sum of two compo-
nents, 6 =y +6y, where 8, = I, (v,y, 1) is used to stabilize the
slow heading subsystem and 6y = I'y(v,y, 1, ¢, p) is used to reduce
the fast roll motion.
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3.3.1. Control law for slow subsystem

The control objective for the slow quasi-steady-state subsystem
is to keep the heading at a desired course. Without loss of
generality, this paper sets the desired yaw angle to be w, = 0°,

A Lyapunov function is constructed for the slow quasi-steady-
state subsystem equations (37)-(39), which will guarantee the
stability of y and r. As long as the control law is obtained, it can be
shown that the sway velocity v is also guaranteed to converge to
zero. This also coincides with the fact that a helmsman usually
only uses the heading angle and heading rate to guide his steering
action, the sway velocity is left to be damped out by itself,
For simplicity, the bar over the quasi-steady-state variables is
neglected from here on,

Select the Lyapunov function F(t) > 0 as

F(t) = %Iq v2 +%7<21//2 4—%I<3,r2 >0 41)
where ki, k;, k3 are non-negative constants; take the derivative of
F(t) with respect to time:
F(t) = lq v + koynjr + ket (42)
substitute Egs. (37)-(39) into Eq. (42), it follows:
F(t) = kqv@nv+T12r+Y56,) +kawr

+ kst @1V +T2ar +N3by,) (43)
by using full state feedback of the slow subsystem: ‘
8y =av+br+cy (44)

where a, b and c are the corresponding feedback gains, Eq. (43) can
be rewritten as

F(t) = v2(ly @11 + k1 Y 50) + 12 (ks + k3N sb)
+vr(kiaiz+Kk ng + k3t +IC3N,50)

+ v (kY 5¢) + 1y (ke + ksNsc) (45)
choosing
an g I(3Ezz kz
k =0, a=—-=, —=— = —— 46
1 Ng ](3N§ k3N§ e

where e is a positive constant, then
F()=—er? <0 (47)

Since we set ky =0, above process only proves that y and r
asymptotically converge to zero, while sway velocity v is not
guaranteed to converge to zero. However, for RRS and course
keeping problems, sway motion is not a key issue, besides, the
sway velocity will damp out very fast if a constant heading angle is
guaranteed, due to the fact that the lateral damping force is
usually very large for a surface ship.

By trial and error over different values of ks, ks and e, appropriate
values can be determined according to Eq. (46), these parameters
should consider both the rudder limitation and the response
characteristics of the yaw motion.

Other methods such as the classical pole-placement method
and slide mode controller (Fang and Luo, 2007) can also be used to
stabilize such subsystem, however, constructing such a Lyapunov
function is convenient to evaluate the nonlinear effect on the
system's stability, which will be shown later in Section 3.4.

3.3.2. Control law for fast subsystem

The fast boundary layer subsystem Eqs. (21) and (22) can be
stabilized by selecting the control signal §,. To consider the slow
subsystem's slow varying rudder effect on the fast subsystem,
substituting the &, into the fast subsystem, the fast subsystem can

be described as
2 {34p
dr
% = AqV+Ggar +Aazp+Aaap+N 58y +5,)
= a3+ 0aap+Nsbyp+Gv, 1, 1) (48)
where G(v,y, 1) = (@41 +aNs)v+cNsy + (@4 +bNg)r, the variables

v,y and r are regarded as constant in this stretched time scale.
This subsystem can be written as a mass-spring-damping system:

d*¢ dg s o

oz H2bong+ wpp =G,y 1)+Nydy, (49)
where

a),z, —i= &34&43 (50)

— 34044
(e —— (61
20434/ — Q34043

& = 5346(1’5 v, r) (52)
Ny =Gzl 53)

wy is the natural frequency of the roll system, £ is the damping
coefficient of the system. G(v,, 1) can be regarded as a constant
disturbance in the fast time scale, which will cause a steady roll
response. This disturbance demonstrates the slow subsystem's
effect on the fast subsystem. From Eq. (48), the equilibrium point
of the fast subsystem is

_Gwysn
po="22" (54)

Po=0 (55)

¢o is regarded as a constant equilibrium point in the stretched
time scale. In this situation, the control law is to stabilize the roll
angle ¢ to its equilibrium point ¢, rather than zero. This is quite
important especially in the case where v, and r have relatively
large values, for example, in a turning operation or suddenly
changing course control, the ship will have a large roll angle
equilibrium point. In these cases, if the proportional controller
(P-controller) of the roll angle is used, the feedback laws should be
the form of k,(¢p— ) rather than Icqu."For simplicity, this paper
only uses a derivative controller (D-controller) of the roll angle.
The intention is to increase the damping ratio of the system, which
means the feedback is taken as

28swn dgp
N, Te (56)

Bp=—

where &5 is a positive constant.

Substituting the fast control law Eq. (56) into (49), the total
damping ratio of the roll system becomes & = (£+&;5) > £ which
means the system will have a higher damping ratio under the control
law. Thus a faster damping speed in roll motion is expected.

Therefore, by treating the fast and slow subsystemns separately,
the final control law is

8=258,+6, (57)

where the expressions of 6y and 6 are given by in Eqgs. (44) and (56).

However, it is not completely equivalent between the quasi-
steady-state subsystem equations (37)-(40) and the full system
equation (24), the discrepancy between the two models is the fast
transient. The separate control design is to make the associated
subsystem stable and with a prescribed desired dynamics. How-
ever, this does not guarantee the asymptotic stability of the full
system. Fortunately, under several assumptions, the full model can
also be guaranteed to be stable if ¢ i§ sufficiently small (Kokotovic
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et al,, 1987). In singular perturbation approach, it is an important
issue to define the bounds of'the singularly perturbed parameter e.
As to the RRS system, ¢ is often less than 0.025. More details about
the stability issues can refer to Kokotovic et al. (1987).

3.4. Robust analysis in yaw motion

To control the heading at a desired value is of primary
importance in RRS control system. The quasi-steady-state sub-
system is used to describe the heading control system, and the
subsystem Egs. (37)-(39) is proved to be stable by constructing a
Lyapunuv function. However, nonlinearities are neglected in this
linearized model. Besides, the reduced-order slow subsystem is
obtained by substituting the QSSE of the boundary layer subsys-
tem into quasi-steady-state subsystem, this procedure does not
consider the transient interaction effect between roll and yaw
motions. To evaluate the impacts of these factors on the slow
subsystem's stability, especially the yaw motion, the following
model is used in the robustness analysis:

yr=r (38)

i‘=521v+ﬁz2r+N55+A (59)

where A captures the model uncertainties when deriving a
reduced-order linear equation. The sway dynamics is neglected
here because that the sway velocity is often very small and it can
damp out by itself. To analyze this unmodeled dynamics effect on
the stability of the system, the similar robust analysis approach is
used to evaluate the heading control system's stability as Li et al.
(2009), and the same assumption is made as in their work:

® Assumption 1: A satisfies
|A| = 70+7v|v|+7r|r| (60)

® Assumption 2: v satisfies
WI<7o+7,Irl (61)

where y,,7,,7:, 70,7, are all positive constants.

In Li et al.'s (2009) work, they explained that 7, in Assumption
1 is used to capture the effects of surge speed and other
uncertainties on y and r dynamics, ¥ is introduced to demon-
strate bounded higher order nonlinear terms in the control inputs,
and uncertainties in r term are captured by y,. In the present study,
it is also assumed that the transient interaction effects between
roll and yaw motions are captured by y,,7, and ¥, Assumption
2 intends to evaluate the boundary of sway velocity v, where 7,
captures the phase lag between the response v and r, and ¥, is for
the proportional relationship between v and r.

Substituting Eqs. (58) and (59) and the feedback law Eq. (44)
into the derivative of the Lyapunov function Eq. (43), it follows:

F(t) = kyyrijr +keari

=1Wr+ksr(@a V+aanr +N5(5 +A)

= —er?4+k3rA (62)
According to the two assumptions:
F(t) < —er? +Kslri(yo+7,IVI+7,Ir)

< —er? 4+l (o +7,To+ 7,1+ 7,11

= —d0T2+lgll'[ (63)
where

do=e— k37r = k37v7r (64)

lo=1ks Yot+ks ¥ (65)
According to Eq. (63), it is obvious that E(t) <0 in the region

S .
D_{r |7|gd—0} (66)

It shows that as long as the yaw rate r is restricted in the region
D, the heading control system can be robustly stable even if there
exists unmodeled dynamics. If the model uncertainty is not
significant, the value of v,r and ¢ can be made relatively small,
by properly selecting the low subsystem controller gains a, b, ¢ and
fast roll motion gain §¢, thus it can be guaranteed that reD.
Therefore, the robust stability can be guaranteed.

4. Simulation results
4.1. Simulation model description

A 4-DOF (surge-sway-yaw-roll) nonlinear model of a S175
container ship is used to evaluate the performance of the derived
RRS control law. This nonlinear model was obtained by a set of
captive model tests (Son and Nomoto, 1982). It is comprehensive
and accurate, thus has often been used by many scholars to
simulate the 4-DOF ship motion. This paper takes it as a bench-
mark model to evaluate the performance of the linear model. Both
the models are added with the same wave disturbances and
rudder control law. The main data of the ship are described in
Table 1. The detailed information about the nonlinear model can
be found in Son and Nomoto (1982) and Fossen (1994).

The time domain simulation of the ship motion is conducted by
using the fourth-order Runge-Kutta method with a time interval
of 0.1s. The rudder saturation and rate limits (|6|<20° and
151 <5°[s) are considered in the feedback design and simulation.
The total simulation time is T,y = 1200 s, and the initial condi-
tions are chosen as vo=0,y,=0,179=0,¢,=0, and py = 0. The
ship speed is around 7.2 m/s. In order to testify the control laws'
effectiveness in steering operation, the desired heading angle is set
to be 0 during the first stage, and changes to 10° at 300th second,
then turns back to 0° again at 600th second. The control feedback
gains are chosen as d=0.03, b=1.35, c= -2, and &;=0.077.
These control parameters are selected by taking the rudder limits
and the ranges of the state variables into consideration.

The wave disturbance to roll motion wy is added directly into
the right side of the standard equation:

q‘s =f(V= ., ¢»p’ 5)+W¢ (67)

The wave shaping parameters are selected as Ky, =8 x 1074,
&, =0.075, and wp=0.21. wy is the gaussian white noise with
variance of o1 = 0.5 and a zero mean.

Roll disturbances with a dominate frequency near the ship's
natural frequency (@, ~ 0.22 rad/s) are used to create a relatively
large roll angle to evaluate the RRS performance, other frequencies
are also tested. The roll motion disturbances are shown in Fig. 3.

Table 1

Principal particulars of S175 container ship.
Item Symbol Value
Length L 175 m
Breadth B 254 m
Mean draft d 8.5 m
Displacement volume v 21,222 m’
Keel to transverse metacenter KM 10.39 m
Keel to buoyancy center KB 4,62 m
Block coefficient Cp 0.559
Rudder area Ag 33,04 m*
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Fig. 4. Bode diagram of yaw spectrum and roll spectrum,

Fig. 4 demonstrates the open loop Bode diagram of the rudder-
to-yaw (s)/8(s) and rudder-to-roll ¢(s)/d(s) frequency responses
for the ship. As shown in the upper magnitude diagram, there is
enough bandwidth separation between the rudder-to-yaw and
rudder-to-roll loops. The cut-off frequency of yaw spectrum is
around 0.063 rad/s, which is much smaller than the natural roll
frequency. The open-loop gain of yaw response is less than
—20 dB near the natural frequency, which means that the rudder
moving at such a frequency has very little impact on yaw motion.
While at such frequency, the open-loop gain of roll response is
around 4 dB. This bandwidth separation makes it possible to
design the RRS system for this ship. The NMP phenomenon in roll
motion can be found in the phase diagram in Fig. 4, which
demonstrates a large phase lag and a large range of phase angle.

4.2. RRS performances in nonlinear model

The performances with and without the RRS control part in the
nonlinear model are demonstrated in Fig. 5.

Fig. 5(a) shows very similar response performances of the yaw
motions under these two operations. The result indicates that the
designed high frequency rudder operation 8, is far beyond the
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Fig. 5. Nonlinear model simulation results with and without RRS: (a) yaw angle,
(b) roll angle and (c) rudder angle.

bandwidth of yaw motion, and thus has little impact on the yaw
motion. The heading angle can be restricted at the desired course
with considerable accuracy under the high frequency rudder input.

The roll performances are shown in Fig. 5(b). The roll angle can
reach + 15° under the wave disturbances without RRS, while it is
limited within 4 5° when the designed RRS control law is on.
At most time, the roll angle is restricted within 4+ 3°. The
performance meets the standard and criterion made by Faltinsen
for manual and intellectual work (Faltinsen, 1993).

Fig. 5(c) demonstrates the rudder inputs. It shows that the roll
reduction is at the expenses of high frequiency rudder operations.
The rudder moves at a frequency similar to the roll motion's
nature frequency. In this case, due to the relatively long roll period
of the ship, most of the rudder operations are below the rudder
saturation and rate limits, and make the designed RRS control laws
to have a satisfying performance.

4.3. Comparison between linear and nonlinear models

In this paper, the RRS control law is derived from the reduced-
order linear model, so the accuracy of this linear model is of
importance. It is thus necessary to evaluate the accuracy of the
linear model. For this purpose, the 4-DOF nonlinear model is used
as a virtual ship for simulation and performance evaluation (Li
et al,, 2009). Both the linear and nonlinear models are under the
RRS control law and wave disturbances.

The simulation results are shown in Figs. 6-8. Fig. 6 illustrates
the yaw motion performances of the two models. It shows that the
difference in the yaw angles between linear and nonlinear models
is indistinguishable for most of the time, except for some peak and
trough values, at which the nonlinear dynamics and coupling
effect are relatively larger, thus some deviations appear between
linear and nonlinear models.

Fig. 7 shows the roll motion performance of the two models.
Despite of the similarity, the roll motion of the nonlinear model is

'
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Fig. 8. Rudder angle performances of the linear and nonlinear models with RRS
control strategy.

a little smaller than that of the linear model for most of the time.
This is mainly due to that the nonlinearities often offer the system
a nonlinear damping effect which tends to make the system more
stable. Thus the designed control law based on the linear model

tends to give a more conservative control strategy and make the
real system safer.

Fig. 8 shows the differences of the rudder operations. Similar
with the roll performance, the rudder operation in nonlinear
model is also a little smaller than that in linear model. The rudder
operation meets the rudder saturation and rate limit at around the
650th second with a fixed slope. This rudder saturation is to some
degree inevitable in RRS control strategy. A big challenge in RRS
control design is to make a trade-off between the RRS perfor-
mance and the rudder operation limits. In the present case, the
designed control law is well within the rudder limitation for the
most time, thus a good performance is expected.

4.4. Track keeping performances

Track keeping performances are very important in ship motion
control. Although most RRS designs are only considered in course
keeping operations, also the track keeping performance should be
considered, when designing a RRS system for roll reduction. In
fact, the two control objectives have a lot in common, the ship's
track keeping system can be designed from the course keeping
system by including an additional position feedback (Velagic et al,,
2003).

In this paper, a simulation is conducted to evaluate the validity
of the derived RRS control law in track keeping problems. The yaw
distt}r\bance is also considered in this simulation, where the
gaussian white noise with a variance of 6, = 0.5 and a zero mean
is adol\:’ted, it is filtered by the shaping filter f(s) to create the
yaw disturbance, The track keeping control law is selected as
Or =6+cyd, where § is the predefined RRS control input; d is the
distance from the ship to the path; ¢;=0.002, which is the gain of
the position feedback; the desired path is simply selected as
x—y =0, where x and y are the position coordinates. The initial
position of the ship is selected as (0, —800). A heading control is
needed to track the path, in which case, the coupling effect of the
yaw motion, sway motion and the roll motion may be an issue. All
the other parameters are kept the same as in the previous
simulation case. The simulation results are shown in Figs. 9 and 10.

Fig. 9 illustrates the track keeping performance with and
without the RRS control law. The performance is satisfying even
with a large initial position deviation. As shown in this figure, the
track performances are very close in both cases, which demon-
strates that the track keeping performance of the ship is not highly
affected by the high frequency part of the RRS control law. Fig. 10
gives the roll performances with and without RRS control strategy.
It shows that the roll angle can be effectively reduced when the
RRS is on. In fact, for most of the time, the roll angle can be
restricted within + 5°,

However, due to the rudder limits, a trade off between the track
keeping performance and the roll reduction performance is always
needed. If a faster track keeping performance is required, which
can be achieved by increasing the position feedback gain cg, then
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Fig. 9. Track keeping performances with and without RRS control strategy-
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Table 2

RRS performance under different wave frequencies.
Ty (5) $max (RRS off) (deg) #max (RRS on) (deg) RRR (%)
10 1.15 0.95 33.0
15 3.12 2.46 325
20 7.47 5.23 40.6
25 10.43 5.04 54.3
28 (Tn) 17.03 7.16 66.3
30 17.17 8.04 61.1
35 12.13 11.44 16.7
40 8.83 4 9.92 -0.12

much less rudder effect is left to the roll feedback, which will
surely affect the roll reduction performance. As shown in Fig. 9, the
simulation performances with or without RRS control are almost
the same in the first 100s, this is mainly because that all the
rudder operation is used to conduct the distance feedback. More
detailed explanation about this issue can refer to Goodwin et al.'s
(2000) work.

4.5. Sensitivity performances

In this section, some inherent limitations of the RRS system are
discussed. The sensitivity of the model errors is an important issue
in the RRS system. Blanke and Christensen (1993) studied the
sensitivity of the performance of LQ control in RRS system, and the
variations in the coupling coefficients were also studied,

Since there are too many parameters in ship contro\l\ system,
it is not realistic to consider all the parameters in one single paper.
In this paper, only a simple sensitivity analysis of different wave
frequencies and rudder inputs is made, which are two very impor-
tant factors that may greatly change the RRS performances.

4.5.1. Sensitivity of wave frequency

As stated in Perez (2005), NMP systems often cause a funda-
mental limitation that disturbances attenuation at some frequen-
cies will result in amplification at other frequencies in RRS system.
Especially when the disturbances are with long period, the induced
highly irregular roll motion often causes the inefficiency of the RRS
strategy. NMP characteristics of a system often increase the sensitiv-
ity of the closed loop system at low frequency (O'Brien, 2009).

To quantify the effectiveness of the RRS control strategy under
different wave frequencies, the following roll reduction rate (RRR)
is used to evaluate the RRS performance (Lauvdal and Fossen,
1997):

AP—RRCS 68)

RRR(%) =100 x T%

where RRCS and AP are the standard deviations with and without
RRS, respectively.

Table 2 summarizes the roll reduction results with different
disturbance frequencies, where T,, is the mean period of the
disturbance and T, denotes the natural period of the roll motion.

As shown in Table 2, the waves whose mean periods are close
to the natural period can cause large roll motion of the ship. At the
extreme situation, the ship may have nearly 20° roll angle at the
peak. Fortunately, near these frequencies, the derived RRS control
law gives good roll reduction performances. In fact, RRR is over
50% at these frequencies, the damaging roll angle is effectively
reduced.

For the disturbances with short periods, particularly, less than
25 s, the induced roll angle is much smaller; at the same time, the
RRS control law has relatively less effectiveness.

In the particularly long period wave cases, where the wave
periods are longer than 35s, the RRS control system has very
limited RRR performances. The high frequency rudder operations
are totally unnecessary, or even make the situation worse. This
simulation results are in accordance with the conclusion that the
NMP characteristics of a system often increase the sensitivity of
the closed loop system at low frequency (O'Brien, 2009).

Fortunately, wave energy has a well-known narrow-band
property. Take JONSWAP spectrum for example, most of the wave
energy are concentrated on the wave period between 10 s and 30 s
(Fossen, 1994). On one hand, the energy of waves of period longer
than 30 s or less than 10 s is so small that can be neglected. On the
other hand, waves with certain periods are less likely to induce
very large roll motion, even though they have considerable wave
energy. It is thus suggested that more attention should be paid to
the waves which has a centralized energy distribution and can
induce a relatively large roll motion.

4.5.2. Sensitivity of the rudder input

The rudder effect is of top importance in RRS control system,
because it totally decides the performance of the RRS system. In
some sense, the RRS control design is a balance between the roll
reduction performance and the achievable rudder input. For
simplicity, it is assumed that the rudder force has up to 30%
deviation from the standard mean value. The simulation results
are shown in Fig. 11.

As shown in Fig. 11(a), despite of the differences in the rudder
force models, the yaw motion is much less affected by these
rudder forces. In fact, the heading angle only has around 1°
deviation in these three cases. The slow course keeping subsystem
is thus considered less affected by the errors in the rudder force
models. However, Fig. 11(b) shows that the roll motion perfor-
mances are greatly affected by the different rudder inputs.
RRR=60.4% in the standard rudder model case. For a smaller
rudder force, the roll angle can reach over 10°, RRR = 37.1% in this
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Fig.11. Sensitivity analysis of rudder model €frors: (a) yaw angle, (b) rudder angle.
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rudder operation, and the RRS performances are greatly reduced
due to the smaller rudder input. On the contrary, when the rudder
force is 30% larger, a much better roll reduction performance is
obtained, RRR = 69.4%, and the roll angle can be restricted in less
than 5° for most of the time.

The RRS control design is a big challenge, mainly due to the
relatively weak rudder effects and inherent NMP characteristics.
These properties make the system very sensitive to certain para-
meters, such as wave disturbance frequencies and rudder inputs.
Some of the limitations are inherent and may be even immutable,
hence the good understanding of such limitations is particularly
needed when designing an applicable RRS control system in ship
motion control practice.

5. Conclusions

In this paper, singular perturbation method is used to analyze
and design the control law of rudder roll stabilization system.

The well known non-minimum phase characteristics of roll
motion are shown to be an interaction of opposite fast and slow
dynamic effects. The yaw and sway motions are considered as the
slow subsystem, and the roll motion is considered as the fast
subsystem. The singular perturbation method is introduced to
separate the fast and slow subsystems. The control law is designed
separately for each subsystem. The stability analysis of the slow
subsystem is conducted by constructing a Lyapunov function,
Combined with the stability analysis, a robust analysis is made
to evaluate the unmodeled dynamics.

A linear model is used for the system analysis and control
design, and a nonlinear model is used for simulation and perfor-
mance evaluation. The simulation results show the effectiveness of
the derived control law. At certain cases, the roll reduction rate
(RRR) can reach over 60%. The accuracy of the linear model is
evaluated by comparing with the nonlinear model. A simulation
case is conducted to evaluate the validity of the derived RRS
control law in the track keeping system. The performances at
different wave frequencies are compared, and the rudder model
errors are also briefly evaluated. The results show the sensitivity of
the RRS system to these parameters.
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