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Abstract
Renewable energy generation projects are often measured by their peak capacity. A wind farm rated
at 25 MW will generate 25 MW of power under the right circumstances. This peak capacity is reached
very little in practice. However, these generators are forced to purchase grid operation infrastructure
that can handle this peak generation event. The high voltage grid connections are expensive and in-
creasingly difficult to receive permits for. This work presents a solution in which the high voltage grid
connection is undersized in comparison to the renewable energy generator. A battery energy storage
system is installed in the local grid to solve the issue of excess energy generation (congestion).

A simulation of the local network has been built that models a battery energy storage system (BESS),
the network and uses data from a solar park. A case study in which a 19 MW solar park is connected
to the high voltage grid with a transformer of only 14 MW as well as a 14 MW | 30 MWh BESS on the
network is investigated in the rest of the work. Furthermore a BESS control strategy for price arbitrage
on the TenneT imbalance market is presented and encoded such that it can be optimised.

Four heuristics are presented that time and size the congestion issue in a manner the control strat-
egy of the BESS can prepare for and solve congestion when necessary. These heuristics are tested
against strategies optimized for revenue maximisation through price arbitrage. While the most aggres-
sive strategies did not solve all the congestion events in these simulations, we found that the heuristic
that takes the average generation of the solar park into account performs the best while remaining
appropriately conservative.

A basic evolutionary algorithm is presented that optimizes a BESS control strategy for price arbitrage
when the BESS is not needed on the local network to solve congestion. Although the strategies earn
∼ 33% less revenue due to the congestion related limitations, the optimisation surrounding congestion
does improve revenue by 2.58%.

The results presented in this work suggest that this setup of a local grid can be economically viable and
that the BESS can solve the congestion issue when steered with an appropriate control strategy. We
hope to inspire parties that battery energy storage systems can earn substantial revenue aside from
solving issues on a (local) grid.
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BESS control strategies steer energy storage systems smartly and earn revenue in the process. This
thesis has been a combination of the business world in which a real problem is expected to be solved
as well as an academic contribution to a field in which energy storage systems are still sometimes seen
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Glossary, Acronyms and Nomenclature

Glossary
TenneT Transmission System Operator of The Netherlands

Imbalance Market The quarterly priced, real-time market to solve imbalance on the grid

TenneT Balans Delta The minutely message that communicates an indication of the current imbal-
ance market price

Acronyms
BESS Battery Energy Storage System

ESS Energy Storage System

FCR Frequency Control Reserve

PPA Power Purchasing Agreement

REG Renewable Energy Generator

SoC State of Charge

TSO Transmission System Operator

Nomenclature
𝐸𝑆𝑚𝑎𝑥 The maximum amount of energy stored in the BESS

𝐸𝑆(𝑡) The amount of energy stored in the BESS at timestep 𝑡

𝑃𝐵𝐸𝑆𝑆𝑚𝑎𝑥 The maximum power of the BESS

𝑃𝐵𝐸𝑆𝑆(𝑡) The power of the BESS at timestep 𝑡

𝜂𝑟𝑡 The round trip efficiency of the BESS

𝐸𝑆𝑙𝑜𝑤𝑒𝑟 The lower limit of the capacity before the BESS would be derated

𝐸𝑆𝑢𝑝𝑝𝑒𝑟 The upper limit of the capacity before the BESS would be derated

cycle(𝑡) The cycle made at timestep 𝑡

𝑃𝑅𝐸𝐺(𝑡) The power of the REG at timestep 𝑡

𝑃𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 The power of the transformer

𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑃𝑜𝑤𝑒𝑟(𝑡) The amount of power being supplied to the transformer from the network
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1
Introduction

The Dutch high voltage network is reaching the limits of its transport capacity. For this reason TenneT,
the Transmission System Operator (TSO) of The Netherlands, has sometimes been forced to limit
access to the grid 1. Consumers or generators looking for room to install a connection to the high
voltage grid suffer from enormous waiting times or downright denial of service 2. In part, this is due to
the large investments in renewable energy generation (REG) of the past years. Due to the small size
of The Netherlands as a country, when the sun is shining, all solar parks will generate a lot of energy;
a similar situation occurs for wind farms. This peak generation capacity can only just be handled by
the currently installed grid. Classically speaking the TSO looks towards the installation of additional
transformers and cables to solve these issues 3. However these investments are expensive and take
many years to implement.

Energy storage systems (ESSs) have been investigated by the scientific community due to their
flexible capabilities to solve local and larger-scale energy network related problems (Luo et al., 2015).
This work presents an additional solution that can help solve the issue of an overfull high voltage grid.
Before exploring the solution this work will present, let’s first explain what issues are encountered by
parties wanting to connect to the high voltage grid.

Renewable energy generation projects are often measured by their peak capacity. A wind farm
rated at 25MW for example will generate 25MW of power if the wind is coming from the right direction
at the right speed. As this energy production is dependent on the renewable energy source (wind in this
example), this peak capacity will only rarely be reached. Far more often less energy will be generated
by the wind farm.

However, the renewable energy project is expected to have grid operation infrastructure large
enough that can handle these peak generation events. As discussed above, these large grid connec-
tions can be excessively expensive, or permit applications can limit the realisation of the project. This
grid connection that poses all these issues is only fully utilised in high renewable generation situations,
which means they are utilised very little.

Energy storage systems can offer a solution to these issues, which could help realise the renewable
energy generation project. In the same example, the wind farm rated at 25MW could add a 10MW
energy storage system to their local network. The ESS can charge 10MWwhen the wind farm produces
25MW. Thereby ensuring the need for a network connection to the high voltage grid of only 15MW. This
smaller grid connection could be easier to realise than the previous network connection of 25MW.

This implementation raises interesting issues and research questions for the ESS. How should the
energy storage system be steered during these congestion events? The energy storage system should
also be prepared correctly for these congestion events and finally, can the energy storage system be
utilised to earn additional revenue when not necessary tasked with solving congestion.

1https://www.tennet.eu/nl/tinyurl-storage/nieuws/voorlopige-stop-voor-nieuwe-grootverbruikers-van-elektriciteit-in-noord-
brabant-en-limburg/

2https://nos.nl/artikel/2431946-stroomnetwerk-limburg-en-n-brabant-vol-nieuwe-bedrijven-niet-aangesloten
3https://www.nu.nl/290603/video/waarom-het-stroomnetwerk-in-nederland-overvol-raakt.html
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2 1. Introduction

1.1. GIGA Storage
This thesis has been created in a partnership with GIGA Storage, a Dutch-based company in the indus-
try of large-scale sustainable energy storage4. They currently own the GIGA Rhino battery, a lithium-ion
based battery project set in Lelystad. It is the most powerful battery project in The Netherlands with a
power of 12 MW and a capacity of 7.5 MWh. They have recently signed an agreement with Eneco to
build their next battery project, the GIGA Buffalo, which is expected to come online in January of 2023.

The business case of the GIGA Rhino battery lies in its power to earn money in multiple energy
markets. The battery can be used to earn money on the imbalance market with price arbitrage. On
that market the battery can be charged at low prices and discharged later at high prices. However the
system can also be bid into the Frequency Control Reserve (FCR) market. In that market the battery is
tasked with charging and discharging small amounts to ensure the frequency of the network remains
a stable 50Hz. During that time the system is compensated by the bid amount.

It is important to take into account battery degradation when considering what strategy to apply
for price arbitrage in the imbalance market. When a battery is supplied, it has an expected lifetime
in accordance to how the battery is utilised. Similarly to the battery found in your smartphone, when
you charge and discharge it often, the quality of the battery degrades (Stroe et al., 2017). Suddenly it
doesn’t last you the entire day, or starts working less efficiently. Large-scale energy storage projects
encounter the same issues and therefore they often have clear guarantees surrounding usage of the
system to ensure the battery has an elongated lifetime.

1.2. Research Questions
This thesis will answer three research questions. The first one is proof of concept that an appropriately
sized battery energy storage system (BESS) is able to solve congestion for the network. Furthermore
the performance of the BESS on additional energy markets is to be considered. When there is no
congestion management necessary on the network, the BESS is free to trade and earn additional
revenue. Research question 2 will explore the possibility of optimising the BESS control strategies
and compare their performance to a baseline offered by GIGA Storage. Research question 3 will
additionally investigate the effectiveness of this optimisation method by combining it with the findings
of RQ1 to solve the congestion issue while earning additional revenue.

RQ1: Can the battery energy storage system solve the issue of congestion when a renewable energy
generator is operated with a limited connection to the transmission network?

RQ2: To what extent can a battery energy storage system control strategy for price arbitrage be opti-
mised (with an evolutionary algorithm).

RQ3: How much additional revenue can the battery energy storage system earn aside from solving the
issue presented in RQ1.

Additional revenuewithin this work will be considered to be earned on the imbalancemarket. Actions
taken on the FCR market are defined by irregularities in the network frequency. Furthermore the FCR
market is met with many physical restrictions the asset must follow when it participates in this market.
This work therefore focuses on the strategy that is executed by the BESS for price arbitrage on the
imbalancemarket. Executing different strategies on the BESS can have a lot of impact on the generated
revenue as well as usage of the system. An aggressive strategy could charge and discharge often and
generate revenue through smaller margins. A more passive strategy could bide its time and wait for
large margins before deciding to charge or discharge.

4https://giga-storage.com/?lang=en
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Figure 1.1: TenneT imbalance market prices for 09-06-2022

1.3. Contributions
The contribution of this work will be three-fold.

1. A model for a control strategy for battery energy storage systems will be presented.

2. Heuristics will be used to determine control strategy constraints regarding congestion issues on
the local smart grid.

3. An evolutionary algorithm is presented to optimise the control strategy of the BESS in a case
study.

1.4. TenneT Imbalance Market
In this thesis all actions taken on the network are considered to be priced based on the imbalance
market. This market is managed by TenneT. When unscheduled actions are taken by energy parties
TenneT offers them the current imbalance market price. This price is set every 15 minutes and an
indication of this quarterly price is communicated every minute, albeit with a 2-minute delay.

These price signals are designed to solve the imbalance on the high voltage grid. In times of excess
energy, the price is set lower (or negative) to promote usage of this excess energy. In times of limited
energy, the price is set higher to dissuade parties from using energy or promote generation of additional
power.

The price offered is in €/MWh. An example day of the imbalance market can be seen in Figure 1.1.
The difference in high and low prices represents an earning opportunity for a flexible asset such as a
battery energy storage system. When prices are low, the BESS can be charged. When prices are high,
the BESS can be discharged. The margin between these prices is considered profit for the BESS.

1.5. Overview of the document
The rest of this document is structured as follows. In chapter 2 related work on the topic of energy
storage systems and control strategies is investigated. Chapter 3 describes the simulation built in this
thesis, including but not limited to the model of the BESS, assumptions regarding energy markets and
the chosen case study. In chapter 4 we discuss the methodology used to solve congestion and optimize
BESS control strategies. In chapter 5 we describe the executed experiments and present their results.
Then in chapter 6 we discuss the results of the experiments and their significance to the case study.
Finally in chapter 7 we make recommendations for future work and conclude our findings.





2
Related Work

2.1. (Battery) Energy Storage Systems
Energy Storage Systems have been researched due to their flexible capabilities for local- and larger-
scale energy-related problems. An ESS can solve many issues including voltage control, peak shaving,
frequency regulation, reliability improvement, and reduction of the fluctuating nature of wind (Luo et al.,
2015).

Although accidents such as the Fire at 20MW UK battery storage plant in Liverpool (Colthorpe,
2020) cause distrust in the eyes of the public, more and more ESSs are being installed around the
globe. In varying sizes these systems either solve issues for local micro grids (Romero-Ruiz et al.,
2016) but can also be utilised in larger-scale grid issues (Ke et al., 2015).

To the list of effective solutions this thesis proposes a system to undercut high voltage grid network
sizing in favour of solving the locally caused congestion problems through an ESS. However the main
contribution of this work is the consideration that the possibilities of an ESS do not end at the solution
of an offered problem. The flexibility of the ESS can ensure the system is used elsewhere to solve
additional issues or earn additional revenue for the network when the original problem has been solved.

Many works simply consider the ESS as a solution to a presented problem Root et al., 2017. Al-
though all of these papers show the effectiveness and capabilities of an ESS, often when considering
the cost of installing an ESS they find that the technology is too expensive to realise. To that extent this
thesis hopes to show that by utilising the ESS in downtime of the problem it has to solve, the business
case of the asset can be improved. This could improve it in such a manner that the ESS project can
be realised rather than considered hypothetically.

2.2. Battery Degradation
The current GIGA Storage projects, GIGA Rhino and GIGA Buffalo, are both based on lithium-ion
technology. Chosen due to their competitive pricing (Curry, 2017) and high round-trip efficiency as well
as low self discharge rates (Luo et al., 2015) this currently seems to be the most competitive option
when realising large scale energy storage. However no matter what the application is, lithium-ion
batteries degrade with time.

There has been extensive research in the field of measuring battery health. Roman et al., 2021
investigated a machine learning pipeline to estimate battery capacity fade, a metric used for battery
health. It is important to keep track of the battery health and often when purchasing large-scale energy
storage from a party, they deliver the product with certain usage guidelines that when broken will have
the warranty on the battery performance expire.

Such usage guidelines can be very extensive as a lot of factors influence the lifetime of the BESS.
Stroe et al., 2017 investigate the influence of depth of cycles, the resting state of charge as well as
temperature on the lifetime of a lithium-ion based BESS. All of these heavily influence the battery
health but often battery suppliers choose for a simpler model of battery usage. Such a model is easier
to implement and can be used to clearly define battery usage in a contract. Furthermore re-evaluations
of the battery health take place at fixed intervals (e.g. yearly) which can adjust usage guidelines and
guarantees dynamically if the system is degrading faster or slower than initially expected.

5
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2.3. Congestion Management
There has been extensive research in the field of energy management and -systems to investigate and
solve congestion. However the scope of the congestion issue as well as the definition of congestion is
sometimes varying.

Smaller networks such as neighbourhoods, that contain distributed renewable energy generation as
well as electric vehicles, have been investigated in the work by Romero-Ruiz et al., 2016. A probabilistic
model of the neighbourhood is created in which congestion can be caused and solved by steering
the batteries contained in electrical vehicles. The model of the neighbourhood network is far more
comprehensive than that of the case study discussed in this work. The batteries contained in EVs are
of course distributed between the different housing estates of the neighbourhood. Similarly to this work,
it is considered that when steering the batteries there is knowledge over the power (or probability of
an amount of power) on a line connected to the battery system. To that extent, it is trivial to determine
if the battery is within its physical capabilities to solve the issue by either charging or discharging the
required power.

In the work by Root et al., 2017, a case study of Northern Vermont is presented in which similar
issues to the Dutch grid are encountered. ”At present, a large amount of renewable energy generation,
both wind and solar, is connected to the power transmission system in northern Vermont. At times and
under certain conditions, limitations of capacity or operation of the transmission system in New England
force curtailment in the operation of that renewable generation, so it produces less power than it could.”
”Electrical energy storage can potentially improve this situation by allowing the renewable energy to
be stored rather than curtailed” (Root et al., 2017). In their work the renewable energy generation is
forced to curtail due to the grid being too small.

However they encounter curtailment situations 35% of the time. The average length of a congestion
issue is 27 hours. This issue is far larger than the presented case study in this thesis. The work
investigates a hypothetical scenario in which a 104MW, 2000MWh battery energy storage system could
solve the presented issue. Following that, they investigate more realistic battery sizing. The findings of
that investigation are not presented clearly, which leaves the question of how many curtailment issues
are left. Besides that, Root et al., 2017 mention price arbitrage briefly but do not mention the strategy
employed by the BESS to maximise profit using it.

The conclusion presented in section three of the work by Root et al., 2017 is short-sighted. They
mention that a BESS can be utilised in different energy markets for further profits. They then shortly
mention a simulation in which the BESS is used in a frequency reserve market which brings the initial
407-year payback period down to 14 years. My research strives to elaborate on this work and present
the additional profits of the BESS in an explicit and realistic manner. This further defends the position
of batteries as part of a future energy grid.

Pillay et al., 2015 outline different reasons for power system congestion. Violations of system oper-
ating limits, overloading transmission lines on thermal or capacity bounds and finally when power flows
are higher than the operating reliability limits. The congestion encountered in this work falls into the
final reason for congestion. Other forms of congestion which involve voltage and frequency stability
are left outside of the scope of modelling the network.

In the work they discuss multiple different technical and non-technical solutions to solve congestion
within networks. Different pricing methods are also discussed to incentivise parties to solve congestion
within their grid. However most of these methods are either too extensive for use within this work or
cannot be applied.

2.4. BESS Control Strategies
Controlling an ESS is a modern issue presented in many smart grid-related works. Xu and Singh, 2014
investigated a control strategy for a ESS connected to local network that needs to consume a lot of
energy. In this network the renewable energy generation on site is lacking at which point in time the
external grid, or ESS, should be steered to keep the grid online. A clearly defined cost minimisation
function is solved in this work to determine if and when the ESS should charge or discharge to fulfil
demand on the local grid. This considers current and forecasted energy prices.

Within the work they define so-called Modes of Operation, these are defined moments at which the
local grid is fully connected, not connected or coordinating with the external grid. This coordination
with the external grid in this paper could be translated to this work by considering reserve and capacity
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markets. An ESS as large as the one presented in this work could competitively bid and offer capacity
services to TenneT. The FCR and aFRR markets are examples of those. However currently this work
disregards these options and focuses on the price arbitrage optimisation of the imbalance market.

The Modes of Operation however inspire the modes of operation coined within subsection 3.2.2 to
determine explicit moments in which the strategy is adjusted according to preparation of congestion for
example.

The work by Esmaeili et al., 2021 investigates optimising an expected output of renewable energy
generation as a optimisation problem. They take a day-ahead forecasted schedule for the renewable
energy generation and ensure the ESS is steered in such a way the schedule is fulfilled optimally
regarding energy prices between day-ahead and real-time (imbalance) energy markets. This work
serves a similar technique as presented in this thesis. According to the generated power of renewable
energy generators the ESS is steered accordingly.

In the context of a renewable energy generator this approach is logical. An ESS on your network is
there to serve your needs. It allows the intermittency of solar or wind power to be flattened to a curve
that energy companies recognise from traditional energy generators. Themethods used tomodel future
expected energy prices and energy production are interesting. However such a strategy is currently
deemed to difficult to implement and model for an algorithm to optimise.

So although this thesis will not explore those options and utilise them to improve the performance
of the presented algorithm. In this work the ESS is not limited to only aiding the renewable energy
generator. The ESS has down-time from these mandatory actions in which profits can be earned. This
viewpoint, where the renewable energy generator is seen as only one of many clients of the ESS,
instead of the only client, is the research gap we fulfil. The optimisations around this assumption is
where my work differs from that of Esmaeili et al., 2021. A simple example is that Esmaeil et al.
consider wind farm revenue as a key metric of a successful ESS strategy. This thesis considers ESS
revenue as the metric of a successful ESS strategy.

Finally Teo et al., 2018 investigated a very similar problem setting to what this work looks at. How-
ever simarlarly to the first work here by Xu and Singh, 2014 it focusses on balancing a local grid fully.
Aside from balancing the local grid however they optimise price arbitrage.

2.5. Price Arbitrage
Bradbury et al., 2014 have researched different energy storage system technologies and optimised
their earnings in an hourly-based real-time market. Considering installation costs of different systems
a sizing- and revenue technique was developed and offered to the reader. This work is from 2008, which
means that cost estimations of the different ESS technologies have shifted significantly compared to
today. The research done on price arbitrage however is still relevant.

They assess the performance of the ESSs in seven different wholesale electricity markets. The year
2008 was simulated due to its high volatility and high average electricity prices. From the 7 different
markets, the markets with the highest price volatility (measured by the standard deviation) proved to
earn the highest revenue.

Similarly to this work, revenue is calculated by using foresight of past price data. However, Bradbury
et al., 2014 optimise these earnings perfectly considering prior known best charge and discharge prices.
This thesis however simplifies the price arbitrage strategy to a design which could be used in real time
by battery operators. This step worsens the predicted earnings on the wholesale market as a non-
optimal approach to the market is taken. However, this does improve the real-life application of the
methods discussed in this thesis.

Krishnamurthy et al., 2018 make similar observations in their work considering day-ahead market
optimisation prior to real-time market optimisation. With extensive 24-hour ahead forecasts a strategy
is calculated for the ESS to follow during the day. A 25 MW|50 MWh as well as a 50 MW|50 MWh
system are investigated. However, instead of verifying these schedules based on real market data,
their performance is measured based on 1000 different real price scenarios which are matched to the
proposed strategy.

This method offers concrete analysis onmeasuring battery usage and performance inmany different
scenarios. Their findings show a one hour system heavily out performs the two hour system in both
revenue total as well as battery usage. Within GIGA Storage often the earnings per MW are calculated
as the investment for additional power are more expensive than that of installing more capacity. So
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a real comparison between a single hour and two hour system would be more fair when comparing
a 25 MW|25 MWh and a 25 MW|50 MWh system. It seems natural that the system with more power
can make use of more diverse prices to earn additional revenue where the other system is only half as
powerful.

Although the authors consider some limitations to their comparison between a one- and two hour
system, this point is not listed. They consider the additional revenue through different ancillary services
to be more indicative of different earning model for differently sized systems.

Barbour et al., 2012 have investigated an objective method to determine the maximum value of
earnings through price arbitrage for a certain time series. They disregard issues considering forecasts
and purely view the energy prices of a certain time series to determine a schedule for an ESS. This
schedule assumes the ESS starts and ends empty at the start and end of the time series. Using a
Monte Carlo optimisation algorithm they keep track of SoC, round trip efficiency and power limitations
of the system. This method shows how the system will charge cheaply and discharge for a profit during
high price hours.

Although this method is not applicable as a real world scenario, knowing the upper limit of your
price arbitrage strategy can help determine the performance of your own. With that being stated, this
exact system is hard to apply to the work done in this thesis as the method does disregard all network
capacity constraints.

The work by Lin et al., 2019 arrive closest to the GIGA Storage way of determining a real-time
market strategy. Based on a certain time series (varying from 12 to 6 hour prognostic forecasts or 24
hour historical price data) a charge price and discharge price are determined. Please note that these
hours reference the real-time market of the United Kingdom where the market is priced every half hour
instead of quarter hour as it is done in The Netherlands. Given the time series, an expected marginal
charge and marginal discharge price is calculated. This is based on the expected energy the system
wants to discharge and at what price it expects to be able to charge that power. Those prices determine
the charge and discharge thresholds applied by the ESS when considering its decision in the real-time
market.

Once those prices are determined, this strategy is similar to that of GIGA Storage. If the energy price
is equal to or better than 𝑃𝑙𝑜𝑤, charge the system. If it is higher than or equal to 𝑃ℎ𝑖𝑔ℎ, then discharge
the system. As stated, this approach is similar to that of GIGA Storage, however instead of adjusting
these prices every hour based on a forecast or 24 hour historical data, GIGA Storage sets the prices
for an entire month. Aside from that GIGA Storage also considers different pricing set points according
to the current state of charge of the ESS. Although the price numbers are adjusted each hour, it does
not seem to take into account the fullness of the battery when charging or discharging more greedily.
To that extent this approach is noted but not considered when modelling the ESS control strategy.



3
Description of Simulation

3.1. Datasets
3.1.1. TenneT Balans Delta
The Tennet Balans Delta is the minutely message TenneT sends out to inform energy parties of the
imbalance market price. This is public information1 offered at a minutely basis. In a live setting it
is communicated 2 minutes after the given time. By combining the messages sent in a quarter an
expected quarterly price can be derived. This quarterly price is used as input for the price arbitrage
strategy utilised by GIGA Storage.

In this work the TenneT Balans Delta has been moved forward by 2 minutes to offset the original
2-minute delay. It is assumed that when an asset is expected to maximise earnings on the imbalance
market that an imbalance price forecaster would be used. Dexter 2 and Recoy 3 are known parties that
offer such forecasts. These forecasts use weather, day-ahead price and other indicators to create a
forecast that is available from minute 0 in a quarter. In this work, I assume this is a decent forecast and
do not consider forecasting error. Furthermore TenneT has already improved the delay of the TenneT
Balans Delta from 3 to 2 minutes since March 14th 2022 4 which suggests further decrease of this delay
to be a work in progress. Therefore, this work simply assumes the TenneT Balans Delta is reported
without the 2 minute delay.

Similar to the work by Barbour et al., 2012 it is assumed that the actions taken by the BESS in this
simulation do not influence the imbalance market price. The BESS will act as a price taker. However,
as the number of energy storage projects increases on the grid, it is expected that these would have a
smoothing effect on the market prices. These flexible assets are capable of charging and discharging
according to the current energy price rather than being dependant on the amount of sun or wind.
However, this smoothing effect is not expected within the short term.

The data of the Tennet Balans Delta has been retrieved for the year 2021.

3.1.2. Solarvation Solar Farm
Solarvation has offered the data of two solar farms, internally identified as 𝑙𝑒𝑙𝑦𝑠𝑡𝑎𝑑1 and 𝑙𝑒𝑙𝑦𝑠𝑡𝑎𝑑2.
Information as modelled generation (kW) and irradiance (kW/𝑚2) is contained, but the most important
information it contains is the measured generation (kW) at 5 minute intervals. Themeasured generation
is the real value of generated power from the solar farm at that specific point in time. Through linear
interpolation this data has been made to match the 1m interval of the TenneT Balans Delta.

The measured solar farm data has been retrieved for the year 2021.

1https://www.tennet.org/bedrijfsvoering/Systeemgegevens_uitvoering/Systeembalans_informatie/BalansDeltaplusPrijzen.aspx
2https://dexterenergy.ai/
3https://www.recoy.com/oplossingen/optimize/
4https://www.linkedin.com/feed/update/urn:li:activity:6904078676854419456/
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3.2. Local Energy Network Components
3.2.1. Battery Energy Storage System Object
The battery energy storage system object is defined by the following parameters.

• Capacity → 𝐸𝑆𝑚𝑎𝑥 (kWh)

• Power → 𝑃𝐵𝐸𝑆𝑆𝑚𝑎𝑥 (kW)

• Round trip efficiency → 𝜂𝑟𝑡 (%)

• Derating limits → 𝐸𝑆𝑙𝑜𝑤𝑒𝑟 and 𝐸𝑆𝑢𝑝𝑝𝑒𝑟 (kWh)

The following equations hold for the BESS object during the simulation.
Let 𝐸𝑆(𝑡) be the energy stored in the BESS at time 𝑡.

0 <= 𝐸𝑆(𝑡) <= 𝐸𝑆𝑚𝑎𝑥 (3.1)

Let 𝑃𝐵𝐸𝑆𝑆(𝑡) be the power offered by the BESS at time 𝑡.

|𝑃𝐵𝐸𝑆𝑆(𝑡)| <= 𝑃𝐵𝐸𝑆𝑆𝑚𝑎𝑥 (3.2)

When 𝑃𝐵𝐸𝑆𝑆(𝑡) is negative, the BESS is considered to be discharging. When 𝑃𝐵𝐸𝑆𝑆(𝑡) is positive,
the BESS is considered to be charging. These actions define 𝐸𝑆(𝑡 + 1). In principle the round trip
efficiency (𝜂𝑟𝑡) is the combination of efficiency when charging and discharging the system. This work
approaches this by only taking into account a loss of efficiency when charging the system. The value for
𝜂𝑟𝑡 is adjusted accordingly. This simplification approaches the actual situation because there is hardly
any energy loss when discharging the system. However, when charging the system often excess heat
is generated and most of the round trip efficiency is lost. To convert the power to capacity in the BESS,
you divide the power by the chosen time step. In this simulation a timestep of 1 minute has been taken.

𝐸𝑆(𝑡 + 1) = 𝐸𝑆(𝑡) +
{𝑃
𝐵𝐸𝑆𝑆(𝑡) ∗ 𝜂𝑟𝑡 if 𝑃𝐵𝐸𝑆𝑆(𝑡) ≥ 0
𝑃𝐵𝐸𝑆𝑆(𝑡), otherwise

𝑡 (3.3)

However 𝐸𝑆(𝑡 + 1) has to be held to the following equations.

0 <= 𝐸𝑆𝑙𝑜𝑤𝑒𝑟 <= 𝐸𝑆(𝑡 + 1) <= 𝐸𝑆𝑢𝑝𝑝𝑒𝑟 <= 𝐸𝑆𝑚𝑎𝑥 (3.4)

If 𝐸𝑆(𝑡 + 1) would exceed its acceptable bounds at any point in the simulation, then instead 𝑃𝐵𝐸𝑆𝑆(𝑡)
is adjusted before calculating the updated state of charge. To this end we apply the following update
to 𝑃𝐵𝐸𝑆𝑆(𝑡):

𝑃𝐵𝐸𝑆𝑆(𝑡) = {(𝐸𝑆𝑢𝑝𝑝𝑒𝑟 − 𝐸𝑆(𝑡)) ∗ 𝜂𝑟𝑡 ∗ 𝑡 if 𝐸𝑆(𝑡 + 1) > 𝐸𝑆𝑢𝑝𝑝𝑒𝑟
(𝐸𝑆(𝑡) − 𝐸𝑆𝑙𝑜𝑤𝑒𝑟) ∗ 𝑡 elif 𝐸𝑆(𝑡 + 1) < 𝐸𝑆𝑙𝑜𝑤𝑒𝑟

(3.5)

The new value for 𝑃𝐵𝐸𝑆𝑆(𝑡) will then be used to determine 𝐸𝑆(𝑡 + 1) in accordance with Equation 3.3.
The new value for 𝑃𝐵𝐸𝑆𝑆(𝑡) will ensure Equation 3.4 is not violated.

Usage metrics
BESS objects have limitations to their usage. These limitations are defined in accordance with the
guarantees a battery provider might offer in their contract. These guarantees in turn ensure the BESS
can perform sufficiently during its life cycle. Therefore two usage metrics have been added to the
BESS object to measure the usage of the system. Both of these measurements heavily simplify work
by Roman et al., 2021 and Stroe et al., 2017 but do so in a manner often seen from battery suppliers
from the industry.
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State of Charge From (%) State of Charge Until (%) Price From Price Until Action

0 5 -9999 9999 CHARGE
5 50 -9999 50 CHARGE
50 70 -9999 30 CHARGE
70 95 -9999 0 CHARGE
5 40 100 9999 DISCHARGE
40 70 80 9999 DISCHARGE
70 95 65 9999 DISCHARGE
95 100 -9999 9999 DISCHARGE

Table 3.1: Rhino Strategy 1. A Q4 2020 price arbitrage strategy. Represented with strategy lines.

Cycle counter A simple cycle counting system has been implemented in which 1 cycle is defined as
the BESS going from empty to full and back to empty again. However, the system does not have to
be charged fully as soon as the charge action is taken. The power of a BESS lies in its ability to be
flexible. So a cycle is simply counted according to the physical energy entering or leaving the system.

cycle(𝑡) = |𝐸𝑆(𝑡 + 1) − 𝐸𝑆(𝑡)|
𝐸𝑆𝑚𝑎𝑥

/2 (3.6)

Average State of Charge At each timestep 𝑡 the energy stored in the system is measured (𝐸𝑆(𝑡)).
At the end of the simulation this is used to determine the average value of 𝐸𝑆(𝑡) during the simulation.

3.2.2. BESS Control Strategy
GIGA Storage has supplied this work with Rhino Strategy 1, a real imbalance market control strategy
used in the last quarter of 2020. The so-called strategy lines that make up this strategy can be found
in Table 3.1. The input necessary is the state of charge of the BESS and the current charging- and
discharging prices of the imbalance market. These strategy lines can be read as followed. If the state
of charge of the BESS is between the SoC from, and the SoC until, and the current imbalance price is
between the price from and price until take the action specified by that strategy line.

The action taken by these strategy lines will always be at 100% of the available power of the BESS.
So if you have a 10MW system, it will charge or discharge with the full 10MW. This translates to the
strategy being content with the price it is being offered, meaning it wants to make full use of the current
price. In reality a BESS can often be steered at many different powers to charge or discharge less
aggressively.

The strategy can be intuitively explained. When the battery energy storage system is almost full,
the system wants an even lower price when charging this final part of its SoC. However when almost
empty, a lower price could already be sufficient as it allows more room in the battery to be utilised
flexibly. The same holds vice-versa, when the battery is nearly empty, it expects a very high price when
discharging and a lower price when discharging when the BESS is more full.

This strategy is designed in such a way it respects the derating limits 𝐸𝑆𝑙𝑜𝑤𝑒𝑟 and 𝐸𝑆𝑢𝑝𝑝𝑒𝑟 of the
GIGA Rhino BESS. The strategy takes any price for charging the battery between 0 and 5% SoC
similarly each price is accepted for discharging the system between 95 and 100 % SoC.

Although the strategy lines are sufficient to execute and explain the price arbitrage strategy, this
work presents a different method to visualise the strategy. By visualising the different SoC % and
imbalance prices in a 2d grid, the margin earned by the BESS is visualised effectively. This margin
should at least accommodate the lost energy when charging the system due to 𝜂𝑟𝑡. The visualisation
can be found in Figure 3.1. Please note that imbalance prices can vary between -500 and 3000 €/MWh
but the figure can be extended in the y-direction to accommodate these prices.

3.2.3. Encoding the control strategy
The visualisation in Figure 3.1 is the basis of the encoding method presented in this work. The BESS
control strategy will be encoded such that a computer system will be able to represent such a strategy
effectively. Furthermore, this allows this thesis to explore the possibility of an optimisation of the offered
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Figure 3.1: Rhino Strategy 1. A Q4 2020 price arbitrage strategy. Represented as a figure that can be extended to accommodate
all imbalance prices.

control strategy. The strategy lines of Table 3.1 could be simplified to encode the same strategy in the
following manner:

• (SoC%, €/MWh, ACTION)

• (50, 50, CHARGE)

• (70, 30, CHARGE)

• (95, 0, CHARGE)

• (40, 100, DISCHARGE)

• (70, 80, DISCHARGE)

• (95, 65, DISCHARGE)

These points coincide with the corners of the surfaces as seen in Figure 3.1. To complete a strategy, the
𝐸𝑆𝑙𝑜𝑤𝑒𝑟 and 𝐸𝑆𝑢𝑝𝑝𝑒𝑟 values are converted to a percentage through 𝐸𝑆𝑙𝑜𝑤𝑒𝑟/𝐸𝑆𝑚𝑎𝑥 and 𝐸𝑆𝑢𝑝𝑝𝑒𝑟/𝐸𝑆𝑚𝑎𝑥.
These coincide with the width of the charge- and discharge only lines on the left and right side of the
figure.

To convert this point encoding of a BESS control strategy into the strategy lines presented in Ta-
ble 3.1, Algorithm 1 is offered to the reader.

Imbalance prices are real monetary values with two decimal points. However the strategy imple-
mentation converts these prices to a value it can work with. This value is defined as the 𝑝𝑟𝑖𝑐𝑒_𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒
and when it is not explicitly defined, the reader can assume it is set as 𝑝𝑟𝑖𝑐𝑒_𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 = 2. In regards
to charge decisions, the price is rounded up. In regards to discharge decisions, the price is rounded
down. Therefore this adjusted scale will never make a decision outside the bounds defined by the given
points.

3.2.4. Preparing for and solving congestion
Based on a single BESS control strategy, a preparing for and solving congestion strategy can be gen-
erated. In the worst-case scenario in which the BESS is expected to be fully empty, this strategy will
only ever discharge.

When the strategy is set to only discharge, then the BESS will be trying to empty itself in time for
congestion that takes place. Aside from that, as soon as it is possible, the asset will be emptied further.
This ensures that the most room is generated in the asset in case of additional for congestion occurring
later that day.

Such a discharge only strategy raises questions in regards to solving congestion. As is clear in
section 3.4, the BESS can solve congestion by charging away excess power of the network. In the
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Algorithm 1 Converting a BESS control strategy point encoding to strategy lines
1: 𝑐ℎ𝑎𝑟𝑔𝑒𝑃𝑜𝑖𝑛𝑡𝑠.𝑠𝑜𝑟𝑡(SoC%)
2: 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑃𝑜𝑖𝑛𝑡𝑠.𝑠𝑜𝑟𝑡(SoC%)
3: 𝑚𝑎𝑥𝑃𝑟𝑖𝑐𝑒 = 9999
4: 𝑚𝑖𝑛𝑃𝑟𝑖𝑐𝑒 = −9999
5: 𝑙𝑜𝑤𝑒𝑟𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦𝐿𝑖𝑛𝑒 = (0, 𝐸𝑆𝑙𝑜𝑤𝑒𝑟 , 𝑚𝑖𝑛𝑃𝑟𝑖𝑐𝑒,𝑚𝑎𝑥𝑃𝑟𝑖𝑐𝑒,‘CHARGE’)
6: 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦𝐿𝑖𝑛𝑒𝑠 = ∅
7: 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦𝐿𝑖𝑛𝑒𝑠 = 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦𝐿𝑖𝑛𝑒𝑠 ∪ 𝑙𝑜𝑤𝑒𝑟𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦𝐿𝑖𝑛𝑒
8: 𝑙𝑎𝑠𝑡𝑆𝑜𝐶 = 𝐸𝑆𝑙𝑜𝑤𝑒𝑟
9: for each 𝑝𝑜𝑖𝑛𝑡 in 𝑐ℎ𝑎𝑟𝑔𝑒𝑃𝑜𝑖𝑛𝑡𝑠 do
10: 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦𝐿𝑖𝑛𝑒 = (𝑙𝑎𝑠𝑡𝑆𝑜𝐶, 𝑝𝑜𝑖𝑛𝑡(SoC%),𝑚𝑖𝑛𝑃𝑟𝑖𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡(price), ‘CHARGE’)
11: 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦𝐿𝑖𝑛𝑒𝑠 = 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦𝐿𝑖𝑛𝑒𝑠 ∪ 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦𝐿𝑖𝑛𝑒
12: 𝑙𝑎𝑠𝑡𝑆𝑜𝐶 = 𝑝𝑜𝑖𝑛𝑡(SoC%)
13: end for
14: 𝑙𝑎𝑠𝑡𝑆𝑜𝐶 = 𝐸𝑆𝑙𝑜𝑤𝑒𝑟
15: for each 𝑝𝑜𝑖𝑛𝑡 in 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑃𝑜𝑖𝑛𝑡𝑠 do
16: 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦𝐿𝑖𝑛𝑒 = (𝑙𝑎𝑠𝑡𝑆𝑜𝐶, 𝑝𝑜𝑖𝑛𝑡(SoC%), 𝑝𝑜𝑖𝑛𝑡(price),𝑚𝑎𝑥𝑃𝑟𝑖𝑐𝑒, ‘DISCHARGE’)
17: 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦𝐿𝑖𝑛𝑒𝑠 = 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦𝐿𝑖𝑛𝑒𝑠 ∪ 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦𝐿𝑖𝑛𝑒
18: 𝑙𝑎𝑠𝑡𝑆𝑜𝐶 = 𝑝𝑜𝑖𝑛𝑡(SoC%)
19: end for
20: 𝑢𝑝𝑝𝑒𝑟𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦𝐿𝑖𝑛𝑒 = (𝐸𝑆𝑢𝑝𝑝𝑒𝑟 , 100,𝑚𝑖𝑛𝑃𝑟𝑖𝑐𝑒,𝑚𝑎𝑥𝑃𝑟𝑖𝑐𝑒,‘DISCHARGE’)
21: 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦𝐿𝑖𝑛𝑒𝑠 = 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦𝐿𝑖𝑛𝑒𝑠 ∪ 𝑢𝑝𝑝𝑒𝑟𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦𝐿𝑖𝑛𝑒

Figure 3.2: Always discharge strategy. Represented as a figure that can be extended to accommodate all imbalance prices.
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Figure 3.3: Rhino Strategy 1, set to solve congestion above 50% SoC. Represented as a figure that can be extended to accom-
modate all imbalance prices.

built simulation environment, this discharge only strategy is overwritten as soon as the BESS is forced
to charge due to congestion. This is reflected in Equation 3.7 which will overwrite any chosen action
by the BESS control strategy.

𝑃𝐵𝐸𝑆𝑆(𝑡) = 𝑚𝑎𝑥(|𝑃𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 + 𝑃𝑅𝐸𝐺(𝑡)|, 0) (3.7)

Furthermore, subsection 3.2.2 explains that the control strategy of the BESS makes full use of the
power of the BESS. It will charge or discharge at 100% of the power available. However, the 100%
discharge action will be overwritten so as not to cause congestion on the network when discharging
the BESS. This is enforced by Equation 3.8.

𝑃𝐵𝐸𝑆𝑆(𝑡) = 𝑚𝑖𝑛(𝑃𝐵𝐸𝑆𝑆(𝑡), 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑃𝑜𝑤𝑒𝑟(𝑡) − 𝑃𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟) (3.8)

For both of the above equations, the BESS object will adjust 𝑃𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 slightly as a safety margin
for the network:

𝑃𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 = 𝑃𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 ⋅ 0.99.
Although the BESS is forced to charge to solve congestion (Equation 3.7) in the simulation, con-

gestion can still occur. This is due to the physical limitations of the system and the lack of preparation
for the congestion event. If the congestion event is large enough, the BESS will forcibly charge itself
full until the BESS is overfull and can no longer charge away the excess power.

Equation 3.8 will also ensure that the BESS does not cause congestion by discharging at full power
when the solar park is generating energy. The BESS will smartly use the available power of the trans-
former to ensure it does not cause congestion itself.

However, in the case that the BESS is not necessary to be fully empty, but for instance 50 % SoC
is enough to solve expected congestion events. Then a discharge only surface can be placed over the
same control strategy. This allows the BESS to earn money with price arbitrage at lower SoC levels of
the BESS while remaining on standby for the possibility of solving congestion.

At what times the strategy is placed to prepare and solve congestion is discussed in subsec-
tion 4.1.1.

3.2.5. Network Environment
Let the network be defined as an array of network objects 𝑁. All objects in 𝑁 are considered to be
safely interconnected according to their own power limitations. However all objects are connected to
the same transformer with a size of 𝑃𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟.

𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑃𝑜𝑤𝑒𝑟(𝑡) =
𝑛

∑
𝑖=0
𝑁[𝑖] → 𝑃𝑖(𝑡) (3.9)
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Equation 3.9 correctly cancels actions in which the BESS charges energy directly from the renewable
energy generator and therefore less energy is exported through the network. For example, if 𝑃𝑅𝐸𝐺(𝑡) =
−4000 and 𝑃𝐵𝐸𝑆𝑆(𝑡) = 5000, the summation of Equation 3.9 will become 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑃𝑜𝑤𝑒𝑟(𝑡) = 1000.
In this example 4000 kW will be charged that is generated by the REG, and 1000 kW will be imported
from the high voltage grid through the transformer.

The network environment is initialised with a network connection size. Let this be 𝑃𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟. In
that case the following must hold

𝑃𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 >= |𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑃𝑜𝑤𝑒𝑟(𝑡)| (3.10)

When this equation is overwritten, the simulation is allowed to continue, the amount of timesteps 𝑡 in
which this occurs is tracked.

Although transformers can handle importing and exporting energy at the same power, importing
energy from the high voltage grid incurs so-called transportation costs. The cost of importing energy
is calculated based on the peak amount of energy imported as well as the number of hours in which
energy has been imported.

Renewable energy generators use very little energy and therefore do not incur high transportation
costs by themselves. To that extent, in line with current GIGA Storage practices, the simulation has
limited importing from the grid to 2MW.

𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑃𝑜𝑤𝑒𝑟(𝑡) <= 2000kW (3.11)
This means that when there is no additional power being generated, the BESS can only be charged

at a rate of 2MW. When there is power being generated, the BESS can charge this additional power.

3.2.6. Renewable Energy Generation
Often in research the generation of a renewable energy generator must be modelled according to
weather data or theoretical values of a system. However, for this work we have been supplied with the
measured generation data of a solar farm. Therefore, no modelling of this generation is needed and
simply the measured values have been taken.

To ensure the network is modelled correctly, the same sign is taken as the BESS for ’charging’
energy from the grid or ’discharging’ energy. So when the renewable energy generation generates
power it is seen as ’discharging’ the solar park or wind farm and is given a negative sign.

3.3. Measurements
TenneT high voltage grid connections are measured in Megavolt-ampere (MVA). The network object
which is able to convert low- or medium voltage to the high voltage necessary to transport energy
is the transformer. By transforming the power to a high voltage, it can be transported through The
Netherlands through the TenneT high voltage network.

In this work ’congestion’ is defined as when the lines leading up to the high voltage transformer
exceed the rated capacity of the transformer. For example if 22 MVA is being supplied to a 20 MVA
transformer, there is congestion. If only 19 MVA is being supplied, then the transformer does not
encounter any problem.

Although transformers and the lines connecting the transformer to the rest of the local grid have
their capacity measured in MVA, other network objects often utilise the measurement for real power,
Megawatt (MW). The difference between these is as follows. MVA is defined as apparent power.

𝑀𝑉𝐴 = 𝑉 ⋅ 𝐼 (3.12)
This equation uses voltage (𝑉) and current (𝐼) to calculate the (apparent) power in a system. However,
in actuality there is a power factor that reduces the real power supplied to the line. Multiply MVA by the
power factor and you receive the MW, or real power that is supplied to the line.

𝑀𝑊 = 𝑉 ⋅ 𝐼 ⋅ 𝑝𝑓 (3.13)
For this work we assume that 𝑝𝑓 = 1 which ensures that MVA and MW can be used interchangeably.
A 70 MVA transformer can therefore also be referenced as a 70 MW transformer. In reality however
𝑝𝑓 <= 1. If the 𝑝𝑓 is smaller than 1, then the problem discussed in this work will only be reduced.
Therefore this assumption can be treated as a certain safety factor in the calculations.
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19 MW 14 MW 10 MW

Maximum excess
capacity (MWh) 0.0 28.5 64.4

Maximum excess
power (MW) 0 4.9 8.9

Table 3.2: Size of the congestion issue with different transformer sizes

3.4. Determining Congestion
Congestion is determined according to the size of the transformer. Let the capacity of the transformer be
given by 𝑃𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟. During the simulation congestion is measured as soon as 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑃𝑜𝑤𝑒𝑟(𝑡) >
𝑃𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟.

if 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑃𝑜𝑤𝑒𝑟(𝑡) > 𝑃𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 ∶
𝑡𝑖𝑚𝑒_𝑠𝑡𝑒𝑝𝑠_𝑤𝑖𝑡ℎ_𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛+ = 1 (3.14)

3.5. Case Study
To determine a case study that has a feasible solution and consists of realistic-sized network compo-
nents, analysis was done on the Solarvation data of solar farm 𝑙𝑒𝑙𝑦𝑠𝑡𝑎𝑑1. This solar farm with rated
capacity of 19MW is currently connected to the high voltage grid with a large enough transformer that
would never encounter congestion. This was confirmed and then challenged by investigating the con-
gestion issue under 3 different transformer sizes: 19, 14 and 10 MW.

Two values were measured when evaluating the performance of this network: capacity and power.
Capacity of the network congestion was measured by the amount of MWh that was in excess of the pro-
vided grid connection summed on a day basis. Power was measured by taking the maximum amount
of MW in excess of the provided grid connection. The results of this analysis can be found in Table 3.2.

The measured values in Table 3.2 can be matched to the sizing of a energy storage system to solve
the presented issue. E.g. a 4.9MW|28.5MWh BESS connected to the transformer of 14MW could
physically solve the problem.

Both the 14MW and 10MW transformer sizes point towards a BESS of similar size to the new project
of GIGA Storage, the GIGA Buffalo, a 25 MW|48 MWh system5, at least in terms of capacity. The
network connection with a smaller congestion issue was chosen with the reason being that a smaller
congestion issue allows the BESS more freedom to earn revenue through price arbitrage.

The ESS was not sized entirely to the problem but was adjusted slightly for three reasons. The
capacity of the system was adjusted to fulfil realistic numbers that have previously been supplied by
battery suppliers. The power of the system was upgraded to have a similar ratio to the capacity as the
GIGA Buffalo system. However that power was then limited by the power of the network connection
e.g. 14MW. If the ESS had more power than the size of the network connection, the ESS itself would
already cause congestion when discharging the system at 100% power. With these things taken into
account an ESS of 14MW|30MWh was taken for the case study.

To conclude, the network will consist of:

1. A solar farm with rated capacity of 19 MW

2. A battery energy storage system with 14 MW power and 30 MWh capacity

3. A transformer of size 14 MW

Further assumptions in regards to the battery energy storage system will be that it is a lithium ion
based systemwith limitations similar to the current GIGA Storage Rhino project. Therefore the following
values have been set:

5https://giga-storage.com/the-buffalo-battery/?lang=en
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Figure 3.4: Proposed network topology of the case study

• 𝜂𝑟𝑡 = 90%

• 𝐸𝑆𝑙𝑜𝑤𝑒𝑟 = 1500kWh

• 𝐸𝑆𝑢𝑝𝑝𝑒𝑟 = 28500kWh

The values for 𝐸𝑆𝑙𝑜𝑤𝑒𝑟 and 𝐸𝑆𝑢𝑝𝑝𝑒𝑟 coincide with a 5 % margin of state of charge at both the lower and
upper bracket of the BESS.

3.5.1. Network Schematic
The network topology can be found in Figure 3.4.

3.6. Validation of implementation
As a proof of concept as well as a sanity check, three simple network topologies or battery control
strategies were designed and simulated. These different designs offer context for the problem state-
ment as well as an insight into the capabilities of a BESS that is unencumbered by aiding the local
network. The three scenarios are as follows:

1. No Battery

2. Battery ignoring congestion

3. Battery only solving congestion

The first simulation baseline taken is the simulation in which there is no BESS connected to the
network. The solar farm will simply generate power and the network connection will report how much
congestion was encountered.

The second simulation is a baseline in which the BESS object is introduced to the network. However,
the control strategy of the BESS object disregards the network connection limitations. Therefore no
preparation in regards to congestion or congestion management is executed. For this baseline the
Rhino Strategy 1 control strategy offered by GIGA Storage will be executed.

The final baseline simulation this work offers the reader is the situation in which the BESS is only ever
utilised to solve congestion. The BESS is only charged when the network would otherwise encounter
congestion. The BESS is discharged as soon as the price is ’above average’, a price point of 60
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Figure 3.5: Baseline simulation results with Rhino Strategy 1

No battery
Battery ignoring
congestion
(Rhino Strategy 1)

Battery ignoring
congestion
(GIGA Baseline)

Battery only
solving congestion

# minutes with congestion 29640 40421 53423 0
% of time with congestion 5.64% 7.69% 10.17% 0.0%
Total battery earnings (€) n/a 1,143,900.50 2,013,845.38 113,778.59
Total number of cycles n/a 186.29 362.86 41.25

Daily average earnings (€) n/a 3,135.32 5,519.75 311.86
Daily average cycles n/a 0.51 0.99 0.11

Table 3.3: Baseline simulation results

€/MWh has been used. The BESS is urged to discharge at this price simply to utilise space on the
network connection as soon as congestion allows it. Thereby allowing more space in the system to
solve upcoming congestion.

2021 has been simulated in 1 minute timesteps for a total of 525375 timesteps in the simulation.
The findings of these simulations are presented in Table 3.3. The performance of the BESS measured
in revenue is visualised per month in Figure 3.5.

When viewing the results of the baseline simulations in Figure 3.5, it seems clear the Rhino Strategy
1 is outdated. Its performance in the first months of 2021 seems okay but drops off heavily towards
the end of 2021. Please recall that this strategy was designed for use in Q4 of 2020 with knowledge
of energy prices of 2020. Since that time, there have been significant changes to the energy market.
The situation in Ukraine6 and rising gas prices have had a huge influence on the imbalance market.
Therefore Rhino Strategy 1 and its performance on 2021 imbalance market data cannot be considered
as a good representation of a BESS price arbitrage control strategy.

6https://www.bbc.com/news/world-europe-60506682
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Figure 3.6: Baseline simulation results

3.6.1. GIGA Baseline
To approach a baseline earning that is representative of the performance of GIGA Storage during 2021
Rhino Strategy 1 will not be used. Furthermore the difference in the size of the GIGA Rhino BESS in
comparison to the BESS presented in the case study (12 MW|7.5 MWh vs 14 MW|30 MWh) means
that considering real-time revenues is also not the best baseline value.

Furthermore the GIGA Rhino BESS is a very fast system (its power is larger than its capacity) which
means an optimal control strategy would be very different from that of a slower system (where power
is nearly two times smaller than its capacity) presented in this case study. Finally the methods used
by GIGA Storage are not all applicable to the built simulation, for example one of the GIGA Storage
strategies take into account the day-ahead energy market price when determining the charge and
discharge points of the price arbitrage strategy. These day-ahead prices are not part of the presented
simulation.

To that extent this thesis has tried to approximate the GIGA Storage method of generating a price
arbitrage strategy around the differences between the real-life energy markets and the created sim-
ulation. In discussion with traders from GIGA Storage, a method was devised to generate a BESS
control strategy pseudo-randomly in a manner that GIGA Storage expects price arbitrage strategies
to be structured. Using this method 100 strategies were generated per month and the best perform-
ing was chosen. Following that process, the strategy was investigated by hand and tuned further in
discussion with the same traders.

This method has generated 12 BESS control strategies for the twelve months of 2021 similarly to
the optimisation that will be executed. From here on out, this will be referenced as the GIGA Baseline.
The performance of the strategy can be seen in Figure 3.6. The exact results can be found in Table 3.3.

3.6.2. Lessons learnt from validating the simulation
As the performance of Rhino Strategy 1 on the imbalance market of 2021 was under-performing, this
work considers the new GIGA Baseline when referencing the performance of the baseline simulation
when ignoring congestion.

In the first baseline simulation without a BESS to solve congestion, we find that congestion occurs
5% of the time. This coincides with the findings of Root et al., 2017. Adding a BESS system that disre-
gards congestion issues worsens the congestion issue. In this simulation (Battery ignoring congestion)
the actions taken by the solar farm and BESS combine to cause even more congestion, nearly 10% of
the time. The only baseline simulation that solves congestion is when the BESS is set to purely solve
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congestion. That baseline shows that this setup can solve the issue at hand.
When viewing the usage of the BESS (measured in cycles) and the earnings, it is obvious that

the ‘Battery only solving congestion’ baseline is under-utilising the BESS. It is interesting to note when
comparing the only solve congestion scenario to the GIGA Baseline that only 5.6% of the earnings have
been earned however the BESS was used 10.9% of the time. This points towards the forced action of
congestion management in which the BESS is forced to accept a price which is perhaps worse than
the GIGA Baseline strategy would dictate.

The fact that the congestion management actions taken by the only solve congestion strategy do
earn money for the BESS coincides with the intuitive explanation that during congestion there is ex-
cess energy in the total market, therefore prices are expected to be lower. The moment congestion is
solved on this site, it seems that prices also rise on the imbalance market allowing this strategy to then
discharge the excess power at a profit.

The earnings presented by the GIGA Baseline coincide with expected earnings of GIGA Storage.
The same holds for the number of cycles the system made in the year. These baselines serve as a
manner to present the size of the issue as well as the capability of the system to solve the issue. The
rest of the work will focus upon the further utilisation of the BESS surrounding the forced actions to
solve congestion.



4
Methodology for BESS control strategy

optimisation

4.1. Solving Congestion
To enable the BESS to prepare for and solve congestion, the system must have some information on
the congestion problem it is expecting. However, this work has not been supplied with a forecast that
estimates the expected generation of the 19MW 𝑙𝑒𝑙𝑦𝑠𝑡𝑎𝑑1 solar farm. Therefore, this work will assume
only historical data of the generation of the solar farm is available to the BESS control strategy.

Due to the high costs associated with congestion-induced network damage, the model is required to
deal with the worst case scenario for congestion, only adjusting for hourly andmonthly variations. While
better forecasting methods might give a lower upper bound on the worst case scenario for congestion,
such forecasting models require a high degree of confidence to be used in practice. The assumption
that a large safety factor would be applied to the forecast, such as the worst-case days of the month
of last year, is assumed to not be too conservative. This is due to the sheer amount of (monetary)
damage that can occur on the network if congestion does occur.

4.1.1. Sizing and Timing Congestion
When sizing and timing congestion, a safety margin has been taken. Instead of using 𝑃𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 =
14𝑀𝑊 as it is defined in the case study, the power of the transformer is adjusted according to Equa-
tion 4.1.

In addition, the cable usage for any point in time was averaged over a rolling window of 30 minutes.
Each point in time for which the average generation exceeded the maximal cable capacity was also
considered to be congested. This models a state of alert for the network in which the transformer is
close to congestion occurring.

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝑃𝑜𝑤𝑒𝑟 = 0.95 ⋅ 𝑃𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 (4.1)

𝐶𝑎𝑏𝑙𝑒𝑈𝑠𝑎𝑔𝑒(𝑡) = 𝑃𝑅𝐸𝐺(𝑡)/𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝑃𝑜𝑤𝑒𝑟 (4.2)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑎𝑏𝑙𝑒𝑈𝑠𝑎𝑔𝑒(𝑡) =
∑𝑡+30𝑖=𝑡−30 𝐶𝑎𝑏𝑒𝑙𝑈𝑠𝑎𝑔𝑒(𝑖)

60 (4.3)

𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝐶ℎ𝑎𝑛𝑐𝑒(𝑡) = 𝑚𝑎𝑥(𝐶𝑎𝑏𝑙𝑒𝑈𝑠𝑎𝑔𝑒(𝑡), 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑎𝑏𝑙𝑒𝑈𝑠𝑎𝑔𝑒(𝑡)) (4.4)

𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛(𝑡) = {𝑇𝑟𝑢𝑒 if 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝐶ℎ𝑎𝑛𝑐𝑒(𝑡) > 1.0
𝐹𝑎𝑙𝑠𝑒 otherwise

(4.5)

When there is congestion, this formula will announce true. When there is no congestion, it could
announce true if the network is encountering a lot of energy either before or after the timestep 𝑡.
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4.1.2. Heuristics
Four heuristics are used to determine the time periods in which congestion management is required,
and the size of the energy storage capacity required to solve potential issues.

Earliest starting time Consider a set of timestamps 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛; the timestamp with the earliest time
of day where 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛(𝑡) holds True is considered the earliest starting time of the set.

Latest end time Consider a set of timestamps 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛; the timestamp with the latest time of day
where 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛(𝑡) holds True is considered the latest end time of the set.

SoC level preparation Two approaches are taken when considering the SoC level for preparation of
a congestion event. The first one assumes the BESS should be entirely empty and defines SoC level
preparation as 𝐸𝑆𝑙𝑜𝑤𝑒𝑟.

The second approach to define the SoC level for preparation considers a set of timestamps 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛
and defines the following value:

𝐸𝑥𝑐𝑒𝑠𝑠𝑃𝑜𝑤𝑒𝑟(𝑡) = 𝐶𝑎𝑏𝑙𝑒𝑈𝑠𝑎𝑔𝑒(𝑡) − 𝑃𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 (4.6)

The value of 𝐸𝑥𝑐𝑒𝑠𝑠𝑃𝑜𝑤𝑒𝑟 is summed on a day to day basis. The value is then taken with a safety
margin of 20%. Following that value the SoC level for preparation is defined as.

SoC level preparation = 𝑚𝑎𝑥(𝐸𝑆𝑙𝑜𝑤𝑒𝑟 , 𝐸𝑥𝑐𝑒𝑠𝑠𝑃𝑜𝑤𝑒𝑟) (4.7)

Preparation time Preparing the BESS for congestion has a lot to take into consideration. The specific
congestion case presented in this work expects the BESS to be able to charge excess generated energy
from a solar farm. Therefore the BESS must discharge itself in preparation for congestion. For a 14
MW|30 MWh BESS, a time frame of 2 hours and 8 minutes (30𝑀𝑊ℎ/14𝑀𝑊 = 2 ∶ 08) should be
enough to empty a fully charged system.

However, this assumes the system is able to discharge 14MW fully during this 2-hour period. Due
to the network topology, as soon as solar power is being generated, the BESS can only discharge less
than the expected 14MW.

Taking a fixed 2-hour time frame also assumes the battery has to be entirely discharged to be con-
sidered prepared. In accordance with the SoC level preparation discussed in the previous paragraph,
the battery could sometimes only have to be half empty to solve congestion.

3 different methods were considered.

1. Fixed 2:08 timeframe

2. Fixed timeframe according to SoC level preparation

3. Average generation of the solar farm in preparation timeframe considered for placing start of
preparation time

The final method tracks the average generation of the solar farm during the offered 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛
period and will take into account leftover space on the transformer when calculating how fast the system
can discharge to the desired SoC level preparation at the offered earliest starting time.

4.1.3. Solving congestion with different heuristics
4 different heuristics were investigated that worked in a iterative manner.

1. Yearly times

2. Monthly times

3. Smart sizing

4. Average generation considered
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With the yearly times method, the set 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 is simply the entire dataset of the year 2021. The
improvement in monthly times splits up this method to find values relative to the single month. The
smart sizing method ensures the SoC level preparation is adjusted according to the expected size of
the congestion issue. Finally, the average generation considered makes the preparation time slightly
more conservative to account for the solar park generating power.

(a) Legend for figures b-e

(b) Yearly times, a fixed 2:08 preparation period and the BESS should
be empty for congestion

(c) Monthly times, a fixed 2:08 preparation period and the BESS
should be empty for congestion

(d) Smart sizing, a preparation period relative to how empty the BESS
should be for congestion

(e) Average generation considered, the preparation period is adjusted
according to the average generation of the solar park at that time

Figure 4.1: 4 different congestion timing and sizing methods

In Figure 4.1 the earliest start times, latest end times and SoC level for each month are visualised.
The white space surrounding these labels can be utilised by the BESS to earn additional revenue.
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4.2. Evolutionary Algorithm Optimisation
4.2.1. Why use an evolutionary algorithm?
This thesis has decided to focus on optimising a BESS control strategy through use of an evolutionary
algorithm. Although methods such as machine learning, neural networks or simple gradient descent
can be considered, this work has decided to implement an evolutionary algorithm (EA).

The main reason an evolutionary algorithm has been considered is due to the match between the
evolutionary algorithm and the proposed model of a BESS control strategy. The model is defined by
the different charge- and discharge points. Each point has a relation to the other points in the strategy.
For example the ’opposite’ points that decide the margin between the charge- and discharge decisions
is the essential part that allows the BESS to earn revenue in the imbalance market.

The singular points of the model lend themselves well to be approached as a single gene that to-
gether with all other genes form an individual that will be the BESS control strategy. The evolutionary
algorithm can optimise each individual through operators inspired by the biological concepts of repro-
duction, mutation and selection.

When considering pairing andmutationmethods that will be discussed in subsection 4.2.3 the evolu-
tionary algorithm approach fell into place. The fact that the best parts of two well-performing individuals
could be combined to generate a better-performing control strategy felt intuitive. Although an individual
still consists of the charge and discharge points, the evolutionary algorithm has the power to combine
parts of individuals in search of the best performing solution.

4.2.2. Evolutionary algorithm implementation
This work presents a basic evolutionary algorithm designed to optimise a control strategy for the BESS.
The implementation of the algorithm can be found Algorithm 2.

Algorithm 2 Basic evolutionary algorithm to optimize a BESS control strategy
1: 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑃𝑒𝑟𝐶𝑜𝑢𝑝𝑙𝑒 = 4
2: 𝑡𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡𝑆𝑖𝑧𝑒 = 4
3: 𝐼 = a set of 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 individuals
4: while not 𝑒𝑎𝑟𝑙𝑦𝑆𝑡𝑜𝑝 do
5: 𝑛𝑢𝑚𝑂𝑓𝑃𝑎𝑟𝑒𝑛𝑡𝑠 = 𝑛𝑢𝑚𝑂𝑓𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔/𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑃𝑒𝑟𝐶𝑜𝑢𝑝𝑙𝑒
6: parents_1, parents_2 = 𝑡𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡(𝐼, 𝑛𝑢𝑚𝑂𝑓𝑃𝑎𝑟𝑒𝑛𝑡𝑠, 𝑡𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡𝑆𝑖𝑧𝑒)
7: 𝑂 = ∅
8: for each parent_1, parent_2 𝑖𝑛 𝑧𝑖𝑝(parents_1, parents_2) do
9: for 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑃𝑒𝑟𝐶𝑜𝑢𝑝𝑙𝑒 do
10: offspring = parent_1.𝑝𝑎𝑖𝑟(parent_2)
11: offspring = offspring.𝑚𝑢𝑡𝑎𝑡𝑒()
12: 𝑂 = 𝑂 ∪ offspring
13: end for
14: end for
15: for each individual in I do
16: if 𝑐ℎ𝑎𝑛𝑐𝑒 > 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 then
17: mutatedIndividual = individual.𝑚𝑢𝑡𝑎𝑡𝑒()
18: 𝑂 = 𝑂 ∪ mutatedIndividual
19: end if
20: end for
21: 𝐼 = 𝐼 ∪ 𝑂
22: 𝐼 = Select best 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 individuals from 𝐼
23: end while

4.2.3. Individual
An individual within the evolutionary algorithm is defined as a single control strategy specified by 8
points. Each point consists of a market price in €/MWh and a percentage describing a state of charge
percentage level. Finally, each point specifies if it is a ’CHARGE’ or ’DISCHARGE’ point. However, this
has been fixed as 4 points connected to charge prices and 4 points related to discharge prices. Please
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refer to subsection 3.2.2 that further describes how these points construct a market strategy and how
it relates to solving congestion or earning revenue.

The 8 points decided upon here coincide with the similar amount of points used to encode the GIGA
Storage Rhino Strategy 1.

The random initialisation for an individual follows the structure of 4 CHARGE and 4 DISCHARGE
points. The market price and SoC percentage are randomly generated as follows:

• market price ← 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(−100, 400)

• SoC % ← 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(6, 95)

Please note, to construct the individual correctly, the points are sorted by ascending state of charge.
The random values for SoC % are limited by the derating limits 𝐸𝑆𝑙𝑜𝑤𝑒𝑟 and 𝐸𝑆𝑢𝑝𝑝𝑒𝑟. Aside from this,
market price is generated in step sizes according to 𝑝𝑟𝑖𝑐𝑒_𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 = 2.

4.2.4. Adjusting the individual to a sensical strategy
Rhino Strategy 1 (subsection 3.2.2) when encoded with the proposed method holds true to its original
definition through strategy lines. However when allowing the evolutionary algorithm free rein over
charge and discharge prices as well as SoC levels some parts of the encoding may break. E.g. there
is overlap between strategy lines defining charge prices and those defining discharge prices. Some
steps are taken to ensure the strategy utilised on the BESS is sensical.

Take for example the following encoding:

1. (30, 200, ’CHARGE’)

2. (70, 24, ’CHARGE)

3. (50, 50, ’CHARGE’)

4. (95, 0, ’CHARGE’)

5. (30, 100, ’DISCHARGE)

6. (80, 58, ’DISCHARGE)

7. (60, 98, ’DISCHARGE)

8. (95, -150, ’DISCHARGE)

The first step taken will be to order the charge and discharge points by SoC % respectively. In this
example, points 3 and 2 as well as points 6 and 7 will be interchanged. As the SoC % rounds down to
the last highest value this ensures each point explicitly defines at least some part of the strategy and
is not overwritten by a previous point.

Furthermore, the charge surface is placed over that of the discharge surface. So if the strategy is
content with the charging price, it will not search further if it was also content with the discharging price.
This means the higher price of point 1 will overwrite the price of point 5. So at 30% SoC and a price
of 200 €/MWh the system will charge. The same holds for points 4 and 8. At 90% SoC and a price of
-50€/MWh the system will charge.

However the prices of the charge points define an upper limit while the discharge points define a
lower limit. Therefore, once the price is outside of the upper limit defined by the charging points 1 and
4 the strategy will discharge. E.g. at 30% SoC and a price of 202€/MWh the strategy will decide to
discharge.

The difference of 2 euros here is not a coincidence. The prices set by these points are defined in
steps of 𝑝𝑟𝑖𝑐𝑒_𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 = 2. To round the real imbalance price to this price step size, the imbalance
price for charge will be rounded up while the imbalance price for discharge will be rounded down. An
example of this can be found in Table 4.1.

This naturally enforces amargin between the charging- and discharging surfaces of 𝑝𝑟𝑖𝑐𝑒_𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒.
Therefore the touching surfaces in Figure 4.2 actually have a margin of 𝑝𝑟𝑖𝑐𝑒_𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 = 2.
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Real imbalance price
(€/MWh) Charge price Discharge price

201.25 202 200
0.75 2 0
64.37 66 64

Table 4.1: Real imbalance price conversion to 𝑝𝑟𝑖𝑐𝑒_𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 = 2

Figure 4.2: Sensical interpretation of nonsensical strategy points

Pairing methods
Different pairing methods for individuals have been investigated. Each offspring is generated from the
8 points of parent one and 8 points of parent two. Sorted by the SoC% and whether they are charge or
discharge points these 16 points are matched. For the 8 pairs of points, two different pairing methods
have been explored: multi-axes gaussian distribution and single-axis gaussian distribution. The two
different pairing methods are visualised in Figure 4.3.

Multi-axes gaussian distribution Themulti-axes gaussian distribution generates two random values
according to a gaussian distribution. One on the axis of SoC % and the other on the axis of market
price. The mean of the distribution is placed in the middle of the two parent points and 1 sigma is
defined as the first parent and -1 sigma as the other. Because 2 different axes are used, the eventual
position of the point for the child generated by this pair can be visualised as a circle around the mean.

Single-axis gaussian distribution For the single-axis gaussian distribution implementation, a single
value is generated from a gaussian distribution. This value is scaled according to both SoC % and
market price. Because only a single value is generated from a distribution, the child point can be
visualised as a line between the two parent values.

Mutation methods
Three different mutation methods have been explored. For each point in an individual the SoC % can
change as well as the market price. The SoC % change is changed according to a value generated
between soc_lower and soc_upper. The market price is changed according to a value generated be-
tween price_lower and price_upper ⋅ 𝑝𝑟𝑖𝑐𝑒_𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒. This ensures the new market price value is
scaled correctly to 𝑝𝑟𝑖𝑐𝑒_𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒. Additionally, the SoC % has been limited to the same derating
limits as during random initialisation of the individual.
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Figure 4.3: Two different pairing methods

random_mutation big_random_mutation big_sided_mutation
soc_lower -3 -5 -5
soc_upper 4 5 5
charge_price_lower -3 -6 -6
charge_price_upper 3 6 3
discharge_price_lower -3 -6 -3
discharge_price_upper 3 6 6

Table 4.2: Overview of the mutation parameters

The values are generated on a uniform distribution. The ’sided’ mutation method will therefore
more often mutate the individual in search of cheaper charging or better-discharging prices. Table 4.2
displays the three different mutation parameters explored and the values they contain.

Both pairing methods base their offspring on a gaussian distribution between the two parents. How-
ever due to the possibility of a single individual being both parent one and parent two in offspring gen-
eration, mutating each generated offspring ensures there is a higher chance of exploration rather than
recreating an individual.

Mutation possibility
Three different mutation possibilities have been investigated during the experiments. The mutation
possibility represents the chance that a single individual from the population is mutated. This mutated
individual is added to set 𝑂 as if it was an offspring that has been generated. Please note that this does
not influence the number of offspring generated determined by the offspring ratio parameter.

The mutation possibilities that have been explored are [25%, 50%, 75%].

Guidance methods
Subsection 3.2.2 discusses the intuitive measure that prices should decline for both charging and dis-
charging as the BESS becomes more charged. This coincides with a requirement setout by GIGA
Storage. The individuals and offspring generated by this algorithm do not enforce this intuition in one
way or another. However adding this aspect could either increase performance of the individual or
increase the chance of GIGA Storage actually accepting and utilising the offered strategy generated
by the optimisation.

To that extent 3 different sorting methods were investigated. Figure 4.4 visualises the sorting meth-
ods.

Sort 1 - Interchange prices In the case where a lower SoC % has a higher price than the previous
point the prices of these two prices are interchanged.
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(a) Original strategy, where a higher charge price is present at a higher
SoC% (b) Sorting strategy 1, the two prices are inverted

(c) Sorting strategy 2, the cheaper charging price is taken (d) Sorting strategy 3, the ‘worse’, or higher charging price is taken

Figure 4.4: 3 different sorting strategies
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Sort 2 - Take best price In the case where a lower SoC % has a higher price than the previous point,
the best of the two prices is chosen. For discharge points this is considered the higher of the two points.
For charge points this is the lower of the two points. These higher or lower prices will enforce larger
margins.

Sort 3 - Take worst price In the case where a lower SoC % has a higher price than the previous
point the worst of the two prices is chosen. For discharge points this is considered the lower of the two
points. For charge points this is the higher of the two points. These higher or lower prices will enforce
smaller margins and utilise the BESS more.

Population size
The parameter 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 determines the size of the generation. From the population the parents will
be determined that generate offspring. The different population sizes that have been explored are
[20, 40, 100, 200].

Offspring ratio
The evolutionary algorithm proposed generates 4 offspring per paired individual. This allows the
amount of generated offspring to be adjusted to many different values. The work explores the in-
fluence of generating more or less offspring per generation. The different offspring ratios that have
been explored are [40%, 80%, 160%].

4.2.5. Early stopping criteria
Two early stopping criteria have been implemented to ensure run times of the optimisation are limited.

The first early stoppingmechanism is in regards to variation in the population. If the worst performing
individual and best-performing individual differ less than 99 %, a strike is incremented.

The second early stoppingmechanism is in regards to improvement of the population. If the average
performance of the population does not increase by at least 99.99 % then a strike is incremented. Such
a strict value is often only hit when the population does not improve at all.

Both of these early stopping mechanisms increase the strike counter. The strike counter can only be
increased by one during each generation. Once 5 strikes have passed, the early stopping mechanism
will ensure the optimisation is ended.

An additional stopping mechanism limits the total number of generations to 200 during any and all
runs of the evolutionary algorithm.

4.2.6. Fitness function
The fitness of an individual is measured by running a simulation for the month in which the strategy will
be utilised. In accordance with the network topology presented, either the congestion heuristic smart
sizing will be used or no congestion will be considered when optimising the BESS control strategy.
Furthermore the BESS will be initialised with little energy: 𝐸𝑆(0) = 1600kWh. The revenue of the
BESS for that month will be the fitness and expect to be maximised.

Furthermore, when an individual causes congestion, the income generated by that individual will be
fined by 50%. This allows the evolutionary algorithm to consider very well-performing but congestion-
causing individuals and hopefully optimises the best performing individuals away from causing conges-
tion due to the heavy fine.

It is also important to note that the fitness function is measuring the performance of the strategy on
the month it is being optimised for. In this sense the strategy can be seen as a hind-cast method of
approaching the performance that could be achieved with the knowledge of that month after the fact. To
apply this method to the real world, one would use historical or forecasted market price data to optimise
a strategy and then apply the generated strategy in real time.





5
Experimental Results

5.1. RQ1 - Solving congestion
The GIGA Baseline strategies will be applied to the 4 different heuristics presented in subsection 4.1.3
to investigate if these heuristics are capable of solving the presented congestion problem.

Figure 5.1 shows the results of this experiment. The first line presented in the same figure is the
only solve congestion method discussed in section 3.6. This method would only ever charge the BESS
when congestion occurs.

It is important to note that the hatched bars in this graph portray that congestion occurred in that
month. This automatically means that this strategy is unable to be executed, as damage to the network
would occur. The yearly timing method causes congestion, while all other heuristics successfully solve
congestion.

The exact values can be found in Table 5.1.

5.2. RQ2 - Optimising strategies while disregarding congestion
5.2.1. Description of experiment
This experiment will explore the best performing BESS control strategy in a network topology which
has no congestion issues. This was done by adjusting the network topology such that the transformer
power was set to 34MW. This ensures the solar farm as well as the BESS are both capable of fully
discharging/generating power through the transformer and onto the high voltage grid.

In a business case in which there are no network limitations, this optimisation would generate strate-
gies relevant to the BESS operator. However for the case study presented earlier, this method gener-
ates strategies that cannot be implemented, as they cause congestion. Therefore these control strate-
gies will be applied to the methods discussed in subsection 4.1.3. This further tests the presented
heuristics and the extent to which they are able to solve congestion for other control strategies than the
presented GIGA Baseline.

The optimisation was run 4 times to account for randomness contained in the initialisation-, pairing-
and mutation methods.

5.2.2. Result of experiment
Figure 5.2 demonstrates the performance of the evolutionary algorithm optimisation of a BESS control
strategy without any congestion issues. During optimisation, the transformer power has been set to
34MW which allows both the solar farm as well as the BESS to discharge/generate power without
causing congestion. The generated strategies were then applied to the case study to correctly measure
congestion.

The results of applying these strategies to the same 4 congestion heuristics are visualised in Fig-
ure 5.3. The performance of these methods were compared to the performance of the average gener-
ation considered heuristic applied to the GIGA Baseline.

Similarly to the graphs above, hatched bars indicate congestion occurred.
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Figure 5.1: Results for Research Question 1

(Battery revenue €) January February March April May June

Only solve congestion 0.00 2626.06 0.23 7393.81 25450.34 22709.67
Yearly timing GIGA Baseline 6516.91 5796.20 33622.37 34692.71 42113.85 79804.65
Monthly timing GIGA Baseline 127407.68 83928.33 66094.07 50022.41 38975.25 77247.98
Smart sizing GIGA Baseline 127407.68 106705.74 112169.32 50087.45 38658.21 80588.04
Average generation considered
GIGA Baseline 127407.68 106424.41 112169.32 42228.67 38975.25 73310.27

July August September October November December

Only solve congestion 31802.70 11115.82 10432.11 2246.32 1.52 0.00
Yearly timing GIGA Baseline 44885.82 48985.33 47129.71 40431.83 40725.59 44175.17
Monthly timing GIGA Baseline 53966.51 66700.40 97736.78 108392.03 177481.86 122251.55
Smart sizing GIGA Baseline 60736.50 103996.84 139020.69 165870.45 177481.86 122251.55
Average generation considered
GIGA Baseline 49233.09 105512.17 137765.15 168309.74 177481.86 122251.55

Table 5.1: GIGA Baseline performance with different congestion heuristics

GIGA Baseline
disregard congestion

Disregard congestion
optimisation

Total battery earnings (€) 2,013,845.38 2,363,724.08 ±7685.96
Total number of cycles 362.86 607.90 ±48.79
Average SoC (kWh) 14657 16747.25 ±90.97
Daily average earnings (€) 5519.75 6495.75 ±21.07
Daily average cycles 0.99 1.67 ±0.13

Table 5.2: Overview of battery usage and performance when disregarding congestion
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Figure 5.2: Disregard congestion evolutionary algorithm optimisation compared to the GIGA Baseline

Figure 5.3: Disregard congestion evolutionary algorithm optimisation applied to congestion heuristics, compared to the GIGA
Baseline
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5.3. RQ3 - Optimising strategies while solving congestion
5.3.1. Description of experiment
The next evolutionary algorithm optimisation will be executed with the network topology defined as it is
stated in the case study, with a transformer power set to 14MW. This method will generate strategies
that can immediately be utilised in the proposed smart grid as they are tuned to function around the
presented congestion times. For all these optimisations the smart sizing congestion heuristic was used.

The optimisation was run 4 times to account for randomness contained in the initialisation, pairing
and mutation methods.

Hyperparameter optimisation Exploration of hyperparameters was done with the same optimisation
in which congestion was solved. The experiments are run on threemonths, March, April and November.
A slight congestion month, heavy congestion month and finally a month without congestion. Each run
has been done 3 times to account for randomness contained in initialisation, pairing and mutation
methods. The explored parameters can be found in Table 5.3.

Pairing method Mutation method Mutation possibility

Default value Multi axes random_mutation 50%
Additional explored values Single axis big_random_mutation 25%

big_sided_mutation 75%

Guidance method Offspring ratio Population size

Default value Sort 1 80% 100
Additional explored values No Sort 40% 20

Sort 2 160% 40
Sort 3 200

Table 5.3: Explored parameters

5.3.2. Results of experiment
The performance of the generated strategies are laid out in Figure 5.4 in comparison to the GIGA
Baseline of RQ1 and the best performing non-congestion causing method from RQ2.

The optimisation finds an average increase of revenue of 2.69% in comparison to the disregard
congestion optimisation. A T-test confirms that this improvement is statistically significant with a P-
value of 0.0004.

5.3.3. Hyperparameter optimisation
In the interest of limiting the length of the results section, only the statistically significant parameters are
shown in figures 5.5, 5.6 and 5.7. Please note in these graphs the dashed lines portray the average
average fitness of the population and the solid lines portray the average best performing individual of
that generation.

None of the hyperparameters improved the performance of the evolutionary algorithm optimisation
significantly. However with analysis of the number of fitness function calls for each optimisation some
parameters did show a significant difference with a 95% certainty.

For the congestion-heavy month April the single-axis pairing method found a similar performing
control strategy in statistically significant less fitness function evaluations than the multi-axes method.
A T-test calculated a P-value of 0.0479.

Similarly to above, in the congestion-heavymonth April, a mutation probability of 50% found a similar
performing control strategy in statistically significant more fitness function evaluations than both the
25% and 75% mutation probabilities. T-tests calculated P-values of 0.0184 and 0.02998 respectively.

Finally in the congestion heavy month April, an offspring ratio of 80% spent significantly more fitness
function evaluations to find a similar performing strategy to an offspring ratio if 40%. A T-test calculated
a P-value of 0.03348. The final Figure 5.7c shows the similar performance of the different offspring
ratios. Similar graphs can be found for the other parameters in Appendix A.
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Figure 5.4: Congestion evolutionary algorithm optimisation, compared to the GIGA Baseline and previous best performing heuris-
tic

Earnings
(€mean ±€std)

Disregard congestion
EA optimisation

Congestion
EA optimisation Difference (%) Unpaired T-Test

(N=4)

January 142653.39 ±456 145132.41 ±490 +1.71% P=0.0003
February 111351.05 ±532 116336.41 ±1551 +4.29% P=0.0009
March 122352.0 ±679 128289.81 ±397 +4.63% P=0.0001
April 50439.49 ±4836 62872.47 ±923 +19.77% P=0.0023
May 44248.74 ±1154 51920.43 ±261 +14.78% P=0.0001
June 80660.69 ±645 93618.89 ±424 +13.84% P=0.0001
July 51475.73 ±333 65456.73 ±455 +21.39% P=0.0001
August 115239.44 ±868 125015.26 ±1027 +7.82% P=0.0001
September 153540.73 ±569 162369.07 ±1840 +5.44% P=0.0001
October 230935.66 ±2745 239014.19 ±432 +3.38% P=0.0011
November 239815.56 ±1785 240264.53 ±1252 +0.19% P=0.6948
December 241091.57 ±444 243676.09 ±3067 +1.06% P=0.1464

Year 2021 1,595,169.57 ±10,987 1,637,439.78 ±4,271.41 +2.58% P=0.0004

Table 5.4: Congestion evolutionary algorithm optimisation, compared to the GIGA Baseline and previous best performing heuris-
tic.

GIGA Baseline
Average disregard congestion

Disregard congestion
optimisation

Congestion
optimisation

Total battery earnings (€) 1,261,033.37 1,595,169.57±10987.42 1,637,439.78±4271.41
Total number of cycles 307.31 425.18 ±9.94 439.35 ±9.4
Average SoC (kWh) 10895 13820.50 ±95.77 13511 ±137
Daily average earnings (€) 3456.37 4372.20 ±30.11 4488.27 ±11.56
Daily average cycles 0.84 1.17 ±0.03 1.21 ±0.03

Table 5.5: Overview of battery usage and performance when solving congestion
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(a) Length of EA optimisation with different pairing methods (b) EA optimisation for April with different pairing methods

Figure 5.5: Investigating hyperparameter of different pairing methods

(a) Length of EA optimisation with different mutation probabilities (b) EA optimisation for April with different possibilities of mutation

Figure 5.6: Investigating hyperparameter of different mutation probabilities
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(a) Length of EA optimisation with different offspring ratios (b) EA optimisation for April with different offspring ratios

(c) Performance of EA optimisation with different offspring ratios

Figure 5.7: Investigating hyperparameter of different offspring ratios
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Discussion

6.1. RQ1 - Solving congestion
The investigation of different congestion heuristics make clear that conservative approaches such as
only solving congestion or using yearly times heavily under-utilise the BESS to earn additional revenue
through price arbitrage. The difference in performance of the yearly timings in comparison to the other
monthly timings is smallest during the months in which congestion is most prevalent, May, June and
July. The revenue of these months differs ∼ 4% on average when comparing the yearly timing to
the other 3 methods. That is due to the similarity of the yearly and monthly timings for those specific
months.

The difference between the monthly timed, smart monthly timed and average generation considered
methods is 0% in months where there is no congestion, e.g. January, November and December. As
for these months there is no difference between these methods.

In months in which congestion occasionally happens, the difference between the monthly timed
and smarter methods is most prevalent e.g. March, September and October. In those months an
average revenue increase of ∼ 53% is achieved. This increase is expected as even though congestion
is occurring, the BESS still has room at the lower state of charge levels to earn additional revenue
through price arbitrage.

It is important to note that the yearly timing method still causes congestion in June. Seemingly the
approach this heuristic takes is insufficient to account for all congestion scenarios contained within the
simulation.

Investigation by hand of the congestion that occurred confirms that it occurs due to the battery
energy storage system being unable to prepare itself sufficiently for the congestion event. During the
preparation for congestion phase, the BESS is unable to discharge sufficient power due to the solar park
generation limiting available space on the transformer. This means that by the start of the congestion
period there is excess power still contained within the BESS. Once that is the case, a certain day in
which the congestion event causes enough congestion will cause the BESS to be limited by its physical
capabilities and unable to solve the congestion on the network.

The average generation considered heuristic takes into account this issue bymeasuring the average
generation of the solar park to adjust the preparation period accordingly. This allows this method to
effectively solve congestion. That being said it is important to note that less aggressive strategies will
still be able to solve congestion with the other congestion heuristics. Less aggressive strategies might
ensure the BESS is less full at the start of the preparation phase which means there is sufficient space
on the transformer to fully prepare for the oncoming congestion event.

6.2. RQ2 - Optimising strategies for earning money
Setting the power of the transformer to 34MW allows both the solar park as the energy storage system
to simultaneously generate/discharge power to the high voltage grid. Although the strategies that are
generated through this optimisation are unable to be applied to the presented case study they show
the potential of this optimisation method.
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In all months the optimised strategy outperforms the GIGA Baseline. The GIGA Baseline was not
an exact approximation of the earnings GIGA Storage. However this does show that this optimisation
method produces well-performing price arbitrage strategies.

It is interesting to note the very small standard deviation of the optimisation method. A mean rev-
enue of 2, 363, 724.08 and standard deviation of±7685.96 is only 0.3%. Although the standard deviation
is small the strategies generated by this method are still quite different. Seemingly the same market
data and proposed model for a control strategy allow multiple methods to converge to similar revenues.
Manual investigation of daily performance of the different strategies could show how one strategy opti-
mised a certain set of days with particular price patterns in comparison to another strategy. That would
suggest this similar performance is only achieved when averaging the performance of the strategies
over the particular month.

When applied to the same congestion heuristics used in RQ1 comparisons between the yearly,
monthly, smart monthly and average generation considered heuristics to that of RQ1 are confirmed.

Similarly to the GIGA Baseline when applied to the congestion heuristics some strategies still cause
congestion. These heuristics are not the same ones as the heuristics that still caused congestion for the
GIGA Baseline. Within the different runs of optimised strategies different heuristics did cause and solve
congestion differently, the hatched bars in Figure 5.3 represent the congestion moments still present
of a single run.

This coincides with the previous discussion that some more aggressive strategies can still cause
congestion on some of the most conservative heuristics. One of the optimised strategies even caused
congestion when utilising the average generation considered heuristic. Perhaps an even more conser-
vative approach such as considering the largest generation (instead of average) would be a fool-proof
heuristic that would make the most aggressive strategy still solve congestion.

6.3. RQ3 - Optimising strategies while accounting for congestion
Setting the power of the transformer to 14MW enables the evolutionary algorithm to tune price arbitrage
strategies to the congestion heuristics.

For example the forced discharge action when preparing for congestion can either be embraced by
having a higher SoC or dodged entirely by discharging earlier when prices might be more profitable
than when the action is forced. Furthermore the strategy can utilise lower SoCs of the asset during
congestion in months such as March, September and October where the SoC is only forced below ∼ 15
MWh.

The optimisation successfully finds a more optimal control strategy than the strategies presented
by the optimisation without considering congestion. These perform better with a statically significantly
P-value of 0.0004. On average the performance is 2.58% better. The highest increase of performance
is achieved in the months April through July, this is expected as these months encounter the largest
issues of congestion. Seemingly the EA optimisation that takes congestion into account effectively
steers the asset around the congestion event and increase revenue by on average ∼ 17%.

A small increase in the earnings in slight-congestion months March, September and October has
been found to be statistically significant. An average increase of revenue of ∼ 4.48% was found which
shows that optimisation around small congestion events or in lower SoC brackets has beenmade. Man-
ual investigation of the performance of the strategies could show if the additional revenue is generated
in lower SoC brackets or in moments surrounding congestion events.

As expected in November and December, months in which there are no congestion events, there
is no statistical significant improvement between the two optimisation methods. However in January,
where there are also no congestion events, there is a statistical significant improvement of 1.71%.
Investigation of the strategies by hand might help explain this improvement. Perhaps the limitation
of discharge (to not cause congestion) that is taken into account in the optimisation that considers
congestion manages to find better prices surrounding energy prices when discharge might be limited.

6.3.1. Hyperparameter optimisation
Not a single explored hyperparameter ensured a statistically significant difference in performance of the
evolutionary algorithm was achieved. However a statistically significant difference in number of fitness
evaluations was found. For optimisations ran on high-congestion month April, an offspring ratio of 40%,
mutation possibility of 25% and the single-axis pairing method all outperformed their counterparts in
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(a) Disregard congestion optimised strategy for January (b) Congestion optimised strategy earning for January

Figure 6.1: Investigation of two January individuals

generating a similar performing strategy in statistically significant less number of fitness evaluations.
It is difficult to pinpoint the reason why these parameters caused a significant difference in number

of fitness function evaluations. A lower offspring ratio suggests that converging to the current best-
performing strategies works best, however if that is the case a higher mutation possibility is expected
to be an improvement but the higher mutation possibility was outperformed by the 25% value. Perhaps
however the better performance of a lower mutation possibility suggests that the mutation method
chosen simply does not perform well for high-congestion months.

During all runs it was clear that the evolutionary algorithm took the most fitness function evaluations
to optimise a strategy for the high-congestion month April. Therefore any significant speedup to this
method could ensure lower run times for the algorithm during other high congestion months.

Finally, it seems that the basic evolutionary algorithm implemented in this thesis cannot further op-
timize the proposed model of a BESS control strategy. Because no hyperparameters were able to
improve the performance of the algorithm. The best effort to improve the performance of the evolution-
ary algorithm would be to explore related work in the context of evolutionary algorithms.

6.4. General
6.4.1. Manual investigation of optimised strategies
Besides investigating the performance of the strategies through themeasurement of generated revenue
it is interesting to compare the generated strategy points and if they coincide with realistic strategies
generated and utilised by GIGA Storage.

The intuitive approach that when the BESS is nearly full, a better charge and cheaper discharge
price are expected and that when the BESS is almost empty, a cheaper charge price and better dis-
charge price are expected is enforced by the hyperparameter Sort 1. For that reason the generated
strategies by the optimization show this structure.

Furthermore two design choices of the structure of a control strategy ensure certain odd-looking
strategies do perform well. The first is that charge takes priority over discharge presented positions.
Therefore discharge prices that lay below the charge price are disregarded and seen as charge actions.
The discharge action will only be taken at a price above the charge price.

The second design choice to recall is that the strategy is always sorted by the SoC% of the point.
Therefore the different points seem to naturally follow each other.

Design choice one of placing the charging surface over that of the discharge surface ensures that
both of the presented strategies for January in Figure 6.1 have similar performance. Even though the
disregard congestion strategy wants to discharge from prices of -176 €/MWh it is limited by the charge
price of 68 €/MWh at the same SoC. Therefore the actual discharge price will be set at 70 €/MWh.

Seemingly the large margins the congestion optimised strategy strives for at lower SoCs do not
make a significant impact on the performance of this strategy in comparison to the other.

Figure 6.2 presents two different strategies optimised for the month of May, a month with a lot of
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(a) Disregard congestion optimised strategy for May (b) Congestion optimised strategy for May

Figure 6.2: Investigation of two May individuals

(a) Disregard congestion optimised strategy for October (b) Congestion optimised strategy for October

Figure 6.3: Investigation of two October individuals

congestion. The strategy that was optimised for congestion has a white band leading upwards between
89-95 SoC%. Such a structure in the strategy means that once the ESS has been charged to such
a high SoC that there is not a single price at which it will discharge and the asset would be ’stuck’
at that SoC%. However due to May being a high-congestion month, forced discharge actions during
and in preparation for congestion will still ensure the SoC is brought down out of this white band by a
congestion-related discharge.

All strategies that were optimised while disregarding congestion have found this structure in their
strategy and placed one of their points at an SoC level of 𝐸𝑆𝑢𝑝𝑝𝑒𝑟. This ensures that the strategy does
not generate such a white band.

Furthermore for these May strategies we can see that extreme discharge prices are being overwrit-
ten by charge prices. These structures can be seen in both the optimisation with andwithout considering
congestion. It seems the difference in performance between these strategies stems from the higher
charge price at an average level SoC in the congestion optimised strategy.

In months in which there are few congestion events (e.g. October) we can theorise why certain
differences in strategies have been generated. Especially months in which the BESS is not forced to
discharge fully in preparation of congestion allows for the BESS to optimise a strategy at lower SoC
levels. The vastly different charge prices presented in Figure 6.3 at 20 SoC% are an example of this.

Although the presented strategies all perform well especially in comparison to the GIGA Baseline it
remains a question if these strategies would be applied in the real world. Such overlapping structures
as presented in Figure 6.2 do not instil trust in the knowledge of the system and raise the question that
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a larger margin might vastly improve the presented strategy.
Furthermore once the evolutionary algorithm started converging around very low discharge prices

they might as well have been discarded due to the charge prices simply overwriting them. It raises the
question what would happen if the evolutionary algorithm was able to act upon such findings. Perhaps
if an optimization was ran where the discharge command took priority over the charge command, the
found discharge prices would be able to be matched to that of the current model to improve the overall
strategy. Other improvements to the BESS control strategy could consider time (different strategies at
different times), power (not all actions have to be executed at 100%) or day-ahead prices.

However the generated strategies for October (Figure 6.3) do show the capabilities of the algorithm
to generate strategies more in line with strategies previously utilised by GIGA Storage. This suggests
that by improving the model for a BESS control strategy that maybe a far better performance can be
reached.

6.4.2. Battery Usage
Table 5.2 not only presents results regarding revenue of the BESS but also displays battery usage
statistics of the different strategies. Regarding the strategies optimised while disregarding congestion
it is good to inform the reader that these usage statistics are well in line with battery manufacturer
guarantees of that of the GIGA Rhino BESS. The average SoC % is below 60% and the average
cycles per day are below 1.8.

It is interesting to note that the optimised strategy is far less efficient with its battery cycles when
compared to the performance of the GIGA Baseline. Although the optimised strategy (on average)
outperforms the baseline by 17% they are using 60%more cycles to earn this additional revenue. This
suggests that allowing the evolutionary algorithm to optimise for minimising the number of cycles could
perhaps improve battery usage while still out performing the baseline method.

The same findings can be found in Table 5.5. Although the earnings of the base model are lower
than that of the other two methods it is the most efficient strategy with its cycles. All methods that
solve congestion make fewer cycles than their earn money counterparts. Even though these strategies
contain many forced actions, e.g. discharging to prepare for congestion and charging when congestion
occurs. Seemingly the prepared state of the BESS ensures that little to no actions are taken when
congestion does not occur even though it was prepared. For example when it is a cloudy day or a
thunder-storm passes over during the prognosed congestion period. That the prepared state of the
BESS remains underutilised when congestion does not occur is in line with the lower average state of
charge found when comparing those values to that of the results of Table 5.2.

6.4.3. Significance to the case study
The results of this research show that to solve congestion for the case study the price arbitrage strategy
generates ∼ 33% less revenue than a situation in which the same price arbitrage strategy could be free
to take actions when it wanted to. Further tuning the strategy to account for the congestion can improve
the earnings by ∼ 2.5%.

Due to the fixed timing scheme created by the congestion-based heuristics presented in this work it
is easy for GIGA Storage or other parties to present their congestion encountering clients with a fixed
cost per hour for preparation of and solving the congestion issue. If such a system would be priced in
a way to make up for all lost revenues this would be approximately 320 €per hour (€720, 000/2254ℎ ≈
320). However considering the earnings of the BESS could inspire a more competitive offer.

Further, the strategy presented here could be optimised with a generation forecast of for example
24 hours. This could heavily reduce the number of hours the system was waiting for congestion to
occur while it was perhaps a cloudy day. To that extent profits would rise and hours spent expecting
forced actions would be minimised, further realising the business case of a BESS in combination with
a renewable energy generator.

Other points to consider when discussing a potential contract between the BESS and the renewable
energy project would be to consider energy prices other than the imbalance market prices. If for exam-
ple the REG has a power purchasing agreement (PPA) with a fixed energy price perhaps the BESS can
use that price when taking a forced charge action to solve congestion than a worse imbalance price.
The same goes for a discharge action taken by the BESS when discharging to prepare for congestion.
In the current simulation the BESS simply takes the imbalance price while other options can be taken
into account.
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If the case study would want to be installed to the current grid TenneT restrictions define that the
grid would have to apply for a 34MW grid connection which is capable of handling the full load of the
solar park as well as the discharging BESS. Applying for such a large grid connection is a complicated
process that is becoming more difficult when considering the current state of the grid. Furthermore the
investment necessary for a larger transformer can also be mentioned.

This research shows how it is possible to utilise the grid more efficiently and bring the size of the
transformer down to 14MW. The monetary savings made on the investment of installing a smaller
transformer are not expected to be significant when considering the entire lifetime of the project. These
savings would be a smaller one-time saving of investment costs in comparison to yearly or hourly costs
incurred by having a BESS on the local grid to solve congestion. Furthermore the installation of a BESS
cannot be considered a small investment so the impact of this research on the feasibility of the cost
and benefits of the project as a whole is minimal. However the smaller transformer could ease the
application process for actually realising the grid connection and thereby the instalment of additional
renewable energy to the grid.

Finally transport costs should also be mentioned, subsection 3.2.5 mentioned limitations the BESS
encounters when the system wants to charge when there is no power being generated by the solar
park (e.g. every night). This ensures the control strategy is also limited during those hours to earn
additional revenue. Although it is physically possible for the BESS to charge from the high voltage
grid, the transport costs TenneT bills grow very fast with the peak capacity charged from the grid. The
ironic part is that the next consumer, e.g. the utility that buys power once the BESS is discharging, is
also paying for transportation costs. The novel nature of battery energy storage systems on the grid
means these high costs which are effectively paid twice are limiting actions and revenue of the BESS.
If steps are made to change these things Equation 3.11 can be adjusted and changes are expected in
the performance of all presented methods.
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Conclusion and Future Work

This thesis concludes that it is possible for an appropriately sized battery energy storage system to
solve congestion in a smart grid where the transformer has been undersized when considering the size
of the renewable energy generator. The BESS will earn ∼ 30% less revenue when forced to solve
congestion on the grid. This revenue could be accounted for by charging a fee for the congestion
services. But before such an offer is made other pricing points such as energy prices and saving on
investment costs should be considered.

Four different heuristics were presented and if the control strategy is tuned towards the heuristic all
four can be utilised to solve the congestion issue. However when considering a revenue maximisation
control strategy the safest choice of heuristic would be the average generation considered method.
Within this work these heuristics were applied to monthly historical data of a solar park however future
work could consider the uncertainty and performance of a generation forecast of the renewable energy
generator to improve performance.

The implemented evolutionary algorithm to optimise the control strategy of the BESS during, in
preparation of and in downtime of congestion was able to outperform the offered baseline as well as
the pure revenue-based optimised strategies. Although the generated strategies were limited by the
offered model of the BESS control strategy this work hopes to inspire the community to consider BESS
strategies outside of solving single problems on a (local) network.

Hyperparameter optimisation of the evolutionary algorithm improved the runtime of the algorithm
when considering high-congestion months but did not statistically significantly improve performance.
Once an improved model of the BESS strategy has been implemented future work is urged to con-
sider proven well-performing evolutionary algorithms such as GOMEA and NSGA-II to improve the
optimisation.

This thesis has proved that the proposed case study can be realised. Although the costs saved on
investing in a smaller transformer do not weigh up to the investment costs of the BESS this work hopes
to inspire parties to help realise renewable energy generation projects in an overfull grid.
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A
Hyperparameter optimization

(a) Length of EA optimization with different pairing methods (b) EA performance with different pairing methods

Figure A.1: Investigating hyperparameter of different pairing methods
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48 A. Hyperparameter optimization

(a) Length of EA optimization with different mutation values (b) EA performance with different mutation values

Figure A.2: Investigating hyperparameter of different mutation values

(a) Length of EA optimization with different mutation probabilities (b) EA performance with different mutation probabilities

Figure A.3: Investigating hyperparameter of different mutation probabilities

(a) Length of EA optimization with different offspring ratios (b) EA performance with different offspring ratios

Figure A.4: Investigating hyperparameter of different offspring ratios
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(a) Length of EA optimization with different population sizes (b) EA performance with different population sizes

Figure A.5: Investigating hyperparameter of different population sizes

(a) Length of EA optimization with different guidance methods (b) EA performance with different guidance methods

Figure A.6: Investigating hyperparameter of different guidance methods
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