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Gibbs-Duhem integration implies the numerical integration of a Clapeyron equation. To start the
numerical integration, an initial coexistence point and a corresponding initial slope of the Clapeyron
equation are needed. In order to apply Gibbs-Duhem integration to all kinds of systems at diverse
physical conditions, one has to investigate and assess the available methods that can be used to
compute these initial values. This publication focuses on vapor-liquid equilibria in binary mixtures
comprising chain molecules. The initial coexistence point is either computed with the NV� Gibbs
ensemble or with the Np�+test molecule method with overlapping distributions, which is
introduced in this publication. Although computationally demanding, the Np�+test molecule
method with overlapping distributions is applicable at conditions where the NV� Gibbs ensemble
fails. We investigated three methods that can be employed to compute the initial slope of the
Clapeyron equation. The Widom method and the overlapping-distributions difference method
provide correct values for the initial slope. The difference method does only provide the correct
answer in special cases. The possibility to judge the reliability of the results makes the
overlapping-distributions difference method the safest route to the initial slope. Gibbs-Duhem
integration requires the frequent computation of the slope of the Clapeyron equation. This slope
depends on ensemble averages of the composition. A new bias method for efficient sampling of the
composition in a semigrand-canonical simulation of chain molecules is presented. This bias method
considerably enhances the composition sampling in systems comprising chain molecules of different
sizes. © 2006 American Institute of Physics. �DOI: 10.1063/1.2137705�
I. INTRODUCTION

Knowledge of physical properties of pure components
and mixtures is essential when designing new processes or
improving the efficiency of existing processes. Many pure-
component physical properties can be retrieved from litera-
ture. However, mixture properties are less often measured
and documented. Furthermore, available mixture properties
are often measured only at moderate physical conditions.
Computer power has increased considerably over the last
years. Thus, it is possible to employ computationally de-
manding methods such as molecular simulations for the pre-
diction of physical properties. This is particularly attractive
at physical conditions where real experiments are expensive
or simply impracticable.

In this work, we focus on Monte Carlo �MC� molecular
simulation of vapor-liquid equilibria in binary mixtures com-
prising chain molecules. Among the simulation methods that
are commonly used to predict vapor-liquid equilibria is the
Gibbs-Duhem integration �GDI� method.1,2 As opposed to
many other simulation techniques, GDI has the advantage of
being independent of insertions and/or removals of mol-
ecules. This independence makes the method especially suit-
able for the computation of phase equilibria including a solid
phase.3–11 In case a good estimate of an initial coexistence
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point is known, the method is appropriate for the prediction
of complete phase diagrams including vapor, liquid, and
solid phases.3,7,8

A Gibbs-Duhem equation describes the mutual depen-
dence of state variables in an individual thermodynamic
phase. Combination of the Gibbs-Duhem equations of coex-
isting phases enables one to derive a so-called Clapeyron
equation. Gibbs-Duhem integration implies the numerical in-
tegration of the Clapeyron equation. A Clapeyron equation
describes monovariant phase coexistence; it applies to any
type of coexistence situation, as long as the number of de-
grees of freedom is 1. The original Clapeyron equation de-
scribes how the saturation pressure changes with temperature
in order for two phases to remain at coexistence. Gibbs-
Duhem integration is easily extended to binary or multicom-
ponent mixtures12 and multiphase systems13 by deriving the
appropriate Clapeyron equation.

The numerical integration traces a coexisting curve from
a predetermined initial coexistence point and a correspond-
ing value of the right-hand side of the Clapeyron equation.
The right-hand side will be called the initial slope in what
follows. In order to correctly implement GDI, good estimates
for the initial conditions are needed.

There are several simulation techniques that can be con-
veniently used to predict the initial coexistence point and the
initial slope at moderate conditions, i.e., at moderate molar
volumes and for mixtures consisting of small molecules that
are not too different. The computation of the initial coexist-

ence point and the corresponding initial slope often requires
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advanced simulation techniques in case the densities of the
equilibrium phases differ much, the system contains large
chain molecules, and/or the size and force-field parameters
of the molecules in the mixture differ much. The prediction
of the initial coexistence point and the initial slope with MC
molecular simulation for systems containing chain molecules
will be discussed in detail in Secs. II A and II B.

The numerical integration of the Clapeyron equation re-
quires the frequent computation of the slope.1,2,12 In this
work, we focus on vapor-liquid equilibria of binary mixtures.
The slope of the corresponding Clapeyron equation is com-
puted with molecular simulation in an isobaric semigrand-
canonical ensemble. In this ensemble, the composition fluc-
tuates while the total number of molecules is constant. In
Sec. II C, a method is presented that can be used to effi-
ciently sample the composition in a semigrand-canonical en-
semble simulation of a system containing chain molecules of
different sizes. Section IV contains a summary and conclud-
ing remarks.

II. METHODOLOGY

A. Computing the initial coexistence point

The Clapeyron equation that is considered here describes
vapor �V�-liquid �L� phase coexistence in a binary mixture at
constant temperature �=1/ �kBT�, kB being Boltzmann’s
constant12

� �p

��2
�

�,�
=

x2
L − x2

V

�2�1 − �2���vL − vV�
, �1�

where �2 is the fugacity fraction of component 2,12,14,15 x2 is
the mole fraction of component 2, and v is the volume per
molecule. The subscript � indicates that the derivative is
taken along the saturation line. A suitable initial coexistence
point for Clapeyron equation �1� is the saturation pressure of
one of the pure components, along with the liquid- and
vapor-phase densities at coexistence, all evaluated at the
temperature of interest.

The appropriateness of a method to compute the initial
coexistence point depends on the physical conditions of the
systems and on the components of interest. In a previous
publication,16 we discussed two methods that can be used to
compute pure-component coexistence points: the NV� Gibbs
ensemble method17–22 and a modification of the original23,24

Np�+test molecule method.
The NV� Gibbs ensemble method is a very convenient

method to compute a vapor-liquid coexistence point, as it
provides the liquid- and vapor-phase densities at coexistence
along with the saturation pressure at the temperature of in-
terest from a single simulation. Ensemble averages of the
vapor- and liquid-phase densities at coexistence are obtained
in the usual way by averaging instantaneous densities, which
have been sampled at regular intervals. The pressure is com-
puted from the virial for pairwise-additive potentials25 or
from volume perturbations.26 Unfortunately, the applications
of the NV� Gibbs ensemble are limited to systems with
phases of moderate density. At high density, successful ex-
changes of molecules between the phases are rare; the ma-

jority of the insertions of molecules into a high-density phase
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results in overlap with other molecules. Furthermore, the dif-
ference between the liquid- and vapor-phase molar volumes
limits the applicability of the NV� Gibbs ensemble method,
as the total volume and the total number of molecules of both
phases are constant.

The basic idea of the original Np�+test molecule
method23,24 and its extensions16,27–31 is the construction of
the chemical potential as a function of pressure, temperature,
and composition, and the subsequent calculation of the
vapor-liquid saturation pressure from the criterion of equality
of chemical potentials. Individual Np� simulations are per-
formed for a liquid and a vapor phase. As the simulations are
performed at constant number of molecules, a large differ-
ence between the liquid- and the vapor-phase molar volumes
does not limit the application of the method. The liquid-
phase pressure dependence of the chemical potential is ap-
proximated by a Taylor-series expansion truncated after the
second term

�0��L�p;�0� � �0��0
L�p0

L,�0� + �0�vL	�p − p0
L�

−
NL�0

2

2

��vL�2	 − �vL	2��p − p0

L�2, �2�

where vL is the liquid-phase volume per molecule, NL is the
number of molecules in the liquid phase, �0 is the reciprocal
reference temperature, p0

L is the liquid-phase reference pres-
sure, and �¯	 is an ensemble average computed at pressure
p0

L and reciprocal temperature �0. The prime in Eq. �2� indi-
cates that the purely temperature-dependent part of the ideal-
gas chemical potential has been excluded; i.e., �� is a con-
figurational chemical potential. According to Vrabec and
Fischer,27,30,31 it is convenient to treat the ideal-gas chemical
potential analytically and to use a truncated Taylor-series ex-
pansion for the residual chemical potential. This approxima-
tion reveals the logarithmic dependence of the vapor-phase
configurational chemical potential on the pressure

�0��V�p;�0� � �0��0
V�p0

V;�0� + ��0�vV	 −
1

p0
V��p − p0

V�

+ ln� p

p0
V� , �3�

where vV is the vapor-phase volume per molecule, p0
V is the

reference pressure of the vapor phase, and �¯	 is an en-
semble average computed at pressure p0

V and reciprocal tem-
perature �0.

From Eqs. �2� and �3�, it is clear that the computation of
the coexistence condition from the intersection of the Taylor-
series expansions requires knowledge of the configurational
chemical potentials �0� at a reference temperature and pres-
sure. The modification of the original Np�+test molecule
method that was presented in a previous publication16 com-
prises a simulation scheme that enables the prediction of the
pure-component saturation pressure even from a bad initial
guess of the true saturation pressure. The chemical potential
was computed from the Rosenbluth factor,32 which made the
method applicable at relatively high densities. In this paper,
we further extend the applicability of the modified Np�

+test molecule method, while using the same iterative
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scheme to arrive at the saturation pressure. The configura-
tional chemical potential is now computed from the
overlapping-distributions method of Shing and Gubbins33,34

and from the Rosenbluth factor.32,35 The combination of the
overlapping-distributions method of Shing and Gubbins and
Rosenbluth sampling is applicable at even higher densities
and provides the possibility to judge the reliability of the
answer.

Below, a derivation is given for the distributions that are
needed to compute the configurational chemical potentials
�0� at the reference point from the Shing-Gubbins
overlapping-distributions method in the Np� ensemble. In
order to simplify the notation of the derivations, we first
discuss how ideal-chain intramolecular configurations are
generated. An ideal-chain molecule is an ideal-gas molecule
with neither intramolecular Lennard-Jones nor intramolecu-
lar Coulombic interactions. The total interaction energy of a
system of molecules is separated into three contributions;
Uext is the sum of the intermolecular Lennard-Jones �LJ� and
Coulombic �C� interaction energies, Uintra describes the con-
tributions from bond-angle bending and rotations about tor-
sion angles, and ULJint+Cint comprises intramolecular Lennard-
Jones and Coulombic interactions.

Ideal-chain intramolecular configurations can be effi-
ciently generated in accordance with their Boltzmann
weight, � exp�−�Uintra�, using a rejection method.32 The
probability to generate an ideal-chain intramolecular con-
figuration between � and �+d� is given by

d� =
exp�− �Uintra�Jdqn−3ds3

z
, �4�

where J is the Jacobian of transformation from Cartesian to
generalized coordinates, z is a normalization constant, s3 rep-
resents the vector of overall translational coordinates, scaled
by the length of the cubic simulation box, and qn−3 repre-
sents the configuration vector of a molecule with n degrees
of freedom. Notice that the intramolecular Lennard-Jones
and Coulombic interactions are left out of probability distri-
bution �4�. The reason is that it is computationally very de-
manding, especially for large chain molecules, to compute
intramolecular Lennard-Jones and Coulombic energies for
every generated trial configuration. Although the molecules
that are used in this paper are far from large, the intramo-
lecular Lennard-Jones and Coulombic energies are left out of

probability distribution �4� to keep the method generally ap-
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plicable. In case the intramolecular configurations are gener-
ated according to probability distribution �4�, the Np� parti-
tion function can be written as follows36

�Np�
* =

�zq�NN

N!
� dV

VN

V
exp�− �pV�

�� ¯� d�N exp�− �Uexp+LJint+Cint��N�� , �5�

where q is the kinetic contribution of one molecule to the
partition function and N is the number of molecules. There is
one subtle difference between partition function �5� and its
counterparts presented in several text books;25,32 Eq. �5� con-
tains a factor NV−1 instead of an undetermined volume scale
that keeps the partition function dimensionless.37 Partition
function �5� can be derived from the general Np� partition
function as presented by Corti38,39 and by Corti and
Soto-Campos,40 who use a shell molecule to explicitly define
the simulation volume. Without this shell molecule, an iso-
baric partition function redundantly counts volume states.
The volume scale in the general Np� partition function de-
pends on the interactions of the system with the surroundings
as well as on the shape of the simulation box. In case the
system is homogeneous, interactions with the surroundings
are negligible and cubic periodic boundary conditions are
used, the general Np� partition function reduces to Eq.
�5�.37,41 The asterisk in Eq. �5� is meant to distinguish the
corrected partition function from a conventional Np� parti-
tion function.

The derivation of the overlapping distributions of the
Shing-Gubbins method in the Np� ensemble starts by defin-
ing a perturbed and an unperturbed system. The unperturbed
or reference system �subscript “ref”� contains N real mol-
ecules and an ideal-chain molecule, while the perturbed sys-
tem �subscript “per”� comprises N+1 real molecules. The
variable that needs to be sampled in the perturbed and in the
unperturbed system is given by

X = ��Utest
ext+LJint+Cint − ln� �pV

N + 1
� , �6�

where �Utest
ext+LJint+Cint is the energy change that occurs when

an ideal-chain molecule is changed into a real molecule. The
probability density to find the unperturbed system in “state”

X is derived from Eq. �5�
�ref�	� =

� qN+1zN+1

N!�p � � dV� exp�−�pV�NVN

V � � ¯� d�N+1exp�− �Uref
ext+LJint+Cint��N��
�	 − ��Utest

ext+LJint+Cint + ln��pV
N+1��

Qref
, �7�

where Qref is a normalization constant. The factor N! instead of �N+1�! in Eq. �7� is due to the fact that the ideal-chain
molecule can be distinguished from the real molecules. The counterpart of Eq. �7� in the perturbed system is given by
cense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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�per�	� =

qN+1zN+1

�N+1�! � dV
exp�−�pV�NVN+1

V � ¯� d�N+1exp�− �Uper
ext+LJint+Cint��N+1��
�	 − ��Utest

ext+LJint+Cint + ln��pV
N+1��

Qper
, �8�

The factor qN+1zN+1 is omitted for convenience in what follows. The 
 function in Eq. �8� allows substituting 	
+�Uref

ext+LJint+Cint+ ln��pV / �N+1�� for �Uper
ext+LJint+Cint

�per�	�

=

Qref

Qper

exp�−	�
N!�p � dV � exp�−�pV�NVN

V � � ¯� d�N+1exp�− �Uref
ext+LJint+Cint��N��
�	 − ��Utest

ext+LJint+Cint + ln��pV
N+1��

1

N ! �p
� dV

exp�−�pV�NVN

V � ¯� d�N+1exp�− �Uref
ext+LJint+Cint��N��

=
Qref

Qper
exp�− 	��ref�	� . �9�

The ratio of normalization constants Qper /Qref can be related to the configurational chemical potential ��

Qper

Qref
=

�p

N + 1
� ¯� d�test�V exp�− ��Utest

ext+LJint+Cint��N,�test��	Np� = exp
− ��� + ln� p�WIG,1
LJint+Cint	
pref �� , �10�
where �WIG,i
LJint+Cint	 is the normalized Rosenbluth factor of an

isolated chain of type i.32,42 This normalized Rosenbluth fac-
tor is given by

�WIG,i
LJint+Cint	 =� ¯� d�i exp�− �ULJint+Cint��i�� . �11�

Insertion of Eq. �10� into Eq. �9� gives

ln �per�	� = ��� − ln� p�WIG,1
LJint+Cint	
pref � − 	 + ln �ref�	� .

�12�

Notice that the Rosenbluth factor of an isolated chain, which
is a purely temperature-dependent property, is not needed in
the computation of phase equilibria, as it is equal in coexist-
ing phases. The actual value of the configurational chemical
potential is obtained from a graphical analysis of the differ-
ence between the following distributions

fper = ln �per�	� +
1

2
	, f ref = ln �ref�	� −

1

2
	 . �13�

Equation �12� is similar to the relation presented by Sindz-
ingre et al.43 who derived it for single-site Lennard-Jones
molecules. Kofke and Glandt also used a similar relation in
order to compute pure-component fugacities of Lennard-
Jones systems.14 They used a joint energy-volume distribu-
tion, which provides the same result but requires longer
simulations.

The overlapping-distributions method requires simple
test-molecule insertions and test removals of real molecules
in two separate simulations. In this paper, Rosenbluth sam-
pling is used to compute the configurational chemical poten-
tial. The combination of Rosenbluth sampling and the

overlapping-distributions method has been worked out by
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Mooij and Frenkel.35 The working equation that is used to
obtain the configurational chemical potential is identical to
Eq. �12�, however, the variable that must be sampled is now

	 = − ln Wext+LJint+Cint − ln� �pV

N + 1
� , �14�

where Wext+LJint+Cint is the Rosenbluth factor of a test mol-
ecule with intermolecular interactions.32,35 The possibility to
compute the configurational chemical potential from the
overlapping-distributions method depends on two factors. At
first, as the name of the method indicates, the distributions
fper and f ref should have a region of overlap. Secondly, the
difference between the distributions should give a constant
value of ��� over a range of 	 values.

B. Initial slope of the Clapeyron equation

As pointed out in Sec. II A, the initial point from which
the numerical integration is started is one of the pure-
component vapor-liquid coexistence points at the tempera-
ture of interest. However, Clapeyron equation �1� is not de-
fined for a pure component. Fortunately, it is possible to
derive an appropriate form of the Clapeyron equation in the
limit of infinite dilution of a solute �subscript 2� into a sol-
vent �subscript 1�12

lim
�2→0

� �p

��2
�

�,�
=

1

��vL − vV�
� f1

H2
�L

− � f1

H2
�V� , �15�

where f1 is the fugacity of the pure solvent and H2 is Henry’s

constant of the infinitely diluted solute. The ratios f1 /H2 in
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Eq. �15� can be expressed into the residual chemical poten-
tials of the solvent and the infinitely diluted solute

� f1

H2
� = lim

x2→0
exp�− ���2

res − �1
res�� . �16�

A residual chemical potential equals the full chemical poten-
tial minus its ideal-gas contribution at the same pressure,
temperature, and composition. The ratios f1 /H2 can be com-
puted from an ensemble average by perturbing the composi-
tion during a simulation in an N1p� ensemble. The situation
of infinite dilution is approximated by the smallest possible
mole fraction in a simulation, i.e., x2=1/N. In what follows,
we will discuss three potential methods for the computation
of the residual chemical-potential difference ��21

res=�2
res

−�1
res.

1. Widom test-molecule insertions

The most understandable method for the computation of
the residual chemical-potential difference ��21

res is to sepa-
rately determine �2

res and �1
res by Widom test-molecule

insertions44,45 in the N1p� ensemble. In Widom’s test-
molecule method, molecules that do not influence the evolu-
tion of the system are inserted into the simulation box. The
individual chemical potentials are computed by ensemble av-
eraging the Boltzmann factors of the interaction energies of
the inserted solvent and solute molecules.
introduced by Shing in order to compute activity coeffi-
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In order to facilitate the computation, the residual
chemical-potential difference is divided into two
contributions.42 The first contribution comprises the full
chemical-potential difference minus its ideal-chain-gas value
�superscript “ic”�, while the second contribution consists of
the ideal-gas chemical-potential difference �superscript “ig”�
minus its ideal-chain-gas value

��21
res,Widom = ���21 − ��21

ic �Widom − ���21
ig − ��21

ic � . �17�

The partition functions of an ideal-gas molecule, Zi
ig, and of

an ideal-chain gas molecule, Zi
ic, at constant temperature and

pressure are given by

Zi
ic =

qizi

�p
� ¯� d�i =

qizi

�p
, �18�

Zi
ig =

qizi

�p
� ¯� d�i exp�− �Ui

LJint+Cint� . �19�

Having found the ideal-gas and ideal-chain-gas partition
functions, we are now able to give a relation for the second
contribution on the right-hand side in Eq. �17�

����21
ig − ��21

ic � = − ln�Z1
icZ2

ig

Z2
icZ1

ig� = ln� �WIG,1
LJint+Cint	

�WIG,2
LJint+Cint	

� . �20�

The first contribution to the residual chemical-potential dif-
ference in Eq. �17�, in the limit x →0, is given by36
2

lim
x2→0

����21 − ��21
ic �Widom = − ln
�p

N1
� ¯� d�2

test�V exp�− �Utest,2
ext+LJint+Cint�	N1p��

+ ln
 �p

N1 + 1
� ¯� d�1

test�V exp�− �Utest,1
ext+LJint+Cint�	N1p��

= − ln�N1 + 1

N1

� ¯� d�2
test�V exp�− �Utest,2

ext+LJint+Cint�	N1p�

� ¯� d�1
test�V exp�− �Utest,1

ext+LJint+Cint�	N1p�
� , �21�

where Utest,i
ext+LJint+Cint is the sum of the intermolecular and intramolecular Lennard-Jones and Coulombic energies of a test

molecule of identity i and �i
test is a random ideal-chain test-molecule configuration generated in accordance with Eq. �4�. The

ensemble averages in Eq. �21� are obtained from a single N1p� ensemble simulation. The ratio f1 /H2, computed from Widom’s
test-molecule method, can now be related to ensemble averages as follows

� f1

H2
�Widom

=
�WIG,1

LJint+Cint	

�WIG,2
LJint+Cint	

�N1 + 1

N1
�� ¯� d�2

test�V exp�− �Utest,2
ext+LJint+Cint�	N1p�

� ¯� d�1
test�V exp�− �Utest,1

ext+LJint+Cint�	N1p�

. �22�
2. Difference method

A straightforward perturbation method that can be em-
ployed to compute the residual chemical-potential difference
is the difference or swap method. The difference method was

46,47
cients and residual chemical-potential differences at infinite
dilution. The method can be extended to nondiluted mixtures
and is also suitable for the computation of other partial molar
properties.43,48–55 The chemical-potential difference at con-

stant temperature and constant pressure is given by
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���21 = − ln��N1−1,N2+1,p�
*

�N1N2p�
* � , �23�

where �N1N2p�
* is the partition function of a binary

isothermal-isobaric ensemble that correctly counts volume
states. The derivations of the residual chemical-potential dif-
ference as published by Shing46,47 and by Sindzingre
et al.43,55 are applicable to systems with single-site or rigid
molecules. In this publication, a straightforward derivation is
given for chain molecules with intramolecular degrees of
freedom and intramolecular Lennard-Jones and Coulombic
interactions. Employment of Eq. �17� gives the following
result for the residual chemical-potential difference at infinite
dilution.36

lim
x2→0

exp�− ���21
res,Diff�

=
�WIG,1

LJint+Cint	

�WIG,2
LJint+Cint	

� ¯� d�2
test

��exp�− ��U1→2
ext+LJint+Cint��1

N1,�2
test��	N1p�, �24�

where �i
test is a random ideal-chain test-molecule configura-

tion, generated in accordance with Eq. �4�, and �U1→2
ext+LJint+Cint

is the change in interaction energy that results from convert-
ing a molecule of type 1 into a molecule of type 2.

The simulation procedure is as follows. A single pure-
component N1p� ensemble simulation is performed. At regu-
lar intervals, one of the molecules is converted into a mol-
ecule of type 2 and the exchange energy �U1→2

ext+LJint+Cint is
noted. The new molecule with identity 2 and the old mol-
ecule with identity 1 have the same center-of-mass coordi-
nates. The molecule is converted back before the simulation
proceeds. The ratio f1 /H2, computed from the difference
method, can now be related to an ensemble average of a
Boltzmann factor as follows

� f1

H2
�Diff

=
�WIG,1

LJint+Cint	

�WIG,2
LJint+Cint	

� ¯� d�2
test

��exp�− ��U1→2
ext+LJint+Cint��1

N1,�2
test��	N1p�.

�25�

3. Overlapping-distributions difference method

Shing and Gubbins33,34 and Powles et al.56 showed how
to combine test-molecule insertions and test removals of real
molecules in order to compute the chemical potential from a
Monte Carlo simulation. The Shing-Gubbins method, which
is also called f-g method, is a special case of the curve-fitting
method, which has been developed by Bennett57 for comput-
ing the free-energy difference between two systems.

Sindzingre et al.43,55 suggested the combination of the
difference method and the f-g method for obtaining accurate
simulation results for residual chemical-potential differences
and other partial molar properties. Liu48 and Liu and

49,50
Govind actually performed computations with this com-
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bination of methods. The combination of methods will be
called overlapping-distributions difference method in this
publication.

Below, a derivation is given for the overlapping distri-
butions of the difference method. The unperturbed �refer-
ence� system has N1 molecules of type 1, N2 molecules of
type 2, and an ideal-chain molecule of type 2. The perturbed
system comprises N1−1 molecules of type 1, N2+1 mol-
ecules of type 2, and an ideal-chain molecule of type 1. The
variable that needs to be sampled in both the reference and
the perturbed systems is36

	 = ��Uper
ext+LJint+Cint − Uref

ext+LJint+Cint� . �26�

The procedure to derive the residual chemical-potential dif-
ference is similar to the one given in Sec. II A. The relation
between the overlapping distributions �per and �ref is given
by36

ln �per�	� +
1

2
�ln

�WIG,2
LJint+Cint	

�WIG,1
LJint+Cint	

+ 	� = ���21
res,OlD

+ ln �ref�	� −
1

2
�ln

�WIG,2
LJint+Cint	

�WIG,1
LJint+Cint	

+ 	� . �27�

The residual chemical-potential difference is obtained from a
graphical analysis of the following distributions

fper = ln �per�	� +
1

2
�ln

�WIG,2
LJint+Cint	

�WIG,1
LJint+Cint	

+ 	� ,

�28�

f ref = ln �ref�	� −
1

2
�ln

�WIG,2
LJint+Cint	

�WIG,1
LJint+Cint	

+ 	� .

The ratio �f1 /H2�OlD, computed from the overlapping-
distributions difference method, is obtained from Eq. �16�
and from ���21

res,OlD in the limit of infinite dilution.

C. Energy-biased identity changes in the semigrand-
canonical ensemble

Numerical integration of Clapeyron equation �1� requires
the computation of its slope at several state points. The vari-
ables that occur in the slope of Clapeyron equation �1� cor-
respond to an isobaric semigrand-canonical ensemble.14 The
values of the liquid- and vapor-phase volumes and mole frac-
tions at constant number of molecules, temperature, pressure,
and fugacity fraction are computed from binary isobaric
semigrand-canonical simulations.

An advantage of a semigrand-canonical-ensemble simu-
lation is the independence of insertions and removals of mol-

ecules. The method requires identity changes of molecules
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instead. Such an identity change consists of the deletion of a
molecule with identity i and the generation of a new mol-
ecule with identity j at the same center-of-mass coordinates.
The identity changes may be very efficient in case molecules
of type i and type j have similar size, shape, and force-field
parameters. However, for real molecules these differences
are generally not negligible. They often have a dramatic ef-
fect on the fraction of accepted identity changes. It shall be
clear that a simple implementation of the identity change that
is performed between two very different molecules seldom
changed is chosen based on the energies of the molecules
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results in an accepted new state. Employing a bias method
may increase the number of accepted identity changes and
the “diffusion through composition space.”

A bias method uses information on the present configu-
ration of molecules for the selection of a favorable new con-
figuration. Before deriving the acceptance criterion for a bi-
ased identity change, we discuss the isobaric semigrand-
canonical partition function. According to Frenkel and
Smit,32 the isobaric semigrand-canonical partition function
Y� for a binary mixture can be written as follows
Np��2
YNp��2
� = �p� dV

�Vq1z1�N

N!
exp�− �pV��

iden � �2� ¯� exp�− �ULJint+Cint�d�1

�1 − �2� � ¯� exp�− �ULJint+Cint�d�2
�

N2

�� ¯� d�N1d�N2 exp�− �Uext+LJint+Cint��N1,�N2�� , �29�

where z1 is a normalization constant of the intramolecular probability distribution of molecules of type 1 �see Eq. �4�� and q1

is the kinetic contribution of a molecule of type 1 to the partition function. The summation indicated by “iden” represents a
sum over all possible identities of all molecules.14,32 The free energy belonging to partition function �29� is the effective full
semigrand energy �N�1. As pointed out in Sec. II A, conventional isobaric partition functions, like the semigrand-canonical
one in Eq. �29�, redundantly count volume states.38–40 In this paper, a shifted partition function YNp��2

* is used that correctly

counts volume states and relates to the effective configurational semigrand energy N ln� f̂1 / pref� �Ref. 36�

YNp��2

* =� dV� V�pref

�WIG,1
LJint+Cint	�Nexp�− �pV�

V�N − 1�! �
iden


 �WIG,1
LJint+Cint	

�WIG,2
LJint+Cint	

�2

�1 − �2��N2

�� ¯� d�N1d�N2 exp�− �Uext+LJint+Cint��N1,�N2�� , �30�
where pref is a reference pressure, the value of which is un-
important. The asterisk in Eq. �30� is again meant to distin-
guish the corrected partition function from a conventional
isobaric semigrand-canonical partition function. Imposing
the criterion of detailed balance25,32 to an identity-change
MC move in the binary isobaric semigrand-canonical en-
semble gives the following acceptance probability.36

min�1,
 �WIG,1
LJint+Cint	�2

�WIG,2
LJint+Cint	�1 − �2��m12

exp�− ��U1→2
ext+LJint+Cint�� ,

�31�

where m12=−1 for identity changes 2→1 and m12= +1 for
the reverse change. The variable �U1→2

ext+LJint+Cint is the change
in interaction energy that results from the identity change.

As already mentioned above, simply using acceptance
criterion �31� will result in only a small fraction of accepted
identity changes in case molecules of types 1 and 2 are very
different. In an unbiased sampling scheme,14 a molecule is
picked randomly and an identity change is performed. In this
paper, the choice of the molecule whose identity is to be
that constitute the system. This choice of bias is based on the
following considerations. The energy of a settled molecule
with identity i , Ui

ext+LJint+Cint,old, is generally low. Given the
energy of the settled molecule, the acceptance probability
�31� for the identity change is highest for new molecules
with low values of U j

ext+LJint+Cint,new. One may try to find pref-
erential orientations for a molecule of type j in an
orientational-bias fashion. However, it is much easier to
choose settled configurations with a high energy
Ui

ext+LJint+Cint,old; although Ui
ext+LJint+Cint,old is generally low, the

higher its value, the larger the acceptance probability of the
identity-change MC move.

In case the number of molecules that takes identity j is
small compared to the total number of molecules, for ex-
ample, at � j �0.5, it may be worthwhile to perform the iden-
tity change j→ i more often than is justified based on the
mole fraction of component j. This can be accomplished by
introducing the fugacity fraction into the selection criterion
of a molecule. The above-mentioned criteria result in the
following biased probability to perform an identity-change

MC move on molecule i
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�i =
exp�+ ��Ui

ext+LJint+Cint,old − 
mi ln��2/�1 − �2���

�
j=1

N

exp�+ ��U j
ext+LJint+Cint,old − 
mj ln��2/1 − �2��

=
Ci

old

�
j=1

N

C j
old

, �32�

where mi=−1 in case molecule i is of identity 1 and mi

= +1 when molecule i is of identity 2. The parameters � and

 determine the strength of the bias. The exponents in Eq.
�32� have bound values since the energies of settled mol-
ecules are finite negative up to slightly positive. To obey the
criterion of detailed balance,25,32 the acceptance criterion
�31� has to be changed as well. The acceptance criterion for
the energy-biased identity change is given by

min�1,� �WIG,1
LJint+Cint	

�WIG,2
LJint+Cint	

�m12
�
j=1

N

C j
old

�
j=1

N

C j
new

� exp
− �1 − ��

���Uext+LJint+Cint + �1 + 2
�m12 ln� �2

1 − �2
��� . �33�

III. RESULTS AND DISCUSSION

A. Simulation details

The force field that is used in this work is given by a
Lennard-Jones 12-6 potential with Coulombic charges on the
interaction sites wherever necessary. The Coulombic interac-
tions were computed with the Ewald summation method.25

The Ewald screening parameter and the upper bound in the
reciprocal space were fixed at �=5.6 and kmax=6. The total
intermolecular potential is given by

Uext = 4�
i=1

N−1

�
j=i+1

N

�
�=1

ni

�

=1

nj

��

� ��


ri�j

�12

− � ��


ri�j

�6�

+
1

4��0
�
i=1

N−1

�
j=i+1

N

�
�=1

ni

�

=1

nj qi
�qj




ri�j

, �34�

where �0 is the vacuum permittivity, qi
� is partial charge � on

molecule i ,ni is the number of partial charges on molecule
i ,ri�j
 is the distance between interaction sites i� and j
, and
��
 and ���, respectively, are the Lennard-Jones collision-
diameter and well-depth parameters for the interaction be-
tween site � and site 
. The Lennard-Jones parameters for
interactions between unlike interaction sites were computed
with the Lorentz-Berthelot combining rules.25

In this paper, we present simulation results for several
binary mixtures. Force-field parameters for the molecules of
interest were taken from literature. Methane, ethane, and pro-

pane were modeled with the TraPPE-EH force field �explicit-
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hydrogen transferrable potentials for phase equilibria�,58 car-
bon dioxide with the TraPPE-AA �all-atom transferable
potential for phase equilibria� force field,59 dimethyl sulfox-
ide �DMSO� with the potential of Rao and Singh,60 difluo-
romethane with the force field of Higashi and Takada,61 and
trifluoromethane with the force field of Song et al.62 Intramo-
lecular flexibility, if present, comprised bond-angle bending
and rotation about torsion angles

Uintra =
k�

2
�� − �0�2 + c1�1 + cos�� + c2�1 − cos2��

+ c3�1 + cos3�� , �35�

where � is a bond angle, �0 is the expectation value of bond
angle �, and � is a torsion angle. Among the above-
mentioned force fields, only the TraPPE-EH force field has
intramolecular degrees of freedom.58 The types of molecules
that are used in this work have neither intramolecular
Lennard-Jones nor intramolecular Coulombic interactions.

In all Np� simulations, in the semigrand-canonical
simulations, and in the NV� Gibbs ensemble simulations in
which the pressure was computed from the virial, molecular
translations and rotations were, respectively, force biased and
torque biased.16,63,64 The bias strengths � and � were fixed at
0.5. Cubic periodic-boundary conditions with the minimum-
image convention were employed.25 The standard Lennard-
Jones long-range corrections were applied25 with a potential
cutoff of three times the largest Lennard-Jones collision di-
ameter � in the simulated system. The cutoff was checked
against half the box length after every successful volume
change.

Every simulation consisted of 5000 equilibration MC
cycles and 100 000 production MC cycles. Maximum trans-
lations, rotations, and volume changes were adjusted during
the equilibration period of the simulation to yield a fraction
of accepted MC trial moves of about 50%. Different maxi-
mum displacements were used for the liquid and the vapor
phase. Initially, the statistical errors of the ensemble averages
were computed with the block-averaging method of
Flyvbjerg and Petersen.65 This analysis revealed the mini-
mum block length needed to obtain uncorrelated blocks of
samples. It turned out that blocks of a few thousands MC
cycles were uncorrelated. The statistical errors given in this
work have been computed from application of the bootstrap
method66 to regularly saved blocks of 2500 MC cycles.

The pure-component coexistence conditions were either
computed with a NV� Gibbs ensemble simulation or from
the Np�+test molecule method with overlapping distribu-
tions. The performance of the energy-bias method was tested
in semigrand-canonical simulations. The MC cycles in these
simulation techniques comprise different MC moves.

NV� Gibbs ensemble simulations were performed with
N=400 molecules. The initial densities of the liquid and the
vapor phase were chosen such that the vapor phase contained
on average approximately 50 molecules. We could accom-
plish this by changing the initial number of molecules in the
liquid NL and in the vapor phase NV=N−NL and/or by
changing the initial densities of the liquid and the vapor

phase. Samples were taken during the production phase. Ev-
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ery MC cycle in a NV� Gibbs ensemble simulation consisted
of 0.7N translations, 0.3N rotations, a number of exchanges
of molecules between the phases, and 2 or 6 changes of the
coupled volumes.

The saturation pressure was either computed from vol-
ume perturbations or from the virial. The number of volume
changes per MC cycle was 2 for pressure computation from
the virial and 6 for pressure computation from volume per-
turbations.

The configurational-bias method was used to achieve an
acceptable percentage of successful exchanges of molecules
between the coexisting phases.32 The number of attempted
exchanges of molecules between the phases and the number
of trials in the growth process32 of a molecule were adjusted
such that the fraction of accepted exchanges was approxi-
mately between 2% and 5%.

In all Np� simulations and in the semigrand-canonical
simulations, liquid phases contained NL=300 molecules and
vapor phases NV=100 molecules. Every MC cycle consisted
of 0.7Ni translations, 0.3Ni rotations, and 1 volume change,
where i represents the liquid or the vapor phase. In the
semigrand-canonical simulations, we also performed 0.5Ni

energy-biased identity changes.
The Np� simulations that were performed to compute

the initial slope of the Clapeyron equation required several
extra perturbations. Application of the Widom method re-
quired 0.5Ni test insertions for molecules of both compo-
nents. In the application of the difference method, we in-
cluded Ni test-identity changes, and in the overlapping-
distributions difference method we included 0.5Ni test
removals of real molecules or 0.5Ni test insertions of mol-
ecules. The distributions of the overlapping-distributions dif-
ference method contained 201 bins. The bin width was de-
termined during the equilibration phase of the simulation.

B. Simulation results

1. Initial point

The suitability of a simulation method to compute the
initial coexistence point depends on a number of factors. The
most important one is the capability of the method to predict
an accurate answer. Other factors are the required simulation
length for obtaining a reliable result and the complexity of
the computer code. Simulation results for several pure-
component vapor-liquid coexistence points are given in

TABLE I. Simulation results for pure-component s
potentials ��� along with statistical errors at vapo

Gibbs ensemble/virial Gibbs ens

pL,sat pV,sat pL,s

System/condition �MPa� �MPa� �MP

C2H6/250 K 1.38�7� 1.323�5� 1.37�
CO2/280 K 3.84�9� 4.09�5� 4.08�
C2H6/144.26 K
DMSO/278.5 K
DMSO/303.15 K
DMSO/328.94 K
Table I. Only results for saturation pressures are presented,
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as they completely define the condition of phase coexistence
at the temperature of interest. Densities at vapor-liquid coex-
istence can be computed from subsequent Np� simulations.
We will not compare the performance of the Np�+test mol-
ecule method with overlapping distributions and NV� Gibbs
ensemble simulations, as these methods are completely dif-
ferent. The applicability of the methods at different physical
conditions will be discussed instead.

The saturation pressures in NV� Gibbs ensemble simu-
lations were computed in both liquid and vapor phases, from
either the virial25 or volume perturbations.26 As pointed out
in Sec. II A, the NV� Gibbs ensemble can be conveniently
used when the liquid-phase density and the difference be-
tween the liquid- and the vapor-phase molar volumes are
moderate. In case the liquid-phase density is moderate, it is
worthwhile to use force-biased translations and torque-
biased rotations in order to enhance the diffusion through
configuration space.16,63,64 These bias methods require the
computation of intermolecular forces. If the force between
the molecules is computed, it requires little effort to compute
the virial as well. Thus, at moderate densities, computing the
pressure from the virial is convenient.

On the other hand, in case the liquid phase is far from
dense, force and torque-biased methods are less relevant and
computing the pressure from volume fluctuations is an at-
tractive alternative, since NV� Gibbs ensemble simulations
already require volume trial moves. However, as the compu-
tation of the pressure from volume fluctuations requires
small volume perturbations,26 an increased number of vol-
ume trial moves is necessary to sample all accessible volume
states within a finite number of MC cycles. An advantage of
computing the saturation pressure from volume perturbations
is that it may provide reliable results from a liquid-phase
simulation as well as from a vapor-phase simulation. This is
often not possible within reasonable time in case the satura-
tion pressure is computed from the virial. Getting rid of the
virial is particularly advantageous when the Ewald-
summation method25 is used to compute the Coulombic in-
teractions as the evaluation of the Coulombic forces between
molecules is computationally very demanding.

The moving ensemble averages of the liquid- and vapor-
phase saturation pressures, computed with both methods, are
given in Fig. 1. The results were obtained for pure ethane58 at
T=250 K. Obviously, the saturation pressures computed

tion pressures and/or effective configurational chemical
id coexistence conditions.

e/volume perturbations Np�+TM/overlapp. distributions

pV,sat psat ���
�MPa� �MPa� �−�

1.312�7�
4.03�2�

0.0076�7� −8.9�9�
0.0017�1� −10.8�9�
0.0063�5� −9.57�8�
0.019�1� −8.55�7�
atura
r-liqu

embl

at

a�

5�
6�
with both methods converge to the same value. The moving
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average obtained from volume perturbations converges much
faster, both expressed in CPU demands and in MC cycles.

The Np�+test molecule method with overlapping distri-
butions provides the pure-component saturation pressure at
the temperature of interest from a series of simulations. Al-
though it is also possible to predict the liquid- and vapor-
phase densities at the predicted saturation pressure from a
Taylor-series expansion,67 in this work we compute them
from a new Np� simulation. Anyway, a new simulation is
needed to compute the initial slope of the Clapeyron equa-
tion.

Simulation results, obtained with the Np�+test molecule
method with overlapping distributions, for DMSO at T
=303.15 K are presented in graphical form in Fig. 2. The
distributions fper and f ref �see Eq. �13�� have a region of
overlap from which the liquid-phase reference configura-
tional chemical potential ��0

L can be computed. The com-
puted Taylor-series expansions of the liquid- and vapor-
phase configurational chemical potentials around their
reference pressures are presented in Fig. 2�b�. The statistical
error of the computed saturation pressure is governed by the

FIG. 1. Moving average of the saturation pressure of pure ethane, obtained
pressure. The symbols � and �, respectively, represent simulation results o
for the vapor phase.

FIG. 2. Computation of a vapor-liquid coexistence point with the overlappin
pure DMSO at T=303.15 K. Error bars are given in both figures. �a� Ov
Graphical representation of the liquid- and vapor-phase Taylor-series expan

tively, represent the configurational chemical potentials at the liquid- and vapor-p
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statistical error of the liquid-phase configurational chemical
potential at its reference point. The statistical errors of the
results are relatively high. Better results may be obtained in
case longer simulations are performed.

Computation of the configurational chemical potential
from simple Widom test-molecule insertions is hardly pos-
sible at the temperatures of binary systems 3–6 in Table I.
The prediction of one coexistence point with the Np�+test
molecule method with overlapping distributions is a time-
consuming task as it requires four parallel simulations per
iteration. Furthermore, the computation of the Rosenbluth
factor is computationally very demanding. Nevertheless, the
combination of the Np�+test molecule method with overlap-
ping distributions and Rosenbluth sampling is very well ca-
pable of predicting vapor-liquid coexistence points at condi-
tions where the NV� Gibbs ensemble and the conventional
Np�+test molecule method fail.

2. Initial slope

A comparison of the Widom test-molecule method, dif-
ference method, and overlapping-distributions difference

a NV� Gibbs ensemble simulation at T=250 K. �a� Liquid-phase saturation
ed from volume perturbations and from the virial. �b� Same as �a� but now

tributions Np�+test molecule method. These results have been obtained for
ping distributions and liquid-phase configurational chemical potential. �b�
of the configurational chemical potential. The symbols � and �, respec-
from
btain
g-dis
erlap
sions
hase reference pressures.
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method has already been made by Liu48 and by Liu and
Govind.49,50 Their analyses were restricted to mixtures of
single-site Lennard-Jones components. They only applied the
difference method in the direction of increasing molecular
size. It turned out that the three methods provide comparable
results. The difference method had one order higher preci-
sion than the Widom test-molecule method had. For simple
mixtures, the overlapping-distributions difference method
had no advantage over the simple difference method. How-
ever, the overlapping-distributions difference method pro-
vided accurate results at higher densities than the other meth-
ods did. In this publication, the analyses performed by Liu48

and by Liu and Govind49,50 are extended to chain molecules.
Subsequently, the failure of the difference method when
swapping a large molecule with a smaller one is explained.

Numerical values of the liquid-phase residual chemical-
potential differences ��21

res and the accompanying ratios
f1 /H2 for a couple of binary systems at vapor-liquid coexist-
ence conditions are given in Tables II and III. The pure-
component coexistence conditions were computed from vol-
ume perturbations in the NV� Gibbs ensemble.

An advantage of the Widom test-molecule method is its
simplicity. Its application needs only minor modifications to
the computer code of the ensemble of interest. However, the
simplicity of the method is canceled out by the convergence
characteristics in systems with moderate to high densities
and/or in systems with large chain molecules. At high den-
sity, the larger part of the test-molecule insertions results in
overlap of molecules with a corresponding negligible contri-
bution to the ensemble average of the chemical potential.

Widom test-molecule insertions result in an energy dis-
tribution similar to the one obtained from a simulation in the
reference system of the overlapping-distributions method

TABLE II. Liquid-phase residual chemical-potential
�1�, computed with different methods at vapor-liquid

Wido
System Condition �−

C2H6�1� /CH4�2� 250 K, 1.29 MPa 2.24
CH4�1� /CO2�2� 150 K, 1.13 MPa −1.89
C3H8�1� /CH4�2� 270 K, 0.433 MPa 3.57
CHF3�1� /CO2�2� 254 K, 1.42 MPa 0.72
CO2�1� /CH2F2�2� 244.3 K, 1.61 MPa −0.95

TABLE III. Liquid-phase ratios of solvent’s �1� fug
different methods at vapor-liquid coexistence conditi

Wido
System Condition �−

C2H6�1� /CH4�2� 250 K, 1.29 MPa 0.107
CH4�1� /CO2�2� 150 K, 1.13 MPa 6.6�1
C3H8�1� /CH4�2� 270 K, 0.433 MPa 0.028
CHF3�1� /CO2�2� 254 K, 1.42 MPa 0.48�
CO2�1� /CH2F2�2� 244.3 K, 1.61 MPa 2.6�2
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�see Eq. �13�, f ref�. The chemical potential computed from
the Widom test-molecule method has large contributions
from the poorly sampled low-energy tail of the energy dis-
tribution. Since the low-energy configurations are rarely en-
countered in high-density systems, the moving average of the
chemical potential shows discontinuous behavior, and the
higher the density, the more pronounced the discontinuities
will be. A second drawback of the Widom approach is the
separate computation of the ensemble averages of both re-
sidual chemical potentials; they both have an independent
statistical uncertainty. Furthermore, several simulation stud-
ies in infinite periodic systems19,68–70 indicated that the
chemical potential of single-site Lennard-Jones molecules is
rather system-size dependent. Thus, one should always check
whether the simulated system is large enough in order to
avoid system-size dependence or one should apply a finite-
size correction to the chemical potential.19,71

Special care is needed when Rosenbluth sampling is
implemented in the computation of the residual chemical
potential.32,35,72 The results of Rosenbluth sampling are only
identical to those of nonbiased Boltzmann sampling in the
limit of an infinitely long simulation.32 Instead of generating
a molecular configuration with a probability proportional to
its Boltzmann weight, the Rosenbluth scheme accepts a con-
figuration based on its Rosenbluth weight. Especially for
large chain molecules, the elongated configurations are
sampled poorly. However, as this work involves only small
chain molecules, this limitation is less relevant.

Liquid-phase densities at the physical conditions pre-
sented in Table II are moderate. Accordingly, the Widom
test-molecule method can be efficiently used to compute the
residual chemical-potential difference with high precision
within reasonable time. The simulation results for the Widom

rences at infinite dilution of a solute �2� in a solvent
istence conditions.

���21
res from different methods

Difference method Overlapping distributions
�−� �−�

2.54�11� 2.26�5�
−1.70�3� −1.90�4�

5.67�7� 3.6�1�
1.31�8� 0.69�4�

−0.5�2� −0.96�6�

over solute’s �2� Henry’s constant computed with

f1 /H2 from different methods

Difference method Overlapping distributions
�−� �−�

0.08�10� 0.105�6�
5.4�1� 6.7�2�
0.0034�2� 0.028�3�
0.27�2� 0.50�2�
1.6�3� 2.6�2�
diffe
coex

m
�

�2�
�2�
�5�
�2�
�7�
acity
ons.

m
�

�2�
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�
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test-molecule method agree within their statistical errors with
the results obtained from the overlapping-distributions differ-
ence method. However, the results do not match those ob-
tained with the difference method.

The main advantage of the difference method is its easy
application in a simulation; the computer code needs hardly
to be changed. Since the virtual swap between an existing
molecule and a molecule of another component takes place
at the same center-of-mass coordinates, there is no serious
insertion problem like in the Widom test-molecule method.
Therefore, the method is applicable at higher densities than
the simple Widom approach is. However, this advantage is
less apparent when Rosenbluth sampling is used in the com-
putation of the residual chemical potential.

The difference method determines ��21
res,Diff as a single

ensemble average. For mixtures consisting of similar compo-
nents, the statistical uncertainty of ��21

res,Diff can be much
smaller than the sum of the statistical uncertainties of the
individual values of �1

res,Widom and �2
res,Widom.43,47,54 Further-

more, the residual chemical-potential difference computed
with the difference method seems to be less size dependent
than its counterpart obtained from the Widom test-molecule
method.47,55

The difference method does not provide the correct
value of the residual chemical-potential difference in case a
large molecule is swapped with a smaller one.55,73 However,

FIG. 3. Molecular configurations. The solid curve represents the intermo-
lecular potential. The symbols U ,rij, and rshell, respectively, represent the
intermolecular energy, the intermolecular distance, and the most favorable
intermolecular distance. �a� Favorable configuration of a reference system
consisting of molecules with identity 1. �b� Favorable configuration of a
perturbed system in which the central molecule is replaced by a molecule
with identity 2.

FIG. 4. Simulation results obtained with the overlapping-distributions differ
T=270 K and p=0.4333 MPa. Error bars are given in both figures. �a� R

res,OlD
computed from ���21 .
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the method works quite well the other way around in systems
comprising single-site Lennard-Jones molecules. This asym-
metry of perturbation methods is well known. For example,
when computing the chemical potential by perturbing the
ensemble of interest, insertion of test molecules usually pro-
vides the right value, while removal of real molecules does
not. To explain the asymmetry of the perturbation in the dif-
ference method, we consider a perturbed system �subscript
“per”� and an unperturbed reference system �subscript “ref”�.
The reference system contains only molecules of component
1, while the perturbed system has a molecule of component 1
replaced by a molecule of component 2. The reference sys-
tem and the perturbed system are schematically shown in
Fig. 3. Suppose molecules of component 2 are smaller than
those of component 1.

Favorable configurations in the reference system have
configurations that look like the one shown in Fig. 3�a�; the
first “shell” of molecules is on average a distance �r11	
�rshell apart from the central molecule. This distance
roughly corresponds to the distance at which the interaction
energy between molecules of type 1 reaches its minimum
value. Configurations with �r11	�rshell are highly improbable
as they result in overlap of molecules.

The central molecule in the perturbed system is replaced
by a molecule of type 2. The interaction energy between a
molecule of type 2 and a molecule of type 1 has a minimum
at a distance �r21	�rshell. This is a fair approximation when a
molecule of type 2 is smaller than a molecule of type 1. The
central molecule in the perturbed system �see Fig. 3�b�� pre-
fers the molecules of type 1 to be closer than rshell. So, part of
the configurations that is important to the perturbed system
will never be sampled in the reference system. The part be-
ing never sampled has large contributions to the ensemble
average. Thus, the ensemble averages of ��21

res,Diff and
�f1 /H2�Diff will, respectively, be systematically higher and
lower than their true values in case a large molecule is
swapped with a smaller one.

The discussion of the difference method in previous pub-
lications has been restricted to mixtures of single-site
Lennard-Jones molecules,43,49,50,55 or to rigid Lennard-Jones
dumbbells.53 From the discussion in this section, it became

method for the liquid phase of the binary system propane�1�/methane�2� at
al chemical-potential difference and overlapping distributions. �b� f1 /H2
ence
esidu
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clear that the unilateral difference method should not be used
when a large single-site molecule is swapped with a smaller
one. Notice that larger or smaller can hardly be defined for
molecules with nonspherical geometry and intramolecular
flexibility, as distances between interaction sites are orienta-
tion dependent in chain molecules.

Now, consider the simulation results presented in Tables
II and III. Propane and methane are both modeled with the
all-atom TraPPE-EH force field.58 Propane is a larger mol-
ecule than methane, although this difference is less clear than
it is for single-site molecules. From previous arguments, it is
known that the difference method does not provide the cor-
rect value of the residual chemical-potential difference in
case a propane molecule is swapped with a methane mol-
ecule. Indeed, as is clear from Tables II and III, ��21

res,Diff is
much larger than ��21

res,Widom and ��21
res,OID.

For the other couples of molecules in Table II, it is not
apparent which one is the larger or the smaller one. More-
over, the molecules mentioned in Table II have rather differ-
ent force-field parameters. All simulation results for ��21

res,Diff

are significantly larger than those obtained from the other
methods. So, it is better not to use the difference method at
all.

The overlapping-distributions difference method is ap-
plicable at higher densities than conventional unilateral per-
turbation methods such as the simple difference method or
the Widom test-molecule method. In case the region of over-
lap of the distributions is large enough, the residual
chemical-potential difference can be computed from those
parts of the distributions that are frequently sampled by both
the perturbed and the reference system, resulting in a more
accurate estimate. As the overlapping-distributions difference
method is a bilateral perturbation method, two simulations
are needed. Implementation in the simulation code is some-
what more complicated than it is for the Widom test-
molecule method or for the difference method.

Simulation results for the binary system propane/
methane at T=270 K are shown in graphical form in Fig. 4.
Simulation results for the binary system trifluoromethane/
carbon dioxide at T=254 K are presented in Fig. 5. The re-
sidual chemical-potential differences from the overlapping-

FIG. 5. Simulation results obtained with the overlapping-distributions differ
dioxide�2� at T=254 K and p=1.42 MPa. Error bars are given in both figu
f1 /H2 computed from ���21

res,OlD.
distributions difference method, along with the statistical
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errors, have been determined by averaging the values in the
region of overlap of the distributions. From Figs. 4�a� and
5�a�, it is clear that there is a considerable overlap between
the distributions fper and f ref. This means that the perturbed
and unperturbed systems sample to a large extent molecular
configurations that are representative for each other. This en-
ables one to compute a reliable value for the residual
chemical-potential difference. The ratios �f1 /H2�OID, along
with the statistical errors, as a function of the perturbation
energy 	 are given in Figs. 4�b� and 5�b�.

3. Energy-biased identity changes in the semigrand-
canonical ensemble

Logically, one would think that �=1 and 
=−0.5 are
suitable choices for the bias strengths, as these values re-
move the strongly fluctuating most-right-hand exponent in
Eq. �33�. However, the optimal parameters depend on the
system under study. The different contributions to the bias
will be considered separately in what follows.

In case the fugacity fraction of component 2 is small, the
corresponding ensemble average of the mole fraction of
component 2 will probably be small as well. This means that
identity change 1→2 is performed much more often than the
reverse change. In such a case, it may be worthwhile to
choose the molecules with identity 2 more often in order to
increase the overall fraction of accepted identity changes. As
is clear from Eq. �33�, to reach this goal, 
 should be as-
signed a negative value.

TABLE IV. Energy-biased identity changes. Simulation results for the bi-
nary system ethane�1�/methane�2� at T=250 K, p=1.29 MPa, and �2=0.10.
Percentage of accepted trial identity changes.

1→2 2→1 Overall acc. �1↔2

Bias strength �%� �%� �%� �−�


=0, �=0 0.64 44 1.3 6.3E−3

=−0.5, �=0 3.8 34 6.8 1.0E−2

=−1, �=0 18 22 20 1.1E−1

=−0.5, �=0.25 9.7 35 15 2.8E−2

=−0.5, �=0.5 20 37 26 7.5E−2

=−0.5, �=1 43 45 44 2.5E−1

ethod for the liquid phase of the binary system trifluoromethane�1�/carbon
a� Residual chemical-potential difference and overlapping distributions. �b�
ence m
res. �
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The fugacity-fraction contribution to the bias increases
the probability to select a molecule with identity 2 for �2

�0.5 and decreases the same probability for �2�0.5. How-
ever, the differences between the imposed fugacity fraction
and the ensemble average of the mole fraction of component
2 can be quite large. In case �2�0.5 and �x2	�0.5, a positive
value of 
 is needed in order to select the molecules with
identity 2 more often. Thus, the sign of 
 should be selected
very carefully.

The energy contribution to the bias increases the prob-
ability of changing the identity of a settled molecule with a
relatively high energy. There are two things about this con-
tribution to the bias that should be noted. At first, the ener-
gies Ui

ext+LJint+Cint,old of settled molecules are usually lower
than those of new molecules that did not find a favorable
orientation/position. Selection criterion �32� should not
choose the molecule whose identity changed in the immedi-
ately preceding MC move too frequently. Secondly, the av-
erage energies of settled molecules with identity 1 are differ-
ent from those of settled molecules with identity 2. Selection
probability �32� should not choose only molecules of one
component. These phenomena are a threat to ergodicity but
can be weakened by choosing a moderate bias strength.

The overall fractions of accepted identity changes, ob-
tained from isobaric semigrand-canonical simulations in the
liquid phase of two different binary systems comprising
chain molecules, are presented in Tables IV and V for differ-
ent bias strengths. The probability �1↔2 to select a molecule,
given its identity changed in the immediately preceding MC
move, is also given in Tables IV and V. Reasonableness of
bias strength is assessed based on the overall fraction of ac-
cepted identity changes as well as on the probability �1↔2.

In case the Coulombic energy of the molecules is com-
puted with the Ewald summation method,25 it makes sense to
exclude the reciprocal-space contribution from selection
probability �32�. When this is not performed, the computa-
tionally expensive k-space contributions per molecule need
to be computed during every MC move. The fractions of
accepted identity changes in Table V are obtained by exclud-
ing the k-space contribution to the Ewald sum from the se-
lection criterion.

Obviously, the energy bias considerably increases the

TABLE V. Energy-biased identity changes. Simulation results for the binary
system carbon dioxide�1�/difluoromethane�2� at T=244.3 K, p=1.61 MPa,
and �2=0.05. Percentage of accepted trial identity changes.

1→2 2→1 Overall acc. �1↔2

Bias strength �%� �%� �%� �−�


=0, �=0 1.3 6.2 2.1 6.1E−3

=−0.1, �=0 1.8 4.6 2.6 6.3E−3

=−0.2, �=0 2.3 3.3 2.7 7.7E−3

=−0.3, �=0 2.9 2.4 2.7 1.1E−2

=−0.5, �=0 4.6 1.2 2.0 2.2E−2

=−1, �=0 9.0 0.12 0.20 4.5E−2

=−0.5, �=0.25 6.0 4.0 4.6 2.2E−2

=−0.5, �=0.5 10 11 10 4.4E−2

=−0.5, �=1 11 41 20 1.7E−1
fraction of accepted identity changes in the liquid phase.
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However, the probability �1↔2 increases as well with in-
creasing bias strength. From Table V, it is seen that for ap-
proximately 
�−0.3, the fugacity-fraction contribution to
the bias has an adverse effect on the fraction of accepted
identity changes. As the effect of the fugacity-fraction con-
tribution to the bias is rather unpredictable, it is better to set

 to zero. A reasonable value for the bias strength of the
energy contribution is �=0.5. However, values of the bias
strengths need to be optimized for every individual system.

IV. CONCLUSIONS

Gibbs-Duhem integration implies the numerical integra-
tion of a Clapeyron equation. To start the numerical integra-
tion, an initial coexistence point and a corresponding initial
slope of the Clapeyron equation are needed. In order to apply
Gibbs-Duhem integration to all kinds of systems at diverse
physical conditions, one has to investigate and assess avail-
able methods to compute these initial conditions. This pub-
lication focuses on vapor-liquid equilibria in binary mixtures
comprising chain molecules.

The computation of the initial coexistence point and the
corresponding initial slope often requires advanced simula-
tion techniques in case the molar volumes of the equilibrium
phases differ much, the system contains large chain mol-
ecules, and/or the size and force-field parameters of the mol-
ecules in the mixture differ much. The prediction of the ini-
tial coexistence point and the initial slope is discussed in
detail.

The pure-component initial coexistence point was com-
puted either with the NV� Gibbs ensemble method or from a
modified Np�+test molecule method. The NV� Gibbs en-
semble method easily provides vapor-liquid coexistence
points at moderate densities and for moderate differences
between the liquid- and the vapor-phase molar volumes. The
saturation pressure can be computed either from the virial or
from volume perturbations. In case force-biased translations
and torque-biased rotations are performed, for example, at
moderate densities, it is convenient to compute the pressure
from the virial. In other cases, one could use volume pertur-
bations. NV� Gibbs ensemble simulations were used to pre-
dict several pure-component saturation pressures. In general,
the saturation pressure obtained from volume perturbations
converged faster than its counterpart that was computed from
the virial.

The modification of the Np�+test molecule method that
was introduced in this paper comprises a simulation scheme
in which the configurational chemical potential is computed
from the overlapping-distributions method and the Rosen-
bluth factor, which makes the method applicable at high den-
sities. The method is insensitive to large differences between
the molar volumes of the coexisting phases, as liquid- and
vapor-phase simulations are performed independently. Al-
though the Np�+test molecule method with overlapping dis-
tributions is computationally very demanding, it is capable of
predicting initial coexistence points at conditions where the
NV� Gibbs ensemble and the conventional Np�+test mol-
ecule method fail.
The initial slope of the Clapeyron equation can be re-

cense or copyright; see http://jcp.aip.org/about/rights_and_permissions



054905-15 The starting state for Gibbs-Duhem integration J. Chem. Phys. 124, 054905 �2006�

Downlo
lated to the difference between the residual chemical poten-
tials of a solvent and an infinitely diluted solute. We dis-
cussed three perturbation methods that can be used to predict
the residual chemical-potential difference at infinite dilution:
the Widom test-molecule method, the difference method, and
the overlapping-distributions difference method. These simu-
lation methods were applied to several infinitely diluted bi-
nary mixtures of chain molecules. The Widom test-molecule
method and the overlapping-distributions difference method
provided comparable results. The Widom test-molecule
method combined with Rosenbluth sampling is applicable at
relatively high densities. The overlapping-distributions dif-
ference method is applicable at even higher densities. Fur-
thermore, it has built-in diagnostics; one can judge the reli-
ability of the answer by investigating the overlap between
the distributions. On the other hand, the difference method
provides only correct answers when a small single-site mol-
ecule is perturbed to a larger one. For chain molecules, the
difference method may work in neither perturbation direc-
tion, as the concepts of being smaller or larger are less clear.
Thus, it is better not to use the difference method at all.

Gibbs-Duhem integration requires the frequent computa-
tion of the slope of the Clapeyron equation. This slope is
computed with Monte Carlo molecular simulation in an iso-
baric semigrand-canonical ensemble. One of the variables
that need to be sampled during a semigrand-canonical simu-
lation is the composition. A new bias method was introduced
to enhance the composition sampling of chain molecules in
the semigrand-canonical ensemble. The increase in the over-
all fraction of accepted identity changes was considerable.
The values for the bias strengths of the different contribu-
tions to the bias are most easily set to �=0.5 and 
=0.
However, values of the bias strengths need to be optimized
for every individual system.
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