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Abstract
Gravitational waves predicted by Einstein have been measured in a few observatories worldwide.
These detectors are complex interferometers with sizes of kilometers. Misalignments and aberrations
in their optical set-up can create higher-order modes in the laser beam. These higher-order mode ef-
fects should be compensated to improve the sensitivity of the interferometer. Such a compensating
control system requires a real-time wavefront sensor. The phase cameras developed for the Virgo
gravitational wave detector can simultaneously create intensity and phase images of the laser wave-
front at 11 demodulation frequencies. Currently, the phase images are not used due to difficulties in
the interpretation. Therefore, the goal of this research is to improve the understanding of the phase
images of a phase camera for the Virgo gravitational wave detector.

A prototype set-up of the phase camera was built at Nikhef. The beam is modulated and sidebands are
created such that a beat signal of 80 MHz and the first upper and lower sidebands at 75 and 85 MHz
are measured. Images are created by scanning the laser beam across a pinhole diode and digital
demodulation. In the chosen optical set-up only one of the two beams that give the measurable beat
signal is scanned. This leads to systematic phase effects caused by length differences in the optical
path as a function of the scanning angle. To predict the phase images, the interference of two Gaussian
beams with a scanning mirror is mathematically derived. Phase images are created with a simulation,
which matches within 10 to 20% compared to measurements. To improve the results, the input pa-
rameters of the simulation should be measured more accurately and the optical set-up layout should
be checked. Also, the phase stability of the prototype set-up is measured. Due to the high sensitiv-
ity of the phase camera, very small optical path length differences, for example caused by airflow or
temperature differences, lead to significant phase offsets. The long timescale fluctuations in the phase
measurements can be reduced by covering the optical set-up. The measured high-frequency phase
resolution is Δ𝜙 = 7.1 ± 0.4 mrad and behaves as a function of power as expected.
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1
Introduction

In November 1915, Albert Einstein published his general theory of relativity (Einstein, 1915a, 1915b,
1915c, 1915d). His theory refines Newton’s law of universal gravitation and describes gravity as a
geometric property of space and time. This description of gravity led to the prediction of the existence
of gravitational waves. Einstein himself doubted whether these faint and weakly interacting waves
could ever be detected (Cervantes-Cota et al., 2016). However, exactly 100 years later on Septem-
ber 14, 2015, the first direct observation of a gravitational wave was made (Abbott et al., 2016). The
waveform was detected by both LIGO observatories in the United States, which are two of the few grav-
itational wave observatories. In Europe, the Virgo gravitational wave detector is located in Cascina in
Italy.

These three detectors use a laser Michelson interferometer to measure the gravitational waves induced
length contraction (Weiss, 1972). The interferometers have two arms of multiple kilometers that are
orthogonal to each other. A laser beam is split at the crossing point of the two arms and sent into both
of them. The light is reflected at the end of the arms and recombines again at the beam splitter at
the crossing point. If both arms have a length that is exactly a multiple of the wavelength of the laser
light, then the beams are in phase and interfere destructively at the beam splitter. However, a passing
gravitational wave stretches one of the arms, while at the same time contracts the other arm. This tiny
difference in length causes the interference to be not fully destructive and hence light appears at the
so-called dark port.

An interferometer can measure very small length differences between both arms. This high sensitivity
makes gravitational wave detection possible. However, it makes them also susceptible to distortions.
In the optical set-up of an interferometer, aberrations or misalignments can create higher-order modes
in the laser beam. Aberrations can be due to imperfections in the optics and due to thermal effects
(Van der Schaaf, 2020). These higher-order modes reduce the signal power in the cavities resulting in
a lower sensitivity of the gravitational wave detector.

To improve the sensitivity of a gravitational wave detector, the power of the laser beams is increased.
This leads to more thermally induced aberrations. To compensate for the induced higher-order modes,
a compensating control system with adaptive optics is added. For this control system, a wavefront
sensor is needed to detect the higher-order modes. A phase camera is an ideal candidate since it can
simultaneously measure the intensity and phase of the laser wavefront at multiple frequencies. Hence
the role of phase cameras will become only more important (Acernese et al., 2014).

To control the interferometer, modulated laser beams are used. The phase camera uses the same
modulation frequencies and uses a heterodyne demodulation schema to independently probe the up-
per and lower sideband of each modulation frequency. The frequencies are chosen so that they only
resonate in the least possible cavities such that each sideband only probe those cavities for high-order
modes (Agatsuma et al., 2019).
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2 1. Introduction

Phase cameras have already been used in the LIGO detectors, but only the amplitude information was
used because of difficulties in the interpretation of the phase information (Gretarsson et al., 2007). In
the Advanced Virgo detector, the phase camera is employed as part of a thermal compensation system
to mitigate aberration effects which are due to the heating of the mirrors by the laser beams (Rocchi
et al., 2012). Besides, the relative phase shift between the carrier and sidebands can be used to ana-
lyze the state of a cavity according to Day (2013). Therefore to improve the current gravitational wave
detectors, a detailed understanding of phase images of a phase camera is needed.

In this research, a prototype set-up of the Virgo phase camera was built at Nikhef. This prototype
set-up is used to characterize the phase camera and aid in the understanding of the phase images.
Systematic effects of scanning on the phase images were mathematically derived and compared with
measurements. Besides, the stability of the phase images is determined and possible improvements
are discussed.

Before the prototype set-up is discussed in this report, chapter 2 introduces the required theoretical
background on Gaussian laser beams. The optical set-up and calibration of the prototype set-up are
discussed in chapter 3. Subsequently, chapter 4 describes a mathematical derivation and a simulation
of the systematic effects of scanning on the phase images, which are compared with measurements.
In chapter 5, the phase stability of the prototype set-up is measured and results are discussed. Finally,
chapters 6 and 7 are a discussion and conclusion on the results of this work, respectively.



2
Theory

The phase camera is an instrument that measures the wavefront of a laser beam. To build and under-
stand this instrument some theoretical knowledge is required. First, Gaussian beam optics is described
to understand the behavior of laser beams. Next, sidebands are explained, which are used in the phase
camera set-up. Finally, a measurement method is explained to extract the properties of a laser beam.

2.1. Gaussian beam optics
A laser beam can be described as a Gaussian beam. This type of beam has special transformation
properties. This section focuses on the behavior and properties of Gaussian beams, starting with a
derivation from the Maxwell equations.

2.1.1. Paraxial Helmholtz equation
The emitted light of a laser can be described with the Maxwell equations in vacuum

∇⃗ ⋅ 𝐸⃗ = 0, ∇⃗ × 𝐸⃗ = −𝜕𝐵⃗𝜕𝑡 ,
∇⃗ ⋅ 𝐵⃗ = 0, ∇⃗ × 𝐵⃗ = 𝜖0𝜇0

𝜕𝐸⃗
𝜕𝑡 ,

(2.1)

where 𝐸⃗ is the electric field, 𝐵⃗ the magnetic field, 𝜖0 the vacuum permittivity and 𝜇0 the vacuum perme-
ability. Taking the curl of the Maxwell-Faraday equation (right-top) and swapping the linear operators
of the magnetic field results in

∇⃗ × (∇⃗ × 𝐸⃗) = − 𝜕𝜕𝑡 (∇⃗ × 𝐵⃗) . (2.2)

Substituting Gauss’s and Ampère’s law into this equation returns the wave equation

∇2𝐸⃗ = 𝜖0𝜇0
𝜕2𝐸⃗
𝜕𝑡2

. (2.3)

This partial differential equation can be solved with the method of separation of variables. Therefore, it
is assumed that 𝐸⃗ (𝑥⃗, 𝑡) = 𝑋⃗ (𝑥⃗)⋅𝑇⃗ (𝑡). Substituting the assumption into the wave equation and rewriting
it gives a constant

∇2𝑋⃗
𝑋2 ⋅ 𝑋⃗ = 𝜖0𝜇0

𝜕2𝑇⃗
𝑇𝜕𝑡2

≡ −𝑘2, (2.4)

which is defined as −𝑘2. Note that the solution of the temporal part equals

𝑇 (𝑡) = 𝑒𝑖𝜔𝑡 , (2.5)

where 𝜔 = 𝑘
√𝜖0𝜇0

= 𝑘𝑐 is the angular frequency, 𝑐 the speed of light and 𝑘 becomes the wave number.
The spatial differential equation is called the Helmholtz equation (Saleh & Teich, 2009)

∇2𝑋⃗ + 𝑘2𝑋⃗ = 0. (2.6)

3



4 2. Theory

Now assume the solution is a wave propagating in the 𝑧-direction, so let 𝑋⃗ (𝑥⃗) = 𝑈⃗ (𝑥⃗) ⋅ 𝑒−𝑖𝑘𝑧. Substi-
tuting this solution into the Helmholtz equation results in

∇2𝑋⃗ + 𝑘2𝑋⃗ = (𝜕2𝑥 𝑈⃗ + 𝜕2𝑦𝑈⃗ + 𝜕2𝑧 𝑈⃗ − 2𝑖𝑘𝜕𝑧𝑈⃗) ⋅ 𝑒−𝑖𝑘𝑧 = 0. (2.7)

Note that part of the Laplacian cancels out the term 𝑘2𝑋⃗. Next, assume a slowly varying envelope or
paraxial approximation, |𝜕2𝑧 𝑈⃗| ≪ |2𝑖𝑘𝜕𝑧𝑈⃗|. This is valid for waves of which the envelope varies slowly
compared to the wavelength, as is the case for laser light. Using this approximation, the paraxial
Helmholtz equation is derived (Saleh & Teich, 2009)

∇2⊥𝑈⃗ − 2𝑖𝑘𝜕𝑧𝑈⃗ = 0, (2.8)

where ∇2⊥ =
𝜕2
𝜕𝑥2 +

𝜕2
𝜕𝑦2 is the transverse part of the Laplace operator.

A group of solutions to the paraxial Helmholtz equation are the so-called Gaussian beams. First, the
lowest-order mode will be described. Later in section 2.1.4, higher-order modes will be discussed. The
field amplitude in free space of the lowest-order mode equals (Svelto & Hanna, 2010)

𝑈⃗ (𝑥, 𝑦, 𝑧) = 𝑤0
𝑤(𝑧)𝑒

− 𝑥
2+𝑦2
𝑤(𝑧)2 𝑒

−𝑖(𝑘 𝑥
2+𝑦2
2𝑅(𝑧) −Φ), (2.9)

where 𝑤0 is the size of the beam waist, 𝑤(𝑧) the beam radius at position 𝑧, 𝑅(𝑧) the radius of curvature
of the wavefront and Φ = arctan ( 𝑧𝑧𝑅 ) the Gouy phase for the lowest-order mode. These parameters
are discussed in the next section.

Combining the field amplitude, with the assumption that the wave is traveling in the 𝑧-direction, and the
temporal solution, equation 2.5, the complex electric field of a lowest-order Gaussian beam is found

𝐸⃗ (𝑡, 𝑥, 𝑦, 𝑧) = 𝐸0
𝑤0
𝑤 (𝑧)𝑒

− 𝑥
2+𝑦2

𝑤(𝑧)2 𝑒
−𝑖(𝑘𝑧+𝑘 𝑥

2+𝑦2
2𝑅(𝑧) −Φ)𝑒𝑖𝜔𝑡𝑥̂, (2.10)

with 𝐸0 the electric field amplitude at the origin and 𝑥̂ the polarization vector. Note, this is a theoretical
TEM00 mode, meaning that this is a lowest-order mode of electromagnetic radiation where the electric
and the magnetic field are both perpendicular to the direction of propagation (Zangwill, 2012).

2.1.2. Gaussian beam propagation
The intensity of the lowest-order mode of a Gaussian beam is described by a Gaussian distribution,
which explains its name,

𝐼 (𝑥, 𝑦, 𝑧) = |𝐸⃗ (𝑡, 𝑥, 𝑦, 𝑧)|
2
= 2𝑃
𝜋𝑤(𝑧)2 𝑒

−2(𝑥2+𝑦2)
𝑤(𝑧)2 , (2.11)

with 𝑃 being the total power of the beam. Since theoretically the intensity of a Gaussian beam extends
infinitely, a definition has to be chosen. In this thesis, the diameter of a Gaussian beam is defined as
the width at which the beam intensity has fallen to 1/𝑒2 of its maximum (CVI Melles Griot, n.d.). Due
to diffraction, this diameter is not constant while propagating and can be described with

𝑤 (𝑧) = 𝑤0√1 + (
𝜆𝑧
𝜋𝑤20

)
2
, (2.12)

where 𝑤 is the beam radius at which the intensity falls to 1/𝑒2 of its maximum, 𝑤0 the beam waist, 𝜆 the
wavelength and 𝑧 the distance from the waist. Besides the beam radius increasing when moving away
from the beam waist, the wavefront of a Gaussian beam curves while propagating due to diffraction.
The radius of curvature (RoC) of the wavefront is given by

𝑅 (𝑧) = 𝑧 [1 + (𝜋𝑤
2
0

𝜆𝑧 )
2

] . (2.13)
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The wavefront is flat at the smallest radius of the beam, the beam waist, position 𝑧0 = 0 and for
𝑧 → ±∞. Note, a flat wavefront implies a surface with a constant phase. For 𝑧 → ±∞, the beam
radius asymptotically approaches a cone with a radius of 𝜃 = 𝑤(𝑧)

𝑧 = 𝜆
𝜋𝑤0

. In figure 2.1, the wavefront
curvature and the asymptotic cone can be seen. Starting from the waist, the curvature first increases
up to a maximum and then decreases again. The maximum curvature is at the Rayleigh range 𝑧𝑅,
which is defined as the position where the beam radius equals 𝑤 (𝑧𝑅) = √2𝑤0. This results in

𝑧𝑅 =
𝜋𝑤20
𝜆 . (2.14)

Figure 2.1: Gaussian beam emitted from a laser whose beam radius and wavefront radius of cur-
vature evolve while propagating. Adapted from CVI Melles Griot (n.d.).

The parameters to describe a Gaussian beam are the beam radius, wavefront RoC and Gouy phase.
The latter is an extra longitudinal phase lag originating from the slower phase velocity of a Gaussian
beam compared to a plane wave (Freise & Strain, 2010). These three quantities all vary along the direc-
tion of propagation as derived above. For completeness, the normalized evolution of these quantities
is shown in figure 2.2.

(a) beam radius (b) wavefront radius of curvature (c) Gouy phase

Figure 2.2: Dependence of the beam radius (a), wavefront radius of curvature (b) and Gouy phase
(c) of a Gaussian beam on the position along the direction of propagation.

2.1.3. Real beam propagation
In the previous two sections, the lowest-order Gaussian beam has been theoretically derived. However,
in the real world, it is difficult to create a perfectly Gaussian beam. To describe the deviations from the
fundamental Gaussian beam, a dimensionless beam propagation parameter, 𝑤0𝜃, is used. This beam
parameter stays constant throughout optical systems (CVI Melles Griot, n.d.). For theoretical Gaussian
beams, this parameter equals 𝜆

𝜋 . The ratio of the beam propagation parameter of a real beam and a
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theoretical Gaussian beam is defined as the beam quality factor 𝑀2

𝑀2 = 𝑤0𝑅𝜃𝑅
𝑤0𝜃

, (2.15)

where 𝑤0𝑅 and 𝜃𝑅 are the beam waist and far-field divergence half angle of a real beam. Table 2.1
shows typical quality factors for different types of laser beams. The used laser beam in this research
has a quality factor of approximately 𝑀2 ≈ 1.01.

Table 2.1: Typical quality factors for different types of laser beams (CVI Melles Griot, n.d.).

laser type 𝑀2

theoretical Gaussian beam 1
helium-neon laser in TEM00 mode <1.1
ion lasers 1.1-1.7
high-energy multimode lasers >10

The waist and the far-field divergence of a mixed-mode Gaussian beam are 𝑀 times larger than the
theoretical beam. Figure 2.3 shows a theoretical Gaussian beam and a realistic beam, as well as their
parameters.

Figure 2.3: EmbeddedGaussian beam and a realistic Gaussian beam. Note that the beamwaist and
far-field divergence scale with𝑀, while the wavefront curvature and Rayleigh range are independent
of 𝑀. Adapted from CVI Melles Griot (n.d.).

For a real Gaussian beam the propagation equations (beam radius, wavefront curvature and Rayleigh
range) alter from their theoretical equations 2.12 to 2.14. The beam radius is now written as

𝑤𝑅 (𝑧) = 𝑤0𝑅√1 + (
𝜆𝑧𝑀2

𝜋𝑤20𝑅
)
2
, (2.16)

where the subscript 𝑅 denotes the real beam. The equation for the real wavefront radius of curvature
becomes

𝑅𝑅 (𝑧) = 𝑧 [1 + (
𝜋𝑤20𝑅
𝜆𝑧𝑀2)

2

] . (2.17)

Since the waist size and divergence both scale with 𝑀, the Rayleigh range remains the same as that
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of a theoretical beam (equation 2.14). It can be expressed in terms of the real beam waist as

𝑧𝑅 =
𝜋𝑤20𝑅
𝑀2𝜆 = 𝜋 (𝑀𝑤0)

2

𝑀2𝜆 = 𝜋𝑤20
𝜆 . (2.18)

2.1.4. Higher-order modes
The paraxial Helmholtz equation was derived in section 2.1.1. Its lowest-order solution equals the fun-
damental Gaussian TEM00 mode (equation 2.10). If a laser emits this fundamental mode, unwanted
higher-order modes may be created in the optical set-up. These modes could for example originate
from misalignments, mode mismatching of cavities, (surface) defects of elements and thermal lensing
effects (Saleh & Teich, 2009). The phase camera can measure higher-order modes and can be used
to correct for them (Van der Schaaf, 2020). In this section, higher-order modes are described. In par-
ticular, a family of orthogonal modes is discussed, Hermite-Gaussian (HG) modes. These correspond
to rectangular symmetric modes. Alternatively, other families of orthogonal modes could be used such
as the Laguerre-Gaussian (LG) modes, which are discussed in appendix A (Kogelnik & Li, 1966).

2.1.4.1. Hermite-Gaussian modes
The Hermite-Gaussian (HG) modes are described in the Cartesian coordinate system and form a com-
plete set. Therefore, the electric field of a coherent paraxial beam can be written as a linear combination
of Hermite-Gaussian modes

𝐸⃗ (𝑥, 𝑦, 𝑧) =∑
𝑙𝑚
𝐴𝑙𝑚𝑈𝑙𝑚 (𝑥, 𝑦, 𝑧) 𝑒−𝑖𝑘𝑧+𝑖𝜔𝑡𝑒, (2.19)

where 𝐴𝑙𝑚 is the complex amplitude for each mode 𝑈𝑙𝑚 and 𝑒 is the polarization of the field. Note, the
lowest mode is defined as 𝑈00 since 𝑙, 𝑚 ∈ ℕ. The modes are normalized according to

∫𝑈𝑘𝑙 (𝑥, 𝑦, 𝑧) 𝑈∗𝑚𝑛 (𝑥, 𝑦, 𝑧) 𝑑𝑥𝑑𝑦 = {
1 for 𝑘 = 𝑚 and 𝑙 = 𝑛
0 else . (2.20)

The power in a mode is defined as the complex amplitude squared |𝐴𝑙𝑚|
2. The Hermite-Gaussian

modes are given by (Bond et al., 2016)

𝑈𝑙𝑚 (𝑥, 𝑦, 𝑧) = √
1

2𝑙+𝑚−1𝑙!𝑚!𝜋
1

𝑤 (𝑧)𝐻𝑙 (
√2𝑥
𝑤 (𝑧))𝐻𝑚 (

√2𝑦
𝑤 (𝑧)) 𝑒

− 𝑥
2+𝑦2

𝑤(𝑧)2 𝑒−𝑖
𝑘(𝑥2+𝑦2)
2𝑅(𝑧) +𝑖(𝑙+𝑚+1)Φ(𝑧), (2.21)

where 𝐻𝑙 and 𝐻𝑚 are Hermite polynomials. The first few Hermite polynomials equal

𝐻0 (𝑥) = 1, 𝐻1 (𝑥) = 2𝑥, 𝐻2 (𝑥) = 4𝑥2 − 2 and 𝐻3 (𝑥) = 8𝑥3 − 12 . (2.22)

In figure 2.4 the amplitude and phase of the fundamental mode 𝑈00 (𝑥, 𝑦, 𝑧) and first higher-order HG
mode𝑈10 (𝑥, 𝑦, 𝑧) are shown for a beamwith 𝜆 = 1064 nm,𝑤0 = 1mm, 𝑧0 = 0mmat 𝑧 = 2m. The 𝑙 and
𝑚 indices represent the number of dark lines in vertical and horizontal directions, respectively. Note, the
width of the intensity distribution increases with indices 𝑙 and𝑚, while the peak intensity decreases. On
the other hand, the phase is similar for all higher-order HG modes except for the sudden phase jump of
𝜋 which is introduced in between intensity peaks. Besides, the phase of a higher-order HG mode shifts
compared to the fundamental mode due to the Gouy phase. The Gouy phase for higher-order modes
relates to the fundamental mode Gouy phase according to Φ𝑙𝑚 = (𝑙 + 𝑚 + 1)Φ00. The rings which
are visible in the phase images originate from the curved wavefront as described in equation 2.13. The
phase at a large radial distance of the wavefront lags the phase of the center, thus introducing a phase
difference depending on the radial coordinate. A further discussion on this phase difference can be
found in section 4.2.1.
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Figure 2.4: Amplitude and phase images for the fundamental mode 𝑈00 (𝑥, 𝑦, 𝑧) (upper row) and
first higher Hermite-Gaussian mode 𝑈10 (𝑥, 𝑦, 𝑧) (bottom row). The modes are for a beam with
𝜆 = 1064 nm, 𝑤0 = 1 mm, 𝑧0 = 0 mm at 𝑧 = 2 m.

2.1.5. Transformation and magnification by simple lenses
Gaussian beams propagating in free space are described in the previous sections. However, several
elements are present in an optical system. For example, lenses can transform and magnify beams of
light. In the thin lens approximation, the effect of a lens can be described with the lens-maker’s formula
for uniform spherical waves

1
𝑠 +

1
𝑠″ =

1
𝑓 , (2.23)

where 𝑠 is the object distance, 𝑠″ the image distance and 𝑓 the focal length of the lens. To use this
type of equation for a Gaussian beam the waist of the input beam has to be regarded as the object
and the waist of the output beam as the image. Besides, the beam radius and radius of curvature
vary according to equations 2.12 and 2.13. Therefore, the lens-maker’s formula has to be altered for
spherical Gaussian beams into (Self, 1983)

1
𝑠 + 𝑧2𝑅

𝑠−𝑓

+ 1
𝑠″ =

1
𝑓 . (2.24)

Figure 2.5 shows the normalized image distance as a function of the normalized object distance for
different ratios of 𝑧𝑅/𝑓. For 𝑧𝑅/𝑓 → 0, this formula reduces to the standard lens-maker’s formula with
an asymptote at 𝑠/𝑓 = 1, meaning that the image distance becomes infinite for an object in the focal
point, which results in a collimated beam. For 𝑧𝑅/𝑓 > 0 there is no asymptote and all curves pass
through 𝑠/𝑓 = 𝑠″/𝑓 = 1. Therefore, there will always be a (virtual) waist on both sides of the lens. The
lenses used in the phase camera set-up have focal lengths in the order of tens of centimeters while
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the beam sizes are of the order of one millimeter. This results in 𝑧𝑅/𝑓 ratios of 5 and larger. Hence the
image distances will be finite and of the order of the focal lengths.

Figure 2.5: The normalized image distance (𝑠″/𝑓) as a function of the normalized object distance
(𝑠/𝑓) for different normalized Rayleigh ranges (𝑧𝑅/𝑓).

Amore general lens-maker’s formula for Gaussian beams with the beam quality factor for real Gaussian
beams 𝑀2 can be written as (CVI Melles Griot, n.d.)

1

𝑠 + ( 𝑧𝑅𝑀2 )
2 1
𝑠−𝑓

+ 1
𝑠″ =

1
𝑓 . (2.25)

To calculate the effect of a series of optical elements, the initial Rayleigh range 𝑧𝑅, waist size 𝑤0 and
waist position 𝑧0 need to be known. With the focal length of all elements, these parameters can be
calculated throughout the system by using the magnification (Self, 1983)

𝑚 = 𝑤″0
𝑤0

= 1

√(1 − 𝑠
𝑓)
2
+ ( 𝑧𝑅𝑓 )

2
. (2.26)

The Rayleigh range of the output beam of a lens is given by

𝑧″𝑅 = 𝑚2𝑧𝑅 . (2.27)

Figure 2.6 shows the magnification versus the normalized object distance for different ratios of 𝑧𝑅/𝑓.
Note the asymptote for 𝑧𝑅/𝑓 = 0 at 𝑠/𝑓 = 1, which represents the magnification for spherical waves.
For 𝑧𝑅/𝑓 > 0 there is no asymptote and the magnification decreases with increasing 𝑧𝑅/𝑓 ratios.
However, the magnification is still symmetric around 𝑠/𝑓 = 1.
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Figure 2.6: The magnification 𝑚 as a function of the normalized object distance (𝑠/𝑓) for a different
normalized Rayleigh ranges (𝑧𝑅/𝑓).

2.2. Sidebands
In the previous sections, a laser beam with a single optical frequency is assumed. However, in the
phase camera set-up multiple frequencies are present. Sidebands are created in the laser field by an
electro-optic phase modulator (EOM). In the Virgo gravitational wave detector, sidebands are used to
control the distance between the mirrors and the angles of the mirrors with respect to the optical axis
(Van der Schaaf, 2020). In this section, the creation of sidebands is mathematically derived (Oppen-
heim et al., 2013).

First, imagine the electric field 𝐸 (𝑡) of a laser beam with amplitude 𝐴 and frequency 𝜔

𝐸 (𝑡) = 𝐴𝑒𝑖𝜔𝑡 . (2.28)

An EOM is a crystal with electrodes on the top and bottom of the crystal. The electrical equivalent is a
parallel plate capacitor. Across this crystal, a potential is applied that creates an electric field. This field
changes the index of refraction of the crystal and thereby causes a phase shift in the laser beam (Saleh
& Teich, 2009). For more information on EOMs see section 3.2.2. If a sinusoidally varying potential is
applied with a small amplitude 𝛽 and frequency Ω, then the phase of the laser beam becomes time-
dependent

𝐸 (𝑡) = 𝐴𝑒𝑖𝜔𝑡+𝑖𝛽 sin(Ω𝑡). (2.29)

The magnitude of the time-dependent phase 𝛽 is small. Therefore, this expression can be simplified
by a Taylor expansion

𝐸 (𝑡) ≈ 𝐴𝑒𝑖𝜔𝑡 (1 + 𝑖𝛽 sin (Ω𝑡)) . (2.30)

Now rewriting the sine into its complex exponential form gives

𝐸 (𝑡) ≈ 𝐴𝑒𝑖𝜔𝑡 (1 + 𝛽2 (𝑒
𝑖Ω𝑡 − 𝑒−𝑖Ω𝑡))

= 𝐴(𝑒𝑖𝜔𝑡 + 𝛽2𝑒
𝑖(𝜔+Ω)𝑡 − 𝛽2𝑒

𝑖(𝜔−Ω)𝑡) .
(2.31)

As a result, there are now three signals with frequencies 𝜔, 𝜔 + Ω and 𝜔 − Ω. This is interpreted as
the initial carrier signal at 𝜔 and two newly created sidebands at 𝜔 + Ω and 𝜔 − Ω. The amplitude 𝛽
is a measure of the amount of modulation of the signal. Therefore, it is called the modulation index. If
𝛽 = 0, then only the carrier signal is present. When 𝛽 = 1, it is called 100% modulation.
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In equation 2.30 the first-order Taylor expansion has been used. Therefore, only the first two sidebands
are derived. If the Jacobi-Anger expansion is used instead, then the exponential can be written in terms
of Bessel functions 𝐽𝑘 (𝛽). As a result, it is found that there are infinitely many sidebands created at
frequencies 𝜔 + 𝑘Ω and 𝜔 − 𝑘Ω with 𝑘 = 1, 2, .., ∞

𝐸 (𝑡) = 𝐴𝑒𝑖𝜔𝑡+𝑖𝛽 sin(Ω𝑡)

= 𝐴𝑒𝑖𝜔𝑡 (𝐽0 (𝛽) +
∞

∑
𝑘=1

𝐽𝑘 (𝛽) 𝑒𝑖𝑘Ω𝑡 +
∞

∑
𝑘=1

(−1)𝑘 𝐽𝑘 (𝛽) 𝑒−𝑖𝑘Ω𝑡) .
(2.32)

Note that the sidebands are always created symmetrically around the carrier signal. However, their am-
plitudes become progressively lower with increasing 𝑘. For the used modulation index of this research
𝛽 ≈ 0.12, only the first upper and lower sideband are significant.

2.3. Beam profiling
To describe a propagating Gaussian beam in an optical set-up, the beam parameters need to be deter-
mined. The beam waist 𝑤0, quality factor𝑀2 and waist position 𝑧0 can be determined by measuring the
beam profile at multiple positions along the beam with a beam profiler. In this research, the used beam
profiler is a camera with a high resolution to measure the intensity distribution of a beam cross-section.
For a theoretical Gaussian beam, this intensity distribution is described by equation 2.11. Figure 2.7
shows a screenshot of a measurement with a beam profiler (CinCam CMOS-1.001-Nano). Note that an
ideal beam cross-section would be circular, but in this case, it is somewhat elliptic. This originates from
astigmatism in the beam which is introduced due to surface defects of the components or misalign-
ments in the optical set-up. The optical system is then not symmetric anymore around the optical axis.
Therefore, two perpendicular planes have different focal points creating elliptic-shaped beam profiles.

In the beam profiling software, RayCi 64bit V2.3.4 (CINOGY Technologies, 2013), the radius is ex-
tracted from a fit to the beam profile. The radius is determined where the beam intensity has fallen to
1/𝑒2 of its maximum. Since the beam spot is elliptic, the minor and major radii are not equal. These
are indicated by red lines in figure 2.7.

Figure 2.7: Screenshot of a measurement with the beam profiler software, RayCi 64bit V2.3.4 (CIN-
OGY Technologies, 2013).

This measurement is repeated for multiple positions of the beam profiler along the axis of propagation.
The next step is to plot the beam minor and major radii separately versus the positions of the beam
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profiler as shown in figure 2.8. In these plots, the evolution of the beam radius can be seen. This
behavior should be described by equation 2.16 for a Gaussian beam with its waist at 𝑧0 = 0. Since
the 𝑧-position of the beam waist has an arbitrary offset with respect to the lab coordinate system, this
equation is altered into

𝑤𝑅 (𝑧) = 𝑤0𝑅√1 + (
𝜆 (𝑧 − 𝑧0)𝑀2

𝜋𝑤20𝑅
)
2
. (2.33)

This relation is fitted with a least squared optimization to the measured major and minor beam radii.
The fitted function to the data points is also shown in figure 2.8 as a solid line. The resulting beam
parameters for this laser beam are shown in the legends in the figures. Note that the quality factor for
this fit is approximately equal to a theoretical Gaussian beam.

(a) major axis (b) minor axis

Figure 2.8: Measured beam radius along the major (a) and minor (b) axis at different positions along
the direction of propagation. The blue solid line is fitted to determine the Gaussian beam parameters
which are shown in the inside legends.

In the figures above, the minor and major radii have slightly different beam waists and waist positions.
This is due to the earlier described astigmatism.

With the beam profiling software, the major and minor axis of the beam spot are measured instead
of the size in the x- and y-direction, because the orientation of the astigmatism with respect to the
coordinate system is unknown. However, this is only possible if the orientation of the major axis with
respect to the x- and y-direction does not change as a function of the profiler position. Therefore, the
azimuth angle between the major axis and the y-axis is measured too. A jump of 90 degrees occurs
between the waists of both directions, at the point where the beam sizes are the same. Then the major
and minor axis are swapped. In the example measurement of the previous figures, the azimuth angle
is constant. Hence, the measured major and minor axis data is not mixed.



3
Phase camera

A phase camera is a diagnostic tool that was invented for studying gravitational wave detectors (Goda
et al., 2004). With this device, the amplitude and phase of a laser wavefront can be imaged. Because
heterodyne demodulation is applied different modulation frequencies can be studied at the same time.
In this chapter, the working principle of the phase camera is discussed as well as the optical set-up used
in this research to study its performance. Subsequently, the different components of the phase camera
set-up are discussed more in-depth. In the end, the beam conditioning on the final beam splitter is
described.

3.1. Working principle of the phase camera
The basic principle of the studied phase camera in this thesis is to scan a laser beam over a small pho-
todiode and then demodulate the signal from the different measurement points sequentially. As shown
in figure 3.1, sidebands are created with an electro-optic modulator (EOM) which phase modulates the
laser beam. The sidebands that appear because of the modulation are used in the interferometer to
control the position and alignment of the mirrors in the interferometer (Van der Schaaf, 2020). A small
fraction of the light circulating in the interferometer is picked off and sent to the phase camera as a test
beam. The test beam is recombined after the scanner with a reference beam. This reference beam
is split from the initial beam before the EOM and then shifted in frequency by 80 MHz by an acousto-
optic modulator (AOM). A beam splitter (BS) is used to recombine the test and reference beams. The
interference of the test and reference beam yields (amplitude modulated) beat signals at the sum and
difference of the heterodyne and sideband frequency. These intensity fluctuations are detected with a
photodiode (PD). The photodiode signal is digitized with a fast, high-resolution ADC. Finally, the de-
modulation is done digitally by an FPGA box and further data processing is done in a system similar to
the Advanced Virgo real-time system (Agatsuma et al., 2019).

Figure 3.1: Working principle of the phase camera. Adapted from Van Beuzekom et al. (2019).

13
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In this thesis, the scanner scans only the test beam while the reference beam is fixed, this is called
one-beam scanning. There is another configuration which is called two-beam scanning. In this con-
figuration, the reference and test beam are recombined before the scanner and are both scanned
simultaneously. For one-beam scanning the power of the reference beam is constant which is an ad-
vantage over two-beam scanning since this results in a higher signal-to-noise ratio. On the other hand
in one-beam scanning, there is an additional phase shift of the wavefront caused by path length dif-
ferences in the path between the scanner and PD, which is a disadvantage compared to two-beam
scanning (Agatsuma et al., 2019).

3.2. Optical set-up
For this research, a prototype set-up of the Virgo phase camera is built in the optical lab at Nikhef. In
figure 3.2 the optical layout of the set-up is shown. The used laser is a 1064 nm Mephisto 500 mW
YAG Laser System by Coherent. This laser is shared by different set-ups on the optical table, and the
laser power for the phase camera set-up is approximately 0.140 W. At the entrance of the set-up an iris
is placed to remove potential beam halo due to reflections. Next, beam splitter BS1 (Thorlabs BSW11)
splits the beam to create the reference beam which is focused by lens L1 with 𝑓 = 500 mm (Thorlabs
LA1908-C). After which two mirrors M1 and M2 (IDEX Optical Technologies Y1-1025-45) steer the
beam before it enters the single mode optical fiber (Thorlabs P3-1064PM-FC-1) via a Triplet Collimator
(Thorlabs TC18APC-1064). Through this fiber, the beam is led to the acousto-optic modulator (AA
Opto-Electronic MT80-IR60-Fio-PM0,5-J3V-A).

Figure 3.2: Schematic representation of the optical set-up of the prototype phase camera at Nikhef.
Created with Franzen (2012).
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The test beam which is split from the reference beam at the initial beam splitter BS1 is focused with a
𝑓 = 200 mm lens L2 (Thorlabs LB1945-C). After which the polarization is rotated by a half-wave plate
(Thorlabs WPH10M-1064) to align it with the entrance polarization for the Faraday isolator (Thorlabs
IO-5-1064-HP). This optical diode is used to protect the laser from unwanted reflected light. Next, mir-
ror M3 (Thorlabs BB1-E03) is used to steer the beam to a second beam splitter BS2 (Thorlabs BSW11)
which can be used to create a beam that bypasses the electro-optic modulator such that aberrations
can be introduced. The test beam continues to another half-wave plate (Thorlabs WPH10M-1064) to
rotate the polarization before entering the electro-optic modulator (Qubig PS2M-NIR). After which a
𝑓 = 300 mm lens L3 (Thorlabs LB1779-C) is placed to focus the beam (see section 3.3). Next, two
mirrors M4 and M5 (Thorlabs BB1-E03) are used to lead the beam to the scanner (Physik Instrumente
S-334-2SL). This tip/tilt mirror moves to scan the whole test beam. Finally, the beam reaches the beam
splitter plate BS3 (Thorlabs BSW11) which recombines the beam with the reference beam coming from
the acousto-optic modulator via a single mode optical fiber (Thorlabs P3-1064PM-FC-1), an output colli-
mator (Thorlabs TC12APC-1064) and mirror M6 (Thorlabs BB1-E03). The polarization of the reference
beam is rotated by a half-wave plate (Thorlabs WPH10M-1064) to align it with the polarization of the
test beam. The recombined beam reaches the photodiode (OSI Optoelectronics FCI-InGaAs-55) at
the end which measures the beat signal created.

The measured signal of the photodiode is amplified and split into a DC and a RF component. The RF
component is digitized by an ADC board (Intersil ISLA214P50) and the DC signal is acquired by a slow
ADC unit of the Virgo real-time system. The signals from the waveform generators that drive the AOM
and EOM are split and a copy of them is also digitized by the same ADC board. These digital signals are
then demodulated with a FPGA, field-programmable gate array (Xilinx Virtex-7 XC7VX485). This is a
heterodyne demodulation that results in intensity and phase information for maximally 11 frequencies.
Finally, this data is combined in the data acquisition box (DAQ) with the measured positions of the
scanner to create the images.

3.2.1. Acousto-optic modulator
An acousto-optic modulator (AOM) is a crystal which is vibrating due to sound waves (McCarron, 2007).
These waves are produced by a piezoelectric transducer which is attached to the crystal and vibrates
due to an oscillating electric signal. The incoming light scatters off the vibrating crystal and a diffraction
pattern emerges. The constructive interference occurs at scattering angles𝑚𝜃 with𝑚 an integer and 𝜃
the first scattering angle with constructive interference. This momentum change of the light is caused by
energy exchange with the phonons in the crystal. Since for light, energy is directly related to frequency,
this causes frequency shifts of 𝑚𝑓𝑐𝑟𝑦𝑠𝑡𝑎𝑙 for the scattered light with 𝑓𝑐𝑟𝑦𝑠𝑡𝑎𝑙 the frequency at which the
crystal vibrates due to the generator signal. Note that the chosen frequency is close to the resonance
frequency of the crystal to make the conversion efficient. To shift the frequency of a laser beam with
𝑓𝑐𝑟𝑦𝑠𝑡𝑎𝑙, the output of an AOM has to be placed exactly under an angle 𝜃 with respect to the incoming
beam. The amount of light diffracted by the crystal depends on the number of phonons in the crystal.
Hence, the conversion efficiency of the AOM (𝑃𝑜𝑢𝑡/𝑃𝑖𝑛) depends on the amount of RF power. Note that
there is power loss in an AOM because the initial beam power is spread out over the diffraction pattern.

Figure 3.3: Overview of the set-up around the AOM. Adapted from Van der Schaaf (2020).
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In the prototype set-up an AAOpto-Electronic MT80-IR60-Fio-PM0,5-J3V-A is used. An input collimator
is used to focus the input beam (𝑃𝑖𝑛 = 82 mW) into a single-mode optical fiber which leads the beam
to the AOM. The AOM is driven by a waveform generator (Keysight 336090A Series) which creates an
80 MHz sinusoidal signal with an amplitude of 6 dBm. This signal is split (Mini-Circuits ZFSC-2-4+),
where half of it goes to the AOM and the other half to the ADC and FPGA for demodulation. The part
going to the AOM is amplified by about 24 dB (Mini-Circuits ZHL-3A). This amplifier is powered by a
24 V power supply (Aim-TTi EL302). The output fiber of the AOM leads the frequency-shifted beam to
the output collimator. The output power is 𝑃𝑜𝑢𝑡 = 16.8 mW.

3.2.2. Electro-optic modulator
In an electro-optic modulator (EOM), an electric field is applied to a material causing the refractive index
to change due to an electro-optic effect. This electric field is created by plates across the material in
the EOM, the electrical equivalent of this structure is a parallel plate capacitor. The change in refractive
index causes an optical phase shift. If a sinusoidal signal is applied to the plates, the electric field and
thus the refractive index will vary periodically too (Saleh & Teich, 2009). This causes a time-dependent
phase shift which results in the creation of sidebands as shown in section 2.2.

The EOM in the prototype set-up at Nikhef is the Qubig PS2M-NIR. It is powered by a sinusoidal signal
of 5 MHz created by the same waveform generator as the AOM (Keysight 336090A Series) but on the
second output port. The output of 3 dBm is split into two paths (Mini-Circuits ZFSC-2-4+), one to drive
the EOM and the other as an electrical reference signal to the ADC and FPGA for demodulation. The
EOM branch is first amplified by about 24 dB (Mini-Circuits ZHL-3A+). This amplifier is powered by a
24 V power supply (Aim-TTi EL302).

Before the EOM a half-wave plate (Thorlabs WPH10M-1064) is placed since the EOM is polarization
dependent. The input beam polarization needs to be aligned with one of the optical axes of the crystal
in the EOM. After this half-wave plate, the beam enters the EOM via a 2 by 2 mm2 aperture. To optimize
the output power of the EOM the half-wave plate is mounted on a rotation stage (Thorlabs RSP1X15/M).
After the EOM a power meter (Thorlabs S130C) is used to measure the output power of the EOM. The
output power of the EOM equals 19.9 mW for a 20.0 mW input beam.

Figure 3.4: Sketch of the electric circuit which drives the EOM. Adapted from Van der Schaaf (2020).

The sinusoidal signal is applied to one of the connectors of the EOM. The other connector is terminated
with a 50 Ω resistor (𝑅2) see figure 3.4. To match the load impedance with the output impedance of the
amplifier (50 Ω), a resistor (𝑅1 = 50 Ω) is placed parallel to the EOM. The impedance of the load 𝑍𝐿,
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EOM and resistors, can be calculated as

1
𝑍𝐿
= 1
𝑅1
+ 1

1
𝑗𝜔𝐶 + 𝑅2

= 1
𝑅1
+ 𝑗𝜔𝐶
1 + 𝑗𝜔𝑅2𝐶

= 1 + 𝑗𝜔 (𝑅1 + 𝑅2) 𝐶
𝑅1 (1 + 𝑗𝜔𝑅2𝐶)

,

(3.1)

with 𝑗 the imaginary unit, 𝜔 =2𝜋⋅5 MHz the angular frequency and 𝐶 = 14 pF the EOM capacitance.
Now inverting the fraction gives a load impedance of

𝑍𝐿 =
𝑅1 (1 + 𝑗𝜔𝑅2𝐶)
1 + 𝑗𝜔 (𝑅1 + 𝑅2) 𝐶

= 𝑅1 (1 + 𝑗𝜔𝑅2𝐶)
1 + 𝑗𝜔 (𝑅1 + 𝑅2) 𝐶

1 − 𝑗𝜔 (𝑅1 + 𝑅2) 𝐶
1 − 𝑗𝜔 (𝑅1 + 𝑅2) 𝐶

= 𝑅1 (1 − 𝑗𝜔 (𝑅1 + 𝑅2) 𝐶 + 𝑗𝜔𝑅2𝐶 + 𝜔2𝑅2 (𝑅1 + 𝑅2) 𝐶2)
1 + 𝜔2 (𝑅1 + 𝑅2)

2 𝐶2

= 𝑅1 + 𝜔2𝑅1𝑅2 (𝑅1 + 𝑅2) 𝐶2

1 + 𝜔2 (𝑅1 + 𝑅2)
2 𝐶2

− 𝑗 𝜔𝑅21𝐶
1 + 𝜔2 (𝑅1 + 𝑅2)

2 𝐶2
.

(3.2)

This results in a load impedance of 𝑍𝐿 ≈ 49.9 − 1.1𝑗 Ω. Note that without the resistor 𝑅1 the load
impedance would be

𝑍𝐿 =
1
𝑗𝜔𝐶 + 𝑅2, (3.3)

which gives 𝑍𝐿 ≈ 50−2300𝑗 Ω. Therefore, the load impedances match best with resistor 𝑅1 parallel to
the EOM.

The load impedance is frequency dependent. To validate if the input resistor 𝑅1 is needed for different
frequencies, equation 3.2 is plotted depending on the frequency. The real and imaginary parts as
well as the argument of the load impedance are plotted separately in figure 3.5. It can be seen that
for frequencies up to approximately 10 MHz, it is necessary to use a parallel input resistor. For higher
frequencies, the real and imaginary parts are of the same order of magnitude resulting in an impedance
mismatch. In this case, this configuration is not suitable. Note that above 1 GHz, the impedance
matches again, but the EOM is limited to a frequency of 150 MHz (Qubig, 2020).

(a) Re(𝑍𝐿) (b) Im(𝑍𝐿) (c) arg(𝑍𝐿)

Figure 3.5: Frequency dependence of the real part (a), imaginary part (b) and argument (c) of the
load impedance of the EOM and resistors. The blue and red lines are the load impedance with and
without input resistor 𝑅1, respectively. The black dashed line is the operational EOM frequency of
5 MHz.
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3.2.3. Scanner
To scan the wavefront of the test beam over the photodiode a tip/tilt mirror is used, which is placed on
piezo elements (Physik Instrumente S-334-2SL). Figure 3.6 shows the set-up around the scanner as
well as a picture of the real scanner. Two voltages, 𝐺⋅𝑉1 and 𝐺⋅𝑉2, can be applied to the piezo elements
to tilt the scanner mirror in different directions. The actuation voltage of the piezo elements lies between
0 and 100 V. The mirror is tilted in one direction for voltages below 50 V and in the opposite direction for
voltages above 50 V (Physik Instrumente, 2003). The Virgo DACs (Analog Devices AD1955) create the
input voltages 𝑉1 and 𝑉2 which are amplified with a gain 𝐺 ≈ 10.0 (Physik Instrumente E-505.00). These
amplifiers take an input between -2 and +12 V and a DC offset between 0 and 10 V. The output range
of these amplifiers is from -30 to +130 V (Physik Instrumente, 2013). To tilt the mirror in both directions
the DC offsets should be 5 V, such that positive and negative DAC voltages tilt the mirror in opposite
directions. To measure the mirror position, two strain gauges 𝑆1 and 𝑆2 are used. The controllers of
these sensors (Physik Instrumente E-509.X3) have an output between 0 and 10 V (Physik Instrumente,
2009), which are read out via Virgo ADCs (Analog Devices LTC2378-20).

Figure 3.6: Schematic representation of the set-up around the scanner (a) as well as a picture of
the scanner in the real set-up (b). Adapted from Van der Schaaf (2020).

To convert the strain gauge measurements into angles the scanner needs to be calibrated. First, the
scanner angles are measured for DC input voltages. To measure the scanner angles, a beam profiler
(CinCam CMOS-1.001-Nano) is set at a distance of 𝐿 = 0.75 m. The beam profiler provides the
coordinates of the center of the reflected beam for varying DC input voltages. Figures 3.7a and 3.7b
show the coordinates of the center of the beam when the scanner is actuated on channel 1 and 2,
respectively. Note that the scanner actuation signals (𝑆1,𝑆2) are not aligned with the 𝑥 and 𝑦 axes
which are both orthogonal to the direction of propagation of the reflected beam. Therefore, both the
𝑥 and 𝑦 coordinate of the beam spot position alter when an input voltage is applied to only one of
the inputs of the scanner. Only the slope is relevant for these plots since the offset depends on the
alignment of the beam profiler. Therefore, a linear function is fitted with a least squared optimization to
find the dependency of 𝑥 and 𝑦 on 𝑉1 and 𝑉2:

Δ𝑥 = 1.81 ⋅ 𝑉1 and Δ𝑦 = 1.36 ⋅ 𝑉1, [mm/V]
Δ𝑥 = 1.65 ⋅ 𝑉2 and Δ𝑦 = −1.28 ⋅ 𝑉2. [mm/V] (3.4)

Next coefficients 𝛼1 and 𝛼2 can be defined, which relate the tilt angles to the input voltages as

Θ1 = 𝛼1 ⋅ 𝑉1 and Θ2 = 𝛼2 ⋅ 𝑉2. (3.5)

Since the scanner axes are not aligned with the 𝑥, 𝑦-axis system, the pitch Θ𝑝 and yaw angles Θ𝑦 of
the mirror are not the same as Θ1 and Θ2. According to Van der Schaaf, 2020, the conversion between
the two axis systems equals

Θ𝑦 = √2 (Θ2 − Θ1) , (3.6)
Θ𝑝 = Θ2 + Θ1. (3.7)
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(a) channel 1 (b) channel 2

Figure 3.7: Calibration of the tilt of the scanner when applying an input voltage. The coordinates
of the center of the beam measured with a beam profiler are plotted versus the input voltages for
channel 1 (a) and channel 2 (b) of the scanner.

The yaw and pitch angles are maximal ±25mrad (Physik Instrumente, 2003). Therefore, these angles
can be approximated by Θ𝑦 ≈

𝑥
𝐿 and Θ𝑝 ≈

𝑦
𝐿 . Resulting in

𝛼1 =
1

2√2 ⋅ 𝑉1
(√2 ⋅ Θ𝑝 − Θ𝑦) ≈

1
2√2 ⋅ 𝑉1𝐿

(√2 ⋅ 𝑦 − 𝑥) , (3.8)

𝛼2 =
1

2√2 ⋅ 𝑉2
(√2 ⋅ Θ𝑝 + Θ𝑦) ≈

1
2√2 ⋅ 𝑉2𝐿

(√2 ⋅ 𝑦 + 𝑥) . (3.9)

Here 𝐿 is the distance from the scanner mirror to the photodiode and 𝐿 = 850 mm. Now combining
these two equations for 𝛼1 and 𝛼2 with the fitted slopes in equation 3.4 gives 𝛼1 ≈ 1.76 mrad/V and
𝛼2 ≈ −1.63 mrad/V. The obtained values are a factor three lower than the expected 5 mrad/V (Physik
Instrumente, 2003).

Now that the relation between the angle and control voltage is known, the strain gauges can be cal-
ibrated. Again a DC voltage is applied to the scanner, but now the strain gauges are measured with
a Virgo ADC. The measurements are fitted to a linear function with a least squared optimization to
get the relation between the scanner actuation voltages (𝑉1, 𝑉2) and the strain gauge signals (𝑆1, 𝑆2).
Figure 3.8 shows the measurements together with the fitted functions. The strain gauges relate to the
input voltages as

𝑉1 = 57.2𝑆2 − 15.4 V and 𝑉2 = 61.6𝑆1 − 15.2 V. (3.10)

Figure 3.8: Strain gauge dependence on the input voltage of the scanner.
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If the two calibrations are combined, the tilt of the scanner can be calculated from the measured strain
gauge signals. This can be used to reconstruct an image from a group of measurement points. The
scanner pattern describes an Archimedean spiral to scan the wavefront of the test beam:

𝑥 (𝑡) = 𝑅𝑖𝑚𝑔 ⋅
𝑡

𝑇𝑖𝑚𝑔
⋅ cos (2𝜋 ⋅ 𝑓𝑠𝑐𝑎𝑛 ⋅ 𝑡) and 𝑦 (𝑡) = 𝑅𝑖𝑚𝑔 ⋅

𝑡
𝑇𝑖𝑚𝑔

⋅ sin (2𝜋 ⋅ 𝑓𝑠𝑐𝑎𝑛 ⋅ 𝑡) , (3.11)

with 𝑅𝑖𝑚𝑔 the radius of the image (typically a few millimeters), 𝑇𝑖𝑚𝑔 the acquisition time for one image
and 𝑓𝑠𝑐𝑎𝑛 Hz the spiral revolution frequency. This scanning pattern is used since it gives a smooth
movement for the mirror. It prevents sudden changes, which could result in the mirror overshooting its
intended position.

Along this trajectory measurements are done. The sampling time of the ADC is 2 ns and there are taken
16384 ADC samples per pixel. In total, there are 𝑁𝑖𝑚𝑔 = 16384 pixels measured in one full spiral. So
one measurement takes 𝑇𝑖𝑚𝑔 ≈ 0.537 s. After this time the mirror moves back inward again in 0.01 s
and stays in the center position until the next measurement starts at the turn of the next second. The
exact time is obtained from the so-called IRIG-B signal from GPS. The total scan time is less than 1 s
because all data in the Virgo DAQ system is stored in frames with a duration of 1 second (Agatsuma
et al., 2019). Note that the scanning frequency influences the distribution of the pixels in the spiral. For
this configuration, the optical scanning frequency is 𝑓𝑠𝑐𝑎𝑛 = 120 Hz (Van der Schaaf, 2020). Along the
diameter of the circular image, there are 𝑛 ≈ √𝑁𝑖𝑚𝑔 pixels. Therefore, there are 𝑛𝑐𝑦𝑐𝑙𝑒 = √𝑁𝑖𝑚𝑔/2
cycles within one scan. This corresponds with 𝑁𝑖𝑚𝑔/𝑛𝑐𝑦𝑐𝑙𝑒 ≈ 2 ⋅ 𝑛 pixels per cycle. The pixels are
equally spaced angularly, thus the radial distance between two pixels at the edge is 𝜋𝑅𝑖𝑚𝑔/𝑛 ≈ 60 𝜇m.
Since this distance is of the order of the photodiode size (55 𝜇m), the whole wavefront is imaged.

3.2.4. Photodiode
The beat signal is measured by a photodiode (OSI Optoelectronics FCI-InGaAs-55). This pin-hole
detector has an active diameter of 55 𝜇m (OSI Optoelectronics, n.d.) and is housed in a brass box
for electromagnetic shielding reasons. In the photodiode box, the DC and RF signals are split and
amplified. The RF signals are transported to the ADC board where they are digitized with a 14-bits
500 MS/s ADC and then digitally demodulated at up to 11 frequencies in parallel. The DC signals are
acquired by Virgo-style ADCs and are primarily used for alignment purposes.

3.2.5. Demodulation
The demodulation of the beat signal takes place in a field-programmable gate array (FPGA). This box
takes the RF signal of the photodiode box as input as well as a copy of the signals which drive the EOM
and AOM. These signals are all analog and are first digitized by a 14-bit ADC which is placed before the
FPGA. Digital demodulation is used instead of analog demodulation since this allows demodulation of
many sidebands in parallel (Agatsuma et al., 2019). After digitization, each point pixel is a time series
with 16384 samples. A Hann window is applied to the series after which they are multiplied by a sine
and cosine at the demodulation frequencies. Next, the signal is time integrated by summing the data.
These signals are the in-phase (I) and quadrature (Q) components of the measured signal. Finally, the
amplitude is found by taking the square root of the sum of the squared I and Q components. To get the
phase the arctangent of Q over I is taken. The same demodulation process is used for the mixed AOM
and EOM digitized signals which provide the phase reference. The reference phase is subtracted from
the measured phase to get the relative phase of the measured wavefront (Van der Schaaf, 2020).

This FPGA demodulates the RF signal at maximal 11 frequencies. The demodulation frequencies can
be changed to any frequency between 1 and 250 MHz. In this thesis, only the carrier frequency (80
MHz) and the first upper and lower sideband (75 and 85MHz) are studied. The demodulated phase and
amplitude points are transferred to the DAQ to be saved in frame files of 1 s. In these frame files also
the strain gauges measurements are stored. Frames are grouped in batches of 100 frames and stored
on disk to later create images. Finally, a Python code has been written to calculate the 𝑥, 𝑦-coordinates
of each pixel from the strain gauge signals via the described calibration (see section 3.2.3). Next, the
amplitude and phase points are mapped to a 100 x 100 grid to create the images of a phase camera.
Since the scanner pattern is an Archimedean spiral the corners of the image contain no data and are
set to zero. There are also image pixels with multiple measured points. In this case, the average is
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taken of the amplitude measurements. The phase value of such a pixel is calculated by taking the
angular average (Rudakova, 2018)

𝜙𝑎𝑣𝑔 = arctan
⎛
⎜

⎝

𝑁
∑
𝑖
sin (𝜙𝑖)

𝑁
∑
𝑖
cos (𝜙𝑖)

⎞
⎟

⎠

, (3.12)

where 𝜙𝑎𝑣𝑔 is the phase average and 𝜙𝑖 the phase of measurement 𝑖 in this single image pixel. The
Python code which reads the batched frame files and creates these intensity and phase images is at-
tached in appendix B.

An example of a measurement result of the phase camera prototype set-up can be seen in figure 3.9.
The carrier frequency (middle) and the upper (right) and lower (left) sideband are shown. In the upper
row, the intensity images are shown, while in the bottom row the phase images. The wavefront is
scanned over a radius of approximately 2 mm. Note that for the phase images, the pixels with an
intensity lower than a threshold (100 a.u.) are made black. This is to filter out pixels with a low signal-
to-noise ratio. In the measurement, it can be seen that the intensity images all look similar only the
intensity differs by a few orders of magnitude between the carrier and the sidebands. The peak in the
intensity images is almost circular as expected from a Gaussian beam without aberrations. The rings
seen in the phase images are mostly due to the scanning set-up which is explained in chapter 4. The
phase image of the carrier frequency is blurred on the left edge because the measured power is lower
in these pixels. Therefore, the noise in those pixels is larger. To prevent this, the intensity and phase
images should both be centered. A further discussion on this centering can be found in chapter 6.

Figure 3.9: Example measurement of the phase camera. The top row shows from left to right the
intensity images of the lower sideband, carrier and upper sideband. The bottom row shows the
corresponding phase images at the three demodulated frequencies.
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3.3. Beam conditioning
The beat signal which is measured with the phase camera is created at the final beam splitter. At this
surface, the beams coming from the AOM and EOM recombine. Both beams are Gaussian beams with
a differently curved wavefront. Therefore, the phase difference between both beams is not constant
on the beam splitter surface. To remove this effect in the phase images, the wavefront should have
the same radius of curvature. This is accomplished by conditioning the beams such that the waists
are positioned at the beam splitter surface. The AOM beam is focused by the output collimator and is
therefore already collimated with a waist size of approximately 1.1 mm. EOM beam on the other hand
strongly diverges.

To condition the EOM beam such that the waist is located at the beam splitter, a lens is needed. The
beam properties are determined by measuring the beam size at different positions along the beam
with a beam profiler. For a detailed description of this measurement see section 2.3. The measured
beam waists of the EOM beam are 𝑤0,𝑚𝑎𝑗𝑜𝑟 = 0.13 mm and 𝑤0,𝑚𝑖𝑛𝑜𝑟 = 0.12 mm, the waist po-
sitions 𝑧0,𝑚𝑎𝑗𝑜𝑟 = −0.81 m and 𝑧0,𝑚𝑖𝑛𝑜𝑟 = −0.83 m and the quality factors 𝑀2

𝑚𝑎𝑗𝑜𝑟 = 1.01 and
𝑀2
𝑚𝑖𝑛𝑜𝑟 = 1.01. The software package JamMt (Thüring & Lastzka, 2011) is used, which is a mode-

matching tool to simulate the behavior of Gaussian beams. Different configurations with different lenses
are simulated for both the measured major and minor axis. Figure 3.10 shows a screenshot of JamMt
with the final position for the lens and the laser beam along the major axis. The dashed green lines are
the positions of the lens, mirrors, scanner, beam splitter and photodiode. The chosen lens has a focal
length of 300 mm. The simulated beam sizes behind the lens along the major axis at different positions
are shown in table 3.1. Note that the waist indeed is located near the beam splitter position.

Figure 3.10: Screenshot of a simulation with JamMt (Thüring & Lastzka, 2011) to determine the
position of a lens in a Gaussian beam.

Table 3.1: Simulated beam sizes along the major axis at different positions behind a 𝑓 = 300 mm
lens for the beam coming from the EOM.

position [m] beam size [𝜇m]
lens -0.516 899.728
mirror 1 -0.475 893.813
mirror 2 -0.375 880.706
scanner -0.225 864.213
beam splitter 0 847.023
photodiode 0.625 849.889
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After the JamMt simulations, the lens was placed in the set-up. To check whether the behavior of the
beam is as simulated, the beam properties are measured after the lens too. In figure 3.11 the measured
major and minor beam radii of the beam before and after the lens are plotted in blue. The simulated
beam after the lens is also plotted as the dashed blue line. Note that the measured radii are slightly
larger but the trend is very similar. This means that the lens is placed at approximately the position as
determined by simulation.

(a) major axis (b) minor axis

Figure 3.11: The AOM (red) and EOM (blue) beam radii around the beam splitter (position indicated
by the dash-dotted vertical line). To collimate the EOM beam a lens (position indicated by the dotted
vertical line) is placed before the beam splitter. The position and focal length are determined with
JamMt. The simulated beam after the lens is the blue dashed line. The major (a) and minor (b) axis
are plotted separately. The different markers are used to differentiate the measured radii before and
after the lens and beam splitter.

In this figure also the AOM beam (in red) before and after the beam splitter is plotted as well as the EOM
beam after the beam splitter. This is to check that the AOM and EOM beams after the beam splitter
behave similarly and that both waists are located near the beam splitter. Note that in figure 3.11 some
of the measured radii are crossing the lens (dotted vertical line) and the beam splitter (dash-dotted ver-
tical line) because they were measured before the lens and the beam splitter were placed. For both the
AOM and EOM beam, the lines before and after the beam splitter do not line up at the beam splitter.
This can be due to errors in determining the beam profiler positions and the use of different neutral
density filters on the beam profiler.

To visualize the phase difference which may be introduced in the phase images by the curved wavefront
the RoCs of the beams are calculated. Figure 3.12 shows the radius of curvature of the wavefront of
the AOM (in red) and EOM (in blue) beam before (darker shade) and after (lighter shade) the beam
splitter. The dotted lines are the beam radii and the vertical dash-dotted line is used as a reference.
The horizontal axis is in terms of the wavelength. Therefore, the phase difference can be easily read
as a percentage of 2𝜋. The maximum phase difference along the major axis is approximately 0.18𝜋
and along the minor axis 0.15𝜋. A more detailed discussion about the phase images and whether this
phase difference is significant or not can be found in chapter 4.
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(a) major axis (b) minor axis

Figure 3.12: Radius of curvature of the wavefront in the major (a) and minor (b) axis direction of the
AOM (red) and EOM (blue) beams before (darker shade) and after (lighter shade) the beam splitter.
The dashed lines are the beam radii and the vertical dash-dotted line is shown as a reference at the
beam splitter position. The horizontal axis is in terms of the wavelength to easily read the phase
difference fraction. The vertical axis is added to quantify the beam sizes.



4
Phase imaging

The working principle of the phase camera has been discussed in the previous chapter. Now it is time
to understand the phase images. First, the interference of two plane waves is discussed, after which
the plane waves are exchanged for Gaussian waves. Here the theoretical background from chapter 2
is used to describe the Gaussian beam properties. Finally, the effect of the scanning mirror is taken
into account which gives rise to an additional phase shift as a function of radial position from the beam
axis. The mathematically derived phase differences introduced by the Gaussian beam optics and the
scanning mirror are used to produce phase images via a simulation, which will be compared with real
measurements.

4.1. Interference of two plane waves
Assume a beam splitter with two incoming plane waves as shown in figure 4.1. The beam splitter
is placed under an angle of 45 degrees. The two incoming waves will interfere at the surface of a
50:50 beam splitter. Depending on their properties, the total power will be divided between the two
output ports. Note that plane waves have a flat wavefront meaning that the phase is constant across a
cross-section of the beam.

Figure 4.1: Beam splitter with two incoming beams and two interfered outgoing beams. Adapted
from Van der Schaaf (2020).

4.1.1. Homodyne plane waves
First, assume that the two incoming waves have the same frequency. The incoming waves can then
be described as 𝐸𝑥𝑖𝑛 = 𝐴1𝑒𝑖(𝜔𝑡−𝑘𝑧) and 𝐸

𝑦
𝑖𝑛 = 𝐴2𝑒𝑖(𝜔𝑡−𝑘𝑧+Δ𝜙) with 𝐴1 and 𝐴2 being real amplitudes, 𝜔

the frequency, 𝑡 the time, 𝑘 the wave number, 𝑧 the coordinate in the direction of propagation and Δ𝜙

25
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the phase difference between both waves. The outgoing intensities 𝐼𝑥𝑜𝑢𝑡 and 𝐼𝑦𝑜𝑢𝑡 are then given by

𝐼𝑥𝑜𝑢𝑡 = |𝐸𝑥𝑜𝑢𝑡|
2 = |𝐴12 𝑒
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(4.1)

and
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(4.2)

Note the 𝜋 phase shift in equation 4.2 which is introduced due to energy conservation at the beam
splitter (Zetie et al., 2000). Also note that the intensity of the outgoing waves is constant, it only depends
on the phase difference between the two incoming beams. Therefore, if a phase image would be taken
of one of the outgoing beams, it would be constant throughout the beam spot.

4.1.2. Heterodyne plane waves
Next, the incoming waves are assumed to be heterodyne, i.e. they have different frequencies. They
can be described as 𝐸𝑥𝑖𝑛 = 𝐴1𝑒𝑖(𝜔1𝑡−𝑘1𝑧) and 𝐸

𝑦
𝑖𝑛 = 𝐴2𝑒𝑖(𝜔2𝑡−𝑘2𝑧+Δ𝜙), where the subscripts are added to

distinguish the frequency and wave number of both waves. The outgoing intensities can be calculated
in the same way
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1 +

1
4𝐴

2
2 +

1
2𝐴1𝐴2Re{𝑖 ([𝜔1 − 𝜔2] 𝑡 − [𝑘1 − 𝑘2] 𝑧 − Δ𝜙)}

= 1
4𝐴

2
1 +

1
4𝐴

2
2 +

1
2𝐴1𝐴2 cos ([𝜔1 − 𝜔2] 𝑡 − [𝑘1 − 𝑘2] 𝑧 − Δ𝜙) ,

(4.3)

and

𝐼𝑦𝑜𝑢𝑡 = |𝐸𝑦𝑜𝑢𝑡|
2 = |𝐴12 𝑒

𝑖(𝜔1𝑡−𝑘1𝑧+𝜋) + 𝐴22 𝑒
𝑖(𝜔2𝑡−𝑘2𝑧+Δ𝜙)|

2

= 1
4𝐴

2
1 +

1
4𝐴

2
2 +

1
2𝐴1𝐴2Re{𝑖 (𝜋 + [𝜔1 − 𝜔2] 𝑡 − [𝑘1 − 𝑘2] 𝑧 − Δ𝜙)}

= 1
4𝐴

2
1 +

1
4𝐴

2
2 −

1
2𝐴1𝐴2 cos ([𝜔1 − 𝜔2] 𝑡 − [𝑘1 − 𝑘2] 𝑧 − Δ𝜙) .

(4.4)

Now the singular intensity of the outgoing waves is not constant. It depends on where it is measured and
at which time it is measured. The beat frequency with which the intensity fluctuates is 𝜔𝑏𝑒𝑎𝑡 = 𝜔1−𝜔2.
A detector that is placed at a certain position behind the beam splitter will measure a flickering intensity
with this frequency. If a phase measurement is conducted, the phase image will be constant over the
beam spot. However, there can be a varying offset to the phase between different images due to the
intensity fluctuations.

4.2. Interference of two Gaussian beams
In the previous section, the interference between two plane waves is discussed as well as the effect it
has on the phase image. In reality, the measured beams are not plane waves, but Gaussian beams.
Therefore, the curved wavefront and the Gouy phase of Gaussian beams have to be taken into account.
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4.2.1. Curved wavefront
The curvature of the wavefront results in an extra phase difference to the outer edges of the beam spot
with respect to a flat wavefront. Figure 4.2 shows a curved wavefront and the path length difference
Δ𝑧 with respect to a flat wavefront. A curved wavefront is defined by its radius of curvature 𝑅 (𝑧) as
described in equation 2.13.

Figure 4.2: Schematic representation of the phase difference between a flat and a curved wavefront.

To find an expression for Δ𝑧, the Pythagorean theorem is used

[𝑅 (𝑧) − Δ𝑧]2 = 𝑅 (𝑧)2 − 𝑦2. (4.5)

Solving this equation for Δ𝑧 gives

Δ𝑧 = 𝑅 (𝑧) − √𝑅 (𝑧)2 − 𝑦2. (4.6)

The beams in the actual set-up are conditioned such that they have a large radius of curvature at the
beam splitter. Therefore, 𝑦 is small compared to 𝑅 (𝑧). Hence the square root can be approximated by

√𝑅 (𝑧)2 − 𝑦2 ≈ 𝑅 (𝑧) − 𝑦2
2𝑅 (𝑧) . (4.7)

Applying the approximation result in

Δ𝑧 = 𝑅 (𝑧) − [𝑅 (𝑧) − 𝑦2
2𝑅 (𝑧)]

= 𝑦2
2𝑅 (𝑧) .

(4.8)

This path length difference can be converted into a phase difference

Δ𝜙 (𝑦, 𝑧) ≈ 2𝜋
𝜆

𝑦2
2𝑅 (𝑧) , (4.9)

where 𝜆 is the wavelength of the light. Note that this is exactly the second term of the phase of a
lowest-order Gaussian beam as stated in equation 2.10, but for a one-dimensional case.

If the phase of a Gaussian beam is measured throughout a beam cross-section, the curved wavefront
can be seen. The top right image in figure 2.4 shows the phase image of a lowest-order Gaussian
beam (𝜆 = 1064 nm). The radius of curvature in this example is approximately 6.36 m. Therefore, the
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phase difference over the radius of the image (𝑦 = 5 mm) is approximately 3.69𝜋. In the figure, the
phase difference between the center and the edge is indeed of that order. Note that depending on the
radius of curvature and beam spot size rings can be visible in the phase image. Small beam spots or
large radii of curvature can look almost flat since the phase difference is small in these cases. Also,
note that at the position of the waist and infinitely far away from the waist the Gaussian wavefront is flat.
Hence, a Gaussian beam does not always have a phase difference depending on the radial coordinate.

The curved wavefront introduces an additional radial phase difference on top of the constant offset
for a flat wavefront. This effect needs to be taken into account when studying the interference of two
Gaussian beams. The phase camera studies the beat signal which is produced at the beam splitter.
Therefore, the measured phase is the difference between the phase of the two incoming beams at
the beam splitter. Neglecting the constant offset introduced by the flat wavefronts, this effect can be
described as

Δ𝜙curved wavefront (𝑦, 𝑧) = Δ𝜙1 (𝑦, 𝑧) − Δ𝜙2 (𝑦, 𝑧)

= 2𝜋
𝜆1

𝑦2
2𝑅1 (𝑧1)

− 2𝜋𝜆2
𝑦2

2𝑅2 (𝑧2)

= 𝜋𝑦2 [ 1
𝜆1𝑅1 (𝑧1)

− 1
𝜆2𝑅2 (𝑧2)

] .

(4.10)

Note that 𝑧1 and 𝑧2 are a function of 𝑦 since the beam splitter is placed under an angle with respect
to the incoming beams. One side of the beam therefore later reaches the beam splitter then the other
side. The radius of curvature therefore slightly differs for both sides. If the angle between the beam
and the beam splitter is 45 degrees and 𝑧 = 0 is at the center of the beam splitter, then 𝑧 = 𝑦, resulting
in

Δ𝜙curved wavefront (𝑦) = 𝜋𝑦2 [
1

𝜆1𝑅1 (𝑦)
− 1
𝜆2𝑅2 (𝑦)

] . (4.11)

4.2.2. Gouy phase
Another contribution to the phase of a Gaussian beam is the Gouy phase. This describes an extra
longitudinal phase lag originating from the slower phase velocity of a Gaussian beam compared to a
plane wave (Freise & Strain, 2010). The Gouy phase for the lowest-order mode equals

Φ(𝑧) = arctan(𝑧 − 𝑧0𝑧𝑅
) , (4.12)

with 𝑧0 being the waist position and 𝑧𝑅 the Rayleigh range. Note that the total phase lag from 𝑧 = −∞ to
𝑧 = ∞ equals 𝜋. Note that the Gouy phase depends only on the 𝑧 coordinate, which is in the direction
of propagation of the beams. Therefore, the Gouy phase is a constant offset to the phase difference
like the effect of plane waves. This offset can be calculated by taking the difference between the Gouy
phases of the incoming beams

Δ𝜙Gouy phase (𝑧) = Φ1 (𝑧) − Φ2 (𝑧)

= arctan(𝑧1 − 𝑧0,1𝑧𝑅,1
) − arctan(𝑧2 − 𝑧0,2𝑧𝑅,2

) .
(4.13)

Since the Gouy phase introduces only an offset, the effect can not be seen in one image. However, it
does contribute to the overall phase offset.

4.3. Interference with a scanning mirror
In the prototype set-up of the phase camera, the scanner determines which part of the wavefront that
we want to probe reaches the photodiode. The angle of the scanner mirror changes the optical path
length for different image pixels which introduces an extra phase difference. Therefore, it is necessary
to calculate the path lengths for different angles of the mirror in the scanner.
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A sketch of the set-up for two different scanner angles is drawn in figure 4.3. Note that the figure is not
to scale since the path lengths are much larger than the beam widths in reality. The scanner mirror is
drawn in the central position where the incoming angle of the beam is 𝜋

4 , and in the positions where
it is rotated by a small rotation 𝛼 from the central position. The light rays for these scanner positions
that reach the photodiode box are drawn as well. For the central position of the mirror, the center of
the beam reaches the photodiode. For a mirror angle 𝛼, light that is not on the propagation axis of
the beam is directed to the photodiode. This is indicated by a second ray displaced by a distance Δ𝑦.
Between the scanner and the photodiode box a beam splitter is placed where the test and reference
beam can interfere, thereby creating the beat signal. Two light rays of the reference beam coming
from the AOM are drawn too, exactly at the positions where the light rays coming from the scanner hit
the beam splitter. Since only the additional phase difference needs to be calculated all wavefronts are
assumed flat, in the end, all contributions are added for the total effect.

For clarity, multiple distances are defined in this figure as well as some angles. Note the difference
between the single and double-lined red angles which equal an angle of 𝛼 and 2𝛼, respectively. The
other two defined angles are the blue angle of 𝜋4 and the green angle being 𝜋

4 − 𝛼. The inset of this
figure shows a simplified representation of the studied scanner configuration.

To calculate the total phase difference between the two light rays of the test beam due to the path length
differences it is convenient to split the path in several parts. Starting with the length difference up to
the scanner Δ𝐿1, this difference is defined as

Δ𝐿1 = 𝐿′1 − 𝐿1 = Δ𝑦 tan (
𝜋
4 − 𝛼) . (4.14)

The next step is to calculate the total length 𝐿′2 from the tilted mirror to the photodiode. Using the
Pythagorean theorem 𝐿′2 can be expressed in terms of 𝐿2 and Δ𝑦:

𝐿′2 = √Δ𝐿12 + (𝐿2 − Δ𝑦)
2. (4.15)

To write 𝐿′2 as a function of only Δ𝑦 and 𝛼, the next step is to find an expression for 𝐿2 in terms of Δ𝑦.
Therefore, the tangent function is used in the same triangle

tan (2𝛼) = Δ𝐿1
𝐿2 − Δ𝑦

. (4.16)

Rewriting and substituting equation 4.14 into the previous equation gives

𝐿2 − Δ𝑦 =
tan (𝜋4 − 𝛼)
tan (2𝛼) Δ𝑦. (4.17)

Now solving for 𝐿2 by using the shifted half-angle formula for the tangent results in

𝐿2 = [
tan (𝜋4 − 𝛼)
tan (2𝛼) + 1] Δ𝑦

= Δ𝑦
sin (2𝛼) .

(4.18)

Substituting equations 4.14 and 4.18 into equation 4.15 shows that 𝐿′2 depends only on Δ𝑦 and 𝛼

𝐿′2 = √(Δ𝑦 tan (
𝜋
4 − 𝛼))

2
+ ( Δ𝑦

sin (2𝛼) − Δ𝑦)
2

= Δ𝑦√(tan (𝜋4 − 𝛼))
2
+ ( 1

sin (2𝛼) − 1)
2

=
tan (𝜋4 − 𝛼)
sin (2𝛼) Δ𝑦.

(4.19)
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Figure 4.3: Schematic representation of the optical set-up with two positions of the scanner. Two
light rays are drawn which reach the photodiode box to calculate all path optical path lengths. Note
that the image is not to scale since the beam widths are much smaller than the optical path lengths
in reality.
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Now taking the difference between 𝐿′2 and 𝐿2 gives

Δ𝐿2 = 𝐿′2 − 𝐿2

=
tan (𝜋4 − 𝛼)
sin (2𝛼) Δ𝑦 − 1

sin (2𝛼)Δ𝑦

=
tan (𝜋4 − 𝛼) − 1

sin (2𝛼) Δ𝑦.

(4.20)

Next, 𝐿2 is split into 𝐿3 and 𝐿4 which are the distance between the scanner and the beam splitter and
the beam splitter and the photodiode box, respectively. The constant 𝑐 is defined as the fraction of 𝐿3
and 𝐿2 such that 𝐿3 = 𝑐𝐿2 and 𝐿4 = (1 − 𝑐) 𝐿2. Before 𝐿3 and 𝐿4 can be calculated, the position of the
beams on the beam splitter must be known. Therefore, the distance 𝑥, the distance between the two
parallel incoming reference beam light rays at the beam splitter, has to be derived. To start, it is noted
that 𝑥′ equals

𝑥′ = 𝑥 [1 + tan (2𝛼)] . (4.21)

Now taking the tangent in the triangle spanning from the photodiode up to 𝑥′ gives

tan (2𝛼) = 𝑥′
𝐿4

= 𝑥 [1 + tan (2𝛼)]
(1 − 𝑐) 𝐿2

= 𝑥 [1 + tan (2𝛼)] sin (2𝛼)
(1 − 𝑐) Δ𝑦

= 𝑥 tan (2𝛼) [sin (2𝛼) + cos (2𝛼)]
(1 − 𝑐) Δ𝑦 .

(4.22)

To find 𝑥, the above equation can be rewritten into

𝑥 = 1
sin (2𝛼) + cos (2𝛼) (1 − 𝑐) Δ𝑦. (4.23)

Now 𝐿′3 can be calculated by taking a cosine in the triangle from the scanner up to the beam splitter

𝐿′3 =
𝑐𝐿2 − Δ𝑦 + 𝑥
cos (2𝛼)

=
𝑐

sin(2𝛼)Δ𝑦 − Δ𝑦 +
1

sin(2𝛼)+cos(2𝛼) (1 − 𝑐) Δ𝑦
cos (2𝛼)

=
1

sin(2𝛼)𝑐 − 1 +
1

sin(2𝛼)+cos(2𝛼) (1 − 𝑐)
cos (2𝛼) Δ𝑦

= [
1

sin(2𝛼)
sin (2𝛼) + cos (2𝛼)𝑐 +

1
cos(2𝛼)

sin (2𝛼) + cos (2𝛼) −
1

cos (2𝛼)] Δ𝑦.

(4.24)

Next, the path length difference Δ𝐿3 can be calculated

Δ𝐿3 = 𝐿′3 − 𝐿3

= [
1

sin(2𝛼)
sin (2𝛼) + cos (2𝛼)𝑐 +

1
cos(2𝛼)

sin (2𝛼) + cos (2𝛼) −
1

cos (2𝛼) −
𝑐

sin (2𝛼)] Δ𝑦

= ([
1

sin(2𝛼)
sin (2𝛼) + cos (2𝛼) −

1
sin (2𝛼)] 𝑐 + [

1
cos(2𝛼)

sin (2𝛼) + cos (2𝛼) −
1

cos (2𝛼)])Δ𝑦.

(4.25)
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The last path length that needs to be calculated is 𝐿′4 and its deviation from 𝐿4, Δ𝐿4. Therefore, the
bottom triangle is used. First, the side 𝐿4 − 𝑥 is defined

𝐿4 − 𝑥 = (1 − 𝑐) 𝐿2 − 𝑥

= 1
sin (2𝛼) (1 − 𝑐) Δ𝑦 −

1
sin (2𝛼) + cos (2𝛼) (1 − 𝑐) Δ𝑦

=
1

tan(2𝛼)
sin (2𝛼) + cos (2𝛼) (1 − 𝑐) Δ𝑦.

(4.26)

To calculate 𝐿′4, the cosine is applied to the same triangle

𝐿′4 =
𝐿4 − 𝑥

cos (2𝛼)

=
1

sin(2𝛼)
sin (2𝛼) + cos (2𝛼) (1 − 𝑐) Δ𝑦.

(4.27)

Lastly, the difference Δ𝐿4 can be calculated

Δ𝐿4 = 𝐿′4 − 𝐿4

=
1

sin(2𝛼)
sin (2𝛼) + cos (2𝛼) (1 − 𝑐) Δ𝑦 −

1
sin (2𝛼) (1 − 𝑐) Δ𝑦

= [
1

sin(2𝛼)
sin (2𝛼) + cos (2𝛼) −

1
sin (2𝛼)] (1 − 𝑐) Δ𝑦.

(4.28)

A difference in optical path lengths for different light rays results in a phase difference equal to

Δ𝜙 = 2𝜋
𝜆 Δ𝐿. (4.29)

The phase camera measures the beat signal which is produced by the interference at the beam splitter.
Therefore, the only relevant phase behind the beam splitter is the phase of the beat. The beat signal
has a frequency of 𝑓𝑏𝑒𝑎𝑡 = 80 MHz which corresponds with a beat wavelength of 𝜆𝑏𝑒𝑎𝑡 ≈ 3.75 m. This
wavelength is much larger than that of the beams coming from the EOM and AOM. The wavelength
of the carrier signal of the EOM beam equals 𝜆𝐸𝑂𝑀,𝑐𝑎𝑟 = 1064 nm while the wavelength of the AOM
equals 𝜆𝐴𝑂𝑀 ≈ 1064 nm−300 fm due to the 80MHz frequency shift. The phase difference due to a path
length difference is inversely related to the wavelength. Therefore, the path length difference before
the beam splitter dominates the effect. The total effect of the path length difference can be calculated
with

Δ𝜙path length (Δ𝑦) = 2𝜋 [
Δ𝐿𝐸𝑂𝑀 (Δ𝑦)
𝜆𝐸𝑂𝑀

− Δ𝐿𝐴𝑂𝑀
(Δ𝑦)

𝜆𝐴𝑂𝑀
+ Δ𝐿𝑏𝑒𝑎𝑡

(Δ𝑦)
𝜆𝑏𝑒𝑎𝑡

] . (4.30)

Note the minus sign before the second term. The phase of the beat signal is the difference between
the phase of the EOM and AOM beam that interfere at the beam splitter. The latter term is very small
compared to the first two terms because the beat frequency is small compared to the light frequencies.

Since the wavelength differs on each side of the beam splitter, the path lengths have to be calculated
for each section. Two light rays coming from the EOM have a path length difference of

Δ𝐿𝐸𝑂𝑀 = Δ𝐿1 + Δ𝐿3

= ([
1

sin(2𝛼)
sin (2𝛼) + cos (2𝛼) −

1
sin (2𝛼)] 𝑐 + [

1
cos(2𝛼)

sin (2𝛼) + cos (2𝛼) −
1

cos (2𝛼) + tan (𝜋4 − 𝛼)])Δ𝑦.

(4.31)
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The path length difference for the two rays from the AOM is

Δ𝐿𝐴𝑂𝑀 = 𝑥

= 1
sin (2𝛼) + cos (2𝛼) (1 − 𝑐) Δ𝑦,

(4.32)

and the path length difference from the beam splitter up to the photodiode box equals

Δ𝐿𝑏𝑒𝑎𝑡 = Δ𝐿4

= [
1

sin(2𝛼)
sin (2𝛼) + cos (2𝛼) −

1
sin (2𝛼)] (1 − 𝑐) Δ𝑦.

(4.33)

Equation 4.30 combines these three path length differences into a total radial phase difference.

4.4. Interference in the phase camera set-up
To describe the total phase images of the phase camera, all previous effects need to be combined.
However, the fact that the phase camera uses heterodyne detection introduces another level of com-
plexity since it acquires data at multiple frequencies. Therefore, the total phase effect for a single
frequency is determined, after which its frequency dependence is discussed.

4.4.1. Total phase
The several effects which introduce phase differences in the phase camera set-up have been discussed
in the previous sections. They can be sorted into two groups: radial effects and total offsets. The ra-
dial effects can influence single phase images while the offset effects only are visible between images
taken at different times. Here, only the radial phase differences are studied.

Two effects contribute to the radial phase differences: the path length difference and the curved wave-
front. The total radial phase difference can be calculated by adding these two terms

Δ𝜙 = Δ𝜙path length + Δ𝜙curved wavefront

= 2𝜋 [Δ𝐿𝐸𝑂𝑀𝜆𝐸𝑂𝑀
− Δ𝐿𝐴𝑂𝑀𝜆𝐴𝑂𝑀

+ Δ𝐿𝑏𝑒𝑎𝑡𝜆𝑏𝑒𝑎𝑡
]+

𝜋𝑥2 [ 1
𝜆𝐸𝑂𝑀𝑅𝐸𝑂𝑀 (𝑧𝐸𝑂𝑀)

− 1
𝜆𝐴𝑂𝑀𝑅𝐴𝑂𝑀 (𝑧𝐴𝑂𝑀)

] .

(4.34)

The radial coordinate 𝑦 is replaced by 𝑥 in the curved wavefront phase difference because the defi-
nitions from figure 4.3 are used. To calculate the radii of curvature of the AOM and EOM beams, the
location of the beam splitter needs to be known along the beam axis. The center of the beam splitter is
taken as 𝑧 = 0. The position where the light reaches the beam splitter is then the path length difference
Δ𝐿𝐴𝑂𝑀 as derived in section 4.3. Therefore, 𝑧𝐴𝑂𝑀 = Δ𝐿𝐴𝑂𝑀−𝑧0,𝐴𝑂𝑀, with 𝑧0,𝐴𝑂𝑀 the position of the waist
of the AOM beam. For the EOM beam, the path length difference is 𝑧𝐸𝑂𝑀 = Δ𝐿𝐸𝑂𝑀−𝑧0,𝐸𝑂𝑀, with 𝑧0,𝐸𝑂𝑀
the position of the waist of the EOM beam. This results in a total radial phase difference

Δ𝜙 (Δ𝑦) = 2𝜋 [Δ𝐿𝐸𝑂𝑀𝜆𝐸𝑂𝑀
− Δ𝐿𝐴𝑂𝑀𝜆𝐴𝑂𝑀

+ Δ𝐿𝑏𝑒𝑎𝑡𝜆𝑏𝑒𝑎𝑡
]+

𝜋𝑥2 [ 1
𝜆𝐸𝑂𝑀𝑅𝐸𝑂𝑀 (Δ𝐿𝐸𝑂𝑀 − 𝑧0,𝐸𝑂𝑀)

− 1
𝜆𝐴𝑂𝑀𝑅𝐴𝑂𝑀 (Δ𝐿𝐴𝑂𝑀 − 𝑧0,𝐴𝑂𝑀)

] .
(4.35)

This is exclusively a function of Δ𝑦 since all the path length differences only depend on Δ𝑦.

4.4.2. Sidebands
In the previous sections, only the wavelength of the carrier frequency of the EOM is mentioned. How-
ever, the EOM creates sidebands as described in section 3.2.2. For completeness, the sideband
frequencies of the EOM are described in this section.
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In the prototype set-up, the wavelength of the laser equals 𝜆𝑙𝑎𝑠𝑒𝑟 = 1064 nm. The EOM creates side-
bands at frequencies 𝑓𝐸𝑂𝑀 = 𝑓𝑙𝑎𝑠𝑒𝑟 ± 𝑛𝑠𝑏Δ𝑓𝐸𝑂𝑀, with 𝑓𝑙𝑎𝑠𝑒𝑟 the laser frequency, 𝑛𝑠𝑏 the number of
the upper/lower sideband and Δ𝑓𝐸𝑂𝑀 = 5 MHz the frequency difference created by to the EOM. The
light coming from the AOM on the other hand has a frequency shift Δ𝑓𝐴𝑂𝑀 = 80 MHz compared to the
laser, 𝑓𝐴𝑂𝑀 = 𝑓𝑙𝑎𝑠𝑒𝑟 + Δ𝑓𝐴𝑂𝑀.

After the interference at the beam splitter, the beat signal is measured at the photodiode. The studied
signals in the demodulation are the carrier (car) signal and the first upper (USB) and lower (LSB)
sideband signal, hence 𝑛𝑠𝑏 = 1. These represent the following frequencies of the light coming from
the EOM

𝑓𝐸𝑂𝑀,𝑐𝑎𝑟 = 𝑓𝑙𝑎𝑠𝑒𝑟 ,
𝑓𝐸𝑂𝑀,𝑈𝑆𝐵 = 𝑓𝑙𝑎𝑠𝑒𝑟 + Δ𝑓𝐸𝑂𝑀 ,
𝑓𝐸𝑂𝑀,𝐿𝑆𝐵 = 𝑓𝑙𝑎𝑠𝑒𝑟 − Δ𝑓𝐸𝑂𝑀 .

(4.36)

Note that the studied beat frequencies are the difference between the light coming from the AOM and
EOM. Therefore, the beat frequencies equal

𝑓𝑏𝑒𝑎𝑡,𝑐𝑎𝑟 = Δ𝑓𝐴𝑂𝑀 ,
𝑓𝑏𝑒𝑎𝑡,𝑈𝑆𝐵 = Δ𝑓𝐴𝑂𝑀 − Δ𝑓𝐸𝑂𝑀 ,
𝑓𝑏𝑒𝑎𝑡,𝐿𝑆𝐵 = Δ𝑓𝐴𝑂𝑀 + Δ𝑓𝐸𝑂𝑀 .

(4.37)

To quantize the phase difference induced by the path length difference, the different wavelengths need
to be known. These can be calculated from the frequencies in equation 4.36

𝜆𝐸𝑂𝑀,𝑐𝑎𝑟 = 1064 nm,
𝜆𝐸𝑂𝑀,𝑈𝑆𝐵 = 1064 nm− 20 fm,
𝜆𝐸𝑂𝑀,𝐿𝑆𝐵 = 1064 nm+ 20 fm.

(4.38)

The difference in the wavelength of the light of the carrier and first sidebands is approximately 20 fm.
This is eight orders smaller than the wavelength of the laser and can therefore be neglected in the
calculation of the radial phase differences.

In the beat signal, the frequency of the sidebands is approximately 6% off compared to the carrier sig-
nal. However, a phase difference between carrier and sideband signals behind the beam splitter can
be neglected since the path length difference before the beam splitter is more than six orders larger
than the path length difference behind the beam splitter.

The combination of the last two statements means that it is expected that the phase images of the
carrier, USB and LSB signal are the same except for a possible offset. This can indeed be seen in
measurements, for example in figure 3.9. The phase images are all similar except for an offset and
noise. The sidebands have a lower intensity than the carrier signal which makes them more sensitive
to noise.

4.5. Simulation of the phase images
The total radial phase difference which influences the phase images is described in equation 4.35.
This phase difference is derived in one dimension. To create a phase image from the one-dimensional
phase difference, Δ𝑦 needs to be varied from 0 to the maximum scan radius. A two-dimensional image
is made by rotation since the phase image is rotationally symmetric. A Python script has been written
to simulate the phase images from the mathematical phase difference derived in the previous section.
The images are created on a grid of 501 by 501 pixels to retrieve sharp images. The simulation takes
approximately 7.0 s to create the wavefront images. The Python code can be found in appendix B.
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An example of a simulated phase image is shown in figure 4.4. The prototype set-up parameters are
used such that the distance between the scanner and photodiode 𝐿2 = 85 cm and 𝐿3 = 22.5 cm.
The EOM and AOM are profiled and the fitted beam parameters are used to determine their radii of
curvature. The AOM frequency is Δ𝑓𝐴𝑂𝑀 = 80 MHz and the image is scanned over with a maximum
scan radius of 2 mm. The phase differences at the carrier frequency are simulated. In the phase image
rings are visible with constant phase. Note that the width of these rings decreases the further they are
away from the center since the phase difference rapidly increases with increasing scan radius. In total
3.5 rings are visible.

Figure 4.4: Simulated phase image with the prototype set-up parameters.

The relation between Δ𝜙 and Δ𝑦 is shown in figure 4.5 as the black line. The blue line and the red
line are the contributions due to the path length difference and curved wavefront, respectively. On the
right axis, the phase difference is divided by 2𝜋 to show how often the phase wraps, i.e., the number
of rings of the same color the phase image will have. It can be seen that the phase difference rapidly
increases with increasing scan radius Δ𝑦. Therefore, the ring width will decrease with increasing scan
radius. Note that the contribution of the path length difference to phase difference is dominant. The
contribution of the curved wavefront is small and in this case, partly compensates for the path length
difference. If the beam would be converging instead of diverging, then this contribution would add a
small extra phase difference.

Figure 4.5: Theoretical phase difference Δ𝜙 plotted versus the scan radius Δ𝑦. On the right axis,
the phase difference has been divided by 2𝜋 to see how often the phase wraps.
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The distance between the rings varies as stated earlier. The size of a ring is measured by taking the
difference between the radius Δ𝑦 at two consecutive phase values where Δ𝜙/2𝜋 = 0. Figure 4.6 shows
the ring size as a function of the ring number for the same simulation as before but now with a scan
radius of 4 mm to see the width of more rings. The first ring is much wider than the other rings.

Figure 4.6: Ring width versus the ring number.

4.6. Validation of the simulation
To validate the simulation, results are compared with phase images taken with the prototype set-up.
In this section, a single measurement is compared with the simulation, after which the measurement
method for the number of rings is explained. Finally, the relation between the number of rings and the
photodiode position is discussed.

4.6.1. Single measurement
In figure 4.7, the phase image of a measurement of the carrier signal is shown on the left side. The
photodiode was placed at 𝐿2 = 85 cm and the beam splitter and 𝐿3 = 22.5 cm from the scanner. The
image has a scan radius of 1.99 mm in the x-direction and 2.17 mm in the y-direction. This difference
can be explained by a calibration error of the scanner. Due to the scanning pattern, there are black
pixels that do not contain data points. On the right side, the simulated phase image is shown with
a scan radius of 2.17 mm. The simulated phase difference due to a curved wavefront is based on
measured beam parameters of the AOM and EOM beam. Along the vertical axis, the measured phase
image shows approximately 3.63 rings. While the simulation predicts 4.04 rings, which is 11% off.
The horizontal direction measures 2.96 rings while the simulation predicts 3.57. This is a difference
of 21%. This difference between the horizontal and vertical axis in the measured image can be due
to aberrations in the optical set-up. Note that the exact position of the photodiode in the photodiode
box is unknown. It is assumed at a depth of 1 cm from the front side of the box. This introduces an
uncertainty in 𝐿2 which can partly explain the difference between the measurement and the simulation.
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(a) measured wavefront (b) simulated wavefront

Figure 4.7: Comparison of a measured (a) and simulated (b) wavefront of the phase camera. The
number of rings in the simulation is 21% larger compared to the measured image in the horizontal
direction and 11% in the vertical direction.

4.6.2. Measurement method for the number of phase rings
To determine the number of rings in a measurement, the phase images should be centered within the
scanned area. The shift is created by adding a voltage offset to the signal that drives the scanning
mirror. In the example measurement in figure 4.8, the images are shifted with Δ𝑥 = 0.5 mm and
Δ𝑦 = −1.5 mm with respect to the intensity-centered images. Since this shift steers the center of the
beam away from the photodiode, the intensity of the edges of half the image decreases significantly.
Therefore, more noise is visible in the left top of the example measurement. From the phase image
of the carrier signal, half of the column that contains the center of the phase image is taken manually.
This half column is marked in yellow in figure 4.8.

Figure 4.8: Example measurement of the phase camera with 𝐿2 = 0.85 cm to determine the number
of phase rings. The phase image is centered to measure the phase difference along the scanning
radius. The yellow box shows the half column which is used to count the number of rings.



38 4. Phase imaging

Next, the phase values from this half column are plotted versus the scan radius. The measured phase
is wrapped to the interval of 0 to 2𝜋. Figure 4.9 shows the wrapped phase as blue dots. To compare
it with the simulation, the measured phase has been unwrapped. For the black pixels in the yellow
column, the data is linearly interpolated to regain the unwrapped relation. The red squares in this
image show the unwrapped phase. To calculate the total phase difference across the scanning radius
of the image, the difference between the first and last unwrapped phase values is taken. This value is
divided by 2𝜋 to get the number of rings along the scan radius. Since not all measurements have the
same scanning radius, the difference between the radial coordinates is taken to determine the scan
radius.

Figure 4.9: Phase difference versus the scan radius. The blue dots are the measured values from
the half column, which are wrapped. The red squares show the unwrapped phase.

4.6.3. Number of phase rings versus photodiode position
Finally, the relation between the number of rings visible and the photodiode position is determined.
The position of the photodiode is varied and multiple images are taken (see figures C.1 to C.12). The
photodiode has been moved from 𝐿2 = 0.30 cm up to 𝐿2 = 0.85 cm in steps of 5 cm while the final
beam splitter is kept at 𝐿3 = 22.5 cm. Note that this means that 𝑐 varies too. The scanning radius
is kept constant at 2 mm by altering the amplitude of the DC input voltages of the scanner for each
measurement. In appendix C the measurements are shown, which are used to measure the number
of rings as described in section 4.6.2. Note that the intensity images are not centered and the phase
images are a bit blurred since the photodiode is moved. The positioning of the photodiode strongly
influences the alignment because the beams are focused on its active area with a diameter of 55 𝜇m.
The simulation predicts that the number of rings decreases with increasing 𝐿2 as shown by the red line
in figure 4.10. In this figure, the measured number of rings is plotted as blue dots. Note that they also
decrease with increasing 𝐿2, but with a different trend.



4.6. Validation of the simulation 39

Figure 4.10: Simulated phase difference relation (red line) at a scanning radius of 2 mm for varying
photodiode positions 𝐿2. The final beam splitter where the test and reference beam recombine is
kept at 𝐿3 = 22.5 cm. The blue dots are phase differences measured with the prototype set-up.





5
Phase stability

The prototype set-up at Nikhef is built to better understand the phase camera in a controlled envi-
ronment. In this chapter, measurements on the phase stability of the phase camera are presented
to characterize it. First, the stability over long timescales is discussed to see low-frequency fluctua-
tions between measurements. Next, the high-frequency noise on phase measurements is measured
to quantify the phase resolution for different test and reference powers. These measurements are
compared with expected noise levels from Van der Schaaf (2020).

5.1. Long timescale phase stability
With the current prototype set-up, the relative phase is measured between the beat signal and the sig-
nals of the generators powering the AOM and EOM. An absolute phase measurement is currently not
possible, because the points are measured sequentially (Van der Schaaf, 2020). However, it would
be interesting to know to what extent an absolute phase measurement is possible. The stability of
relative phase measurement needs to be studied since the phase camera is based on an interfero-
metric measurement that has a high sensitivity. Small disturbances such as airflow can influence the
results significantly. To measure the long timescale stability, tens of seconds, of the relative phase, the
scanning mirror is placed at a stationary angle. The phase of the carrier signal is measured for 100
periods of approximately 0.5 seconds. These periods of 0.5 seconds are chosen because then the
DAQ of the phase camera can be used. The measured phase difference between the photodiode and
the generator signals is plotted over time in figure 5.1.

Figure 5.1: Stability measurement of the phase difference between the carrier signal and the refer-
ence signal from the generators powering the AOM and EOM. The set-up was not covered during
this measurement.

41
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If there would be no phase noise, then the measured relative phase would be constant over time. How-
ever, there are low-frequency fluctuations all over a range of almost 3𝜋, and the largest fluctuation in
one interval of 0.5 seconds is approximately 0.4𝜋. This means that within one phase image, there can
be phase fluctuations between measured points of that order. Note a path length difference in the two
long paths between BS1 and BS3 (1 to 1.5 m) in figure 3.2 of 1.6 𝜇m can cause this 3𝜋 phase shift
since the laser wavelength is 1064 nm. Therefore, airflow in the set-up could be partly responsible for
these fluctuations.

To investigate this effect, most of the set-up is covered to reduce disturbances due to the airflow from
the air-conditioning. The set-up was only partly covered due to the limitation of materials. To prevent
airflow from one side to the other, a small strip on one side instead of both sides of the set-up was left
uncovered. To quantify the effect, another stability measurement was conducted. The result of this
second measurement can be seen in figure 5.2. Note that the phase stability significantly improved.
In the previous measurement, the phase fluctuated over a range of almost 3𝜋, while now the phase
only fluctuates over a domain of 0.75𝜋. There is a maximum fluctuation of 0.2𝜋 within one interval of
0.5 seconds.

Figure 5.2: Stability measurement of the phase difference between the carrier signal and the ref-
erence signal from the generators powering the AOM and EOM. Most of the set-up was covered
during this measurement.

This significant increase in stability by partly covering the set-up is hopeful. When possible, the whole
set-up should be covered in the future to protect the set-up against airflow and to stabilize temperature.
Note that with the current set-up, one cannot compensate for these fluctuations, because this mea-
surement cannot be performed simultaneously with a normal scanning phase camera measurement.

Possible other effects that influence the phase stability are polarization fluctuations and the instability
of the AOM. These are further discussed in chapter 6.

5.2. Phase resolution
In the previous section the long timescale, tens of seconds, fluctuations are discussed. These low-
frequency fluctuations are significant and vary strongly from interval to interval. Here, the high-frequency
point-to-point fluctuations on timescales of 10 to 100ms are studied. This phase noise, compared to the
low-frequency fluctuations, is unlikely to be temperature related since it happens on small timescales.
Two example measurements of the phase of the carrier frequency in different intervals are shown in
figure 5.3. The left one has a lot of low-frequency fluctuations, while the right one shows a more linearly
decreasing behavior. Note that the right one is also not constant over time as desired. However, the
high-frequency noise on the phase measurement in both measurements is of the same order. The
width of both lines is in the order of 25 mrad. These fast fluctuations are considered the phase reso-
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lution. In the coming section, a measurement method for the phase resolution is explained. Next, the
phase resolution is measured for varying beam powers and compared with theory.

(a) example measurement, taken at
1367930052 s (GPS time)

(b) example measurement, taken at
1367930055 s (GPS time)

Figure 5.3: Two example measurements of the relative phase in one time interval of 0.5 s. The low-
frequency fluctuations between both measurements are different while the high-frequency noise on
the phase measurements (width of the lines) is of the same order, 25 mrad.

5.2.1. Measurement method
The slow trends of the low-frequency fluctuations can be separated from the high-frequency point-
to-point fluctuations. To calculate the phase resolution from these measurements, the intervals with
linearly looking segments such as figure 5.3b are selected. The linear segments of these intervals are
taken apart and a linear function is fitted to them with a least squared optimization. Figure 5.4 shows
the linear segment of the first 0.25 s of one of the example measurements. The red line is fitted linear
function.

Figure 5.4: Linear segment of the first 0.25 s of the measurement in figure 5.3b. The red line is a
fitted linear function.

Next, the difference between the data points and the linear function is calculated. A histogram of
this difference is shown in figure 5.5 for 7500 phase measurements. Note that it is approximately a
normal distribution. To determine the resolution of the phase measurements, the standard deviation is
calculated. For this example, the standard deviation and thus the phase resolution is 𝜎 = 6.79 mrad.
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Figure 5.5: Histogram of the high-frequency phase fluctuations for 7500 phase measurements.

To increase the accuracy of the measurement of the phase resolution, multiple intervals are selected.
The standard deviation of the phase resolution measurements is calculated for all of them. Intervals
that had a resolution significantly different from the others were removed. To combine these multiple
measurements, a weighted average 𝜎𝑎𝑣𝑔 of the standard deviation is taken (Cohen, 1988)

𝜎𝑎𝑣𝑔 = √
∑𝑘𝑖=1 (𝑛𝑖 − 1)𝜎2𝑖
∑𝑘𝑖=1 𝑛𝑖 − 𝑘

, (5.1)

with 𝑘 the number of intervals for which the standard deviation has been calculated and 𝜎𝑖 and 𝑛𝑖
the standard deviation and sample size of the interval 𝑖. The result of this example then equals
𝜎𝑎𝑣𝑔 = 7.1 ± 0.4 mrad. This is an average of nine linear segments with a total of approximately
48000 phase measurements.

5.2.2. Power-dependent measurements
The measured beat signal at the photodiode is a combination of the test and reference beam which
recombine on the last beam splitter in the set-up. It is expected that the phase resolution depends on
the power of the test and reference beam. Van der Schaaf (2020) states that the rms noise for one
image point scales with the test power 𝑃𝑡𝑒𝑠𝑡 and reference power 𝑃𝑟𝑒𝑓 for an image point as

Δ𝜙 = Δ𝐴𝑡𝑒𝑠𝑡
𝐴𝑡𝑒𝑠𝑡

≈
√𝑛2𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 + 𝑛2𝑠ℎ𝑜𝑡
2 ⋅ √𝑃𝑟𝑒𝑓𝑃𝑡𝑒𝑠𝑡 ⋅ √2𝑇

, (5.2)

with 𝑇 = 33 𝜇s the data acquisition time for a pixel, 𝑛𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 the electric noise level and 𝑛𝑠ℎ𝑜𝑡 the shot
noise level, which is proportional to the total power on the photodiode (𝑛𝑠ℎ𝑜𝑡 ∝ 𝑃𝑡𝑜𝑡 = 𝑃𝑟𝑒𝑓 + 𝑃𝑡𝑒𝑠𝑡).

To characterize the prototype set-up, the dependence of the phase resolution on the test and reference
beam power is determined. First, the test and reference powers are measured by blocking the beams
one by one and measuring the amplitude of the DC signal of the photodiode box. The power 𝑃 is calcu-
lated by dividing the DC amplitude 𝑉𝐷𝐶 by the transimpedance of the amplifier 𝑍𝑡𝑟𝑎𝑛𝑠 in the photodiode
box and by the responsivity of the photodiode 𝑅𝜆

𝑃 = 𝑉𝐷𝐶
𝑍𝑡𝑟𝑎𝑛𝑠𝑅𝜆

. (5.3)

The transimpedance of the amplifier in the photodiode box equals 𝑍𝑡𝑟𝑎𝑛𝑠 = 20 kΩ and the responsivity
of photodiode equals 𝑅𝜆 ≈ 0.9 A/W for a wavelength of 1064 nm (OSI Optoelectronics, n.d.). The
measured DC amplitudes in the prototype set-up are 𝑉𝐷𝐶,𝑡𝑒𝑠𝑡 ≈ 1.265 V and 𝑉𝐷𝐶,𝑟𝑒𝑓 ≈ 0.595 V, corre-
sponding to a test and reference power of 𝑃𝑡𝑒𝑠𝑡 ≈ 70 𝜇W and 𝑃𝑟𝑒𝑓 ≈ 33 𝜇W.
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The calculated powers were cross-checked by measuring the total beam power with a power meter.
The measured total beam powers are 𝑃𝑡𝑒𝑠𝑡,𝑡𝑜𝑡 = 8.76 mW and 𝑃𝑟𝑒𝑓,𝑡𝑜𝑡 = 6.52 mW. The beams are
assumed to be Gaussian distributed and to be centered on the photodiode. The laser power through
a circular aperture of the size of the photodiode is then 𝑃𝑡𝑒𝑠𝑡 = 52.8 𝜇W and 𝑃𝑟𝑒𝑓 = 39.3 𝜇W. This is
similar to the powers calculated from the DC amplitudes. Therefore, the DC amplitudes will be used in
this study to measure the beam power.

The measured phase resolution of the carrier signal in the prototype set-up with 𝑃𝑡𝑒𝑠𝑡 ≈ 70 𝜇W and
𝑃𝑟𝑒𝑓 ≈ 33 𝜇W is Δ𝜙 = 7.1 ± 0.4 mrad. The example measurement in figure 5.5 is one of the measure-
ments used to get this averaged resolution. The resolution between several samples differs since the
linear segments are selected manually. Therefore, the usage of a linear fit is not completely accurate.
This could increase the measured resolution.

To check the phase resolution of equation 5.2 over a wider range of powers, the beams need to be
reduced in power. This is done with neutral density (ND) filters. Eight measurements of the phase
resolution of the carrier signal have been conducted for different values of 𝑃𝑟𝑒𝑓, the measured powers
varied between 2.6 ⋅ 10−9 W and 3.3 ⋅ 10−5 W. The spacing of these measurement points is based on
the available ND filters and therefore the step size is not regular. During these measurements, the
test power was fixed at 𝑃𝑡𝑒𝑠𝑡 = 72.7 𝜇W. The phase resolution is calculated in the same manner as
described above. Figure 5.6 shows the results of these measurements as blue dots. The red line is
fitted with a least squared optimization through the data points based on the expected relation between
the phase resolution and the test and reference power (equation 5.2)

Δ𝜙 = 𝑎
√𝑃𝑟𝑒𝑓𝑃𝑡𝑒𝑠𝑡

+ 𝑏. (5.4)

The function is fitted to return the parameters 𝑎 and 𝑏. This fit neglects that the shot noise depends
on the total power. Different fit functions with the shot noise depending on the total power have been
tested but did not converge. Parameter 𝑏 is added as an offset on top of the predicted relation which
made this fit converge. It can represent possible other effects that influence the phase resolution.

Figure 5.6: Phase resolution as a function of the reference power, 𝑃𝑡𝑒𝑠𝑡 is fixed at 72.7 𝜇W. The
theoretical relation is fitted through the data points and shown as the red line.

The fit through the measured phase resolution for varying 𝑃𝑟𝑒𝑓 and 𝑃𝑡𝑒𝑠𝑡 = 72.7 𝜇W results in a value of
𝑎 ≈ 3.72 ⋅ 10−9 rad⋅W and 𝑏 ≈ 6.12 ⋅ 10−3 rad. This implies that there is a limit on the phase resolution
which is not expected in equation 5.2.

A similar measurement was done to find the relation between phase resolution and varying 𝑃𝑡𝑒𝑠𝑡. Again
a set of ND filters is used to reduce the power in the test beam. Besides, the reference beam was also
reduced in power by a ND filter with an optical density of one such that 𝑃𝑟𝑒𝑓 = 34.6 𝜇W. The test power
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𝑃𝑡𝑒𝑠𝑡 was varied and measured between 2.2⋅10−10 W and 7.4⋅10−5 W. Figure 5.7 shows the measured
phase resolution as blue points as well as the fitted function (equation 5.4) in red. The fit parameters
are 𝑎 ≈ 3.16 ⋅ 10−9 rad⋅W and 𝑏 ≈ 5.88 ⋅ 10−3 rad, which are of the same order of magnitude as for the
previous fit. The second fit is based on more data points over a wide range of powers than the first one
and has a larger coefficient of determination, and therefore is more accurate.

Figure 5.7: Phase resolution as a function of the test power, 𝑃𝑟𝑒𝑓 is fixed at 34.6 𝜇W. The theoretical
relation is fitted through the data points and shown as the red line.

These results can be compared with the expected rms noise on the phase measurements (equa-
tion 5.2). Figure 5.8 shows the expected phase resolution for a phase camera set-up for a range
of test and reference powers. This image is adapted from Van der Schaaf (2020). The previous two
measurements can be represented by a horizontal/vertical line in this image. From this image, the
expected values 𝑎𝑒𝑥𝑝 and 𝑏𝑒𝑥𝑝 are estimated. The low bottom point and the red marked optimal point
are used to calculate the two variables, 𝑎𝑒𝑥𝑝 ≈ 3 ⋅ 10−10 and 𝑏𝑒𝑥𝑝 ≈ 0.

Figure 5.8: Expected resolution of the phase measurement for the phase camera versus a given test
(signal) and reference power on the photodiode. The marker and labels in this plot are not relevant
to this thesis. Adapted from Van der Schaaf (2020).
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In table 5.1 the expected and fitted values for 𝑎 and 𝑏 are shown. Note that the fitted 𝑎 is approximately
one order of magnitude larger than expected and 𝑏 is approximately 6 mrad larger. The difference in 𝑎
could originate from uncertainties in the measured powers. The DC amplitudes of the measured signal
of the photodiode fluctuate since the output power of the AOM is not stable. Van der Schaaf (2020)
uses the same photodiode box as this research, therefore its electric noise component should be the
same and thereby not the origin of the order of magnitude difference.

The offset 𝑏 suggests that some other noise is present which creates an offset of approximately 6 mrad.
Since this offset is power independent, it could be checked by connecting the output signal of the
generators of the AOM and EOM directly to the ADC board which digitizes the signals for the FPGA. In
this way, the effects of the optical set-up and the electric component of the photodiode box are removed.
Besides possible electrical noise, this offset could be introduced by errors in the phase resolution data
points due to the manual fitting of linear functions through segments of the data. Due to time limitations,
a further noise study was not conducted. However, this is advised for the understanding of the power
dependence of the phase resolution.

Table 5.1: Expected and fitted values of the parameters 𝑎 and 𝑏 from equation 5.4 to describe the
relation between the phase noise and the test and reference power.

𝑎 [rad⋅W] 𝑏 [rad]
expected ∼ 3 ⋅ 10−10 ∼ 0
fit varying 𝑃𝑡𝑒𝑠𝑡 3.16 ⋅ 10−9 5.88 ⋅ 10−3
fit varying 𝑃𝑟𝑒𝑓 3.72 ⋅ 10−9 6.12 ⋅ 10−3





6
Discussion

In the previous chapters, a simulation of the phase images and the stability of the phase measurements
are discussed. The results presented in these chapters are compared and discussed here. Possible
improvements and further investigations are described. First, the centering of the phase image is
discussed, followed by a discussion on the simulation of the phase images and the phase stability
measurements.

6.1. Phase centering
Chapter 3 shows that the phase camera can measure both the intensity and the phase of a laser wave-
front at different demodulated frequencies. In the current images, the centers of the intensity and phase
images are not aligned. For example, in figure 3.9 the center of the phase images is approximately
0.5 mm more to the left and 0.2 mm more to the top than the center of the intensity image. This mis-
alignment is caused by the optical set-up.

During this research, the set-up has been altered several times and the alignment of the images dif-
fered each time varying from tenths of millimeters difference up to a few millimeters. Due to time
limitations, the images presented in this report are selected from the measurements where the centers
were aligned up to tenths of milliliters, except for the measurements with varying photodiode positions.
Those images are poorly aligned since the photodiode position strongly influences the alignment. Prob-
ably the misalignment is introduced by the test beam which reflects on the scanner mirror off-center.
When the mirror rotates this introduces path length differences that are different than mathematically
derived in chapter 4. Besides, the path length differences are not rotationally symmetrical around the
center of the beam anymore. Therefore, the phase images are misaligned with respect to the intensity
images. This alignment is difficult since the beam should be centered exactly onto the point of rotation,
in the center, of the scanning mirror. This can be achieved by using two mirrors to steer the beam on
the scanning mirror and using a beam profiler to measure the reflected beam. Now the mirror can be
tilted and movement of the beam spot can be measured which should correspond to the tilt angle. To
upgrade the prototype set-up this is the most important aspect.

6.2. Phase image simulation
The phase images are predicted in chapter 4. This mathematical derivation is used in the simulation of
the phase images. In the comparison between the measured and simulated phase images (figure 4.7),
some differences can be seen. The simulated number of rings in an image with a scan radius of 2 mm
is 10 to 20% larger compared to measurements. Besides, the measured relation between the phase
difference and photodiode position 𝐿2 (figure 4.10) is similar to the simulation, but shifted. This hints
that the parameters of the set-up that are used as input to the simulation are not fully correct. To quan-
tify the influence of the input parameters a systematic study can be done by varying them one by one.
Afterward, the dominant parameters should be measured again.
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In the simulation, the phase difference is predominantly introduced by the path length difference of
the AOM and EOM beam up to the beam splitter. Therefore, the placement of the components in the
optical set-up should be checked for correspondence with the sketch in figure 4.3. For example, the
laser beam should be perfectly horizontal along the entire beam path since a small inclination introduces
extra optical path lengths compared to the mathematical derivation. Moreover, the beam splitter should
be placed at exactly 45 degrees with respect to both beams to maximize the beam overlap.

6.3. Phase stability
The measurements in chapter 5 show that the measured phase fluctuates over time. Over time scales
of tens of seconds, the phase fluctuations are probably dominated by temperature changes. Covering
the set-up results in a significant increase since the airflow from the air-conditioning is blocked. Besides
a cover, the set-up can be better isolated against temperature differences. Since an interferometer is
a delicate apparatus, temperature is probably not the only origin of the fluctuations. The AOM is not
completely stable. Its output power fluctuates on a scale of a few tenths of milliwatts. To check whether
the phase of the output beam also fluctuates, the beam can be recombined on a beam splitter with a
copy of the non-frequency shifted beam. The power behind the beam splitter can be measured and
should oscillate constantly at 80 MHz when the phase is stable. Polarization fluctuations in the test
and reference beam could also influence the measured phase. Interference only takes place when
the polarization matches creating an extra term in equations 4.3 and 4.4 depending on the polarization
overlap. Therefore, polarization fluctuations can be misinterpreted as phase fluctuations. To quantify
polarization fluctuations, the power behind a polarizing beam splitter can be measured.

The phase resolution on the measurements improves with increasing test and reference beam powers.
The expected relation (equation 5.2) is confirmed with two measurements, one for varying test powers
and one for varying reference powers. The fits to these measurements show that the phase resolution
is one order of magnitude larger than expected by Van der Schaaf (2020). This can be caused by
errors in the measured powers which fluctuate. Besides, a constant offset to the phase resolution of
approximately 6 mrad is found. This extra noise source could be electrical noise outside the photodiode
box or errors in the measurement procedure of the phase resolution. A further noise study should be
conducted to explain the differences between the measured and expected phase resolution.



7
Summary & conclusion

A phase camera set-up similar to the set-ups installed in Virgo has been built at Nikhef, with the aim to
study its performance in a controlled environment. First measurements have been performed to check
the operation of the camera. The prototype set-up has a one-beam scanning configuration. The stud-
ied heterodyne beat signal has a carrier frequency of 80 MHz and sidebands at 75 MHz and 85 MHz.
Wavefronts at these frequencies were simultaneously acquired, digitally demodulated and phase maps
were reconstructed.

For a better understanding of the phase images, a systematic study has been conducted. The in-
terference of two Gaussian beams with a scanning mirror was mathematically derived and used in a
simulation to predict phase images based on the layout of the optical set-up. The one-beam scanning
configuration gives an additional phase that depends on the radial distance from the center. Phase
wrapping introduces ring-like structures in the phase images. The predicted visible number of rings in
the images is in the order of 10 to 20% larger compared to measurements. Besides, the derived de-
pendence of the number of visible rings on the photodiode position is similar as measured. Therefore,
the results of the simulation are encouraging.

Measurements of the phase stability show that the prototype set-up should be covered to prevent air-
flow from the air-conditioning. In the covered set-up the fluctuations are a factor four lower. However,
low-frequency phase fluctuations are still a factor ten larger than high-frequency pixel-to-pixel fluc-
tuations. The high-frequency phase resolution reduces with increasing test and reference power as
physically expected. In the prototype set-up, the resolution is approximately Δ𝜙 = 7.1 ± 0.4 mrad for
𝑃𝑡𝑒𝑠𝑡 ≈ 70 𝜇W and 𝑃𝑟𝑒𝑓 ≈ 33 𝜇W. Power-dependent measurements show that the phase resolution
is one order of magnitude larger than expected by Van der Schaaf (2020).

The prototype camera can be improved by aligning the centers of the intensity and phase images to
increase the resolution of the blurred edges of the phase images. Further improvements are a noise
study of the set-up as well as the creation of a permanent cover to reduce thermal fluctuations. The
phase image simulation can be optimized by accurately measuring the input parameters of the sim-
ulation. When the current set-up is fully tested, an aberration beam can be added to add controlled
distortions to the images to understand the effect and origin of measured distortions.

All in all, the results of this research are promising. Further characterization of the prototype set-up will
help the understanding of this type of phase camera and eventually will help understand higher-order
modes, thereby improving the sensitivity of the Virgo gravitational wave detector.
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A
Laguerre-Gaussian modes

The Laguerre-Gaussian (LG) modes are, in contrast to the Hermite-Gaussian modes (section 2.1.4.1),
described in the polar coordinate system. This set of solutions is complete too. Therefore, it can be
used to describe the electric field as a linear combination

𝐸⃗ (𝑥, 𝑦, 𝑧) =∑
𝑝𝑙
𝐴𝑝𝑙𝑈𝑝𝑙 (𝑟, 𝜙, 𝑧) 𝑒−𝑖𝑘𝑧+𝑖𝜔𝑡𝑒. (A.1)

The two indices 𝑝 ∈ ℕ and 𝑙 ∈ ℤ are the radial and azimuthal mode index, respectively. The normal-
ization of the Laguerre-Gaussian modes is defined as

∫𝑈𝑝𝑙 (𝑟, 𝜙, 𝑧) 𝑈∗𝑞𝑜 (𝑟, 𝜙, 𝑧) 𝑟𝑑𝑟𝑑𝜙 = {
1 for 𝑝 = 𝑞 and 𝑙 = 𝑜
0 else . (A.2)

The Laguerre-Gaussian modes are given by (Van der Schaaf, 2020)

𝑈𝑝𝑙 (𝑟, 𝜙, 𝑧) = √
2𝑝!

𝜋 (𝑝 + |𝑙|)!
1

𝑤 (𝑧) (
√2𝑟
𝑤 (𝑧))

|𝑙|

𝑒−
𝑟2

𝑤(𝑧)2 𝐿|𝑙|𝑝 (
2𝑟2

𝑤 (𝑧)2
) 𝑒−𝑖𝑘

𝑟2
2𝑅(𝑧)+𝑖𝑙𝜙+𝑖(|𝑙|+2𝑝+1)Φ(𝑧), (A.3)

where 𝐿|𝑙|𝑝 is a generalized Laguerre polynomial. The first few Laguerre polynomials are

𝐿|𝑙|0 (𝑥) = 1, 𝐿|𝑙|1 (𝑥) = 1 + |𝑙| − 𝑥 and 𝐻3 (𝑥) =
1
2 (|𝑙| + 1) (|𝑙| + 2) − (|𝑙| + 2) 𝑥 +

1
2𝑥

2. (A.4)

The amplitude and phase of the Laguerre-Gaussian modes 𝑈10 (𝑟, 𝜙, 𝑧) and 𝑈01 (𝑟, 𝜙, 𝑧) are shown in
figure A.1 for a beam with 𝜆 = 1064 nm, 𝑤0 = 1mm, 𝑧0 = 0mm at 𝑧 = 2m. Note, the amplitudes of the
LG modes are always radially symmetric since they are independent of 𝜙. For the phase images, this
is only true for 𝑙 = 0. Larger values of the azimuthal mode index create spirals in the phase images.
Therefore, all LG modes 𝑈𝑝0 (𝑟, 𝜙, 𝑧) are fully radially symmetric.
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Figure A.1: Amplitude and phase images for the Laguerre-Gaussian modes 𝑈10 (𝑟, 𝜙, 𝑧) (upper row)
and 𝑈01 (𝑟, 𝜙, 𝑧) (bottom row). The modes are for a beam with 𝜆 = 1064 nm, 𝑤0 = 1 mm,
𝑧0 = 0 mm at 𝑧 = 2 m.



B
Python scripts

For this thesis, several Python scripts were written for simulations and data processing. The two most
relevant scripts are attached here.

B.1. Data processing
In section 3.2.5, the demodulation of the measured signal is explained. Besides, the data processing
is described which is used to create intensity and phase images from batched frame files. Below, the
Python script that is used for this data processing is attached.

1 import sys
2 sys.path.append(’../Python’)
3

4 import pickle
5 import colorcet
6 import numpy as np
7 import parameters as par
8 import matplotlib.pyplot as plt
9 from astropy.time import Time

10 from matplotlib.ticker import AutoMinorLocator
11 from mpl_toolkits.axes_grid1 import make_axes_locatable
12

13 class phase_camera_frame:
14 ”””
15 Frame of measurement of the phase camera
16 ”””
17

18 # The init method or constructor
19 def __init__(self, frametime, pickle_dict, gwf_filetime):
20 # Instance Variable
21 self.ndatapoints = 16384
22 self.low_res_dict = {}
23

24 self.gwf_filetime = gwf_filetime
25 self.frametime = frametime
26

27 # Instance Functions
28 self.utc_time()
29 self.load_channels(pickle_dict)
30

31 def __getattr__(self, channel):
32 # Try to read one channel of the frame
33 try:
34 return getattr(self, channel)
35 except:
36 # If channel is not in the data return error message
37 print(’Could not find channel %s in frame!’ % channel)
38

39 def utc_time(self):
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40 # Read GPS and calculate UTC time of frame
41 frametime_gps = Time(self.frametime, format=’gps’)
42 self.frametime_utc = Time(frametime_gps, format=’iso’, scale=’utc’)
43

44 def load_channels(self, pickle_dict):
45 print(” Load frame: ”+str(self.frametime)+” GPS / ”+str(self.frametime_utc)+ ” UTC”

)
46

47 # Get all channel names with unique frequencies and create a list containing them
48 self.channel_names = list(set([key.split(”MHz”)[0]+”MHz” for key in pickle_dict.keys

() if ”MHz” in key]))
49

50 # Save all channels in frame
51 for key in pickle_dict.keys():
52 self.__setattr__(key, pickle_dict[key].flatten())
53

54 def get_power(self):
55 # For all channels calculate the power distribution in each bin
56 for channel_name in self.channel_names:
57 # Get the amplitude of the channel and square it to get power
58 power = (self.__getattr__(channel_name + ”_AMP”))**2
59

60 # Create a histogram of the power and take the mean in each bin
61 Power = self.accum2d(power)
62 Power[self.valid] /= self.N[self.valid]
63

64 # Bins without samples are set NaN for blank background in the image
65 Power[self.N==0] = np.NaN
66

67 # Check which pixels have power lower than the cut-off power
68 low_res = Power < self.power_cut_off
69 #low_res = Power < np.nanmax(Power)*np.exp(-2)
70 self.low_res_dict[channel_name] = low_res
71

72 # Save the power image in a channel
73 self.__setattr__(channel_name + ”_PWR”, Power)
74

75 def get_phase(self):
76 # For all channels calculate the relative phase in each bin
77 for channel_name in self.channel_names:
78 # Get the phase and reference phase of the channel and take the difference
79 phi = self.__getattr__(channel_name+”_PHI”)
80 phi -= self.__getattr__(channel_name+”_PHI_REF”)
81

82 # Calculate the real and imaginary component of the phase vector
83 phi_x = np.cos(phi)
84 phi_y = np.sin(phi)
85

86 # Create a weighted histogram for the real and imaginary part of the phase vector
87 Phi_x = self.accum2d(phi_x)
88 Phi_y = self.accum2d(phi_y)
89

90 # Take the argument of each bin of the histograms to get the ”average” phase and
map it to the 0 to 2*pi domain

91 Phi = np.arctan2(Phi_y,Phi_x)
92 Phi = np.fmod(Phi+2*np.pi,2*np.pi)
93

94 # Bins without samples are set NaN for blank background in the image
95 Phi[self.N==0] = np.NaN
96

97 # The pixels with power lower than the cut-off power are set a NaN to remove them
98 low_res = self.low_res_dict[channel_name]
99 Phi[low_res] = np.NaN

100

101 # Save the phase image in a channel
102 self.__setattr__(channel_name + ”_PHASE”, Phi)
103

104 def scale(self, x, x_min, x_max, n):
105 ”””scale x from the interval x_min..x_max to an interger 0..n-1”””
106 x_scaled = x - x_min
107 x_scaled *= n / (x_max - x_min)
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108 np.floor(x_scaled, x_scaled)
109

110 x_int = x_scaled.astype(int)
111 np.clip(x_int, 0, n-1, out=x_int)
112 return x_int
113

114 def accum2d(self, weights):
115 ”””create 2D (weighted) histogram, see bincount”””
116 result = np.bincount(self.spiral_iflat , weights, self.im_shape[0] * self.im_shape

[1])
117 return result.reshape(self.im_shape)
118

119 def get_spiral(self):
120 # Define image properties (number of pixels in x and y direction)
121 nx, ny = 100, 100
122 self.im_shape = (nx, ny)
123

124 # Some constants for scanning pattern
125 nspiral = self.ndatapoints # number of samples in the spiral

pattern
126 tsample = nspiral * 2.0e-9 # sampling time of FPGA
127 t_fpga = np.arange(nspiral) * tsample # time array for the FPGA
128 t_pzt_Proto = np.arange(100000) / 100000 # time array scanner (piezo elements)
129 PD_to_scanner_distance = self.dist_PD_scanner # distance from scanner to photodiode
130

131 if self.scanning_pattern == ”manual”:
132 # Some constant for the manual scanning pattern
133 freqsample = 120 # rotational frequency of the scanner
134 ttotal = nspiral * tsample # total time for one scanning pattern
135 Timg = ttotal # total time for one image
136 Rimg = 0.005 # radius of the image
137

138 # Manual creation of the x- and y-coordinates of the scanning pattern
139 pattern_x = Rimg * t_pzt_Proto/Timg * np.cos(2*np.pi*freqsample*t_pzt_Proto)
140 pattern_y = Rimg * t_pzt_Proto/Timg * np.sin(2*np.pi*freqsample*t_pzt_Proto)
141

142 elif self.scanning_pattern == ”measured”:
143 # Calculate x- and y-coordinates of the scanning pattern from the measured strain

gauges
144 # Take scanning pattern measured from scanner (calibration 24.04.2023)
145 alpha1 = 0.001761004167562993
146 alpha2 = -0.001630598507892687
147 out_chan_1 = (self.__getattr__(”ProtoPC_StrainGauge_axis2”) * 57.16523963847714 -

15.37745792378949) * alpha1
148 out_chan_2 = (self.__getattr__(”ProtoPC_StrainGauge_axis1”) * 61.63159059032622 -

15.20447582239593) * alpha2
149

150 # Convert piezo channels to scanning pattern
151 pattern_x = np.sqrt(2)*PD_to_scanner_distance*(out_chan_2-out_chan_1)
152 pattern_y = -PD_to_scanner_distance*(out_chan_1+out_chan_2)
153

154 else:
155 # Print error message if no valid option for scanning_pattern is entered
156 print(”Error: ’” + str(self.scanning_pattern) + ”’ is no valid option for

scanning_pattern, choose: ’measured’ or ’manual’”)
157 exit()
158

159 # Interpolate to get the scanner positions at the photodiode PD measured times
160 spiral_x = np.interp(t_fpga, t_pzt_Proto, pattern_x)
161 spiral_y = np.interp(t_fpga, t_pzt_Proto, pattern_y)
162

163 # Get the minimum and maximum values of the scanner positions in x- and y-direction
164 x_min, x_max = spiral_x.min(), spiral_x.max()
165 y_min, y_max = spiral_y.min(), spiral_y.max()
166

167 # Convert spiral to a flat index into a 2D matrix, returns (n,m) positions in image
matrix for each position

168 ix = self.scale(spiral_x, x_min, x_max, self.im_shape[0])
169 iy = self.scale(spiral_y, y_min, y_max, self.im_shape[1])
170

171 # Converts (n,m) position in the image matrix into a pixel number
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172 self.spiral_iflat = np.ravel_multi_index((iy, ix), (ny, nx))
173

174 # Calculate number of samples per bin for normalization
175 self.N = self.accum2d(None)
176 self.valid = self.N > 0
177

178 # Create X and Y mesh for plot
179 x = np.linspace(x_min, x_max, nx+1)
180 y = np.linspace(y_min, y_max, ny+1)
181 self.X, self.Y = np.meshgrid(x, y)
182

183 def read_frame(self, setup_parameters):
184 print(” Read frame: ”+str(self.frametime)+” GPS / ”+str(self.frametime_utc)+ ” UTC”

)
185

186 # Get initial parameters to read frame
187 self.scanning_pattern = setup_parameters[”scanning_pattern”]
188 self.dist_PD_scanner = setup_parameters[”dist_PD_scanner”]
189 self.power_cut_off = setup_parameters[”power_cut_off”]
190

191 # Create spiral and read power and phase
192 self.get_spiral()
193 self.get_power()
194 self.get_phase()
195

196 def plot_frame(self, plot_parameters):
197 print(” Plot frame: ”+str(self.frametime)+” GPS / ”+str(self.frametime_utc)+ ” UTC”

)
198

199 # Define which frequencies should be plotted
200 n_sidebands = plot_parameters[”n_sidebands”]
201 freqs = [plot_parameters[”AOM_freq”]+plot_parameters[”EOM_freq”]*i for i in range(-

n_sidebands,n_sidebands+1)]
202

203 # Define colormap for amplitude images and set pixels without data to black
204 colormap_amp = plt.get_cmap(plot_parameters[”colormap_ampl_image”]).copy()
205 colormap_amp.set_bad(color = par.tud_colors[”black”])
206

207 # Define colormap for amplitude images and set pixels without data to black
208 colormap_phase = plt.get_cmap(plot_parameters[”colormap_phase_image”]).copy()
209 colormap_phase.set_bad(color = par.tud_colors[”black”])
210

211 # Define plot
212 fig, axs = plt.subplots(2,2*n_sidebands+1, figsize=(18,12))
213 plt.subplots_adjust(left=0.055, bottom=0.03, right=0.95, top=0.95, wspace=0.45,

hspace=0.025)
214

215 # Set plot title
216 fig.suptitle(str(self.frametime)+” GPS / ”+str(self.frametime_utc)+ ” UTC”)
217

218 # Loop over all frequencies to plot
219 for j in range(len(freqs)):
220 # Read plot parameters
221 channel_name = plot_parameters[”channels_dict”][freqs[j]]
222

223 # Set axes
224 axs[0,j].set(aspect=”equal”, title=”%d MHz” %freqs[j], xlabel=”x [mm]”, ylabel=”y

[mm]”)
225 axs[0,j].xaxis.set_minor_locator(AutoMinorLocator(4))
226 axs[0,j].yaxis.set_minor_locator(AutoMinorLocator(4))
227 axs[1,j].set(aspect=”equal”, title=”%d MHz” %freqs[j], xlabel=”x [mm]”, ylabel=”y

[mm]”)
228 axs[1,j].xaxis.set_minor_locator(AutoMinorLocator(4))
229 axs[1,j].yaxis.set_minor_locator(AutoMinorLocator(4))
230

231 # Plot power and phase
232 im0 = axs[0,j].pcolormesh(self.X*1e3,self.Y*1e3,self.__getattr__(channel_name+”

_PWR”), shading=’flat’, cmap=colormap_amp, vmin=0)
233 im1 = axs[1,j].pcolormesh(self.X*1e3,self.Y*1e3,self.__getattr__(channel_name+”

_PHASE”), shading=’flat’, cmap=colormap_phase, vmin=0, vmax=2*np.pi)
234
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235 # Define location for coloraxis
236 cax0 = make_axes_locatable(axs[0,j]).append_axes(”right”, size=”5%”, pad=0.05)
237 cax1 = make_axes_locatable(axs[1,j]).append_axes(”right”, size=”5%”, pad=0.05)
238

239 # Set color axes
240 cbar0 = fig.colorbar(im0, cax=cax0, label=”intensity [a.u.]”)
241 cbar0.formatter.set_powerlimits((0, 0))
242 cbar0.ax.yaxis.set_minor_locator(AutoMinorLocator(4))
243 cbar1 = fig.colorbar(im1, cax=cax1, label=”relative phase [rad]”, ticks=[0, np.pi

/2, np.pi, 3/2*np.pi, 2*np.pi])
244 cbar1.ax.set_yticklabels([r’$0$’, r’$\frac{1}{2}\pi$’, r’$\pi$’, r’$\frac{3}{2}\

pi$’, r’$2\pi$’])
245 cbar1.ax.yaxis.set_minor_locator(AutoMinorLocator(4))
246

247 fig.tight_layout()
248 plt.draw()
249 # plt.show()
250 plt.savefig(plot_parameters[”storage_directory_plots”]+str(self.frametime)+”.png”)
251 plt.close()
252

253 def save_information(self, channel_name):
254 # Save channel information to csv file for debugging
255 np.savetxt(’data/simulation_validation/’+str(self.frametime)+’_X.csv’, self.X*1e3,

delimiter=’;’)
256 np.savetxt(’data/simulation_validation/’+str(self.frametime)+’_Y.csv’, self.Y*1e3,

delimiter=’;’)
257 np.savetxt(’data/simulation_validation/’+str(self.frametime)+’_phase_’+str(

channel_name)+’.csv’, self.__getattr__(channel_name+”_PHASE”), delimiter=’;’)
258 np.savetxt(’data/simulation_validation/’+str(self.frametime)+’_power_’+str(

channel_name)+’.csv’, self.__getattr__(channel_name+”_PWR”), delimiter=’;’)
259

260 def read_pickle_file(filetime):
261 # Path and file time of the pickle file to read
262 read_directory_files = ”data/gwf_data/”
263 filename = ”channels_” + str(filetime) + ”_DC_vs_Car.pkl”
264 print(”\nRead file:”, filename)
265

266 # Open pickle file and read it
267 with open(read_directory_files+filename, ”rb”) as file_pickled:
268 file = pickle.load(file_pickled, encoding=’latin1’)
269

270 return filename, file
271

272 def load_frame(frames, read_filetime, n_frames=1):
273 # Read pickle file
274 filename, file = read_pickle_file(read_filetime)
275

276 # Time of first frame and number of frames in pickle file
277 gpstime = file[”gpstime”]
278 duration = file[”duration”]
279

280 # Return error if file contains fewer frames than wanted to load
281 if n_frames > duration:
282 print(”Cannot read”,n_frames,”frames in ”+str(filename)+”. This file only contains”,

duration,”frames.”)
283 return
284

285 # Load number of frames in a dictionary
286 for time in np.arange(n_frames)+gpstime:
287 frames[time] = phase_camera_frame(time, file[time], gpstime)
288

289 return frames
290

291 def load_frames(filetimes, n_frames_per_file):
292 # Load multiple frames one by one
293 frames = {}
294 for filetime in filetimes:
295 frames = load_frame(frames, filetime, n_frames_per_file)
296

297 return frames
298
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299 def initial_parameters(filetimes, dist_PD_scanner, storage_directory_plots):
300 ###### GENERAL PARAMETERS
301 ### Set-up parameters
302 # Frequencies of the AOM en EOM
303 AOM_freq = 80
304 EOM_freq = 5
305

306 # Names of the channels in the DAQ
307 channels_dict = {55 : ””,
308 60 : ””,
309 65 : ””,
310 70 : ””,
311 75 : ”Proto_B0_PC_RAW_14MHz”,
312 80 : ”Proto_B0_PC_RAW_81MHz”,
313 85 : ”Proto_B0_PC_RAW_145MHz”,
314 90 : ””,
315 95 : ””,
316 100 : ””,
317 105 : ””
318 }
319

320 ### Plot parameters
321 # Paramters for scanning pattern to use, power cut off and number of sidebands to plot
322 scanning_pattern = ”measured”
323 power_cut_off = 1e2
324 n_sidebands = 1
325

326 colormap_ampl_image = ”jet”
327 colormap_phase_image = ”cet_CET_C3s”
328

329 ###### PROCESSING
330 # Bundle parameters
331 setup_parameters_dict = {}
332 for i in range(len(filetimes)):
333 setup_parameters = {”dist_PD_scanner”: dist_PD_scanner[i],
334 ”scanning_pattern”: scanning_pattern,
335 ”power_cut_off”: power_cut_off
336 }
337

338 setup_parameters_dict[filetimes[i]] = setup_parameters
339

340 plot_parameters = {”AOM_freq”: AOM_freq,
341 ”EOM_freq”: EOM_freq,
342 ”channels_dict”: channels_dict,
343 ”n_sidebands”: n_sidebands,
344 ”storage_directory_plots”: storage_directory_plots,
345 ”colormap_ampl_image”: colormap_ampl_image,
346 ”colormap_phase_image”: colormap_phase_image
347 }
348

349 return setup_parameters_dict, plot_parameters
350

351

352 ###### INPUT
353 ### File information
354 # Define filetimes of pickle files and distance between scanner and photodiode for each file
355 filetimes = np.array([1367924290])
356 dist_PD_scanner = np.array([0.85])
357 # filetimes = np.array([1366457250, 1366457330, 1366457400, 1366457460, 1366457530,

1366457590, 1366457650, 1366457710, 1366457770, 1366457830, 1366457920, 1366458000,
1366458080])

358 # dist_PD_scanner = np.array([0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35,
0.3, 0.85])

359

360 # Storage directory for plots
361 storage_directory_plots = ”plots/PC/gwf_plots/”
362

363 # Set initial parameters dictionary
364 setup_parameters_dict, plot_parameters = initial_parameters(filetimes, dist_PD_scanner,

storage_directory_plots)
365
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366 # Load n frames per file
367 n_frames_per_file = 1
368 frames = load_frames(filetimes, n_frames_per_file)
369

370 # Set counters for plotting
371 number_of_plots = len(frames.keys())
372 plot_number = 0
373

374 # Loop over all frames
375 for frame in frames.values():
376 plot_number += 1
377 print(”\nCreate image: ”+str(plot_number)+”/”+str(number_of_plots))
378

379 # Read frames
380 frame.read_frame(setup_parameters_dict[frame.gwf_filetime])
381

382 # Plot frames
383 frame.plot_frame(plot_parameters)
384

385 # Save information for debugging
386 # frame.save_phase_information(”Proto_B0_PC_RAW_81MHz”)

B.2. Phase image simulation
In chapter 4, the phase images are predicted with a simulation (see section 4.5). The Python script
that can simulate these phase images based on the parameters of the optical set-up is presented below.

1 import sys
2 sys.path.append(’../Python’)
3

4 import colorcet
5 import numpy as np
6 import beam_functions as bf
7 import matplotlib.pyplot as plt
8 from matplotlib.ticker import AutoMinorLocator
9

10 def wavenumber(sideband, delta_frequency_EOM, delta_frequency_AOM):
11 ”””
12 Calculates the wave numbers of the different section from their frequency
13 ”””
14

15 # Parameters
16 wavelength = 1064e-9
17 speed_of_light = 299792458
18

19 # Laser frequency
20 frequency = speed_of_light/wavelength
21

22 # Frequencies of test and reference beam and beat signal
23 frequency_EOM = frequency + sideband*delta_frequency_EOM
24 frequency_AOM = frequency + delta_frequency_AOM
25 frequency_beat = frequency_AOM - frequency_EOM
26

27 # Wavelengths of test and reference beam and beat signal
28 wavelength_EOM = speed_of_light/frequency_EOM
29 wavelength_AOM = speed_of_light/frequency_AOM
30 wavelength_beat = speed_of_light/frequency_beat
31

32 # Wave numbers of test and reference beam and beat signal
33 k_EOM = 2*np.pi/wavelength_EOM
34 k_AOM = 2*np.pi/wavelength_AOM
35 k_beat = 2*np.pi/wavelength_beat
36

37 return k_EOM, k_AOM, k_beat
38

39 def path_length_calculations(L2, alpha, c, dy):
40 ”””
41 Calculate optical path lengths in the set-up
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42 ”””
43

44 # Define an empty dictionary
45 path_lengths = {}
46

47 # Calculate L_1, L_1’ and their difference
48 path_lengths[”L1”] = 0
49 path_lengths[”L1_prime”] = dy*np.tan(np.pi/4-alpha)
50 path_lengths[”dL1”] = path_lengths[”L1_prime”] - path_lengths[”L1”]
51

52 # Calculate L_2’ and the difference with L_2
53 path_lengths[”L2_prime”] = np.sqrt(path_lengths[”dL1”]**2+(L2-dy)**2)
54 path_lengths[”dL2”] = path_lengths[”L2_prime”] - L2
55

56 # Calculate x and x’
57 path_lengths[”x”] = (np.tan(2*alpha))/(np.tan(2*alpha)+1)*(1-c)*L2
58 path_lengths[”x_prime”] = path_lengths[”x”]/np.cos(2*alpha)
59

60 # Calculate L_3, L_3’ and their difference
61 path_lengths[”L3”] = c*L2
62 path_lengths[”L3_prime”] = (path_lengths[”L3”]-dy+path_lengths[”x”])/np.cos(2*alpha)
63 path_lengths[”dL3”] = path_lengths[”L3_prime”] - path_lengths[”L3”]
64

65 # Calculate L_4, L_4’ and their difference
66 path_lengths[”L4”] = (1-c)*L2
67 path_lengths[”L4_prime”] = (path_lengths[”L4”]-path_lengths[”x”])/np.cos(2*alpha)
68 path_lengths[”dL4”] = path_lengths[”L4_prime”] - path_lengths[”L4”]
69

70 return path_lengths
71

72 def curved_wavefront_phase(y,k,z,w0,M,z0):
73 ”””
74 Calculates second phase term of Gaussian beam: k * ( (x^2+y^2) / (2*R(z)) )
75 ”””
76

77 # Calculate radius of curvature at position z
78 R = bf.radius_of_curvature(z,w0,M,z0)
79

80 # Calculate difference in z direction between point (x,y,z) and wavefront of z at (x,y,z
’)

81 dz = y**2/(2*R)
82

83 # Multiply with wavenumber to calculate the phase difference
84 phi_cw = k*dz
85

86 return phi_cw
87

88 def path_length_difference_phase(k, dz):
89 ”””
90 Calculate phase difference due to path length difference
91 ”””
92 dphi_path_length = k*dz
93

94 return dphi_path_length
95

96 def polar_to_cartesian(x, y, r_grid, theta_grid, data):
97 ”””
98 Map values from polar coordinate grid to cartesian coordinate grid
99 ”””

100

101 # Create empty array
102 new = np.zeros_like(data) * np.nan
103

104 # Loop over all elements of the coordinate grid
105 for i in range(new.shape[0]):
106 for j in range(new.shape[1]):
107 # Take x and y coordinates and calculate the equivalent polar coordinates
108 x0, y0 = x[j], y[i]
109 r, a = np.sqrt(x0**2 + y0**2), np.arctan2(y0, x0)
110

111 # Find closest matching coordinate on polar coordinate grid
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112 data_i = np.argmin(np.abs(theta_grid[:, 0] - a))
113 data_j = np.argmin(np.abs(r_grid[0, :] - r))
114

115 # Take value from polar coordinate grid
116 val = data[data_i, data_j]
117

118 # If radius within the image, then save value on cartesian grid
119 if r <= np.max(x):
120 new[i, j] = val
121

122 return new
123

124 def plot_dL_vs_dy(dy, path_lengths, c, L2):
125 ”””
126 Plot path length difference upto the beam splitter
127 ”””
128

129 # Define figure and set title
130 fig1 = plt.figure()
131 plt.title(”c = %.2f, L2 = %.2e m” %(c, L2))
132

133 # Plot path length differences and total effect
134 plt.plot(dy, path_lengths[”dL1”], color=”blue”, label=r”$\Delta L_1$”)
135 plt.plot(dy, path_lengths[”dL3”], color=”red”, label=r”$\Delta L_3$”)
136 plt.plot(dy, path_lengths[”dL1”]+path_lengths[”dL3”], color=”black”, label=r”$\Delta L_{

EOM}$”)
137

138 # Define axes and create legend
139 plt.xlabel(r”$\Delta y [m]$”)
140 plt.ylabel(r”$\Delta L_1$, $\Delta L_3$ and $\Delta L_{EOM}$ [m]”)
141 plt.ticklabel_format(style=’sci’, axis=’both’, scilimits=(0,0))
142 plt.legend()
143

144 # Save plot
145 fig1.tight_layout()
146 plt.savefig(”plots/scanner_interference/dL_vs_dy.png”)
147 # plt.show()
148 plt.close()
149

150 def plot_dphi_vs_dy(dy,dPhi,dlambda,c,L2, dphi_pl, dphi_cw):
151 ”””
152 Plot radial phase difference versus radial coordinate
153 ”””
154

155 # Define figure
156 fig2 = plt.figure(figsize=(10,7))
157 ax21 = fig2.add_subplot()
158

159 # Plot curved wavefront effect, path length difference effect and total effect
160 ax21.plot(dy*1e3, dPhi, color=”black”, label=r”$\Delta \phi_{total}$”, linewidth=3)
161 ax21.plot(dy*1e3, dphi_pl, color=”blue”, label=r”$\Delta \phi_{path~length}$”, linewidth

=2)
162 ax21.plot(dy*1e3, dphi_cw, color=”red”, label=r”$\Delta \phi_{curved~wavefront}$”,

linewidth=2)
163

164 # Create a second y-axis for the number of rings axis
165 ax22 = ax21.twinx()
166 ax22.plot(dy*1e3, dlambda, color=”black”)
167 ymin, ymax = ax21.get_ylim()
168

169 # Create title, define axes and create legend
170 ax21.set_title(”c = %.2f, L2 = %.2e m” %(c, L2))
171 ax22.set_ylim([ymin/(2*np.pi), ymax/(2*np.pi)])
172 ax21.set_xlabel(r”$\Delta y$ [mm]”)#, fontsize=27)
173 ax21.set_ylabel(r”$\Delta \phi$ [rad]”)#, fontsize=27)
174 ax22.set_ylabel(r”$\Delta L/\lambda = {\Delta \phi}/{2\pi}$”)#, fontsize=27)
175 ax21.ticklabel_format(style=’sci’, axis=’x’, scilimits=(0,0))
176 ax21.legend()
177

178 # Save plot
179 fig2.tight_layout()
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180 plt.savefig(”plots/scanner_interference/dphi_vs_dy.png”)
181 # plt.show()
182 plt.close()
183

184 def plot_wavefront(dy, dPhi, dlambda, c, L2, dPhi_custom_offset):
185 ”””
186 Plot phase of the simulated wavefront
187 ”””
188

189 # Calculate polar coordinate system and create mesh
190 angular_coord = np.radians(np.linspace(0,360,len(dy)))
191 radial_coord = dy*1e3
192 r,theta=np.meshgrid(radial_coord, angular_coord)
193

194 # Repeat wavefront positions such that the line of values is rotated to get a circular
wavefront

195 dPhi += dPhi_custom_offset
196 dPhi %= 2*np.pi
197 wavefront = np.repeat(dPhi[np.newaxis,:],len(angular_coord), axis=0)
198

199 # Define color map and color of empty pixels
200 map=plt.get_cmap(’cet_CET_C3s’).copy()
201 map.set_bad(color=”black”)
202

203 # Define x and y coordinates and map wavefront to cartesian grid
204 x = np.linspace(-np.max(radial_coord),np.max(radial_coord),len(radial_coord))
205 y = np.linspace(-np.max(radial_coord),np.max(radial_coord),len(radial_coord))
206 new_wavefront = polar_to_cartesian(x,y,r,theta,wavefront)
207

208 # Define plot and set title
209 fig3, ax3 = plt.subplots(figsize=(10,8))
210 ax3.set(aspect=”equal”, title=r”$c =$%.2f, $L_2 =$%.2e m, $\Delta L=$%.2f$\lambda$” %(c,

L2, dlambda[-1]))
211

212 # Define axes
213 plt.xlabel(”x [mm]”, fontsize=27)
214 plt.ylabel(”y [mm]”, fontsize=27)
215 ax3.xaxis.set_tick_params(labelsize=24)
216 ax3.yaxis.set_tick_params(labelsize=24)
217 ax3.xaxis.set_minor_locator(AutoMinorLocator(4))
218 ax3.yaxis.set_minor_locator(AutoMinorLocator(4))
219

220 # Plot wavefront
221 cax=ax3.pcolormesh(x,y,new_wavefront, cmap=map, vmin=0, vmax=2*np.pi)
222

223 # Define color axis
224 cbar = fig3.colorbar(cax, ticks=[0, np.pi/2, np.pi, 3/2*np.pi, 2*np.pi])
225 cbar.set_label(”relative phase [rad]”, size=27)
226 cbar.ax.set_yticklabels([r’$0$’, r’$\frac{1}{2}\pi$’, r’$\pi$’, r’$\frac{3}{2}\pi$’, r’$2

\pi$’], fontsize=24)
227 cbar.ax.yaxis.set_minor_locator(AutoMinorLocator(4))
228

229 # Save plot
230 fig3.tight_layout()
231 plt.savefig(”plots/scanner_interference/dy_wavefront.png”)
232 # plt.show()
233 plt.close()
234

235 def plot_ring_widths(dy, dlambda, c, L2):
236 ”””
237 Plot the number of rings versus the ring number
238 ”””
239

240 # Create array with the ring numbers
241 lambda_int = np.arange(0,np.max(np.absolute(dlambda)))
242

243 # Interpolate to get the coordinates of the edges of the rings
244 ring_positions = np.interp(lambda_int, np.absolute(dlambda), dy)
245

246 # Take the difference of the edges to get ring widths
247 ring_widths = np.diff(ring_positions)
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248

249 # Define figure and set title
250 fig4 = plt.figure(figsize=(10,7))
251 plt.title(r”$c =$%.2f, $L_2 =$%.2e m, $\Delta L=$%.2f$\lambda$” %(c, L2, dlambda[-1]))
252

253 # Plot ring width, set axis labels and draw gridlines
254 plt.plot(lambda_int[1:],ring_widths*1e3, color=”blue”, marker=”o”, linestyle=”None”,

markersize=10)
255 plt.xlabel(”ring number”)
256 plt.ylabel(”ring width [mm]”)
257 plt.grid(True)
258

259 # Save plot
260 fig4.tight_layout()
261 plt.savefig(”plots/scanner_interference/dy_ring_widths.png”)
262 # plt.show()
263 plt.close()
264

265 ###### PARAMETERS
266 ### Set-up parameters
267 # Define scanning radius, L_2 and c
268 dy_max = 2e-3
269 L2 = 0.85
270 c = .225/L2
271

272 # Custom phase offset to the simulated wavefront
273 dPhi_custom_offset = 0
274

275 # Define EOM and AOM frequencies and which signal to study
276 delta_frequency_EOM = 5e6 #Hz
277 delta_frequency_AOM = 80e6 #Hz
278 sideband = 0 #integer from domain -5 to 5, 0 is carrier signal
279

280 ###### PROCESSING
281 # Calcuate wave numbers
282 k_EOM, k_AOM, k_beat = wavenumber(sideband, delta_frequency_EOM, delta_frequency_AOM)
283

284 # Define sampling of scanning radius
285 n_dy = 501
286 dy = np.linspace(0,dy_max,n_dy)
287

288 # Calculate scanning angles
289 alpha = 1/2 * np.arcsin(dy/L2)
290

291 # Calculate optical path lengths
292 path_lengths = path_length_calculations(L2, alpha, c, dy)
293

294 ### EOM beam
295 # Calculate path length to beam splitter for scanner in its stationary position
296 dz_EOM = path_lengths[”dL1”] + path_lengths[”dL3”]
297

298 # Beam radius at beam splitter
299 dy_EOM = dy
300

301 # Measured beam properties
302 w0_EOM = 8.02e-4
303 M_EOM = 1.03
304 z0_EOM = -0.352
305

306 # Calculate both phase effects
307 dphi_EOM_cw = curved_wavefront_phase(dy_EOM,k_EOM,dz_EOM,w0_EOM,M_EOM,z0_EOM)
308 dphi_EOM_pl = path_length_difference_phase(k_EOM, dz_EOM)
309

310 # Total phase effect
311 dphi_EOM = dphi_EOM_cw + dphi_EOM_pl
312

313 ### AOM beam
314 # Calculate path length to beam splitter
315 dz_AOM = path_lengths[”x”]
316

317 # Beam radius at beam splitter
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318 dy_AOM = path_lengths[”x”]
319

320 # Measured beam properties
321 w0_AOM = 1.06e-3
322 M_AOM = 1.00
323 z0_AOM = 0.741
324

325 # Calculate both phase effects
326 dphi_AOM_cw = curved_wavefront_phase(dy_AOM,k_AOM,dz_AOM,w0_AOM,M_AOM,z0_AOM)
327 dphi_AOM_pl = path_length_difference_phase(k_AOM, dz_AOM)
328

329 # Total phase effect
330 dphi_AOM = dphi_AOM_cw + dphi_AOM_pl
331

332 ### After beam splitter
333 # Calculate path length to photodiode
334 dz_beat = path_lengths[”dL4”]
335

336 # Calculate phase effect due to path length difference
337 dphi_beat_pl = path_length_difference_phase(k_beat, dz_beat)
338

339 # Total phase effect
340 dphi_beat = dphi_beat_pl
341

342 ### Phase effects
343 # Calculate both phase effects separately
344 dphi_cw = dphi_EOM_cw - dphi_AOM_cw
345 dphi_pl = dphi_EOM_pl - dphi_AOM_pl + dphi_beat_pl
346

347 # Total phase effect the whole configuration and equivalent number of rings
348 dPhi = dphi_EOM - dphi_AOM + dphi_beat
349 dlambda = dPhi/(2*np.pi)
350

351 ###### PLOTTING
352 # Plot phase difference versus scanning radius
353 plot_dphi_vs_dy(dy,dPhi,dlambda,c,L2, dphi_pl, dphi_cw)
354

355 # Plot phase of the simulated wavefront
356 plot_wavefront(dy, dPhi, dlambda, c, L2, dPhi_custom_offset)
357

358 # Plot the ring widths
359 plot_ring_widths(dy, dlambda, c, L2)
360

361 # Plot path length differences
362 plot_dL_vs_dy(dy, path_lengths, c, L2)



C
Simulation validation measurements

Phase measurements to determine the relation between the number of phase rings and the photodi-
ode position 𝐿2. The figures are ordered in decreasing distance 𝐿2. The results of this analysis are
presented in section 4.6.3.

Figure C.1: Phase image to measure the relation between the number of rings and 𝐿2. For this
image 𝐿2 = 0.85 cm. The phase images are centered to measure the phase difference along the
scanning radius.
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Figure C.2: Phase image to measure the relation between the number of rings and 𝐿2. For this
image 𝐿2 = 0.80 cm. The phase images are centered to measure the phase difference along the
scanning radius.

Figure C.3: Phase image to measure the relation between the number of rings and 𝐿2. For this
image 𝐿2 = 0.75 cm. The phase images are centered to measure the phase difference along the
scanning radius.
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Figure C.4: Phase image to measure the relation between the number of rings and 𝐿2. For this
image 𝐿2 = 0.70 cm. The phase images are centered to measure the phase difference along the
scanning radius.

Figure C.5: Phase image to measure the relation between the number of rings and 𝐿2. For this
image 𝐿2 = 0.65 cm. The phase images are centered to measure the phase difference along the
scanning radius.
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Figure C.6: Phase image to measure the relation between the number of rings and 𝐿2. For this
image 𝐿2 = 0.60 cm. The phase images are centered to measure the phase difference along the
scanning radius.

Figure C.7: Phase image to measure the relation between the number of rings and 𝐿2. For this
image 𝐿2 = 0.55 cm. The phase images are centered to measure the phase difference along the
scanning radius.
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Figure C.8: Phase image to measure the relation between the number of rings and 𝐿2. For this
image 𝐿2 = 0.50 cm. The phase images are centered to measure the phase difference along the
scanning radius.

Figure C.9: Phase image to measure the relation between the number of rings and 𝐿2. For this
image 𝐿2 = 0.45 cm. The phase images are centered to measure the phase difference along the
scanning radius.



76 C. Simulation validation measurements

Figure C.10: Phase image to measure the relation between the number of rings and 𝐿2. For this
image 𝐿2 = 0.40 cm. The phase images are centered to measure the phase difference along the
scanning radius.

Figure C.11: Phase image to measure the relation between the number of rings and 𝐿2. For this
image 𝐿2 = 0.35 cm. The phase images are centered to measure the phase difference along the
scanning radius.
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Figure C.12: Phase image to measure the relation between the number of rings and 𝐿2. For this
image 𝐿2 = 0.30 cm. The phase images are centered to measure the phase difference along the
scanning radius.
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