
Automatic Extrac-
tion of Ridge Lines
from Digital Eleva-
tion Models

Master Thesis

T. E. van Noppen

Automatic Extraction of
Ridge Lines from Digital

Elevation Models
Master Thesis

by

T. E. van Noppen

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on 17 February, 2022.

Student number: 4975197

Date: 3 Ferbuary, 2022

Supervisors: Dr. ir. R. J. Van der Ent, TU Delft

Dr. ir. J. P. Aguilar-Lopez, TU Delft

Dr. ir. M. M. Rutten, TU Delft

Ir. B. J. A. de Graaff, HKV Lijn in Water

Dr. ir. A. van Dam, Deltares

Dr. ir. G. Donchyts, Deltares

Abstract
Second-order Gaussian kernels have been utilized to develop three algorithms that could automati-
cally extract ridge lines for hydrodynamic modelling. Isotropic second-order Gaussian kernels produce
inaccurate lines at crossings and junctions. To avoid the malfunctioning of Second-order Gaussian ker-
nels, one default and two alternative algorithms were developed. The first, default algorithm is based
on isotropic kernels and non-maximum suppression. For the first alternative algorithm, isotropic and
anisotropic kernels have been applied for the filter process. The third algorithm uses skeletonization
instead of non-maximum suppression. A verification was applied to analyzed the performance of the
algorithms. The Matthews correlation coefficient (MCC) of the default algorithm and the alternative
algorithm that included anisotropic kernels was found to be 0.17. For the algorithm based on skele-
tonization a value of 0.08 was obtained. Hence it has been concluded that the algorithms that utilized
non maximum suppression instead could more accurately detect ridge lines than the model based on
skeletonization. However, the latter generated lines that contained less discontinuities. Furthermore
this algorithm turned out to be computationally less demanding in comparison to the other two algo-
rithms.

iii

Contents

1 Introduction 1
1.1 Gaussian kernels . 3

1.1.1 Crossings & Junctions . 5
1.2 Research Objective . 6
1.3 Thesis outline . 6

2 Methodology 7
2.1 Algorithms . 7

2.1.1 Algorithm I . 7
2.1.2 NaN-filling. 7
2.1.3 Filtering . 8
2.1.4 Thresholding . 11
2.1.5 Non-maximum suppression (NMS) . 12
2.1.6 Linking broken ridge lines . 13
2.1.7 Algorithm II . 14
2.1.8 Algorithm III: Isotropy and Skeletonization . 18
2.1.9 Overview algorithms . 20

2.2 Post-processing in QGIS. 20

3 Verification manually drawn ridge lines 23
3.1 Dimensions ridge structures . 23
3.2 Parameters algorithms . 23
3.3 Study site and data . 24
3.4 Results algorithms . 25
3.5 Results verification . 28

3.5.1 Precision, Recall, F1-score and MCC . 28
3.5.2 Positional accuracy analysis based on Goodchild and Hunter 30

4 Verification D-HYDRO 33
4.1 D-HYDRO model for De Roer . 33
4.2 Development hydrodynamic models for validation . 36
4.3 Results total inundated area . 37
4.4 Results water depth . 38
4.5 Analysis of the results . 39

5 Discussion 45
5.1 Improvements algorithms . 45
5.2 Verification method . 46

5.2.1 Future research. 47

6 Conclusion 49

Bibliography 51

A Python code algorithm 1 55

B Python code algorithm 2 61

C Python code algorithm 3 65

D Post-processin steps in QGIS 69

E Difference in water depth 71

v

1
Introduction

The catastrophic floods that occurred in mid-July 2021 in The Netherlands, Germany, Belgium and Lux-
embourg illustrate the destructive power of flood events. At least 224 fatalities and substantial damage
to community, infrastructure and environment were reported [1]. Due to continued urban development
in combination with altered precipitation patterns triggered by climate change, flood damage is pro-
jected to increase further the coming decades [2], [3]. Hence reinforcing the need for accurate models
to simulate floods.

Throughout the past decades, numerous numerical models for flood simulation have been developed
and applied for many engineering, planning and risk assessment studies [4], [5], [6]. Flood inundation
modelling is usually based on simplified 2Dmodels that solve one-dimensional Saint-Venant equations.
These models are preferred over the full shallow water equations as they are computationally less de-
manding [7]. Traditionally, 2D-models have been constrained by the lack of high resolution topographic
data [8]. Due to recent developments in data capture techniques high-resolution topographic data has
become widely available. Hence it is possible to create high resolution 2D-meshes for flood modelling
that include very accurately the elevation of the modelled area. Nevertheless, it remains common for
2D flood modelling to re-sample fine resolution topographic data to a coarser mesh. As such, compu-
tational stability can be achieved and computational costs can be reduced [7]. However, coarsening of
fine topographic data can have a severe impact on the accuracy of a model [7], since relevant sub-grid
variations in elevation might be suppressed and therefore not incorporated on the coarse mesh.

To overcome the loss of relevant small-scale topographic variations, one solution is to apply sub-grid
modelling for abrupt changes in height [7] [8]. Therefore, a line element is placed along the crest level
of a sudden change in elevation. Subsequently, the line element is placed on the sides, or faces, of
grid-cells of the mesh. The elevation at the crest level of the high ground feature is attached to the line.
As such, it can affect the local flow pattern by either acting as barrier by avoiding water flow from one
cell to a neighboring cell or it can function as a weir when water exceeds the crest level of the feature.
Hence the variability of sub-grid topography is taken into account in a model with a coarser mesh while
the computational costs can be kept low [7]. Sub-grid modelling by means of such line elements has
become part of various modelling software programs such as 3Di, HEC-RAS and D-HYDRO Suite [9],
[10].

In this study, the line that is placed on top of a sudden change in elevation, is referred to as ridge line
and has been defined as: a line element that connects the highest points that are located next to an
abrupt change in elevation. Hence lines are placed on two types of landforms, which are visualized
in figure 1.1. Here, (a) represents a ridge type of obstacle and the second (b) a shoulder type, for
simplicity, both landforms will from now on be referred to as: ridge structures.

1

2 1. Introduction

Figure 1.1: Fixed weir lines. (a) ridge type of obstacle, (b) shoulder type of obstacle.

Until recently, ridge lines were drawnmanually, which is a time-consuming process. In addition, drawing
linesmanually is a process that is subject to the interpretation of themodeller. Therefore, this study aims
to develop an algorithm that is capable in automatically extracting ridge lines, which could decrease
this timely-process. Moreover, such an algorithm would make the detection of ridge lines an objective
process, hence creating consistent lines. Various methods have been developed that can be applied for
the purpose of automatically extract ridge lines based on a digital elevation map (DEM). These methods
often rely on the analysis of the first or second order derivative of the DEM. For instance, automatic
drainage pattern detection [11], [12] and the profile recognition and polygon breaking algorithm which
was originally developed by Chang et al. [13] make use of the first or second order derivative of a DEM.
The downside of these approaches is that the algorithms are highly sensitive to noise, hence irrelevant
ridge lines are created [14] [15].

In this study the potential of image processing algorithms for the purpose of ridge structure detection,
has been analyzed. In the field of image processing, numerous methods exist to extract features from
images, among which are: ridges and edges [16]. In this context, ridges and edges represent a sudden
change in average gray level of the image [17]. An edge symbolizes a transition between low- to high
greyscale values or vise versa. A ridge consists of two parallel edges, which together form a line on an
image [18]. Since grayscale images and DEMs are similar in the fact that they are both single-valued
rasters [19], the algorithms that were initially developed for image processing purposes may also be
applied to DEMs [20]. This has been done before, for instance in the work of Dai et al. [21] where an
edge detection algorithm was used to automatically delineate agricultural terraces in the Loess Plateau
in China. Edge and ridge detection algorithm rely on the process of filtering an image by performing a
convolution with matrix or also known as: kernel. The convolution is carried out by ’moving’ the kernel
over an image, generally starting at the top left corner, while multiplying it locally with a central pixel
and its surrounding pixels. An example of a convolution of an image of size 5 x 5 is visualized in figure
1.2.

1.1. Gaussian kernels 3

Figure 1.2: Image convolution with an input image of size 5 × 5 and a kernel of size 3 × 3.

1.1. Gaussian kernels
Over the past decades, a lot of research has been carried out to the automatic detection of both edges
and ridges based on a convolution with a kernel [22], [23]. A few well-known methods include the
Roberts cross operator [24], the Sobel operator [25] and the Prewitt method [26]. These methods make
use of very simple differential kernels that can compute local gradients of an image by performing a
convolution, hence the regions where a large gradient is present, represent the edges. The advantage
of using small differential kernels is that they are computationally inexpensive. The disadvantage is
that they are highly susceptible to noise. The small kernels were designed to detect so-called step
edges, which are edges with a very abrupt intensity change, ranging from one pixel to the next pixel.
In real-world images, these type of edges do almost never occur. Usually an image consist of edges
and ridges of which the discontinuity in grey level varies over different widths [16], [27]. Therefore
other kernels have been developed which could detect edges and ridges of different sizes, including
the Gaussian kernels [18] [23]. A Gaussian kernel is a 2D-representation of a Gaussian bell-curve
function, which can be calculated according to:

𝐺(𝑥) = 1
𝜎√2𝜋

𝑒
1
2 (

𝑥−𝜇
𝜎)

2

(1.1)

where 𝜎 represents the standard deviation of the kernel, usually the mean 𝜇 is set to zero and is
therefore often left out equation. Gaussian kernels are among the most employed tools for image
processing, where they have proven useful for a number of different tasks, such as the automatic
detection of line-like structures such as blood vessels [23], [28]. The derivative of the 2D-Gaussian
kernel in one direction results in a first-order Gaussian kernel, which is used to extract edges. The
second derivative in one direction creates the second-order Gaussian kernel, or (SOG-kernel). When
a convolution is applied between a SOG-kernel and a DEM, the noise in the image is suppressed and
the extreme lows in the output indicate the location of the ridge structures, as is visualized in figure 1.3.
The Gaussian kernel in 2D and its first- and second-order derivative are illustrated in figure 1.4.

4 1. Introduction

Figure 1.3: Convolution cross section and SOG-kernel with 𝜎 = 1.

Figure 1.4: Gaussian kernel, its fist and its second derivative.

In this study the potential of SOG-kernels for the purpose of automatically extracting ridge structures
from DEM data will be analyzed. A second-order Gaussian kernel can be expressed as:

�̂�″(𝑥, 𝑦) = (1
𝜎√2𝜋

+ 1
𝜎2)

1
𝜎√2𝜋

𝑒(
𝜙
2𝜎)

2

(1.2)

with:

𝜙 = [𝑥 𝑦]𝑀𝑇 [
1 0
0 1

]𝑀 [
𝑥
𝑦
] (1.3)

and:

𝑀 = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] (1.4)

1.1. Gaussian kernels 5

here 𝑀𝑇 is the transpose of the matrix 𝑀. Furthermore, the the standard deviation 𝜎 in the equation
controls the size of the SOG-kernel. A larger standard deviation results in a wider kernel that can
detect wider ridge lines, while a lower standard deviation results in a smaller kernel that is capable of
extracting the smaller ridges [18]. The orientation of the 2D-kernel can be adjusted by changing the
value of theta (𝜃), which can take a value of: 𝜃 ∈ [0, 2𝜋]. Since the responses at 𝜃 and 𝜃 + 𝜋 are
identical, the orientation interval can be set as: 𝜃 ∈ [0, 𝜋] [16]. The impact of different values for theta
is visualized in figure 1.5. In this figure, two schematic DTMs are visualized in the two left figures. A
convolution of the schematic DTMs with 𝜃 = 0 would result in the two figures visualized in the second
column were the yellow lines indicate pixels with high response values. Clearly, the kernel with only
one orientation does not detect the horizontal line that is present in the upper left figure. However the
combined output of two orientations, ensures that, both yellow lines are detected. This can be seen in
the two right figures, which indicate the combined result of the two kernel orientations. A convolution
with a SOG-kernel can be established by:

𝜕2𝐼
𝜕𝑣2𝜃

= −𝐼 ∗ (𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃𝜎2 �̂�″(𝑥, 𝑦)) (1.5)

where, 𝜕𝑣2𝜃 represents the unit vector in direction 𝜃. For simplicity a minus sign is added to the formula,
hence ridge structures are indicated by high extremes, in stead of low extremes.

1.1.1. Crossings & Junctions

Figure 1.5: Schematic DEM representing a crossing and junction. The result of a kernel convolution with 𝜃 = 0,
𝜃 = 𝜋

2 and the combined result is visualized

Second-order Gaussian kernels rely on the idea that a substantial difference is present between the
top and the toe of the ridge [18], which is unfortunately not always the case. Especially if a ridge is part
of a crossing of two ridges, or if two ridges join to form a single ridge (a junction) [18]. For crossings and
junctions there is no difference present between the top and the toe of the ridge and therefore, these
areas will certainly lead to a near-zero output of the convolution hence creating gaps in the ride lines, as
is visualized in figure 1.5. Here, the cross points of the joints and junctions are much less pronounced
in the combined results shown in 1.5. Gaps in ridge lines at crossings and joints are very likely to have
a large impact on the results of a hydrodynamic flood model. Therefore, the problem of crossings and
junctions will play a significant role in the development of an algorithm that could automatically extract
ridge structures.

6 1. Introduction

1.2. Research Objective
The aim of this study is to develop and test an algorithm that can automatically detect ridge lines based
on a digital elevation model (DEM). To do so, analysis has been conducted to the potential of SOG-
kernels to detect ridge lines that can be used for hydrodynamic models, hence the following research
question has been used:

How can second-order Gaussian kernels be utilized for the automatic extraction of ridge structures,
and what are the implications for 2D-flood modelling?

To answer this question, three algorithms have been developed based on SOG-kernels. A validation of
the algorithms was performed in two ways. Firstly the outcome of the algorithms has been compared
to manually drawn ridge lines. And secondly, the outcome in the algorithms has been incorporated into
a 1D/2D flood model. Subsequently the performance of the models has been analyzed with respect to
a ”ground truth” model.

Since the purpose of the extracted ridge lines is to be used for flood modelling, four requirements were
set for the resulting lines of the algorithms:

• The algorithms should be able to detect ridge structures of various sizes. Usually ridge structures
of various sizes can function as an obstacle in a flood model, therefore all relevant structures
should be implemented in the hydrodynamic model.

• The algorithms should not be affected by noise. No lines should be created on abrupt changes
that represent noise on the DEM.

• The ridge lines that are placed by the algorithms should be located exactly on, or at least in the
vicinity of, the crest level of the ridge structure. A ridge line that is placed near the highest points
of a ridge structure would probably obtain a lower elevation, hence the ridge structure would start
to overflow much faster than would be the case in reality.

• The algorithms should produce continuous ridge lines, without unnecessary gaps. Gaps have a
major impact on the inundation pattern of a flood model. Due to gaps the blocking function of the
weir is not incorporated in the model, hence water can flow through the gap to the neighboring
grid cell.

The performance of the algorithms is verified in two ways, firstly the automatically extracted lines are
compared to manually drawn ridge lines, and secondly the resulting lines are incorporated into a hy-
drodynamic model developed for the river Roer in Limburg (The Netherlands). This model has been
developed in the software program D-HYDRO and concerns a coupled 1D-2D flood model, thus both
one dimensional as two dimensional input variables are used.

1.3. Thesis outline
The rest of this paper is organized as follows. In chapter 2, the methodology will be outlined, which
includes a detailed explanation of three algorithms that were developed for this study. This chapter also
contains information on the impact of the parameters that are used for the algorithms. The algorithms
are validated in chapter 3 and 4. In chapter 3 a comparison is performed between the outcome of the
algorithms and manually drawn ridge lines. Chapter 4 concerns the validation in the hydrodynamic
model.

2
Methodology

In this section, firstly an elaboration on the procedure of the first algorithm is provided. Subsequently,
the second and the third algorithm will be outlined. The generated ridge lines from the algorithms
require post-processing steps in order to create the correct format for the D-HYDRO model. The post-
processing steps will be outlined in the final section.

2.1. Algorithms
The first algorithm can be considered as the default algorithm. For the second algorithm a convolution
is applied with an elongated version of the SOG-kernel. The third algorithm utilizes skeletonization
in order to obtain line elements instead of zones that indicate ridge structures. In this section, every
algorithm will be discussed in detail, whereby the impact of the various parameters will be outlined. For
the development and testing of the algorithms a Digital Terrain Model (DTM) was used with a resolution
of 0.5 x 0.5m. The output of the algorithms is a binary raster map where ’1’ indicates a pixel that is part
of a ridge line and ’0’ a pixel that is not part of a ridge line.

2.1.1. Algorithm I
The first ’default’ algorithm is visualized in 2.20. The algorithm consists of five steps, which are indicated
by the upper boxes. The lower boxes show all the parameters that are required for each step.

Figure 2.1: Procedure of algorithm I.

2.1.2. NaN-filling
An accurate digital representation of the terrain is of significant importance for the correct localization of
ridge lines. LiDAR (Light detection and ranging) has become the main data source for producing high
resolution DTMs [29]. Usually unwanted features, including buildings, vegetation and water bodies, are

7

8 2. Methodology

removed from the DTM resulting in voids in the data [30]. The data points in these voids contain Not
a Number-values (NaN-values). To fill these NaN-values, a pre-processing step is required. Various
interpolation algorithms exist to fill NaN-values in elevation data [30] [31], whereof the most common
are: inverse distance weighting, kriging and the moving average [31]. Kriging is considered as one of
the best performing methods, however the procedure requires a long calculation time. On the contrary,
the moving average is relatively fast but the resulting interpolated map is often less accurate [32].
In between is inverse distance weighting (IDW) which gives satisfactory accuracy with a reasonable
calculation time [32]. Therefore, IDW has been selected in this study as NaN-filling mechanism.

Figure 2.2: Schematic picture of Inverse Distance Weighting. In total four pixels are utilized for interpolation
which are highlighted with the red boxes. The search radius is indicated by the green pixels

To carry out IDW, the module fill no data has been used, which is available in the python package
rasterio (version 1.2.0). This module analyses every pixel containing NaN-values. For each pixel
a search is performed in four direction (north, south, east, west) to find the closest non-NaN-pixels.
The firstly encountered non-NaN pixels are used for interpolation. Thus up to four pixels are used for
interpolation as is shown in 2.2. For the algorithm the default search distance has been used, as such,
a maximum number of pixels that is analyzed to find values to interpolate from is 100.

2.1.3. Filtering
IDW is followed by a filter process in which a set of SOG-kernels utilized with a predefined range
of sigma and theta. This process generates one map that contains different ridge response values
at every pixel, which represent the combined outcome of the convolutions with various kernels. High
ridge response values refer to the areas where ridges are detected. Firstly, the impact of the parameter
sigma will be discussed.

Parameter: sigma

The impact of different sigma values on the outcome of the convolution is visualized in figure 2.3. In
the upper graph of the figure, a cross section of a DTM is visualized. The other three graphs reveal the
response of a convolution of the DTM when using SOG-kernels with a sigma value of 0.5, 1.0 and 2.0.
As is shown, only the kernel with 𝜎=2 correctly detects the largest ridge on the right side of the DTM.
The convolution with 𝜎=0.5 results in two peaks on each side of the ridge. The smaller two peaks on
the left side of the image are detected by all three kernels.

2.1. Algorithms 9

Figure 2.3: Kernel convolution of DTM with kernels of 𝜎 = 0.5, 1.0 and 2.0. Upper graph: cross section DTM.

For an optimum result of the convolution, it is of major importance that the width of range of sigma values
corresponds approximately to the width of the ridge structures that must be detected [33]. Based on
this principle, the following equation was found for the relation between the width of the ridge structure
and sigma:

𝜎 = 𝑊𝑅 ∗ 𝑅𝑒𝑠𝑘
3.46 ∗ 𝑅𝑒𝑠𝐷

(2.1)

where,𝑊𝑅 is the width of the ridge, 𝑅𝑒𝑠𝐷 and 𝑅𝑒𝑠𝑘 indicate the resolution of the DTM and the resolution
used for the kernel. The value of 3.46 represents the distance between the two low extremes of the
kernel for 𝜎 = 1, which has been established by taking the third derivative of the Gaussian function.
Hence the distance between the zero-crossings was found to be 3.46. An examples of the selection
of an appropriate value for sigma is provided in in figure 2.4. Here, the DTM contains a resolution of
0.5m. The kernel is created by using a step size for 𝑥 of 0.1. The ridge structure consists of a width of
approximately 8m, hence filling in the equation results in 𝜎 = 0.46.

10 2. Methodology

Figure 2.4: Determining appropriate value for sigma. Upper graph: cross section DTM. Middle: kernel. Lower
graph: response to convolution.

Parameter: gamma

Figure 2.3, reveals that the output of the convolution becomes lower for wider kernels [28], [16], [33].
The kernel of 𝜎 = 0.5, resulted in a range of -6 up to 6, whereas the kernel with 𝜎 = 0.5, created an
output with values ranging between -2 up to 3.5. In order to detect ridge structures of various sizes
the output is combined by means of a normalization [16] [33][27] [28]. Hence, the kernels of multiple
sizes can be used and the result to the convolution can be combined into one layer by extracting the
maximum response value for every pixel [34], [28]. For the normalization an additional parameter is
added to formula, referred to as the 𝛾-parameter, which has been proposed by Lindeberg (1998) [33],
[27]. With the normalization parameter, the convolution of an image (I) with a Gaussian kernel G(x,y)
can be expressed as:

𝜕2𝐼
𝜕𝑣2𝜃

= −𝐼 ∗ (𝜎𝛾𝑛 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃𝜎2 �̂�″(𝑥, 𝑦))) (2.2)

where the normalization parameter 𝛾 takes a value of 𝛾 ∈ ℝ+. The variable n denotes the order of the
derivative, which obtains a value of 2 when utilizing second-order Gaussian function. By increasing
gamma, the kernels with a larger sigma value become more pronounced in the combined result, while
for lower values for gamma, the smaller kernels overrule the larger kernels. Therefore, it can be stated
that the value for gamma does affect the manner in which a ridge is detected [28]. For instance, if a
lower value for gamma is applied, the smaller kernels have a more predominant effect on the outcome
of the combined convolution. Consequently, it might occur that a wider ridge obtains two lines on each
side of the ridge in stead of one line in the middle of the ridge line. For ridge detection the optimum
value for gamma is established at 0.75 [33].

Parameter: step size and dimension

The value for sigma does also depend on the resolution used for the kernel, which is determined by the
step size for x an y in formula 1.2. To illustrate the impact of the resolution of the kernel, two kernels
have been plotted in figure 2.5. One kernel contains a 𝜎-value of 10, the other kernel a 𝜎-value of 1.
As can be seen in the figure, decreasing the value of sigma, while reducing the resolution (step size
x = 1 to x = 0.1) yields a kernel with exactly the same form, as can be seen on the x-axis. Except the
range on the y-axis changed with three orders of magnitude. Therefore, a convolution of both kernels
with a cross section of a DEM would yield a similar output, apart from the range of the output.

2.1. Algorithms 11

Figure 2.5: Impact step size

In addition to the step size, also the dimensions of the kernel must be set. It is of paramount importance
that the SOG-function is entirely covered by the shape of the kernel, otherwise the output of the con-
volution will not oscillate around zero but around a value above zero. Hence when multiple kernels are
used, the largest kernel will certainly dominate the results, regardless the normalisation that is applied.

Parameter: Number of theta’s

Ideally, the kernel should be oriented normal to the direction of the ridge to be detected. Since the
direction of the various ridges is unknown beforehand, a set of kernels covering a range of possible
orientations should be used for the convolution [16]. The maximum value is then selected to compose
the output of the filter process [16].

Figure 2.6: Result of filter process.

An example of the filter procedure is illustrated in 2.6. The left image shows the DTM that was used
as input, while the right image reveals the response value to the convolution. Regarding the time
consumption of the filter procedure, it should be noted that the number of kernels used for the filter
process significantly affects the total calculation time of the algorithms. A larger number of kernels with
different values for theta and sigma increases the accuracy but makes the process computationally
expensive.

2.1.4. Thresholding
The output of the filter process is amapwith themaximum response values of the convolutions with vari-
ous kernels, referred to as the ridge strength. To extract only the relevant ridges a phase of thresholding
should follow [18]. By using a specific threshold, the pixels that will be considered as part of a ridge
structure can be extracted. The threshold determines the minimum required height of an abrupt change
in elevation in order to be considered as a ridge structure. Therefore, the threshold is established by the

12 2. Methodology

modeller of the hydrodynamic model as he/she defines the requirements for a ridge structure. To do so,
the results of the filter process must be analyzed and compared to the DTM. Hence the threshold can
be selected based on the response values that correspond to the smallest ridge structures that must
be detected. Figure 2.7 illustrates the process of threshold selection, wherein three different thresholds
were set for the region in 2.6, As shown in the figure, a lower threshold increases the amount of area
that is considered as a ridge structure.

Figure 2.7: Impact of threshold = 5, 15, 25. The red zones indicate the areas that fall above the threshold

2.1.5. Non-maximum suppression (NMS)
Canny (1968) [35] developed a method for edge detection that could extract edge lines by suppressing
all pixels whose intensity is not maximal within a specific local neighborhood. This method is nowa-
days commonly known as Non-Maximum Suppression (NMS), and has been implemented into the al-
gorithms after the thresholding. The procedure of NMS is as follows: first, for every pixel that contains
a value above the threshold, the orientation (𝜃) that gave the highest response value is established.
Subsequently, an imaginary line of a predefined length is drawn perpendicular to this orientation. If
any pixel on this line has a higher ridge response value than the central pixel, the central pixel is sup-
pressed. NMS requires one parameter, the length of the imaginary line that is drawn perpendicular
(𝐿𝑁𝑀𝑆). In the work of Rosenfield and Thurston (1971) [17], the length of 𝐿𝑁𝑀𝑆 is based on the size of
the edges that should be detected by the edge detection algorithm. In this study a similar approach is
used whereby the lookup length is set to the size of the smallest ridge structures that must be detected
by the algorithm.

Figure 2.8: Non Maximum suppression. (a) an imaginary line is drawn perpendicular to the ridge structure. The
central pixel is suppresses if a pixel is present on the line that contains a higher ridge strength, otherwise the

pixels is retained. (b) the output of NMS.

It appeared that after NMS, often lines were created at the border of the DTM. Analysis revealed that
the formation of lines at the borders had to do with the manner in which the convolution is carried
out. During the convolution, the kernel moves from the upper left to the lower right part of the DTM.
At the outer pixels the kernel extents beyond the dimensions of the DTM. To enable a convolution on

2.1. Algorithms 13

these parts of the DTM, the area that extents the DTM is treated as zeros, hence an abrupt change in
elevation is created between the extended area and the values of the DTM at the borders. Therefore,
the kernels detect ’ridge structures’ at the borders of the DTM. To avoid the formation of ridge lines
at the borders, all outer rows and columns are set to zero after NMS. The downside of suppressing
all outer rows and columns is that ridge structures with their crest level exactly located at the borders
of the DTM are not detected. Further research is required to determine how the convolution can be
performed without the formation of ridge lines at the boundaries of the DTM.

Figure 2.9: Kernel convolution at the borders of the DTM. As illustrated, the DTM is extended with additional
rows and columns filled with zeros. Hence a convolution can be performed at the borders of the DTM.

2.1.6. Linking broken ridge lines
Aftr NMS, discontinuities might appear on the ridge lines [36], as illustrated in figure 2.10. The small
gaps can be related to various causes. In some cases there is indeed a gap between two ridge struc-
tures, hence the gaps are correctly indicated. However, often gaps appear due to the usage of a range
of sigma values. For instance, when using a range of 1 to 2, with an interval of 1.2, a kernel of sigma
= 1 could have given the highest response value at a specific point on a ridge structure, while a few
meters down the ridge structure, a kernel with a sigma value of 1.2 could give the highest response
value. During NMS, a gap is created in between the pixels where the highest response values are
found. To connect these gaps, one final step is added to the algorithm: the linking of broken features.
This final step is also meant to eliminate isolated ridge pixels that are not part of a ridge line or that are
in the vicinity of a line.

14 2. Methodology

Figure 2.10: Connection discontinuities in ridge lines. The discontinuities are located in the red boxes.

The following processes are performed: isolated ridge pixels that are located in a distance 𝐿𝑥𝑥 of other
ridge pixels are connected to each other, otherwise they are removed, and endpoints that are located
in a distance 𝐿𝑥𝑥 of other ridge pixels are connected to each other. Isolated ridge pixels and endpoints
are detected by analyzing the directly neighboring pixels. The distance 𝐿𝑥𝑥 is an adjustable parameter,
that indicates the number of pixels that is considered for the connection process. For instance, when
the 𝐿𝑥𝑥 is set to 4 whereby the DTM has a resolution of 0.5m, the lookup distance becomes 2m. The
lookup distance 𝐿𝑥𝑥 can be set to a higher value, however when the value becomes too large, there is
a higher probability that lines are created on places where no ridge structures are present. Thus the
lookup distance should not be much larger than the step size that is used for the range of sigma values.

2.1.7. Algorithm II
In [37], a new type of SOG-kernels is introduced: the anisotropic second-order Gaussian kernel. This
type of kernel is an elongated version of the isotropic second-order Gaussian kernel, hence it doesmore
often resemble the rather elongated nature of ridges and edges. Therefore, it is argued that the usage
of anisotropic kernels during the filter process significantly improves the performance of edge and ridge
detectors [38], [37], [18]. The resulting ridge and edge lines become more contiguous, whereby the
problem of crossings and junctions is reduced [18]. A second-order anisotropic Gaussian kernel is
obtained by:

�̂�″(𝑥, 𝑦) = (1
𝜎√2𝜋

+ 1
𝜎2)

1
𝜎√2𝜋

𝑒(
𝜙
2𝜎)

2

(2.3)

with:

𝜙 = [𝑥 𝑦]𝑀𝑇 [
𝜌2 0
0 𝜌−2

]𝑀 [
𝑥
𝑦
] (2.4)

and:

2.1. Algorithms 15

𝑀 = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] (2.5)

With this equation, the formula for the convolution can be established by:

𝜕2𝐼
𝜕𝑣2𝜃

= −𝐼 ∗ (𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃𝜌−2𝜎2 �̂�″(𝑥, 𝑦))) (2.6)

where rho (𝜌) refers to the anisotropy factor. The default value for rho is 1, which results in an isotropic
kernel. By increasing rho, the second-order Gaussian kernel becomes anisotropic, as is visualized in
figure 2.11.

Figure 2.11: Impact of adjusting rho (𝜌) on kernel

In order to test whether anisotropic kernels would also increase the performance of ridge detection
based on DEM-data, a second algorithm has been developed. The proposed procedure for this algo-
rithm is visualized in figure 2.12. In general, the second algorithm resembles the first algorithm, the
only difference is that both isotropic and anisotropic second order Gaussian kernels are applied during
the filter process.

Figure 2.12: Procedure of algorithm II.

To visualize the impact of rho, a convolution with a schematic DEM and two values for rho is carried out.
The results are shown in 2.13. The schematic DEM has a dimension of 100 by 100 steps. Two ridge

16 2. Methodology

lines are created in the middle with a value of ’1’, which together form a cross. The rest of the DEM is
set to ’0’. A convolution is performed with rho = 1 and rho = 1.5. For both convolutions, a sigma value
of ’1’has been used and six different orientations for theta were applied. The result of the convolution is
show in the upper two figures. The figures reveal that a value of 1.5 for rho creates thinner lines in the
response values compared to a value of 1 for rho. Furthermore, the center of the crossing is slightly
brighter for rho = 1.5 than for rho = 1, thus the response values at the center are relatively higher for rho
= 1.5 than for rho = 1. Therefore, it seems that the center of a crossing is more likely to be considered
as a ridge structure when a larger value for rho is utilized. To analyze whether this is indeed the case,
the entire procedure of the algorithm is used to produce ridge lines based on rho = 1 and rho = 1.5.
Here, it should be noted that the range of response values varies significantly for the two values of rho,
as becomes apparent in the legend of the upper two figures of 2.13. For rho equals 1, a response value
ranging between approximately -10 to 35 is obtained, while for rho equals 1.5, the response values end
up between -10 and 100. To compare the ridge lines based on the different values for rho, a threshold
has been set at the 90th percentile of the response values. Hence ridge lines are developed based on
the upper 10 percent of the response values. The resulting ridge lines are shown in the lower two plots
of figure 2.13. Apparently, the kernels with rho = 1.5 are able to detect the ridges at the crossing, while
for rho = 1 there are no ridge lines composed at the crossing.

Figure 2.13: Impact of 𝜌 = 1.0 and 𝜌 = 1.5 on schematic DEM. Upper two figures: output of the convolution.
Lower two figures: detected ridge lines.

A similar analysis has been performed on DEM-data, as such the performance of anisotropic kernels on
actual ridge structures can be examined. Therefore, ridge structures were selected that together form a
junction. The junction is located on a floodplain of the river Waal, in the surroundings of Nijmegen. The
selected region encompasses an area of 4680 m2 and is visualized in 2.14. A filter process has been
carried out with a set of kernels of size: 𝜎 = 1 and six different orientations (𝜃). The entire procedure
as shown in 2.12 was performed while using three different values for rho: 𝜌 = 1, 𝜌 = 1.3 and 𝜌 = 1.5.
The threshold was set at the 90th percentile of the outcome of the convolutions. The extracted ridge
lines and the outcome of the three filter processes are visualized in 2.14.

2.1. Algorithms 17

Figure 2.14: Impact of 𝜌, = 1.0, 𝜌 = 1.5 and 𝜌 = 2.0 for DTM located in floodplain of river De Waal.

The figure reveals that a larger value for rho does not create connected ridge lines at the center of the
junction. However, it does increase the length of the ridge lines close to the junction, hence reducing the
length of the gap on the junction. Lopez-Molina et al. (2015)[18], propose to use a range of values for
rho, and retain only the maximum value at each pixel. Based on the outcome visualized in figure 2.13,
one would assume that a normalization must be applied to combine the results of various values for
rho, as the figure is almost entirely covered by the kernel with 𝜌 = 1.6. However, in the work performed
by Lopez-Molina et al.(2015) [18] a normalization was been applied. Further research did not provide
insight on the usage of a normalisation to combine the outcome of various anisotropic kernels for the
purpose of ridge detection. Further research must be carried out to determine whether a normalization
should be applied in order to correctly combine the outcome of various values for rho.

To analyze whether the kernel with the highest anisotropy factor does indeed overrule the other kernels,
several test, a plot has been made that shows which kernel gave the highest response value to the
convolution. For this plot, the same area has been used as in 2.14 and a range of 𝜌 = 1.0, 1.2, 1.4
1.6 has been used. The results, shown in 2.15, reveal that the kernels with the largest value for rho
(1.6) do make up the largest part of the results, but the kernels with lower values for rho are not entirely
overruled.

Figure 2.15: Analysis on which value for rho produced the maximum response value.

A downside of detecting ridges based on second-order anisotropic kernels is the so-called: anisotropy
stretch effect [16], [39], [37]. The anisotropy stretch effect appears when large values for rho are used.

18 2. Methodology

Due to a larger value for rho, line ends become a bit further extended compared to results for kernels
with a lower value of rho. An example of the anisotropy stretch effect is shown in 2.16. Here, some
unwanted spurious ridge pixels are generated around the schematic ridge structure in the center of the
figure. The extended line ends pose a problem when two ridge structures are located in line with each
other with a significantly lower part in between. In this case, the algorithm based on anisotropic kernels
will probably place a single ridge line over the two ridge structures, whereby the gap is not taken into
account. To avoid a large stretch effect, the kernels should not contain an anisotropic factor that is too
large. In this study, the range for the anisotropy factor has been based on the work of Lopez-Molina
et al. (2015) [18]. In their work a range of 𝜌 = 1.0, 1.2, 1.4 and 1.6 has been used, which showed
a considerable improvement in comparison with a model without anisotropic kernels. To analyze the
impact on the resulting ridge liens, the algorithm has been tested on various regions with the selected
range. Based on this analysis, it has been decided that the range of 1.0 to 1.6, with a step size of 0.2,
result in ridge lines that were better connected on crossings and junction while the lines were not too
much disturbed by the anisotropy stretch effect.

Figure 2.16: Stretch effect due to convolution with anisotropic kernels.

2.1.8. Algorithm III: Isotropy and Skeletonization

Figure 2.17: Procedure of algorithm III.

The third algorithm uses only isotropic kernels and in stead of NMS skeletonization is applied to create
lines from the pixels that fall above the threshold. The procedure for this algorithm is visualized in 2.17.
Skeletonization creates a 1-pixel wide representations of binary objects. After the threshold process,
a map binary map is obtained where ’1’ indicates the areas where ridge structures are detected and

2.1. Algorithms 19

’0’ the regions where no ridge has been found. Skeletonization is able to identify the outer points of
a binary object, thus in this case the regions where ridge structure has been detected. Subsequently
the pixels on the boundaries are suppressed, which continues without breaking the connectivity of the
corresponding object. An example of the procedure of skeletonization is shown in 2.18, where the
binary image of a horse is thinned.

Figure 2.18: Skeletonize of image.

The method used for skelenization was proposed by Zhang and Suen in 1984 [40]. For this method
the 3x3 local neighborhood of each pixel is examined to decide whether a pixel should be deleted, and
thus set to ’0’, or retained. Two cycles are used to determine if a pixel should be deleted. For the first
cycle a pixel is removed if the neighboring pixels, as shown in 2.19, satisfy all the following conditions:

• 2 ≤ B(P) ≥ 6

• A(P) = 1

• 𝑃2 ∨ 𝑃4 ∨ 𝑃6 = 0
• 𝑃4 ∨ 𝑃6 ∨ 𝑃8 = 0

Here, B(P) is the number of neighboring pixels with a value of ’1’, A(P) is the number of transitions from
’0’ to ’1’ in the sequence 𝑃2, 𝑃2, ..., 𝑃8, 𝑃9, 𝑃2

Figure 2.19: Skeletonize pixel neighbors.

In the second cycle, pixels are removed when the local neighbors satisfy the following conditions:

• 2 ≤ B(P) ≥ 6

• A(P) = 1

• 𝑃2 ∨ 𝑃4 ∨ 𝑃8 = 0
• 𝑃2 ∨ 𝑃6 ∨ 𝑃8 = 0

The two cycles are repeated until no more pixels are removed, hence only thin lines remain.

20 2. Methodology

Skeletonization appears to be significantly faster than NMS. Analysis on different parts of varying sizes
of the DTM revealed that skeletonization is approximately 100 times faster than NMS. However for the
purpose of ridge line extraction, skeletonization suffers from a considerable drawback, as the procedure
does not take into account where the highest areas are located on the DEM, neither does it consider
the location of the maximum response values to the filter process. Ridge lines are often placed in the
middle of regions that fall above the threshold. Therefore, lines are often placed slightly off the crest
level of the ridge structure. Especially for large areas that fall above the threshold, the ridge lines are
likely to be placed not exactly on the highest part of the ridge.

2.1.9. Overview algorithms
An overview of the three algorithms is visualized in 2.20. The differences between the algorithms
are highlighted. To summurize, the first algorithm is based on isotropic second-order Gaussian kernels
and Non-maximum suppression (NMS). The second algorithm is the algorithm utilizes one extra type of
kernel: the anisotropic Gaussian kernel during the filter procedure. The third algorithm is the algorithm
that makes use of skeletonization instead of non-maximum suppression. The python-code of the three
algorithms can be found in A, B and C.

Figure 2.20: Overview three algorithms (A1: algorithm 1, A2: algorithm 2 and A3: algorithm 3). The highlighted
boxes indicated the difference compared to the first default algorithm.

2.2. Post-processing in QGIS
The output of all three algorithms is a binary raster layer, where ’0’ indicates the pixels that are not
classified as ridge line, and ’1’ the pixels that are classified as ridge line. To implement the raster files
into D-HYDRO, the files must be transformed into a shape file and subsequently a pliz-file. Various
post-processing steps are necessary in order to transform the output of the algorithms into the correct
format for D-HYDRO. In figure 2.21, only the most relevant post-processing steps are visualized, the
entire process can be found in the appendix D. In this section the most relevant steps are explained,
starting with the removal of the pixels in water bodies. In a DTM, water bodies are filtered out of the
data, resulting in large gaps in the DTM. In this case, a water body refers to any body of surface water
such as a river or lake. Interpolation based on Inverse Distance Weighting does fill up these holes.
However, the interpolation results in the creation of sudden changes in height, which are interpreted
as ridge lines by all algorithms. To ensure that the ridge lines that are located in water bodies are not
used for further analysis, all ridge pixels in water bodies are set to ’0’.

2.2. Post-processing in QGIS 21

Figure 2.21: Procedure post-processing in QGIS.

The second step in the post-processing process is the transformation from raster to shape file, hence
creating lines from the pixels with the value ’1’. The lines will be used to extract the elevation at the top
of the detected ridge lines. To extract the data, points (vertices) are created on the lines with an interval
of 1 meter as is visualized in figure 2.22. To ensure this interval is approximately even, a smoothing
step is applied. Subsequently, the lines are densified to create vertices at every 1 meter of the line. In
the next step, the elevation is extracted from the DTM at every vertice. After the processing in QGIS
the ridge lines contain data on the elevation and exact location at all vertices.

Figure 2.22: Ridge line with vertices that indicate the location where elevation is extracted.

It should be mentioned that some vertices are located in no-data regions, which is for instance the
case for the vertices in the lower left corner of figure 2.22. These vertices obtain a value of ’0’ if no
further processing is carried out. Therefore, a final step is performed to remove all vertices with a
value of ’0’. The drawback of removing vertices with a value of ’0’ is that some lines might shift a bit to
another place, as is visualized in figure 2.23. Consequently, in D-HYDRO ridge lines might end up on
the wrong location. Aside from the removal of NaN-values from the data, the python code does also
create a pliz-file from the shape file. The pliz-file can be used as input for D-HYDRO.

22 2. Methodology

Figure 2.23: Impact of removal NaN-values on location of ridge line.

3
Verification manually drawn ridge lines

Quality evaluation of the binary outcome of the algorithms is not a straightforward task, although it
comes down to comparing a given ground truth to the resulting raster files. The difficulty is in the
construction of the ground truth, which is subject to the interpretation of the composer. Since no single
method is able to evaluate all requirements of the ridge lines, a combination of verification methods
has been applied. In this chapter, manually drawn ridge lines have been compared to the outcome
of the algorithms. Therefore, a small area in the surroundings of the Roer is selected. Subsequently
two verification were performed. Firstly the location of the lines was directly compared to the manually
drawn lines and secondly a buffer zone was used to verify the performance of the ridge lines with
respect to the manually drawn lines.

3.1. Dimensions ridge structures
Specific requirements of a ridge structure such as a minimum height or slope are in general not clearly
defined. Usually these requirements are established by the modeller of the hydrodynamic model. How-
ever, in order to verify the performance of the algorithms, several requirements must be set. For this
study, the following requirements were established: the algorithms should be able to detect ridge struc-
tures with dimensions of 3.5 m to 15 m in width. These dimensions were selected based two aspects.
Firstly, the value of 3.5 m equals the resolution of the hydrodynamic model that functions as an approx-
imation of the ground truth for the verification in D-HYDRO. Secondly, the value of 15 m was selected
based on analysis on the kernel dimensions that would result in an acceptable calculation time. For
larger ridge structures, a larger value for sigma must be used, hence the dimensions of the SOG-kernel
should increase. Furthermore, the minimum difference in elevation that should be present is used of
1:7. As such, a ridge structure with a width of about 3.5 m must have a difference in elevation of at least
25 cm in order to be detected by the algorithm. For ridge lines wider than 3.5 m meter the minimum
elevation increases according to the required minimum slope.

3.2. Parameters algorithms
The dimensions of the ridge structures that must be detected by the algorithms form the basis of the
selection of the majority of the parameters. An overview of all parameters is shown in 3.1. Dimensions
that must be detected were set to set to 3.5 m to 15 m. Based on 2.1, it was found that a kernel size
𝜎 of 0.2 to 1.0 should be used. An interval of 𝜎 = 0.2, has been applied thus in total 5 kernel sizes
were used for every algorithm. The selection of some parameters is already discussed in the previous
chapter. For instance the value of the normalization parameter (𝛾), which has been set to 0.75. The
number of orientations (𝜃) is a trade-off since a larger number increases the accuracy but does also
increase the calculation time. In order to obtain a reasonable calculation time, while obtaining accurate
ridge lines, the number of orientations has been set to 6. The resolution of the kernels and the size of
the largest kernel prescribes the required dimensions of the kernels. Here a resolution has been used
of 0.1, since the largest kernel has a value of 𝜎, the dimensions were set to -5 up to 5. As such, the
Gaussian function is covered by the dimensions of the kernel. For the second algorithm a range of
1.0 to 1.6 has been utilized with an interval of 0.2 for 𝜌, as was proposed in the work of Lopez et al.

23

24 3. Verification manually drawn ridge lines

(2015) [18]. The lookup distance for NMS has been set to 4, with a DTM resolution of 0.5 x 0.5m, the
lookup distance becomes 2 m. Larger values for the NMS might suppress ridge lines which are located
close to each other. The lookup distance for closing broken lines was established on 3 pixels, thus
broken ridge lines with a distance in between of 1.5 m were reconnected. Finally, the thresholds were
established by analyzing some initial results. Several cross sections were extracted and compared to
the outcome of the algorithms, which led to the conclusion that a threshold of 15 had to be used for
the first and third algorithm. For the second algorithm a value of 35 that was required to detect ridge
structures of 3.5 m in width with a minimum difference in height of approximately 25cm.

Table 3.1: Parameters.

Algorithm 1 Algorithm 2 Algorithm 3

Size (𝜎) 0.2, 0.4, 0.6, 0.8, 1.0 0.2, 0.4, 0.6, 0.8, 1.0 0.2, 0.4, 0.6, 0.8, 1.0

Normalization (𝛾) 0,75 0,75 0,75

Number of orientations (𝜃) 6 6 6

Dimensions [-5:5] [-5:5] [-5:5]

Resolution 0.1 0.1 0.1

Anisotropy (𝜌) 1.0 1.0, 1.2, 1.4, 1.6 1.0

𝐿𝑁𝑀𝑆 4 4 4

𝐿𝐶𝐵𝐿 3 3 3

Threshold 15 35 15

3.3. Study site and data
The data used for this study refer to the surroundings of the river Roer in the province Limburg (The
Netherlands). The river basin of the Roer in The Netherlands is a unique area since it is one of the
few rivers that is able to meanders freely through the landscape. The meandering created at some
locations old and recent cut-off bends and steep river banks, which are visible on the DTM of the area
[41].

Figure 3.1: Area utilized for verification.

For the comparison between the automatically detected ridge lines and the manually drawn lines, an

3.4. Results algorithms 25

area of 1 x 1.4 km has been selected which is located south of the village Melick. The elevation in the
selected area varies between 10 and 35m above NAP. Various ridge structures of different sizes were
encountered on the DTM of the region, hence making it perfectly suited to analyze the performance of
the algorithms. Data for the selected region was obtained from the national DTM (Actueel Hoogtebe-
stand Nederland, AHN3), that is created from LiDAR data at a 0.5 x 0.5m resolution, which is available
at [42]. It should be noted that the data has a stochastic error and standard error of 5cm [43].

In table 3.2, an overview is provided of the reference and test dataset. The ridge lines resulting from
the algorithms are referred to as the test datasets. The reference data represents an approximation of
the ground truth. Two files were used as reference dataset: (1) ridge lines that were specifically drawn
for this study for the selected region and (2) ridge lines that were composed by the water authority of
Limburg. The former has been drawn manually based on empirical analysis of the DTM. Several cross
sections were analyzed to ensure that the local difference in height fulfilled the required dimensions
that were set. In total, all drawn lines summed up to a length of 20.3 km. The second reference data
set, with the lines that were composed by the water authority, was composed for the entire D-HYDRO
model that has been utilized for this study. The lines have been clipped for the selected region, hence
resulting in a total length of 10.9 km. An inspection of the lines composed by the water authority led
to some conclusions. Firstly, on several locations no lines were drawn, while a significant difference in
elevation on these locations was present. And secondly, a number of lines appear to be drawn purely
based on the presence of roads, which were not necessarily higher than the surrounding area. Despite
these deficiencies, the data set will be taken into account, since a significant portion of the drawn lines
appears to be correctly drawn. The five data sets from table 3.2, were transformed into binary raster
files that contained a resolution of 0.5 x 0.5m, which resembles the resolution of the DTM that was
utilized. In the binary raster files, ’1’ indicated a pixel that is part of a ridge line and ’0’ represented a
pixel that is not part of a ridge line.

Table 3.2: Datasests MD.

Reference data Test data

1. Manually drawn ridge lines 1. Ridge lines Algorithm 1

2. Ridge lines composed by Water Authority 2. Ridge lines Algorithm 2

3. Ridge lines Algorithm 3

3.4. Results algorithms
After running the algorithms for the selected region an empirical analysis was carried out to get a general
idea of the outcome. The four requirements that were set for the algorithms have been used for this
analysis.

1. The algorithms should not be affected by noise.

In general the algorithms did not generate a large amount of lines due to the presence of noise on the
DTM. However, some responses to noise were observed. For instance the ridge lines from algorithm
1, which are visualized in 3.2, show some response to abrupt change in the DTM that are not part of
a ridge structure. The response to noise can be omitted by avoiding the usage of kernels with a very
small sigma value. Furthermore, a larger threshold could also be applied to suppress noise on the
resulting ridge lines.

26 3. Verification manually drawn ridge lines

Figure 3.2: Ridge lines algorithm 1.

2. The algorithms should be able to detect ridge structures of various sizes.

Due to the usage of a range of sigma values and by applying a normalization, the outcome of the
algorithms were all capable in detecting ridges of different sizes. An example is given in figure 3.3. An
embankment is present on the left part of the figure, which contains a difference in height of 2.5 m.
While the ditch visualized in the middle of the figure consist of a difference in height of about 0.5 m.
Lines were drawn on both structures by all the algorithms.

Figure 3.3: Ridge lines algorithm 1.

3. The ridge lines that are placed by the algorithms should be located exactly on, or at least in the
vicinity of, the crest level of the ridge structure.

As expected the lines of the third algorithm did not always end up at the crest of the ridge structure since
skeletonization has been applied in stead of NMS. An example is visualized in 3.4. A cross section has
been made at the red dotted line in figure 3.4 to analyze the elevation at this location (figure 3.5). The
red dot in the figure visualizes the location of the ridge line from the first algorithm, hence revealing
that the line has been placed exactly on top of the ridge structure. The line of the second algorithm,
indicated by the blue dot, is placed 1m off the crest level. The line of the third algorithm is placed
approximately 5m next to the highest part of the ridge structure. The difference in elevation found at
this location is relatively high, therefore a large amount of pixels obtained a value above the threshold.
The process of NMS does take into consideration the height of the response values to the convolution,
whereas skeletonization puts a line in the middle of an area that fell above the threshold and does not
account for the height of the response values.

3.4. Results algorithms 27

Figure 3.4: Analysis outcome of algorithm 1, 2 and 3. Red dotted line indicates cross section visualized in 3.5.

Figure 3.5: Cross section, with dots indicating the location of the ridge lines.

The difference between the first and the second algorithm originates from the usage of anisotropic
kernels in the second algorithm. Due to the elongated form of the anisotropic kernels the second
algorithm performs slightly worse on bended ridge structures, as is also visualized in figure 3.6. The
figure shows that the first algorithm does better follow the bend of the ditch, while the second algorithm
cuts off a part. Hence, the lines of the second algorithm are situated on a lower part in comparison with
the lines of the first algorithm.

Figure 3.6: Bended ridge structures of outcome of algorithm 2.

4. The algorithms should produce continuous ridge lines, without unnecessary gaps.

Analysis on the outcome of the algorithms revealed that principally the second algorithm generated
continuous ridge lines. Figure 3.7, reveals the difference between the outcome, whereby only the
second algorithm detected the entire ridge structure. As shown, a gap was found on the left side of the
figure in the lines of algorithm 1 and 3, which was not encountered in the lines of the second algorithm.
The difference in elevation at this location was found to be 30 cm, hence the structure should have
been detected by the algorithms. Based on the first evaluation of the outcome of the algorithms, it was

28 3. Verification manually drawn ridge lines

stated that the second algorithm did more often produce continuous ridge lines in comparison with the
other two algorithms. Hence suggesting that the elongated form of the anisotropic kernel does increase
the performance of filter process.

Figure 3.7: Ridge lines algorithm 1, 2 and 3.

3.5. Results verification
3.5.1. Precision, Recall, F1-score and MCC
The performance of the algorithms was first verified by calculating four measures: the precision, recall,
F1-score and Matthews correlation coefficient (MCC). Therefore, firstly a confusion matrix was com-
posed, which is shown in table 3.8. In figure 3.9, an example of the classification procedure for the
confusion matrix is visualized. The red pixels indicate the false negative pixels, which are the ridge
pixels that were not detected by the algorithm. The orange pixels represent the pixels that were incor-
rectly classified as ridge pixels. The green pixels indicate the true positive pixels that were correctly
assigned by the algorithm as ridge pixel. The true negatives are not visualized in the figure but are
represented by all the other pixels.

Figure 3.8: Convolution matrix

Figure 3.9: Pixel classification of ridge lines for convolution matrix.

The four measures are computed by:

3.5. Results verification 29

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 (3.1)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 (3.2)

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (3.3)

𝑀𝐶𝐶 = 𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁
√(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)

(3.4)

where precision represents the number of actual positive cases out of all predicted positives. Recall
is the percentage of detected positive cases out of all actual true cases. Usually the accuracy can
also be calculated to evaluate the classification performance. However, since the binary raster files
are severely imbalanced it has been decided to leave accuracy out of the analysis. The 𝐹1𝑆𝑐𝑜𝑟𝑒 is
the weighted average of precision and recall, hence taking both positive and negative predictions into
account. 𝐹1𝑆𝑐𝑜𝑟𝑒 is often consideredmore useful than the accuracy, especially for large data sets, such
as the raster files used in this evaluation. However, the true negative values (TN) are not considered
in the 𝐹1𝑆𝑐𝑜𝑟𝑒, therefore a final metric has been calculated: the MCC. This metric does also account
for the true negatives (TN) and is especially suited for unbalanced data sets [44].

Results for the comparison between the manually drawn ridge lines and the outcome of the algorithms
is shown in in table 3.3. The table reveals a significant difference between the firs two algorithms and
the third algorithm. The first two algorithms score higher on every measure. Thus, the process of
sekeletonization results in ridge lines that are not located exactly on the crest of the ridge structure.
The results for the first and the second algorithm are relatively similar. While the first algorithm obtained
higher results for the precision and 𝐹1𝑆𝑐𝑜𝑟𝑒, the second algorithm scored higher on the recall measure.
The MCC is approximately similar for both algorithms. Hence no significant difference was found when
also the true negatives (TN) were considered.

Table 3.3: Manually drawn.

Algorithm 1 Algorithm 2 Algorithm 3

Precision 0,16 0,15 0,08

Recall 0,19 0,20 0,10

𝐹1-Score 0,18 0,17 0,08

MCC 0,17 0,17 0,08

In table 3.4 the comparison between the algorithms and the ridge lines that were composed by the
water authority is shown. The values in the table indicate that the performance of the three algorithms
is significantly lower when comparing the outcome to the dataset provided by the water authority. No
significant differences can be observed in the resulting values, hence based on these values no firm
conclusions can be made regarding the performance of the algorithms. The low results can be ascribed
to the mediocre quality of the lines that were composed by the water authority.

30 3. Verification manually drawn ridge lines

Table 3.4: Water authority.

Algorithm 1 Algorithm 2 Algorithm 3

Precision 0,02 0,02 0,02

Recall 0,05 0,06 0,05

𝐹1-Score 0,03 0,04 0,03

MCC 0,03 0,03 0,03

3.5.2. Positional accuracy analysis based on Goodchild and Hunter
A very fine raster resolution has been used for the calculation of the precision, recall, F1-score and
MCC. Hence the chance that ridge pixels of the algorithm were located exactly at the same place as
ridge pixels from the reference data sets was very low. Therefore, an addition analysis is applied: the
positional accuracy method for linear features as proposed by Goodchild and Hunter (1997) [45]. This
method uses buffer zones around the reference data sets to establish the distance between the test
and reference data set.

Figure 3.10: Buffer area with buffer distance of 5 m around manually drawn ridge line.

For this method, the following procedure is applied: firstly a target percentile y is established. The target
percentile refers to the percentage of line length that should end up in the buffer zone. Subsequently
the buffer zone is created. Therefore a certain buffer distance is (x) is used. If the target percentage
is not reached, thus if the percentage of line that falls within the buffer zone is larger or smaller than
the target percentage, a new buffer distance is set. This process continues until the buffer distance
determined for which the target percentage is obtained. In 3.10, an example is given of ridge pixels
that were determined by one of the algorithms and a buffer zone around a reference data set with a
buffer distance of 5 m.

Figure 3.11 shows the results of the Goodchild and Hunter analysis for the comparison between the
manually drawn lines and the outcome of the three algorithms. The graph shows that a significantly
higher buffer distance is required for the third algorithm to obtain the same target percentile as for the
first and the second algorithm. This confirms the conclusion that was drawn based on the analysis of
the precision, recall, F1-score and MCC. Apparently the ridge lines of the third algorithm have not been
located exactly on top of the ridge structures. A small dissimilarity is observed between the first two
algorithms, whereby the second algorithm required a lower buffer distance in order to obtain the target
percentages. This indicates that the lines of the second algorithm outperforms are placed closer to the
lines that were drawn manually. However, the difference is very small, therefore is it difficult to state
whether the second algorithm is performing better than the first.

3.5. Results verification 31

Figure 3.11: Results Goodchild and Hunter analysis. Comparison manually drawn lines vs outcome algorithms.

The graph in figure 3.12 shows the comparison between the lines composed by the water authority and
the outcome of the three algorithms. A significantly larger buffer distance was utilized to obtain similar
target percentages as for the comparison with themanually drawn lines. Hence, it can be stated that the
automatically extracted ridge lines are situated much further away from the ridge lines composed by the
water authority than from the lines that were drawn manually. Furthermore, only marginal differences
are observed between the algorithms, therefore no firm conclusions can be drawn on figure 3.12.

Figure 3.12: Results Goodchild and Hunter analysis. Comparison ridge lines composed by Water Authority
Limburg vs outcome algorithms.

4
Verification D-HYDRO

For the second part of the verification an analysis is carried out in D-HYDRO. The verification in D-
HYDRO is principally meant to analyze the performance of the automatically extracted ridge lines in
a hydrodynamic model. For this part, a flood model is used that has been developed in D-HYDRO
to simulate an extreme discharge event for the river Roer. The automatically extracted ridge lines
were included into the model and validated by comparing the outcome to aerial photos and to a model
which is an approximation of the ground truth. The latter is created by using a much finer resolution
compared to the other models. Before going into detail about the formation of the different models, first
background information of the D-HYDRO model is provided.

4.1. D-HYDRO model for De Roer
The D-HYDRO model that is utilized for the verification is developed for the river De Roer. The river
Roer is a tributary to the Meuse river and is partly situated in The Netherlands, Germany and Belgium.
The length of the river is approximately 165 km and its catchment area is about 2400 km2. The model
covers an area of 25 km2. Only the Dutch part of the model is utilized for analysis, which encompasses
an area of 18 km2.

Figure 4.1: Model De Roer.

33

34 4. Verification D-HYDRO

The extreme discharge event that was simulated for this study occurred between the 6th to the 16th of
January 2011. Figure 4.2, shows the inflow hydrograph that was used as upstream boundary condition.
As shown in the graph, two peak discharges took place during this period, whereby the first peak
reached a maximum discharge of 114 m3/s and the second a maximum of 135 m3/s.

Figure 4.2: Upstream discharge Q [m3/s] during the 6th until the 16th of January 2011.

The D-HYDRO model utilized for this study, concerns a coupled 1D- 2D model, whereby 1D-shallow
water equations are solved. Among the one dimensional input variables is the upstream river discharge
visualized in figure 4.2. Other boundary conditions include the water depth downstream of the river and
the discharge of tributary rivers. Furthermore, cross sections of the riverbed and structures, such as
culverts, weirs and orifices were added as one-dimensional components to the model. The operation
of the weirs over time has also been included. The two dimensional input variables of the model include
the elevation, the surface friction and the ridge lines, which are referred to as fixed weirs in the model.
Elevation data was obtained from the AHN3 (resolution: 0.5 x 0.5 m). The elevation is integrated into
the model by determining the average for every grid cell. The time interval used for the model was set
to 60 seconds. Precipitation has not been included into the model. The manner in which the ridge lines
are implemented into the model is outlined in the next section.

Fixed weirs
The functioning of the ridge lines in the model depends largely on the manner on which the lines are
implemented into the model. In D-HYDRO the lines are aligned on the lines on the cell edges of the
computational grid network. This processes is referred to as grid snapping. Two examples of grid
snapping are visualized in figure 4.3. A ridge line is only incorporated into a model when it traverses
a flow link, where flow links represent the connections between the cell centers. A ridge line is not
aligned on the grid cell when it does not intersect with a flow link, as is visualized in the right grid cell
of figure 4.3. Hence the line is not taken into account in the model. When the ridge line does intersect
with a flow link, a weighted average of the height is taken. Therefore only the two nearest elevation
measurements are taken into account for the calculation of the height of the projected ridge line. For
example, in the left grid cell of figure 4.3 only the green points with a value of 1.0 and 2.0 are considered.
Subsequently a weighted average of these values will result in a value of 1.1 for the projected ridge
line. If multiple ridge lines intersect with a flow link, then the highest value of the interpolated values is
taken. In D-HYDRO the aligned ridge lines are referred to as fixed weirs. At low water levels the fixed
weirs form an obstruction, hence the weirs block the flow from one grid cell to the neighboring cell. The
fixed weir commences to function as a weir When the water level exceeds the height of the crest level
of the fixed weir.

4.1. D-HYDRO model for De Roer 35

Figure 4.3: Projection of height on grid faces by means of calculating weighted average.

Discharge over fixed weir
To determine the discharge over a fixed weir, two approaches can be used in D-HYDRO: the so-called
”Lookup-table” (”Tabellenboek”) approach, and the ’Villemonte’ model, which is the default option. For
this study the default option has been selected for the calculation of the discharge over fixed weirs.
The Villemonte approach is an entirely empirical based formulation, which is based on the analysis of
a large number of measurements. The proposed formula by Villemonte is:

𝑄 = 𝐶𝑑0𝑄𝑐(𝐸1)√1 −𝑚𝑎𝑥(0,𝑚𝑖𝑛(1, (
𝐸2
𝐸1
)𝑝 (4.1)

Here, 𝑄 represents the discharge across the weir [𝑚3/𝑠], 𝐶𝑑0 is the resistance coefficient of the weir [-]
which depends on the weir’s vegetation and flow conditions over the weir. The variable 𝑝 is the power
coefficient [-] that is based on experimental data and takes into account the geometry of the weir. The
variable 𝑄𝑐(𝐸1) is the theoretical value for discharge over the weir in case of critical flow [𝑚2/𝑠], which
is calculated according to:

𝑄𝑐 =
2
3𝐸1

√2𝑔
3 𝐸1 (4.2)

The variables of 𝐸1 and 𝐸2 represent the upstream and downstream energy head, which can be calcu-
lated according to:

𝐸1 = ℎ1 + (
𝑈21
2𝑔)

𝑝; (4.3)

𝐸2 = ℎ2 + (
𝑈22
2𝑔)

𝑝 (4.4)

Here ℎ1 and ℎ2 represent respectively the upstream and downstream water level measured from the
crest level of the weir, as is shown in figure 4.4, and 𝑈1 and 𝑈2 respectively the upstream and down-
stream flow velocity [𝑚/𝑠].

36 4. Verification D-HYDRO

Figure 4.4: Flow over weir

Further research could be performed on the relation between abrupt changes in height and energy
loss. Insight on the energy loss would help defining the dimensions of the ridge structures that must be
incorporated into the hydrodynamicmodel. Hence, small differences in elevation that have an negligible
impact on the water flow would not be detected and incorporated into the model. The relation between
energy loss and ridge structure dimensions has been left outside the scope of this study.

4.2. Development hydrodynamic models for validation
Six variations of the hydrodynamic model have been developed for the verification of the ridge lines.
An overview of the six models is shown in table 4.1. The model were based on an angular grid network,
of which five models contained a resolution of 25 x 25m and one model that contained a finer resolution
of 3.57 x 3.57 m, as such, exactly 7 x 7 grid cells could fit in one coarse grid cell. The latter model could
function as an approximation of the ground truth. One out of the five coarse grid models did not contain
any ridge lines. Three coarse grids models contained the ridge lines of one of the three algorithms.
The final coarse grid model obtained the ridge lines that were manually drawn by the water authority of
Limburg. The outcome of the five coarse grid models has been used as test data, while the outcome
of the fine grid model was used as reference data. In addition to the six developed models, data has
been used on the total inundated area. This dataset was developed by utilizing aerial photos that were
taken between 9:00 and 11:00 at the 15th of January 2011.

Table 4.1: Datasests.

Reference data Test data Model [25 x 25m]

1. Model [3.57 x 3.57m] without ridge lines 1. Ridge lines Algorithm 1

2. Total inundated area (9:00 - 11:00 at the 2. Ridge lines Algorithm 2

15th of January 2011) 3. Ridge lines Algorithm 3

4. Ridge lines Water Authority

5. Without ridge lines

For the production of the first three models from the test data, a significant difference in calculation
time was observed between. The lines were produced for a clipped area of about 34 km2. The third
algorithm required only 14 hours to generate lines for the clipped region, whereas the first and the
second algorithms needed at least 17 days. Fortunately all algorithms were able to run parallel, hence
the calculation time was significantly reduced. The difference in calculation time between the first
two algorithms and the third algorithm can be ascribed to the process of non-maximum suppression.
Furthermore, the difference between the first and the second algorithm is probably the result of the
usage of a different threshold, hence slightly less pixels had to pass the NMS-procedure for the second
algorithm.

The test and reference data sets were compared on two aspects: the total inundated area and the
water depth. For the latter only the model with the fine resolution was used as reference data. For the

4.3. Results total inundated area 37

comparison, some pre-processing was required. Therefore, the outcome fine-grid model was trans-
formed into large grids. To do so, the sum of the water depth was calculated over 7 x 7 grids, hence a
25 x 25 m grid network was created that exactly resembled the coarse mesh. As such, the comparison
between the reference and test data could be carried out.

4.3. Results total inundated area
Firstly, the total inundated area according to the aerial photos was compared to the outcome of the fine
grid simulation. At 10:00 on the 15th of January, approximately 6.600 km2 was inundated according to
the fine grid model, while according to the dataset based on the aerial photos an area of 6.644 km2 was
inundated. Analysis revealed that 5,904 km2 was predicted to inundated according to both datasets.
An area of 0,70 km2 was only inundated in the prediction of the fine grid model, while 0,73 km2 was
only inundated in the dataset based on the aerial photos.

Subsequently the reference datasets were compared to the five test datasets from table 4.1. There-
fore the total inundated area at 10:00 on the 15th of January was compared by calculating the total
over- and underestimated area. The overestimated area indicates the area that was predicted to be
inundated according to one of the five algorithms but not according to the reference dataset, while the
underestimated area indicates the area that was inundated in the reference dataset but not in the test
dataset.

Results for the comparison of between the five test datasets and the dataset created from the aerial
photos is shown in figure 4.5. Regarding the overestimated area, the models with ridge lines perform
better than the model without lines. Furthermore, the model with the ridge lines that were composed
by the water authority obtained the lowest score on the overestimated area, however it received the
highest value for the underestimated area. Thus, the model did more often correctly assign an area as
inundated, but it also missed out on a significant part by classifying it as non-inundated. The difference
between the outcome of the models with automatically generated ridge lines is for both overestimated
as underestimated area relatively low. The model with ridge lines from the third algorithm outcompeted
the other two algorithms, in terms of overestimated area. However, the second model obtained a lower
value for the underestimated area.

Figure 4.5: Inundated area according to data based on aerial photos versus output reference models (15
January 10:00).

Results for the comparison between the fine grid model and the five test datasets is shown in figure 4.5.
The results in the figure reveal approximately similar differences between the five models in terms of
overestimated area. Regarding the underestimated area, the third algorithm reveals the lowest score
compared to the outcome of the other four models.

38 4. Verification D-HYDRO

Figure 4.6: Inundated area according to fine grid model versus output reference models (15 January 10:00).

To verify whether similar results are obtained at another time in the simulation, the total inundated area
was also compared for the fourth day of the simulation, thus at the 10th of January 2011 at 00:00.
At this time the first peak discharge was observed in the upstream discharge of the Roer. The total
inundated area at this time according to the fine grid model comprises 4,94km2. Results of the com-
parison are shown in figure 4.7. In general the amount of overestimated area does not show a major
increase or decrease for all models compared to the outcome at day 9 of the simulation. Regarding
the underestimated area, the difference has become smaller. Furthermore, the figure reveals that the
model with ridge lines from the third algorithm does not only outcompete the other models at day 9
of the simulation but also at day 4. Therefore, it appears that the total inundated area resulting from
model based on the third algorithm does better resemble the output of the fine grid model for two time
steps of the simulation.

Figure 4.7: Inundated area according to fine grid model versus output reference models (10 January 00:00).

4.4. Results water depth
The water depth has been evaluated by calculating the root mean square error (RMSE) between the
fine grid model and the five test data sets. The RMSE has been be established by:

𝑅𝑀𝑆𝐸 = √
∑𝑁𝑖=1(𝑥𝑖 − �̂�𝑖)2

𝑁 (4.5)

4.5. Analysis of the results 39

where N represents the total number of data non-missing data points, 𝑥 refers to the values of the
”ground truth” data set, and �̂� refers to the predicted values of the test data sets. In this study, only
the non-zero data points were considered for the calculation of the RMSE. Otherwise the RMSE might
return very low values as a significant part of the data files contains a water depth of zero.

Results of the RMSE are visualized in 4.8. The RMSE of the difference in water depth between the fine
grid model and the five models reveals a similar pattern as was observed in the upstream discharge of
the Roer. Hence suggesting that a larger upstream discharge does increase the error of the predictions
of the five models. The graph reveals that the RMSE of the models varies between 0 and 0.26 m. At
day 4 of the simulation during peak discharge, the water depth of the fine grid model was on average:
0.33 m, with a maximum value of 2.5 m. Furthermore, the figure shows that the the model without ridge
lines obtained the highest RMSE for the entire simulation, which is not surprising as the model does
not account for sub-grid variations in topography. Hence water is not retained due to fixed weirs in the
model.

Figure 4.8: RMSE comparison water depth; fine grid model versus reference models.

In general, no extreme differences for the RMSE were obtained between the four models with ridge
lines. Hence suggesting that the lines from the three algorithms perform as well as the lines that were
composed by the water authority. Except for day two and five, the model based on the composed lines
by the water authority obtained a higher RMSE, while on day three the RMSE was lower. Focusing
only on the three algorithms, during the first peak discharge the model based on lines from algorithm 1
scored slightly lower than the other two algorithms. Thus, the outcome of this model did obtain water
levels that were closer related to the water level values of the fine grid model. During the second peak,
the lowest values for the RMSE were obtained for the comparison between the fine grid model and the
third algorithm.

4.5. Analysis of the results
The difference in total inundated and water depth has been analyzed by zooming in on some locations.
The algorithms have been compared by analyzing the difference in water depth at day four of the
simulation. In figure 4.9, the difference between the results based on the algorithms and the outcome
of the fine grid model is visualized. The blue and the red areas indicate respectively the regions that
have a higher and lower water depth compared to the fine grid model. The two highlighted regions in
the plots will be analyzed in more detail. As shown in the figure, the water depth in box 1 was lower for
the outcome based on algorithms 1 and 2 than for the fine grid model. While the model based on ridge
lines from the third algorithm did not show a significant difference at this location. At box 2, the model

40 4. Verification D-HYDRO

based on the third algorithm, overestimates the water depth, while the model with ridge lines from the
first and second obtains a water depth that is closer related to the outcome of the fine grid model.

Figure 4.9: Difference in water depth fine grid model versus algorithm 1, 2 and 3. Blue areas indicated zones
were a higher water depth was observed in the outcome of the models based on the algorithms, while red zones
highlight the areas where a lower water depth was obtained (10 January 00:00). More detailed figures can be

found in the appendix E.

The water depth in the region situated in the first red box is visualized in figure 4.10. For this analysis
only the second and third algorithm are considered because the first algorithm did not reveal a major
difference compared to the second algorithm. At day 3 of the simulation of themodel based on algorithm
3, water started to enter the grid cells in the outlined area in the figure. In the simulation of algorithm 1
and 2 these grid cells were not inundated at that specific time interval.

Figure 4.10: Water depth algorithm2 and 3 (9 January 2011, 3:00).

The observed difference in water depth seemed to be related to a ridge structure that was not correctly
detected by the third algorithm. Focusing on the outlined region in figure 4.10, it appeared that the
third algorithm placed the ridge line 2.5 m off the crest level of the ridge structure. A cross section has
been made of the ridge structure indicated by the red dotted line in figure 4.10. Based on the cross
section, which is visualized in figure 3.5, a difference in elevation wasmeasured of about 0.5 m between
the location of the ridge line of algorithm 2 and 3. Hence, the following conclusion has been drawn.
Analysis of the lines showed that the first two algorithms did more accurate represent the topology at
this location. Therefore, the observed difference in water depth in box 2 of figure4.9 is probably related

4.5. Analysis of the results 41

to the manner in which the elevation of the ridge lines is determined in D-HYDRO. A grid size of 25 x
25 m has been used for the hydrodynamic models based on the output of the algorithms. Since the
elevation of the ridge lines for the model is only determined by analyzing the height at the intersection
of the flow links with the grids, there is a major chance that gaps or lower parts of a ridge structure are
missed. Thus, the observed difference in water depth compared to the fine grid model can be related
to the manner in which the height of the ridge structures is determined rather than a deficiency of the
first two algorithms.

Figure 4.11: Water depth and ridge lines algorithm 2 versus algorithm 3 (9 January 2011, 3:00). Red dotted line
indicates the location of the cross section inf figure 4.12.

Figure 4.12: Cross section. Blue and green dot represent respectively the location of ridge line from algorithm 2
and algorithm 3.

The ridge lines located in the second red box in figure 4.9, were also analyzed to establish the cause
of the difference in water depth in this region. Zooming in on the region in box 1, it appeared that the
automatically detected ridge lines of the third algorithm were not placed exactly at the top of the ridge
structure (figure 4.13). Hence water could enter the grid cell that intersects with the red box of 4.13 at an
earlier stage of the simulation. The ridge lines of algorithm 2 are exactly placed at the crest level of the
ridge structure, hence blocking the flow into the grid cells. The outcome of algorithm 1 resembles the
outcome of the second algorithm, however the line is not placed exactly on top of the ridge structure, but

42 4. Verification D-HYDRO

slightly off, nevertheless the water does not enter the grid cell in the red box. Apparently the elongated
kernels of the second algorithm result in more continuous ridge lines that are placed exactly on top of
the ridge structure.

Figure 4.13: Water depth algorithm 1, 2 and 3 (8th of January 2011 at 8:00).

A final analysis is performed on the outcome of the models based on algorithm 1 and 2. Both algorithms
revealed similar scores for the RMSE during the entire simulation (4.8). Except during the last days
a notable difference has been observed. To establish the cause of the difference in RMSE for this
day, the difference in water depth has been visualized in figure 4.14. Since the hydrodynamic model
is relatively complex as it covers a large area and it contains numerous input variables, it is difficult to
explain all observed differences between the outcome of the models. Which is for instance the case for
the regions in box 1 and 2. For both regions no apparent cause could be determined for the difference
in water depth between algorithm 1 and 2. The situation at box 1 is visualized in detail in 4.14 and will
be explained bellow.

Figure 4.14: Difference in water depth at the 16th of January 2011 at 23:00 between fine grid model and results
based on algorithm 1 and 2 (blue areas indicated zones were a higher water depth was observed in the outcome

of the models based on the algorithms, while red zones highlight the areas where a lower water depth was
obtained). More detailed figures can be found in the appendix E.

Another discrepancy in water depth was found in box 1. At this location already at day 8 of the simu-
lation, water was passing the ridge line of algorithm 2, hence flowing from the right side to the left of
the ridge structure. In the model based on algorithm 1 water did not pass the ridge structure the entire
simulation, which was also observed in the fine grid model. Zooming in on the ridge lines (figure 4.16),

4.5. Analysis of the results 43

it appeared that the lines were placed only 1 meter apart. Analysis was performed to establish the
elevation that has been used for the ridge structures. The red dots in figure 4.16, indicate the points
that were used to determine the elevation of the ridge line. In total about 10 cm of difference between
the ridge line of algorithm 1 and 2 was found. It seems highly unlikely that such a small difference in
elevation could create such a significant difference in water depth in box 1 of figure 4.14. Moreover, the
water depth at the moment water starts passing the ridge line in algorithm 2, is not significantly higher
compared to the outcome of the model based on algorithm 1. Hence, it is impossible to state whether
the ridge lines of algorithm 1 or 2 perform better in a D-HYDRO model.

Figure 4.15: Water depth algorithm 1 and 2 and fine grid model (14th of January 2011 at 13:00).

Figure 4.16: Determination of elevation. Points that are taken into account for the weighted average are
indicated by red dots.

5
Discussion

In this paper, the potential of Gaussian kernels has been tested on the automatic detection of ridge
structures. A verification was performed by comparing the outcome of three different algorithms to
manually drawn ridge lines. Furthermore, the automatically detected ridge lines were incorporated into
a 1D-2D model, whereby the outcome has been compared to aerial pictures and a model representing
an approximation of the ground truth. Various aspects of this study could be improved, and numerous
remarks could be made regarding the verification method. The most prominent will be discussed in this
chapter. Firstly, remarks on the algorithms will be provided, followed by a discussion of the verification
method. Finally, suggestions for further research will be outlined.

5.1. Improvements algorithms
The three developed algorithms could all be improved in different ways. A major drawback of the first
and the second algorithm was the time consumption. The process of skeletonization, which has been
applied in the third algorithm, requires a fraction of the time that is needed in order to carry out NMS.
Adjustments to the code of the first two algorithms might reduce the computing time. However, the
lines that were detected by these algorithms where often placed exactly at the crest level of the ridge
structure. On the contrary, the third algorithm created lines that were in often slightly off the top of the
ridge structure, which was confirmed by the results from the comparison between the outcome of the
algorithms and the manually drawn lines. Especially on regions with a large amount of pixels above
the threshold, inaccurate ridge lines were generated by the third algorithm. Further research could
be performed on the procedure of sekeletonization. The results of the third algorithm would certainly
increase if skeletonization would take into account the height of the response values. However, such
an adjustment comes probably at the expense of the calculation time of the algorithm.

Gaps were often encountered on the lines that resulted from the first and second algorithm. The for-
mation of gaps can be, amongst other causes, ascribed to the process of NMS. Taking in consideration
the procedure of NMS, it is not surprising that gaps appeared in the ridge lines appear. For instance, it
occurred that the crest level of a ridge structure was located on the right side of a ridge structure, while
one meter down the ridge, the crest level was located on the other side. Hence it is inevitable that a
gap is created in the middle of the wider ridges. Moreover, the usage of multi-scale ridge detection
did also induce the formation of gaps in the ridge lines. Perpendicular to a ridge structure, small and
large kernels can obtain equally high results when a convolution is applied. Due to NMS, only the max-
imum value is retained. However, for wider ridge structures and when a low lookup value is utilized
for NMS, parallel ridge lines are created resulting in the formation of gaps. Gaps were also created on
ridge structures that were part of a crossing or junction. In this study, the anisotropic kernels did not
completely solve the problem of crossings and junctions. The response value to the convolution at the
crossings and junctions was still lower than at locations. A solution might be to develop a different type
of kernel that has the same form as a crossing or junction. The result of a convolution with such a kernel
could be added to the filter process. As such, crossings and junctions might be correctly extracted by
the algorithms.

45

46 5. Discussion

To counteract the formation of discontinuities on the ridge lines, a procedure was added to the algo-
rithms whereby broken ridge lines were linked. However, it appeared that the majority of the gaps in the
lines did not have any impact on the performance in D-HYDRO. This can be ascribed to the manner
in which the lines are incorporated into a D-HYDRO model. The ridge lines are implemented to the
model by means of a weighted average. The weighted average is determined at the intersection of the
flow links and the ridge line. Therefore, in a model with a grid resolution of 25 x 25 m, only a very small
part of the ridge line is considered for the weighted average. Further research must be performed to
establish a manner in which the elevation of the ridge lines is more accurately added to the hydrody-
namic model. Analysis must also be executed on the usefulness of the procedure of linking line ends
and single ridge pixels. Perhaps this procedure does not ameliorate the performance of the ridge lines
in a D-HYDRO model.

The procedure of IDW, resulted in the creation of abrupt changes in the interpolated regions. The
algorithms recognized these abrupt changes as ridges, hence lines were frequently created in and
around these zones. A different type of interpolation would certainly increase the performance in these
regions. In addition, the malfunctioning of the algorithms at the boundaries could be improved by
adjusting the manner in which the convolution is carried out. Currently, the algorithms detect ridge
lines at the boundaries of the DTM, since imaginary rows and columns filled with zeros are added at
the border of the DTM. Hence an abrupt change is encountered at the borders.

Finally, additional research on the parameter settings might also improve the performance of the al-
gorithms. Research could be performed on the required dimensions of the ridge structures that must
be used for certain types of hydrodynamic models. Hence only the relevant ridge structures can be
extracted by the algorithms. Furthermore, research on threshold selection could also improve the per-
formance of the algorithms. Currently, the threshold is manually determined by analyzing the output
of the filter process. An automatic selection of the threshold would accelerated the procedure of ridge
structure detection.

5.2. Verification method
Verifying the outcome of the algorithms has been a major challenge in this study. The ridge lines that
were composed by the water authority of Limburg made it possible to use data that was less biased
than the lines that were specifically drawn for this study. However, an inspection of the ridge lines
provided by the water authority suggested that quality of the lines was low. The most prominent ridge
structure were covered by the lines, but ridge lines were often not exactly placed on the crest level of the
ridge structure. The poor quality of the lines could not be traced back in the results of the verification
in D-HYDRO. The total inundated area and the RMSE was approximately similar to the outcome of
the models based on the algorithms. This might be linked to the manner in which the fine grid model
has been developed. The fine grid model has been developed with a resolution of 3.5 x 3.5m. The
topography is incorporated into the grids by taking the average of of the elevation for every grid cell.
As such, the maximum elevation of a ridge structure is not taken into account. Hence a model where
ridge lines were placed not exactly on top of a ridge structure, might generate similar water depths as
the fine grid model. This might also explain the high scores in RMSE for the third algorithm, whereby
lines are also often generated not exactly on top of a ridge structure.

The fine grid model was developed with the intention to function as a ground truth model. However, the
model was created by re-sampling the DTM into a coarser resolution, hence it would never be capable
to accurately represent the inundation that took place in January 2011. This became already apparent
when the outcome of the fine grid model was compared to the data that was composed based on aerial
photos. A significant difference was observed between the total inundated area. The data that was
developed by utilizing aerial photos might better reflect reality, however it is unavoidable that also here
inundated areas were missed or were overestimated.

The comparison between the outcome of the algorithms and the manually drawn ridge lines was per-
formed by transforming the lines into a binary raster file. For this process, a resolution of 0.5 x 0.5 m
has been used, which is similar to the resolution of the DTM that was used as input for the algorithms.
However, due to such a fine resolution the chance is very small that the lines of the test and reference
dataset are located at the same place. Therefore, relatively low values were obtained for the precision,

5.2. Verification method 47

recall, F1-score and MCC. Higher values would probably be generated when a coarser resolution was
utilized to transform the ridge lines into rasters.

A first remark on the D-HYDRO model was already made in the previous section about the manner in
which the ridge lines are incorporated into the model. The quality of ridge lines in coarse grid models
might be severely damaged when only the elevation at the intersection of the ridge lines and the flow
links is considered. Another remark on the D-HYDRO model can be made about the parameters that
were used for ridge structure, among which the slope on both sides and the width of structure. These
parameters are used for the calculation of the flow over a ridge structure. For this study, the default
values have been applied, hence inaccurate flows over the ridge structures are established. For future
research these parameters should be correctly set, hence the flow over the ridge structure does better
reflect reality. Another remark on the model must be made about the assumption that the ridge struc-
tures do not collapse during the inundation. In reality it is likely that a ridge structure would collapse as
a consequence of the flood. Determining which ridge structures would collapse and which structures
remain intact is a complex, if not, a nearly impossible task. Nevertheless research devoted to this
topic could provide more insight on the optimum way to model flow around ridge structures. Lastly,
the model that was utilized is rather complex as it covers a large area and involves numerous input
variables. Therefore, not every difference in water depth and inundated area could be explained.

Lastly, it must be noted that the performance of the algorithms has only been verified for the surround-
ings of the Roer. Several runs were carried out on a floodplain of the river Waal, near the city Nijmegen.
These tests revealed some promising results, inferring that the algorithms could also be applied to other
regions. More research is required, for which regions with larger elevation differences are also included.

5.2.1. Future research
For future research, the algorithms could be adjusted in order to detect not only ridges but also the
lowest areas on the DTM. The extreme lows could be implemented in the hydrodynamic model to de-
termine patterns in overland flow. Further research could also be carried out to verify the performance
of the algorithms in comparison with methods that are to some extent capable to determine ridge struc-
tures, such as Deterministic-8 or D-infinity. Another option for further research concerns the application
of a neural network. The output of the algorithms combined with other data could be used to learn a
neural network to detect ridge structures.

To summarize, various aspects of the study could be ameliorated. Several aspect on the algorithms
could be improved and the verification method could have been more extensive, for example by an-
alyzing the performance of the algorithms at other locations. Finally, despite the promising results, it
should be underlined that a final check on the outcome of the algorithms remains necessary.

6
Conclusion

For this research, three algorithms have been developed to automatically extract ridge lines based
on DEM data. The algorithms were developed with the intention to produce ridge lines that can be
utilized for hydrodynamic flood modelling. Therefore, the outcome of the algorithms had to fulfill four
requirements. Firstly, the algorithm should be insensitive to noise and, secondly, should be able to
detect ridge structures of various sizes. Thirdly, at the extracted ridge structures a line had to be
placed exactly on, or at least in the vicinity of, the crest level of the ridge structure. And fourthly, the
algorithms should produce continuous ridge lines, without unnecessary gaps. Based on these criteria,
the second order Gaussian kernel was selected for the development of the algorithms as it revealed
promising results in the detection of line features on images.

A deficiency of the SOG-kernel is that it performs poorly at ridge structures that are part of a crossing
or junction. Therefore, three algorithms were developed with a specific focus on solving the issue of
crossings and junctions. The first, default, algorithm uses isotropic kernels during the filter process
followed by NMS. The second algorithm utilizes anisotropic and isotropic kernels followed by NMS and
the third algorithm uses only isotropic kernels but instead of NMS, skeletonization is applied. The three
algorithms return a binary raster, which could be implemented, after some post-processing steps, into
a D-HYDRO model.

The performance of the algorithms has been verified in different manners. Firstly the outcome of the
algorithms has been compared tomanually drawn lines by computing the precision, recall and 𝐹1−𝑠𝑐𝑜𝑟𝑒
and by analyzing position accuracy based on the procedure as proposed by Goodchild and Hunter.
Secondly the quality of the ridge lines is evaluated in a coupled 1D/2D-model developed for The Roer.
Therefore, the ridge lines were implemented into the hydrodynamic model. The resulting water depth
and total inundated area has been compared to the outcome of a fine grid model with a resolution of 3.5
x 3.5m. Furthermore, the results of the models based on the outcome of the algorithms, was compared
to data that was composed based on aerial photos.

Several conclusions can be drawn based on the results of the verification. The comparison of between
the manually drawn ridge lines and the automatically detected lines revealed that the first and the
second algorithms obtained significantly higher values for precision, recall and the 𝐹1 − 𝑠𝑐𝑜𝑟𝑒. Hence
it can be stated that these algorithms are more capable in placing the line exactly on the crest level
of the ridge structure. This was confirmed when the outcome of the D-HYDRO model was analyzed
by zooming in on some locations. No significant discrepancy was discovered between the outcome
of algorithm 1 and 2 for to comparison to the manually drawn ridge lines. However, an inspection of
the resulting lines revealed that the second algorithm did produce more continuous lines that the first
algorithm. Furthermore, it turned out that the quality of the composed ridge lines by the water authority
too poor for analyzing the performance of the algorithms.

Regarding the second part of the evaluation, it can be concluded that a model based on the lines from
the algorithms perform as well as a model based on the ridge lines that were composed manually. In
general, the models that included ridge lines performed significantly better than the model without lines,
as a higher RMSE was obtained for the former. However, it should be noted that the verification was

49

50 6. Conclusion

carried out by utilizing a fine grid model as an approximation of the ground truth. The fine grid model
did represent the overall pattern of the topography, nevertheless it could not take into account the exact
height of the crest level of a ridge structure. Therefore, no firm conclusions can be made about the
algorithm that, except for the fact that a model with ridge lines performs better than a model without
ridge lines.

Regarding the four requirements that were set, the following conclusions can be drawn. The three
algorithms could all detect ridge structures of various sizes. The algorithms did reveal some high
responses to noise, however this could be suppressed by applying kernels with a larger sigma value
or by utilizing a higher threshold. Solely the first and the second algorithms could extract ridge lines
exactly on the crest level of the ridge structure. Finally, mainly the second algorithm was capable to
generate continuous ridge lines.

Considering the research question:

How can second-order Gaussian kernels be utilized for the automatic extraction of ridge structures,
and what are the implications for 2D-flood modelling?

the following can be stated. An algorithm based on non maximum suppression and both isotropic and
anisotropic kernels, produces the most accurate results. However, an algorithm for which skeletoniza-
tion is applied can produce a quite neat output in a fraction of the calculation time that is required for an
algorithm based on non maximum suppression. Regarding the implications for 2D-flood modelling, the
output of a model based on automatically extracted ridge lines performs as well as a model based on
manually drawn ridge lines. However, due to the verification method it is impossible to state which al-
gorithm should be applied to automatically detect ridge lines in order to generate the best performance
of the hydrodynamic model.

Bibliography
[1] F. Kreienkamp, S. Y. Philip, J. S. Tradowsky, S. F. Kew, P. Lorenz, A. Belleflamme, T. Bettmann,

S. Caluwaerts, S. C. Chan, A. Ciavarella, L. D. Cruz, H. D. Vries, N. Demuth, A. Ferrone, M. Fis-
cher, H. J. Fowler, K. Goergen, D. Heinrich, Y. Henrichs, F. Kaspar, E. Nilson, F. E. L. Otto,
F. Ragone, I. Sonia, R. K. Singh, P. Termonia, L. Thalheimer, J. V. D. Bergh, H. V. D. Vyver, B. V.
Schaeybroeck, R. Vautard, D. Vonk, and N. Wanders, “Rapid attribution of heavy rainfall events
leading to the severe flooding in western europe during july 2021 contributors,” World Weather
Attribution, no. July, 2021.

[2] J. Poussin, P. Bubeck, J. Aerts, and P. Ward, “Potential of semi-structural and non-structural adap-
tation strategies to reduce future flood risk: case study for the meuse,” Natural Hazards and Earth
System Sciences, vol. 12, no. 11, pp. 3455–3471, 2012.

[3] N. Ongdas, F. Akiyanova, Y. Karakulov, A. Muratbayeva, and N. Zinabdin, “Application of hec-ras
(2d) for flood hazard maps generation for yesil (ishim) river in kazakhstan,”Water, vol. 12, no. 10,
p. 2672, 2020.

[4] N. V. Dung, B. Merz, A. Bárdossy, T. D. Thang, and H. Apel, “Multi-objective automatic calibration
of hydrodynamic models utilizing inundation maps and gauge data,” Hydrology and Earth System
Sciences, vol. 15, no. 4, pp. 1339–1354, 2011.

[5] U. Pasquier, Y. He, S. Hooton, M. Goulden, and K. M. Hiscock, “An integrated 1d–2d hydraulic
modelling approach to assess the sensitivity of a coastal region to compound flooding hazard
under climate change,” Natural Hazards, vol. 98, no. 3, pp. 915–937, 2019.

[6] M. Campolo, P. Andreussi, and A. Soldati, “River flood forecasting with a neural network model,”
Water resources research, vol. 35, no. 4, pp. 1191–1197, 1999.

[7] D. Yu, “Parallelization of a two-dimensional flood inundation model based on domain decomposi-
tion,” Environmental Modelling & Software, vol. 25, no. 8, pp. 935–945, 2010.

[8] D. Yu and S. N. Lane, “Urban fluvial flood modelling using a two-dimensional diffusion-wave treat-
ment, part 1: mesh resolution effects,” Hydrological Processes: An International Journal, vol. 20,
no. 7, pp. 1541–1565, 2006.

[9] Deltares, Delft, D-Flow Flexible Mesh Technical Reference Manual, 1.1.0 ed., February 2021.

[10] G. Henckens and W. Engel, Benchmark inundatiemodellen - modelfunctionaliteiten en testbank
berekeningen. STOWA, 2017.

[11] J. F. O’Callaghan and D. M. Mark, “The extraction of drainage networks from digital elevation data,”
Computer vision, graphics, and image processing, vol. 28, no. 3, pp. 323–344, 1984.

[12] E. Pardo-Igúzquiza, J. J. D. Valsero, and P. A. Dowd, “Automatic detection and delineation of karst
terrain depressions and its application in geomorphological mapping and morphometric analysis,”
Acta Carsologica, vol. 42, no. 1, 2013.

[13] Y.-C. Chang, G.-S. Song, and S.-K. Hsu, “Automatic extraction of ridge and valley axes using the
profile recognition and polygon-breaking algorithm,” Computers & Geosciences, vol. 24, no. 1,
pp. 83–93, 1998.

[14] G. Fatih and T. Gökgöz, “A new algorithm for extraction of continuous channel networks with-
out problematic parallels from hydrologically corrected dems,” Boletim de Ciências Geodésicas,
vol. 16, no. 1, pp. 20–38, 2010.

51

52 Bibliography

[15] H. Zhang, Z. Ma, Y. Liu, X. He, and Y. Ma, “A new skeleton feature extraction method for ter-
rain model using profile recognition and morphological simplification,” Mathematical Problems in
Engineering, vol. 2013, 2013.

[16] G. Wang, C. Lopez-Molina, and B. De Baets, “Multiscale edge detection using first-order deriva-
tive of anisotropic gaussian kernels,” Journal of Mathematical Imaging and Vision, vol. 61, no. 8,
pp. 1096–1111, 2019.

[17] A. Rosenfeld and M. Thurston, “Edge and curve detection for visual scene analysis,” IEEE Trans-
actions on computers, vol. 100, no. 5, pp. 562–569, 1971.

[18] C. Lopez-Molina, G. V.-D. De Ulzurrun, J. M. Baetens, J. Van den Bulcke, and B. De Baets, “Un-
supervised ridge detection using second order anisotropic gaussian kernels,” Signal Processing,
vol. 116, pp. 55–67, 2015.

[19] J. Jasiewicz and T. F. Stepinski, “Geomorphons—a pattern recognition approach to classification
and mapping of landforms,” Geomorphology, vol. 182, pp. 147–156, 2013.

[20] P. K. Bhola, B. B. Nair, J. Leandro, S. N. Rao, and M. Disse, “Flood inundation forecasts using
validation data generated with the assistance of computer vision,” Journal of Hydroinformatics,
vol. 21, no. 2, pp. 240–256, 2019.

[21] W. Dai, J. Na, N. Huang, G. Hu, X. Yang, G. Tang, L. Xiong, and F. Li, “Integrated edge detection
and terrain analysis for agricultural terrace delineation from remote sensing images,” International
Journal of Geographical Information Science, vol. 34, no. 3, pp. 484–503, 2020.

[22] G. Shrivakshan and C. Chandrasekar, “A comparison of various edge detection techniques used in
image processing,” International Journal of Computer Science Issues (IJCSI), vol. 9, no. 5, p. 269,
2012.

[23] A. M. Lopez, F. Lumbreras, J. Serrat, and J. J. Villanueva, “Evaluation of methods for ridge and
valley detection,” IEEE Transactions on pattern analysis and machine intelligence, vol. 21, no. 4,
pp. 327–335, 1999.

[24] L. Roberts, “Machine perception of three dimensional solids, optical and electro-optical information
processing. j. tippet eta!. eds, cambridge, mass. m,” 1965.

[25] I. Sobel, “On calibrating computer controlled cameras for perceiving 3-d scenes,” Artificial intelli-
gence, vol. 5, no. 2, pp. 185–198, 1974.

[26] J. M. Prewitt, “Object enhancement and extraction,” Picture processing and Psychopictorics,
vol. 10, no. 1, pp. 15–19, 1970.

[27] T. Lindeberg, “Feature detection with automatic scale selection,” International journal of computer
vision, vol. 30, no. 2, pp. 79–116, 1998.

[28] P. Majer, “On the influence of scale selection on feature detection for the case of linelike structures,”
International Journal of Computer Vision, vol. 60, no. 3, pp. 191–202, 2004.

[29] Z. Ismail, M. Abdul Khanan, F. Omar, M. Abdul Rahman, and M. Mohd Salleh, “Evaluating error of
lidar derived dem interpolation for vegetation area.,” International Archives of the Photogrammetry,
Remote Sensing & Spatial Information Sciences, vol. 42, 2016.

[30] S. Crema, M. Llena, A. Calsamiglia, J. Estrany, L. Marchi, D. Vericat, and M. Cavalli, “Can inpaint-
ing improve digital terrain analysis? comparing techniques for void filling, surface reconstruction
and geomorphometric analyses,” Earth Surface Processes and Landforms, vol. 45, no. 3, pp. 736–
755, 2020.

[31] K. Gavriil, G. Muntingh, and O. J. Barrowclough, “Void filling of digital elevation models with deep
generative models,” IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 10, pp. 1645–
1649, 2019.

Bibliography 53

[32] W. Maleika, “Inverse distance weighting method optimization in the process of digital terrain model
creation based on data collected from a multibeam echosounder,” Applied Geomatics, vol. 12,
no. 4, pp. 397–407, 2020.

[33] T. Lindeberg, “Edge detection and ridge detection with automatic scale selection,” International
journal of computer vision, vol. 30, no. 2, pp. 117–156, 1998.

[34] T. M. Koller, G. Gerig, G. Szekely, and D. Dettwiler, “Multiscale detection of curvilinear structures
in 2-d and 3-d image data,” in Proceedings of IEEE International Conference on Computer Vision,
pp. 864–869, IEEE, 1995.

[35] J. Canny, “A computational approach to edge detection,” IEEE Transactions on pattern analysis
and machine intelligence, no. 6, pp. 679–698, 1986.

[36] C. Sun and P. Vallotton, “Fast linear feature detection using multiple directional non-maximum
suppression,” Journal of Microscopy, vol. 234, no. 2, pp. 147–157, 2009.

[37] P.-L. Shui andW.-C. Zhang, “Noise-robust edge detector combining isotropic and anisotropic gaus-
sian kernels,” Pattern Recognition, vol. 45, no. 2, pp. 806–820, 2012.

[38] J.-M. Geusebroek, A. W. Smeulders, and J. Van DeWeijer, “Fast anisotropic gauss filtering,” IEEE
transactions on image processing, vol. 12, no. 8, pp. 938–943, 2003.

[39] D. Wang, J. Yin, C. Tang, X. Cheng, and B. Ge, “Color edge detection using the normalization
anisotropic gaussian kernel and multichannel fusion,” IEEE Access, vol. 8, pp. 228277–228288,
2020.

[40] T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital patterns,” Communications
of the ACM, vol. 27, no. 3, pp. 236–239, 1984.

[41] H. Winteraeken, “De roer: over meanders en overstromingen,” Natuurhistorisch Maandblad,
vol. 103, no. 8, pp. 201–204, 2014.

[42] “Ahn3 downloads.”

[43] Ahn, “Kwaliteitsbeschrijving,” Mar 2020.

[44] D. Chicco and G. Jurman, “The advantages of the matthews correlation coefficient (mcc) over f1
score and accuracy in binary classification evaluation,” BMC genomics, vol. 21, no. 1, pp. 1–13,
2020.

[45] M. F. Goodchild and G. J. Hunter, “A simple positional accuracy measure for linear features,”
International journal of geographical information science, vol. 11, no. 3, pp. 299–306, 1997.

A
Python code algorithm 1

1

2 # −*− coding : u t f −8 −*−
3 ” ” ”
4 Created on Wed Apr 21 11:38:09 2021
5

6 @author : noppen
7 ” ” ”
8

9 impor t numpy as np
10 impor t r i o xa r r a y as r i o
11 impor t os
12 impor t t ime
13 from skimage . morphology impor t ske le ton i ze
14 from sc ipy . ndimage impor t r o t a t e
15 from sc ipy . ndimage impor t convolve
16 from sc ipy . ndimage . morphology impor t b ina ry_h i t_o r_miss
17 from r a s t e r i o . f i l l impor t f i l l n o d a t a
18 from PIL impor t Image , ImageDraw
19 # from ma t p l o t l i b impor t pyp lo t as p l t
20

21 s t a r t = t ime . t ime ()
22

23 #%% Parameters
24

25 # Parameters kerne ls
26 # Number o f o r i e n t a t i o n s o f the kerne l (the ta)
27 N_theta = 6
28 va r i ab l e_ the ta = np . arange (0 , np . p i , np . p i / N_theta)
29 # Range of the s ize o f the kerne ls (sigma)
30 var iab le_s igma = np . arange (0 . 2 , 1 .1 , 0 .2)
31

32 # Threshold a f t e r the convo lu t ion
33 t h resho ld = 15 # Threshold value
34 # Lookup (l_nms) f o r non−maximum suppression
35 # Here the l_nms i nd i ca t es the number o f p i x e l s t ha t are considered when drawing a l i n e

perpend icu la r to the r idge s t r u c t u r e
36 l_nms = 4
37

38 # Lookup (l_c) f o r connect ion po in t s and l i n e ends
39 l _c = 3
40

41 #%% PART I : PRE−PROCESSING DATA
42 # Impor t DTM
43 data_path = os . chd i r (’ . . / Data ’)
44 z = r i o . open_ras ter io (’ Cl ip_3 . t i f ’)
45

46 # Selec t data AHN
47 t i f = z [0 , : , :]
48 sample = np . where (t i f >1E5 , np . nan , t i f . values)
49

50 # IDW > F i l l nan values

55

56 A. Python code algorithm 1

51 s_mask = np . where (np . isnan (sample) , 0 , 1)
52 sample = f i l l n o d a t a (sample , mask = s_mask)
53

54 #%% PART I I : KERNEL CONVOLUTION
55 def kernel_conv (DEM, s = 1 , t = 0 , r = 1 , lowest = −5 , h ighes t = 5 , step = 0.1 , gamma =

0.75) :
56 x = np . arange (h ighest , lowest , −step)
57 y = np . arange (lowest , h ighest , step)
58 x , y = np . meshgrid (x , y)
59

60 # Create kerne l based on sigma , the ta & rho
61 M_theta = np . ar ray ([[np . cos (t) , np . s in (t)] , [− np . s in (t) , np . cos (t)]])
62 rho_sqr t = np . ar ray ([[r **2 , 0] , [0 , r **−2]])
63 z_second = np . zeros ((len (x) , len (y)))
64

65 f o r i i n range (len (x)) :
66 f o r j i n range (len (y)) :
67 xy = np . ar ray ([x [i , j] , y [i , j]])
68 x_y = np . ar ray ([[x [i , j]] , [y [i , j]]])
69 phi = xy@ M_theta . t ranspose ()@ rho_sqrt@ M_theta@ x_y
70 G_hat = (1 / (2*np . p i *s**2)) * np . exp(− ph i / (2* s**2))
71 SAG = ((((x [i , j] * np . cos (t)) + (y [i , j] * np . s in (t))) **2) / (r **−4 * s**4) − (r **2

/ s**2)) * G_hat
72 z_second [i , j] = SAG
73

74 # Convolut ion
75 DEM_conv = −(s**2) **gamma * convolve (DEM, z_second)
76 r e t u rn (DEM_conv)
77

78 # Sigma van 1: r e s u l t e e r t b i j s tep =0.1 i n een pos i t i e ve piek van 20 stappen , omgerekend naar
AHN(0 .5m) gee f t de t ec t i e r i dge van : 10 meter

79 # Keuze voor detec teren r idge van 3 t o t 15 meter breed gee f t sigma : 0.3 t o t 1.5
80

81 D i r ec t i on = np . zeros (np . shape (sample))
82 Sigma_f ina l = np . zeros (np . shape (sample)) + var iab le_s igma [0]
83

84 f o r j i n range (len (var iab le_s igma)) :
85 p r i n t (j)
86 f o r k i n range (len (va r i ab l e_ the ta)) :
87 DTM_conv = kernel_conv (DEM = sample ,
88 s = var iab le_s igma [j] ,
89 t = va r i ab l e_ the ta [k])
90 i f k==0 and j ==0:
91 Result_conv = DTM_conv

Wordt
u i t e i n d e l i j k e r e s u l t a a t i n opgeslagen van convo lu t i e

92 else :
93 Sigma_f ina l = np . where (DTM_conv>Result_conv , var iab le_s igma [j] , S igma_f ina l)
94 D i r ec t i on = np . where (DTM_conv>Result_conv , va r i ab l e_ the ta [k] , D i r e c t i on)
95 Result_conv = np . where (DTM_conv>Result_conv , DTM_conv , Result_conv)
96

97 #%% PART I I I : THRESHOLDING
98 Resu l t_b inary = np . where (Result_conv > thresho ld , 1 , 0)
99

100 #%% PART IV : NON−MAXIMA SUPPRESSION
101 x , y = np . shape (sample)
102 DTM_extra = np . empty ([(2 * l_nms+sample . shape [0]) , (2* l_nms+sample . shape [1])])
103 DTM_extra [:] = np . nan
104 DTM_extra [l_nms : − l_nms , l_nms : − l_nms] = Result_conv
105

106 NMS = np . empty (np . shape (DTM_extra))
107 NMS[:] = np . nan
108 NMS[l_nms : − l_nms , l_nms : − l_nms] = Result_conv
109

110 Line = np . zeros (np . shape (DTM_extra))
111

112 f o r i i n range (x) :
113 p r i n t (i)
114 f o r j i n range (y) :
115 i f Resu l t_b inary [i , j]==1:
116 t he ta = D i r ec t i on [i , j]

57

117 a_1 = np . round (l_nms*np . cos (the ta)) + l_nms
118 a_2 = np . round (l_nms*−np . cos (the ta)) + l_nms
119 b_1 = np . round (l_nms*−np . s in (the ta)) + l_nms
120 b_2 = np . round (l_nms*np . s in (the ta)) + l_nms
121

122 im = np . asarray (Line , dtype=np . u i n t 8)
123 im = Image . f romarray (im , mode= ’ L ’)
124 draw = ImageDraw .Draw (im)
125 draw . l i n e (((a_1+ j) , (b_1+ i) , (a_2+ j) , (b_2+ i)) , f i l l = 1)
126 c = np . ar ray (im)
127 a r r = DTM_extra [np . where (c==1)]
128

129 i f DTM_extra [i +l_nms , j +l_nms] <(np . nanmax (a r r)) :
130 NMS[i +l_nms , j +l_nms]=np . nan
131

132

133 Result_NMS = NMS[l_nms : − l_nms , l_nms : − l_nms]
134 Result_NMS = np . where (Resu l t_b inary ==0 , np . nan , Result_NMS)
135 Resu l t_b inary = np . where (Result_NMS>0 , 1 , 0)
136

137 # Outside to np . nan
138 Resu l t_b inary [0 , :] = 0
139 Resu l t_b inary [−1 , :]=0
140 Resu l t_b inary [: , 0] = 0
141 Resu l t_b inary [: , −1]=0
142

143

144 #%% PART V: CONNECTION POINTS TO LINES
145 a = 2
146 b = 3
147 r i dge_ex t ra = np . zeros ([(2 * l _c+x) , (2* l _c+y)])
148 endpoints = np . zeros ([(2 * l _c+x) , (2* l _c+y)])
149 r i dge_ex t ra [l _c : − l_c , l _c : − l_c] = Resu l t_b inary
150

151 # Funct ion to connect l i n e s from po in t i , j to po in t x , y)
152 # Inpu t i s neighbors (NB) , coord ina tes po in t 1 (i , j) , B inary r e s u l t (RE) and d is tance wherein

l i n e s / po in t s are connected
153 def connect ion (NB, i , j ,RE, n) :
154 a = np . zeros (np . shape (RE))
155 [x_coor , y_coor] = np . where (NB>0)
156 x_coor = x_coor + i −n
157 y_coor = y_coor + j −n
158

159 f o r k i n range (len (x_coor)) :
160 a = np . asarray (a , dtype=np . u i n t 8)
161 im = Image . f romarray (a , mode= ’ L ’)
162 draw = ImageDraw .Draw (im)
163

164 draw . l i n e ((j , i , y_coor [k] , x_coor [k]) , f i l l =1)
165 np . ar ray (im)
166 RE = im + RE
167 RE = np . where (RE > 0 ,1 ,0) # Binary
168

169 a = np . zeros (np . shape (RE))
170 r e t u rn (RE)
171

172 # Create 4 opt ions o f 3x3 kerne l t ha t can be used to f i n d the end l i n e s
173 ar r1 = np . ar ray ([[1 , 0 , 0] , [1 , 1 , 0] , [0 , 0 , 0]])
174 ar r2 = np . ar ray ([[0 , 0 , 0] , [1 , 1 , 0] , [1 , 0 , 0]])
175 ar r3 = np . ar ray ([[0 , 1 , 0] , [0 , 1 , 0] , [0 , 0 , 0]])
176 ar r4 = np . ar ray ([[1 , 0 , 0] , [0 , 1 , 0] , [0 , 0 , 0]])
177

178 # Find a l l l i n e ends by h i t or miss w i th created 3x3 kerne l
179 f o r i i n range (4) :
180 endpoints = b ina ry_h i t_o r_miss (r idge_ex t ra , a r r1) + endpoints
181 ar r1 = r o t a t e (arr1 , angle =90)
182 f o r i i n range (4) :
183 endpoints = b ina ry_h i t_o r_miss (r idge_ex t ra , a r r2) + endpoints
184 ar r2 = r o t a t e (arr2 , angle =90)
185 f o r i i n range (4) :
186 endpoints = b ina ry_h i t_o r_miss (r idge_ex t ra , a r r3) + endpoints

58 A. Python code algorithm 1

187 ar r3 = r o t a t e (arr3 , angle =90)
188 f o r i i n range (4) :
189 endpoints = b ina ry_h i t_o r_miss (r idge_ex t ra , a r r4) + endpoints
190 ar r4 = r o t a t e (arr4 , angle =90)
191

192 # Connect a l l l i n e ends and separate po in t t ha t are w i t h i n a d i s t i n c e of leng th l
193 # values a and b are used to create l o c a l neighbors
194

195 f o r i i n range (l_c , x+ l_c) :
196 f o r j i n range (l_c , y+ l_c) :
197 i f (r i dge_ex t ra [i , j]==1) :
198

199 # Neighbor ing po in t s
200 neighbors = r i dge_ex t ra [i −1: i +2 , j −1: j +2]
201 i f np . sum(neighbors) ==1:
202 a = 2
203 b = 3
204

205 i f np . sum(r i dge_ex t ra [(i − l_c) : (i +(l _c +1)) , (j − l_c) : (j +(l _c +1))]) ==1:
206 r i dge_ex t ra [i , j]=0
207

208 f o r k i n range (l_c) :
209 i f np . sum(r i dge_ex t ra [(i −a) : (i +b) , (j −a) : (j +b)]) >1:
210 neighbors = r i dge_ex t ra [(i −a) : (i +b) , (j −a) : (j +b)]
211 r i dge_ex t ra = connect ion (neighbors , i , j , r idge_ex t ra , n=a)
212 a = a+1
213 b = b+1
214

215 # Connection l i n e ends
216 i f (endpoints [i , j]==1) :
217 a = 2
218 b = 3
219 f o r k i n range (l_c) :
220 i f np . sum(endpoints [(i −a) : (i +b) , (j −a) : (j +b)]) ==2:
221 neighbors = endpoints [(i −a) : (i +b) , (j −a) : (j +b)]
222 endpoints = connect ion (neighbors , i , j , endpoints , n=a)
223 a = a+1
224 b = b+1
225

226 r i dge_ex t ra = r i dge_ex t ra + endpoints
227 Resu l t_b inary = np . where (r i dge_ex t ra [l _c : − l_c , l _c : − l_c] > 0 ,1 ,np . nan)

Binary
228 Resul t = np . where (Resu l t_b inary ==1 , Result_conv , np . nan)

F i l l w i th values convo lu t ion
229

230 end = t ime . t ime ()
231 p r i n t (end − s t a r t)
232

233 # Thinning l i n e s f o r f u r t h e r processing i n qgis
234 Resu l t_b inary = ske le ton i ze (Resu l t_b inary)
235 Resu l t_b inary = np . where (Resu l t_b inary ==1 ,1 ,np . nan)
236

237

238 # %% ” ” ”SAVE RESULTS ” ” ”
239

240 data_path = os . chd i r (’ . . / Resul ts ’)
241

242 t i f = z
243 t i f [0 , : , :] = Resu l t_b inary
244 t i f . r i o . t o_ ras t e r (” A1_Resul ts_binary . t i f ”)
245

246 t i f = z
247 t i f [0 , : , :] = Resul t
248 t i f . r i o . t o_ ras t e r (” A1_Results . t i f ”)
249

250 t i f = z
251 t i f [0 , : , :] = Sigma_f ina l
252 t i f . r i o . t o_ ras t e r (” A1_sigma . t i f ”)
253

254 t i f = z
255 t i f [0 , : , :] = Result_conv

59

256 t i f . r i o . t o_ ras t e r (” A1_resu l t s_convo lu t ion . t i f ”)

B
Python code algorithm 2

1 # −*− coding : u t f −8 −*−
2 ” ” ”
3 Created on Wed Apr 21 11:38:09 2021
4

5 @author : noppen
6 ” ” ”
7

8 impor t numpy as np
9 impor t r i o xa r r a y as r i o
10 impor t os
11 impor t t ime
12 from skimage . morphology impor t ske le ton i ze
13 from sc ipy . ndimage . morphology impor t b ina ry_h i t_o r_miss
14 from sc ipy . ndimage impor t convolve
15 from sc ipy . ndimage impor t r o t a t e
16 from r a s t e r i o . f i l l impor t f i l l n o d a t a
17 from PIL impor t Image , ImageDraw
18 from ma t p l o t l i b impor t pyp lo t as p l t
19

20 s t a r t = t ime . t ime ()
21

22 #%% Parameters
23

24 # Parameters kerne ls
25 N_theta = 6
26 va r i ab l e_ the ta = np . arange (0 , np . p i , np . p i / N_theta)
27 va r iab le_ rho = np . arange (1 ,1 .6 , 0 .2)
28 var iab le_s igma = np . arange (0 .2 ,1 .1 , 0 .2)
29

30 t h resho ld = 30 # Threshold value
31 # Lookup (l_nms) f o r non−maximum suppression
32 # Here the l_nms i nd i ca t es the number o f p i x e l s t ha t are considered when drawing a l i n e

perpend icu la r to the r idge s t r u c t u r e
33 l_nms = 4
34

35 # Lookup (l_c) f o r connect ion po in t s and l i n e ends
36 l _c = 3
37

38 #%% PART I : PRE−PROCESSING DATA
39 # Impor t DTM
40 data_path = os . chd i r (’ . . / Data ’)
41 z = r i o . open_ras ter io (’ Cl ip_3 . t i f ’)
42

43 # Selec t data AHN
44 t i f = z [0 , : , :]
45 sample = np . where (t i f >1E5 , np . nan , t i f . values)
46

47 # Inverse Distance Weight ing
48 s_mask = np . where (np . isnan (sample) , 0 , 1)
49 sample = f i l l n o d a t a (sample , mask = s_mask)
50

61

62 B. Python code algorithm 2

51 #%% PART I I : KERNEL CONVOLUTION
52 def kernel_conv (DEM, s = 1 , t = 0 , r = 1 , lowest = −6 , h ighes t = 6 , step = 0.1 , gamma=0.75) :
53 x = np . arange (h ighest , lowest , −step)
54 y = np . arange (lowest , h ighest , step)
55 x , y = np . meshgrid (x , y)
56

57 # Create kerne l based on sigma , the ta & rho
58 M_theta = np . ar ray ([[np . cos (t) , np . s in (t)] , [− np . s in (t) , np . cos (t)]])
59 rho_sqr t = np . ar ray ([[r **2 , 0] , [0 , r **−2]])
60 second = np . zeros ((len (x) , len (y)))
61 f o r i i n range (len (x)) :
62 f o r j i n range (len (y)) :
63 xy = np . ar ray ([x [i , j] , y [i , j]])
64 x_y = np . ar ray ([[x [i , j]] , [y [i , j]]])
65 phi = xy@ M_theta . t ranspose ()@ rho_sqrt@ M_theta@ x_y
66 G_hat = (1 / (2*np . p i *s**2)) * np . exp(− ph i / (2* s**2))
67 SAG = ((((x [i , j] * np . cos (t)) + (y [i , j] * np . s in (t))) **2) / (r **−4 * s**4) − (r **2

/ s**2)) * G_hat
68 second [i , j] = SAG
69

70 # Convolut ion
71 DEM_conv = − s**(2*gamma) * convolve (DEM, second)
72 r e t u rn (DEM_conv)
73

74 D i r ec t i on = np . zeros (np . shape (sample))
75 Sigma_f ina l = np . zeros (np . shape (sample)) + var iab le_s igma [0]
76 Rho_f ina l = np . ones (np . shape (sample)) + va r iab le_ rho [0]
77

78 f o r i i n range (len (va r iab le_ rho)) :
79 p r i n t (i)
80 f o r j i n range (len (var iab le_s igma)) :
81

82 f o r k i n range (len (va r i ab l e_ the ta)) :
83 DTM_conv = kernel_conv (DEM = sample ,
84 s = var iab le_s igma [j] ,
85 t = va r i ab l e_ the ta [k] ,
86 r = va r iab le_ rho [i])
87 i f k==0 and j ==0:
88 Result_conv = DTM_conv
89 else :
90 D i r ec t i on = np . where (DTM_conv>Result_conv , va r i ab l e_ the ta [k] , D i r e c t i on)
91 Sigma_f ina l = np . where (DTM_conv>Result_conv , var iab le_s igma [j] , S igma_f ina l)
92 Rho_f ina l = np . where (DTM_conv>Result_conv , va r iab le_ rho [i] , Rho_f ina l)
93 Result_conv = np . where (DTM_conv>Result_conv , DTM_conv , Result_conv)
94

95 #%% PART I I I : THRESHOLDING
96 Resu l t_b inary = np . where (Result_conv > thresho ld , 1 , 0)
97

98 #%% PART IV : NON−MAXIMA SUPPRESSION
99 x , y = np . shape (sample)
100 DTM_extra = np . empty ([(2 * l_nms+sample . shape [0]) , (2* l_nms+sample . shape [1])])
101 DTM_extra [:] = np . nan
102 DTM_extra [l_nms : − l_nms , l_nms : − l_nms] = Result_conv
103

104 NMS = np . empty (np . shape (DTM_extra))
105 NMS[:] = np . nan
106 NMS[l_nms : − l_nms , l_nms : − l_nms] = Result_conv
107

108 Line = np . zeros (np . shape (DTM_extra))
109

110 f o r i i n range (x) :
111 p r i n t (i)
112 f o r j i n range (y) :
113 i f Resu l t_b inary [i , j]==1:
114 t he ta = D i r ec t i on [i , j]
115 a_1 = np . round (l_nms*np . cos (the ta)) + l_nms
116 a_2 = np . round (l_nms*−np . cos (the ta)) + l_nms
117 b_1 = np . round (l_nms*−np . s in (the ta)) + l_nms
118 b_2 = np . round (l_nms*np . s in (the ta)) + l_nms
119

120 im = np . asarray (Line , dtype=np . u i n t 8)

63

121 im = Image . f romarray (im , mode= ’ L ’)
122 draw = ImageDraw .Draw (im)
123 draw . l i n e (((a_1+ j) , (b_1+ i) , (a_2+ j) , (b_2+ i)) , f i l l = 1)
124 c = np . ar ray (im)
125 a r r = DTM_extra [np . where (c==1)]
126

127 i f DTM_extra [i +l_nms , j +l_nms] <(np . nanmax (a r r)) :
128 NMS[i +l_nms , j +l_nms]=np . nan
129

130

131 Result_NMS = NMS[l_nms : − l_nms , l_nms : − l_nms]
132 Result_NMS = np . where (Resu l t_b inary ==0 , np . nan , Result_NMS)
133 Resu l t_b inary = np . where (Result_NMS>0 , 1 , 0)
134

135 #%% PART V: CONNECTION POINTS TO LINES
136 a = 2
137 b = 3
138 r i dge_ex t ra = np . zeros ([(2 * l _c+x) , (2* l _c+y)])
139 endpoints = np . zeros ([(2 * l _c+x) , (2* l _c+y)])
140 r i dge_ex t ra [l _c : − l_c , l _c : − l_c] = Resu l t_b inary
141

142 # Funct ion to connect l i n e s from po in t i , j to po in t x , y)
143 # Inpu t i s neighbors (NB) , coord ina tes po in t 1 (i , j) , B inary r e s u l t (RE) and d is tance wherein

l i n e s / po in t s are connected
144 def connect ion (NB, i , j ,RE, n) :
145 a = np . zeros (np . shape (RE))
146 [x_coor , y_coor] = np . where (NB>0)
147 x_coor = x_coor + i −n
148 y_coor = y_coor + j −n
149

150 f o r k i n range (len (x_coor)) :
151 a = np . asarray (a , dtype=np . u i n t 8)
152 im = Image . f romarray (a , mode= ’ L ’)
153 draw = ImageDraw .Draw (im)
154

155 draw . l i n e ((j , i , y_coor [k] , x_coor [k]) , f i l l =1)
156 np . ar ray (im)
157 RE = im + RE
158 RE = np . where (RE > 0 ,1 ,0) # Binary
159

160 a = np . zeros (np . shape (RE))
161 r e t u rn (RE)
162

163 # Create 4 opt ions o f 3x3 kerne l t ha t can be used to f i n d the end l i n e s
164 ar r1 = np . ar ray ([[1 , 0 , 0] , [1 , 1 , 0] , [0 , 0 , 0]])
165 ar r2 = np . ar ray ([[0 , 0 , 0] , [1 , 1 , 0] , [1 , 0 , 0]])
166 ar r3 = np . ar ray ([[0 , 1 , 0] , [0 , 1 , 0] , [0 , 0 , 0]])
167 ar r4 = np . ar ray ([[1 , 0 , 0] , [0 , 1 , 0] , [0 , 0 , 0]])
168

169 # Find a l l l i n e ends by h i t or miss w i th created 3x3 kerne l
170 f o r i i n range (4) :
171 endpoints = b ina ry_h i t_o r_miss (r idge_ex t ra , a r r1) + endpoints
172 ar r1 = r o t a t e (arr1 , angle =90)
173 f o r i i n range (4) :
174 endpoints = b ina ry_h i t_o r_miss (r idge_ex t ra , a r r2) + endpoints
175 ar r2 = r o t a t e (arr2 , angle =90)
176 f o r i i n range (4) :
177 endpoints = b ina ry_h i t_o r_miss (r idge_ex t ra , a r r3) + endpoints
178 ar r3 = r o t a t e (arr3 , angle =90)
179 f o r i i n range (4) :
180 endpoints = b ina ry_h i t_o r_miss (r idge_ex t ra , a r r4) + endpoints
181 ar r4 = r o t a t e (arr4 , angle =90)
182

183 # Connect a l l l i n e ends and separate po in t t ha t are w i t h i n a d i s t i n c e o f leng th l
184 # values a and b are used to create l o c a l neighbors
185

186 f o r i i n range (l_c , x+ l_c) :
187 f o r j i n range (l_c , y+ l_c) :
188 i f (r i dge_ex t ra [i , j]==1) :
189

190 # Neighbor ing po in t s

64 B. Python code algorithm 2

191 neighbors = r i dge_ex t ra [i −1: i +2 , j −1: j +2]
192 i f np . sum(neighbors) ==1:
193 a = 2
194 b = 3
195

196 i f np . sum(r i dge_ex t ra [(i − l_c) : (i +(l _c +1)) , (j − l_c) : (j +(l _c +1))]) ==1:
197 r i dge_ex t ra [i , j]=0
198

199 f o r k i n range (l_c) :
200 i f np . sum(r i dge_ex t ra [(i −a) : (i +b) , (j −a) : (j +b)]) >1:
201 neighbors = r i dge_ex t ra [(i −a) : (i +b) , (j −a) : (j +b)]
202 r i dge_ex t ra = connect ion (neighbors , i , j , r idge_ex t ra , n=a)
203 a = a+1
204 b = b+1
205

206 # Connection l i n e ends
207 i f (endpoints [i , j]==1) :
208 a = 2
209 b = 3
210 f o r k i n range (l_c) :
211 i f np . sum(endpoints [(i −a) : (i +b) , (j −a) : (j +b)]) ==2:
212 neighbors = endpoints [(i −a) : (i +b) , (j −a) : (j +b)]
213 endpoints = connect ion (neighbors , i , j , endpoints , n=a)
214 a = a+1
215 b = b+1
216

217 r i dge_ex t ra = r i dge_ex t ra + endpoints
218 Resu l t_b inary = np . where (r i dge_ex t ra [l _c : − l_c , l _c : − l_c] > 0 ,1 ,np . nan)

Binary
219 Resul t = np . where (Resu l t_b inary ==1 , Result_conv , np . nan)

F i l l w i th values convo lu t ion
220

221 end = t ime . t ime ()
222 p r i n t (end − s t a r t)
223

224 # Thinning l i n e s f o r f u r t h e r processing i n qgis
225 Resu l t_b inary = ske le ton i ze (Resu l t_b inary)
226 Resu l t_b inary = np . where (Resu l t_b inary ==1 ,1 ,np . nan)
227

228 p l t . f i g u r e (f i g s i z e =(8 ,8))
229 p l t . imshow (Resu l t_b inary)
230

231

232 #%% ” ” ”SAVE RESULTS ” ” ”
233

234 data_path = os . chd i r (’ . . / Resul ts ’)
235

236 t i f = z
237 t i f [0 , : , :] = Resu l t_b inary
238 t i f . r i o . t o_ ras t e r (” A2_Resul ts_binary . t i f ”)
239

240 t i f = z
241 t i f [0 , : , :] = Resul t
242 t i f . r i o . t o_ ras t e r (” A2_Results . t i f ”)
243

244

245 t i f = z
246 t i f [0 , : , :] = Rho_f ina l
247 t i f . r i o . t o_ ras t e r (” A2_rho . t i f ”)
248

249 t i f = z
250 t i f [0 , : , :] = Sigma_f ina l
251 t i f . r i o . t o_ ras t e r (” A2_sigma . t i f ”)
252

253 t i f = z
254 t i f [0 , : , :] = Result_conv
255 t i f . r i o . t o_ ras t e r (” A2_v2_resu l ts_convo lu t ion . t i f ”)

C
Python code algorithm 3

1

2 # −*− coding : u t f −8 −*−
3 ” ” ”
4 Created on Wed Apr 21 11:38:09 2021
5

6 @author : noppen
7 ” ” ”
8

9 impor t numpy as np
10 impor t r i o xa r r a y as r i o
11 impor t os
12 from sc ipy . ndimage impor t convolve
13 from r a s t e r i o . f i l l impor t f i l l n o d a t a
14 from skimage . morphology impor t ske le ton i ze
15 impor t t ime
16

17 s t a r t = t ime . t ime ()
18

19 #%% Parameters
20

21 # Parameters voor kerne ls
22 N_theta = 6 # Number o f o r i e n t a t i o n s
23 va r i ab l e_ the ta = np . arange (0 , np . p i , np . p i / N_theta)
24 var iab le_s igma = np . arange (0 . 2 , 1 . 1 , 0 .2) # Size kerne l
25

26 t h resho ld = 15 # Threshold value
27

28 #%% PART I : PRE−PROCESSING DATA
29 # Impor t DTM
30 data_path = os . chd i r (’ . . / Data ’)
31 z = r i o . open_ras ter io (’ Cl ip_3 . t i f ’)
32

33 # Selec t data AHN
34 t i f = z [0 , : , :]
35 sample = np . where (t i f >1E5 , np . nan , t i f . values)
36

37 # IDW > F i l l nan values
38 s_mask = np . where (np . isnan (sample) , 0 , 1)
39 sample = f i l l n o d a t a (sample , mask = s_mask)
40

41

42 #%% PART I I : KERNEL CONVOLUTION
43

44 def kernel_conv (DEM, s = 1 , t = 0 , r = 1 , lowest = −5 , h ighes t = 5 , step = 0.1 , gamma =
0.75) :

45 x = np . arange (h ighest , lowest , −step)
46 y = np . arange (lowest , h ighest , step)
47 x , y = np . meshgrid (x , y)
48

49 # Create kerne l based on sigma , the ta & rho
50 M_theta = np . ar ray ([[np . cos (t) , np . s in (t)] , [− np . s in (t) , np . cos (t)]])

65

66 C. Python code algorithm 3

51 rho_sqr t = np . ar ray ([[r **2 , 0] , [0 , r **−2]])
52 z_second = np . zeros ((len (x) , len (y)))
53 f o r i i n range (len (x)) :
54 f o r j i n range (len (y)) :
55 xy = np . ar ray ([x [i , j] , y [i , j]])
56 x_y = np . ar ray ([[x [i , j]] , [y [i , j]]])
57 phi = xy@ M_theta . t ranspose ()@ rho_sqrt@ M_theta@ x_y
58 G_hat = (1 / (2*np . p i *s**2)) * np . exp(− ph i / (2* s**2))
59 SAG = ((((x [i , j] * np . cos (t)) + (y [i , j] * np . s in (t))) **2) / (r **−4 * s**4) − (r **2

/ s**2)) * G_hat
60 z_second [i , j] = SAG
61

62 # Convolut ion
63 DEM_conv = −(s**2) **gamma * convolve (DEM, z_second)
64 r e t u rn (DEM_conv)
65

66 D i r ec t i on = np . zeros (np . shape (sample))
67 Sigma_f ina l = np . zeros (np . shape (sample)) + var iab le_s igma [0]
68

69 f o r j i n range (len (var iab le_s igma)) :
70 p r i n t (j)
71 f o r k i n range (len (va r i ab l e_ the ta)) :
72 DTM_conv = kernel_conv (DEM = sample ,
73 s = var iab le_s igma [j] ,
74 t = va r i ab l e_ the ta [k])
75 i f k==0 and j ==0:
76 Result_conv = DTM_conv # Wordt u i t e i n d e l i j k e r e s u l t a a t i n

opgeslagen van convo lu t i e
77 else :
78 Sigma_f ina l = np . where (DTM_conv>Result_conv , var iab le_s igma [j] , S igma_f ina l)
79 D i r ec t i on = np . where (DTM_conv>Result_conv , va r i ab l e_ the ta [k] , D i r e c t i on)
80 Result_conv = np . where (DTM_conv>Result_conv , DTM_conv , Result_conv)
81

82

83

84 #%% PART I I I : THRESHOLDING
85 Resu l t_b inary= np . where ((Result_conv > th resho ld) , 1 , np . nan)
86

87 #%% PART IV : SKELETONIZE
88 Resu l t_b inary = ske le ton i ze (Resu l t_b inary)
89 Resul t = np . where (Resu l t_b inary ==1 ,Result_conv , np . nan)
90

91 # Outside to np . nan
92 Resu l t_b inary [0 , :] = np . nan
93 Resu l t_b inary [−1 , :] = np . nan
94 Resu l t_b inary [: , 0] = np . nan
95 Resu l t_b inary [: , −1]= np . nan
96

97 end = t ime . t ime ()
98 p r i n t (end − s t a r t)
99

100

101

102 #%% ” ” ”SAVE RESULTS ” ” ”
103 data_path = os . chd i r (’ . . / Resul ts ’)
104

105 t i f = z
106 t i f [0 , : , :] = Resu l t_b inary
107 t i f . r i o . t o_ ras t e r (” A3_v2_Results_binary . t i f ”)
108

109 t i f = z
110 t i f [0 , : , :] = Resul t
111 t i f . r i o . t o_ ras t e r (” A3_v2_Results . t i f ”)
112

113 t i f = z
114 t i f [0 , : , :] = Sigma_f ina l
115 t i f . r i o . t o_ ras t e r (” A3_v2_sigma . t i f ”)
116

117 t i f = z
118 t i f [0 , : , :] = Result_conv
119 t i f . r i o . t o_ ras t e r (” A3_v2_resu l ts_convo lu t ion . t i f ”)

67

D
Post-processin steps in QGIS

Figure D.1: Post-processing steps QGIS.

69

E
Difference in water depth

Figure E.1: Difference in water depth fine grid model versus algorithm 1.

71

72 E. Difference in water depth

Figure E.2: Difference in water depth fine grid model versus algorithm 2.

73

Figure E.3: Difference in water depth fine grid model versus algorithm 3.

74 E. Difference in water depth

Figure E.4: Difference in water depth fine grid model versus algorithm 1.

75

Figure E.5: Difference in water depth fine grid model versus algorithm 2.

	Introduction
	Introduction
	Gaussian kernels

	Introduction
	Gaussian kernels
	Crossings & Junctions

	Research Objective

	Introduction
	Thesis outline

	Methodology
	Algorithms
	Algorithm I
	NaN-filling

	Methodology
	Algorithms
	Filtering

	Methodology
	Algorithms
	Thresholding

	Methodology
	Algorithms
	Non-maximum suppression (NMS)

	Methodology
	Algorithms
	Linking broken ridge lines

	Methodology
	Algorithms
	Algorithm II

	Methodology
	Algorithms
	Algorithm III: Isotropy and Skeletonization

	Methodology
	Algorithms
	Overview algorithms

	Post-processing in QGIS

	Verification manually drawn ridge lines
	Dimensions ridge structures
	Parameters algorithms

	Verification manually drawn ridge lines
	Study site and data

	Verification manually drawn ridge lines
	Results algorithms

	Verification manually drawn ridge lines
	Results verification
	Precision, Recall, F1-score and MCC

	Verification manually drawn ridge lines
	Results verification
	Positional accuracy analysis based on Goodchild and Hunter

	Verification D-HYDRO
	D-HYDRO model for De Roer

	Verification D-HYDRO
	Development hydrodynamic models for validation

	Verification D-HYDRO
	Results total inundated area

	Verification D-HYDRO
	Results water depth

	Verification D-HYDRO
	Analysis of the results

	Discussion
	Improvements algorithms

	Discussion
	Verification method

	Discussion
	Verification method
	Future research

	Conclusion
	Bibliography
	Python code algorithm 1
	Python code algorithm 2
	Python code algorithm 3
	Post-processin steps in QGIS
	Difference in water depth

