<]
TUDelft

Delft University of Technology

TCPSbed
A Modular Testbed for Tactile Internet based Cyber-Physical Systems

Polachan, Kurian; Pal, Joydeep; Singh, Chandramani; Prabhakar, T. V.; Kuipers, Fernando

DOI
10.1109/TNET.2021.3124767

Publication date
2022

Document Version
Accepted author manuscript

Published in
IEEE/ACM Transactions on Networking

Citation (APA)

Polachan, K., Pal, J., Singh, C., Prabhakar, T. V., & Kuipers, F. (2022). TCPSbed: A Modular Testbed for
Tactile Internet based Cyber-Physical Systems. IEEE/ACM Transactions on Networking, 30(2), 796-811.
Article 9614669. https://doi.org/10.1109/TNET.2021.3124767

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/TNET.2021.3124767
https://doi.org/10.1109/TNET.2021.3124767

TCPSbed: A Modular Testbed for Tactile Internet
based Cyber-Physical Systems

Kurian Polachan*, Joydeep Pal f, Chandramani Singh?, Prabhakar T. V., and Fernando A. Kuipers¥
* 1 1§ Indian Institute of Science, India
9 Delft University of Technology, The Netherlands
Email: {*kurian, fjoydeeppal, fchandra, Stvprabs} @iisc.ac.in, f.a kuipers @tudelft.nl

Abstract—Tactile Internet based Cyber-Physical Systems
(TCPS) are highly sensitive to component and communication la-
tencies and packet drops. Building a high performing TCPS, thus,
necessitates experimenting with different hardware, algorithms,
access technologies, and communication protocols. To facilitate
such experiments, we have developed TCPSbed, a modular
testbed for TCPS. TCPSbed facilitates the integration of different
components, both real and simulated, to realize different TCPS
applications and evaluate their latency and control performances.
TCPSbed’s latency analyzer tool employs a novel method to
isolate latencies of individual TCPS components such as the
latencies contributed by actuation, sensing, algorithms, and by
the network, all in an online fashion. TCPSbed’s method of
analyzing stability is also novel. It involves the use of the step
response analysis method, a classic control-theoretic method used
for analyzing the stability of generic control systems. TCPSbed’s
support for edge intelligence modules enables prediction of
command and feedback signals at the network’s edge allowing
TCPS applications to perform well in adverse network conditions.
TCPSbed’s source-code, made available through our GitHub
page TactileInternet, allows developers to extend its features and
functionalities further. In this paper, we describe the architecture
and implementation details of TCPSbed and demonstrate its
features through several proof-of-concept experiments.

Index Terms—Tactile Internet, Tactile Cyber-Physical Systems,
Haptic Communications, Testbed, Step Response Analysis, La-
tency Analysis, Edge Computing

I. INTRODUCTION

The Internet was designed primarily for the exchange of
data. Over the years, however, it has evolved into a medium
for transferring real-time audio and video as well. Recently,
researchers have provided a new vision for the Internet,
referred to as the Tuactile Internet, in which the Internet is
used to enable real-time human-in-the-loop Cyber-Physical
Systems (CPS) involving tactile sensory (haptic) feedback and
high frame-rate video feedback to control and steer faraway
objects in real-time [2], [3], [4], see Figure 1. The futuristic
network will enable these real-time CPS to run with utmost
stability and provide enhanced quality of experience to the
human operators involved. We refer to these real-time human-
in-the-loop cyber-physical systems as Tactile Cyber-Physical
Systems (TCPS) [5], [6].

An earlier version of this paper was presented at the 11** International
Conference on Communication Systems and Networks (COMSNETS), Ban-
galore, India, 2019 [1].

video feedback &

A /

Operator-Side

8

force feedback Teleoperator-Side

Network

Fig. 1. An example of a human-in-the-loop real-time cyber-physical systems
or TCPS — a teleoperation system involving haptic (force) feedback and high
frame rate audiovisual feedback used for remote exploration of objects [7].

TCPS applications are highly sensitive to latency and packet
drops. Higher of these may cause cybersickness in the use of
TCPS applications and control-loop instabilities.

Cybersickness: In tactile-visual control applications such
as gaming, at higher latencies, the video feedback in response
to the operator’s actions will be delayed and noticeable to
the operator, resulting in cybersickness [8]. Cybersickness can
cause physical and physiological effects in human operators,
preventing them from using the system for a long dura-
tion [9]. The latency at which the operator starts to experience
cybersickness depends on the operator dynamics (i.e., the
operator’s hand speed) and the operator side’s video feedback
configuration. For most use cases, latencies of more than a
few milliseconds can already result in cybersickness.

Control Loop Instability: There exists a control loop in
the TCPS of Figure 1. This control loop results from the
kinematic command and force-feedback between the operator-
side human-system interface and the teleoperator. Control
loop instabilities can cause the remote-side robot to go out
of synchronization with the operator’s hand movements. In
critical applications such as telesurgery, such instabilities can
result in injuries to patients. Instability can arise in the control
loop when the end-to-end latency, jitter, or packet drops
are high [10]. The latency, jitter, and packet drop values at
which the control loop destabilizes depend on several factors.
They depend on the operator dynamics (i.e., the operator’s
hand speed), human-system interface and robot make, and
even the material’s stiffness at the remote side. For most use
cases, however, latencies of more than a few milliseconds can
destabilize the control loop [10].

Current ambitions for 5G communications and IETF De-
terministic Networking (DetNet) standards stipulate network

latencies for TCPS in the order of a few milliseconds, provided
the distance between operator and teleoperator sides be within
certain limits [11]. When the distance is considerable, irrespec-
tive of the underlying network technology, the network will
introduce a communication delay no smaller than the distance
divided by the speed of light. In such cases, to avoid control
loop instability and cybersickness in TCPS (while the actual
latency is still restricted by the speed of light and is beyond
TCPS requirements), prediction algorithms may be used at the
TCPS edges i.e., at the operator and teleoperator-sides [12].
Using prediction techniques is the only way that latency can
be obtained that is seemingly lower than the speed of light.
Using prediction techniques also improves the reliability of the
network in scenarios where there exists considerable packet
loss. In TCPS, the prediction blocks near the operator-side
predict the control commands, and those at the teleoperator-
side predicts feedback (e.g., haptic, video) to imitate the
behaviour of a low-latency and reliable network. The method
of using prediction-based approaches in TCPS to improve its
network quality is referred to as edge intelligence [13], [8].

Even if we assume the availability of a low-latency and
reliable network in the foreseeable future, designing a high-
performing TCPS will still require us to experiment with
different hardware, prediction algorithms, access technologies
and communication protocols and evaluate their end-to-end la-
tencies and stabilities [12]. Existing testbeds for teleoperation
systems, 5G and IETF DetNet, however, are either application-
specific or designed to evaluate the performance of specific
components. They are not readily usable for the requirements
of general TCPS applications and cannot help conduct ex-
periments to evaluate the latency and stability of the system.
This has motivated us to develop TCPSbed, a modular testbed
specifically designed for TCPS with support for a broad range
of TCPS components. TCPSbed allows the integration of dif-
ferent components, both real and simulated, such as networks
in ns-3 or Mininet and robots in VREP, to realize end-to-
end TCPS applications with reasonable effort [14], [15], [16].
For instance, TCPSbed out-of-the-box supports different TCPS
flows, such as kinematic, audio, video, and haptic, which are
common in many TCPS applications. TCPSbed also combines
novel methods and tools to evaluate both end-to-end and
component performance of TCPS applications, in particular,
to evaluate latencies of TCPS components and the stability of
TCPS control loops. TCPSbed’s support for edge intelligence
modules enables the integration of prediction algorithms at the
network edges, which is key in lowering latency.

In this paper, we describe the architecture and implementa-
tion details of TCPSbed and demonstrate its features through
several proof-of-concept experiments.

A. Contributions

Our main contributions are the following:

e We present the modular architecture of TCPSbed, an
open-source testbed designed specifically for TCPS ap-
plications.

« We discuss edge intelligence in the context of TCPS and
further describe the structure and usage of TCPSbed’s
edge intelligence components.

o We describe methods and tools to perform latency char-
acterization and stability analysis of TCPS and its com-
ponents.

e We present several proof-of-concept experiments to
demonstrate the flexibility and the novel features of
TCPSbed.

B. Related Work

1) Testbed: Past works on testbeds for teleoperation sys-
tems are intended for specific applications and often designed
to analyze the performance of a specific testbed compo-
nent [17], [18], [19], [20], [21], [22]. For instance, in [17],
the authors describe a testbed specifically designed for hotline
robot applications. The same is true for testbeds for the Tactile
Internet [23], [24], [25]. Their designs focus on evaluating
the performance of specific testbed components, such as 5G
and Wi-Fi access technologies. Application and component
specific testbeds of the above kind are not readily portable
to the requirements of general TCPS applications and cannot
help conduct experiments with different components, such as
hardware, access technologies, and communication protocols.
Recently, after our work [1], authors in [26] has proposed
TIXT, a testbed specifically designed for TCPS. TIXT however
has the following shortcomings compared to TCPSbed.

« Its source code is not open and the API framework is not
defined/documented.

o It lacks edge intelligence components.

« It does not support Mininet, the go-to emulator to exper-
iment with software-defined networks, out-of-the-box.

« It does not provide methods or tools to evaluate the la-
tency or stability of TCPS. Latency and stability analysis
of TCPS is essential to study the effects of cybersickness
and control-loop instabilities.

2) Latency Characterization: Component-level latency
characterization is crucial in TCPS. It helps in optimizing
the components to meet the stringent end-to-end latency and
reliability requirements of a TCPS application. However, none
of the testbeds mentioned above provides methods or tools
to perform component-level latency characterization of TCPS,
which is a key contribution of our paper.

Several open/commercial tools such as ping, traceroute,
solarwinds, and visualroute exist for evaluating the latency
of network components of a TCPS [27], [28]. However, these
tools are not suitable for evaluating the latencies of TCPS
non-networking components, e.g., the latency associated with
sensing, actuation, and the algorithms. To the best of our
knowledge, there exists no tool to simultaneously evaluate the
networking and non-networking components in a TCPS, which
motivated us to develop a custom latency characterization
method and and tool, as described in this paper.

3) Performance Analysis: Several subjective and objec-
tive methods to evaluate TCPS-like systems are found in
the literature [29], [30], [31], [32], [33], [34]. Subjective
methods employ human operators to evaluate TCPS. They
often measure the human operator’s quality of experience to
evaluate instabilities in TCPS indirectly — a lower quality
of experience indicates higher levels of instabilities. Being

subjective, often they are time-consuming and cannot detect
control-loop instabilities that lie outside the sensory perception
range of human operators. Objective methods use Quality
of Service (QoS) metrics such as latency, jitter, and packet
drops to evaluate TCPS. However, it is not easy to arrive at
the right combination of these metrics that result in stable
control loops. These shortcomings motivated us to propose an
alternative method to characterize the performance of TCPS
that uses the classical step response analysis method. In our
work, we design and develop the necessary framework and
tool to conduct step response analysis on TCPS.

C. Outline

This paper is structured as follows: Section II describes the
architecture of TCPSbed, its constituting components, their
APIs and interfaces. Section III presents different methods to
evaluate the performance of TCPS using TCPSbed. Specif-
ically, describing how to conduct latency and step-response
characterizations. Section IV describes how we implemented
TCPSbed in our lab. We evaluate the performance of TCPS-
bed and demonstrate its applications through several proof-
of-concept experiments in Section V and Section VI. We
conclude in Section VII.

II. TESTBED ARCHITECTURE

A TCPS consists primarily of three subsystems —
the operator-side that includes the human operator, the
teleoperator-side that includes the remote side robot, and
the communication network, referred to as tactile internet,
connecting the two sides. TCPS applications being latency-
sensitive, the components in these three subsystems have
to meet stringent delay requirements. Often this necessitates
exploring different hardware, algorithms and protocols for
these components. In such experiments, a researcher would
often focus on only one of the subsystems, and in many cases,
on a particular component of the subsystem. To facilitate such
experiments with minimal overhead, we design a modular
architecture for TCPSbed, see Figure 2.

TCPSbed separates various TCPS subsystems into multiple
components of distinct functions and glues them together
through a set of APIs with standardized interfaces to realize
various TCPS data-flows such as audio, video, kinematics
and haptics. Separation of subsystems into components would
allow researchers to focus on certain components without
bothering about the implementation and interface details of
others. This kind of architecture makes TCPSbed generic,
modular and extensible.

In this section, we first describe the various components
of TCPSbed and then explain the structure and placement of
their APIs.

A. Components
TCPSbed consists of the following components:

o [tactile-operator, tactile-teleoperator]: The tactile-
operator represents the human operator, and the tactile-
teleoperator represents the remote-side robot being

controlled. Due to the cost and resource constraints,
researchers sometimes may want to use a simulated
tactile-teleoperator . The Virtual-Robot Experimentation
Platform, V-REP, serves this need. It simulates different
types of robots and their physical surroundings.
[ms-embsys, ss-embsys, ms-embsys-app, ss-embsys-app]-
TCPSbed uses embedded computing boards both at the
operator and the tele-operator sides. ms-embsys is the
board at the operator-side and houses sensors and algo-
rithms to capture the operator’s kinematic movements.
The board also includes drivers to display remote-side
audiovisual information and to convey haptic feedback
to the operator. The board on the teleoperator-side, ss-
embsys, houses actuators to drive the robot and sensors
to capture audio, video, and haptic information. In some
cases, it may be useful to simulate ms-embsys and ss-
embsys boards in code, e.g., to re-play a human operator’s
hand movements from a dataset or to evaluate the perfor-
mance of a robot using its mathematical model. We refer
to the simulated versions of the embedded computing
boards as embsys-app’s. The simulated version of ms-
embsys is referred to as ms-embsys-app and the simulated
version of ss-embsys as ss-embsys-app.

[ms-com, ss-com]: Different applications may use dif-
ferent communication technologies for connecting the
operator and teleoperator sides to the network. For in-
stance, some applications may use WiFi links, while
some others may use point-to-point Ethernet links. In
a testbed for TCPS, it is desirable to have separate
communication components to facilitate easy porting and
testing of different communication technologies. ms-com
and ss-com serve as the communication components in
TCPSbed. They connect ms-embsys and ss-embsys to the
network.

[ms-ei, ss-ei]: TCPSbed comes with ready-to-deploy edge
intelligence components ms-ei and ss-ei at the operator
and teleoperator sides, respectively. We use Python in
a Linux environment to create these edge intelligence
components. We can host these components in any IP-
based computing boards that support Linux and interface
with the rest of the testbed components. We also expose
a set of APIs in these components which the developer
can modify to code the desired prediction algorithm. The
exact placement of ms-ei and ss-ei depends on the TCPS
application and complexity of the prediction algorithm in
use. For instance, if the last mile is a wireless link, it
is more appropriate to place the edge intelligence com-
ponent one-hop away from ms-com and ss-com and near
the radio base-station. Such a placement enables accurate
predictions of incoming signals that do not depend on
wireless channel quality. For a wired network, placing
the edge intelligence component in a more resourceful
host can enable to run more intelligent and sophisticated
prediction mechanisms.

[srv]: Several TCPS applications demand the need to
run computationally intensive algorithms, such as the
kinematics and inverse-kinematics algorithms, both at the
operator and the teleoperator sides. A testbed for TCPS

SDN Controller

Hosts

Simulating Traffic

GUI
Configuration

aE

Config

on real hosts and are interconnected using the component
emu, which runs a simulated ns-3 network. When using
Mininet, both the hosts running the testbed components

redeive()
df)
V/Interface (Embedded)

audio.code()
receive()

receive()

4] m
. embys. embys ("
(=] O~ I~ -(m]| &g
oo kinematics o - kinemati A e S ——
ms- kinematic D 8- 5_, teléi?ilve;xav
tactile- b op P haptics hapties haptics b pp
operator s oA aude oudio N v-rep
B B nsa [e Eoerimeraton atorn
(p) = predicted signal
Fig. 2. The architecture of TCPSbed.
can include embedded computing boards, ms-embsys, and
ss-embsys with powerful processors to execute such algo- ‘
rithms. However, such a testbed design is challenging as | i
o > . . nterface (Electric/Embedded ((D
it is not easy apriori to assess the processing requirements n receel | pendl s
of the embedded computing boards to support different ms embsys ‘ :":":“e iimzegjeg: | el [Perpherdrteface
. . . . nterface (Embedde sen. sen (4)
TCPS applications. To work around this difficulty, we receive]) [Joendd T fudiodecodff | ideo.detade
introduce the component srv in TCPSbed. The TCPS ms-com | Interface (IP)
flows from the operator to the teleoperator side and
. . Interf: 1P
back pass through srv. If the computational requirement ireceiver(‘;—e‘rszzed(())
. . . . decode() de()
of a TCPS application is higher than what embedded @ ecoi»g?esigt()
. . -ei ecode() | | |
computation boards can handle, we offload the algorithms e recevel] |
. nterface
to srv. srv could be a real server or a high-performance terface]
. i d d d
computer. During the TCPS development phase, srv pro- ogoti] odel] rendl endl]
. o inerpatics() feedback(
vides insights into the computing power required by the g ceeKinermaties[| [sense(l
. . . . [decode() [] [
embedded computers, which helps in choosing optimal sy recevel] [T _lreceve receive(]
. . nterface
embedded computing boards for the final TCPS design. =
. . L. | nterface (IP) |
[network]: Many times during development, it is useful Ean
to evaluate the performance of the TCPS using simu- Q predict) e
ss-ei codlef) decode
lated computer networks in addition to real networks. In }ﬂ‘“ e (|>)
TCPSbed, network simulators ns3 and Mininet serve this [
. \ interface (IP)
need. When using ns3, the testbed components are run @ P s —
| [receive() video.code|

ss-embsys

Peripheral Interface

Peripheral Interface

1) Interface (Embedded)
receive() send()
send() | [receive()

Interface (Electric/Embedded

A

i3

and network are simulated.

B. APIs

Typical TCPS applications require four types of data-flows,
namely kinematic, haptic, audio, and video flows. TCPSbed
uses custom APIs in the testbed components to realize these
flows. Figure 3 shows these APIs and how they connect
various testbed components.

o [receive(), send()]: receive() reads data from the con-

nected physical sensors or adjacent TCPS components.
At ms-embsys, receive() reads data from the kinematic
sensors attached to the operator. At ss-embsys, receive()
reads data from position sensors and haptic sensors
mounted on the robotic arm. At ms-com and ss-com,
receive() reads data from the embedded boards ms-embsys
and ss-embsys, respectively, running embedeed protocols
(e.g., I2C, SPI or USB). At srv, receive() reads data from

Fig. 3. APIs in the forward and backward flow paths in a TCPS. (1) represents
the kinematic flow. (2), (3), and (4) represent the haptic, audio, and, video
flows respectively.

both ms-com and ss-com in either directions, running
network transport protocols (e.g., UDP). send() transmits
data to the connected physical actuators or adjacent TCPS
components. Like receive(), its input and output depends
on the TCPS component on which it resides, on the
embedded and network protocols in use, and the types
of sensors and actuators.

e [code(), decode()]: Testbed components use these APIs

for coding and decoding data. The code/decode for-
mat depends on the TCPS component and its inter-
face protocols. Specific to the audio and the video
flows are audio.code(), audio.decode(), video.code(), and
video.decode() APIs.

o [kinematics(), inverse_kinematics()]: kinematic() uses
data from the kinematic sensors mounted on the operator
(or on the operator-side human-computer interface) to
compute the operator’s pose and movements. inverse-
kinematic() uses these computed values to generate com-
mands to drive the remote-side robot actuators to recreate
the operator’s pose.

o [sense(), feedback()]: sense() does calibration, scaling,
and filtering of the haptic data it receives from the haptic
sensors mounted on the remote-side robot. feedback()
uses the processed haptic data to drive haptic actuators
at the operator-side.

o [predict()]: At ms-ei, the API predicts haptic data us-
ing the current kinematic sample it receives from the
operator-side and the past haptic samples it receives from
the teleoperator-side. At ss-ei, the API predicts kinematic
data using the current haptic sample it receives from the
teleoperator-side and from the past kinematic samples it
receives from the operator-side. The predict() can also be
configured to modulate the data transmit interval (i.e.,
how fast predictions are done) and the data receiving
interval (i.e., the sampling interval).

C. Testbed Configuration

To use TCPSbed, a user has to configure various networking
and non-networking components and their interfaces. These
configurations include (i) assigning hosts (e.g., PCs) and IP
addresses to ms-com, emu, srv, ss-com, ms-ei and ss-ei (ii)
defining the interface types, addresses and port numbers to
realize the TCPS flows, (iii) defining the embedded device
types - real or simulated and their settings, (iv) defining the
network type - real or simulated, and (v) configuring the
network simulator settings such as latency, bandwidth, and
packet drops. In TCPSbed, all of the above configuration
details are entered in a spreadsheet and then converted to a
config file and stored in the TCPSbed’s run directory, a copy
of which resides in every testbed host.

TCPSbed supports several placement possibilities for its
components. For instance, it is possible to run several testbed
components on a single host or just one component per host.
It is also possible to run testbed components on simulated
Mininet hosts, or real hosts separated over an intercontinental
link. We demonstrate these possibilities through the experi-
ments in Section V.

III. LATENCY AND STEP RESPONSE CHARACTERIZATION

In this section, we describe how to perform latency and
step response characterization of a TCPS application using
TCPSbed.

A. Latency Characterization

Since a TCPS consists of multiple distributed components,
it is essential to get an insight into the performance of each
component. For example, it is desirable to measure a remote
robotic arm’s reaction time to a user command to budget
for end-to-end latencies over a production network. Such
measurements require a tool similar to ping, with enhanced
support for TCPS. Such a tool should also measure processing
delay and actuation delays in addition to the network latencies.

We can use TCPSbed as an in-situ latency test ecosystem
with the help of a Test-PC and echo points. Echo points
are locations on the forward and backward data paths where
we examine the latency values. Each TCPS component can
have multiple echo points. A Test-PC, as in Figure 4, issues
echo commands targeting a particular echo point and then
measures the time it takes for the echo to arrive. The process
is repeated multiple times and for multiple echo points to get
the latency distribution. The echo commands are UDP-based
wrappers around the data commands: they contain data that
the ms-embsys and ss-embsys components expect. Meaning,
the system is fully functional while the test is in progress and,
hence, the resultant latency numbers are representative of the
TCPS under test.

In Figure 4, Test-PC inserts the echo commands in the
kinematic data path through ms-com, bypassing ms-embsys
which does not have an IP address. Thus the resultant echo
trajectory of the kinematic data path does not cover the latency
between ms-embsys and ms-com. As a solution, we propose
using the echo trajectory of the haptic data path to measure
and isolate the forward kinematic latencies involved between
ms-embsys and ms-com.

Embedded Communica
Board Module

(ms-embsys) (ms-com)
°

ms-com-entry
ms-com-exit

tactile-
operator

—— A
(J_

Server;

srv-entry (sv)

srv-1
srv-2
srv-3
srv-4
srv-exit TR

Embedded
tactile- Board
teleoperator (ss-embsys) (ss-com)

PHERHO

ss-embsys-entry ss-com-entry
ss-embsys-exit i
~~~~~~~ L i IR

Communication
Module

Test-PC
echo [ss-embsys-entry] [data]

Fig. 4. In-situ latency test. The path taken by the echo command targeting
echo point ss-embsys-entry is marked. Only the echo points in the forward
kinematic data path are shown.

Note: It may be possible for a loaded OS kernel in hosts
to affect latency measurements. In order to circumvent this
problem, we measure a component latency by finding the
difference of the latency associated with echo points placed



at the entry and exit points of the component. We expect
the kernel-dependent offset in the latency measurements to be
present in the latencies of both the entry and exit echo points.
Taking a difference will thus cancel this offset. We also send
echo commands in an interleaved fashion to the targeted echo
points to avoid temporal variations in the kernel’s load from
affecting the latency measurement. In this method, if we want
to measure the latency of echo points A and B placed at the
entry and exit point of a component by sending m echo points
each, we send the first echo command targeting to A, next
command targeting to B, next targeting to A, next targeting
to B and so on until m echo points are sent to both A and B.
This contrasts with sending the first m echo commands to A
and then sending the next m echo commands to B.

B. Step Response Characterization

We can model TCPS applications using control system ele-
ments. In this model, the factile-operator acts as the controller
and the factile-teleoperator as the device being controlled.
The haptic data comprises the feedback to this controller,
and the kinematic data forms the controller output. With this
control model in place, it is possible to evaluate the control
performance of the TCPS application using classical control-
theoretic methods. In our work, we use the step response
method to profile the control performance of TCPS applica-
tions [35], [36].

To perform the analysis, we have created two embsys-app’s:
one is connected to the ms-com and the other to ss-com. The
ss-embsys-app at the ss-com replaces the tactile teleoperator.
It takes kinematic data from the operator side, %, as input and
simulates haptic data, h, as a linear function of the kinematic
data; h = s(t) x k, where the scaling factor s(t) is set to 1
for 0 < ¢ < to and to 1/c for ¢t > to. This is to simulate
a step-change in the pressure. ms-embsys-app at the ms-com
end senses this step-change through the haptic data path. It
then sends commands over the kinematic data path to nullify
this change. Proportional Integral (PI) controller equations are
used for this purpose [37]. Using a logger tool in ss-embsys-
app, we record the step response profile of the haptic data; see
Figure 5. We define ¢,. as the time taken by the step response
to rise from (1/¢) units at to to (1/¢+0.9(1 — 1/c¢)) units.
Overshoot is defined as the peak percentage fluctuation in the
step response relative to (1 — 1/¢) units.

»
>

Peak

Step Change

Haptic Data

Fig. 5. Sample step response profile with normalized haptic data. Step change
is simulated at tg.

Both rise-time (¢,.) and overshoot depend on the TCPS
component and network characteristics such as latency, jitter,
and packet drops, e.g., both increase with network latency.
Further, any TCPS application can withstand rise-times and

overshoots up to specific values depending on operator hand
speed and accuracy requirements. For instance, a certain
rise-time may suit an application with slow operator hand
movement, but may not for another application with faster
operator hand movement. Similarly, an overshoot value may
be tolerable for an application requiring less accuracy, but may
not be for another application requiring more accuracy. In a
nut shell, step response parameters such as rise times and
overshoots can be used to judge a TCPS implementation’s
stability. Further, since they are affected by both networking
and non-networking component characteristics, they can also
aid in the construction of a one-stop metric to evaluate and
compare TCPS implementations (see SectionV-F).

Note: Step response curve characteristics of a TCPS
vary widely with PI controller parameters and step-change
amplitude. Further, certain settings and combinations of these
parameters may mask possible issues in a TCPS. For instance,
setting a low PI controller constant or controller responsive-
ness will result in a step response curve that does not change
its characteristics with variations in packet drops or latencies in
the TCPS network. We address this concern by determining
optimal values for PI controller parameters and step-change
amplitude such that the experiments yield a step response
curve that is maximally sensitive to networking and non-
networking parameter changes of the TCPS under test.

IV. TESTBED IMPLEMENTATION

This section describes how we implemented TCPSbed and
its components in our lab.

A. Hardware Resources

We used desktop PCs running Ubuntu OS to host IP-based
testbed components embsys-app’s, ms-com, ms-ei, emu, Srv,
ss-ei, and ss-com. To connect these IP-based components, the
UDP transport protocol is used. PSoC based development
boards are used to realize embsys components, ms-embsys
and ss-embsys [38]. The embsys boards communicate to their
communication counterparts, i.e., ms-com and ss-com, using a
full-duplex, 1 Mbps, UART link.

B. API Implementation

In order to implement the APIs in Figure 3, we use Python
scripts for the IP-based testbed components and a C script
for the embsys components. The use of Python enables the
APIs to be easily extended and ported to different systems. A
downside of using Python is that it results in higher processing
times for the APIs that code complex algorithms. However, we
propose such APIs be coded in C, compiled and called within
Python. Such a procedure will preserve all the advantages of
Python while ensuring that the processing times of these APIs
are within the requirements.

APIs corresponding to different flows in Figure 3 are run
in parallel. In IP-based testbed components, this is done by
placing the APIs corresponding to each flow in a separate
loop and running these functions as different threads using
Python’s multiprocessing package.



We use Python’s Open-CV library for implementing video
flow [39]. The library APIs are used to capture video frames
from the camera connected to ss-com. The frames are then
encoded in JPEG to reduce size. Further, they are serialized
using the Python pickle library and transmitted to ms-com.
At ms-com, the received data are deserialized, decoded and
displayed on a connected LCD screen. For high-definition
video transmission, we split each frame into multiple sub-
frames before transmission.

For implementing the audio flow, we use Python’s PyAudio
library [40]. The library APIs are used to capture audio frames
from the microphone connected to ss-com. These audio frames
are serialized and transmitted to ms-com. At ms-com, the audio
frames are reconstructed and played on a connected speaker.

For the kinematic flow, we have implemented kinematic
and inverse-kinematic algorithms to capture the operator’s
kinematic movements and to drive the robot joints to recreate
the operator pose, respectively. We designed kinematic algo-
rithms for a wearable tactile glove and a standard computer
mouse [41]. There is a need to support a computer mouse
to accommodate users who do not own an electronic glove
to control the remote robot. To support a computer mouse
to track the operator’s movement, we use ms-embsys-app.
The state machine in this embsys-app maps the movements
of a computer mouse in the X-Y plane to a virtual hand
movement in X-Y-Z space. For this, the algorithm maps the
X-Y movements of the mouse to X-Y movements of the hand
wrist. Y movement of the mouse, while the left button is in
the pressed state, is mapped to the Z movement of the wrist.

C. Edge Intelligence

We use Python scripts to create the edge intelligence com-
ponents ms-ei and ss-ei, and to interface them with the rest of
the testbed components. Both ms-ei and ss-ie take kinematic
and haptic data as inputs. As output, ms-ei generate haptic
data and ss-ei generate kinematic data. In the edge intelligence
components, we read kinematic, and haptic data at periodic
intervals from their network sockets. The read values are then
fed as arguments to API, predict(). This API processes the
inputs it receives and returns the forecasted kinematic data in
ms-ei and the forecasted haptic data in ss-ei. In edge intel-
ligence components, we configure the input network sockets
in non-blocking mode to allow edge intelligence components
to read and predict outputs at frequencies higher than the
kinematic and haptic transmit frequencies of their preceding
testbed components. As a result, often, the data read will be
null.

In our work, to demonstrate the use of edge intelligence
with TCPS, we have coded a zero-order-hold predictor in
predict() APIs of the edge intelligence components. In ss-
ei, if the kinematic data read and fed to predict() is null,
the zero-order hold predictor predicts the current kinematic
value as the last received non-null kinematic value from srv.
The predict() sets the current kinematic value to the kinematic
data it receives if the received data is not null. Although the
zero-order hold predictor may appear as a naive prediction
algorithm, we can use it to counteract packet losses in a TCPS

network. For instance, if there exist packet losses in the last-
mile link connecting ss-ei and ss-com of a TCPS, we can run
the zero-order hold predictor at high frequencies to duplicate
data packets and counteract packet losses. In Section V-E, we
show with the help of an experiment how ss-ei, which runs
a zero-order hold predictor, can counteract packet losses in a
lossy last-mile TCPS link.

1) Modifying predict(): We can modify predict() to code
the desired prediction algorithms. For example, we can code
a linear prediction algorithm in the predict() API of ss-ei, as
follows. In ss-ei, if the kinematic data read and fed to the
predict() is null, then predict() outputs the current kinematic
value as a linear function of a fixed number of previously
received non-null kinematic values from srv. If the received
data is not null, predict() sets the current kinematic value to
the received kinematic data.

We can also modify predict() to code a model-based predic-
tor that uses physical models of devices and environments in a
TCPS application to predict outputs [12]. Figure 6 shows the
placement and input/output structure of the edge intelligence
components in a typical TCPS that uses model-based predic-
tion. The edge intelligence component at the teleoperator-side,
ss-ei, uses a model of the operator and operator-side human-
computer interface to predict kinematic commands from haptic
data. The edge intelligence component at the operator-side,
ms-ei, predicts haptic feedback from kinematic data using a
model of the robot and teleoperator-side environment. It is also
possible to predict audio and video feedback. However, for
many use cases of TCPS, predicting haptic feedback alone may
suffice. These are the cases in which the TCPS performance
measures, such as the control-loop stability, are more sensitive
to haptic feedback latency than audio and video feedback
latencies [10].

Teleoperator-Side

Edge Intelligence kinematics

kinematics ss-ei (predicted)
° . bz

ms-el model \

A @ & Prediction %
model Algorithm (e}
Prediction T —

haptics Algorithm haptics

(predicted) ~ Operator-Side

Edge Intelligence

Fig. 6. Placement of edge intelligence components in a TCPS that incorpo-
rates a model-based prediction approach.

We remark that, in practice, model-based predictions can
often become involved as the models of the environment
objects can consist of a large count of parameters that
need to be estimated at run-time. Learning so many model
parameters at run-time is a complex problem that requires
running artificial intelligence or machine learning techniques
in predict(). In contrast, linear prediction methods are simpler
to implement and require less computational resources than
model-based prediction methods. Time series predictors, due
to their simplicity, suit many applications. However, they result
in higher prediction errors in the presence of a more unreliable
network.



2) Possible Hardware Options: In practice, the hardware to
host edge intelligence components must be decided based on
the complexity and computational requirement of the predic-
tion algorithms used. For simple zero-order hold or low-order
linear predictors, generic IP-based computing boards, such as
Raspberry Pi or generic PCs, may suffice as done in this work.
However, hosting edge intelligence components that use full-
blown model-based predictors on generic computing hosts will
add to the end-to-end latency of the TCPS application. In some
cases, the delay may be significant enough to question the
purpose of having edge intelligence in the first place. For
these cases, it is appropriate to host the edge intelligence
components in specialized computing hardware, known as
edge computing devices, capable of accelerating machine
learning and artificial intelligence prediction algorithms.

Edge computing devices come in two flavours, stand-alone
accelerators and single-board computers with integrated accel-
erators. Stand-alone accelerators are modules that are plugged
into a generic computer to enhance their ability to execute
machine learning and artificial intelligence algorithms. Mo-
vidius NCS is one such example [42]. Single-board computers
with integrated accelerators usually run a light Linux operating
system with necessary drivers for the on-board accelerators,
e.g., Nvidia Jetson [43]. Since many of these edge computing
devices support Linux and Python, they can support ms-ei and
ss-ei components of TCPSbed, which are also implemented
using Python in a Linux environment.

D. Tools

We have implemented the following two tools to character-
ize the latency and the step response behaviour of a TCPS.

1) Latency Characterizer: The tool reads the raw data
generated in the latency characterization experiments to
summarizes the result with statistical features and graphs
relating to latency, inter-packet delay, and packet drops.

2) Step Response Analyzer: The tool reads the raw data
generated in the step response experiments and measures
the rise time and the overshoot of step curves. Further,
it classifies the step response profiles as good or bad,
depending on whether the rise time and the overshoot
are within given specifications to find the fraction of
good step curves, which measures the reliability of the
TCPS.

E. Network Simulation

TCPSbed supports both ns-3 and Mininet for simulating
network topologies. When using ns3, the testbed components
are run on real hosts and are interconnected using the compo-
nent emu, which runs a simulated ns-3 network. On the other
hand, when using Mininet, both the hosts and networks are
simulated in Mininet.

V. TESTBED EVALUATION

In this section, first, we demonstrate how to use TCPSbed
to deploy an end-end TCPS. Then, through a series of exper-
iments evaluate the testbed performance, features and tools.

A. Deploying an End-to-End TCPS Application

The objective of this experiment is to demonstrate how
to deploy a TCPS application on TCPSbed. We choose the
application described in [41] — a human operator wears a
tactile glove and controls a remote-side robotic arm to pick
and place objects.

To deploy the above application on TCPSbed, APIs in
Figure 3 are updated to match the corresponding algorithms in
[41]. A custom-made tactile glove similar to the one described
in [41] is used. The tactile glove uses a combination of IMU
sensors and flex sensors to track the operator’s hand. The
tactile glove also uses eccentric rotating mass motors to apply
vibrotactile haptic feedback [44].

At the teleoperator-side, pressure sensors are mounted on
the robot’s (PhantomX [45]), gripper wings to sense the
pressure when the robot’s arm holds an object. All the four
supported data-paths, namely, kinematic, haptic, audio and
video, are enabled. For streaming and displaying audio and
video data, ss-embsys-app-microphone and ms-embsys-app-
speaker for audio, and ss-embsys-app-camera and ms-embsys-
app-display for video are used. TCPSbed components ms-com,
ms-embsys-app’s and srv are hosted on PC-1 and ss-com and
ss-embsys-app’s on PC-2. A point-to-point gigabit Ethernet
link connected the two PCs.

Figure 7 demonstrates the above TCPS application using
TCPSbed.

B
i
H
£
i

Fig. 7. Demonstration of a TCPS application using TCPSbed — a human
operator wears a tactile glove and controls a remote-side robotic arm to pick
and place objects.

B. Isolating TCPS Component and Link Latencies

Unlike traditional latency measurement approaches using
ping or traceroute, TCPSbed’s latency characterization method
is capable of evaluating latencies of both networking and non-
networking components in a TCPS application. This experi-
ment’s objective is to demonstrate how to conduct a latency
evaluation of a TCPS application using TCPSbed and infer the
results.

The experimental setup has the same testbed configuration
as Section V-A. Additionally, to conduct latency experiments,
Test-PC is configured to issue echo commands targeting
various echo points in the forward kinematic data-path at
intervals of 10ms. By measuring the time it takes for the echo
commands to return, the latencies associated with the echo
points are determined. Further, the process is repeated multiple
(=N) times to find the average latencies associated with the



echo points. NV is selected to keep the error of measurement
within 5% at 95% confidence interval.

Figure 8 shows the measured average latencies for the
various entry/exit echo points of the testbed components.

o The latency values depend on the location of the echo
point in the data-flow path. The farther the echo point
from the tactile-operator, the higher its latency will be.
This is evident in Figure 8. In the figure, latency values
increase from left to right because echo points to the left
are closer to the tactile-operator than to the echo points
to the right.

o The difference in latency values corresponding to the
entry/exit echo points for a given testbed component cor-
responds to the component latency. E.g., §; corresponds
to the latency of srv.

o The difference in latency values corresponding to the
entry/exit echo points corresponding to two different, but
adjacent testbed components, corresponds to the latency
of the interface connecting the two components. E.g., do
is the latency of the UART interface connecting ss-com
and ss-embsys.

Estimating Robot Actuation Delay: In Figure 8, the
latency that corresponds to the echo point ss-embsys-exit(1)
does not include the actuation delay of the robot, because,
the echo commands targeting ss-embsys-exit(1) are sent back
as soon as the actuation commands embedded in the echo
commands are extracted and sent to the robot’s joint motors.
However, if the echo commands are held until the robot
moves to the commanded position, which is the case with
ss-embsys-exit(2), then the actuation delay of the robot can
be measured as the difference in latency between the echo
points ss-embsys-exit(1) and ss-embsys-exit(2). In Figure 8§,
03=110ms corresponds to the actuation delay of the robot in
moving its end-effector position by 1 cm back and forth. In the
experiment, a VREP model of the PhantomX robot is used.
The VREP model is interfaced with ss-com using ss-embsys-

app-vrep.

\
_ \
Z2 |
£
= \
o
s 104 G |
g
= \
=g |
=
o
|
\
|

& e o PR
oo™ B e~ <47 % o
(05,0 o o & & w7 o
= N

Fig. 8. Average latencies measured for different echo points. For all the
latency bars, the margin of error is within 5%.

C. Latency Distributions

Objective of the following experiment is to demonstrate
the ability of TCPSbed’s latency characterization method to
capture latencies experienced by kinematic data packets during

a telesurgical operation in the presence of simulated and real
Internet traffic.

1) Latency Evaluation in the Presence of Simulated Internet
Traffic: For the experiment, Mininet is used to simulate the
network topology circled in blue in Figure 9. Component ss-
com is run on the same host that runs srv. The hosts coloured in
white in the circled network portion send data to each other to
simulate external traffic. The hosts simulate external traffic by
replaying back the Packet Capture (PCAP) file bigFlows.pcap
[46] using Linux tool tcpreplay [47]. The PCAP is a capture
of real network traffic on a busy private network’s access point
to the Internet [46]. We use two different replay speed settings
for simulating traffic: 1x and 5x. Setting the replay speed to
1x replays the traffic at the same speed at which it is captured
in the PCAP file. Setting the replay speed to 5x replays the
traffic five times faster than the speed at which it is captured
in the PCAP file. Figure 10 shows the simulated traffic at the
replay speed of 1x captured using Wireshark [48].

SDN Controller \

—— Oms, 100Mbps
= 0.2ms, 10Mbps

Fig. 9. The network topology simulated in Mininet. The topology corresponds
to the top-left portion of the popular USNET 24-node topology. The full
network is simulated for the experiments in Section V-D. The network portion
circled in blue is used for the experiments in Section V-C. The network portion
circled in dotted red is used for the experiments in Section VI-C. We run the
Mininet simulations on a server with the following configuration: Processor:
Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz, Memory: 16 GB, and, with
less than 5% and 10% CPU and RAM utilization, respectively.

traffic (Mbps)
n
(=]

0 5 10 15 20 25
time (s)

Fig. 10. Traffic simulated by replaying the PCAP file bigflows.pcap at replay
speed of 1x using Linux tool fcpreplay.

We use TCPSbed’s latency characterization method to mea-
sure the latency experienced by kinematic packets from the
entry point of ms-com to the exit point of ss-com. The



kinematic packets used are from [49] that correspond to a
surgeon performing a suturing operation using the da Vinci
Surgical System. For this, we embed echo commands to each
kinematic packet read from the da Vinci Surgical System
dataset to target the echo point ss-com-exit. These kinematic
packets are then inserted into the kinematic data path using
Test-PC, as shown in Figure 4.

Figure 11 shows the distribution of latencies experienced
by the kinematic packets without and with simulated external
traffic for inter-switch link bandwidth of 10 Mbps and PCAP
replay speed of 1x. Table I lists the latencies experienced
by the kinematic packets for different inter-switch link band-
widths and tcpreplay settings.

2001 BDO_i
l 250
> >, |
§ 300 | E 200 |
% 200 4 % 150 |
&= | & 100+
1007l 50 4 |
oll o b
1 2 0 200 400
latency (ms) latency (ms)

Fig. 11. Distributions of the latencies experienced by kinematic packets
traversing through the testbed components without (left-side plot) and with
(right-side plot) external traffic.

TABLE I
LATENCIES EXPERIENCED BY KINEMATIC PACKETS TRAVERSING
THROUGH THE TESTBED COMPONENTS FOR DIFFERENT INTER-SWITCH
LINK BANDWIDTHS AND TCPREPLAY SETTINGS.

Tcpreplay Settings Inter Switch \ Latencies (ms)

Link Bandwidth

|
Enabled ‘ Speed ‘ (Mbps) Min,Max,Avg,Std Dev
No | - | 10 | 0.34,0.98,041,0.02
Yes | Ix | 10 | 0.36,625.39,142.28,156.73
Yes | Ix | 100 | 0.35,1.47,042,0.02
Yes | 5x | 100 | 035,533,042,0.99

2) Latency Evaluation in Presence of Real Internet Traffic
across an Intercontinental Link: For this experiment, we used
two PCs. We placed PC-1 and PC-2 in two universities: Indian
Institute of Science (Bangalore, India) and Delft University of
Technology (Delft, The Netherlands). PC-1 hosted ms-com,
and srv and PC-2 hosted ss-com. We then used TCPSbed’s
latency characterization method to measure the latencies ex-
perienced by kinematic packets traversing from the entry point
of ms-com to the exit point of ss-com. Figure 12 shows the
result.

Latencies experienced by kinematic packets have a long
tail in the presence of external traffic. The tail is a result of
the link bandwidth not being large enough to accommodate
the peak traffic rates. Since TCPS applications are sensitive
to latencies, long latency tails are a concern. Further, critical
TCPS applications demand stringent bounds also on end-to-
end latency. Traditional best-effort networks cannot guarantee

1500 Ii

1000

500 l

0 . . ﬁ»—-‘hk

74 75 76 77 78 79 80 8l
latency (ms)

frequency (out of 7000)

Fig. 12. Distribution of latencies experienced by kinematic packets over an
intercontinental link.

such bounds on latencies without overprovisioning the link
bandwidth.

D. Accuracy of Latency Measurements

The objective of this experiment is to evaluate the measure-
ment error with TCPSbed’s latency characterization method
in a sample TCPS setting. For the experiment, the network
in Figure 9 is simulated in Mininet. We use a code block in
srv to simulate different code latencies. We then measure these
latencies using the TCPSbed’s latency characterization method
and compare them with the original setting to determine
the measurement error. We experiment with three different
external traffic conditions. For simulating the external traffic
every host coloured in white in the network transmits data
to every other host coloured in white at a constant bit rate
of Tj. We run the experiment for three different 73: 0 Kbps,
500 Kbps and 750 Kbps. For the latency measurements, we
send 5000 echo commands targeting the entry and exit points
of the code block. We set the transmit interval of the echo
commands to 20 ms.

Table II shows the set and measured latency of the code
block for different code block latency settings and external
traffic conditions. Figure 13 plots the error in latency mea-
surement. We observe that measurement error is within 10%
for all cases.

TABLE I
SET AND MEASURED CODE BLOCK LATENCIES FOR DIFFERENT CODE
BLOCK LATENCY SETTINGS AND TRAFFIC CONDITIONS

Code Block Latency (ms)

Set Val Measured Measured Value Measured Value
et value | at Ty=0) | (at T,=500Kbps) | (at T,=750 Kbps)
1 | 1.08 | 1.07 | 1.01
3 | 3.09 | 3.15 | 3.09
5 | 5.08 | 5.15 | 5.08
10 | 1009 | 10.16 | 10.11
15 \ 15.09 \ 15.11 \ 15.10

E. Performance of Edge Intelligence

To demonstrate how edge intelligence can improve per-
formance in TCPS applications, we devise and perform the
following set of experiments. In these experiments, through
an embsys-app at ms-com, we alternatively drive the gripper



10.00

8.00
6.00

4.00

Error (%)

2.00
0.00 - m . -
T, =0 T, =500K T, =750K

Set Values: ®1lms m3ms mbms = 10ms m 15ms

Fig. 13. Error in latency measurement for different set values of code block

latencies and traffic conditions.

position of the remote-side robot in VREP between two states
— open and close. See Figure 14.

Fig. 14. Left and right figures show the closed and open positions, respec-
tively, of the PhantomX robot gripper.

For the experimental setup, we configure the testbed as in
Figure 2 with support for Mininet. In Mininet, we simulate
four hosts to run testbed components and use point-to-point
links to connect these hosts. We use the first host to run
ms-embsys-app and ms-com, second host to run srv, third to
run ss-ei and the last one to run ss-com and ss-embsys-app.
Throughout the experiment, we disabled the ms-ei.

In the experiments, we switch the robot’s gripper position
between the open and close states at an interval of 100 ms.
In the first experiment, we simulate a lossless link connecting
different testbed components. The leftmost graph in Figure 15
shows how the signal corresponding to the gripper position
at the robot-side varies over time. As we expect, the gripper
position alternates between a lower and higher value corre-
sponding to the close and open states at an interval of 100 ms.
In the second experiment, we model the last-mile link, the link
connecting ss-ei and ss-com as a lossy link and every other link
as lossless links to model TCPS applications that use wireless
technologies for the last-mile link. For the experiment, we
consider a packet-loss percentage of 50. Although high, we
choose this value to easily visualize the effect of the lossy last-
mile link on gripper positions. The center graph in Figure 15
shows how the gripper position at the robot-side varies over
time. We see that unlike the leftmost graph, in the centermost
graph, the gripper position does not switch at regular intervals;
this is because of the missing packets at the robot-side due to
the lossy link.

In the third and final experiment, we use the teleoperator-
side edge intelligence module, ss-ei, to prevent the last-mile
link losses from affecting the gripper positions. In ss-ei, we run
a simple forecast algorithm, a zero-order hold predictor that

runs at a frequency of 1 KHz. The zero-order hold predictor
running at high frequencies duplicates data packets in the last-
mile link and counteracts any packet losses. We see that unlike
in the center graph in Figure 15, in the rightmost graph, which
is the case with edge intelligence, the gripper position switches
at regular intervals as expected from a lossless last-mile link.

Enabling edge intelligence modules, even if they run simple
prediction algorithms such as a zero-order hold predictor, can
be useful in many TCPS applications. TCPSbed with support
for operator-side and teleoperator-side edge intelligence com-
ponents will enable the developers to add edge intelligence
support to their TCPS applications with ease. Developers using
TCPSbed can concentrate on designing prediction algorithms
instead of spending time on integrating edge intelligence in
TCPS.

F. Step Response Experiments

We claim in Section III-B that the step response curve
parameters such as rise-time and overshoot are affected by the
TCPS component and network characteristics. To demonstrate
this behaviour using TCPSbed, we conduct the following step
response experiments. For the experiment, we use three PCs.
‘We run ms-com and srv on PC-1, emu on PC-2, and ss-com on
PC-3 . emu simulates an ns-3 network with configurable RTT
and packet drop values. For conducting the step response ex-
periments, we interface the PI controller to ms-com by running
ms-embsys-app-PIController in PC-1. Further, to simulate step
disturbance, we use ss-embsys-app-stepInput. ss-embsys-app-
stepInput is interfaced to ss-com and is run on PC-3. We
ensured that the PC’s selected are sufficiently fast to introduce
negligible impact on the resultant step responses.

Figure 16 shows the step response curves for different
network RTT and packet drops. These results confirm that
RTT and packet drops affect the step response curves. Any
application prescribes limits on rise times and overshoots. It
is now possible to determine the maximum RTT and packet
drop rate to keep the overshoot and rise time below the
prescribed values. For instance, for the implemented TCPS
and the sample PI controller coefficients in use, packet drops
must not exceed 30% if the maximum allowed overshoot is
20% (see graph 3 in Figure 16).

TCPS Quality Assessment: We can model a TCPS as a
control system with multiple control loops, each associated
with a different feedback modality such as audio, video and
haptic. Depending on the use case, one or more of these control
loops will be critical. Analyzing the performance of such
critical control loops will provide an insight into the overall
quality of TCPS. Our proposed step response analysis method
will be useful here; in particular, we may use the resultant
step response parameters such as rise times, overshoots and
undershoots to construct a one-stop metric to evaluate and
compare TCPS performances. However, such a study requires
that each TCPS outputs a unique step response profile. We
believe that generating such unique step response profiles
is possible by tuning the responsiveness of the reference
controller used in step response experiments. A possible way
to tune the controller would be to produce step responses with



100 -1 - y----

80 80

60 60

40 40

20 20

gripper-position (0-100)

gripper-position (0-100)
S,

0p-—-- - -1 op----

- o

100

80

60

40

20

gripper-position (0-100)

0.0 0.

N

0.4 0.6 0.8 10 0.0 0.2 0.4
time (in seconds)

time (in seconds)

0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
time (in seconds)

Fig. 15. Figures show how the gripper position signal passed to the PhantomX robot varies over time for different experimental settings. The leftmost figure
is for the case where the last-mile link is lossless. The center figure is when the last mile link suffers a 50% packet loss, and the rightmost figure is when
the last mile link suffers a 50% packet loss and with teleoperator-side edge intelligence.

ml2f————————mmm S

©

o

o

B L0 ettt b

2

=l

2 0.8 ]

= # —4— RTT=0ms+X, Packet Loss=0%

E 06 ! —e RTT=4ms+X, Packet Loss=0%

5 o. ]

c ~o RTT=4ms+X, Packet Loss=30%
0.0 01 02 03 0.4 05

time (in seconds)

Fig. 16. Step response for different RTT and packet drop percentages. X
represents the component of RTT that is not part of emulation. The change
in pressure (1 — 0.5) occurs at = 0.2s.

the shortest rise time for specific overshoot and undershoot
limits.

Recently, after publication of our initial work [1], we have
extended the step response characterization of TCPS further. In
[5] and [50], we standardize step response characterization of
TCPS. We also use step response characterization to formulate
a metric called Quality of Control (QoC). We use QoC
as an indicator to grade TCPS performances. Towards this,
we extensively evaluate and characterize the step response
method.

VI. TESTBED APPLICATIONS

In this section, we demonstrate a few potential applications
of TCPSbed. Specifically, we illustrate how to use TCPSbed
to determine optimal placement of TCPS components and to
analyze the effect of interrupt coalescence and buffering in
network device drivers and network nodes on TCPS lantencies.

A. Effect of Server Placement

In many TCPS applications, we may have the option to
place srv at different network locations. Traditional network
tools such as ping and traceroute will not be able to determine
which of these locations is appropriate for placing srv for
the following reasons. First, these tools can measure only
network latencies. They will not be able to evaluate the non-
networking latencies, such as the overhead involved between
srv application to network interfaces or the srv processing
times. Second, these tools may not capture the latencies of

the path which the application might take. Third, these tools
cannot evaluate the performance during a live TCPS run,
which is necessary to study the effect of external traffic on
TCPS performance.

To circumvent the above issues with traditional latency mea-
surement approaches, we propose using TCPSbed’s latency
characterizer. This experiment’s objective is to demonstrate
how to use TCPSbed’s latency characterizer to determine the
best network location to place srv.

For the experiment, the network, as shown in Figure 9, is
simulated in Mininet. ms-com is run in the host connected to
switch Sy and ss-com in the host connected to switch Sg. We
used TCPSbed’s latency characterization method to measure
the average latencies experienced by kinematic packets corre-
sponding to different echo points by running srv in different
hosts connected to different switches.

Figure 17 shows the results. One can use these results to
interpret the best placement strategy for srv. For instance,
placing srv in hosts connected to switches Sy, Sg and Sj
minimizes the end-to-end latency in comparison to placing
it in hosts connected to Sy and Sg.

Remark: In the figure, the difference in the entry and exit
latencies of srv is significant in comparison to ms-com and
ss-com, because, the kinematics and the inverse kinematics
algorithms are run in srv.

= 0.8 HEE server-S0
E server-55
gO.ﬁ- = server-S8
a H server-S1
f 047 wum server-S6
=
o 0.24
>
o
0.0 ,#_L—
¢ 8 SAS i8] S
e e . e e et e
o _(.om “ﬁ‘(‘o 5‘5‘c m 55L
Fig. 17. Average latency corresponding to different echo points and for

different server locations. For all the latency bars in the graph, the margin of
error is within 5%.

B. Effect of Interrupt Coalescence and Buffering in the Net-
work Device Drivers

In this experiment, we study how one flow in a TCPS
affects others due to interrupt coalescence and buffering at



network device drivers. In particular, we study how traffic
in the bandwidth-intensive video flow affects the latencies of
packets in the kinematic flow. The experimental setup consists
of two PCs, PC-1 and PC-2, connected by a point-to-point
Ethernet link. ms-com and srv are run in PC-1 and ss-com in
PC-2. We consider two cases. In the first case, the latencies of
packets in the kinematic flow are measured without enabling
the video flow. In the second case, the latency measurements
are repeated with video flow. In both cases, we use an
unmodified Linux kernel in hosts and use TCPSbed’s latency
characterization method to measure latencies. We transmit
video in MJPEG format at a frame rate of 30fps and with
a JPEG frame size of 20 KB from the tactile-teleoperator to
the tactile-operator.

Figure 18 shows the result. We find that, with video, the
average latency of kinematic packet reduces. The decrease in
average latency is non-intuitive. However, we can explain this
phenomenon as follows. The network drivers do not transfer
IP packets to the upper layer for every short packet it receives.
Instead, the received packets accumulate the received packets
until they cross a threshold (or when a time-out happens) [51],
[52]. When the video flow is enabled, the video packets being
large cause the threshold to cross more frequently, resulting in
the network driver to transfer packets to the upper layer more
often, thereby reducing latency.

£ 10{ = withoutVideo
> g withVideo
(=)
g
5 9
& 4
[¢]
£ 2]
B gl = m | n ]
& & N e
e““\l m,e,‘#\ e('\"-‘;\4 o _en B‘:‘U\l m_e‘ﬂ et o€
o0 0 - i _cO! S o5y
o s O s ss’embs‘isg_am

Fig. 18. Effect of enabling video on the average latencies of the kinematic
data packets. For all the latency bars in the graph, the margin of error is
within 5%.

To confirm our hypothesis, we replicate the above behaviour
by transmitting simulated external traffic instead of video.
Our hypothesis that the unnecessary buffering of packets
contributes to the decrease in average kinematic packet latency
will be correct if, in experiments, we find that average latency
tends to decrease with an increase in the external traffic bit
rate. Figure 19 shows these results. As we expect, increasing
the external traffic bit rate decreases the average latency. Note,
however, that we expect this behaviour only up to a certain
intensity, beyond which the external traffic will choke the
buffers and cause the latency to shoot up.

Interrupt coalescence and buffering of packets in Linux
hosts are a result of NAPI in network device drivers [51].
Since having low latency is critical in TCPS applications, we
recommend disabling NAPI in network device drivers of all
hosts along the TCPS transmit path.

C. Effect of Bufferbloat

From the previous experiment, we conclude that the buffer-
ing of packets in hosts is harmful to TCPS. In TCPS, apart

average latency (ms)

16
1.4
1.2 I
1.0

no-traffic

(rate= 025Mbps (rate= OBMhps) (rate 8Mbps)

Fig. 19. How average latencies of the kinematic packets corresponding to
the echo point ss-com-exit varies for different transmit rates of the simulated
external traffic. Packet size of the external traffic is set to 1 KB. For all the
latency bars in the graph, the margin of error is within 5%.

from hosts, the buffering of the packets also occurs in the
network infrastructure (e.g., switches and routers). This exper-
iment’s objective is to determine how the buffering in switches
affects TCPS performance, particularly TCPS packet latencies.

Depending on the switch buffer size, link capacities, and
the external traffic, TCPS packets can experience different
latencies. Often higher traffic rates in combination with large
buffer sizes can clog the buffers resulting in bufferbloat. When
bufferbloat occurs, packets will experience high latencies for
extended duration of time till a congestion control algorithm
steps in and limits the flows and until the switches drain
out the packets pending in their buffers. The vulnerability of
bufferbloat is that it can be triggered even by a single mis-
behaving network flow. TCPS flows, being latency-sensitive
and used in critical applications such as telesurgery, cannot
tolerate such bufferbloat, even if it appears intermittently.

A possible solution to avoid bufferbloat, even in the pres-
ence of a misbehaving flow, is to limit the buffer sizes.
However, limiting buffer sizes in switches can result in packet
drops. For many latency-sensitive applications such as in
TCPS, it may be preferable to experience intermittent packet
drops rather than to experience bufferbloat, which can affect
the packet latencies for an extended duration of time.

We perform the following experiment to demonstrate how
buffer sizes in switches affect the latencies of TCPS packets.
We use Mininet to simulate the network topology circled in red
in Figure 9. The hosts coloured in white in the circled network
portion are used to simulate external traffic at a constant bit
rate of 4.7 Mbps to each other.

Figure 20 shows how the latency experienced by TCPS
kinematic packets traversing from the operator to the teleop-
erator side varies with buffer sizes and with different TCPS
transmit rates. As expected, higher transmit rates and larger
buffer sizes result in higher packet latencies. Limiting buffer
size in switches to the size of two IP packets ensures that
even at a TCPS kinematic packet transmit interval of 1 ms,
the latency is under control (= 1ms). However, this setting
also increases the packet drop percentage by =~ 20%.

Bufferbloat can be avoided by constraining buffers in the
network switches. However, the traditional methods of con-
straining switch buffers per-port will degrade the performance
of non-TCPS flows such as video streaming and media down-
loads that demand large buffers. A potential solution is to
isolate TCPS flows from non-TCPS flows and to constrain



10¢ { —— 1500pkts
—&— 500pkts
—a— 50pkts

—— 5pkts

—

(=]
o
L

—

(=}
=
L

average latency (us)

—

(=]
T
|

80Kbps 160Kbps

transmit rate (Kbps)

40Kbps 53K|bps 800Kbps

Fig. 20. Average latencies experienced by kinematic packets for different
buffer sizes and TCPS packet transmit rates. For all the latency points in the
graph, the margin of error is within 5 %.

switch buffers per-flow such that fewer buffers are allotted for
the TCPS flows [53], [54].

D. Support for Different TCPS Applications

TCPSbed supports implementation of different TCPS ap-
plications. We have already discussed use of TCPSbed to
run a TCPS application where an operator controls a remote-
side robot using a haptic glove (see Section V-A). In [55]
we demonstrate use of TCPSbed to run a TCPS application
where an operator controls a virtual robot simulated in V-REP
using a computer mouse. In this section, as a proof of concept,
we demonstrate use of TCPSbed to implement a non-robotic
TCPS application where an operator controls the direction and
speed of a remote-side conveyor belt using a computer mouse.
Towards this, we use the experimental setup in Figure 9 with
the following modifications. We simulate a conveyor belt in
V-REP at ss-com, and we interface a computer mouse at ms-
com. We enable the kinematic data path and update its APIs to
map the mouse wheel movements to the speed and direction of
the conveyor belt (see [55]). We demonstrate this application
in Figure 21.

Fig. 21. The left and right figures capture snapshots of the clockwise and
anticlockwise motion of the conveyor belt simulated in V-REP with a dummy
glass object on the top. The operator uses the wheel of the computer mouse
connected to ms-com to control the speed and the direction of the conveyor
belt.

VII. CONCLUSION

We have designed and implemented a testbed, TCPSbed, for
Tactile Internet-based Cyber-Physical Systems (TCPS). The
main objective of TCPSbed is to enable quick prototyping
and evaluation of TCPS applications. Our initial learnings
from using TCPSbed can be summarized as follows: (i) in
a TCPS, both networking and non-networking latencies, in
particular, the delay associated with robot actuation, play a

significant role. (ii) buffering of packets, at the switches or
at the host, affect TCPS packet latencies. (iii) traditional best-
effort networks in presence of external traffic cannot guarantee
bounds on TCPS packet latencies. (iv) using edge intelligence
components to predict kinematic and haptic signals at the
network edges can significantly improve TCPS applications’
performance even if the edge intelligence components consist
of simple prediction algorithms. (v) step response curves
of a TCPS implementation are affected by its components.
Designing a meaningful metric to assess the quality of TCPS
implementations using step response experiments is thus war-
ranted.

We envision that TCPSbed will find its usage in all stages
of TCPS development. One can use TCPSbed’s latency and
stability analyzer tools to perform suitability analysis of
networking and non-networking components for prototyping
TCPS applications. In the prototyping stage of a TCPS,
TCPSbed’s tools can be used to co-optimize the hardware,
software and algorithms delays to meet the requirements of the
application. Further, TCPSbed’s edge intelligence components
can be used to experimentally determine the right prediction
algorithm to apply for a given network scenario. Finally,
during the production stage of a TCPS, TCPSbed can be used
as a platform to calibrate several of the TCPS components.

In the same vein as many open wireless networking testbeds,
we have built TCPSbed modularly, which enables others to
modify it as per their needs. Our intercontinental experiment
shows that we can use TCPSbed remotely and can port it to
different locations. We have also made TCPSbed’s source code
open through our GitHub page TactileInternet [55].

ACKNOWLEDGEMENT

We thank Belma Turkovic for installing several TCPSbed
components at TU Delft, which enabled our international
experiment. We thank Deepak Panchapakesan for assisting in
the implementation of several TCPSbed components. We also
thank Visvesvaraya Ph.D. scheme and Visvesvaraya Young
Faculty Research Fellowship for supporting this work.

REFERENCES

[1] K. Polachan, T. V. Prabhakar, C. Singh, and F. A. Kuipers, “Towards an
Open Testbed for Tactile Cyber Physical Systems,” in 1/th International
Conference on Communication Systems & Networks, (COMSNETS),
2019.

[2] O. Holland, E. Steinbach, R. V. Prasad, Q. Liu, Z. Dawy, A. Aijaz,
N. Pappas, K. Chandra, V. S. Rao, S. Oteafy, M. Eid, M. Luden,
A. Bhardwaj, X. Liu, J. Sachs, and J. Aratjo, “The IEEE 1918.1 "Tactile
Internet” Standards Working Group and its Standards,” Proceedings of
the IEEE, 2019.

[3] G. P. Fettweis, “The Tactile Internet: Applications and Challenges,”
IEEE Vehicular Technology Magazine, March 2014.

[4] ITU. (2014) The Tactile Internet. [Online]. Available: https://www.itu.
int/en/ITU-T/techwatch/Pages/tactile-internet.aspx

[5] K. Polachan, T. V. Prabhakar, C. Singh, and D. Panchapakesan, “Quality
of Control Assessment for Tactile Cyber-Physical Systems,” in 2019 16th
Annual IEEE International Conference on Sensing, Communication, and
Networking (SECON), June 2019, pp. 1-9.

[6] K. Polachan, B. Turkovic, T. V. Prabhakar, C. Singh, and F. A. Kuipers,
“Dynamic Network Slicing for the Tactile Internet,” in ACM/IEEE 11th
International Conference on Cyber-Physical Systems (ICCPS), 2020.



[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15

[16

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

K. Polachan, C. Singh, and T. V. Prabhakar, “Decentralized dynamic gate
scheduling of ieee 802.1 gbv time aware shaper and a tsn simulator
for tactile cyber-physical systems,” in 2021 IFIP/IEEE International
Symposium on Integrated Network Management (IM). 1EEE, 2021,
pp. 45-53.

M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, “Sg-enabled
tactile internet,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 3, pp. 460-473, March 2016.

J. J. LaViola, Jr., “A Discussion of Cybersickness in Virtual Environ-
ments,” SIGCHI Bull., 2000.

E. Steinbach, S. Hirche, M. Ermnst, F. Brandi, R. Chaudhari, J. Kammerl,
and I. Vittorias, “Haptic Communications,” Proceedings of the IEEE,
2012.

A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. ElBakoury, “Ultra-Low Latency (ULL) Networks:
The IEEE TSN and IETF DetNet Standards and Related 5G ULL
Research,” IEEE Communications Surveys Tutorials, 2019.

D. van den Berg, R. Glans, D. de Koning, F. A. Kuipers, J. Lugtenburg,
K. Polachan, T. V. Prabhakar, C. Singh, B. Turkovic, and B. van Wijk,
“Challenges in Haptic Communications Over the Tactile Internet,” /[EEE
Access, vol. 5, pp. 23502-23 518, 2017.

M. Maier and A. Ebrahimzadeh, “Towards immersive tactile internet
experiences: Low-latency fiwi enhanced mobile networks with edge
intelligence [invited],” IEEE/OSA Journal of Optical Communications
and Networking, vol. 11, no. 4, pp. B10-B25, 2019.

Coppelia Robotics. (2018) V-REP Virtual Robot Experimental Platform.
[Online]. Available: http://www.coppeliarobotics.com/

NS-3. (2018) NS-3 Consortium. [Online]. Available: https://www.
nsnam.org

Mininet. (2018) An Instant Virtual Network on your Laptop (or other
PC). [Online]. Available: http://mininet.org/

X. Mai, J. Chen, Y. Wang, S. Bi, Y. Cheng, and N. Xi, “A Teleoperation
Framework of Hot Line Work Robot,” in Proceedings of 2018 IEEE
International Conference on Mechatronics and Automation, ICMA 2018.
Institute of Electrical and Electronics Engineers Inc., 2018.

W. Pryor, B. P. Vagvolgyi, W. J. Gallagher, A. Deguet, S. Leonard, L. L.
Whitcomb, and P. Kazanzides, “Experimental Evaluation of Teleoper-
ation Interfaces for Cutting of Satellite Insulation,” in Proceedings -
IEEE International Conference on Robotics and Automation. Institute
of Electrical and Electronics Engineers Inc., 2019.

E. Mendoza and J. P. Whitney, “A Testbed for Haptic and Magnetic Res-
onance Imaging-Guided Percutaneous Needle Biopsy,” IEEE Robotics
and Automation Letters, 2019.

W. J. Book, H. Lane, L. J. Love, D. P. Magee, and K. Obergfell,
“Novel Teleoperated Long-Reach Manipulator Testbed and its Remote
Capabilities via the Internet,” in Proceedings - IEEE International
Conference on Robotics and Automation. 1EEE, 1996.

S. Hayati, T. Lee, K. Tso, P. Backes, and J. Lloyd, “A Testbed for a
Unified Teleoperated-Autonomous Dual-Arm Robotic System.”  Publ
by IEEE, 1990, pp. 1090-1095.

L. S. Pecly, M. L. Souza, and K. Hashtrudi-Zaad, ‘“Model-Reference
Model-Mediated Control For Time-Delayed Teleoperation Systems,” in
IEEE Haptics Symposium, HAPTICS. IEEE Computer Society, 2018.
F. Gringoli, R. Klose, M. Hollick, and N. Ali, “Making Wi-Fi Fit for
the tactile internet: Low-Latency Wi-Fi flooding using concurrent trans-
missions,” in 2018 IEEE International Conference on Communications
Workshops, ICC Workshops 2018 - Proceedings. Institute of Electrical
and Electronics Engineers Inc., jul 2018, pp. 1-6.

J. A. Cabrera, R. S. Schmoll, G. T. Nguyen, S. Pandi, and F. H. Fitzek,
“Softwarization and network coding in the mobile edge cloud for the
tactile internet,” pp. 350-363, feb 2019.

H. Cao, S. Gangakhedkar, A. R. Ali, M. Gharba, and J. Eichinger, “A
5G V2X Testbed for Cooperative Automated Driving,” IEEE Vehicular
Networking Conference (VNC), 2016.

V. Gokhale, K. Kroep, V. S. Rao, J. Verburg, and R. Yechangunja, “Tixt:
An extensible testbed for tactile internet communication,” /IEEE Internet
of Things Magazine, vol. 3, no. 1, pp. 32-37, 2020.

SolarWinds. (2017) Network Performance Monitor. [Online]. Available:
http://www.solarwinds.com/network- performance-monitor\ #features
Visualware. (2017) VisualRoute. [Online]. Available: http://www.
visualroute.com/

A. Hamam and A. E. Saddik, “Evaluating the quality of experience
of haptic-based applications through mathematical modeling,” in 2012
IEEE International Workshop on Haptic Audio Visual Environments and
Games (HAVE 2012) Proceedings, Oct 2012, pp. 56-61.

[30]

[31]

[32]

[33]

[34]

[35]

(36]

(371

[38]

(39]
[40]

[41]

[42]
[43]
[44]
[45]
[46]
(471
[48]

[49]

(501

[51]

[52]

[53]

[54]

[55]

M. A. Jaafreh, A. Hamam, and A. E. Saddik, “A framework to analyze
fatigue for haptic-based tactile internet applications,” in 2017 IEEE
International Symposium on Haptic, Audio and Visual Environments and
Games (HAVE), Oct 2017, pp. 1-6.

A. Tatematsu, Y. Ishibashi, N. Fukushima, and S. Sugawara, “Qoe
assessment in haptic media, sound and video transmission: Influences
of network latency,” in 2010 IEEE International Workshop Technical
Committee on Communications Quality and Reliability (COR 2010),
June 2010, pp. 1-6.

N. Sakr, N. D. Georganas, and J. Zhao, “A perceptual quality metric for
haptic signals,” in 2007 IEEE International Workshop on Haptic, Audio
and Visual Environments and Games, Oct 2007, pp. 27-32.

C. G. Corréa, D. M. Tokunaga, E. Ranzini, F. L. S. Nunes, and
R. Tori, “Haptic interaction objective evaluation in needle insertion task
simulation,” in Proceedings of the 31st Annual ACM Symposium on
Applied Computing, ser. SAC *16. New York, NY, USA: ACM, 2016,
pp. 149-154.

R. Chaudhari, E. Steinbach, and S. Hirche, “Towards an objective quality
evaluation framework for haptic data reduction,” in 2011 IEEE World
Haptics Conference, June 2011, pp. 539-544.

MathWorks. (2018) Step Info. [Online]. Available: https://in.mathworks.
com/help/control/ref/stepinfo.html

B. Messner and D. Tilbury. (2018) Control System Analysis.
[Online].  Available:  http://ctms.engin.umich.edu/CTMS/index.php?
example=Introduction&section=SystemAnalysis

—_ (2018) Introduction: PID Controller Design .
[Online].  Available:  http://ctms.engin.umich.edu/CTMS/index.php?
example=Introduction&section=ControlPID

Cypress Semiconductors. (2017) PSoC. [Online]. Available: http:
/Iwww.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp

OpenCV. (2017) OpenCV. [Online]. Available: http://opencv.org/
PyAudio. (2017) PyAudio. [Online]. Available: https://pypi.python.org/
pypi/PyAudio

N. Arjun and S. M. Ashwin, Kurian pol and T. V. Prabhakar and
Chandramani Singh, “An End to End Tactile Cyber Physical System
Design,” in 4th International Workshop on Emerging ldeas and Trends
in the Engineering of Cyber-Physical Systems (EITEC), April 2018.
Intel. Intel Movidius Neural Compute Stick. [Online]. Available:
https://movidius.github.io/ncsdk/index.html

Nvidia. Nvidia Jetson. [Online]. Available: https://developer.nvidia.com/
embedded/jetson-nano

Adafruit. (2017) Vibrating mini motor disc.
https://www.adafruit.com/product/1201

(2020) PhantomX Reactor, Trossen Robotics. [Online]. Available: https:
/Iwww.trossenrobotics.com/p/phantomx-ax- 12-reactor-robot-arm.aspx
Tcpreplay. bigflows.pcap. [Online]. Available: https://tcpreplay.appneta.
com/wiki/captures.html

“tcpreplay man page,” https://tcpreplay.appneta.com/wiki/
tepreplay-man.html, (Accessed on 08/22/2021).

“Wireshark go deep.” https://www.wireshark.org/, (Accessed on
08/31/2021).

Y. Gao, S. S. Vedula, C. E. Reiley, N. Ahmidi, B. Varadarajan, H. C.
Lin, L. Tao, L. Zappella, B. Bejar, D. D. Yuh, C. C. G. Chen,
R. Vidal, S. Khudanpur, and G. D. Hager, “Jhu isi gesture and skill
assessment working set (jigsaws) a surgical activity dataset for human
motion modeling,” Modeling and Monitoring of Computer Assisted
Interventions (M2CAI) — MICCAI Workshop, 2014.

K. Polachan, J. Pal, C. Singh, and T. V. Prabhakar, “Quality of
Control Assessment for Tactile Internet based Cyber-Physical Systems,”
arXiv.org, 2019.

L. Foundation. napi. [Online]. Available: https://wiki.linuxfoundation.
org/networking/napi

K. M. Salehin, V. Sahasrabudhe, and R. Rojas-Cessa, “Remote mea-
surement of interrupt-coalescence latency of internet hosts,” in IFIP
Networking, June 2017, pp. 1-9.

N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy, “Approxi-
mating Fair Queueing on Reconfigurable Switches,” in /5th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18). USENIX Association, Apr. 2018.

R. Kundel, J. Blendin, T. Viernickel, B. Koldehofe, and R. Steinmetz,
“P4-codel: Active queue management in programmable data planes,” in
2018 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), Nov 2018, pp. 1-4.

“Github - tactileinternet/tcpsbed: A modular testbed for tactile internet
based cyber-physical systems (v1.0),” https://github.com/TactileInternet/
TCPSbed, (Accessed on 08/31/2021).

[Online]. Available:



