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Abstract
This research investigates the detection of gesticu-
lation using a torso-worn accelerometer sensor. Us-
ing the Conflab dataset, we focus on gestures dur-
ing conversations in mingling scenarios. Due to
significant variability in gesture styles among in-
dividuals, traditional methods face challenges in
building personalized models. Our experiments
demonstrate that Transductive Parameter Trans-
fer (TPT), an adaptive transfer learning method,
can more effectively model these individual differ-
ences in gesturing. To gain insights into individ-
ual expressiveness, we classify gestures into three
classes: ‘no gesture,’ ‘normal,’ and ‘large’ gestures.
TPT performed an average AUC score of 0.84 in
binary classification and 0.77 in multiclass classi-
fication. These findings highlight the potential of
using a single torso-worn accelerometer to under-
stand social behavior in naturalistic settings.

1 Introduction
Gestures are integral to human communication, serving as
non-verbal cues and tools that complement speech to empha-
size and structure it [9]. These gestures provide insights into
the speaker’s emotions, personality traits, and intentions [13].
Analyzing gestures can be useful in particular settings, such
as inferring the overall mood of gatherings, monitoring kids’
behaviors for education, or observing patients in healthcare
settings. This makes the analysis of hand gestures a valuable
method for providing insights into human interactions [16].

Gesture recognition in human-computer interaction (HCI)
has been studied to enable control and interaction with ma-
chines using hand and body movements, without the need for
physical contact. While such studies often focus on symbolic
or predefined gestures, natural hand gestures are more com-
monly encountered in real-life conversations. For example,
[24, 33] analyzed the frequency of gestures during conversa-
tions using a side-view video dataset while [19,20] have pro-
posed methods for automatically capturing upper body com-
municative cues in seated conversation. [2] delved into ges-
tures during free-standing conversations in social settings, yet
the field remains relatively understudied.

Studying social interactions in natural, unconstrained en-
vironments where conversations occur organically offers a
wealth of meaningful data. In these settings, known as “in
the wild” scenarios, individuals interact freely, providing a
rich context for analyzing conversational gestures. Our goal
is to address the challenges in real-life social interactions to
develop more practical gesture detection systems.

This research focuses on studying social interactions in
mingling scenarios, a specific type of “in the wild” setting
where people engage in spontaneous, unscripted conversa-
tions. The Conflab dataset [26,27], which captures such inter-
actions provides an excellent basis for our study. This dataset
was recorded from social gatherings of a conference event, in-
cluding overhead view video and sensor data collected from
all participants wearing a smart badge hung on their necks.

The dataset also includes manually annotated speaking status
and full body key-points.

Previous studies on conversational gestures have predomi-
nantly relied on vision-based techniques or wearable devices
positioned on the hands and arms [10,14,18,22,30,32]. How-
ever, our research focuses on detecting gestures using a torso-
worn smart badge equipped with an accelerometer.

Gestures and their ranges vary by individual, which of-
fers insight into the expressiveness and communicative in-
tent [4,23]. Our methodology involves using body key-points
to identify different ranges of gestures and classifying these
gestures using accelerometer data. Unlike the traditional ap-
proach of concatenating various subjects into one training
set, we investigate whether personalized models can improve
the detection of individual gestures. We employed Transduc-
tive Parameter Transfer (TPT) [8], a machine-learning tech-
nique that adapts models to individuals’ unique gestural pat-
terns. TPT has shown promise in personalized model adapta-
tion, which can address the variability in individuals’ gesture
styles.

The contributions of this research are threefold:
1. Demonstrate the effectiveness of combining body key-

points and accelerometer data to classify gesture ranges.
2. Propose a personalized gesture detection model by ap-

plying Transductive Parameter Transfer (TPT) approach
and validate the method.

3. Extend the TPT approach to handle multiclass classifi-
cation tasks to differentiate between multiple ranges of
gestures.

Through the evaluation of the Conflab dataset, we hope
to contribute to developing effective gesture recognition sys-
tems that can operate in natural social settings.

2 Related Work
This section reviews existing literature on gesture recogni-
tion methodologies, with a focus on vision-based and sensor-
based systems, conversational gesture detection, and social
behavior analysis. By examining these studies, we highlight
our unique challenges within the field of gesture recognition.

2.1 Gesture Recognition for Human-Computer
Interaction

Gesture recognition has been extensively studied for human-
machine interaction (HMI) and human-robot interaction
(HRI), particularly in the context of interpreting hand sign
languages. There are two primary implementations of ges-
ture recognition systems: sensor-based and vision-based [30].
Vision-based recognition systems focus on interpreting ges-
tures through video data, where individuals perform prede-
fined gestures in front of a camera. However, these systems
typically address only a subset of the wide variety of possible
gestures. There remains an issue related to complex trajec-
tories and occlusions, which can impact performance in real-
time applications.

In contrast, sensor-based solutions utilize accelerometers
or gyroscopes to detect gestures [10]. These systems often
involve special gloves or handheld devices to capture hand



movements [22]. For instance, [32] introduced a method us-
ing a three-dimensional accelerometer embedded in a Wi-
imote controller. Their approach extracts temporal and spec-
tral features from the accelerometer data and employs a multi-
class SVM for classification. Similarly, [18] investigated
accelerometer-based gesture recognition using a wearable
watch, utilizing feature-weighted Naı̈ve Bayesian classifiers
and dynamic time warping. [14] explored the feasibility of
using smartbands for social gesture recognition. The study
involved 32 participants performing 12 predefined social ges-
tures while wearing a smartband equipped with a tri-axial ac-
celerometer and classified with logistic regression.

While these studies have specific objectives like interacting
with a computer, the reliance on wearable devices can make
these systems cumbersome and less convenient for users. In
contrast, we aim to analyze social interactions based on a per-
son’s gestures detected by a sensor positioned on the torso.
The context of using a smart badge sensor to monitor and
interpret social gestures presents unique challenges and re-
quirements that differ from traditional HCI applications.

2.2 Detecting Conversational Gestures
Researchers have investigated gestures within conversational
contexts which is a crucial aspect of understanding nonver-
bal communication in social interactions. A feasibility study
by [29] focused on hand gesture recognition during natural
conversations. They involved an experimental assistant and
two subjects, capturing hand gestures naturally occurring dur-
ing dialogues. These gestures were manually annotated to an-
alyze their frequency and duration, revealing that hand ges-
tures significantly impact communication, often reinforcing
verbal messages.

[33] presented work on analyzing frequency properties
of hand gestures during conversations. They applied a win-
dowed Fourier transform and wavelet transform to detect and
extract gesticulatory oscillations. Similarly, [20] and [19] ad-
dressed the detection of gestures during seated encounters
within the context of job interviews. Their first work focused
on detecting upper body movements using monocular video
to approximate a 3D upper body pose, including hand posi-
tions. Their subsequent study used these features to identify
adaptors—unintentional gestures typically performed when
a person is fidgety—and beat gestures, which emphasize
speech rhythms.

While these previous works were oriented toward conver-
sational gestures, the primary focus has been on controlled
environments with limited variability. Moving towards de-
tecting social behaviors in more dynamic and natural settings
provides a broader understanding of human interactions and
the challenges involved.

2.3 Detecting Social Behaviors In-The-Wild
Detecting social behaviors in crowded and dynamic environ-
ments, where multiple individuals interact closely, has been
approached using various methodologies. Some studies high-
light the feasibility of using only accelerometer data, while
others benefit from multimodal approaches by combining vi-
sual and acceleration data.

Previous work [11] using a single body-worn accelerome-
ter has demonstrated the estimation of actions such as speak-
ing, laughing, gesturing, drinking, and stepping. This em-
phasized the advantages of accelerometers in noisy, crowded
environments where traditional sensors like cameras and mi-
crophones struggle due to occlusions and auditory interfer-
ence. The results for gesture classification showed the low-
est performance, with an F1 score of 0.34. This can be at-
tributed to the variability in individual gesturing styles, mak-
ing it challenging for classifiers to recognize person-specific
movements.

Another study [8] focused on detecting speech in crowded
environments using a single body-worn triaxial accelerome-
ter. They used transductive parameter transfer learning to ad-
dress the high variability in body movements during speech.
This method allows the adaptation of learned models to new,
unseen subjects using only unlabeled data, improving detec-
tion performance over state-of-the-art methods. These find-
ings highlight the importance of adaptive models in recogniz-
ing speech-related body movements.

The most similar work to ours [2], introduced a method
for detecting conversational hand gestures in crowded min-
gle scenarios. The authors propose a multimodal approach
with a fusion of video data and wearable acceleration data
collected from smart badges. The acceleration data was ef-
fectively used at the decision level, enhancing the detection
performance.

Although the fusion approach for gesture detection [2]
has demonstrated effectiveness, using video data still poses
several challenges, such as privacy concerns. While rely-
ing solely on accelerometer data may seem simple and ro-
bust, [11] has shown limitations in gesture detection using
accelerometer data alone. Therefore, a better approach is
needed to handle the variability in how individuals gesture.

Many gesture detection studies [2,11] focus on a simple bi-
nary classification task, overlooking the varying expressive-
ness of gestures. The size of gestures is crucial for under-
standing the saliency of social interactions as it often corre-
lates with the intensity of the emotion or meaning being con-
veyed [4]. For example, larger, more expansive gestures tend
to express stronger intentions. Therefore, we need a system
detecting these varying ranges that can help better understand
the expressiveness behind the gestures.

3 Methodology
We propose a novel approach to automatically detect and
classify conversational gestures using accelerometer data
from a torso-worn smart badge. This section includes the an-
notation of gesticulation from video data, feature extraction
from accelerometer data, and the application of the Trans-
ductive Parameter Transfer (TPT) learning method.

3.1 Automatic Gesture Annotation
As defined by the Cambridge Dictionary, gesticulation refers
to “movements with your hands or arms intended to express
something or to emphasize what you are saying” [3]. It is
the most common type of gesture, occurring spontaneously
with speech. We see gesticulations as movements between



two consecutive ‘non-gestures’ where the hands and arms re-
main still in a resting position. This allows us to differentiate
between active gesticulation and periods of inactivity.

Manual annotation of gestures through video inspection
is a valid method but has significant limitations. It is time-
consuming and labor-intensive, requiring substantial effort to
mark the gesture start and end points in video data [12]. This
process becomes even more arduous when multiple annota-
tors are needed to ensure objectivity [15]. Ensuring consis-
tency over time is challenging, and important details may be
missed. These limitations have motivated research into auto-
mated approaches to address these challenges.

Our approach focuses on torso body key-points, such
as the positions of shoulders, elbows, and wrists. Semi-
automated gesture annotation approaches have identified such
key-points (shoulders, elbows, and wrists) as key features
contributing to accurate gesture detection [12]. Addition-
ally, we calculate the size of the gestures based on these key-
points. From the analysis of spatial information, we classify
gestures into normal’ and ‘large’ categories. This classifica-
tion captures how extensively individuals use their hands and
arms away from their body.

For each participant in a video frame, we perform two main
processes: normalizing the positions of torso key-points and
calculating the distances between necessary key-points. If
these key-points meet specific conditions for being a ‘nor-
mal’ or ‘large’ gesture, the frame is labeled accordingly. The
detailed process for gesture identification is discussed in 4.1

We annotated 16 participants who engaged in conversa-
tional groups with video intervals of 10 minutes at 60 fps.
A sliding window size of 3 seconds was used with a 1.5-
second shift. If at least one of the 180 frames within a win-
dow is marked as a gesture, the window is labeled as a ges-
ture. Conversely, if all frames in the window are labeled as
non-gesture, the window is labeled as non-gesture.

The class distributions for each participant are depicted in
Fig.1. On average, 32% of the samples across all participants
were positive (indicating gesturing), with a standard devia-
tion of 20%. Among these, 23% were normal range gestures,
and 9% were large gestures. Participant 30 had the high-
est percentage of positive samples (74%), including the most
large gestures (37%). Participant 32 had the fewest positive
samples (0.5%) with no ’large’ gestures. This person-specific
variation in class distribution presents a need for personalized
gesture detection.

3.2 Feature Extraction
We extracted features using a sliding window approach, sim-
ilar to the annotation process. We use the same approach that
has been proven efficient in analyzing human actions from
wearable acceleration [8]. For each participant, a torso-worn
smart-badge recorded acceleration data at 50 Hz. The data is
processed to produce time series of triaxial acceleration, the
absolute value of each axis, and the magnitude of the acceler-
ation (|accel| =

√
x2 + y2 + z2), resulting in seven different

time series: x, y, z, |x|, |y|, |z|, and |accel|. The triaxial time
series can address movements where the direction is impor-
tant, while the magnitude and absolute values allow focusing
on direction-invariant movements and overall intensity. Then,

Figure 1: Percentage of gesture range for each participant

the following 10 features are extracted from each time series:
mean, variance, and power spectral density (using eight bins).

This process resulted in 398 samples (windows) with 70
dimensions (7 time series × 10 features each). These feature
vectors were then used for classifiers in multiple experiments,
which are detailed in Section 5

3.3 Transductive Parameter Transfer
Gesticulation varies significantly from person to person due
to factors like cultural background, personal habits, and phys-
ical characteristics [6]. Instead of using a traditional approach
that combines data from different subjects into a single train-
ing set, we explore whether personalized models can better
detect individual gestures.

To achieve this, we employ an adaptive transfer learn-
ing method called Transductive Parameter Transfer (TPT).
TPT is a machine learning method that personalizes models
by leveraging labeled data from multiple source domains to
adapt to a new target domain without requiring labeled data
from the target (Fig.3). The parameters from the source mod-
els are adapted to fit the target individual’s data distribution.
This approach has been successfully used in personalized
speech detection [8] and in facial expression analysis [28].
Given the variability in gestural patterns among individuals,
TPT is suited for our study as it enables personalized models
that can adapt to each individual’s data distribution. The de-
tailed steps of our TPT process are described in 4.2 where we
outline the procedure along with the algorithm pseudocode.

4 Implementation Details
This section provides an in-depth look at the implementation
aspects of our research. We discuss the criteria for identify-
ing gesture ranges based on body key-points and the detailed
steps of applying the TPT approach.

4.1 Automatic Extraction of Gesture Range
Individual differences exist in how speakers use gesture space
during communication [23]. Mcneill [21] categorized spatial
form of gestures into center-center, center, periphery, and ex-
treme periphery range, as visualized in Appendix A.1. These
gesture ranges vary based on factors such as a person’s speech
content, emotion, and cultural background [31], which indi-
cate a person’s expressiveness and gestural habits [17].



We identify these different gesture ranges by analyzing an-
notated body key-points from the Conflab dataset, which pro-
vide a consistent viewing angle relative to the gestures being
performed. Our focus is on gestures occurring in the periph-
ery and extreme periphery spaces, which we refer to as ‘nor-
mal’ and ‘large’ gestures. We extract these gestures by cal-
culating the distance between the neck and wrist points. If
this distance exceeds Tgesture, the person is using their hands
outside their body’s boundary, signifying gesticulation. This
threshold was determined through empirical testing on di-
verse participants to identify when hands are used for expres-
sive movements rather than being at rest.

[1] suggests that we can determine the ‘size’ of the gesture
by using the distance between the wrists normalized by shoul-
der width. We identify a ‘normal’ gesture by checking if the
wrist-to-wrist distance/shoulder width ratio exceeds Tnormal,
indicating that the arm span extends beyond the torso into
the periphery range. For a ‘large’ gesture, the hand-to-hand
distance/elbow-to-elbow distance ratio should exceed Tlarge,
indicating that the arms are extended widely without bending
the elbows. Algorithm 1 outlines the pseudocode for deter-
mining gesture size.

Algorithm 1 Gesture Range Identification

Input: Annotated body key points from Conflab dataset
Output: Classified gestures as ’normal’ or ’large’
for each frame do

Extract and normalize pneck, pleft wrist, pright wrist,
pleft shoulder, pright shoulder, pleft elbow, pright elbow

if D(pneck, pleft wrist) > Tgesture and
D(pneck, pright wrist) > Tgesture then

Wshoulder = D(pleft shoulder, pright shoulder)
Welbow = D(pleft elbow, pright elbow)
Wwrist = D(pleft wrist, pright wrist)

Rwrist shoulder =
Wwrist

Wshoulder

Rwrist elbow = Wwrist
Welbow

if Rwrist shoulder > Tnormal then
Mark the frame as ‘normal’ gesture

else if Rwrist elbow > Tlarge then
Mark the frame as ‘large’ gesture

end if
else

Mark the frame as ‘no gesture’
end if

end for
Return: List of frames classified with gestures

Fig. 2 shows a snippet of a frame with body key-points
that indicate ‘no gesture’, ‘normal gesture’ (red), and ‘wide
gesture’ (blue). After automation of marking all the frames’
body key-points, we went through several rounds of manual
inspection. This process involved playing the video continu-
ously frame by frame, with the colored key-points indicating
the gestures. This confirmed that there were no false positives
or misinterpretations of gestures.

Figure 2: Different gesture ranges of body key-points (no gesture,
normal gesture - red, wide gesture - blue)

4.2 Algorithm of TPT
The TPT approach accounts for the variance in participants’
gesture movements when personalizing models. This in-
volves computing optimal classifier parameters for a target
dataset based on source datasets and their optimal classifiers
(Fig. 3). Our algorithm is based on previous works [8, 28]
and their codebase [7]. First, we train individual logistic re-
gression models for each participant in the source dataset to
learn optimal model parameters. Then, we use Kernel Ridge
Regression to map the data distributions of sources to their re-
spective model parameters. Next, we compute the similarity
between the target and source data distributions. Using this
learned mapping, we predict the optimal model parameters
for the target dataset based on these similarities.

The detailed steps are in Algorithm 2. From N source
datasets with label information and the unlabeled target
dataset, the goal is to compute the optimal parameters (wt, ct)
for Xt (where w and c correspond to regression coefficients
and the intercept, respectively:

Figure 3: Overview of Transductive Parameter Transfer (TPT) ap-
proach for gesture detection



Algorithm 2 Transductive Parameter Transfer (TPT) Algo-
rithm

Input: Source datasets Ds
i = {(xs

j , y
s
j )}

ns
i

j=1, target dataset
Xt =

{
xt
j

}nt

j=1

Output: Personalized model parameters (wt, bt) for target
data

1. Train a classifier on each source dataset Ds
i
N
i=1 to ob-

tain the classifier parameters θi = (wi, ci) using lo-
gistic regression.

2. Construct a training set T = (Xs
i , θi)

N
i=1, where Xs

i
represents the feature vectors of the source dataset Ds

i
without the labels.

3. Compute the kernel matrix K where Kij =
κ(Xs

i , X
s
j ) represents Earth Mover’s distance be-

tween the data distributions of the source datasets Xs
i

and Xs
j .

4. Using K and T , compute the mapping function f̂ be-
tween marginal distributions of the datasets and their
optimal parameters, with Kernel Ridge Regression

5. Apply the mapping function f̂ to the target dataset Xt

to predict the parameters (wt, bt).
Return: (wt, bt)

Using the Algorithm 2, we can compute the parameter vec-
tor θt, for any new target dataset by plugging Xt into the
mapping function f̂ . Then, the classification of the samples
is obtained by y = sign(wtx+ ct).

4.3 Algorithm of TPT for Multiclass Classification
The TPT approach needs to be adjusted for multiclass clas-
sification to classify the gesture range into three classes (no
gesture, normal gesture, large gesture) as identified in 4.1.
Previous studies have only applied the TPT approach to bi-
nary classification, so we have evolved the existing method
to address this multiclass problem.

We use logistic regression with a ’ one-versus-rest ’ ap-
proach when training classifiers for each source set to obtain
the optimal parameters. This method provides distinct pa-
rameters for each class by comparing each class against the
others, resulting in three parameter sets. Similar to the binary
TPT case, kernel ridge regression maps the distribution of the
source datasets to their parameters. Consequently, separate
regressors are trained for each class’s parameters, resulting in
three individual regressors.

Using the learned mapping functions between the distri-
bution and the parameters, we put in the target distribution
to obtain three sets of parameters. Decision values are then
calculated from each class’s parameters and passed through a
sigmoid function. The sample is classified based on the class
with the highest sigmoid value. Fig. 4 shows the overview of
the multiclass TPT procedure.

5 Evaluation
A series of experiments was conducted using the Conflab
dataset. This section describes the experimental setup, the

Figure 4: Overview of TPT approach for muticlass classification

results obtained from both binary and multiclass classifica-
tion tasks, and a comparison of of our TPT models with other
classification techniques.

To systematically evaluate classification performance, we
selected the Area Under the Curve (AUC) as our metric. For
personalized models, where data distribution and class bal-
ance can vary by participant, AUC is particularly effective in
handling data imbalances.

5.1 TPT in Binary Classification
5.1.1 Experimental Setups
For each participant, a personalized model was trained in
three setups: person-dependent, person-independent, and
TPT, with the first two serving as baselines for evaluating
TPT, inspired by the experiments described in [8]. The task
is binary classification, where both ‘normal’ and ‘large’ ges-
tures are classified as the positive class. Logistic regressors
were used, and optimal regularization was determined using
k-fold cross-validation on the training set. To address poten-
tial bias due to class imbalance, we adjusted the class weights
by setting them inversely proportional to class frequencies in
the training data. The details for each experimental setup are
the following:

• Person Dependent Setup Individual model was
trained and tested on each participant’s dataset. Due to
the limited number of samples in each dataset, we use a
Leave-One-Sample-Out cross-validation approach.

• Person Independent Setup Each model is trained us-
ing the concatenated data from all other participants, fol-
lowing a Leave-One-Subject-Out cross-validation setup.
The model was tested and evaluated on the participant’s
data that was left out.

• TPT Each participant is treated as a target set while
a model is trained using the other participants as source



sets, similar to the Leave-One-Subject-Out setup in the
person-independent setup.

5.1.2 Results
Fig. 5 shows the scores for each participant across all three
setups.

Person-dependent setup resulted in an average AUC
score of 0.82 with a standard deviation of 0.14, ranging
from 0.5 to 0.97. This high variation is attributed to the
class distribution being highly skewed towards the negative
class in some participants (32 and 35) with an AUC score of
0.5. However, we cannot guarantee that balanced datasets al-
ways lead to higher performance, as seen with Participant 28
(0.67).

Person-independent setup obtained an average AUC
score of 0.82 with a standard deviation of 0.075, ranging from
0.6 to 0.91. Most participants (10 out of 16) had higher scores
in the person-dependent setup than in the person-independent
setup. Typically, training with more samples improves model
performance in machine learning, but this was not the case
here. This suggests that training an individual model using
combined datasets from different participants may create a
decision boundary that does not accurately reflect the unique
probability distributions inherent to each participant’s data.

TPT approach resulted in an average AUC of 0.84 with a
standard deviation of 0.068, slightly higher than both person-
independent and person-dependent setups (0.82). A one-
tailed paired t-test showed no significant difference between
the TPT setup and either the person-independent or person-
dependent setups.

Half of the participants (8 out of 16) performed better
with TPT compared to the person-independent setup. In the
person-dependent setup, 10 out of 16 participants performed
better than with TPT, although the overall average for the de-
pendent setup was lower. We consider the person-dependent
setup as an upper bound on performance because it benefits
from the personalized nature of the setting.

Interestingly, Participants 13, 32, and 35 performed best
in the TPT setup compared to both the person-independent
and person-dependent setups. A common factor for these
participants was their highly skewed data distribution, with
over 90% of their data belonging to the negative class. No-
tably, participant 32 had the most negative class and showed
the largest difference between TPT and the other two setups,
highlighting the effectiveness of TPT in handling extreme
class imbalances.

5.1.3 Comparison with Other Binary Classifiers
The performance of TPT was compared with other well-
known classification methods: Support Vector Machine
(SVM), k-Nearest Neighbors (KNN), and Random Forest
(RF). For each participant, these models were trained in
person-independent setups. The AUC scores for all models
for each participant are shown in Fig. 6. As illustrated in
Table 1 including average AUC score over all models, TPT
outperformed SVM and KNN, and the paired t-test revealed a
statistically significant difference between TPT and KNN. On
the other hand, RF showed slightly better performance than
TPT, achieving the highest average AUC among the classi-
fiers.

Figure 5: AUC scores of gesture detection in three setups for each
participant (TPT, person-independent, person-dependent)

Figure 6: AUC scores of TPT approach and other binary classifica-
tion models for each participant

5.2 TPT in Multiclass Classificatiom
5.2.1 Experimental Setups
The multiclass classification task aims to classify three
classes: ‘no gesture,’ ‘normal gesture,’ and ‘large gesture.’
We used data from 14 participants who exhibited all three
classes in their datasets. Participants 32 and 35, who did not
perform any large gestures, were discarded since the library
models used for multiclass classification were infeasible to
handle datasets with only two classes.

All experiments were conducted in a Leave-One-Subject-
Out manner. The multiclass TPT experiment followed the
same approach as the binary classification TPT. It was then
compared with the person-independent setup using four other
multiclass classification models: Logistic Regression (LR),
Support Vector Machine (SVM) with a one-vs-rest approach,
k-Nearest Neighbors (KNN), and Random Forest (RF).

5.2.2 Results
The multiclass TPT performed an average AUC of 0.77, rang-
ing from 0.63 to 0.89. All participants achieved higher per-
formance than random (0.33)

As shown in Table 2, the average AUC of TPT outper-
formed SVM, with 12 out of 14 participants performing bet-
ter. In contrast, TPT underperformed compared to LR and
RF, with paired t-test showing no significant differences. The
AUC scores for each participant across all models are shown
in Appendix A.2.

6 Discussion
This section discusses the results and the evaluation of our
proposed methods. We also consider the potential improve-
ments and future research directions.



Setup TPT Person-Independent
LR SVM KNN RF

AVG AUC 0.84 0.82 0.81 0.79 0.85
STDEV 0.068 0.07 0.097 0.057 0.054

Table 1: Average and Stdev AUC of different binary classification
setups

Setup TPT Person-Independent
LR SVM KNN RF

AVG AUC 0.77 0.79 0.71 0.71 0.78
STDEV 0.07 0.07 0.056 0.056 0.071

Table 2: Average and Stdev AUC of different multiclass classifica-
tion setups

6.1 Effectiveness of Body Key-Points and
Accelerometer Data in Gesture Detection

We demonstrated the automatic extraction of gestures and an-
alyzed the size of gestures, deriving spatial information from
body key-points. This method is more effective than man-
ual annotation, which is tedious and requires inter-annotator
agreement to eliminate subjectivity. In contrast, automatic
extraction provides an initial guideline for annotation, with
manual inspection adding a layer of verification. This valida-
tion process is straightforward, as the gestures are visualized
by coloring the key-points in the frame when detected.

However, the presented algorithm is specifically designed
for body key-points from an overhead view, as seen in the
Conflab dataset. Additionally, it requires the body key-points
to be annotated initially, which introduces a dependency.
Misidentification of gestures might occur due to errors in the
algorithm or inaccuracies in the annotated body key-points.
For example, natural body movements or accidental gestures
could potentially lead to false positives. Nonetheless, such
issues can still be detected through quick manual inspection,
and the method can significantly streamline the overall anno-
tation process.

We demonstrated the effectiveness of gesture classification
using accelerometer data collected from a smart badge worn
around the neck. Various classification models were tested,
yielding average AUC scores between 0.79 and 0.85. Ad-
ditionally, these models successfully identified different ges-
ture ranges in a multiclass classification task, with accura-
cies ranging from 0.71 to 0.79. In both binary and multi-
class scenarios, the performance significantly exceeded ran-
dom guessing benchmarks (0.5 for binary and 0.33 for mul-
ticlass). These results confirm that gestures and a person’s
expressiveness are predictive from torso movements.

6.2 Evaluation of TPT Approach
We focused on applying TPT to overcome the challenge of
developing individual models with limited or unlabeled data.
TPT was particularly effective for participants with highly
imbalanced data, such as participants 13, 32, and 35, who
are expected to have very subtle movements during conversa-
tions. TPT’s kernel regression model finds it easier to identify

similarities between these participants due to the consistency
in their movement patterns, leading to better performance.
This shows that TPT effectively addressed the difficulty of
detection introduced by the imbalance in class distribution,
which is very person-specific.

However, the overall performance of TPT in both binary
and multiclass setups did not outperform the independent
setup with RF classifier. This could be due to several fac-
tors. First, the data had a relatively low number of partic-
ipants. TPT relies on the diversity of participants’ data, and
for multiclass classification, the model requires even more di-
versity due to increased algorithm complexity. The previous
TPT research showed that TPT performance stabilizes to high
performance when there are at least 20-30 sources [28]. With
a limited number of participants (16), the kernel regression
learning used in TPT might struggle to find optimal parame-
ters for a new target. Therefore, future studies should espe-
cially test our newly proposed multiclass TPT with a larger
participant pool across different contexts.

Second, the independent setup, which leverages the com-
bined data from all participants, was inherently suitable for
RF to handle complex patterns. Specifically, RF becomes
more effective than LR as the dataset size increases due to
its ensemble nature, which combines multiple decision trees
to improve generalization and reduce overfitting. This ability
to manage larger datasets more effectively could explain why
our study’s independent setup with RF was better than TPT.

Despite these advantages, the independent setup also has
downsides. As more participants are included, these models
become computationally expensive due to the need to process
large amounts of data. Moreover, they may fail to capture the
unique patterns and behaviors specific to each individual as
the models are generalized across the combined data from all
participants. This lack of personalization can lead to subop-
timal performance for individual participants, especially in
tasks where personal differences are critical.

On the other hand, TPT offers a balance between compu-
tational efficiency and accuracy as the dataset grows, becom-
ing more effective in creating personalized models by learn-
ing from diverse gesture styles. This is because adding new
source participants involves adapting parameters rather than
retraining on the entire concatenated dataset. This approach
makes it more scalable and efficient compared to traditional
methods. However, the scalability of TPT still needs to be
tested with larger datasets to validate its efficiency in such
scenarios.

6.3 Speaking and Gesture
Speaking and gesticulation are correlated, with gestures of-
ten complementing speech to emphasize and structure it [9].
This correlation can be analyzed using the speaking status an-
notations from the Conflab dataset. Fig. 7 shows the sample
percentages of speaking status, gesture status, and their co-
occurrences.

The general trend indicates that people tend to ges-
ture while speaking, although the extent varies significantly
among individuals. Participants who speak less, such as Par-
ticipants 13, 32, and 35, also gesture less. However, high
speaking percentages do not necessarily correspond to high



gesturing percentages, as seen in Participants 28 and 36.
Some participants show more gesturing than speaking, which
could be due to several factors, such as stretching, which
might be incorrectly identified as gestures, leading to mis-
interpretation.

Figure 7: Percentage of Speaking, Gesturing, and their concurrency
for each participant

The mutual influence between speech and gesture and their
shared cognitive and communicative functions make analyz-
ing their correlation highly meaningful for understanding hu-
man interactions. This insight is vital for developing privacy-
sensitive methods for social behavior analysis that emphasize
body language over spoken language, thereby avoiding the
intrusive of recording private conversations.

A more comprehensive and realistic coding scheme for
gesture annotations is needed to analyze speech-related ges-
tures. The gesture research community widely uses four cate-
gories of gestures (beat, deictic, iconic, metaphoric) proposed
by [21], which are complex and subjective in the real world.
Our gesture range annotation method based on body key-
points can serve as a foundational point for future schemes
that better understand speech and gesture patterns.

For future work, our research can be used to infer personal
speaking patterns and analyze social behavior. This can be
applied in various practical scenarios, such as healthcare set-
tings where tracking patients’ physical and social activities
can enhance diagnosis and treatment plans, and educational
environments where monitoring students’ attentiveness and
interactions can improve learning outcomes. By exploring
these applications, future research can expand the utility of
torso movements in detecting and analyzing human behav-
iors across diverse contexts.

7 Responsible Research
This section reflects on the ethical use of the dataset, address-
ing potential biases, and the reproducibility of the research.

7.1 Ethical Considerations in Dataset Usage
The Conflab dataset, which underpins our study, was col-
lected following ethical guidelines. Participants were fully
informed about the data collection and consented to partic-
ipate. The video recordings adhere to ethical standards by
using an overhead view camera setup, which minimizes the
capture of identifiable facial features. Our research complies

with data-sharing agreements and ethical guidelines. We en-
sure any sharing or subsequent use of the dataset strictly fol-
lows the agreed terms.

7.2 Addressing Bias
Among the 16 participants in our study, there is a gender im-
balance, with only 2 women. This discrepancy could intro-
duce bias in the gesture detection models, as gestural habits
may vary by gender. However, our use of TPT aims to miti-
gate these biases by personalizing models to individual users.
Further research should strive to improve the fairness and in-
clusivity of the models.

7.3 Ensuring Reproducibility
We have documented our methodologies in detail to allow
other researchers to validate our findings and build upon our
work. Our TPT algorithm is based on the codebase provided
by [7]. The modified code for the TPT and multiclass TPT al-
gorithms is available in a public repository [5], complete with
documentation and usage instructions. Full reproducibility
requires access to the Conflab dataset from the Socially Per-
ceptive Computing lab at Delft University of Technology. For
those using their dataset, body key-points must be annotated
as described in [25]. Once annotated, one can follow the ges-
ture extraction described in 4.1 and our other methodologies.

8 Conclusions
This research explored the detection of conversational ges-
tures using a torso-worn smart badge in real-world mingling
scenarios. Utilizing the Conflab dataset, we focused on video
with annotated body key-points and accelerometer data from
16 participants. By computing the distance between torso
body key-points, we automatically annotated gestures, which
significantly reduced the effort required for manual annota-
tion. Gestures were classified into ‘normal’ and ‘large’ based
on spatial information. For developing personalized gesture
models, we experimented with the Transductive Parameter
Transfer (TPT) approach to address person-specific patterns
in predicting gestures. The TPT approach was extended to
handle multiclass classification tasks, enabling the differenti-
ation of various ranges of gestures. As a result, we achieved
an average AUC score of 0.84 in binary classification and
0.77 in multiclass classification. This research demonstrated
the effectiveness of the proposed approach for detecting ges-
tures in real-life interactions and highlighted its potential for
practical applications in understanding social behavior.
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A Appendix
A.1 Mcneil’s Gesture Space

Figure 8: Gesture Space visualized by Mcneil [21]

A.2 Multiclass Classification Results

Figure 9: AUC scores of TPT approach and other multiclass classification models for each participant


	Introduction
	Related Work
	Gesture Recognition for Human-Computer Interaction
	Detecting Conversational Gestures
	Detecting Social Behaviors In-The-Wild

	Methodology
	Automatic Gesture Annotation
	Feature Extraction
	Transductive Parameter Transfer

	Implementation Details
	Automatic Extraction of Gesture Range
	Algorithm of TPT
	Algorithm of TPT for Multiclass Classification

	Evaluation
	TPT in Binary Classification
	Experimental Setups
	Results
	Comparison with Other Binary Classifiers

	TPT in Multiclass Classificatiom
	Experimental Setups
	Results


	Discussion
	Effectiveness of Body Key-Points and Accelerometer Data in Gesture Detection
	Evaluation of TPT Approach
	Speaking and Gesture

	Responsible Research
	Ethical Considerations in Dataset Usage
	Addressing Bias
	Ensuring Reproducibility

	Conclusions
	Appendix
	Mcneil's Gesture Space
	Multiclass Classification Results


