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Summary

Background of the research

Modern engineered systems are becoming more and more intellectualized. This trend 
of the current development of CPSs called for a new classification and identification 
of the various generations of CPSs. This promotion research focused on the 2G-CPSs 
(also referred to as ‘smart cyber-physical systems’, S-CPSs). The built-in computational 
intelligence makes them capable of building awareness, reasoning about the objectives 
and states of operations, planning adaptations, and providing services even in dynamically 
changing contexts. Typically, S-CPSs apply one specific reasoning strategy and mechanism 
for simple problems and a combination of reasoning strategies for compound problems. 
Designing complex reasoning mechanisms (RMs) is a complicated task requiring a high-
level abstraction and asufficiently comprehensive logical model. Due to the proliferation of 
S-CPSs, there is a growing need for different task-orientated, application-specific reasoning 
mechanisms (ASRMs). They should be in synergic connections with each other according 
to the logic of knowledge that they process and reason with. Designing ASRMs for CPSs 
with smart capabilities is a new issue both for systems research and for system development.

The advancement of technologies and the growing demand for applications offer more 
and more opportunities for designing smart systems. However, any rapid change in the 
technologies creates difficulty for system designers. If they are not equipped with the 
latest technological and methodological knowledge, their innovation potential and 
competitiveness are reduced. The need to support designing reasoning mechanisms 
for S-CPSs by computer-aided design systems can be considered from two aspects, (i) 
technology aspect and (ii) human aspect. From the aspect of technology, S-CPSs should be 
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based on the integration of multiple novel technologies. The issue and challenging nature 
of technology combinations should be resolved. From a human perspective, designers 
should be (i) protected against knowledge obsolesces and deficits, (ii) defended against 
unknown technologies and unmanageable complexities,and (iii) supported in solving their 
design tasks efficiently and reliably.

Research problems

Our  research  concentrated  on  a  problem  recently  emerged  related  to  S-CPSs. 
The  essence of the problem is that S-CPSs are based on application-specific reasoning 
mechanisms (ASRMs) that enable them to generate context-dependent solutions for 
various application problems. The promotional research was conceptualized and conducted 
according to the research hypothesis that a computer-aided design support tool can be 
conceived as an ‘active recommender framework’ (ARF) for a compositional design of 
ASRMs of S-CPSs. The ARF can be characterized by multiple system-level functional 
features, from which the interrelated process monitoring and decision support functionalities 
have been considered in the promotion research. The research problems were addressed on 
three levels: (i) the entire phenomenon of supporting the design of ASRMs by an ARF; (ii) 
the services of an active recommender framework, in particular in the context of S-CPSs 
and the methodology to support the development of ARF, and (iii) the application context 
in which the ARF was supposed to provide  recommendation services to support solving 
procedural and knowledge related problems, as an intellectualized assistive system.

Research methodology and activities

The whole research project was methodologically framed by a logical flow of four research 
cycles. Each research cycle addressed different aspects of the ARF development. The 
selected application context was a specific part of the design process of an automated 
parking assist system, as the target ASRM. The research activities included: (i) knowledge 
aggregation, demarcation of the domain of interest, and specification of requirements; (ii) 
functional and architectural conceptualization of the active recommendation framework; 
(iii) computational implementation and operationalization of the demonstrative modules; 
and (iv) validation of the usefulness of the recommendations generated by the implemented 
demonstrative modules of the ARF.

Research cycle 1

The objectives of the first research cycle were: (i) to get a deeper insight into the studied 
research phenomenon, (ii) to get an overview of state of the art based on the related 
scientific literature and professional web repositories,and (iii) to synthesize a starting 
‘home base’ for the investigations and a knowledge platform that can be used follow-
up developments. Knowledge aggregation included the study of the system engineering 
frameworks (SEFs) that were implemented and used to develop systemlevel reasoning in 
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the context of S-CPSs (i.e., system knowledge, situation awareness, context-sensitive 
reasoning, decision-making, and system adaptation). A comprehensive literature study was 
done by applying both quantitative and qualitative methods. The quantitative study aimed 
at exploring the landscape of publications related to the overall research phenomenon and 
the closely related specific phenomena. A bibliometric map was constructed based on a wide 
range of key terms.

According to the reasoning model, the qualitative analysis was narrowed down to three 
domains: (i) the domains that provided the context information for the research, namely: 
cyber-physical systems and system smartness, (ii) the domain of discourse of the research 
including the methodological details of framework development from multi-perspectives, 
and (iii) the domains that provided content information for studying frameworks. The 
requirements for the ARF were derived by considering the implications of the findings. The 
requirements were formulated in regular textual form and their relationships were explored 
and represented as semantic maps.

Research cycle 2

In this research cycle, we worked on a novel concept of the ARF for the development of 
ASRMs. At the first step, the operation of the ARF was deepened by setting up a comprehensive 
scenario for the design of ASRMs. Based on this, the service packages to be provided by 
the ARF were defined. The two essential mechanisms needed for the implementations of the 
functions of process monitoring and decision-support were devised. Concerning the 
process monitoring functionality, the conceptualization of the ARF was done according to 
the case of type B observation of an NUE. Towards systematic methodological approach, 
the ARF development process was modeled by the four-layer structure that included (i) 
specification of functionality, (ii) allocation of the functionality into system architecture, 
(iii) specification of computational algorithms and data structure, and (iv) organization of 
the operation workflow, including communication with the designer. The computational 
mechanisms of the ARF have been decomposed into six main functions. Assuming a one-to-
one relationship, each function was mapped onto one architectural module: (i) facial expression-
based non-usual event recognition (NUE-D); (ii) dialogue-based obstacle identification (DOI); 
(iii) construction of the reference process protocol (CRP); (iv) reference process protocol-based 
procedural obstacle identification (ROI); (v) advisory content generation (ACG); and (vi) 
designer’s decision evaluation (DDE).

Research cycle 3

The goal of the third research cycle was to realize the two selected computational mechanisms 
of the ARF. The efforts were invested in (i) the implementation of the demonstrative 
modules of the ARF, and (ii) the application testing of the system-level functionality of the 
ARF in the context of an automated parking assist system (APAS). From a computational 
point of view, the implementation of the whole ARF had an innate complexity and it could 
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not be implemented in full scale. Therefore, with a view to the time and capacity available, 
only a demonstrative part was specified. Nevertheless, this demonstrative part was able to 
display the novel functional abilities of the fully-fledged implementation. The divide-and-
conquer strategy was applied to avoid an uncontrollable complexity of the implementation. It 
involved using (i) a multi-layer structure, (ii) modular design technique, and (iii) object-oriented 
programming. This reduced the implementation efforts to four modules closely associated 
with recommendation generation. The implemented modules included: (i) the DOI module; (ii) 
the CRP module; (iii) the ROI module; and (iv) the ACG module. The functional validation 
of the demonstrative part was completed by focusing only on the design process elements in 
the working principle exploration (WPE) session of the APAS. Concretely, this aimed at the 
development of search algorithms for selecting the proper motion path for the actual parking 
problem. The testing of the functionality was done based on a scenario that included the 
design actions relevant for the WPE session.

Research cycle 4

The fourth research cycle focused on the quality of the recommendations provided by 
the ARF. Usefulness was chosen as the measure of the quality, and it was captured by 
indicators. The objective of the fourth research cycle was to validate the usefulness of the 
recommendation provided by the ARF. We aimed at examining how useful the provided 
recommendations were for the designer to overcome possible procedural obstacles in the 
design process. The concept of a synthetic validation agent (SVA) was introduced as the 
surrogate of designers. This proved to be an appropriate means to handle the situation. 
An SVA was conceptualized to simulate the decision-making behavior of (human) 
designers as a new validation means and approach. In our context, the SVA mimicked 
the flow of procedural decisions of the human designer as they were made after obtaining 
the recommendations. The expected outputof the behavioral simulation made by using the 
agent was a data set that included the patterns of the decisional behavior of the designer. 
We aimed at using this synthesized dataset to validate the usefulness of the individual 
recommendations.

Main findings and conclusions

Our main findings can be summarized as follows: 

 • From the viewpoint of a computational system, the ARF was proposed as a design action 
driven context-sensitive recommender system. The ARF is capable of (i) monitoring 
what is happening in the design process, (ii) identifying where a procedural obstacle 
is, and (iii) offering personalized recommendations to the designer to help proceed in the 
design process. This assumes not only monitoring of the process but also dealing with 
the information contents of the design activities.

 • The main contribution of the demonstrative implementation was the context-sensitive 
recommendation generation by relying on the RPP. This process representation lent 
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itself to a systematic exploration of the potential design  activity flows as well as to 
the investigation of the design process and its  action elements. The hybrid inference 
was proposed as a novel functionality of the ARF system. It determined which design 
entities and methods had to be involved in the process analysis-based recommendation 
generation.

 • The proposed ARF has been equipped with the abilities to support the design of ASRMs in 
the target application context of APAS. A ML-type algorithm has been developed based 
on typifying the design activities and representing the design activity flow in the RPP. 
The functionality test confirmed that the adapted ML-type algorithm was able to select 
the proper parking cases.

 • In the evaluation of the usefulness of recommendations, the decisional modes had 
direct relations with the acceptance probability of the recommendation.  A higher probability 
of acceptance offered a higher possibility of having a useful recommendation. A key 
issue was how to determine the optimal proportion of the common knowledge that 
was shared by the SVA-mimicked useful recommendation. A key issue was how to 
determine the optimal proportion of the common knowledge that was shared by the SVA-
mimicked  designer and the RPP. We argued that this information could be used to 
enhance the usefulness of recommendations.

Initially proposed by researchers of the hosting Section of Cyber-Physical Systems 
Design, the concept of an active recommendation framework as significant novelty 
and supposed to play an influential role in the future. The term “framework” was used to 
refer to a purposeful enabler that arranges and rationalizes design activities, information 
processing, and designer-system interaction. The term “recommender” expresses that, 
as a complex system, the ARF derives context-dependent advice for the designer based 
on a comprehensive system model of the concerned (specific) design process. The term 
“active” refers to the fact that the ARF continuously monitors the design process and 
spontaneously interacts with the designer wherever it is needed in the design process. Our 
conclusions have been that the ARF goes well beyond the concepts of traditional SEFs and 
static recommender systems.
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Achtergrond van het onderzoek

Moderne geconstrueer de systemen krijgen een steeds intellectueler karakter. Deze trend 
in de huidige ontwikkeling van cyberfysieke systemen (CPS’en) vroeg om een nieuwe 
classificatie en identificatie van de diverse CPS-generaties. Dit promotieonderzoek 
richtte zich op intelligente cyberfysieke systemen, ook wel afgekort tot 2G-CPS of 
S-CPS (smart cyber-physical systems). De ingebouwde computationele intelligentie 
stelt deze systemen in staat bewustzijn te ontwikkelen, doelstellingen en de toestand 
van bewerkingen te beredeneren, plannen aan te passen en diensten aan te bieden, zelfs 
binnen een dynamisch veranderende context. Gebruikelijk is dat S-CPS’en één specifieke 
beredeneringsstrategie en -mechanisme toepassen op eenvoudige problemen, en een 
combinatie van beredeneringsstrategieën op samengestelde problemen. Het ontwerpen van 
complexe beredeneringsmechanismen (reasoning mechanisms, RM’s) is ingewikkeld en 
vereist een hoge mate van abstrahering en een logisch model dat voldoende omvattend is. 
De razendsnelle groei van S-CPS’en brengt een toenemende behoefte aan verschillende 
taakgeoriënteerde en applicatiespecifieke beredeneringsmechanismen (application-specific 
reasoning mechanisms, ASRM’s) met zich mee. Deze dienen in synergische verbinding met 
elkaar te staan, uitgaande van de logica van de kennis die wordt verwerkt en beredeneerd. 
Het ontwerpen van ASRM’s voor CPS’en met intelligente functionaliteit schept een nieuw 
vraagstuk op het gebied van zowel systeemonderzoek als systeemontwikkeling.

De voortschrijdende ontwikkeling van technologieën en de toenemende behoefte aan 
applicaties bieden steeds meer kansen voor het ontwerpen van intelligente systemen. 
Elke snelle technologische verandering brengt echter problemen voor systeemontwerpers 
met zich mee. Indien de meest recente technologische en methodologische kennis hierin 
niet is meegenomen, blijft hun innovatief en competitief potentieel beperkt. De behoefte 
aan ondersteuning bij het ontwerpen van beredeneringsmechanismen voor S-CPS’en 
door CAD-systemen (computer aided design) kan vanuit twee gezichtspunten worden 
benaderd: (i) het technologische gezichtspunt en (ii) het menselijke gezichtspunt. Vanuit 
technologisch gezichtspunt moeten S-CPS’en worden gebaseerd op integratie van 
meerdere nieuwe technologieën. Ze moeten een oplossing bieden voor het problematische, 
uitdagende karakter van technologische combinaties. Vanuit menselijk gezichtspunt dienen 
ontwerpers (i) te worden beschermd tegen veroudering en tekortkomingen van kennis, (ii) 
te worden beschermd tegen onbekende technologieën en onbeheersbare complexiteiten, 
en (iii) te worden ondersteund bij het op efficiënte en betrouwbare wijze oplossen van hun 
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ontwerpproblemen.

Onderzoeksproblematiek

Ons onderzoek richtte zich op een onlangs gesignaleerd probleem met cyberfysieke 
systemen (cyber-physical systems, S-CPS’en). De kern van het probleem is dat S-CPS’en 
gebaseerd zijn op applicatiespecifieke beredeneringsmechanismen (application-specific 
reasoning mechanisms, ASRM’s) waarmee ze contextafhankelijke oplossingen voor diverse 
applicatieproblemen kunnen genereren. Uitgangspunt voor de conceptualisatie en uitvoering 
van het promotieonderzoek was de onderzoekshypothese dat een CAD-ontwerphulpmiddel 
kan worden opgevat als een ‘actief aanbevelingskader’ (active recommender framework, 
ARF) voor een compositioneel ontwerp van ASRM’s voor S-CPS’en. Het ARF wordt 
gekenmerkt door meervoudige functionaliteit op systeemniveau, op basis waarvan de 
functionaliteit voor intergerelateerde procesbewaking en besluitvormingsondersteuning is 
meegenomen in het promotieonderzoek. De onderzoeksproblemen werden op drie niveaus 
benaderd: (i) het fenomeen van ontwerpondersteuning van ASRM’s door een ARF in zijn 
totaliteit; (ii) de diensten van een actief aanbevelingskader, in het bijzonder in de context 
van S-CPS’en en de methodiek voor ondersteuning van de ontwikkeling van een ARF, en 
(iii) het toepassingsgebied waarbinnen het ARF aanbevelingsdiensten dient te leveren ter 
ondersteuning van het oplossen van procedurele en kennisgerelateerde problemen, in de 
vorm van een geïntellectualiseerd assistentiesysteem.

Onderzoeksmethoden en -activiteiten

Het onderzoeksproject als geheel werd methodisch ingekaderd binnen een logische stroom 
van vier onderzoekscycli. Iedere onderzoekscyclus richtte zich op specifieke aspecten van 
de ARF-ontwikkeling. Het geselecteerde toepassingsgebied vormde een specifiek onderdeel 
van het ontwerpproces van een assistentiesysteem voor geautomatiseerd parkeren als doel-
ASRM. De onderzoeksactiviteiten omvatten: (i) kennisaggregatie, afbakening van het 
interessegebied en specificatie van eisen; (ii) functionele architecturale conceptualisatie van 
het actieve aanbevelingskader; (iii) computationele implementatie en operationalisatie van 
de demonstratieve modules; en (iv) validatie van de bruikbaarheid van de aanbevelingen 
die werden gegenereerd door de geïmplementeerde demonstratieve modules van het ARF.

Onderzoekscyclus 1

De doelstellingen van de eerste onderzoekscyclus waren: (i) een dieper inzicht 
verwerven in het bestudeerde onderzoeksfenomeen, (ii) een overzicht krijgen van de 
‘state of the art’ op basis van de relevante wetenschappelijke literatuur en professionele 
webrepository’s, en (iii) het synthetiseren van een ‘uitvalsbasis’ voor het onderzoekswerk 
en een kennisplatform dat kan worden gebruikt om ontwikkelingen te blijven volgen. De 
kennisaggregatie omvatte onderzoek naar de systeemontwerpkaders (system engineering 
frameworks, SEF’s) die werden geïmplementeerd en gebruikt voor het ontwikkelen 
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van redeneringen op systeemniveau binnen de context van S-CPS’en (systeemkennis, 
situationeel bewustzijn, contextgevoelig redeneren, besluitvorming en systeemadaptatie). 
Er is uitgebreid literatuuronderzoek verricht met toepassing van zowel kwantitatieve als 
kwalitatieve methoden. Het kwantitatieve onderzoek richtte zich op de verkenning van 
het landschap aan publicaties met betrekking tot het onderzoeksfenomeen in algemene 
zin, alsmede nauw verwante specifieke fenomenen. Er werd een bibliometrische kaart 
geconstrueerd op basis van een breed spectrum aan kernbegrippen. Uitgaande van het 
beredeneringsmodel werd de kwalitatieve analyse toegespitst op drie gebieden: (i) de 
gebieden die de contextinformatie voor het onderzoek leverden, namelijk: cyberfysieke 
systemen en systeemintelligentie, (ii) het gebied van het discours over het onderzoek, 
met inbegrip van de methodologische details van kaderontwikkeling vanuit meerdere 
gezichtspunten, en (iii) de gebieden die contentinformatie leverden voor het bestuderen 
van kaders. De eisen voor het ARF werden afgeleid door te kijken naar de implicaties van 
de bevindingen. Deze eisen werden in standaard tekstvorm geformuleerd en de onderlinge 
relaties werden verkend en weergegeven als semantische kaarten.

Onderzoekscyclus 2

In deze onderzoekscyclus werkten we aan een nieuw ARF-concept voor de ontwikkeling 
van ASRM’s. Als eerste stap werd de werking van het ARF verfijnd door het opzetten 
van een uitgebreid ontwerpscenario voor ASRM’s. Op basis hiervan werden de door het 
ARF te leveren dienstenpakketten gedefinieerd. Voorts vond ontwikkeling plaats van de 
twee essentiële mechanismen die nodig waren voor de implementatie van de functies van 
procesbewaking en besluitvormingsondersteuning. Met betrekking tot de functionaliteit 
voor procesbewaking werd de conceptualisatie van het ARF uitgevoerd in overeenstemming 
met de casus van type B-observatie van een NUE. Om tot een stelselmatige methodologische 
aanpak te komen werd het ARF-ontwikkelingsproces gemodelleerd volgens een vierlaagse 
structuur die het volgende omvatte: (i) specificatie van functionaliteit, (ii) toewijzing van de 
functionaliteit aan systeemarchitectuur, (iii) specificatie van computationele algoritmen en 
gegevensstructuur, en (iv) organisatie van de operationele workflow, inclusief communicatie 
met de ontwerper. De computationele mechanismen van het ARF werden opgesplitst in 
zes hoofdfuncties. Uitgaande van een één-op-éénrelatie werd iedere functie toegewezen 
aan één architectuurmodule: (i) gezichtsexpressie-gebaseerde NUE-D (non-usual event 
recognition, herkenning van ongebruikelijke gebeurtenissen); (ii) DOI (dialooggebaseerde 
obstakelidentificatie); (iii) CRP (constructie van het referentieprocesprotocol); (iv) ROI 
(op het referentieprocesprotocol gebaseerde procedurele obstakelidentificatie); (v) ACG 
(adviescontentgeneratie); en (vi) DDE (designer’s decision evaluation, evaluatie van de 
beslissing van de ontwerper). 

Onderzoekscyclus 3

Doel van de derde onderzoekscyclus was het verwezenlijken van de twee geselecteerde 
computationele mechanismen van het ARF. Er werd gekeken naar (i) de implementatie 
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van de demonstratieve modules van het ARF en (ii) applicatietests van de functionaliteit 
op systeemniveau van het ARF binnen de context van een geautomatiseerd 
parkeerassistentiesysteem (automated parking assist system, APAS). Vanuit computationeel 
oogpunt bezat de implementatie van het ARF als geheel een inherente complexiteit die 
implementatie op volledige schaal onmogelijk maakte. Met het oog op de beschikbare tijd 
en capaciteit werd dan ook alleen een demonstratief deel gespecificeerd. Niettemin bleek 
dit demonstratieve deel in staat de nieuwe functionele mogelijkheden van een volwaardige 
implementatie zichtbaar te maken. De verdeel-en-heersstrategie werd toegepast teneinde 
onbeheersbare complexiteit van de implementatie te vermijden. Dit omvatte het gebruik van 
(i) een meerlaagse structuur, (ii) een modulaire ontwerptechniek, en (iii) objectgeoriënteerde 
programmering. Hierdoor bleef de implementatie beperkt tot vier modules die nauw 
verband hielden met het genereren van aanbevelingen. De geïmplementeerde modules 
omvatten: (i) de DOI-module; (ii) de CRP-module; (iii) de ROI-module; en (iv) de ACG-
module. De functionele validatie van het demonstratieve deel werd afgerond door ons 
uitsluitend te concentreren op de ontwerpproceselementen binnen de WPE-sessie (working 
principle exploration) van het APAS. Concreet richtte deze zich op de ontwikkeling van 
zoekalgoritmen voor het selecteren van het juiste bewegingstraject voor het daadwerkelijke 
parkeerprobleem. Testen van de functionaliteit vond plaats op basis van een scenario waarin 
de relevante ontwerpacties voor de WPE-sessie waren opgenomen.

Onderzoekscyclus 4

De vierde onderzoekscyclus richtte zich op de kwaliteit van de aanbevelingen die door 
het ARF waren gedaan. Bruikbaarheid werd gekozen als maat voor de kwaliteit en werd 
vastgelegd door middel van indicatoren. Het doel van de vierde onderzoekscyclus was het 
valideren van de bruikbaarheid van de door het ARF verstrekte aanbeveling. We wilden 
onderzoeken hoe bruikbaar de geleverde aanbevelingen voor de ontwerper waren voor het 
wegnemen van mogelijke procedurele obstakels in het ontwerpproces. Het concept van 
een SVA (synthetic validation agent) werd geïntroduceerd als vervanging van ontwerpers. 
Dit bleek een geschikte methode te zijn om de situatie aan te pakken. Er werd een SVA 
geconceptualiseerd teneinde het besluitvormende gedrag van (menselijke) ontwerpers 
als nieuwe methode en benadering van validatie te simuleren. Binnen onze context 
simuleerde de SVA de stroom van procedurele beslissingen van de menselijke ontwerper 
na het verkrijgen van de aanbevelingen. De verwachte output van de gedragsmatige 
simulatie met gebruikmaking van de agent was een dataset waarin de patronen van het 
besluitvormingsgerichte gedrag van de ontwerper waren geïntegreerd. We wilden deze 
gesynthetiseerde dataset gebruiken om de bruikbaarheid van de afzonderlijke aanbevelingen 
te valideren.

Belangrijkste bevindingen en conclusies

De belangrijkste bevindingen kunnen als volgt worden samengevat: 

 • Vanuit het gezichtspunt van een computationeel systeem werd het ARF voorgesteld 
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als ontwerpactiegestuurd, contextgevoelig aanbevelingssysteem. Het ARF is in staat 
tot (i) het bewaken van wat er in het ontwerpproces gebeurt, (ii) het identificeren van 
een procedureel obstakel, en (iii) het bieden van gepersonaliseerde aanbevelingen 
aan de ontwerper ter ondersteuning van de voortgang van het ontwerpproces. Hierbij 
wordt niet alleen verondersteld dat er procesbewaking plaatsvindt, maar ook dat de 
inhoudelijke informatie met betrekking tot de ontwerpactiviteiten wordt verwerkt.

 • De belangrijkste bijdrage van de demonstratieve implementatie was het genereren 
van contextgevoelige aanbevelingen op basis van het RPP (referentieprocesprotocol). 
Deze procesrepresentatie bleek geschikt voor stelselmatige verkenning van potentiële 
ontwerpactiviteitsstromen, maar ook voor het analyseren van het ontwerpproces en 
de bijbehorende actie-elementen. De hybride gevolgtrekking werd voorgesteld als 
nieuwe functionaliteit van het ARF-systeem. Deze bepaalde welke ontwerpentiteiten 
en -methoden in het procesanalyse-gebaseerd genereren van aanbevelingen dienden te 
worden meegenomen.

 • Het voorgestelde ARF is uitgerust met functionaliteit ter ondersteuning van het ontwerp 
van ASRM’s binnen de doelapplicatiecontext van APAS. Op basis van de typering van 
de ontwerpactiviteiten en het representeren van de ontwerpactiviteitsstroom in het RPP 
werd een algoritme van het ML-type ontwikkeld. De functionaliteitstest bevestigde 
dat het aangepaste algoritme van het ML-type in staat was de juiste parkeersituaties te 
selecteren.

 • Bij de evaluatie van de bruikbaarheid van de aanbevelingen waren de 
besluitvormingsmodi rechtstreeks gerelateerd aan de waarschijnlijkheid van acceptatie 
van de aanbeveling. Een hogere mate van waarschijnlijkheid van acceptatie vergroot 
de kans op een bruikbare aanbeveling. Een belangrijk probleem was hoe te bepalen 
wat het optimale aandeel moest worden van de algemene kennis die door de SVA-
gesimuleerde ontwerper en het RPP werd gedeeld. Wij stelden dat deze informatie kon 
worden gebruikt om de bruikbaarheid van aanbevelingen te vergroten.

Het concept van een actief aanbevelingskader, dat in eerste instantie werd voorgesteld 
door de als gastheer fungerende afdeling Cyber-Physical Systems Design, is een 
baanbrekende nieuwe ontwikkeling die naar verwachting een belangrijke rol zal gaan 
spelen in de toekomst. De term “kader” verwijst hier naar een doelgerichte enabler die 
ontwerpactiviteiten, informatieverwerking en de interactie tussen ontwerper en systeem 
rangschikt en rationaliseert. De term “aanbeveling” duidt erop dat het complexe ARF-
systeem contextafhankelijk advies voor de ontwerper afleidt op basis van een uitgebreid 
systeemmodel van het betreffende (specifieke) ontwerpproces. De term “actief” verwijst 
naar het feit dat het ARF het ontwerpproces continu bewaakt en telkens spontaan interactie 
met de ontwerper aangaat wanneer dit noodzakelijk is binnen het ontwerpproces. Wij 
kwamen tot de conclusie dat het ARF de concepten van traditionele SEF’s en statische 
aanbevelingssystemen in ruime mate overtreft.
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1�1� Background of the research

1�1�1� Manifestation and evolution of cyber-physical systems
Modern engineered systems are becoming smart. Cyber-physical systems (CPSs) have the 
affordances to behave as general smart systems. The notion of ‘cyber-physical systems’ was 
introduced in 2006 by researchers previously working in related fields such as embedded 
systems, advanced robotics, real-time systems, hybrid systems, and control systems 
[1]. Although numerous papers have been published on functional and architectural 
definitions of CPSs, achieving a shared understanding has been difficult due to the different 
backgrounds and viewpoints of researchers [2]. There is currently no agreement on the 
exact definition of CPSs, but they are essentially understood to be systems that closely 
integrate constituents from the cyber and physical domains [3]. The cyber components 
are discrete, logical, and connected, and responsible for computation, communication, and 
control through a network of sensors and actuators. The physical components operate in 
continuous time and are responsible for changing material and energy flows, system states, 
and stakeholder and environment interactions. CPSs can be applied to various domains 
such as manufacturing, transportation, infrastructure, healthcare, and defense. 

The current state of advancement of information technology and communication 
systems enables system nodes to connect and communicate with the other systems and 
their environments. CPSs may be implemented on various scales, ranging from the nano-
world to large-scale systems of systems [4]. This feature enables an ensemble of CPSs to 
manifest as a system of systems (SoSs), which are supposed to dynamically adapt to the 
changes in the environment and manage the resources that are needed to achieve the shared 
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operational objectives and performance [5]. On the other hand, there is an increasing need 
for a higher-level intelligence for CPSs in order to deal with increasing uncertainty and 
unpredictable situations. This is also needed because of unforeseen dynamic and emerging 
behaviors that can occur during runtime operation [6].

The characteristics of recent CPSs are gradually evolving beyond what were identified by 
the early definitions of CPSs. They are becoming non-composite, open, smart, autonomous, 
agent-like, resilient, adaptive, evolutional, and replicative [7]. Engell et al.indicated a shift 
in the upcoming generation of CPSs towards more sophisticated operations, which poses 
research challenges such as [8]: (i) situation awareness in large distributed systems with 
decentralized management and control; (ii) handling large amounts of data in real life to 
monitor the system performance and to detect faults and degradation; (iii) learning good 
patterns from past examples, autoreconfiguration, and adaptation; and (iv) monitoring user 
behaviors, analysis of needs, and detecting anomalies. Due to the increasing need to clarify 
the theoretical, methodological, and computational issues of system smartness, the above 
topics have  been identified as objectives in various branches of CPSs research.

In our view, CPSs must be seen as networked, knowledge-intensive, and multi-actor 
systems. On the other hand, the literature offers only very few progressive classifications of 
CPSs. The trends and traits of the current development of CPSs call for new classification 
and identification of the upcoming generations of CPSs. The changing functional and 
control paradigms indicate that they can be assumed to evolve through generations. The 
generations can be classified based on two aspects: (i) the level of intelligence, and (ii) the 
level of organization [9]. The identified generations of CPSs are shown in Figure 1.1. This 
reflects the reasoning model of our research team, which has been dealing with cognitive 
engineering of cyber-physical systems.

In the light of this reasoning model presented in [9], conventional (plant-type) CPSs are 
deemed the first-generation CPSs (1G-CPSs). They are self-regulatory and self-tuning 
systems. Thus, an embedded system is seen as a representative of the zeroth generation 
CPSs (0G-CPSs). It applies to look-alikes, embedded systems, and partial implementation 
of CPSs, which are regulated by feedback-based control sub-systems. Self-awareness and 
self-adaptation are the distinctive features of second-generation CPSs (2G-CPSs), which 
are often referred to as smart-CPSs. Smartness is regarded as a system-level characteristic 
of these systems. The third-generation CPSs (3G-CPSs) are self-cognizance and self-
evolution systems. The fourth-generation CPSs (4GCPSs) predicted to behave as self-
conscious and self-reproducing systems.

1�1�2� Paradigmatic features of smart CPSs
A paradigmatic feature is a system-level feature that refers either to a logically-based or 
a physically-based abstraction of a system as a whole. The set of paradigmatic features 
differentiate one generation or manifestation of CPSs from other comparable systems [10]. 
As mentioned above, self-regulation and self-tuning are the distinguishing paradigmatic 
features of the first generation of CPSs. Basically; CPSs are regulated by a feedback control 
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Figure 1.1: Generations of CPSs (taken over from [9])

loop that means they are the self-regulated systems  by nature. Self-tuning is the capability 
of managing performance and resource allocation in order to satisfy the requirements of 
different users [11]. These systems include algorithms and software components to enable 
the feedback control loop. The second-generation CPSs have been distinguished by self-
awareness and self-adaptation as paradigmatic features. Self-awareness is a characteristic 
of those CPSs that are able to understand a changing situation based on the extent of 
information available. When a system can realize what the most possible situation is, it 
can respondto the situation accordingly. In fact, as situations are changing over time, 
second-generation CPSs should be able to adapt themselves to deal with the dynamic 
situations while maintaining a level of performance, or even improving it when the systems 
are confronted repeatedly with similar situations. 

According to [9], the third-generation CPSs are going to be characterized by selfcognizance 
and self-evolution. This makes them self-supervised. Self-cognizance is a new term in 
the field of CPSs. It is a cognitively higher-level ability than selfawareness. It can be 
interpreted in the following way: While system awareness can build a world model in a 
given operational situation, system cognizance is supposed to be able to differentiate the 
different situations and develop multiple models from various perspectives. Thus, self-
cognizance is the capability of recognizing and building awareness of the operational 
situations in a given local world and proposing and adopting a finite number of situated 
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operation models. The term ‘evolving systems’ refers to systems that can adjust themselves 
according to dynamic or even evolving environments based on life-long learning and 
adaptation. Practical examples of 3G-CPSs are expected from the development of AI-
enabled complex problem solving systems.

The distinguishing paradigmatic features of 4G-CPSs are self-consciousness and  
selfreplication. Self-consciousness is a manifestation of human-like consciousness. It is 
deemed to be a capability that allows the system to view and model itself based on objectives, 
operations, experiences, and social relationships. Although there have been attempted to 
create machine consciousness, what we have today is far from humanconsciousness. For 
instance, in papers [12]-[15] a replica of human biological consciousness is sought after 
in the form of machine consciousness. Many researchers have considered the human brain 
as an analogue computing device. The most fundamental mechanism of consciousness has 
not been explained yet. Pragmatic theories view it as a result of the operation of a series of 
integrated bio-physiological, psychological, and cognitive activities

Machine consciousness, as well as robot consciousness, is reduced to the process of 
informing, reasoning, and computation with digital data. However, from the perspective 
of the 4G-CPSs, the notion of consciousness is not elaborated sufficiently either from an 
ontological point of view, or from a methodological point of view. Just as with humans, 
consciousness of the 4G-CPSs should operate as an all underpinning phenomenon and 
work simultaneously with an infinite number of world models. Selfreplication is another 
paradigmatic feature of 4G-CPSs. Self-replication is an essential feature in the context 
of living things [16]. However, no system can self-replicate itself without being in the 
necessary intellectual conditions and having the necessary resources [17]. Self-replication 
should be seen as an emergent (non-preprogrammed, but conditioned) property and an 
essential characteristic of 4G-CPSs.

As far as the necessary intellectual conditions and resources are concerned, knowledge 
acquisition and generation by reasoning and learning are of paramount importance. 
Sophisticated mechanisms of these are not yet clarified theoretically or computationally. It 
is unclear if they can be derived based on an extrapolation from the current mechanisms. 
For instance, networked CPSs interact as distributed systems and share knowledge with 
each other. The individual bodies of knowledge shared by the component systems can 
be further synthesized and used to create new systems, which are cognitively enhanced 
versions of the predecessors. Together with selfconsciousness and self-replication, this 
form of knowledge synthesis also contributes to the progression of the paradigms of CPSs 
towards 4G-CPSs. Only the future will tell how artificial general intelligence will influence 
their self-consciousness and selfreplication potentials.

The classification of CPS generations gave opportunity for the research team to 
envisage a research and development roadmap for the next generation CPSs. In view of 
this, we focus on 2G-CPSs referred to as ‘Smart Cyber-physical systems’ in this research. 
These systems are equipped with such level of computational intelligence that makes them 
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capable of building awareness, reasoning about the fulfilment of the objectives, the results 
of completing operations, the state of the system, and the necessity and possibility of self-
adaption.

1.1.3. Complexification of the functionality of S-CPSs
CPSs embed computational devices for, among other things, (i) physical or visual 
sensing, (ii) processing and storing data, (iii) energy harvesting, and (iv) wired/wireless 
communication [18]. The generalized operation process of firstgeneration CPSs typically 
starts with detecting, monitoring, and streaming sensor data. The computing parts process 
the input data, and the results are channeled to the effector parts, which actuate the intended 
state of the physical components and processes. These generic tasks are included in the 
Sensing-Processing-Actuation loop [19]. This closed-loop operation is a simplification 
that cannot describe the operation process of open networked CPS configurations, as 
additional functional nodes may join or may leave the ensemble. Wireless sensor networks 
can provide both local and remote control over the networked devices [20]. Data can be 
accessed at the device and network levels. These technological opportunities enhance 
both the flexibility and the expandability of CPSs [21], while they also allow for timing 
variability andstochastic behavior [22]. Harmonized operation of all constituents requires 
a network managing function.

Using Internet of Things resources, CPSs can operate as networked information systems [23]. 
The quality of the data collected from different sources is usually location and time dependent. 
Extension of CPSs increases the amount of the to-beprocessed dataexponentially [24]. 
The acquired data may be stored both as structured and as unstructured data. Extracting 
information and deriving patterns from massive unstructured data requires dedicated data 
analytics and data mining [25], [26]. In addition, a wide variety of simulation models –
ranging from low-level physical signals through high-level data constructs to abstract 
events – are also needed.

Processing data or pieces of information on statistical or syntactic levels might not be 
sufficient to support cognitive capabilities of S-CPSs. For example, more is needed 
for situation-awareness, decision-making, and problem-solving. The data should be 
transformed into semantically rich constructs, context information, and applications 
pecific knowledge. Situated reasoning and semantic reasoning are the two basic functions 
to ensure that data arriving from several sources are processed with the same meaning and 
communicated consistently over all processes [27], [28]. In addition, many other reasoning, 
learning, and integration processes are needed to make CPSs truly smart.

Considering the abovementioned operations, a generic function diagram of S-CPSs is 
shown in Figure 1.2. All functions are co-dependent; changing one of them in design 
will directly impact the other functions of the concerned system [29]. This is becoming 
a serious issue as S-CPSs is becoming functionally and architecturally more complex. 
It means that designers should take care of a high number of interactions among the 
components inside and outside the S-CPSs and should pay attention to the increase of 
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complexity of the embedding environment. These characteristics render many traditional 
design methodologies inadequate or irrelevant, especially if they focus on a separation of 
concerns during the system design and implementation processes. It is a new challenge 
for designers to think about heterogeneous and complex systems (including hardware, 
software, and cyberware constituents) in a holistic manner, and to take all functions and 
functional interaction into account. The fact of the matter is that, in addition to functions, 
the computationally implemented operations and the behavior expected under regular and 
irregular circumstances should also be given attention. The result is an extra mental and 
professional load on the designers.

1�1�4� The need to support designing reasoning  
mechanisms for S-CPSs

The advancement of the technologies and the growing demand for application offer more and more 
opportunities for designing smart systems. However, any rapid change in the technologies creates 
difficulty for a system designer..If the designers are not equipped with the latest technological 
and methodological knowledge, their innovation potential and competitiveness are reduced. 
Continuous learning helps, but it also takes a lot of time from the creative work and cooperation. 
These are all reasons why both researchers and managers have recognized that designers require 
effective system support in their processes. This also concerns designing application specific 
reasoning mechanisms for smart CPSs, which are also getting more complex and sophisticated. 
The need for the support of designing reasoning mechanisms for S-CPSs by computer aided 
design systems can be considered from two aspects, (i) technology aspect, and (ii) human aspect. 
From the aspect of technology, as mentioned above, S-CPSs should be based on multiple novel 
technologies and the challenging nature of technology combination should be resolved. From a 
human perspective, designers should be (i) protected against knowledge obsolesces and deficits, 
(ii) defended against unknown technologies and unmanageable complexities, and (iii) supported 
in solving their design tasks in an efficient and reliable manner.

The above argumentation underpins the emerging need for non-conventional design 
support tools. The non-conventionality means that they may utilize novel design principles 
and operationalize novel approaches to providing support. The support systems should 
provide tailored and convenient support for the designer in an effective (visible) manner 
without diverting the attention of the designer from the work. In the history of office 
automation systems, there are many examples of useful support solutions. For instance, 
implementation of a spell checker function in a text/document editing programs (such as 
a word processor, chatting apps, or search engine) is a relevant example. A spell-checker 
automatically checks and corrects for misspellings or even grammatical errors and style 
issues in a text. Technically, there are two functions included in this service, namely (i) 
informing function, and (ii) corrective function. The former function interprets the meaning 
of an unusual word and offers synonyms and application examples. The latter function 
automatically corrects observed typing errors without any human interaction and rephrases 
a complete sentence if a more obvious or appealing formulation is possible. The active 
recommendation framework tried to apply this analogy in a more complex context, i.e., in 
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the support of designing application specific reasoning mechanism for S-CPSs – a problem 
which soon moves out from academic research laboratories and into industrial design 
offices.

The computational support of designers has been based on the following consideration. 
In the context of designing, an informing function is needed when the designer needs 
information about an existing system component, a technological process, a design action, 
or a corresponding part of the design problem. The corrective function is activated when the 
designer generates content and commits content and procedural errors in the design process. 
Our active recommender framework concept rests on these conceptual ideas. A novel ARF 
functionality is proposed in terms of integration of the dedicated informing functions and 
corrective functions. The active recommender framework was intended to offer two types 
of the recommendation services. Providing content related recommendations represents 
the informing part of support. Providing procedure related recommendations in various 
situations represents the corrective part of support. There are many challenges to take into 
account at applying the concept of ARF in the development of a design support tool for 
the above-described purpose. The most significant ones are (i) the novelty of the software 
technologies, (ii) inherent functional complexity, (iii) conceptual interrelationships and 
dependences, (iv) technological complicatedness and technology sensitivity, (v) the design 
orientation and the non-standard design approach, and (vi) the integration of all demands 
in a holistic approach. 

Figure 1.2: Generic functionality of S-CPSs (based on [29]) 
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1�2� Description of the addressed research challenges

1�2�1� The essence of designing reasoning mechanisms for 
S-CPSs

Reasoning is the logical process of drawing a specific conclusion by utilizing human 
problems-solving strategies [30]. Typical instances of logic-based reasoning are deductive 
reasoning, inductive reasoning, case-based reasoning, probabilistic reasoning, fuzzy 
reasoning, intuitivist reasoning, and analogical reasoning. In addition to these computational 
(evaluational) approaches of reasoning, the literature also shows interpretative (explanatory) 
approaches, and the juxtaposition of these two approaches. The human mind can handle 
both of them very well, but interpretative reasoning is extremely difficult to implement on 
computers that do not have an intrinsic sense of semantics and meaning in context. There 
were sophisticated reasoning strategies proposed, which assume data exchange with physical 
processes or within a network of connected devices, and application specific information. 
One example is procedural abduction [31]. The abovementioned three categories, as well 
as, their purpose-driven combinations, are regarded as potential reasoning strategies for 
SCPSs. These S-CPSs are supposed to be able to extract, collect, and combine data and 
information even from a dynamically changing, noisy, and uncertain physical environments, 
and to convert them into useful system cyberware (useable knowledge) in real time.

Conceptually, S-CPSs are supposed to apply one specific reasoning strategy for simple 
problems or a combination of reasoning strategies for compound problems. Designing 
complex reasoning mechanisms is a complicated task that needs a high-level abstraction 
and a sufficiently comprehensive logical model. It should be guaranteed that the knowledge 
provided for problem solving by the reasoning mechanisms is ‘fitfor-purpose’, that is, it 
(i) has the power to address the task, (ii) is coherent and consistent with regards to its 
elements, and (iii) can be used for the computational scheduling and interlinking of the 
algorithms included in the mechanisms. As mentioned above, a representative example of 
this is procedural abductive reasoning that involves multiple procedural elements, such as (i) 
ambient sensing, (ii) event recognition, (iii) building awareness, (iv) dynamic contexts 
evaluation, (v) situated reasoning, (vi) operation strategy planning, (vii) selective 
decision-making, (viii) functional and/or structural adaptation, and (ix) actuating effectors 
[31]. A metaframework of this complex operation and control is shown in Figure 1.3.

Operationally, the manifestation of procedural abductive reasoning (PAR) mechanisms in 
S-CPSs starts with the acquisition of raw data with sensor devices from several sources, 
and continues with a combination of syntactic and semantic data processing, recognizing 
events based on context information, inferring and identification of a situation, and learning 
from dynamic shifts of situations. The transformations of the knowledge throughout the 
stages of reasoning require appropriate computational methods and algorithms. These 
need to be individually selected, adapted, or developed. For the compositional operation 
of the PAR, a two-level control is required. The operation controller (which activates the 
necessary reasoning algorithms) provides the lower-level control, whilst the strategic 
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controller (which arranges the actual contents of the reasoning engine) provides the higher-
level control. The cognitive capability of the reasoning mechanism may eventually lead (or 
is likely to lead) to novel useful information and/or knowledge concerning the task at hand 
and the solution process, in addition to those available at the start of the reasoning process.

As a first design activity in the process of reasoning mechanism development (RMD), the 
smart reasoning components are conceptualized on the system level and these specifications 
are used as contracts for the implementation of the components. To support this procedure, 
various architectural and behavioral models are created and used concurrently. As a result, 
S-CPSs will implement a form of computational creativity, at least in terms of a combined 
use of reasoning, decision-making, and  adaptiveness in specific contexts. It is practically 
impossible to implement these reasoning enablers by one single computational means – a 
fact that calls for multiple interoperating reasoning mechanisms.

1.2.2. Application-independent versus application-specific 
reasoning mechanisms for S-CPSs

The reasoning mechanisms of S-CPSs, which are used in real-life operations, can be sorted 
into two types. The first is application-independent reasoning mechanisms (AIRM) – which 
are content-independent software systems doing generic inference and problem-solving 
without referring to any application contexts. Typical examples are, for instance, rule-based 
reasoning, case-based reasoning, and probabilistic reasoning. The second is application 
specific reasoning mechanisms (ASRM) – which are content-dependent software systems 
designated for managing a particular application. This section discusses the differences 

Figure 1.3: A meta-framework for procedural abduction as a reasoning mechanism   
                   for S-CPSs (modified from [31])
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between these two types of reasoning mechanisms in detail, as well as the challenges of 
designing ASRMs. The comparison of characteristics of AIRM and ASRM is shown in 
Table 1.1.

1�2�2�1� Application-independent reasoning mechanism

Often replaced by the acronym AIRMs, the term application-independent reasoning 
mechanisms is known from the research done in the field of artificial narrow intelligence. 
These reasoning mechanisms are often also referred to as general problem solvers [32]. 
AIRMs are problem-driven (rather than application-driven) configurations of directly 
coupled computational algorithms such as a production rules-based reasoning engine [33], 
or a procedural abduction mechanism [31]. In addition to the proprietary algorithms, they 
also include standard computational algorithms. An AIRM executes a logically complete 
reasoning process that is needed to solve a given inference, reasoning, or decision-making 
problem. AIRMs can be implemented in various forms, for example, as deterministic 
mechanisms (such as rule-based or analogy-based reasoning), or as probabilistic mechanisms 
(such as neural networks, Bayesian classifiers, and hidden Markov models). Procedural 
reasoning systems implement multiple sense-plan-act loops. Knowledge-intensiveness of 
AIRMS is increased either by task-specific knowledge repositories, or by computational 
ontologies. Ontology-based reasoning uses various language-specific representations of 
specifications of conceptualizations of entities and their relationships [34].

The AIRMs are utilized by putting them in the application context. Figure 1.4, for example, 
shows the conventional rule-based and case-based reasoning applied in the reasoning 
mechanism of the computer aided detection and diagnosis (CAD&D) system [33]. The rule 

Table 1.1: Comparison of application independent reasoning mechanisms and  
                  application specific reasoning mechanisms

aspects AIRM ASRM
theoretical basis formal logic and inferring complex semantic computational 

procedures
purpose general purpose inference without 

context
domain-specific inference with 
consideration of context

reasoning process relying on a single or a hybrid 
reasoning process

require multiple forms of 
reasoning processes

Computational 
implementation

either composable or compositional 
configuration

compositional configuration

problem solving 
method

task and goal-driven solution purpose and context-driven 
solution 

knowledge handling uniform representation of 
knowledge

several forms of knowledge 
representation are combined

design methodology able to comply the conventional 
design methodology

require an adaptive design 
methodology 
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base stores the experience of a doctor’s diagnosis, and the case base stores some typical 
cases in the diagnosis task. Using a Bayesiannetwork, the system recommends the most 
likely tasks for the doctor according to the diagnosis results, and simultaneously providing 
a reference for medical decision-making. The generality of  AIRMs is an advantage in 
development, but it results in a disadvantage from the perspective of applicability. This 
has become obvious with the appearance of multiapplication oriented smart cyber-physical 
systems and/or systems of systems S-CPSs and/or S-CPSoSs

1.2.2.2. Application-specific reasoning mechanisms

We introduced the term ‘application-specific reasoning mechanism’ to refer to 
complexapplication dependent computational mechanisms. As the term implies, ASRMs 
are application-driven (or application context-driven) configurations of directly coupled 
computational algorithms that are (i) tailored to specific application objectives and 
tasks, (ii) not exclusively reliant on one of the conventional forms of reasoning (e.g., 
logical, semantic, procedural, qualitative, probabilistic, analogical, etc. reasoning), and 
(iii) benefiting from the background information, underpinning knowledge, and context 
information of the problem. As a combined software and cyberware, an ARSM enables 
S-CPSs to solve concrete real-life problems based on data elicited from the target 
application. Computationally, the reasoning process of ASRMs is a continuous runtime-
activated sequence of the operations of software components. Typical examples are (i) 
automated parking assist systems, (ii) autonomous mobile robots, (iii) and manufacturing 
execution system (MES) which are based on context-dependent logical, cyber-physical, spatial, 
temporal, etc., reasoning. 

Figure 1.4: Workflow of the reasoning mechanism of the CAD system supported by 
                    rule-based and case-based reasoning (Modified from [33])
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One example of an ARSM is shown in Figure 1.5. The proposed reasoning mechanisms 
were architecturally constructed by three interconnected modules (e.g., semantic modelling 
module, semantic information processing module, and semantic autonomous navigation) 
to enable the robot to perform cognitive tasks. The procedural reasoning process converts 
the sensors’ data with the sematic information processing to endow the robot with cognitive 
vision capability. The visual object recognition encompasses metric information, geometric 
features, and image information that can be measured using a set of sensors. Then, the 
inference is performed to localize the place using the objects present in the surrounding 
environment. It leverages the recognized objects with the semantic information stored in its 
database. In the next stage, the mission task planning is performed through a sequence of 
necessary actions (e.g., behavior planning, motion planning, and task planning).  These tasks 
were performed by using different types of algorithms. The interoperation of thesoftware 
components should be guaranteed at runtime in the dynamic situations. These components 
are also needed to be modified or require an interface to couple them seamlessly and the 
processes are influenced by both structural adaptation and implementation constraints. 
This characteristic of ASRMs is known as compositionality. It is one of the challenges at 
designing an ASRM which may not be taken into account when designing an AIRM.

1.2.3. The issue of compositionality in an application- specific 
reasoning mechanism

Designing ASRMs differs conceptually from designing AIRMs. It goes beyond a 
conventional composability orientated approach that systems can be composed in a bottom-

Figure 1.5: Interrelationships of the architectural components of an ARSM for an  
                    intelligent robot (based on [35]).
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up manner by interfacing non-adaptable components [36]. Compositionality was introduced 
as a fundamental system manifestation principle for the development of reasoning 
mechanisms that intend to create a synergy among the functional elements of the systems 
in order to realize system-level smartness [37]. The hypothesis that compositionality is 
necessary in the case of smartly behaving S-CPSs originates in the fundamental assumption 
of classicalcognitive science, that complex mental representations are compositional. 

ASRMs are multi-functional and knowledge-integrated systems. They are supposed to be 
a compositional arrangement of multiple computational algorithms where the wholeness 
(e.g., completeness and orientatedness) of problem solving creates not-composable 
interrelationships among the algorithms. The compositionality regarding ASRMs is 
assumed to be manifested in two levels, (i) concerning operation level, which should 
ensure that the interoperation of software components will be synergistic at runtime, and 
(ii) concerning system-level, which should confirm that the transformation of required 
knowledge and information has been done throughout the entire computational process for 
multi-task problem solving. Hence, the requirements for ASRMs will be defined based on 
the overall objectives and role of the planned S-CPSs at design time. The computational 
components (executables) are in compositional relationship since they should connect and 
work in a synergic way to meet the objectives of operation. This also applies to the chunks 
of the process control and problem solving knowledge required by the ASRMs since they 
are semantically interrelated with each other and should be composed into a proper body 
of knowledge at runtime [38].

1.2.4. Challenges of designing application-specific 
           reasoning mechanisms 

The functional specificities and contextualized nature of ASRMs make their development 
more sophisticated and challenging than what is typical for AIRMs. Numerous 
conventional methodological approaches are used in system design engineering, 
for instance, feature-driven development, V-model, waterfall model, agile software 
development, and spiral model. However, there is no standard approach for the 
development of ASRMs for S-CPSs. Evidently, the concomitant challenges vary 
according to the issues related to the target applications, but there are challenges that are 
to a large degree independent from concrete applications. These are: (i) the difficulty of 
foreseeing a real-life situation during design-time, (ii) the need for an adaptive learning 
mechanism to reason with imperfect information, (iii) the need for multiple algorithms that 
work in synergy in the implemented ASRMs, (iv) the increased computational complexity 
as the number and interrelationships of components grow, and (v) the need for verification 
of the system-level reasoning at design time to guarantee that the ASRM will be properly 
composed at runtime. 

As an example of ARSMs for intelligent mobile robots, discussed in Section 1.2.2.2, the 
reasoning mechanisms need multiple algorithms of different types for the realization of their 
functionality. For the visual object recognition, the above reasoning mechanism requires 
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deep learning type algorithms (e.g., convolutionneural network). For the localization, the 
inference engine requires ontologically-based reasoning. For the mission planning task, 
it requires reinforcement learning-type algorithms. In the real-life operation, the different 
types of algorithms must interoperate in a compositional manner. When the robot is 
moving, a different As an example of ARSMs for intelligent mobile robots, discussed in 
Section 1.2.2.2, the reasoning mechanisms need multiple algorithms of different types for 
the realization of their functionality. For the visual object recognition, the above reasoning 
mechanism requires deep learning type algorithms (e.g., convolution neural network). 
For the localization, the inference engine requires ontologically-based reasoning. For the 
mission planning task, it requires reinforcement learning-type algorithms. In the real-life 
operation, the different types of algorithms must interoperate in a compositional manner. 
When the robot is moving, a different situation happens and some required data might be 
missing. This may lead to a visual recognition failure. To handle this unfavorable situation, 
functional adaptation at runtime is required. We believe that through the discussed example 
we demonstrate that ARSMs are indeed complex by nature and pose several previously 
unexperienced design challenges. 

1�2�5� The chosen research problems and the related 
challenges

  1�2�5�1� Designing the smartness

Designing ASRMs for CPSs with smart capabilities is a new issue both for systems research 
and for system development. Smartness is an inherent quality of human thinking, feeling, 
doing, and making. In our view, it is not equivalent with, but a subset of the elements of 
human intelligence [39]. A distinctive characteristic of smart systemsis that the relationships 
among the component properties create unique patterns of operation on a system level that 
can only be assigned to the whole and not  to any individual components. In this sense, as 
performed by S-CPSs, smartness is a holistic system characteristic. Smartness implies the 
need for compositional system engineering, like safety, dependability, andadaptiveness. To 
achieve system-level smartness, the functional synergy and purposeful (inter) operation of 
all hardware, software or cyberware components at the low-level of operationalization of 
S-CPSs are assumed.

Smartness also raises the need for reasoning mechanisms designed for specific 
applications of S-CPSs. The practical implementation assumes a procedural synthesis of 
various computational mechanisms such as context-based reasoning, goal-driven strategy 
planning, functional adaptation, and behavioral evolution. The interplay of software 
components should be designed so as to produce and take care of smart behaviors. The 
traditional design methodologies have not been developed to support the designing of smart 
features of S-CPSs. Thus, the issue of developing novel dedicated design methodologies 
is combined with the theoretical underpinning and technological realization of software-
induced smartness. With regard to knowledge engineering and reasoning mechanisms 
development, consideration of compositional manners is inevitable. This was one of the 
background concerns at conceptualization of the proposed ARF.



15

1.2.5.2. Specification of the research problems

The essence of the problem was that S-CPSs are based on ASRMs that enable them to generate 
context-dependent solutions for various application problems. Our research concentrated 
on a newly emerged problem related to the designing of a reasoning mechanism for S-CPSs. 
More specifically, the embedding  research project looks for a theory, a methodology, and 
a computational realization to support a designing of the smartness capability in S-CPSs. 
The research problems were addressed at three levels as follows:

Research problem 1: the entire phenomenon of supporting design by the active 
framework concept is not sufficiently known yet.

Research problem 2: the concept of an active recommender framework (ARF) is new, 
in particular in the context of S-CPSs, and thus development 
methodologies for ARF are not available yet. 

Research problem 3: there is very limited practical experience with using ARFs 
in the development of ASRMs for various application contexts.

1�3� Research methodology

1�3�1� Research vision and assumption
Conventional system engineering frameworks (SEFs) play multiple roles in the design 
processes such as, explaining a phenomenon, addressing a problem and proposing problem-
solving methods, offering means of creating a new concept, providing an architectural 
structure for developing a system, and  evaluating and testing system performances. We 
argue that this type of framework does not provide sufficient support for designing ARSMs 
for S-CPS, which feature cognitive capabilities such as reasoning, learning, and adapting 
themselves. Ideation and design of ASRMs are complicated and require diverse cognitive 
processes, which need both creative thinking and practical pragmatism from the designers. 
Based on the strong need to support design activities for the development of ARSMs, we 
proposed the concept of active framework for this purpose. 

The research vision was to have a design enabling tool called ‘an active recommender 
framework (ARF)’ supporting the development of ASRMs. The integration of process 
monitoring and decision support functions was proposed as the novel functionality. 
This makes the ARF capable to identify an obstacle in the design process and to offer a 
recommendation to a designer in order to remove the obstacleand continue the design 
process. The computational mechanisms of the ARF were able to perform the (semi-) 
automated operation with the minimum number of the interactions with the designer to 
generate the personalized recommendation, including process related and content related 
recommendations.

Due to the challenges and the complicated nature of the research topic, we have made 
the following assumptions concerning the methodological aspect in order to conduct the 
research:
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Assumption 1: the project should be properly scoped so as to achieve a rationally manageable 
complexity and challenge, even if it means ignoring many related issues 
and simplifying processes;

Assumption 2: the research process as a whole can be decomposed into a minimal number 
of logically connected research cycles;

Assumption 3: the objectives of the research cycles can be defined so as to bridge knowledge 
aggregation through concept development and implementation, as well as 
to testing of the proposed theories and implementation principles;

Assumption 4: the ARF can be elaborated on from theoretical, methodological, 
interaction, epistemology, and praxiological dimensions up to the  level 
that presents it as a new paradigm of active recommender systems;

Assumption 5: the lively interaction between (the development of) the ARF and real-life 
application problems can be demonstrated in the promotion research by 
including a concrete application problem; 

Assumption 6: the research activities can show the parallels between two activity 
flows, namely (i) the framework-orientated knowledge aggregation and 
development of ARF algorithms, and (ii) the application  problem solving-
orientated knowledge aggregation and development of ASRM algorithms;

Assumption 7: with a view to the foreseen complexity and capacity investment 
issues, the promotion research is not supposed to be exhaustive,  
but to achieve a decent level of theoretical clarification and computational 
demonstration;          

Assumption 8: in addition to the propositions closely related to the conduct and  
content of the promotion research, attention is given to the broader scientific 
meaning and implications of the studied phenomena, principles, and 
inventions.

1�3�2� Research objectives
The overall objective of the research was to develop a theory, a methodology, and a 
feasible demonstrative implementation for an ARF to actively and insightfully support the 
development of ARSMs of S-CPSs. The specific objectives of the research were (i) to 
aggregate knowledge concerning the development of reasoning mechanisms for SCPSs and 
system engineering frameworks (SEFs); (ii) to specify the requirements and the alternative 
approaches for conceptualization of ARF for RMD; (iii) to conceptualize an ARF that 
systematizes the development of application specific reasoning mechanism (ASRM); (iv) 
to propose the novel functionality of the ARF and identify the required algorithms and 
data structure; (v) to develop a computational implementation of the demonstrative parts 
of the ARF for a particular design session of an ASRM in an application context; (vi) 
to validate the functionality of the implemented modules of the ARF in the considered 
application context; and (vii) to validate the usefulness of the recommendations generated 
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by the demonstrative modules of the ARF.

1�3�3� Research questions and hypotheses
To achieve the main objective, the following guiding research question was formulated:

In what way can an active recommender framework (ARF) support a designer in 
the development of an application specific reasoning mechanism for a particular 
family of S-CPSs?

With regard to the specific objectives, a number of working research questions was 
synthesized. The questions were classified into four groups. The first group focused on 
the epistemological aspects of ARF development, concerning knowledge aggregation, 
specification of requirements, and building a knowledge platform for the follow-up research 
activities.

RQ1: What framework concepts are currently used to support the implementation of 
system smartness with regard to S-CPS?

RQ2: What knowledge is needed for a designer concerning the conceptualization and 
implementation of ARSMs for S-CPS?

RQ3: What requirements have to be fulfilled by an ARF in order to efficiently support 
a designer in RMD processes?

The second group of research questions dealt with the ideation, conceptualization, and 
specification of constituents of an ARF:

RQ4: What is the underpinning principle of the conceptualization of an ARF and what 
structured methodological approach can be used?

RQ5: What functionalities are to be considered at the conceptualization of an ARF?

RQ6: What algorithms are needed for a computational implementation and functional 
validation of the ARF in the application context of ASRM?

The third group of research questions concerns the implementation phase of the ARF, 
specifically focusing on the detailing, computational implementation, and testing of the 
implemented modules:

RQ7: What modules of the ARF should be implemented to arrive at a demonstrative 
implementation?

RQ8: What critical algorithms and data constructs are needed for the realization 
of the functionality of an evidencing demonstrative part?

RQ9: What way can the implemented modules be functionality tested in the 
application context?

Finally, two research questions were posed concerning the validation of the implemented 
modules and to confirm the quality of recommendations:

RQ10: What way can the performance of the implemented modules be validated 
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concerning the usefulness of the recommendations?

RQ11: What is an indicator and measure of the usefulness of the recommendations?

Based on these research questions and the forerunning knowledge aggregation, 
the following hypothesis was formulated: 

Research hypothesis:  A computer-aided design support tool with new features, including 
a purposeful coupling of the process monitoring and the decision 
support functionalities towards a compositional design of application 
specific reasoning mechnism for S-CPSs, is the needed new paradigm 
for realization of an active recommender framework.

1�3�4� Overall methodological framing of the research  work
At the early stage of the PhD. research project, the Topic and Work Specification (TWS) 
was documented. This section was revised based on the contents of the TWS. For the 
methodological framing of the promotional research, a multi-methodological framework 
was introduced. This includes a combination of research in design context (RiDC), the design 
inclusive research (DIR), and practice based research (PBR) approaches [40]. Basically, 
RiDC and PBR involve two phases: (i) explorative research actions, (ii) confirmative 
research actions. Besides these, the DIR involves a set of constructive design/prototyping 
actions as a ‘transitive relation’ between the explorative phase of the research cycle. Thus, 
this link formed by creative/design activities extends the kernel cycle procedurally with a 
third stage.

Focusing on data generation and theory development, the explorative phase was divided 
into three stages: (i) knowledge aggregation, (ii) stating research assumptions, and (iii) 
theory development. Focusing on theory justification and validation, the confirmative phase 
consisted of three stages: (i) logical justification, (ii) validation of the conduct and the 
findings, and (iii) consolidation of the new knowledge. The goal of this systematic approach 
was to properly explore, describe, understand, and explain the studied phenomenon and its 
implications.

Design inclusive research uses evolving design as a research means in order to access 
information and knowledge that cannot be accessed and studied otherwise. As briefly 
mentioned above, the DIR cycle is extended with a constructive phase. The constructive 
phase is actually an embedded design and/or construction process, including three 
stages: (i) conceptualization, (ii) detailing, and (iii) prototyping. The explorative and 
confirmative research actions are conducted as with the RiDC approach. The research 
means can be an artifact, a process, a visual/virtual entity, a chunk of knowledge, and a 
synthetic phenomenon. Some external factors can be considered in the design phase such 
as technological opportunities, implementation requirements, and usable resources. The 
goals of the design phase can be achieving a better understanding, inventing new concepts, 
constructing physical and/or digital models, devising methodologies, and providing a 
better solution through creating pilot versions of an artefact.
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Concerning the specific objectives of the whole research project, the research design 
was elaborated with a view towards the research constructs, processes, and means/ 
instruments. The overall research process was then divided into four research cycles 
which included a logical flow of activities. The methodological framing applied to the 
research cycles resulted in the overall research approach shown in Figure 1.6.

Research cycle 1 focused on the description of the phenomenon regarding the need for a 
new framework paradigm to support the development of reasoning mechanisms for S-CPS. 
The first research cycle was framed according to RiDC methodology. The objectives of this 
cycle were (i) to describe and explain the above generic phenomenon, (ii) to gain sufficient 
insights into and to explore fundamental principles related to the studied phenomenon, and 
(iii) to provide a comprehensive knowledge and a rigorous description of it. The completed 

Figure 1.6:  The methodological framing of the promotional research
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literature study focused on (i) the proliferation and features of S-CPSs, (ii) the essence 
of system engineering frameworks (SEFs) development, (iii) the enablers of system-level 
reasoning and services. Both quantitative and qualitative methods were used in a mixed 
way. A reasoning model was developed for the qualitative analysis of the contents. An 
objective critique was applied with regard to the SEFs currently used in the development 
of reasoning mechanisms. Furthermore, the knowledge required for the development of an 
ARF was circumscribed. Subsequently, a gap between the currently available knowledge 
and the specific knowledge needed for conceptualization and implementation of an ARF 
was identified. The implications of the findings as well as their interplay were critically 
analyzed with the goal of deriving the requirements for the ARF development.

Research cycle 2 focused on conceptualization of the active recommender framework for 
supporting ASRM development. The proposed concept was validated and tested in the 
application context of APAS. In this research cycle the design inclusive research (DIR) 
approach was applied. The design activities concerned the functional conceptualization 
and system level architecting (decomposition and integration) of the constituents of 
the ARF. The specification of the functions of the ARF started out from the conceived 
design actions of the APAS development. Critical system thinking combined with actions 
of design science research was used to predict what the overall architecture and the 
functional specification of the framework should look like. Three main research activities 
were carried out. In the explorative phase, a broadly-based knowledge aggregation 
was conducted to provide input for the ideation about what services an ARF can offer 
to a designer. Various assumptions for the development of the ARF were formulated. 
The design scenario for the development of ASRMs was also analyzed and critically 
discussed. In the constructive phase, the fundamental concepts of the ARF were specified 
based on the assumptions and the implications of the concrete findings in the pre vious 
stage. The ARF was conceptualized based on a multi-perspective approach, which 
progressed through (i) specification of the functionality of the mechanisms, (ii) system-
level architecting and specification of the modules, (iii) construction and specification 
of algorithms and data constructs, and (iv) organization of the computational workflow. 
In the confirmative phase, the research activities centered on the feasibility testing of the 
overall concept and on the demonstration of the operations of the conceptualized part 
of the ARF in the target application context. In addition, the goal of this phase was to 
explore and formulate requirements for the implementation of the demonstrative part.

Research cycle 3 was methodologically framed as a DIR approach. The main research 
activities concentrated on the implementation of the demonstrative moules of the ARF. 
The activities were completed in three procedural phases. The first phase included the 
explorative research actions. In the second phase the necessary design actions were 
performed. In the third phase, the results were processed and conclusions were drawn based 
on the confirmation research actions. In the exploration phase, a technical specification for 
the implementation of the demonstrative part of the ARF was elaborated. The research 
activities focused on the specification of the principles of the implementation of the targeted 
demonstrative modules and the analysis of the resources (programming environment) 
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available for the implementation. In the constructive phase, the contents of demonstrative 
modules were specified on the module, component, and algorithms level. The confirmative 
phase placed the implemented WPE algorithms into the specific context of the APAS. The 
set of algorithms develop for the APAS represented a demonstrative implementation of a 
particular ASRM in the target application. This demonstrative part was intended to test the 
functionality of the proposed ARF could be implemented with success in the above specific 
application context.

Research cycle 4 dealt with the validation of the demonstrative implementation with a view 
towards the usefulness of the recommendations. The research cycle was methodologically 
framed according to the structure of a practice based research (PBR) approach. The 
validation aimed at generating indicators for the usefulness of the recommendations. A 
synthetic agent was designed to act (decide) as a human designer does. Based on this, an 
agent-oriented validation process was developed and completed. It aimed at mimicking 
the decisional behavior of the designer and generating an input dataset for validation 
without including human designers in the validation process. The research activitieswere 
completed in two phases. The explorative phase dealt with the development of the synthetic 
validation agent (SVA) and the operationalization of the SVA. As  mentioned above, the 
output of the explorative phase was the validation dataset generated by means of the SVA. 
In the confirmative phase, the statistical analysis of the dataset and the correlation testing of 
the considered variables were conducted. Various indicators, derived by using prognostic 
reasoning, were proposed to measure the usefulness of the recommendations. The final 
stage incorporated the discussion and the interpretation of the findings with the goal of 
evaluating the methodology and the usefulness of the recommendations.

1�4� Structure of the thesis
The overall methodological framing presented in the previous sub-chapter was also 
considered at the structural organization of the thesis. The concrete research activities 
completed in the four research cycles are discussed in the subsequent chapters. Chapter 2 
is dedicated to the second research cycle. It starts with a presentation of the design of the 
literature study, followed by the conducting of the systematic literature review, analysis 
of the contents, and then discussion of the findings. A set of requirements for the ARF 
development was derived based on the implications of findings in the knowledge aggregation 
procedure. In Chapter 3, the process of conceptualization of the ARF is discussed. This 
chapter first provides a notional clarification, and then defines the needed functionality, 
and deals with the issues of efficient architecting and system integration. It also deals with 
various aspects of ASRM development. In addition, the specification of the modules and 
algorithms and the planning of and the requirements for implementation are considered.

Chapter 4 is dedicated to the implementation of the demonstrative part of the ARF. 
The fundamental concepts of the implementation are discussed and the details of the 
implementation of the modules and the computational algorithms are presented. The 
implemented modules were tested in the application context of the chosen ASRMs. In 
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Chapter 5, the validation of the usefulness of the recommendation was conducted. This 
chapter presents the argumentation about the decisional behavior of the designers, describes 
its simulation with the synthetic validation agent, the analysis of the validation dataset, and 
the evaluation of the usefulness of recommendations. In Chapter 6, the completed research 
project is summarized, including self-reflections on the contributions of the research from 
various perspectives, as well as the conduct and outcomes of the individual research cycles. 
This chapter also includes the detailed descriptions of the scientific propositions and makes 
recommendations for future research.
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Chapter 2

2.1 Objectives and methodological framing of the first  
research cycle

2�1�1 Objectives
As mentioned in the first chapter, the need for generating and processing coherent and 
consistent problem solving and process steering system knowledge flow makes SCPSs 
compositional in nature. It means that a compositional S-CPS manifests as a purpose-driven 
arrangement of computational reasoning mechanisms, which in turn are purpose-driven 
arrangements of computational reasoning algorithms. A system that can automatically find 
a parking lot and park a car is a typical example for such computational mechanisms and 
algorithms. Such applications need situation dependentand/or context-driven reasoning in 
runtime operation, since it is not feasible to pre-program all possible parking solutions. 
Eventually, computational reasoning mechanisms are data-driven. Due to their complexity 
and compositionality, application specific, runtime active reasoning mechanisms pose 
many novel design challenges, particularly in terms of creating system-level smartness 
and constructing applicationtailored knowledge flows. Traditionally, system-engineering 
frameworks (SEFs) have been used to support the activities of designers.

The objectives of the first research cycle were (i) to get a deeper insight into the studied 
research phenomenon, (ii) to get an overview of the state of the art based on the related 
scientific literature and professional web repositories, and (iii) to synthesize a starting 
‘home base’ for the investigations and a knowledge platform that can be used follow-up 
developments. Knowledge aggregation included the study of the SEFs proposed for supporting 

Research cycle 1:
Aggregation of knowledge and exploration of 
requirements 
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the development of a reasoning mechanism for S-CPSs. The content development was based 
on the assumption that the overall objective of the promotion research was the development 
of a new generation of active framework to support (at least a part of) the design process of 
application-specific runtime reasoning mechanisms.Specific attention was given to SEFs 
that are used for the development of system-level design reasoning in the context of 
S-CPSs. 

The objectives of the completed survey were:

(i) to study the SEFs available for the development of reasoning mechanisms from the 
perspective of S-CPSs (more specifically, the frameworks that are proposed for 
handling the fuzzy front end of the reasoning mechanism’s development process);

(ii) to investigate the enablers of system-level reasoning as necessary ingredients of 
implementing smartness in S-CPSs;

(iii) to identify the requirements for the development of an active recommender framework 
supporting the design process of ASRMs.

In addition, the knowledge aggregation activities included the identification of the existing 
knowledge gaps and collection of requirements as part of the knowledge platform for an 
active recommender framework (ARF) development. The guiding research question was how 
an ARF had to facilitate the development of ASRMs for SCPSs. Towards an underpinning 
theory, answering the following three questions was the focus of the knowledge aggregation 
activities:

(i) What was the state of the art of SEFs in the field of system design and engineering?

(ii) What knowledge was needed by a designer for the implementation of a reasoning 
mechanism for S-CPSs?

(iii) What requirements had to be fulfilled for an ARF to support a designer in the 
development of ASRMs?

2.1.2 Methodological framing of the first research cycle
In line with the above-described objectives (i.e., knowledge aggregation and require- 
ments exploration), the research cycle was methodologically framed as research in design 
context (RiDC). The research context was the targeted support of designers in RMD 
processes by a dedicated ARF. The research cycle was executed in twoconsecutive 
phases as shown in Figure 2.1. In the explorative phase, after identification of relevant 
sources of publications, a systematic literature study was conducted at the earlier stage 
of the research project. The obtained information was used to map the questions-relevant 
literature publications to a landscape of concerns related to SEFs. In combination with 
critical system thinking, both quantitative and qualitative methods were applied. As far 
as the quantitative method was concerned, a bibliometric map of the publicationswas 
constructed with the goal to visualize the relationships of the specified key terms included 
in the corpus (the collection of publications). The reasoning model was derived based on 
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the findings of the quantitative analysis. It would 
be used for the qualitative analysis. 

Since the time of this first conducted literature 
study, many related research efforts and results 
have been published in the literature. Therefore, 
in the process of preparing the dissertation, the 
original bibliometric map has been updated in 
line with a new additional collection of 
publications. Besides updating the first literature 
study, the second analysis was also intended to 
confirm that a proper choice was made concerning 
the phenomenon and methodological orientation 
of the promotion research.The robustness of the 
choice was indicated by the facts that (i) other 
researchers also initiated research on the same or 
related topics, and (ii) the topic of the literature 
study was far from exhausted. Nevertheless, 
though the original reasoning model could be 
reused, the need for an extension arose (see Figure 
2.6).

The content analysis was used as the qualitative 
method. It was narrowed down to three domains 
according to the reasoning model: (i) the domains 
that provided the context information for the 
research, namely: cyber-physical systems and 
system smartness, (ii) the domain of discourse of 
the research including the details of framework 
development from multi-perspectives, and (iii) 
the domains that provided content information 
for studying frameworks. It complicated our 
study that there were many epistemological and 
methodological relationships among the domains 
and their elements. 

The confirmative phase was orientated to the 
logical consolidation of the findings. First, the 
findings concerning the research and development 
opportunities of the SEFs were synthesized to 
support the design process of ASRMs. Currently, 
representative examples of SEFs are used in 
various domains of interest. The most important 
characteristics of an ARF have been identified as 

Figure 2.1: The procedural approach  
                    of RC1
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the provided functionality, the architectural components, the implementation principles, 
and appropriateness of recommendations. To benefit from these, the ideation process of the 
ARF was completed with a view to the specific operational characteristics including, for 
example, the possible services, the primary support functionality, the software architecture, 
and computational mechanisms.

Having the potential characteristics of an ARF identified, various sets of requirements were 
identified based on the findings of the literature study, employing brainstorming technique, 
and critical systems thinking. The fact of the matter is that most of the requirements were 
drawn by analyzing the implications of the findings of the literature study. They were 
collected from multiple sources and analyzed to arrive at a technically meaningful and 
logically consistent list of requirements for an ARF. The requirements were clustered into 
groups (e.g., functional requirements, structural requirements, computational requirements, 
and application-oriented potential requirements) for the purpose of further analysis. The 
requirements were justified by critical system thinking and their consistency within and 
across groups were checked. In addition, with the aim of validation of their feasibility, the 
whole set of requirements was evaluated for achievability and practicability.

2�2 Design of the literature study

2�2�1 Procedural phases of the literature study
Including the follow-up complementing study, the literature studies were completed 
in three subsequent phases, namely: (i) orientation and source exploration, (ii) content 
analysis, and (iii) synthesis and consolidation of the findings. In the first and the third 
phases, critical system thinking was the main method of analysis. In the second phase, both 
quantitative analysis and qualitative interpretation were used. In the web-hosted study, (i) 
various search engines, (ii) a reference management tool, and (iii) a (bibliometric map) 
visualization tool was used as a research instrument. The primary criteria for picking up 
a document for further examination were (i) relevance of content, (ii) time of publication, 
and (iii) the quality (recognition and reliability) of the source. We intended to achieve 
both comprehensiveness and coherence throughout all phases of the study. We used the 
reference management software not only to sort the publications into clusters, but also to 
support the storage of the corpus.

As the primary source of data, the core collection of the Web of Science was used. To 
extend the base of the literature study, other sources, for example, databases in specific 
CPSs-related disciplines and web repositories were also used. The term framework was 
considered as a main keyword. The exploration of frameworks for reasoning was to be 
done in the context of S-CPSs, which was considered as a family of CPSs. Other relevant 
keywords were defined including self-awareness, self-adaptation, smartness, smart 
cyber-physical systems, system knowledge, context and situation awareness, reasoning 
mechanisms, and system adaptation. The preliminary inquiry hypothesis addressed the 
relationships of the keywords to each other. These relationships were investigated in the 
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completed content analysis.

According to the original literature study published in 2018, the publications included 
in the study were covered over the past ten years (2008-2017) at the time of compilation of 
the papers. There were 807 publications that fulfilled the criteria of the conducted search 
and served as the knowledge base for the literature study. While preparing the dissertation, 
we developed the complementing study by updating the publications from 2018 to mid-
2021. The objectives of the study update were: (i) what new results were published in the 
domains identified by the original reasoning model, (ii) what important novelties emerged 
that were not included in the original reasoning model, but are important, (iii) what similar 
works have been initiated since 2018 in the same field of interest, and in different fields of 
interest (e.g., law, commerce, and education), to create active recommender frameworks 
(i.e., for supporting the design of application-specific reasoning mechanisms), Since the 
time of performing the original literature research, the sample has grown with a number 
of 1,249 publications. Thus, the extended corpus of the complete literature study was a 
total of 2,096 publications. The statistical trend of yearly publications is shown in Figure 2.2. 
The increased number of publications over the period of the completed study gave us the 
impression that the topic chosen for the promotion research was interesting for the concerned 
research communities (e.g., in the field ofCPS development, cognitive system engineering, 
and multi-disciplinary information engineering).

Figure 2.2: Number of publications included in the literature study over the period  
                   from 2008 until mid-2021.
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In the third phase, a bibliometric map was constructed. This map relied both on the initial 
search words/phrases and on the found key terms (Figures 2.3 and 2.4). The objective 
of constructing the map (notional landscape) was to capture and visualize the network 
formed by the key terms extracted from the corpus. The VOSviewer software was used for 
this bibliometric mapping. The exploration using the VOSviewer was conducted in three 
steps: (i) extraction of key terms from the collected publications by using text-mining 
technique, (ii) manual filtering (removing or merging) key terms that resembled each other, 
and (iii) creating the map as a network of co-occurring key terms (with nodes and edges). 
The software assigned the nodes of the map to a cluster for which it was assumed to be 
relevant. Technically, the clustering used by VOSviewer was based on optimization using 
the smart local moving algorithm [1].

In the original literature study, the bibliometric map contained 67 nodes and over 2,000 
links. These were sorted into three main clusters as shown in Figure 2.3. These clusters 
were regarded as knowledge domains and (intuitively and manually) named as: (i) systems 
engineering, (ii) knowledge processing, and (iii) system behaviors. It was interesting to 
observe that an intersection of the above three clusters was formed and populated with key 
terms such a framework, models, structure, and application. The key term ‘framework’ 
appeared as an intermediary link across different terms in the different domains.

The original bibliometric map was modified according to the additional new publications. 
As a result, the modified map contained a total of 26 nodes and over 2,500 links (see 
Figure 2.4). The key terms were also sorted in the tree clusters, which could be identified 
with the same domains of knowledge. The term ‘framework’ had been the intermediary 
link across the domains. Some new terms appeared, for instance, related to (i) cognition 
in system behaviors, (ii) artificial intelligence (e.g., machine learning, deep learning), (iii) 
recommendation in knowledge processing, and (iv) application contexts in the field of 
system engineering of CPSs (e.g., industry 4.0, smart city). In spite of the emergence of 
some new terms, the main key terms and their relationships remained relevant in the map. 
This confirmed the correctness of the starting hypothesis, which expressed the need for 
proper SEFs in the development of S-CPSs.

2�2�2  Devising the reasoning model for the original literature 
study 

In the quantitative analysis, the number of occurrences of the key terms ‘singular’ occurrence 
and ‘coupled’ occurrence were taken into account. In the case of a coupled occurrence, two 
or more key terms simultaneously appeared in a particular publication. The key terms 
were visualized as node of the map, and the links among them as edges. This ‘landscape 
map’ provided information about the distribution as well about the interrelatedness of the 
key terms. Based on the number of the incoming and outgoing edges, the centrality of the 
individual key terms could be seen. The ones with large number of interconnections formed 
a kind of hub. Thus, our quantitative analysis could use both frequency analysis and topical 
distance evaluation.
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Figure 2.4: The updated bibliometric map (Modified from the own publication [no.3])

The topical distance of the key terms was enumerated based on the total number of 
intermediate nodes on the shortest path (sequence of edges) between considered two key 
terms. The number of edges between the key terms (i.e., the number of mutual occurrences) 
was used as a strength indicator of their interrelationships. Concerning the complete set of 
the search words/phrases we used, it was observed that some key terms were only weakly 
related to others. Having omitted these weaker relationships, the map size was reduced and 
was named power map. The outcome of this quantitative characterization was used in the 
qualitative interpretation of the bibliometric map.

The road to the reasoning model led through the following preparatory steps: (i) defining 
the concept structure, (ii) formulation of a tree of search words/phrases, (iii) generation of 
the bibliometric map, and (iv) contents analysis of the network formed by the key terms. 
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Contents analysis is a widely used qualitative research method for literature studies. It is 
a systematic review that draws conclusions based on a single, or multiple bodies of text 
to explore trends, themes, and other common (or even distinct) characteristics of data. 
Usually, contents analysis applies specific coding and assigns a structure of meta-data to 
the textual data.

We also completed these activities of contents analysis in our study. The meta-data were 
such as: (i) descriptors of the clusters, (ii) chronological tendency of citation, and (iii) the 
type of contents (as knowledge). Based on the latter, the relationships found between the key 
terms were characterized qualitatively. As shown in Figure 2.5, the key term ‘framework’ 
has strong couplings with other key terms, such as decision-making, knowledge-based, 
and cyber-physical systems. This indicated the roles of frameworks in these areas (e.g., 
decision-making framework, knowledge-based frameworks).  

Notwithstanding, continuous paths could be observed among many weakly coupled key 
terms (e.g., self-awareness, system adaptation). Based on the power map, the original 
reasoning model was derived to guide the literature study. Our considerations and decisions 
concerning the interest domains included in a possible reasoning model were as follows: 
‘Cyber-physical systems’ was taken into consideration as a broad domain of context 

Figure 2.5: Power map of the network of keywords embedded in the updated 
bibliometric map (Modified from the own publication [no.3])
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and ‘system smartness’ as a narrower domain of context for our investigation. ‘System 
engineering frameworks’ were taken into consideration as the primary domain of discourse.

As pertinent subject matters (domains of contents) for the investigation, (i) system-level  
reasoning, (ii) synthetic  knowledge, (iii) system  reasoning, (iv) system awareness, (v) 
decision making, and (vi) system adaptation were considered. According to the modified 
bibliometric map, the term ‘recommendation generation’ was introduced to the domain 
of contents. This is shown in Figure 2.6. The relationships of the subject matters were 
made explicit based on this formal reasoning model, and were used in the qualitative 
interpretation of all collected relevant publications. The next sub-chapters and sections 
were arranged according to the brushed up reasoning model shown in Figure 2.6. It must be 
also mentioned that some sections included below have been published in our publications 
no. 1 and no. 3. The revised versions of these contents were included in Sections 2.3.1-2, 
Sections 2.4.1-3, and Sections 2.5.1-5. The textual modifications were included with the 
intent of improvement.2.3 Overview of the state of the art in the context domains

Figure 2.6: Derived reasoning model for the literature study (taken over and modified 
from the own publication [no.1])
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2�3�1  Progress in the development of cyber-physical systems
Cyber-Physical Systems was coined around 2006 by the group of researchers previously 
working in related domains of interest such as embedded systems, advanced robotics, real-
time systems, hybrid systems, and control systems [2]. In 2007, there were twelve papers 
found when ‘Cyber-Physical Systems’ was searched on Web of Science. Recently (2021), it 
has increased exponentially to over 12,800 papers in total. This indicates that CPSs are the 
informed engineered systems, which have been developed intensively since the last decade. 
On the scientific domain, CPSs seem to be a kind of model for next generation engineered 
systems. They have emerged from the integration of two dominant areas that are (i) system 
with embedded software, and (ii) global data networks [3]. However, there are various 
perspectives on CPSs that could not be defined by a unified term. This is one reason why 
their ontological, epistemological, and methodological foundations are still missing.

Another one is the observable rapid shift in the paradigm. While ‘a tight integration 
of computing and physical parts’ was an agreement on the essence of CPSs [4], ‘deep 
penetration into physical, biological, social, human, cognitive, etc. processes in a self-
organized manner’ is now getting accepted by the majority of experts [5]. This makes 
it possible to introduce CPSs in various human, social, etc. task domains, and not only 
in purely industrial application fields. Many of these applications could be not addressed 
successfully by other paradigms of engineered systems. Most of the CPSs are highly 
heterogeneous conglomerates of interconnected analogue and digital hardware, control 
software platforms and application tools, and structured knowledge repositories and data 
streams as cyber-ware [6].

CPSs are capable to provide a very wide range of functionalities, since they usually 
incorporate a large number of networked actor nodes that can perform smart anticipating 
behavior. From an architectural perspective, these networked actor nodes form either a 
closed or an open system, which in turn can be a constituent of a more complex system of 
systems [7]. The IoT-based interconnection of distributed devices via the Internet offers 
quasi-real time connections to both users and the physical world. The proliferating cloud 
platforms offer a wide variety of capabilities and provide virtually unlimited on-demand 
resources for current implementations. Modern CPSs are designed to be functionally 
dependable, secure and safe, adaptive and selfsupporting [8]. Self-adaptive software 
architecture plays a paramount role in the implementation of adaptive CPSs [9].

Many researchers have put the issues of evolutional and replicative CPSs in their research 
portfolios as well [10]. The typical methodological strategy of designing and managing 
1G-CPSs is using a model-based approach. In the overwhelming majority of cases, 
model-based design is complemented with component-based realization. Both of these 
have reached the status of a de facto standard. System models are multifold and varied 
in terms of their contents, representation, and interoperation. However, they are based 
on knowledge structures, and workflows implied by the traditional systemengineering 
frameworks (TSEFs). They usually capture descriptive and prescriptive data/information, 
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which may be extended with predictive information in the form of situational and inferential 
rules, but do not support fully data-driven development and/or operation [11].

An intense diversification can be observed not only in terms of the application fields, but 
also in the system functionalities [12]. There are systems whose output is dominantly 
information service, while other systems provide transformative services for real-life 
processes and stakeholders. Due to the gradual intellectualization of operations of CPSs, 
the concept of cognitively enabled CPSs has emerged. This gives a ground to new research 
and design challenges such as:

(i) attaining situation awareness in the case of large distributed systems with 
decentralized management and control [13];

(ii) handling large amounts of data in real time with the objectives of (i) providing adapted 
services, (ii) monitoring system performance and environmental dynamics, and (iii) 
detecting faults and degradation [14];

(iii) learning useful patterns of auto-reconfiguration and self-adaptation from past examples 
[15]; and

(iv) analysis and smart reasoning concerning user behavior, exploration of  non- 
predefined needs, and detection of intents and activities [16].

As examples of cognitively enabled CPSs, 2G-CPSs: (i) deeply penetrate into physical, 
computational, social, cognitive, emotional, etc. real-life processes, (ii) collect data and 
derive information runtime, (iii) generate alternative operation strategies based on the 
acquired data, and (iv) operationalize the best matching strategy through functional and 
architectural adaptation. Normally, they manifest as system of systems [17]. The capability 
of building awareness and making adaptations is crucial for 2G-CPSs [18]. This enables 
them to work properly in emergent situations and/or in dynamically changing environments. 
However, the former is still limited by the premature computational reproduction of self-
consciousness, the latter by the physical constraints of resource provisioning [19]. 
Preprogrammed system/control models either pose significantrestrictions on runtime 
alteration and adaptive behavior or simply do not support them [20]. 

System level reasoning and synthetic knowledge are two major enablers of this kind of 
operation [21]. None of these can be associated with one single component of a system. In 
the light of the above facts, our major methodological findings are: 

(i) the methods and tools available for (system-level) synthesis and modeling of CPSs rest 
on the principle of reductionism and show an incompatible diversity, 

(ii) though compositionality is recognized as a paradigmatic feature of smart systems, its 
manifestation in artefactual and servicing contexts is not sufficiently understood [22], and

(iii) no specific system engineering framework has been proposed for compositional 
realization of smart CPSs.
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2�3�2   Achievement in the implementation of system smartness 
The term ‘smartness’ is ambiguously defined and interpreted in the current literature, and 
is used in diverse perspectives [23]. In certain publications ‘smart’ is used as a synonym of 
‘modern’, ‘sophisticated’ and ‘up-to-date’, whereas in other publications it is equivalent of 
‘intelligent’, ‘adaptable’, and ‘cognitive’[24]. For example, it is stated that SCPSs exhibit a 
high level of ‘intelligence’ in terms of opportunistic cooperation, dynamic self-organization, 
self-healing, and self-adaptation as a characteristic feature[25]. Other authors claimed that 
S-CPSs could adaptively collaborate with other systems at runtime [26]. Consequently, 
there are still ambiguity and uncertainty related to ‘smart cyber-physical systems’, although 
the concept has appeared in scientific publications since 2014 (See for example [21], [27]). 
System theory interprets smartnessas a holistic behavioral characteristic [28]. This holistic 
view is rooted in the following: 

(i) the overall behavior of the whole system cannot be explained by decomposing it into 
isolated parts, and

(ii) the relationships among the components of a system may give rise to distinctive 
behavioral patterns that may largely differ from the intrinsic properties of the individual 
parts.

Smartness of systems may come from interpreting and reasoning with incoming sensor 
data and combining the outcome with the knowledge owned by the system concerning the 
respective processes and with the knowledge of how the system works internally [29]. This 
leads to situated reasoning and decision making in contexts.

S-CPSs have been identified as the next rational step in realization of industrial systems 
[30]. In order to show ‘system intellect’ in their operation, their control regime must be 
more sophisticated and capable to implement many self-*characteristics. In the process 
of transitioning from 1G-CPSs to 2G-CPSs, the system capabilities of self-regulation and 
self-tuning are supposed to be replaced by self-awareness and self-adaptation. These go 
beyond (i) self-adjustment, (ii) self-healing, (iii) self-optimization, and (iv) self-protecting 
capabilities, and the other forms of selfmanagement and self-organization normally 
expected from 1G-CPSs [31].

Smartness enables systems to build their own model concerning what the most probable 
operational situation is, and how to respond to this situation with a preferable objective and in 
a favorable manner. Should the situation (task, state, environment, etc.) dynamically change 
over time, a smart system must adapt itself to deal with the dynamics while maintaining the 
requested level of performance or even improving it when repeatedly confronted with the 
similar situations. Wang (2009) presented a cognitive reference model of architectures and 
behaviors of cognitive robots, which reveals the architectural differences and behavioral 
characteristics of cognitive robots beyond conventional imperative robots [32].

Higher-level system intelligence and operational autonomy need even more advanced 
system understanding, knowledge intensiveness, and complex anticipation [33]. Evidently, 
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these expectations go together with many new challenges for conceptualization and design 
of next-generation CPSs. One of the design challenges is ‘partial design’ This means that 
systems are not (cannot be) defined exhaustively in the design stage, because they adapt 
and/or develop themselves during runtime according to the internal and external operational 
conditions, the predefined and the possible objectives, and the available or acquirable 
resources. This ultimately means that a part of the design tasks is delegated to CPSs that 
learn, reason, and evolve (under a ‘remote’ strategic supervision of humans). Future system 
intelligence is conceived as a multi-functional abstract intelligence (αI) that blends the core 
of neural, cognitive, functional, social, and logical inferences into a common and unified 
framework [34].

Our conclusion has been that system smartness, as with other holistic system level features, 
assumes a compositional design that in turn needs to be based on a compositionality-
enabling framework [35]. In compositional systems, the function and the architecture of 
a non-primitive component depend on the wholeness that is formed by the total of the 
components [36]. The necessary function and architecture of each component can be 
determined by means of applying some sort of recursive behavioral composition rules that 
work in parallel with physical interoperation composition rules. This is actually the so-
called ‘principle of compositionality of system behavior’.The realization of this typically 
raises the need for adaptation of the components by the designers in the design stage, or for 
self-adaptation of the  system in the operation stage [37].

2�4  Investigation of system-engineering frameworks  for 
S-CPSs

2�4�1  Progress in the area of system-engineering frameworks
System-engineering frameworks (SEFs) are starting points at the development of systems. 
They propose a structure of thinking that establishes a body of concepts and provides 
representations for conceptualizations. Frameworks are also regarded as blueprints that can 
be converted into various artefact and process models instrumental for building concrete 
solutions [38]. Typically, frameworks are discussed from ontological, epistemological, 
and methodological viewpoints. In line with the objective explained in Section 2.1, we 
contemplated frameworks only from an ontological viewpoint (what exists in the form 
of frameworks) and from an epistemological viewpoint (what bodies of knowledge 
a framework captures). However, we intentionally ignore discussing them from a 
methodological viewpoint (e.g., how a framework can be operationalized in practice).

Based on the survey, the notion of framework is defined as an essential supporting 
structure underlying a system, a concept, or a text. But the survey also emphasized 
that there was no consensus either on the definition of the term, on the epistemological 
consistency, or on any rules in the usage of it [39]. The fundamentals of SEFs found in the 
literature could be classified into four concepts, namely:
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(i) A framework as a structure of logical thinking [39]

This is a general concept of a traditional framework. It is a structure of something serving 
a particular purpose. For example, in [40], the framework shows the logic flow of the 
recommendation process. 

(ii) A framework as a meta-model of a system

A framework represents an abstract level conceptualization of a system that can be 
developed into multiple models. Its aims at providing a user with modelling elements, 
a concept structure, and a set of constraints for creating a system model [41]. A concept 
structure is used as a frame describing how modelling elements are connected in a particular 
application model, as seen in a model-based framework of design and verification [42], and 
four-layer decision cycle framework [43].

(iii) A framework as a model integration

In contrast with a meta-model, a framework allows multiple models integrated at a higher 
level of abstraction [45]. In the OpenMETA integration framework [44], multiple models are 
converted into a meta-level model. Based on this, a range of concepts, models, techniques, 
and methodologies can be clarified and/or integrated as shown in Figure 2.7.

(iv) A framework as a concept creation tool

A framework provides a set of concepts and possible connections. The relationship of 
concepts either within or across domains of concepts is able to create a new concept for 
system development [46]. Within the dual cognition design framework [47], it exemplifies 
the ideation on product development that is created by the interrelationships of domains 

Figure 2.7: OpenMETA – model integration framework (courtesy of [44])
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of design processes (included inspiration, decomposition, and integration) and domain of 
design spaces (included problem space, idea space, and concept space).

2�4�2  Ontological dimension of system-engineering  
frameworks

In the most general meaning of the word, framework is an arrangement of interrelated things 
with a particular objective based on a set of non-conflicting assumptions. Frameworks 
are created by human intention and thinking. In this sense, they are transcriptions of 
human mental models into some kind of formal representation. Cognitive frameworks are 
generated intuitively based on conscious thoughts and memories. They are used to guide 
daily activities and longer-range decision making without any formal representations [48]. 
Obviously, the content captured by a framework strongly depends both on the objective of 
creation and on the context of application [49].

For example, a theoretical framework is defined as a composition of (elements of) theories 
and a set of assumptions about their proper relationships. This type of framework can be 
used, for instance, to describe, explain, and predict a phenomenon in a particular discipline 
or across disciplines. In the field of software engineering, the notion of “framework” is 
interpreted as a set of cooperating classes that forms the basis of a reusable design for a 
specific class of software and that provides architectural guidance by partitioning thedesign 
into abstract classes and defining their responsibilities and collaborations. 

Based on our study, it revealed that in the domain of system design, the most frequently 
discussed frameworks are:

General frameworks – (i) arrange entities and represent their relationships by 
flowcharts and causal diagrams, (ii) outline structure, modules, and entities, (iii) 
identify main topics related to the content, and (iv) list the requirements [50]. 
The overall and formal system frameworks can be sorted into this category 
[51], [52].

Conceptual frameworks – arrange a set of notions, conceptual definitions, buildingblocks 
and relevant variables, or concept variations in contexts [53]. Usually, these are presented 
as narratives, but can also be graphics, causal diagrams, procedures, and algorithms [54].

Logical frameworks – are typically used to define and consistently/coherently arrange 
abstract or concrete entities. They can capture logical or procedural connectivity of 
artefactual and/or process entities for specific purposes [55]. Primary representations 
are logical languages, logical expressions, logical variables, functions, predicates, and 
inference rules, but formal models, class diagrams, constraints networks, requirements 
trees, and computational procedures are pertinent too [56].

Architectural frameworks – specify the blueprints of system structures on various 
levels of abstraction or concreteness in both design and re-design processes [57]. They may 
represent the developed system in (i) static and dynamic dimension (entities, arrangement, 
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interactions, behavior), (ii) design domain dimension (contextual, functional/logical, and 
physical viewpoints) [58]. and (iii) abstract dimension (objectives, interdependences, 
instantiations) [59].

Component-based frameworks – focus on physical manifestation and relationships 
of designed or existing system components that are usually reusable, replaceable, 
and extensible modules and elements [60]. These frameworks provide guidelines for a 
component developer on how to produce custom components[61]. Typical representations 
are UML, class diagrams, use-case diagrams, schematic representations, and computational 
algorithms.

Model-based frameworks – reflect abstractions and simplifications of modeled systems 
[62]. A model-based framework, such as MoZaRT, is the basis and a tool for constructing of 
a set of models. Ontologies play the role of models [63]. The objective is to help designers 
to cope with scheduling analysis and to be more autonomous during the analysis stage [64].

Contextual frameworks – make conceptual distinctions by referring and organizing 
things and ideas that are supplementary, but influential in a situation [65]. They are also 
an analytical means to handle possible variations, models, or conflicts of contexts [66]. 
Frameworks for context data modeling and analytics form a special group of these [67].

Temporal frameworks – are means for arrangement of events and relations in chronological 
order [68]. They also provide underpinning mechanisms for articulating temporality from: 
(i) a diachronic/synchrony aspect, and (ii) an instant/duration aspect. Some frameworks 
capture spatial or procedural characteristics and uncertainties [69].

Composite frameworks include sub-sets or any arbitrary combinations of the 
previously mentioned types of frameworks in purpose-driven manner [70]. For 
instance, Feng, S. et al. (2016) proposed a framework for cyber-physical systems with a 
human in the loop [71].

2�4�3  Epistemological dimension of system engineering   
frameworks

Concerning the knowledge captured, framework specifications can be decomposed into four 
major elements: (i) the purpose and contexts of creating the framework, (ii) the set/
kinds of entities included in the framework, (iii) the explicit/implicit relationships of the 
entities, and (iv) the explanation provided by logical interpretation of the framework. 
As it comes from the ontology of frameworks, the possible sets/kinds of entities can 
be theories, concepts, functions, definitions, components, variables, notations, and 
methods. They can be uttered verbally and textually, but are typically visualized in 
various graphical forms. The (possible) relationships of the entities depend on both 
their semantics and manifestations. Usual representations of relationships are causal 
relationships, hierarchical diagrams, logical expressions, topology graphs, connectivity 
diagram, flowchart, and mathematical models.

The specification of a framework (intent-driven, semantically proper interconnecting of 
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entities) is supposed to provide sufficient information about the consequences (implications) 
of applying the framework. It may provide the information in several forms, i.e., as 
prescriptive guidance, explanatory accounts, generative constructs, logical mechanisms, or 
predictive models. The main criteria for justification of a framework are consistency and 
coherence. A properly constructed framework captures a pattern that enables prediction 
at above the chance level. Aspects of validation are such as completeness, parsimony, 
and feasibility. The prediction provided by a framework can be in the logical, virtual, 
spatiotemporal, or material domain. Recognition of and elaboration on the logical/semantic 
pattern offered by a framework help recognize, for example, cause and effect relationships 
and prediction of other dependences.

Computationally, a framework is represented as a purposeful arrangement of data structures 
derived based on a network of concepts. This is, however, nothing other than a reductionist 
attempt to create computational models based on mental structures. In the interpretation 
of Bridgens and Lilley (2017), a framework is intended to lend itself as a tool, which can 
be used to combine information from multiple sources [72]. They presented a framework, 
which shows nteraction of material type, intrinsic and extrinsic properties, stimuli, physical 
material changes, and experiential responses to changes. A compositional example is a framework 
for error recoverable software, which provides a set of reusable abstractions for [73]: (i) 
defining recoverable units; (ii) detecting and diagnosing errors; (iii) providing coordination 
and control protocols necessary for recovery; and (iv) providing communication protocols 
between recoverable units. Handling compositional abstractions seems to be an important 
issue [74].

Our study had to reveal that no formal approach or standard model exists for  framework 
specification in engineering, whilst the established SEFs are supposed to guarantee not 
only the synergy of the modeling knowledge, but also the consistent operation and event 
orders of the developed system. The frameworks currently used for the development of 
1G-CPSs usually benefit from the principle and opportunity of composability. The existing 
frameworks that were found in the literature were usually developed by one or more 
approaches in five categories:

(i) Ad-hoc development

Ad-hoc development constructs a new framework from scratch. There is no standard 
procedure in a development of framework. It is a kind of bespoke systems dependingon 
a developer’s expertise and viewpoints without any formal guidelines [75]. However, 
without a rigorous approach, it is not possible to achieve correct, efficient, reliable, and 
robust designs.

(ii) Holistic approach

The Holistic approach abstracts or adapts an existing meta-model to develop a framework. 
The iterative-incremental development at the core of the design process generates the 
methodology in a top-down fashion [76]. It initiates from the general lifecycle to the 
details of activities by using the requirements and methodology descriptions as a basis. A 



45

development framework is usually constructed in the multiple-layer structure that provides 
the relationships of components in multiple viewpoints [43], [77]. The hierarchical layers 
also range from the high level of abstraction to the concreate structure of the system [78].

(iii) Model-based approach

The Model-based approach creates simplified representations of a system that helps a 
designer understand its characteristics at a certain level of abstraction. A model can be used 
as the first artefact driving the framework development process. In Anwar et al. (2019), 
they used the model-driven framework represents structural, behavioral and verification 
requirements at a higher abstraction level. The development framework is supposed to be 
a model integration which provides modelling formalism tointegrate multiple models [79]. 
In the different classes of models, semantics are needed for the integration process [44].

(iv) Architecture-based approach

An architecture-based approach conceptualizes a (logical) structure to support the 
development of the concrete architecture and specific functionality of a system. The 
architectural structure represents the first design choices in creating conducive and effective 
architecture descriptions, as discussed in [80]. Typically, the architectureimplied system 
engineering approaches capture different concerns (aspects) of system development. These 
can be sorted into three classes: (i) service-oriented architecture (SOA)-based frameworks 
[81], (ii) multi-agent system (MAS)-based frameworks [82], and (iii) other aspect-oriented 
frameworks [83]. Compared to SOA-based frameworks, MAS-based frameworks are more 
lightweight and more scalable in practice. In addition, multi-aspect formal frameworks 
have also been proposed to improve the functional performance of CPS.

(v) Component-based approach

A component-based approach operationalizes a framework through identifying and 
interrelating components retrieved from a repository. Components are constituents 
of systems characterized by their interfaces (e.g., an abstraction that is adequate for 
composition and re-use). Component-based approach manifests in a bottom-up way of 
working. In software engineering, this approach is in relation to object-oriented software 
design, and implementation [84]. The process commences with the evaluation of the 
known functional requirements [75], and identifies a set of components that satisfies the 
requirements. In the next step of the process, a large variety of components, each having 
different characteristics, are dealt with. An example is provided in [85]. The develoment 
framework itself helps identify those key components which play an important role in early 
modelling of a system. In some cases, a component-based framework allows the designers 
to consider components that are unavailable at the construction time and to integrate them 
into the application later, when the deployment is going on [86]. The major challenge of this 
approach is a composition of such components to ensure that they interoperate correctly. It 
needs semantic interpretation encompassing heterogeneous composition [87].
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2�4�4  Analysis of the system-level functionalities of active 
frameworks

The functionality of a system is the total set of all its functions. It was noted in the previous 
section that the traditional frameworks play multiple roles in the design processes. These 
roles implied by their functionalities included:(i) supporting obser-vation and understanding 
of a phenomenon, (ii) addressing problems and proposingproblem-solving methods;  (iii) 
offering means to combine cross-domain knowledge to create new concepts, (iv) providing 
a logical structure to verify conceptual ideas, and (v) providing multi-level architectural 
structure that can be seen as a blueprint for designing a system.  The utilization of these 
frameworks was done in a passive manner. They cannot capture the behavior change in the 
procedural process of working environments. 

We argue that a framework will be actively performed if it is able to recognize the changes 
in states of the observed system, to reason what situation is happening, and to take an action 
to response to the situation. The action can be considered in several levels of automation, 
namely: (i) warning a user when an anomaly is detected, (ii) proposing a decision-support 
recommendation to a user to solve a problem, or (iii) automatically solving the problem 
by the framework itself. This section aims at exploring and analyzing the system-level 
functionalities of SEFs by focusing on: (i) process monitoring; (ii) context modelling; (iii) 
situation reasoning; (iv) decision support; (v) problem-solving, as shown in Table 2.1.

As proposed in [88], the Trace and Trigger framework is an agent-based adaptive 
framework that helps agents detect adaptation requirements dynamically at runtime. It 
consists of two main mechanisms – a dynamic monitoring mechanism and an adaptation 
assistant mechanism. Functionally, it performs the event-based monitoring which observes 
traces in the event log file. By using event tracing, agents can publish, request, and cancel 
subscriptions dynamically in order to send and retrieve only the information that is 
interesting at each moment. Interestingly, two resembling frameworks as proposed in [89] 
and [90]. They have the same set of system-level functionalities, i.e., process monitoring, 
context modelling, situation reasoning, and decision support. Both of them collect 
information about the user’s daily activities real-time. The former offers suggestions to an 
individual user, who responds dynamically to the situations at runtime. The latter provides 
a personalized routine plan to the user about physical activities. As indicated, only the 
former one performs in an active manner. According to the findings, we conclude that the 
frameworks having process monitoring functionality were able to perform in an active 
manner by collecting data in real-time, processing the data, and providing the services, 
which responds to the runtime operations [91]–[94].

2.4.5 Exposition of the findings and first propositions
The primary objective of the knowledge aggregation was to explore the need and the 
progress concerning SEFs for a compositional synthesis, modeling, analysis, simulation, 
verification, and validation of S-CPSs. The major findings and first propositions can be 
summarized as follows:
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A SEF may play several roles in the development of these systems [100]. For instance, 
it may: (i) specify the range and boundaries of the target system, (ii) serve as a starting 
arrangement of concepts from various fields in an integral system concept (ISC), (iii) 
provide a rational basis for the functionality and feasibility of an ISC, and (iv) provide 
multi-aspect representations as blueprint for the implementation of an ISC. A SEF should 
safeguard the proper outcome of synthesis and modeling of S-CPSs, as well as of the 
other downstream activities of system development. The task is to identify or specify 
synergistically interoperating constituents, rather than only interfaceconnected, self-

Table 2.1: Analysis of system-level functionalities of frameworks
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Reasoning-based FW [92] • • • Y driving safety warning system

OpenMETA [44] • • N designing CPSs

ACPSF [51] • • N design adaptive CPSs

Trace &Trigger FW [88] • • Y business process management

Context-aware adaptive FW [95] • • • N e-health monitoring system
Situation reasoning FW [96] • • • N situation inferring using IOT 

sensor data
Computational intelligence FW 
[97]

• • N design support

Fog computing-based FW [98] • • N predictive maintenance in cyber-
manufacturing

KN-based reasoning & 
recommendation FW [90] 

• • • • N personal activity for wellness 
recommender system

Context-aware reasoning FW [89] • • • • Y smart home recommender 
systems

Predictive process monitoring [93] • • Y business process management

Risk-based decision FW  [91] • • • N structural health monitoring

POLAR++ [99] • • N recommender systems

MAS-based self-healing FW [94] • • • Y fault tolerance & automatic 
restoration in distribution 
networks



48

contained components. A SEF should explain how to bring them into operational and 
architectural relationshipsconsidering varying contexts.

Considering the recent trends, we believe that the time has come for a rigorous 
investigation of this topic, starting with idea generation. It is with high probability that a 
single monolithic framework will not be sufficient for these purposes. Instead, some form 
of composite frameworks is foreseen that is able to capture multiple aspects of system 
manifestation in one construct. However, the majority of existing academic publications 
focused on traditional frameworks, which are, in the overwhelming majority of cases, static 
knowledge (concept, function, etc.) structures. They cannot capture procedural or behavioral 
changes, which are typical in constructive processes as well as in recommendation services. 
Changing the architecture and updating the knowledge of a static framework typically needs 
experts [101], and tailoring and using their contents in dynamic applications go together 
with heavy limitations. They are not able to learn and adapt to situational dynamics. Based 
on the analysis of system-level functionalities of SEFs, two essentialfunctionalities should 
be considered to equip a framework with an active manner: (i) real-time process monitoring; 
and (ii) runtime recommendation provision. 

2�5  Investigation of the enablers of system-level reasoning 

2�5�1 Phenomenon of system-level reasoning 
Informally, system-level reasoning (SLR) is a capability that makes cognitive 
inference by intellectualized systems in an orchestrated manner. SLR is performed as 
recurrent cycles of sensing, inferencing, learning, and adaptation activities. In principle, 
it may involve all constituents of a system, no matter if they are hardware, software, or 
cyberware components [102]. The concept of SLR has arisen in the context of traditional 
(mission-critical) systems. Implementation of SLR needs more than only specific 
artificial intelligence algorithms, though each of the above mentioned four activities 
can be supported by or can be based on AI algorithms [103].They are assumed to be 
functionally,architecturally, and computationally coupled and complemented. System-level 
reasoning can be implemented on various behavioral modes using analytic and synthetic 
approaches. 

A practical example of an analytic computational approach is the vehicle-level reasoning 
system presented in [104], which deduces information about the overall operational 
health of an aircraft. The reasoning is based on a combination of hardware devices and 
an artificial intelligence-based software application, whose computationalfunction is 
to generate conclusions from available knowledge using logical techniques of deduction, 
diagnosing and prediction or other forms of reasoning. SLR fuses information from the 
several sub-systems. Analytic SLR is also crucial to achieve smartness and other holistic 
qualities in large software systems. In addition, means of analytic reasoning about system-
level properties have been pioneered in the areas of security and authentication[105]. In 
the case of CPSs, SLR is still a maturing research phenomenon. If the system does not 
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have self- managing intelligence, then usually a wide range of traditional abstraction-based 
modeling and functional simulations are considered in the design phase. A major challenge 
is that sub-system level data and results are not available on the system level.

A synthetic computational approach of SLR is based either on a single or on a composite 
logical theory and/or computational approach such as induction, deduction, abduction, 
retrospection, probability, analogy, learning, or production. The term‘synthetic’ means that 
the reasoning architecture, process, and results are produced by computational synthesis 
and that synthetic computational reasoning tries to achieve a relatively high fidelity in 
comparison with human reasoning. Artificial intelligence and machine learning research 
extensively studied these fundamental logical mechanisms, as well as their specific 
combinations [106]. Based on the analogy of human reasoning, common, modular, 
distributed, and collaborative reasoning approaches have been identified as distinct forms. 
The fact is that SLR intends to mimic human reasoning during information processing 
and knowledge development in complex situations, whereas classical artificial intelligence 
systems use dedicated methods to solve specific problems in a way, which can be measured 
and assessed concerning humanistic results.

Crowder et al. (2014) proposed a collaborative cognitrons framework called Synthetic, 
Evolving, Life Form – Dialectic Argument Search (SELF DAS). Its constituents work 
towards distinct and separate learning objectives [107]. The architecture included 
unsupervised and semi-supervised cognitrons. An active resonance theory-based, fuzzy, 
unsupervised neural network (FuNN) structure was used for the implementation of SELF 
DAS, which included shared fuzzy antecedents and conclusion classifiers, and processing 
nodes for fuzzy inference rules. It must be recognized that the number of possible links 
among the entities may grow fast if systems become bigger. It may lead to a combinatorial 
explosion, which means that no computer or living cognitive system could ever compute it 
[108]. Lieto et al. (2002) presented a rationale for knowledge-level integration in a cognitive 
system, DUAL-PECCS, which supported conceptual representation and categorization 
with two different cognitive architectures[108].

2�5�2 Knowledge as enabler of system-level reasoning
Knowledge is awareness and familiarity of the semantic meaning of information, and the 
cognitive potential of solving explicit problems in a given context. Recently, structured and 
coded knowledge has become an essential enabler of smart CPSs, but also other genres of 
engineered systems, such as AI applications [30] [109]. Coded human knowledge and self-
acquired synthetic knowledge allows engineered systems to perform cognitive processes 
such as sensing, event detection, situation recognition, reasoning, action planning, and 
actuating through a feedback-controlled loop [20]. However, a purposeful integration of 
various kinds of knowledge is needed to perform specific task. For instance, (i) common 
sense knowledge is needed to reason about the utility of common (everyday) things, (ii) 
spatial-temporal knowledge is needed to describe system states at different points of time, 
and (iii) encyclopedic knowledge is needed to define actions and objects, as discussed in 
[110].
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System knowledge is the symbolization process of knowledge that is deeply linked to learning 
and reasoning processes [111]. It can be obtained from different sources and captured by 
knowledge representation. The construction of new knowledge also demands the use of 
previous knowledge and different cognitive processes. It can be obtained from different 
sources and represented in several forms, including distributed, symbolic, non-symbolic, 
declarative, probabilistic, and rule-based [112]. The knowledge has been modelled that 
ranged from very informal as Object-AttributeValue scheme to strictly formal as OWL DL. 
Almeida and Lopez-de-Ipina (2012) claimed that ontology is regarded as one of the best 
approaches to transform context information into knowledge [113].

KnowRob is an example of knowledge processing system which uses ontology representing 
domain-specific knowledge of daily-tasks, household objects, and events and temporal 
things needed by service robots [110]. As shown in Figure 2.8, the knowledge contents 
and functionality of the KnowRob can be extended with the difference modules i.e., for 
reasoning about knowledge and for grounding the knowledge in the robot’s perception 
and action system. However, in reality, it is difficult to create an engineering ontology 
manually that could cover all permutations of the enormous number of entities, properties, 
and attributes. Technically, as the number of triples in the ontology increases, the inference 
time for environment actions becomes unsustainable [113]. This is actually a well-known 
drawback of the knowledge engineering-based approach to knowledge modeling. 

Figure 2.8: Architecture of KnowRob – a knowledge processing infrastructure for 
cognition-enabled robots (courtesy of [110] )
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2�5�3 Awareness as enabler of system-level reasoning
Awareness is a product of knowledge processing, and monitoring [114]. It encompasses 
context, situation, and self-awareness. Systems operating in a dynamically changing 
environment should be able to build up awareness about (i) their context of operation (e.g., 
need for dynamic adaptation of tasks and objectives as response to external factors), (ii) 
the situation they are operating in (e.g., understanding of the impact of the environment on 
the operation), and (iii) self-awareness of themselves (e.g., understanding of the system’s 
abilities and the availability of its resources for performing operations).

Context can be considered as a kind of knowledge [116]. It refers to any information that 
used to characterize a situation of an observed entity. A system probably does not recognize 
a situation from an isolated entity. Context awareness needs multiple entities i.e. person, 
place, physical or virtual object that combined to  model the semantic context to understand 
the environments and make an adaptation [117]. It also implies an effective exploitation 
of contexts.

To provide different context treatments, it can comply with the general lifecycle of 
context awareness included four primary phases as shown in Figure 2.9 [115], namely: 
(i) context acquisition – to obtain necessary context data; (ii) context modelling – to 
represent contexts in a machine-readable and process-able form; (ii) context reasoning 
– to derive high-level contexts from available contexts; and (iv) context dissemination – to 
distribute useful contexts. It is usually assumed that context modelling using knowledge 
engineering techniques will create complete accurate models.  Different approaches 
have been used for reasoning considering certain context information. The most widely 
documented in the literature are, for instance, (i) fuzzy logic, (ii) probabilistic logic, (iii) 
ontology-based reasoning, (iv) Bayesian networks, (v) hidden Markov models, and (vi) 
the Dempster-Shafter theory of evidence [118].  Each of these approaches has its own 
advantages and disadvantages, as it is evidenced by the review presented in [119]. In order to 

Figure 2.9: Life cycle of context awareness [115]

support knowledge-intensive context 
reasoning, ontology-based models 
proved to be the most promising 
technique to yield meaningful context 
information [115].

Situation awareness is a computing 
paradigm, which usually involves the 
use of the concept of the situation in 
real life. If a situation is specified as a 
set of relations with other objects, then 
both the objects and their relationships 
may change with in terms of time 
and location. In the framework for 
cognitive situation modelling [120], 
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situation awareness is a part of situation management, which is based upon the steps of 
sensing and perception, and is aimed at building an understanding of a current operational 
situation. Situation modelling and inferring can range from using simple conditional rules 
to application of more complex techniques. They are classified into specification-based 
techniques (e.g. formal logic, spatiotemporal logic, and evidence theory), and learning-
based techniques (e.g. Bayesian deviations, Artificial Neural Network, and web mining) 
regarding their correlation to increasing complexity of problem descriptions [121].

Self-awareness can be seen as a higher level of situation awareness [122] forinstance, 
a system is continuously aware of its operational and servicing states and behaviors. 
In other words, self-awareness refers to the capability of a system to gather 
and process information from its environment and to autonomously understand the 
situation of those external and internal entities that can affect the system in 
the accomplishment of its operational goal [123]. This capability is based on self- 
monitoring that is typically implemented by a network of hardware and software sensors. 
From the engineering perspective, the self-awareness can be considered as an emergent 
property of the collective systems [124]. As a paradigmatic feature of S-CPSs, self-awareness 
plays a crucial role in realizing dependable operation under changing circumstances during 
runtime.

2�5�4  Reasoning mechanisms as enabler of system-level 
reasoning 

Reasoning is the ability to manipulate previously acquired knowledge to draw novel 
inferences or answer new questions [125]. Consisting of a composition of computational 
algorithms, a reasoning mechanism is a means to operationalize smart systems. Various 
reasoning methods were applied in the context of smart systems, intelligent systems, and 
autonomous systems. Rule-based reasoning offers a natural way of handling and inferring 
knowledge. A rule-based knowledge system that features modular structure can easily 
be extended with additional rules, and provides a uniform representation of knowledge 
[126]. However, it provides limited expressiveness to describe certain complex features 
and therefore cannot fully exploit the potential offered by events. Case-based reasoning 
is frequently used in the decision- making process [127]. It generates a conclusion or new 
knowledge based on the available knowledge or information at hand [128]. Ontology based 
reasoning is used for conceptualizing the relationships between entities to create knowledge. 
It is typically combined with other reasoning methods such as rule-based reasoning in order 
to infer a situation from context information [129], or case-based reasoning in order to 
automate the decision-making process.     

Probabilistic reasoning, such as Bayesian Networks (BNs), and Hidden Markov Models 
(HMM), is appropriate for reasoning with uncertainty [69] .BNs are used for the analysis of 
data and expert knowledge, especially in the context of uncertainty. They can easily process 
probabilistic knowledge from different sources in a mathematically coherent manner 
[130]. HMM’s have more flexibility to capture unobserved variables and thereby provide 
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a basis for reasoning about emergent behavior of the system. Fuzzy logic is a well-known 
approach to deal with uncertainty, imprecision, and other non-deterministic problems [131]. 
Hybrid reasoning approaches have been proposed in the more recent relevant publications. 
Combining fuzzy logic with ontologies, and probabilistic modelling, it can cope with 
qualitative interpretation of probability, treat probability with natural language expressions, 
and human- like decision making [132]. The degree of integration can be performed in 
several models [133] i.e. sequential processing, embedding processing, and co-processing.

In complex reasoning mechanisms for such smart CPSs, however, they require multimodal 
processing with more specific temporal, non-monotonic reasoning, and learning from data. 
For example to be able to realize a situation, to be aware of the changes in the situation, 
and to make decisions based on a dynamic situation. Many factors should be taken into 
consideration to integrate multiple reasoning methods in the procedural reasoning mechanism 
i.e. domains of applications, an objective of the developing systems, nature of obtained data, 
and required system performances [134]. In addition, for dynamic processes, reasoning 
mechanisms should be composed during runtime with high level of interoperability. 
Although, some methods are able to work together in several degrees of integration, 
many of these methods are not yet interoperable. Their computational components need 
to be modified or require an interface to couple them seamlessly. This implies the need 
for different conceptual framing of reasoning mechanisms and different design principles, 
since they need holistic compositional approach in terms of the implemented reasoning 
process and synergy in terms of the generated knowledge.

Several frameworks for reasoning have been proposed in the recent literature. For 
example, system-level reasoning in AI is usually summarized through the expression 
‘Sense-Think-Act’ [23] that mimics human thinking by using deductive reasoning [135]. 
Belief-Desire-Intention (BDI) paradigm is one of the operational architectures commonly 
suitable used for building complex agent-systems. A classical framework embedded this 
architecture is the Procedural Reasoning System (PRS) [136]. It includes three main 
processes: perception, interpretation, and execution. Another example is the FUSION 
framework, which implements a Detect, Plan, and Effect procedure. The computational 
implementation of this procedure can be used for designing and implementing the underlying 
adaptation logic of adaptive software systems. For instance, it supports rule development 
for adaptation, such as if the system works (e.g. satisfies the user, obtains the goal), do not 
change it; when it breaks, find the best fix for only the broken part [137]. The Sense-Plan-
Act loop is also used as a reasoning concept for self-adaptive systems [102]. These cycles 
are basically executed by using rule-based reasoning which is implemented based on the 
principle of deduction [138].

2�5�5  Decision making as enabler of system-level reasoning 
A decision is interpreted as a cognitive process of choosing (expectedly, the best) alternative 
from the various possible actions for attaining a given goal or multiple goals. Decision-
making often involves the integration of data from multiple sources, and harnesses 
knowledge from multiple domains [139]. The goal of a decision-making process is to 
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choose the best alternative from a set of possible alternatives that satisfies an objective, or 
multiple objectives. An optimization is a common problem solving method in decision 
making [140]. In real-world problems, multiple objectives are always taken into account. 
They may possibly be in conflict with each other. As the number of m-objectives increased, 
the number of solutions increase exponentially [141]. The challenge is how to handle the 
computational explosion issues. That is why an optimization model with multiple objectives 
is not suitable in practice.

The process needs to evolve and adapt in a dynamic situation when a decision- 
making process is confronted with new situations, goals, and kinds of data. This requires 
reasoning methods, which is often based on more than logical conclusions [143]. In a 
human decision-making process, system-level reasoning can be made as a closed loop, for 
example Observe-Orient-Decide-Act (OODA) loop [142]. A decision maker performs the 
OODA loop repeatedly as shown in Figure 2.10. As discussed in the above publication, the 
systematic procedure of the OODA loop is as follows: 

Step I: observe the facts by capturing, fusing, and filtering data about the entities and 
environment,

Step II: condense the information from the facts to Orient with the revealing situation 
by applying prior knowledge,

Step III:  formulate hypotheses to explain the observations and Decide based on the best 
scenario, and

Step IV: act following the internal guidance from the orient process and test the 
hypotheses.

Figure 2.10: Feedback structure of the Observe-Orient-Decide-Act loop (modified based 
on [142])



55

Corresponding to the OODA loop, Knowledge Intensive Data System (KIDS) framework is 
an example of self-adaptive decision making [144]. The framework proposed a flexible data 
structure based on ontology. Four main reasoning functions are represented by Classify-
Asses-Resolve-Enact (CARE) loop. Through the reasoning processes, it transforms input 
data into facts, perception, hypotheses, and directives, respectively. Each of these is the 
input of one reasoning function and the output of another. The manifestation of CARE loop 
can be accomplished in two ways: (i) to customize the reasoning function by adjusting 
its parameters; (ii) to select different reasoning methods when the current used function is 
no longer adequate. For instance,reducing data into facts at the classification task would 
generally use statistical reasoning, but in some cases, logical and probability reasoning 
was also preferable. This can be explained by various reasons such as (i) change in the 
environment, (ii) change in the goal of operation, and (iii) a new kind of incoming data 
construct. The functional and architectural adaptation is needed to response the changes in 
the decision-making process. 

2�5�6 Adaptation as enabler of system-level reasoning
System adaptation is the planning of adaptation based on the outcome of previous processes. 
In the context of engineered systems, implementation of system adaptation is inspired by 
biological and natural systems, which have the ability to modify themselves according to a 
new condition when its environment or purpose changes [145]. The modification is done by 
adjusting the parameters of the system in response to change in the system itself or in their 
environments. It also adapts to similar settings without explicitly being ported to them and 
adapts to solve a new problem [146]. However, no absolute optimization exists in complex 
systems [147]. The operation of these systems changes to a desired stable state over time. 
Frequently, there are multiple point attractors [148]. Although the system can modify 
the parameters and somewhat reach the desired state, it might be shifted to another point 
as a consequence of the actions. Therefore, the self-adaptive capability should incorporate 
reasoning about the objective of the system operation, investigating possible strategies for 
performing adaptation, and planning and executing adaptation plans based on available 
cyber and hardware resources [9].

In the self-adaptive software research community, self-*properties are organized 
into levels where self-adaptiveness is at the top, while self-awareness is a primary 
level like context awareness [149]. A self-adaptive system is typically implemented 
by control loop mechanisms [145]. Self-adaptive control mechanisms typically 
include sequential iterative processes of: (i) sensing the context and reasoning, 
(ii) deciding what kind of adaptation is required, and (iii) implementing the adaptation 
by reconfiguration [150]. An Event-Condition-Action (ECA) rule is usually implemented 
in the self-adaptation of service based processes [26], [151]. It is also used to describe 
different responses to various runtime events. The semantics of the rule is as follows: ‘when 
the event has been detected, evaluate the condition, and if the condition is satisfied, then 
execute the action’. The general syntax is ‘on event-if conditions-do actions’ [152]. In 
a software adaptive system, Monitoring-Analyzing-Planning- Executing with knowledge 
(MAPE-K) loop is one of the most well-known adaptation mechanisms [18].
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Although the terms and notions used for describing the above self-adaptive methods are 
different, the general process of self-adaptation is implemented based on a rather common 
concept. This concept includes the following: (i) perceive the current state from input data, 
(ii) monitor and analyze changes, and (iii) plan and adapt the process/system to the optimal 
state. The concept of closed loop mechanism limits the possibilities of adaptation when 
open-loop interaction with the external environment is becoming a fundamental aspect of 
the system [144]. Zhou et al. (2017) extended the self-adaptation process of CPSs which 
included the interaction of cyber world and physical world [35] as shown in Figure 2.11. 
The extended self-adaptation process includes the interaction of long-term and short-
term loops. The long-term loop provides decision-support based on the causal reasoning 
of the MAPE-K loop. The short-term loop is the conventional feedback control loop for 
dependable decision process that influences the operationalization of the physical world. 
However, approaches to true self-adaptive behavior are still in their infancy.

Figure 2.11: The environment-in-the-loop selft adaptation process of CPSs (modified 
based on [35])
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2�5�7  Recommendation generation as form of system-level 
services

  2�5�7�1 Types of recommendation systems

Recommendation systems (RSs) have been gaining increasing popularity in various areas 
of application. Typical examples are e-commerce systems (e.g., Amazon, e-Bay), social 
networks (e.g., Facebook, Twitter), personalized recommendations (e.g., Spotify, Netflix), and 
knowledge-sharing platforms (e.g., ResearchGate, Mendeley). The systems help users to find 
preferred items in the collection and facilitate the task of deciding on appropriate items. 
Recently, the concept of recommendation systems has also attracted considerable attention 
from the domain of multi-disciplinary decision-support systems, such as medical diagnosis 
systems [153], traffic management systems [154], and design support systems [155]. Often, 
these systems are  also referred to as recommender systems. They manifest in software tools 
and use algorithmic techniques to provide advisory recommendations concerning the most 
appropriate content to a user. With a view to their real-life applications, recommendation 
systems are classified into three main classes: (i) commercial recommendation systems, (ii) 
social recommendation systems, and (iii)engineering recommender systems. 

Commercial recommendation systems are sub-classes of information filtering systems that 
deal with the problem of information overload [156]. Driven by business intentions,  the 
goal of commercial RS is to support sales and to increase purchase intent [157]. They are 
typically implemented as websites that collect customer data and automatically analyze 
them to generate customized recommendations for the customer. Widely-used techniques 
to match the user’s preference and the purchase items are (i) memory-based advising, 
(ii) collaborative filtering, (iii) content-based filtering, and (iv) demographically-based 
recommendation techniques [40]. However, there is a need for providing better customer 
experience than that just offering the best item by means of pure data-driven techniques 
[156]. Towards this end, developers integrate merchandising rules into the recommendation 
generation process. These rules include for instance, rules to prevent cold start problems, or 
rules to prevent out-of stock goods.

Social recommendation systems use information about the user’s preferences, environmental 
influences, and social relations to other users to predict the most useful recommendation 
[159]. Under this assumption, social recommendation leverages user correlations implied 
by social relations to push information to target groups both timely and accurately [160]. 
Various collaborative filtering techniques are adopted in combination with social correlation 
theories. For example, trust ensemble, trust propagation, and social regularization are 
applied at building social recommendation systems [158]. Originally published by the 
abovementioned authors, the concept of a generic user trust network is shown in Figure 
2.12, where: ui is users, vj is recommendation items, the blue edges are relations of users, 
and the numbers on the red edges mean rating the items vj by user ui.

Engineering recommender systems have been developed alongside the concept and 
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Figure 2.12: User trust network involved in social 
recommendation generation [158] 

social recommendation systems. In the promotion research, we focused on theoretical 
concepts, which underpinned engineering recommender systems. Cena et al. (2020) 
defined recommender systems as “systems that produce individualized recommendations 
as output, or drive the user in a personalized way to interesting or useful objects in a space 
of possible options” [161]. 

From our point of view, recommender systems integrate recommendation services 
into such smart systems. They can profit from the traditional RSs by allowing a user to 
augment the recommendation engine with quantitative and qualitative information and 
users’ preferences which cannot be captured in pure data-driven algorithms [162]. For 
example in the domain of design-support application, Jannach et al. (2016) developed add-
on recommendation service to the RapidMiner framework to support the user during the 
development of ML-based model by recommending additional operations to insert into 
the currently developed  workflow [163]. In the domain of medical treatment services, Bao 
and Jiang (2016) developed the universal medicine recommender system by applying data 
mining technologies to the medical diagnostic and recommending the proper medicine for 
a patient [164]. 

2�5�7�2  System-level operation of recommender systems

Based on the exploration of the related literature, the following system-level activities will 
be addressed below: (i) information filtering, (ii) information/knowledge aggregation and 
structuring, (iii) context management, (iv) problem-driven inferring and reasoning, (v) 
recommendation generation, and (vi) interaction/communication with stakeholders. The 
purpose of the analysis is to find reusable knowledge, principles, and solutions about the 
core functionalities.

(i) Information filtering 

Engineering recommender systems should purposefully filter in order to avoid 
theinformation overload and to make the best suggestion to the user. The simplest solution 
to information filtering is a popularity-based approach. Basically, it filters the ever-growing 

principles of recommendation 
systems, but they are applied in 
specific engineering application 
domains. In the studied literature, 
we could not find a generally 
accepted definition for these types 
of recommendation systems, and 
there seemed to be no agreement 
with regard to their functionalities 
and implementations. In the rest 
of thisdissertation, we use the 
term ‘recommender systems’ to 
distinguish these systems from 
the tradition commercial and 
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flood of information (which often happens in real-time on social network websites) with 
the goal to identify the news stories that are the most popular and most current at that 
moment [165]. However, this filtering technique does not consider users’ profiles or other 
relevant information in the filtering process. The information filtering techniques used 
to build recommender systems are classified into (i) collaborative filtering methods, (ii) 
content-based filtering methods, and (iii) hybrid filtering methods.

Collaborative filtering generates recommendations using information about the rating 
profiles of different users. It can be done because users give explicit preference judgments 
about items in the form of ratings in the process of data collection [166]. The major limitation 
of the collaborative filtering method is sparsity of the rating matrix. The recommendation 
cannot be made unless and until the item is either rated by other users or correlated with 
other similar items. If users rated only a small subset of the available items then most of 
the cells in the rating matrix are empty [167]. Content-based filtering recommends items, 
which are similar to the ones the user preferred in the past. The rating of items is based 
on the ratings assigned by the user to items that are similar to the new item. The success 
of applying content-based filtering depends on two major conditions, as it is discussed in 
[168]: (i) each recommendation item needs to be characterized by well-defined features; 
and (ii) the users should recognize how these features relate to their requirements. Content-
based filtering is not free of limitations. Typical ones are: (i) limited content analysis 
(e.g., insufficient identified features of items), (ii) indistinguishable features of different 
item classes, (iii) overspecialization from users’ rating, and (iv) less reliable rating due 
to additional new users. Hybrid filtering methods commonly combine two methods 
to overcome the limitations of both methods in order to make the system more robust. 
Seven categories of hybrid recommendation approaches were proposed (i) weighted, (ii) 
switching, (iii) mixed, (iv) feature combination, (v) feature augmentation, (vi) cascade, and 
(vii) metalevel [169].

However, all of these methods based on data-driven techniques are known to suffer from 
a cold-start problem. The reliability of recommendation is still low due to an initial lack 
of ratings. In the engineering recommender systems, for example in emergency landing 
planner [162], it assists air-traffic control operators with choosing a diversity airport for 
distressed aircraft. These data-driven filtering methods are not applicable for these types of 
recommender systems. The post-evaluation of the recommendations is needed to examine 
the quality of recommendations based on whether the users agreed upon the solution 
provided by the systems. The specific set of criteria is defined for the evaluation. These 
criteria as well as technical constraints will be converted into the decision criteria. A user 
will be able to provide the information by using weighting techniques or query-based 
filtering to pre-configure constraints and user’s preferences [66]. As result, the possible 
situations are selected for further processing the recommendation generation.

(ii) Information/knowledge aggregation and structuring

Conventionally, recommendation systems operate on an extensive user-item relationship 
matrix. As mentioned in the previous sub-section, the rating system underpinned by this 
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approach is not applicable in specialized recommender systems that isfor limited numbers 
of users to rate the recommendation items. Recommender systems use formal knowledge 
representations, which can be processed computationally during recommendation 
generation. The literature states that knowledge in recommender systems can be stored in 
various types of structures. Considering the plans for the development of ARF, four types 
of knowledge representation were investigated: (i) lookup table; (ii) digital corpus; (iii) 
knowledge graph; and (iv) concept ontology.

A lookup table is one of the simplest ways to create a formal knowledge. It contains three 
primary elements, decision rules, decision conditions, and actions. A rule set is defined by a 
Boolean value to map the decision conditions to the corresponding actions. The conditions 
in the rules and the input data in the schema of the data source must be compliant and 
mapped to one another for successful integration. The knowledge in the lookup table is 
static. If the data requirements or mapping for the conditions of the rules are not specified 
and well defined in advance, recommendation generation will fail [90]. Knowledge is 
recorded in the digital corpus. It usually used in the recommender systems that already 
stored a vast collection of records in machine readable format for instance, an Electronic 
Medical Record (EMR) system [153], and knowledge services for product design developed 
by [155]. To retrieve relevant documents from the knowledge sources, text similarity 
techniques are typically used to measure the degree of similarity between the queries which 
appear in the documents [170].

A knowledge graph (KG) is a heterogeneous graph, where nodes function as entities, and 
edges represent relations between entities [171]. In tradition recommendation systems, the 
user-item relationships are converted into a graph model where users and items represent the 
nodes, and edges express the interactions between user-user or user-item [172]. It generally 
leverages the semantic representation of user/items in the KG for recommendations. In 
addition to the user-item graph, Cognitive map (CMs) and Bayesian networks (BNs) have 
also frequently used to represent a formal knowledge in recommender systems. Cognitive 
maps (CMs) construct the causal relationships among concepts that presented at nodes and 
directed links defining the relationships among them. CMs are extended by fuzzy logic as 
called fuzzy cognitive maps (FCMs) that defines fuzzy set into the casual relations between 
concepts [173]. They are an effective tool for modelling decision support systems and time 
series predictions.The value defining between concepts can be changed over time due to 
the dynamics of the model. Hence, FCMs can be applied for a dynamic recommendation 
generation. They are also constructed in both machine-readable and human-understandable 
forms. The drawback of FCMs is that the construction of FCMs is time-consuming with a 
large data set [174].

Supporting such product design process, and manufacturing process, demands 
a representation of process flow models. They include multiple decision points throughout 
the entire process, for example selecting semi-finished parts, selecting production 
techniques, and sequencing manufacturing process [175]. It requires knowledge at every 
single point to support the decision-making. The consequence from the preceding decision 
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also influences the next decision like a dependency graph. Bayesian networks can be 
developed for modelling the process flow. It is a probabilistic model representing random 
variables and conditional dependencies in a directed acyclic graph. Through this method, 
variable connections can be qualitatively defined with a network structure, and correlations 
between related variables are quantitatively determined using conditional probability 
distributions [176]. A very useful aspect of BNs is that they can produce good prediction 
accuracy even with rather small sample sizes. Discovering the patterns in the BNs is also 
possible. However, BNs support only linear processes, thus it is impossible to represent the 
iterative processes with feedback loops.

Ontologies are an expert-defined standardized common vocabulary describing the 
knowledge of a domain [177]. They are expressed in a form of a hierarchy concept 
tree. The most common role of ontology in recommendation system design consists of 
providing a taxonomic classification of items [178]. In recommender systems, ontology 
is an explicit specification of conceptualization consisting of classes, relations, functions, 
and other objects in the shared domain knowledge. For example, in lighting system design 
[179], there are various classified concepts and related objects, for instance daylight sensor, 
lighting controller, power driver, light, communication unit, etc. These concepts should 
be closed to the objects and relationships in the domain specific knowledge. In general 
knowledge-based systems, ontologies are increasingly being used because they provide 
the flexibility, extensibility, and generality to bridge the gap between the requirements of 
mapping domain knowledge into machine-readable and human-understandable formats 
[180]. In knowledge-based recommendation systems, ontologies were applied to reduce 
content heterogeneity and improve content retrieval [181]. The major limitation of using 
ontologies is the difficulty of transferring specialized knowledge from domain experts to 
abstract and effective representation.

(iii) Context management

In the context-aware recommendation systems, they promote incorporation of additional 
contextual information such as time, day, season, user’s personality along with users and 
items related information into recommendation process [182]. Context information found 
in the recommendation systems can be classified into two types: (i) direct context and 
(ii) indirect context. The direct context is basically derived from user’s profile, user’s 
preferences, features of recommendation items, and rating of items. These are the essential 
information which directly influence the generation of recommendations. The indirect 
context refers to additional information for instance, locations, time, and temperature. These 
contexts occur in the surroundings which do not directly influence the recommendation 
generation, but they can capture the state of the observed systems in a specific moment. 
Observing the changes in indirect contexts allows for describing the dynamic situation. 
Taking the indirect context into account in the recommendation process produces more 
accurate results [183]. It potentially supports the dynamic recommendation generation.

The context information can be represented in either explicit or implicit ways. The 
explicit context related to user’s profile and recommendation items is typically 
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managed in a matrix representation. In the user domain, two aspects of implicit 
context can be considered. One is the level of attention a user has while the systems 
recommend items to him as well as the degree of interruption a user is willing to accept [184]. 
These contexts are not shown explicitly in a formal representation. An input from users is 
needed to expose the context. Discovering patterns in the dataset requires data mining 
techniques. Another types of context information which mainly include: (i) attributive 
context refers to the attributive characteristics of an entity (e.g., color, dimension, 
temperature, quality), (ii) temporal context refers to time (e.g., time-stamp, date, day 
time, night time, month, year), (iii) spatial context refers to space (e.g., represented in 
latitudeand longitude data, Cartesian coordination, relative locations and direction), and 
(iv) spatio-temporal context which considers both data related to space and time. The 
direct and indirect context information can be constructed in the formal representation for 
instance in a data table with the grading data format which contains instances about users, 
recommendation items, event, ranking, and time stamp [185]. 

(iv) Problem-driven inferring/reasoning

Recommender systems support automated information filtering by using sophisticated 
algorithms that incorporate preferences rules and heuristics to reduce a potential large 
number of recommendation items into a smaller cardinality and more manageable subset 
[186]. The inference mechanisms can be employed to reason about context information to 
generate a personalized recommendation supporting decision-making in order to solve a 
problem. In this section, four reasoning approaches are discussed, namely: (i) rule-based 
reasoning, (ii) knowledge-based reasoning, (iii) model-based reasoning, and (iv) machine 
learning-based reasoning, which are most frequently used in problem-driven reasoning 
mechanisms.

Rule-based reasoning is a simple approach to equip a system with intellect and then to 
manually enter an expert’s knowledge or automatically infer probabilistic rules [187].
This method can work without any specific knowledge about the application context. 
However, it is too expensive in the case of systems with a large amount of data, due to it 
is manual nature [188]. Knowledge-based reasoning finds solutions that match desires and 
requirements based on domain specific knowledge about users’ profiles, recommendation 
items, and context information [159]. It is useful in domains where rating-based systems 
do not work. Case-based reasoning, for instance is applied to solving a problem based on 
the information/knowledge in the historical cases. It matches the similarity between the 
desired case with input provided by a user and the cases that are available in the repository 
[189]. Ontology is informative for knowledge representation which is defined as an explicit 
specification of conceptualization.Ontology-based reasoning is used in semantic inferring 
by identifying the similarities among concepts and information provided by a user and 
select the most similar one into the process of recommendation generation [181]. 
Using ontology-based reasoning is limited to static recommendation generation due to the 
domain-specific knowledge.

Model-based reasoning is an analogical inference method which uses deductive 
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logic to explain the physical world. Several methods have been used in recommender 
systems. For instance, graph-based reasoning uses a graph representation, where users and items 
are represented as nodes, and the edges express the interactions between user and user, or 
user and item. It is capable to model various implicit relations between users and items 
which reveal the preferences of users on consuming items [171]. Probabilistic inference 
(using means of Bayesian networks, Dempster-Shafer theory, and fuzzy logic) has been 
extensively used in designing recommender systems to handle uncertainty, impreciseness, 
and vagueness in item features and users’ behavior [184].

Various forms of machine learning-based reasoning are typically applied to discover 
the patterns of a vast and high dimensional data set [190]. Recommending classification 
algorithms based on k-NN method was proposed in [191]. It aimed at assisting a user in 
selecting algorithms from a large number of candidates for a new classification problem. 
In [192], the collaboration of clustering and classification algorithms was applied to the 
medical advice and diagnosis system. The clustering model is used to cluster all patients’ 
medical advice rating into the similar objects. The classification model analyze spatients 
into distinguished group based on the identified features. These classes are interpreted 
to a set of medical advices. Another example, decision tree classifier [193] was used 
in context aware recommender systems. The ID3 algorithm was applied for learning 
users’ contextual preferences in the recommendation process and predicting unknown 
ratings using collaborative filtering approach.

(v) Recommendation generation

Recommender systems are directly involved in assisting users to make decisions and 
satisfying their current information need. User preferences are always changing depending 
upon a range of factors, for instance context, time, location, trust, and new experiences. 
A static user profile and historical preference cannot judge the actual preference of a user 
over a period of time. The changing needs of user preferences influence the process of 
recommendation generations were discussed: (i) static recommendation generation; and 
(ii) dynamic recommendation generation. Table 2.2 shows examples of application context 
in different types of recommendation generation and responses to the recommendation. 

In static recommendation generation, a recommendation is made at any instant of time 
depends on the given relations of user preferences and item features. Traditional filtering 
techniques adopt a static view of the recommendation process and treat it as a prediction 
problem [194]. The process of recommendation generation works in a sequential manner 
where at each stage a new list is recalculated based on the users’ past feedback [195]. Two 
common ways to obtain relevance feedback are to use information given explicitly (e.g., 
rating, text comments, evaluation of recommendations) or to get information implicitly (e.g., 
purchased history, time spent) from the user’s interaction. Although the recommendation 
generated is inherently dynamic to some degree, the changes of user preferences and 
item features over time in the current scenario are beyond its coverage [196]. Without the 
consideration of the dynamic aspect of users’ behavior and involved context information, 
the recommendation generation is still static. It cannot recommend different types of items 
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context information from a dynamic data stream [199]. Rana and Jain (2015) defined 
dynamic recommender systems as “the systems which are able to capture the temporal 
changes occurring in the different domains i.e., user and items related data as well 
as other environmental changes implicitly or explicitly and accordingly modify their 
recommendations to the users” [196]. In online recommendation generation for example, 
the recommendation engine analyzes the current state of user’s preferences based on the 
actual activities done by the user and produces the immediate response for the user [200]. 
In this sense, dynamic refers to information retrieval patterns over time e.g., the order in 
which different items are searched by a user [201].

Dynamic recommendation generation is characterized by six aspects [196]: (i) temporal 
changes – considering changes in user’s preferences in time when selecting the next item 
to recommend and recognize temporal characteristics of recommendation items, (ii) real-
time dynamics – considering real-time data related to user behavior and generation of 
recommendation immediately in response. (iii) context – describing a particular state of 
the user or the environment at any given period of time, (iv) novelty of recommendation 
– considering the discovery of new and original items for users, (v) serendipity of 
recommendation – considering the quality of propensity for making fortunate discoveries 
while looking for unrelated items; and (vi) diversity of recommendation – which means the 
variety of choices breaking the barrier of similarity. We focus our attention on the first three 
aspects for a development of ARF.

(vi) Interaction/communication with users

The section discussed the interaction of stakeholders and the recommender systems 
in term of communication modality. We assume that the recommender system monitors the 
behavior of its users over time and then presents a customized set of recommendations in 
pre-defined navigational situations. Since the recommendation is made, the user takes an 
action and provides feedback to the systems.

In the conversational recommender systems [202], three types of input and output modalities 
can be designed as shown in Figure 2.13. In the general recommender system, two main 

Table 2.2: Types of recommendation generation (RG) 
and the responses to the recommendation

static RG dynamic RG

reactive 
responses

web search engine
routing navigator

stock market
online shopping
personalized activity 
recommendation

active 
responses

manufacturing process-
ing planning
predictive maintenance 
medical diagnostic

fire evacuation 
traffic management
fault detection in the 
distribution network

that change with time based on 
their underlying relations to 
user preferences and working 
environments as seen in [188] 
and [197].

Dynamic recommendation 
generation offers the 
recommendation which is 
sensitive to the changes 
of situation at the moment 
in time [198]. It is able to 
learn user preferences and 



65

forms of inputs and outputs, either as the only modality or combined in hybrid approach are: 
(i) based on form and structure layouts, as in a tradition webbased application, (ii) based on 
natural language either in written or spoken form. Approaches that are exclusively based on 
structure layouts include textual-based representation [203],[204] (e.g., Q&A  multi-turn 
dialogue, textual description), and query-based form [66], [205] (e.g., binary input, string-
based, selection of choices). Natural language interaction-based approaches were usually 
found in chatbots. They are also implemented in a smart speaker like Amazon Alexa and 
Google home. Hybrid approaches that combine natural language with other modalities are 
not uncommon.

In the application environments, the design choices depend on several factors such as types 
of application context, the level of user controls, and the support devices. The possible 
approaches are interactive map as seen in [197], the recommendation shows the best route 
in the map according to the query of user’s preference, representing in 3-D space in interior 
design application [206], or combined graphical model, text descripting and navigator as 
seen in the recommender system for emergency landing planner [162]. For users’ responses, 
it is mainly based on structure layouts for rating, text-based description in term of user 
reviews, comments , shared experiences [207] and post-evaluation of recommendations 
[162]. The most common approach is the rating system which is represented as a unary 
value (showing only the relevant items), binary (allowing to distinguish between good and 
bad items), or as a numerical value on one finite scale [167].

2�5�8 Compositionality in system-level reasoning
The term  ‘compositionality’ was first introduced in the fields of linguistics, mathematics, 
and semantics. In linguistics it is defined as the principle to realize the meaning of a complex 
expression that is determined by the meanings of its constituents [208]. In the context 
of systems, the set of basic words are the components and modules, and the modifiers 

Figure 2.13: Categories of input and output modalities [202]
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are the functional, architectural, or morphological adaptations that areneeded to achieve a 
synergetic behavior of the system as a whole. Natural languages are also good examples of 
compositional system of systems in the sense that sentences represent primitive systems and 
the language itself is a complexity (system of systems) formed by (a potentially infinite) set 
of sentences. System compositionality is interpreted as it is typical in the context of human 
natural languages where it guarantees that functionally, semantically and grammatically 
correct sentences are created from a set of basic words (verbs, nouns, adjectives, adverbs, 
etc.) using modifiers (affixes, suffixes, extensions, tokens, recursive syntactic rules, etc.).

In system science, composability and compositionality have been interpreted as 
different system development principles (SDPs). At the same time, they were often used 
interchangeably in the literature [209]. As an SDP and characteristics, composability means 
that the intended overall behavior of a system can be achieved in an aggregative manner and 
that the properties of the components do not change by virtue of f interactions with other 
components. As an alternative of the interpretation of compositionality, Tripakis (2016) 
argued that “it assumes that the overall behavior of a system is more than the summative 
operation of its components and that necessary interoperation of components may influence 
their manifestation” [74]. In computer science, compositionality is the principle of adapting 
system operation by composing and connecting system components together, and reasoning 
about the whole system [210]. 

Driven by the compositional paradigm, the requirements for smart behavior will be defined 
based on the overall objectives and role of the planned S-CPSs. While smartness cannot be 
reduced to an aggregation of the operational results of the components of S-CPSs, it needs 
a particular synthesis of various mechanisms such as context-based reasoning, goal-driven 
strategy development, functional adaptation and behavioral evolution that interplay in a 
synergistic manner to produce smartness. In each of the above examples, functional self-
tuning and/or architectural self-adaptation are used by the system to achieve a synergistic 
high-level behavior [211]. The trustworthiness of a semi-intelligent manufacturing system 
is an example of the need for compositionality through manifestation of abstraction. Yu 
et al. (2017) interpreted and characterized trustworthiness as a composite paradigmatic 
feature that can be controlled and measured in terms of three metrics, namely, reliability, 
availability, and security, but only on system level [212]. Compositionality measures how 
much trustworthiness as system-level feature can be realized by local properties of the 
system components. In the field of system design, compositionality frameworks are used 
for system-level verification [213], system awareness [70], and schedulability [74], but not 
yet for implementing system-level reasoning as well as reasoning mechanisms for S-CPSs. 

2�5�9  Issues of computational implementation of system level 
reasoning 

An implementation of system-level reasoning can be constructed on multiple behavioral 
levels using analytic and synthetic computational approaches. The former is based on a 
combination of hardware devices and software application,whose computational function 
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is to generate conclusions from available knowledge using logical reasoning. The latter 
is based either on a single logical theory or on a composite logical theory, and/or a 
computational approach that tries to achieve a relatively high fidelity in comparison with 
human reasoning. According to the literature, these two approaches are normally used in 
different levels of abstraction. 

An analytical approach offers the computation methods for reasoning about the system-
level behaviors. In Dragomir et al. (2016), a compositional semantic and analysis 
framework is proposed for hierarchical block diagrams of a simulation model [214]. 
The framework provides a series of predicates and property transformers as semantics of 
composition in a series, in parallel incorporating the feedback of individual blocks. The 
approach aims at reducing the complexity of the real system to an abstraction model. For 
example, a compositional reasoning is proposed in [215] for model-based verification as 
part of designing embedded systems. incorporating the feedback of individual blocks. The 
approach aims at reducing the complexity of the real system to an abstraction model. For 
example, a compositional reasoning is proposed in [215] for model-based verification 
as part of designing embedded systems. This compositional reasoning applies a formal 
semantics to capture the features of the system components at a high level of abstraction. 
On the level of the system model, the reasoning should confirm that the system and its 
application models have the same behaviors with respect to the considered properties. 
However, it is a limitation of this approach that it does not include computational models 
for reasoning about how smart systems are to operate. That is the limitation appears on 
the control side of the system. It is also important to mention that abstraction is captured 
in formal or computational models through coding processes in the domains of software 
engineering, computer science, and AI practices [216], [217].

In a synthetic computation approach, the term synthetic means that the reasoning 
architecture, processes, and results are produced by computational synthesis. This approach 
is usually applied in the field of cognitive robots, context-aware systems, and self-adaptive 
systems by means of AI-based [218], Machine learning [219], and cognitive architecture 
[220]. For example, Memory-Attention-Composition (MAC) framework [125] is an end-
to-end differentiable architecture to perform a multi-step reasoning process. To solve a 
problem, the model is decomposed into a series of inferred reasoning steps associated with 
computational units. In [221],  the framework is proposed for computational cognitive 
affordances. The cognitive cycle consists of two parts, namely logical-based representation 
and a computational architecture that performs a synthetic reasoning, Action-Planning-
Reasoning-Sense-Making tasks. The abovementioned approaches do not address the 
compositionality issue explicitly. An attempt to improve compositionality in CPSs was 
found in [35]. Several structures of component composition for reliability and durationare 
illustrated. The composition rules are formulated. These rules confirm compositionality 
at component level, but an achievement of system-level compositionality cannot be 
guaranteed. It assumes that if the entire systems are manifested by the composition rules, 
system-level properties can be achieved.
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2.5.10 Overview of the major findings and their   implications
The finding confirmed that smartness is not only a collective property of a system, but it 
is also a holistic and synergistic behavioral characteristic. The orchestration of synergetic 
interoperation of reasoning methods goes beyond condition-based composition. It should 
utilize the complementary and strengthening effects of reasoning methods. Designing 
of a compositional reasoning mechanism requires comprehensive means for supporting 
the entire design process. This is the expectation that S-CPSs should be able to select 
and handle knowledge synthesis mechanisms that operate with heterogeneous and/or 
incomplete knowledge. As far as the applied knowledge representation is concerned, it 
seems to be necessary that they are equipped with multiple knowledge representation 
means (in order to be able to cope with the challenges of possible representational variety). 
Knowledge should be constructed with a wide range of formalisms (i.e., from generic 
domain knowledge to specific task knowledge).

System awareness is a fundamental ability of S-CPS from the point of view of realization 
of the overall smart behavior of the system. This ability enables systems to control their 
performance and operation, and to interact with their embedding environment purposefully. 
Awareness is built by syntactic and semantic processing of data obtained from a range of 
hardware and software sensors. Designing for system awareness also requires computational 
data fusion technologies and models, and various inference mechanisms for transforming 
data to information and knowledge.

The design process of decision-making mechanisms needs to consider: (i) when a decision 
can be made by the system based on acquired and inferred knowledge, (ii) what methods 
of decision making are the most suited for the problem and the knowledge at hand, (iii) 
how to verify the decisions with regards to the objectives of the system, and (iv) how to 
evaluate and learn from the consequences of the decisions. Another challenge is designing 
systems for runtime adaptations. System adaptation goes together with the need to develop 
strategies for generating alternative operation modes for the system. It requires computational 
mechanisms (i) to transformthe changing system objectives into feasible action plans, (ii) to 
decide on the operationalization and timing of the chosen action plan, and (iii) to execute 
the adaptation in a fully controlled manner. 

Designing of reasoning mechanisms covers (i) the selection of the modality of reasoning 
(i.e., deductive, inductive, abductive) that is the most suited for building awareness, 
making decisions and adaptation of the system, (ii) composition of reasoning methods, (iii) 
design of compositional reasoning workflow, (iv) interfacing the elements of the reasoning 
mechanism for a seamless interoperability, and (v) verification of compositional framework 
of reasoning. Despite the facts that some of the computational reasoning mechanisms are 
able to imitate some aspects of human like reasoning, most of them remain data driven and 
operate according to statistical and/or rule-based methods. While computers are strong in 
processing of, and making decisions based on, large amount of data and predefined rules, 
they are currently weak in reasoning with analogies and intuitive inferencing. Efforts, on 
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the other hand, are already visible in the state-of-the-art literature that aim to mimic human 
like reasoning and extend the existing approaches with human like capabilities such as 
intuitive belief network generation. 

Towards a development of system-level reasoning, the recommendation generation is 
considered as the decision support service. The recommender systems recently have been 
used in the domains of engineering systems (e.g., product design support systems, medical 
treatment systems, monitoring and warning system, and traffic management systems). 
The concept of their recommender engines, such as the probabilistic inference, ontology-
based reasoning and the ML-based reasoning, are designed to offering personalized 
recommendations to individual users. According to the various methodological approaches 
concerning the system-level operation of recommender systems, the traditional filtering 
techniques are not applicable to context-sensitive process of designing reasoning 
mechanisms. It needs the interaction with a designer to capture the know-ledge and context 
information about the design process. The recommendation generation should consider: (i) 
changes in preferences of users and in the features of recommendation items, (ii) changes 
in context information concerning the procedural aspects of reasoning mechanism, (iii) 
proper knowledge representation and reasoning, which potentially handle the changes 
in the design process, (iv) responsiveness to the changes in runtime, and (v) proper 
communication modalities which can actively interact with a designer. 

2�6 Exploration of requirements for an active  recommender 
framework

2�6�1 The idea of active recommender frameworks
Active recommender framework (ARF) is a conceptual idea that allows ‘the framework’ 
facilitating a designer to develop smart systems by monitoring the activity of a user, 
reasoning and understanding what is being attempted, and then proactively providing 
smart assistance during execution of the design session for a development of a reasoning 
mechanism. This concept seems to be new in the contemporary literature, which 
typically focuses on providing recommendation, task-dependent advising, and support 
of decision making in non-engineering contexts. They can potentially be applied to offer 
recommendation services to a designer, but less content- and contextsensitive manner than 
as can be expected from a specialized ARF system. The specific objective of the ARF 
is to facilitate the development of a smart reasoning mechanism(integral sets of smart 
algorithms) by recognizing what is being attempted by the designers and by monitoring their 
activities, reasoning and performance, and providing context-sensitive recommendation in 
design sessions proactively. Recommendation includes not only design problem solving 
information, but also selecting the suitable computational methods and making a proper 
decision. 

To facilitate an achievement of the system-level reasoning in smart RM, the 
realization of the ARF assumes a comprehensive meta-model (MM), which brings 
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the foundational concepts into synergy from a computational point of view. This MM 
can capture and integrate epistemological entities (including chunks of knowledge, 
modelling constructs, sets of constraints, support services, etc.) as well as the procedural 
and methodological elements (overall approach, support actions, computational steps, 
communications, etc.). With regard to its representation, this MM is more of an intuitive 
cognitive model, rather than a formal information model. This is the reason why it is not 
specified exactly from an information engineering viewpoint, but remains in the background 
of the ideation.

2.6.2 Identification of types of requirements 
A requirement is defined as a statement that reflects a need, expectation, and/or constraints. 
The principle of requirement engineering was applied to identify the requirements for the 
development of ARF. The purpose of requirement engineering is to define the needs for the 
systems with a set of clear and complete statements and to ensure that the implementable 
functionalities are correct, reasonable, and effective. Generally, the requirements are 
classified into two main types: functional requirements and non-functional requirements. 

The functional requirements imply the expectation about what the ARF should be 
manifested in and not about how should it be implemented. The latter is the topic 
of implementation requirements. Non-functional requirements describe the general 
properties of the ARF. Several aspects of non-functional requirements can be considered, 
for instance, (i) performance (e.g., processing time, percentage of accuracy, levels of 
system stability), (ii) interoperation (standards) requirements (e.g., be compatible with 
ISO 30401:2018 standard), and (iii) business requirements (e.g., increased revenue, 
reduced expenses, improved customer satisfaction). With a view to the proposed idea of 
the ARF, to the implications of the findings of the completed literature study, and to the 
outcome of the brainstorming within the research group, the non-functional requirements 
are sorted according to five aspects. These are: (i) structural requirements: 
(ii) computational requirements; (iii) knowledge management requirements; 
(iv) interaction requirements; and (v) application-oriented| requirements.

The evidential goal of exploration of requirements is to provide orientation, guidance, 
and factual expectations for conceptualization of the ARF. This is a complex task, which 
needs systematization. With this in mind, the exploration of functional requirements 
was done on four levels, which reproduces the overall decomposition structure of the 
ARF, namely, (i) framework level (which reflects the characteristics of the whole of the 
ARF); (ii) mechanism level (which expresses the expectations for the manifestation of 
the computational mechanisms); (iii) module level (which concerns the lower-level 
components of the computational mechanisms); and (iv) algorithm level (which deals with 
the individual algorithms). In this chapter, the exploration of the requirements for the first 
two levels is discussed. The requirements for the other two levels would be explored 
in the next chapter, dominantly in the context of implementation of the components 
and algorithms. It was done by associating the detailed descriptions with the application 
context. The description of the target application would be elaborated in the sub-section 
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3.3.5 of the next chapter.

2.6.3  Identification of requirements for system-level  
framework

Functional requirements

As mentioned in the idea of an ARF, it is supposed to be a context-sensitive recommender 
system which supports a designer during an execution of the design process of ASRMs. 
Process monitoring and decision support capabilities are proposed as the fundamental 
characteristics of the ARF. Hence, the two essentials of functional requirements (FRs) of 
the whole ARF are: 

FR-F01: The ARF should support designers interactively (adapting its operation to the pace of 
human interaction) in the development process of ASRMs. 

FR-F02: The recommendation generated by the ARF should rely on the information actually 
processed by the designer and the (dynamically changing) contexts associated with the 
design processes.

Structural requirements

Structural requirements determine the final quality and justify the design decisions that 
constrain the implementation of functional requirements. The requirements are indicated 
by quality factors that should be achieved in the implementation of systems,for instance, 
efficiency, portability, safety, robustness, and maintainability. To deal with the complexity 
of the ARF, the goal is how to realize the proposed functionality with the lowest possible 
complexity of architectural structure. Concerning the systemlevel architecture of the 
ARF, the structural requirements focus on the aspects of implementation simplicity and 
adaptability.

SR-F01: The system-level architecture of the ARF should be constructed of the lowest 
possible number of mechanisms.

SR-F02: Within the system-level architecture, the mechanisms should induce the lowest 
possible number of functional, computational, and control relationships and 
dependencies with each other.

SR-F03: The structural adaptation of the whole ARF should be done with the 
lowest possible efforts in terms of the number of adapted constituents

SR-F03: The structural adaptation of the whole ARF should be facilitated by the lowest 
possible number of modifications of the algorithms.

Computational requirements

Computational requirements are the expected specifications of computational 
capabilities of an ARF. At the system-level operation, the overall service level should 
be taken into consideration in order to satisfy the expectation of an end user. From the 
developer perspective, the availability of resources should be taken into consideration. The 
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computation mechanism of whole ARF should be testable in a demonstrative case under 
the resource constraints.

CR-F01: The computational mechanisms of the whole ARF should generate 
recommendations for the designers in less than 10 seconds in order to keep the 
designer’s attention on the design task.

CR-F02: The (computational) adaptation of the whole of the ARF should be facilitated by 
the largest possible number of standardized or pre-programmed constituents.

Knowledge management requirements

Knowledge management requirements refer to the needs and/or expectations of the ways to 
deal with knowledge, for instance capturing, organizing, classifying, reasoning, and storing 
knowledges. For system-level requirements, we expect the ARF should have a capability to 
learn. It implies that the system-level knowledge will be growing when the ARF has been 
utilized by designers. Two possible ways can be considered to extend the knowledge: (i) 
capturing knowledge from designers, (ii) updating additional knowledge by experts.

KR-F01: The system-level knowledge of the ARF should be extendable internally (by the ARF) 
or externally (by the knowledge engineers) as needed by the design processes and the 
required support.

KR-F02: The information/knowledge conveyed by the recommendation should be constructed 
in both machine-readable and human-understandable forms.

Interaction requirements

We considered the interaction requirements from two aspects: (i) the interactionbetween the 
ARF and the designer, and (ii) the interaction between the components of the ARF. In the 
process of recommendation generation, the ARF requires information from the designer. 
However, too many interactions requested by the ARF might not be supportive to the 
creative work of the designer and may attract the designer’s intention away from the actual 
task. At the system level, the mechanisms communicate with each other by exchanging 
situation-dependent data and/or information. In addition, the ARF navigates the designer 
to the webpage that contains the advisory contents to execute the design action. Hence, the 
ARF should operate online. Three interaction requirements are addressed: 

IR-F01:  The communications between the ARF and the designer should be processed 
with lowest possible number of interactions.

IR-F02: The flow of information should be timely harmonized as requested by the 
mechanisms in near zero-time operation.

IR-F03: The ARF should connect to the internet during the generation of advisory 
contents.

Application oriented requirements

To develop ASRMs, the application context should be identified. Basically, it shouldrepresent 
the characteristics of S-CPSs which can be used to test the proposed concept of ARF. Many 
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practical cases belonging to the family of S-CPS can be supported by an ARF. We selected an 
automatic parking assist system (APAS) and used it as a demonstrative case for exploring 
application-oriented requirements. 

Two system-level requirements for the ARF are as follows.

AR-F01: The ARF should provide the specialized recommendation services to support a 
development of reasoning mechanism for an APAS.

AR-F02: The ARF should offer content-related recommendations of searching a proper 
parking plan for a street parking problem.

2.6.4 Identification of requirements for mechanism level 
Functional requirements

FR-M01: The process monitoring mechanism should continuously perform activity-based 
monitoring throughout the entire processes of RMD at runtime during the design 
session.

FR-M02: The process monitoring mechanism should recognize doubtful (unexpected) 
events in the design sessions in quasi-real time.

FR-M03: The process monitoring mechanism should identify an obstacle in the actual flow 
of design actions based on the procedural network with higher than 45% of 
justified objective decisions.

FR-M04: The decision support mechanism should capture at least three relationships 
of design actions included the logical, temporal, and methodological 
relationships.

FR-M05: The decision support mechanism should computationally model design 
actions and interconnect into a procedural network with lower than  5% of 
incorrect relationships.

FR-M06: The decision support mechanism should propose a feasible recommendation in 
human-understandable format.

Structural requirements

SR-M01: All computational mechanisms should consist of the lowest possible number of 
architecting modules.

SR-M02: All interrelationships among modules should be created based on the lowest 
possible number of dependencies.

SR-M03: The structural adaptation of mechanisms should be done with the lowest possible 
efforts when modification of algorithms is needed.
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Computational requirements

CR-M01: All computational mechanisms are supposed to be operationalized by using 
minimum computational resources.

CR-M02: The process monitoring mechanism should be able to implement near zero-time 
processing. 

CR-M03: The decision support mechanism should generate a recom mendation for the 
designer in less than 10 seconds.

Knowledge management requirements

KR-M01: The knowledge belonging to the decision support mechanism should 
be shared and jointly utilized by multiple modules

KR-M02: For the decision support mechanism, formal knowledge should be constructed 
either in a model-based or in a sematic-based format.

Interaction requirements

IR-M01: The flow of information throughout the mechanisms should be harmonized in time as 
requested by the modules with the least possible number of interactions.

IR-M02: The process monitoring mechanism should communicate directly with the 
designer using the lowest possible number of interactions.

2�7 Assessment of the requirements for the active  
recommender framework

2�7�1 Approach to assessing of requirements
Before operationalization in conceptualization and design, the collected set of requirements 
has to be assessed with regard to their demands, implications, and characteristics. The 
latter includes properties such as (i) consistency requirements are supposed to be not 
contradictory), (ii) completeness (all relevant requirements should be included in the 
requirements model), (iii) feasibility (the demands conveyed by requirements should be 
feasible both technically and economically), (iv) understandability (the description of the 
requirements should fulfill quality standards), and (v) reusability (the requirements are 
supposed to be reusable in other contexts and future projects). These are to be considered 
when assessing if the above-discussed requirements are relevant and do not conflict with 
each other. The different aspects of assessment imply the need for using different techniques. 
To assess the consistency, the complete body of requirements should be examined.

The individual requirements can be assessed from a theoretical point of view, or from 
a practical point of view, or from both concurrently. Typically, the former assessment is 
based on analysis of documents. In our work, the implications of the major findings of 
the literature study have been used as the basis of deriving requirements, but this does 
not guarantee the fulfillment of the expectations for proper requirements. The practical 
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assessment can be completed by testing the implications in an application context. Actually, 
such assessment can be done at syntactic level, i.e., by checking for compliance 
with standards and guidelines. However, in the case of assessment of the system-level and 
the mechanism-level requirements, the consistency resides at a semantic level (i.e., in 
the practical meaning). To facilitate the exploration of semantic relationships, we apply 
a formal representation to the set of requirements. The representation in the form of a 
semantic net facilitates not only checking the contradictions of requirements, but also the 
interpretation of the requirement relationships with regard to their technical feasibility.

2�7�2 Assessment of system-level requirements
Fourteen system-level requirements were specified for the ARF. Their sematic relationships 
of the requirements have been identified, as shown in Figure 2.14. We found that ten of the 
system-level requirements can be met technically (e.g., their expectations can be satisfied 
at the conceptualization of the ARF). The direction of the arrow indicates the causality of 
the requirements. For example, the requirement IRF02 has an influence on the requirements 
FR-F01. It means that if the ARF would interact with a designer in real-time, it should 
communicate with him by the lowest number of interactions. In addition, it is possible that 
a requirement has multiple relationships to others, and vise-versa. At the system-level, it 
should ensure that two functional requirements are fulfilled, including: (i) FR-F01 – the 
ARF should interact with the designer in real-time; and (ii) FR-F02 – the ARF should 
provide contextsensitive recommendation at runtime.

Figure 2.14: Semantic relationships of the system-level requirements
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According to their relationships in the semantic diagram, they have influence on four 
non-functional requirements (see the color boxes in Figure 2.14), namely (i) IR-F02 – 
the information exchange should happen in a near zero-time operation, (ii) CR-F01 – the 
processing time of recommendation generating should be no longer than 10 seconds, (iii) 
SR-F01 – the system-level architecture of the ARF should be constructed of the lowest 
possible number of mechanisms, and (iv) SR-F02 – the mechanisms should induce the lowest 
possible number of functional, computational, and control relationships and dependencies 
with each other. All of them are presented at the terminal nodes. They have no influences on 
other requirements. Therefore, it could be claimed that if these requirements are fulfilled, 
all system-level requirements would be satisfied.

However, three sets of requirements seem to be in conflict with each other, as shown in 
Figure 2.15. They cannot be satisfied simultaneously. Therefore, a compromise should be 
found in terms of their goal (expectations). In the case of a particular set of requirements, 
SR-F03 – providing structural adaptation with the lowest possible effort and SR-F04 – 
allowing modification of algorithms with the lowest possible effort, it is difficult, or even 
impossible, to meet the requirement CR-F02 – maintaining the largest number of standard 
preprogrammed algorithms as well as to meet the requirement KR-F01 (extending the 
system-level knowledge as needed by the design processes and the required support). In 
the meantime, the requirements KR-F01 and IR-F01 (communicatingwith the designer 
by lowest possible number of interactions) are inconsistent. Two of them have direct 
relationships with the functional requirements FR-F01. This implies an opportunistic 
solution with multi-objective decision-making.

Considering the requirement KR-F01, it is the expectation for the scalability of the ARF 
which implies its learning capability. If there is the need for new knowledge as requested by 
either the design processes or the service support, the system knowledge of the ARF should 
be extendable. The knowledge can be extended by two ways: (i) the external modification – 

Figure 2.15: Trade-off issue in the case of inconsistent 
system-level requirements

the knowledge engineer updates 
the new knowledge; and (ii) the 
internal modification – the ARF 
obtains context information from 
the designer and converts them 
into the system knowledge. The 
latter requires the increasing 
number of interactions with the 
designer and the adaptation of 
the architectural structure to 
perform this process.Thus, it 
is impossible to concurrently 
meet these requirements. To deal 
with this challenge and to avoid 
the uncontrollable complexity 
in the conceptualization, 
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implementation, and validation of the ARF, we assume that the knowledge is added by the 
knowledge engineers with minimum efforts for the functional, structural, and computational 
modifications, when it is needed. 

To this end, the relationships of the requirements can be simplified as shown in Figure 
2.16. Four key requirements should be tested to validate the system-level functionality of 
the whole ARF as shown in the green boxes. It can be assumed if these requirements are 
satisfied, the system-level functionality will be achieved. All the rest of requirements are 
satisfied without the needs of testing.

Figure 2.16: Simplified relationships of system-level requirements

2�7�3 Assessment of the mechanism-level requirements
There are eighteen identified requirements in total at the mechanism level. As shown in 
Figure 2.17, the semantic map is constructed by the relationships of sixteen requirements. 
Five requirements are presented at the terminate nodes including: (i) FRM03 – the process 
monitoring mechanism should identify an obstacle with a higher than 45% of justified 
objective decisions, (ii) SR-M01 – all computational mechanisms should consist of the 
lowest possible number of architecting modules, (iii) IR-M01 – the flow of information 
throughout the mechanisms should be harmonized in time as requested by the modules 
with the least possible number of interactions, (iv) CR-M02 – the process monitoring 
mechanism should be able to implement near zero-time processing, and (v) CR-M03 – the 
decision support mechanism should generate a recommendation for the designer in less 
than 10 seconds. Based on the interpretation of the semantic relationships, it assumes that 
if these requirements are satisfied, the expectations of the mechanism-level functionality 
will be achieved.  

However, it seems that two groups of inconsistent requirements occurred. One of them is 
the group formed by the requirements FR-M03 and IR-M02 as shown in Figure 2.18 The 
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justified objective decision on the acceptance of the identified obstacle may not reach a 
higher than 45%, if the lowest number of interactions between the ARF and the designer 
is happening. It might be the case that the ARF requests the further information for an 
investigation of the actual design flow. 

According to the semantic map, the FR-M03 is considered as the key functional requirement, 
thus the requirement IR-M02 should be adjustable. Just as with the inconsistency of the 
requirements CR-M01 and CR-M02, they might not be concurrently satisfied. In some 
cases, the operationalization of the process monitoring in near zero-time consumes a huge 
number of computational resources. To meet the key requirement CR-M02, the CR-M01 
should be compromised. Based on this analysis, five key requirements should be tested to 
ensure that the conceptualization of the ARF meet the expectation at the mechanism level 
as shown in the green boxes in Figure 2.19. Two requirements should be compromised 

Figure 2.17: Semantic relationships of the mechanism-level requirements
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including IR-M02 and CR-M01 in 
order to meet all requirements at the 
mechanism level. 

2�8 Conclusions
As discussed by many researchers, 
the paradigm of cyber-physical 
systems is rapidly evolving, and 
the domains of investigations, 
implementations, and applications 
are proliferating quickly. This is the 
reason why thinking in generations 
of CPSs was proposed in [222]. It 
can be seen that while CPSs are 
showing more ‘system intellect’ in 
their operation, their control regime 
must be more sophisticated, and they 
should be equipped with many self-* 
characteristics.

Figure 2.18: Trade-off issue in the case of  
                      inconsistent mechanism-level 
                      requirements

Figure 2.19: Simplified relationships of  mechanism-level requirements
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S-CPSs present many system-level operational characteristics, as opposed to the 
component operation driven aggregative manifestation of system characteristics. 
They go beyond what can be analyzed and designed based solely on reductionism 
and the traditional model-based approach. These statements are becoming our 
research challenge regarding how to develop smart CPSs with the capabilities of self-
awareness and self-adaptation. Compositional conceptualization and design of S-CPSs 
need new principles (e.g., system level synergy) and a different (top-down specification) 
approach. The study was completed by using mixed qualitative and quantitative methods. 
The publications related to CPSs and system smartness represented the broader and the 
narrower contexts of the study. The domain of discourse included the domain of system 
engineering frameworks in the contexts of designing system-level reasoning and its 
enablers. The major requirements were explored concerning the development of a novel 
ARF. The knowledge aggregation was concludedas follows:

2�8�1  Conclusions concerning reasoning mechanism 
development

Reasoning about emerging conditions and their effect on system performance creates 
a complexity that cannot be tackled by predefined reasoning methods. This complexity 
is caused not only by demands for real-time computational requirements or by the need to 
cope with incomplete information, but also by the problem of finding optimal reasoning 
and adaptation strategies matching the nature of the emerging situation. It requires runtime 
composition of reasoning strategies and adaptive use of reasoning methods. The challenge 
for designers of a reasoning mechanism is to narrow down the solution space of composition 
of reasoning mechanisms that provide synergetic operation of S-CPS. The conclusions 
concerning RMD are: 

 • It is difficult, if not possible, to apply a single reasoning method to tackle complex 
reasoning problems that S-CPSs are typically facing. As S-CPSs  operate under 
unpredictable, emerging conditions, their ability to runtime  adapt to changing 
conditions in a safe and predictable way is essential for their robust operation.

 • Synthetic computational approaches have the ability to compose reasoning methods at 
runtime. They, however, implement a low-level smartness by straight-forward composition 
of methods that are only activated if given conditions are fulfilled. Without a rigorous 
unifying framework, synthesis reasoning and an integration of the analysis results 
based on analytical computational approaches remain ad hoc.

 • Compositionality regarding reasoning mechanisms manifests in different levels of 
abstraction that are: (i) on the system level, it achieves a synergy of knowledge through 
the entire reasoning processes that is needed for  multitask problem solving; and (ii) 
on the component level, systemcomponents should be interoperated in compositional 
manner.

 • This requires a multi-aspect framework that can integrate system-level reasoning on 
various abstraction levels ranging from defining system objectives to concreate 
implementation of adaptation at runtime.
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2�8�2  Conclusions concerning active recommender  
framework development

Typical SEFs for specifying manifestations of non-compositional systems can be 
clustered as: (i) generic, (ii) conceptual, (iii) logical, (iv) architectural, (v) functional, (vi) 
component-based, (vii) model-based, (viii) temporal, (ix) contextual, and (xi) composite 
frameworks. Though many SEFs have been developed for composable systems, they 
cannot be transferred directly to compositional systems. 2G-CPSs assume SEFs that facilitate 
synergistic definition, synthesis, and adaptation of all system components. Besides smart 
reasoning, the target SEFs should support the implementation of other system- level 
features of S-CPSs such as dependability, security, and openness. Within the framework, 
we scope our attention to the reasoning part of S-CPSs, which is able to create system-
level smartness. It consists of the compositional tasks of in S-CPSs that provide logical 
computational processes including creating semantic knowledge structures, inferring within 
reasoningmechanisms, building situation awareness, enabling dependent decision-making, 
and performing system adaptation. The conclusions concerning the content development 
of the ARF are as follows:

 • The results of the literature study showed that no SEF was developed so far, which 
would cover all enablers of system level-reasoning (i.e., system knowledge, situation 
awareness, context sensitive reasoning, decision-making, and system adaptation). There 
are two possible trajectories for the development of such a framework. One is the 
development of a new concept from scratch. Another one is to integrate the relevant parts 
of existing frameworks into one holistic framework. However, in the latter case, the 
functionally relevant parts may not be simply interconnected. These parts should be 
reconsidered and interpreted on a higher level of abstraction, and that way they may 
be integrated into a novel designsupport framework.

 • Due to the complexity of system-level reasoning, the ARF cannot be a singleaspect, 
monolithic and universal arrangements of interrelated things,  but instead should be 
multi-aspect composite structures (constructs) that show a wide variety depending on the 
purpose of operations and the application contexts. 

 • The existing SEFs are operationalized in a static manner. Most of them cannot capture the 
changes in the system behaviors, thus they cannot provide the solutions at runtime 
operation. We concluded that the traditional SEFs cannot support a development of 
smart-reasoning mechanisms effectively. 

 • Two system-level capabilities are needed to equip a framework with an active 
manner: (i) real-time process monitoring, and (ii) runtime decision  support. Therefore, 
the essence of the ARF is the combination of the process monitoring functionality with 
context aware recommendation services to support the development of reasoning 
mechanisms focusing on the enables of system-level reasoning. 

 • A synergistic fusion of the procedural reasoning process (e.g., event recognition, 
building awareness, context-based reasoning, decision-making, and functional and 
adaptation planning) of S-CPSs is needed for a development of ASRMs.
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 • Considering the computational algorithms included in ARSMs as knowledge elements, the 
ARF should handle these knowledge elements and realize their design process and 
tasks. Without this domain specific knowledge, the ARF cannot recognize the actual 
state of design process. Therefore, in the lack of sufficient knowledge, the possibility 
that the ARF will propose an incorrect recommendation to the designer may be large.

 • The ARF should facilitate the system designer with the following services: (i) 
recognizing the changes in the design process, (ii) communicating with a designer during 
the execution of the design process, (iii) providing the design guideline at the higher level of 
abstraction, (iv) guiding how to select the right computational method with proper design 
action at lower-level of design operation, (v) providing an example of the best 
coupled design actions, (vi) comparing alternatives for the integration of multiple methods, and 
(vii) giving a recommendation about the feasible solutions varying on the application contexts.

2�8�3  Conclusions concerning the requirements for an active 
recommender framework development

The exploration of requirements for the ARF had been done in two levels: (i) systemlevel, 
and (ii) mechanism-level. The individual requirements were derived from the implications 
of the findings of the literature study. However, we observed that some of them had 
relationships to each other. It required an analysis of the semantic meanings of their 
relationships in the whole. Therefore, semantic maps were constructed to investigate the 
relationships of the requirements on different levels of abstraction. From the point of view 
of the development process of the ARF, the conclusions concerning the requirements are 
as follows: 

 • Two functional system-level requirements are related to: (i) process monitoring; and (ii) 
decision support functionality. 

 • It is feasible to test the system-level functionality of the ARF with four key system-
level requirements: (i) the construction of system-level framework should be done 
with the lowest possible number of mechanisms, (ii) the mechanisms should induce 
the lowest possible number of functional, computational, and control relationships 
and dependencies with each other, (iii) the information exchange should happen in a 
near zero-time operation, and (iv) the processing time of recommendation generating 
should be no longer than 10 seconds.

 • Regarding the mechanism-level requirements, five of them were considered as the key 
requirements: (i) the process monitoring mechanism should identify an obstacle with a 
higher than 45% of justified objective decisions, (ii) all computational mechanisms 
should consist of the lowest possible number of architecting modules, (iii) the flow of 
information throughout the mechanisms should be harmonized in time as requested by 
the modules with the least  possible number of interactions, (iv) the process monitoring 
mechanism should be able to implement near zero-time processing, and (v) the decision 
support mechanism should generate a recommendation for the designer in less than 10 
seconds.
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The abovementioned requirements described the conceptual idea of the ARF, as follows:

 • The findings in Section 2.4.5 imply that two system-level functionalities are needed 
to equip the framework with an active design support capability: (i) realtime process 
monitoring, and (ii) run time recommendation provision.The latter is integral part of 
decision support. From the system-level requirement.SR-F01 follows that the ARF should 
be constructed with the lowest possible number of architectural elements. This optimum 
can be achieved in two possible ways: (i) putting all elements together in one mechanism, 
and (ii) mapping one service functionality to one mechanism.

 • At the mechanism-level, five functional requirements have influences on the architectural 
modules. Thus, if a function is mapped to a module in a one-to-one manner, then five 
modules are formed: (i) activity-based monitoring, (ii) unexpected event recognition, 
(iii) design actions and their relationship identification, (iv) a procedural network of 
design action construction, and (v) recommendation generation. 

 • With this number of mechanisms and modules, it is possible to keep the lowest number of 
functional, computational, and control dependencies between and within the mechanisms 
and to exchange the information flow with near zero operation time. 

 • With a view to keeping the designer’s attention on the design task, it can be conceived 
that the computational process of recommendation generation can be done within 10 
seconds.

 • The last requirement that should be considered is the performance of the  process 
monitoring mechanism and the decision made by the designer. If the ARF recognizes 
an unexpected event and identifies the obstacles based on the procedural network of 
design actions with a high percentage of correctness, and the designer accepts the offer 
with a high number of probabilities, this implies the quality of procedural network and 
the improvement opportunities for the recommendation generation.
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3�1 Objectives and methodological framing of the second 
research cycle

3�1�1 Objectives
In Chapter 2, the activities and results of the knowledge aggregation and requirement 
engineering completed in the first research cycle were discussed. This intelligence was 
used to form a robust idea about an active recommender framework (ARF) as an enabling 
tool to support the designers of application-specific reasoning mechanism (ASRM). 
Concerning a comprehensive conceptualization of the targeted ARF, the requirements 
were specified at two levels, namely, (i) on the level of the framework as a whole, and (ii) 
on the level of the computational mechanisms included in the framework. Two primary 
functional requirements for the entire framework were specified as follows. The ARF 
should: (i) simultaneously perform process monitoring and design support in real-time; 
and (ii) generate a recommendation based on the information processed by a designer and 
the dynamically changing context associated with the design processes.

On the level of computational mechanisms, six major functional requirements were defined 
as follows: (i) perform activity-related process monitoring throughout the various processes 
of reasoning mechanism development (RMD); (ii) recognize doubtful (unexpected) 
eventsit the design sessions in real-time; (iii) capture the logical, temporal, and methodological 
relationships of design actions; (iv) identify any obstacle in the design process as deviation 
from a target procedural network; (v) propose a feasible  recommendation in human-
readable format; and (vi) evaluate the designer’s decision and the effects of the received 
recommendation.

Research cycle 2:
Conceptualization of a demonstrative part of 
the proposed active recommender framework

Chapter 3
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The overall objective of the second research cycle was conceptualization of the  
computational enablers for a particular realization of an ARF. Conceptualization was  
challenging because the ARF was supposed to provide support not only to design 
decision-making, but also to the management of the design activities and to the 
development process of ASRMs. Two concrete goals were addressed in this research 
cycle. On the one hand, we intended to elaborate and operationalize a dedicated 
methodology to help the realization of the conceived functionalities of the ARF. On the 
other hand, we intended to specify the support functions that RMDs can expect from a 
partial implementation of this ARF. In order to achieve these goals, proper underpinning 
knowledge (theories) were needed including (i) the conceptual clarification of the notion 
of ARFs; (ii) the essence and implementation details of the facilitating methodology; and 
(iii) the expectations for the functionality of the ARF required when designing ASRM for 
concrete practical cases. 

Based on these objectives, the guiding research question was formulated in the following 
way: 

RQ: What constituents enable a feasible and efficient (i) functionality, (ii) architecture,(iii) 
computational operation, and (iv) implementation of an ARF, which resolves 
procedural obstacles in a design process and provides decisional benefits for 
designers of ASRMs in the case of a family of S-CPSs?

3�1�2 Research methodology 
Design inclusive research (DIR) was applied as a methodological frame for 
conducting this research cycle. There were three phases of research actions: 
(i) explorative phase; (ii) constructive phase; and (iii) confirmative phase. In the 
explorative phase, the research actions started with a broad and systematic knowledge 
aggregation and continued with the ideation of what services an ARF can offer to a 
designer with the goal to support the logical and computational development of reasoning 
mechanisms. The technical input information for conceptualization was derived from the 
requirements which were stated and analyzed in the previous chapter, and this was extended 
with information by brainstorming and critical systemic thinking.

In general, conceptual-ization of an ARF is a complicated matter for the reason 
that (i) the process of designingASRMs and (ii) the specific functionality, interoperation, 
development process, and implementation methodology of the ARF should concurrently be 
taken into consideration. This is referred to as duality of development. Thus, the concept 
of ARF wasdeveloped based on assumptions about a particular family of ASRMs, its 
design process and actions, and the specific supportive role of an ARF.

In the constructive phase, concrete conceptualization and design actions were planned 
and completed. In the first place, the fundamentals of conceptualization of the ARF were 
discussed. The conceptualized mechanisms of the ARF included (i) process monitoring 
and (ii) design decision support. For the operational concept of the former mechanism, 
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event-based monitoring of the changes in the behavior of the designer was considered. 
The observation of a non-usual event in a design process is typified in five ways (type 
A-E) according to the contribution levels of the ARF to the design process. For the latter 
mechanism, non-usual event type B was selected as a fundamental for a generation of 
recommendations.

The ARF was conceptualized based on the proposed multi-perspective method. In the 
conceptualization process, the major activities were: (i) specification of functionality, 
(ii) system and component architecting, (iii) planning of the computational process, and 
(iv) specification of the algorithms and data constructs. In the last confirmative phase, the 
research actions focused on testing the feasibility of the concept, considering a specific part 
of an ARSM design process. The considered part of this ARSM design process concerned 
the working principle exploration (WPE) session of an automated parking assist system 
(APAS).This made it possible to conclude about and consolidate the findings on the 
conceptualization. Regarding the conclusions, the identification of requirements for the 
computational implementation of the ARF played a crucial role.

3�2 Generic assumptions concerning the active 
recommender frameworks

3�2�1 Assumptions with respect to complexity management

3�2�1�1 Assumptions concerning the manifestations of 
complexity in real-life cases

Smart CPSs are supposed to incorporate capabilities necessary for handling an unforeseen 
situation with incomplete information and limited control in the real-life problem. This 
means a smart CPS must be able to adapt its reasoning process to deal with dynamic 
situations in the target application. The complexity of a situation can be characterized 
by three factors: (i) the type of entities, (ii) the number of entities, and(iii) the number 
of relationships among the entities. If the local world comprises only few entities and a 
limited number of relationships, then one situation is probably sufficient to find an optimal 
solution for the application problem.

However, the complexity will increase in the real-life problems when the states of the 
entities and their relationships change over time. In addition, interplay among multiple 
situations may also happen in the local world. Therefore, we had to come to the conclusion 
that one situation might not be enough for finding an optimal working principle in the case 
of our actual real-life problem (working principle exploration for an automated parking 
assist system). The fact of the matter is that multiple situations should be considered, 
which are to be categorized into a group of similar situations. To handle this particular 
manifestation of complexity, the following generic assumptions were formulated:

Assumption 1: In a local world, a situation features a linearly (non-dynamically and non-
exponentially) changing number of entities and relationships among them.
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Assumption 2: A new situation is caused and defined by the change in the number of 
entities and/or their relationships.

Assumption 3: In a regular case, consideration of one situation is sufficient to end up with 
an optimal working principle. 

3�2�1�2  Assumptions concerning the handling of application 
complexity

An automated parking assist system (APAS) was selected as the target application and design 
context. The reasoning mechanisms of ARSMs perform multiple reasoning processes. Due 
to the complexity of the APAS as application and the abundance of the related context 
information, we had to impose strong scoping. Towards this end, we decided to focus only 
on the working principle exploration (WPE) for an APAS. In essence, a working principle 
is defined as a set of rules or conditions that underpin the completion of a work or a task 
at hand. In the case of the APAS, the working principle depends on the arrangement of 
the actual parking area. The included objects, their eometric measures, their distances and 
orientations may be different. All of these cannot be precisely considered. The working 
principle also depends on the type of parking situation, i.e., if it is parallel, slanted, or 
perpendicular. For each of them a dedicated/optimal working principle should be found 
based on an approximate arrangement of a parking case. This means that one working 
principle can offer multiple alternative solutions, but optimization is not really necessary. 
A selection of the most appropriate (‘good enough’) working principles can be done based 
on the parking criteria. A collision-free and fast parking is a common criterion at evaluating 
a motion path trajectory for parking. It should be determined as a (‘good enough’)rather 
than as a case-dependent absolute solution.

Assumption 4: A specific useful working principle should be found for each concrete 
parking situation, but it can be sub-optimal.

Assumption 5: The selection of the best matching working principle should be based on a 
good enough approximation of the arrangement and features of  a parking 
case.

Assumption 6: The selected working principle should be the first appropriate (good enough) 
for safe and fast parking

3�2�1�3 Assumptions concerning the handling of implementation 
complexity

Engineering systems are typically made up of a large number of inter-related subsystems, 
modules, and components. The complexity of the systems should be considered from six 
main sources: (i) the number of components; (ii) the functionality of the components, (iii) 
the functional interrelationships of components; (iv) the architectural interrelationships of 
components; (v) numbers of their interrelationships, and (vi) the operational scenario of the 
system and its components. The degree of complexity of an ARF should also be evaluated 
based on these factors. The design process of the whole of the ARF is a rather complex one 
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and it is a challenge to capture it as a single design problem. The strategy of divide-and-
conquer is to be applied. This necessitates the decomposition of the design process of the 
ARF into self-contained process element. The above considerations were the basis of the 
assumptions that were made concerning the implementation complexity.

Assumption 7: The use of minimal number of constituents reduces the implementation 
complexity of the ARF in a natural manner.

Assumption 8:  If pre-produced constituents can be used in an unchanged or a (slightly) modified 
form, and if their interfaces are proper, then it also can simplify the 
implementation complexity.

Assumption 9: The internal dependences of the constituents should be kept minimal in order 
to reduce operational and implementation complexity.

Assumption 10: Standard system development methods such as modular construction and 
component-based design should be applied to reduce implementation 
complexity.

3�2�1�4 Assumptions concerning the methodological 
approach to conceptualization of the active recommender 
framework

Conceptualization of the ARF includes a huge set of activities, which needs a systematized 
(systemic and systematic) approach. In order to consider all relevant intelligence 
and constraints, a top-down approach was used. This simultaneously considered two 
perspectives, namely (i) the identification the potential needs for support servicesbased on 
the analysis of the schematized design scenario, and (ii) the specification (decomposition) 
of the functionality and the architecture of the ARF.

To make the decomposition systematic, we used the concept of ‘multi-layers’ in the 
specification process of the ARF. The following layers were considered: (i) determination 
of the required services, (ii) specification of the functionalities, (iii) allocation of system 
components (architecting), (iv) development of algorithms and data constructs, (v) planning 
of the computational and interaction process, and (vi) validation  (testing). These layers and 
their arrangement are shown in Figure 3.1. The introduced decomposition to activity layers 
facilitated the integration of the computational functions, the software components, the 
process flow, the algorithms/data constructs, and the external interactions. 

A function is an abstraction of an operation, activity, process, or action performed by 
the constituents of the ARF to achieve a particular objective within a prescribed set of 
requirements. As customary, the functional specification  started out from the main functions 
and specified various levels of sub-functions, which  mainly  represented computational 
actions that the ARF should accomplished. The functional decomposition was completed by the 
specification of the elementary functions that could be implemented by various algorithms. 
The constituents of the ARF are composed according to a multi-level, logical (functional) 
and architectural structure,which provides the framework. The process of the concomitant 
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architectural structuring of the 
software went through the definition 
of the computational mechanisms, 
the modules, the units, and the 
algorithms. 

There were several generic 
assumptions conceived concerning 
the methodological approach to the 
conceptualization of ARF. The most 
significant ones were formulated as 
follows:

Assumption 11: The whole 
conceptualization 
is driven by the 
idea of service-
p r o v i s i o n i n g 
systems.

Assumption 12: Due to the 
complexity and 
the novelty, a 
path finding 
and iterative 
approach has to be 
methodologically 
preferred instead 
of a linear or 
a waterfall-
type procedural 

Figure 3.1: Methodological approach 
to conceptualization and 
implementation of the ARF

scheme.

Assumption 13: The conceptualization should go through the stages of (i) specification of 
the functional concept, (ii) elaboration of the architecting concept, (iii) 
specification of the algorithms concept, and (iv) organization of the 
workflow and interaction concepts.

Assumption 14: The implementation should concretize the conceptual elements as 
computational elements.

Assumption 15: The compatibility and interoperability of algorithms should be tested 
(validated) in the context of application
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3�2�2 Assumptions concerning the reasoning mechanism 
development

Typically, a reasoning mechanism executes a complicated inference process that 
involvesmultiple logical operations on logical expressions/statements to draw conclusions 
[1]. In the case of smart CPSs, included in the reasoning mechanisms, the computational 
algorithms process the input data and derive new knowledge based on  the pre-programmed 
inferring/reasoning logic in a particular context for a given purpose. As mentioned above, 
an APAS is selected as the target application (design context). Its reasoning mechanism 
performs those procedural reasoning processes, which include multiple feedback loops. 
Due to this innate complicatedness, the design process of the ASRM should be decomposed 
into multiple design sessions. These considerations formed the basis of the assumptions 
concerning the ASRM development.

Assumption 16: Conceptualization of ASRMs for the APAS includes four design sessions, 
namely (i) problem specification; (ii) situation analysis; (iii) working 
principle exploration; and (iv) decision logic generation.

Assumption 17: The reasoning mechanisms of the APAS belong to a class or subclass 
of reasoning mechanisms for S-CPSs.

Assumption 18: The construction of a reasoning mechanism for a CPS generally includes 
multiple feedback loops, which assume information exchange between the 
phases of designing.

Assumption 19: Conceptualization of APAS needs to consider seven computational 
processes, namely (i) continuous sensing, (ii) recognizing an event, (iii) 
inferring a situation, (iv) exploring working principles, (v) decision-
making, (vi) adapting to a new situation, and (vii) actuating.

3�2�3  Assumptions concerning the design process and design 
actions

As briefly mentioned above, designing of a reasoning mechanism for smart CPSs is a 
complicated process because of the natural complexity of reasoning mechanisms. It is 
not only the result of the set of the past (historic) design actions, but also a contingent 
process of evolution. In general, a design process is series of activities to find a solution 
to a problem. Changes in the design scenario and the design contexts imply changes in 
design processes. More specifically, in the RMD context, the design process is a purposeful 
arrangement of design actions to solve a design problem. It is structured as a finite set of 
design actions that procedurally can be arranged sequentially or parallel, depending on the 
needs of input data from the successive design actions. As element of a design process, a 
design action is a focused, but lasting effort towards a virtual elaboration of an artefact or 
knowledge. A design action can be identified at any point in the design process, where a set 
of input data is converted into knowledge or a new content. The possible arrangements and 
relationships among design actions create multiple design solutions. We argue that without 
specific knowledge and contextual information about the design process, the ARF is not 
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able to observe changes in the state of design actions.

These considerations led to the principal assumptions concerning the design process and 
design actions:

Assumption 20: ARF should have its own knowledge repository to store various domain 
specific bodies of knowledge about the design process and the design 
actions in the WPE session.

Assumption 21: Real-life design processes can be formalized based on the problem solving 
logic.

Assumption 22: Decision logic has a dual nature in the sense that choosing a design action 
is inseparable from choosing a design solution.

3�2�4  Assumptions concerning the active recommender 
framework

Evidentially the main role of a designer is to apply scientific knowledge to find the right 
solution to design problems in the course of RMD. Due to the algorithmic or big data 
complexity of reasoning mechanisms, it can be foreseen that designers may face a knowledge 
deficit while designing these mechanisms. In addition, finding an advantageous design 
solution may be made complicated by other issues such as (i)  clarity of the definition of 
the problems to be solved, (ii) uncertainty of the design procedures, (iii) lack of analysis 
capabilities needed for the design process, and/or (iv) the choice of decisions on multiple 
objectives or multiple alternatives. In some cases, a designer may need the assistance of 
an expert analyst when unexpected difficulties occur during the analysis processes, and 
when interpreting the results. The considerations mentioned below implied the following 
assumptions concerning the ARF:

Assumption 23: The ARF should have sufficient synthetic knowledge to perform the process 
monitoring tasks and to generate context sensitive recommendations.

Assumption 24: The ARF should be able to provide services for (i) process monitoring, (ii) 
process management, (iii) recommendation generation and should do 
it continuously in harmony with the individual phases of RM designing 
scenario.

The overall conceptualization is driven by the notion of service-provisioning systems. The 
ARF provides recommendation services to support a designer in solving a design problem. 
The ARF needs to be built around a specific working scenario that has been derived from 
a hypothesized process model of designing a family of not purely logical or artificial 
intelligence-based reasoning mechanisms. As a means of depicting the support provided 
by the ARF the concept of (recommendation) services was utilized. It is shown graphically 
in Figure 3.2.
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Figure 3.2: The schematized process of designing ASRMs

3.2.5  Generic and specific services provided by the proposed 
active recommender framework

As an intellectualized software system, the ARF is a composition of various 
mechanisms,which provide service packages - dedicated to the various stages of the design 
process - for the designers of ASRMs. In our case the ASRMs are those constituting the 
intellectualized constituents of the APAS software system. An allembracingrepresentation 
of the fundamental concepts underlying the developed ARF is shown in Figure 3.3. The 
left upper quadrant of this figure specifies the service packages that are associated with the 
concerned stages of the systematized RMD process as well as the design process dependent 
service packages. The right upper quadrant shows the component services included in these 
service packages and those stages of the implementation of the RM that are not supported 
by the ARF at all. The lower quadrant specifies the service packages that include design 
process independent services, while the right lower quadrant shows the component services 
included in these service packages. This conceptualization provided the basis for the 
architectural specification, in which there was one mechanism assigned to each service 
package, and a respective number of functional modules were assigned to each module.

One set of services of the ARF is related to process monitoring. This captures information 
on (i) the actions of the designer(s), (ii) the application of computer aided design tools, and/
or (iii) the use of communication means. Another set of services concerns the support of 
actual design problem solving activities and the related decision making. The services for 
the other stages can be developed using the same principles.

Based on the above, the advisory services were sorted into two categories, namely: (i) 
process related recommendations, which deal with information and knowledge deficits 
within the information process, and (ii) content related recommendations, which 
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concern the development of the technical contents of ASRM algorithms. Content-
based services were defined to support the development of contents for the identified 
design sessions, which are: (i)problem formulation (PF), (ii) situation modelling 
(SitM), (iii) working principle exploration (WPE), and (iv) decision modelling (DeM).  

A problem formation is a process of identifying relevant information including 
objectives, constraints, assumptions, and contextual information and systematically  
organizing this information in the design space to determine a design problem. All of 
possible parameters should be considered as potential design variables. This allows for 
analyzing different possibilities to see the problem in a different context. A situation model 
is a logical representation of the interrelationship of the entities included in the defined 
problem. A situation can be inferred by the integrating and abstracting information about 
multiple events according to certain defined rules. In the situation modelling session, the 
ARF provides content-based recommendation for situation representation, situation 
analysis, and situation inference. 

For example, to represent a situation, the ARF provides a set of rules concerning how to 
separate a continuous stream of multiple situations of the real-life problem into a set of 
separated single situations, or to advise the designer on this segmentation. When the parking 
situation is sufficiently known, the next design session concentrates on the tasks of WPE. 
In order to solve the WPE problem, several procedural rules are to be operationalized. In 
general, it is possible to find multiple working principles for a particular situation. Thus, 
to find an optimal working principle, the possibilities are to be converted into a decision 
model, which can then be used in the computer supported decision making session. In 
general, decision-making is a cognitive process of finding the best option from multiple 
choices. 

The decision model was constructed in the form of a decision logic diagram. It can 
be seen as a network of decision points and actions. This representation allows the 
reasoning mechanisms to solve the particular problem. The optimal path of the network 
is selected as the best parking principle (strategy) in the course of making decision. 
In the circumscribed process, all conceptual elements will be converted into 
computational elements with a view to possible implementation of the reasoning mechanism.

For the second categories of services, which are process-based services, three packages 
were conceived. These are: (i) process monitoring, (ii) process management, and (iii) 
recommendation generation. Process monitoring includes three service components, 
namely: (a) event-based monitoring, (b) design process-based monitoring, and (c) dialogue 
management. Process management deals with capturing the information flow related to 
using the computer-aided software tool (more precisely, from the perspective of software 
execution). It offers three service components including (a) information management, (b) 
error management, and (c) communication management. Recommendation generation 
concerns three service components that are (a) solution provider, (b) advisory content 
provider, and (c) decision evaluation. In the conceptualization of an ARF, the focus of our 
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research was placed on those specific process monitoring and recommendation generation 
services, which are applied in the WPE session of the APAS development.

3�2�6 Goal of conceptualization
In the form of the ARF, we propose a knowledge-intensive system equipped with  
specialized process monitoring and design-support capabilities. As discussed above,these 
are the fundamental concepts of the ARF. The conceptualization was considered 
as the process of transforming the idea of the ARF into the testable concept. It should 
ensure that the technical specification satisfies all requirements. Thereby, the goal of 
conceptualization was to generate a testable blueprint of a limited, demonstrative part of 
the ARF which can support a particular stage of the development of ASRMs.To achieve this 
goal, two content domains were considered: (i) the development process,which included 
a high-level conceptualization of the ARF; and (ii) the technical contents, which are to 
demonstrate the concept in the application context.Domain knowledge about the design 
process of an APAS had to be explicitly specified. However, it had to deal not only with the 
provisioning of the technical contents, but also the changes in the design process. Capturing 
the procedural, content, and context changes make the knowledge contents dynamic.

The ARF operates as a smart assistant and, as such, it represents a specific subclass of 
context-aware recommender systems. The ARF has been conceptualized to be capable 
to communicate interactively with the designers and to participate in the execution 
of a concerned part of the design process whenever and wherever it is needed. The 
interoperation of two abovementioned mechanisms was needed in order to provide the 
required recommendation services. The process monitoring mechanism observes the 
design process in real-time and the decision support mechanism provides contextsensitive 
recommendation to solve the design problem at runtime. To demonstrate how the proposed 
concept works, it was tested in the application context. Towards this end, the WPE design 
session of the design process of an APAS was elaborated upon based on the set-up design 
scenarios.

3.3 Setting up a design scenario for an application- specific 
reasoning mechanism

3�3�1 Automated parking assist system – A practical case 
requiring application-specific reasoning

An automated parking assist system (ASAP) is a sub-class of driver assistant systems (e.g., 
collision avoidance assist system, maneuvering assist system, and adaptive cruise assist 
systems). It aims to offer the comfort and safety of parking for drivers. The range of the 
implementation of automatic operations of an APAS vary from information systems (e.g., 
solely distance control or parking space measuring) to fully autonomous parking assists 
(automated steering and speed control). To safely park a vehicle in a confined space, an 
APAS must perform numerous complicated tasks subject to various constraints including 
environment detection, steering, acceleration, braking, and gear shifting while moving the 
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car. It generally employs acoustic and/or radar distance sensors that detect the presence 
or absence of other vehicles and obstacles. This is a necessary condition to find a parking 
space and to complete safe parking maneuver. In line with the latest trends in vision-based 
technology, it can employ imaging sensors that are able to visualize the parking environment 
(for the driver/passenger).

The reasoning procedure for parking of an APAS starts with detecting obstacles in 
theenvironment of the concerned vehicle and finding a suitable parking space. Should 
the best parking space be found, it assesses the best approach of getting into that space 
by considering variables such as (i) the position and orientation of the vehicle, (ii) the 
direction of the parking lot, (iii) the planned motion path, and (iv) the capabilities of the 
vehicle to be parked. The reference motion path should be planned before performing the 
parking maneuvers. Then, the system navigates forward to reach a ready-to-park position. 
Finally, the parking maneuvers are executed by continuously estimating the changes in 
the state of the vehicle and by tracking the planned motion path as accurately as possible. 
These tasks are finished by interconnected sub-systems which are - as an example - shown 
in Figure 3.4.

The planning is the most crucial task in the reasoning process of an APAS. Initially, APASs 
were developed as semi-automated systems to park the vehicle for parallel parking, but 
recently systems for perpendicular and angled parking became available commercially. 
Many methods to tackle the motion path planning problem have been presented in the 
literature. They can typically be divided into two categories based on [3]: (i) stabilization of 
the vehicle to a target point, and (ii) planning a feasible path that connects initial and goal 
configurations. Most of the conventional methods carry out the path planning in two phases 

Figure 3.4: Components of an automated parking assist system (adapted from [2])
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[4]: (i) planning a geometric collision-free path without taking non-holonomic constraints 
of the vehicle into account, and (ii) performing sub-divisions on the path until all end points 
can be linked to their neighbors by an admissible collision-free path using a local planner.

The challenge in the development of the reasoning mechanism of an APAS is that it 
typically consists of multiple processes in different levels of thinking which works not 
only in geometric domain but also works in logical domain. Within the latter domain, 
a designer has to deal with intangible elements such as knowledge, algorithms 
and rationality based on the logic. A smart assistant for complex real-life task needs 
specialized reasoning which manifest in multiple various ways. A contextualized 
reasoning mechanism for an APAS is one of the examples. The following sub-sections 
set up a design scenario in particular WPE design session to demonstrate the concept and 
feasibility of the proposed ARF.

3�3�2 Procedural and computational implementation of 
working principle exploration

The stage chosen for technical elaboration in this research cycle is working principle  
exploration (WPE). In other words, it means finding the most effective motion trajectory 
for the car to be parked, considering a low level of maneuvering activities by the car and 
the maximum safety and reliability that can be achieved at all. There are several reasons 
behind this choice. The first reason why this stage was selected for detailing is that it is rich 
in design activities, which in turn raise the need for a sophisticated process monitoring. 
The second reason is that this stage implies the need for several services from the ARF 
to support process management. Actually, a remarkable complexity is faced when we 
consider the total number of support services needed to complete this stage and the number 
of computational functions needed to implement the related activities. The third reason is 
that it involves many decision points, which are purpose and context dependent.

In the process of developing a multi-mechanism solution for automated car parking, a 
designer must find or develop relatively most effective working principle for a given parking 
situation. For example, if forward parking is selected as a working principle, it means that 
there are various sets of maneuverings that satisfy the parking. The term ‘working principle 
exploration’ (WPE) is used to denote the procedure of construction of the motion plan and 
segmentation of the maneuvering activities. WPE considers the actual parking opportunity 
and situation, and provides information about the best trajectory (motion path of the car) 
to be followed and the physical parameters of maneuvering (speed, acceleration, ranges, 
stopping points, etc.).

For conducting the WPE design session, it is assumed that the parking situation has been 
analyzed and understood from spatial, temporal, maneuvering, technical, etc. points of view 
in the session focusing on situation analysis. A so-called ‘situation blueprint’ is generated, 
which provides information about the arrangement of the physical entities in the vicinity 
of the parking spot, including the layout of parking zone, the natural objects, the number 
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of neighboring parking cars, the spatial arrangement of parking cars, the geometry of the 
space that can be used for parking, the position of the car to be parked, the geometric sizes 
of the car to be parked, and the type (maneuvering capabilities) of the car to be parked. 
As well as, it is assumed to have information about the position and nature of possible 
(incidental) objects, if any.

Based on this input information and the expected output of WPE session, a designer can 
establish its own reasoning process. It should be kept in mind that this reasoning process 
will be implemented in the ASRM for an APAS. Thus, it should confirm that the process 
which works (semi-) manually at the time of design will work automatically and function 
correctly at runtime. Concerning the support of the designer by availing knowledge for 
modelling a reasoning process, our assumption is that an optimal motion path for parking 
is found based on the comparison of morphological structures of a current parking plan and 
past parking cases. As shown in Figure 3.5, the reasoning process consists of transformations 
of information in six sub-processes. It is seen as a reference model which corresponds to a 
design process.

3.3.3 Specification of the design tasks for working principle 
exploration

Basically, the major design activity of the reasoning mechanism development is the 
construction of algorithms for different computational problem-solving purposes. In the 
multi-stage process of reasoning mechanism design and in the process of implementation, 
the specific algorithms are integrated. A design process itself is regarded as a sequence 
of thinking-type and doing-type design actions, which are computationally interpreted as 
transformative events. A design task represents an element of the design process that a 
designer should complete in order to realize the process. In other words, the realization 
of the reasoning process is decomposed into a set of reasoning sub-processes - each of 
which is further decomposed into a sequence of design tasks. Using symbolic expressions, 
the relationships of the reasoning (sub-)processes and the design tasks can be formally 
described as follows:

 RsPi := {d1, d2, d3,… dk}      (3-1)

where: RsPi is a sub-process ith of reasoning process RsPi ∈ RP, i ∈ Ns, Ns is total number of 
sub-processes, d1, d2, d3,… dk ∈ Di is a sequence of design tasks belonging to RsPi and k is 
total number of design tasks for a completion of RsPi.

In the case of each reasoning sub-process, an essential design task is to construct the 
algorithms, which together can solve the problem of exploring the working principle 
(e.g., finding a motion path, or reducing the maneuvers) for parking in a real-life situation. 
The exploration of the working principle involves the completion of eight design tasks, 
which are shown in Figure 3.6, as elements of a workflow diagram. To accomplish any of 
these tasks requires one or more algorithms for the ARSM. These design tasks should be 
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completed at the time of design in order to 
assure that the reasoning process will work 
(automatically and without any deficiency) 
at runtime.

The description of design tasks are as 
follows: 

D
1.0

 Construction of an algorithm for 
searching for and retrieving past 
parking cases from the repository 
of the APAS concerning the actual 
parking situation (ASRM-Algorithm 
A01)

D
2.0

 Construction of an algorithm 
for extracting the morphological 
(topological, geometric, attributive) 
information structures from the 
N-appropriate parking cases 
(ASRM-Algorithm A02).

D
3.0

 Construction of an algorithm for 
comparing the topological sub-
structures of the motion paths of the 
past parking cases and selecting the 
most advantageous topological sub-
structures (ASRM - Algorithm A03). 

D
4.0

 Construction of an algorithm for 
calculation of the 2D spatial position 
and distances (between the entities) 
information structure (geometry) of 
the parking plan (ASRM-Algorithm 
A04)

D
5.0

 Construction of an algorithm 
for determining the geometric 
resemblance by comparing the 
relevant geometric sub-structures 
of the selected (topologically best 
matching) past parking cases with 
the geometric sub-structure of the 
parking plan, and selecting the most 
affine geometric sub-structure of the 
selected past parking cases (ASRM-
Algorithm A05)

Figure 3.5: Reasoning process concerning 
WPE session of the APAS
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D
6.0

 Construction of an algorithm for extraction of the attributive information sub-
structure (size information of the entities) of the parking plan (ASRM-Algorithm 
A06)

D
7.0

 Construction of an algorithm for determining the attributive resemblance by 
comparing the relevant attributive sub-structures of the selected (geometrically best 
matching) past parking cases with the attributive sub-structure of the parking plan, 
and selecting the optimally-matching motion path of the reduced past parking cases 
(ASRM-Algorithm A07)

D
8.0

 Construction of an algorithm for adapting the optimally-matching motion path of 
the reduced past parking cases to the parking plan by considering the attributive 
information sub-structure of the parking plan and providing a description of the 
adapted optimally-matching motion path cases (ASRM-Algorithm A08)

Figure 3.6:  Workflow diagram identifying the design tasks needed to accomplish the 
                      exploration of a proper working principle for a parking problem
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3�4 Fundamentals of conceptualization of the active 
recommender framework

3�4�1 On the duality of the active recommender framework 
development

 From the system design engineering point of view, the duality of the ARF development 
means that, on the one hand, it supports the development of the application-specific 
reasoning mechanisms and algorithms by offering recommendations for making correct 
design decisions. On the other hand, it supports the design actions made by the designers 
with continuous process monitoring and resolving obstacles in the design process by 
making procedural recommendations. More specifically, the ARF is characterized by two 
main capabilities, process monitoring and decision-support capabilities which offers a 
context sensitive recommendation to a designer. Hence, the manifestation of the ARF is 
done by the interoperation of two mechanisms, process monitoring and decision-support 
mechanisms. The process monitoring mechanism is responsible for observing the behavior 
of a designer through the entire design process and recognizing when the designer has a 
problem. The decision-support mechanism provides knowledge and recommendations to 
resolve the problem. 

Figure 3.7: Duality of the ARF development



117

From the knowledge engineering point of view, it concentrates on creating knowledge 
for the ARF. In the context of ASRMs, the knowledge is about the enablers of system-
level reasoning of S-CPSs. To develop an ARF, the domain-specific knowledge should be 
available when it is needed at any stages of designing ASRMs. This is considered as the 
duality of ARF development in term of the resembling knowledge of ARF and ARSMs. It 
means that knowledge in the ARF will be transformed into knowledge for the reasoning 
process of ASRMs. 

Considering the design task, it is a knowledge element of ARSMs to construct the algorithms 
which together to solve the real-life problem. For the ARF, it is supposed to know what is 
needed for designing these algorithms and include these knowledge elements into the ARF. 
Figure 3.7 illustrates the duality of ARF development. The design process of ASRMs can 
be seen as the knowledge modelling for the development of ARF.

3�4�2 Event management related to design actions by the 
active recommender framework

The major role of an ARF is to support a designer by making a recommendation when 
achieving the purpose of a design process is blocked (obstructed) for any procedural, 
informational, cognitive, or technical reason. To do this, the ARF observes an event which 
is the changes in the state of design process and reasons in context what a designer is 
doing at that moment. Theoretically, an event is derived by learning the differences of two 
subsequent states of an entity at different points in time and location with a combination of 
context information [5]. In order to monitor an event in the design process, two approaches 
are taken into a consideration. A simplified schematic diagram can be seen in Figure 3.8. 
One is a process-based monitoring which can be detected and monitored process flow 
within the observed system. Another is an activity-based monitoring which is observed in 
the changes of a designer’s behavior. 

A process-related event is captured by a change in the states of information flow in a system. 
For example, in the typical business process model, an event is detected by changes of the 
state of control flow and data flow [6]. This type of event can be inferred by collecting 
software execution data from log file [7]. Symbolically:

 evs
t   =  ∆(ss

t , ss
(t+n))       (3-2)

where: evs
t  represents a process-related event, which is detected by the deviation of state ss

t  
and state ss

(t+n) in an interval of time t and t+n, and n > 0.  

An activity-based event is detected and monitored by considering the changes in a designer’s 
behavior during the design process. This type of event  can  be  reflected  in  their body 
movements, for instance facial  expressions, and eye  movement [8]. When the changes in 
the two different states in behaviors are detected at a given moment in time, it could infer 
that an event in the design process is occurred. Symbolically:   
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 evd
t  = ∆(sd

t , sd
(t+n))      (3-3)

where: evd
t is an activity-based event, sd

t   and sd
(t+n) are designer behaviors, which are 

observable in an interval of time t and t+n, and n > 0. 

For the conceptualized ARF, an event management deals with the latter approach because 
the event is inferred to the cognitive process of a designer during the design process. Since 
an event has been detected, inferring the event with a context of a design process of ASRM 
will give a semantic meaning related to a design action. Symbolically:
 
 αt = infer(evd

t )       (3-4)

where: αt is a design action, which is inferred according to an event evd
t  .  

 
To monitor the design process, we classify an event into two main types, namely: (i) a 
usual event, which refers to a regular completion of the design action as expected by the 
design protocol, and (ii) a non-usual event, which refers to the fact that the completion of 
a design action deviated from the expectation of the design process protocol. For example, 
when a designer cannot progress in the design process (is procedurally, informationally, 
cognitively, or technically blocked with a design action), an event happens which indicated 
that the state of the designer is changing differently from what would be expected based 
on the design process. If there is an unusual event captured in whatever way, then decision 

Figure 3.8:  Simplified schematic diagram representing the event-based monitoring 
                   throughout the interaction of designer’s activities and system execution 
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on the type of recommendation should be made by the ARF and the actual content should 
be constructed accordingly. As an option, the designer busy with a design action may ask 
support from the ARF by making a note/query. This is an unusual event, which is recognized 
by a designer. The ARF can contribute to supporting the designer at performing the design 
process in various ways, which are discussed in the Section 3.4.3. The different ways of 
contribution by the ARF are regarded as the fundamental principles for conceptualization 
of the process monitoring mechanism of the ARF.

3�4�3 Typifying the ways of observation of non-usual events
The occurrence of an unusual event (a non-usual event – NUE) may become known in three 
ways: (i) based on the observation of the designer (Type A), (ii) based on an interaction 
between the ARF and the designer, and (iii) based on the investigation of the ARF (Type 
E). Since the designer and the ARF may have different (extents of) contribution to the 
observation and handling of the occurrence of an NUE related to the execution or results 
of a design action a NUE, three further cooperative types (Types B, C and D) have been 
distinguished. They are shown in Figure 3.9 and interpreted below.

Type A: An NUE is suspected or observed by the designer himself (that is, he recognizes 
that he cannot start (input issue), proceed (conduct issue), or complete (output 
issue) the design action at hand without the support of the ARF and initiates a 
dialogue with it towards a resolution of the situation.

Type B: An NUE is suspected or observed based on a smaller contribution of the ARF and 
a larger contribution of the designer (that is, the ARF observes some change in the 
designer’s behaviors e.g., change of body posture or face expression) and initiates 
a dialogue with the designer towards a resolution of the situation.

Type C: An NUE is suspected or observed based on a balanced (equal) contribution of the 
ARF and the designer (that is, the ARF recognizes something odd (e.g., a decisional 
error) and notifies the designer about it, and if the designer acknowledges it, then 
it initiates a dialogue with the designer towards a resolution of the situation.

Type D: An NUE is suspected or observed based on a larger contribution of the ARF and 
a smaller contribution of the designer (that is, based on the reference protocol, 
the ARF observes a deviation from it and makes a recommendation based on 
the available knowledge (e.g., offering a list of design tools, design methods, or 
related resources, but the final decision is made by the designer.

Type E: An NUE is suspected or observed by the ARF, which automatically makes 
a decision or execute a design action on behalf of the designer, without his 
involvement.

3�4�4 Recognition of a non-usual event
The fundamental of event recognition of the conceptualized ARF is based on an observation 
of the facial expressions of the involved designer. This approach was underpinned by the 
assumption that the designer will express the certain pattern of emotions on his face when 
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he has a problem in the design process. There were several publications on this phenomenon 
in the literature [8]. The observation of the facial changes is the starting point for the ARF 
to interact with a designer. A recognition of facial expression is the process of identifying 
human mental status from the expressions and cognition has human on his face  [9].

In general, the process of facial expression recognition consists of three main stages 
[10]: (i) face detection; (ii) facial feature landmark extraction; and (iii) facial expression 
recognition (FER) as shown in Figure 3.10. Face detection is the process that detecting 
human’s face through images. It typically focuses on deviating features of human faces 
from images without recognizing an individual person. The most widely used algorithm for 
face detection is Viola and Jones Haar-cascade [11]. Recently, commercial software (e.g., 
Amazon Recognition, Face++, and Azura Cognition Services Face API) as well as open 
sources (e.g., Deepface, FaceNet, and InsightFace) have been developed for face detection.

Within the detected face, facial landmarks for instance the eyes and eye corners, brows, 
mouth corners, and nose tips are detected. The internal face model is justified in position, 
size, and scale in order to match to the actual face. Feature landmark extraction is the process 
of extracting key information from the detected face as a basis of facial recognition. The 
feature extraction is usually done by one of two approaches [12]: (i) processing the whole 
frontal face in order to collect information for classifications of facial expressions or, (ii) 
dividing the whole face image into subordinate sections and processing each of them to get 
information that can be used as classification input. Once a simplified face model is available, 

Figure 3.9: Contribution of the ARF and a designer in an execution of design process of 
                    RMD
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Figure 3.10: Facial expression 
recognition process   [10]

the key features are selected including position 
and orientation information is fed as input for 
the feature classification. The machine learning 
classifiers are commonly used for this purpose 
e.g., multi-layer perceptron, SVM, Naïve 
Bayes, and k-NN.  

Convolutional neural network (CNN) is the 
state of the art in the deep learning algorithms 
for FER [13]. To train the facial expression 
recognition algorithms, two types of input 
images are used. One type is the learning 
image using which classifiers are trained to 
recognize any pattern. Another one is input 
image on which the learned classifier is 
tested. The collection of images can be taken 
from various databases for instance Google 
Face dataset, CASIA-Webface, and Labelled 
face on the wild (LFW) database. The facial 
expressions are classified into eight categories, 
which include: (i) anger, (ii) disgust, (iii) fear, 
(iv) happiness, (v) contempt, (vi) neutral, 
(vii) sadness, and (viii) surprise. In addition, 
there has been a proliferation of commercial 
tools for FER solution available in the software market. In [14], the authors compared the 
performances of eight commercial software tools (for instance CrowdEmotion, MorphCast, 
and Human Observers). 

3�4�5  Interaction of the active recommender framework and 
the designer in the targeted segment of the design 
process

The fundamental for a conceptualization of this part was using a human-machine 
interaction method through a dialogue. This aims at exploring the possibility of solving a 
problem in a design process which a designer may not have recognized by themselves. A 
dialogue is activated when an unusual event is detected. It starts with inviting a designer to 
a dialogue by offering help. If the designer accepts this offer, the ARF possess a question 
what design action a designer is working on. With domain-specific knowledge stored in 
the repository, the ARF contextualizes the available knowledge with the considered design 
process.  When the current design action is recognized, the information including a set of 
questions, decision table, and contents of design action is retrieved. The set of questions is 
designed related to this particular design action which is about trying out the given search 
program. The dialogue will be organized to collect the current states of design action. The 
flow of questions is controlled based on pre-defined orders according to a certain design 
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action. The ARF communicates with 
a designer in textual or verbal forms 
(in the latter case, using natural 
language processing) and captures 
the patterns of replied answers by a 
designer.  

The goal of the interaction process 
between the ARF and the designer is 
to find out the solution to eliminate 
the obstacle at the current design 
action. The solutions were defined 

contents pattern 1 pattern 2 pattern n
criteria 1 yes no yes
criteria 2 no yes yes
criteria 3 no yes no
criteria 4 yes no no
solution A x
solution B x
solution C x

Table 3.1: Simplified structure of a decision table

according to the patterns of decision criteria used in the historical cases as shown in Table 
3.1. If the best match between the pattern of replied answers and the decision criteria in the 
decision table is found, the corresponding solution would be retrieved. However, it might 
be the case that the matched pattern could not be found. It can be assumed that the cause of 
obstacle would be occurred in one of the preceding design actions. This implies the need 
to investigate the procedural obstacle in the design process using the reference process 
protocol.

3.4.6 Principle definitions of a reference protocol and its 
constituents

The protocol of the design process (e.g., of all design actions) is supposed to be known by 
the ARF in the form of a computational model, or part thereof, called reference process 
protocol (RPP). On the one hand, the design protocol is seen as the basis for the design 
guideline by which the ARF provides information and instruction for the designers 
concerning the approach of dealing with the entire set of the design tasks and the included 
individual design tasks, at the beginning of the design session. This will not be elaborated 
in our work. On the other hand, the design protocol serves as a reference process protocol 
for the ARF to monitor the design actions done by the designer as well as the results of 
the completed design actions in the process of designing. If the observed execution of the 
design actions or the data processed by the executed design actions deviate from what is 
captured in the reference process protocol, the ARF may infer about the occurrence of an 
unusual event. 

The principled definitions of a reference protocol and its constituents will be in this section 
as follows:

Definition A: Reference process protocol (RPP)

A reference process protocol is a prescriptive instrumental model of a design process, or 
part thereof, established by three constituents, formally:

 RPP = {TAM,PFM,DTM}     (3-5)
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where: TAM is a timed (design) actions model, PFM is a process flow model, and DTM is 
a decision tree model. From an information engineering point of view:

 RPP =  TAM ∪ PFM ∪ DTM     (3-6)

where: ∪ is symbolic union. The RPP is a network of design actions and a set of decision 
points. A protocol is a system of rules or procedures that allow two or more design actions 
creates their relationships. It captures the pattern of the design processes and their expected 
outcomes. 

Definition B: Timed action model (TAM)

A timed action model is a finite non-zero set of design actions together with their input and 
output (parameters) variables. A TAM is represented as a split matrix, whose half matrices 
are arranged according to the temporal sequence of design actions, and captures the input 
parameters and output parameters (computational variables) with regard to each design 
action. Formally:

 TAM = {α, ts, te, m(αP(in,m),αP(out,m))}    (3-7)

where: DA is a finite, non-zero set of design actions, ts is the start point in time of αi ∈ DA, 
te is the end point in time of αi, m is a finite, non-zero set of the alternative methods of 
computational execution of αi, αP(in,m) is a finite, non-zero set of input design parameters 
related to a particular m, and αP(out,m) is a finite, non-zero set of output design parameters 
related to a particular m.

Definition C: Process flow model (PFM) 

A process flow model (PFM) is a state-transition model of design process, including a 
finite, non-zero set of the process flow elements representing the design actions as 
computational transitions and the input and output states of the design actions represented 
by the (evaluated) values of the design parameters (variables).

For the purpose of computation, a process flow model is represented as a petri net, which 
is a bipartite directed multigraph consisting of two different types of nodes formed by 
(i) the set of transitions, associated with design actions, Tα, and (ii) the set of states of 
design actions, Sα. With these dispositions, a process flow model (PFM) can be expressed 
symbolically as:

 PFM = {Tα, Sα, W, M}      (3-8)

where: Tα is a finite, non-zero set of computational transitions related to design actions α,  
Sα is a finite, non-zero set of process states, W is a finite, non-zero set of relations among 
the elements of the set Tα, and the elements of the set Sα, represented as arcs of a bipartite 
directed multigraph process model, and M is a finite, non-zero set of markings. The PFM 
captures the pattern of the design actions and their expected outcomes. 
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Definition D: Decision tree model (DTM)

A decision tree model is defined as a computational means, which allows decision making 
on the relevance of a computational transition related to design action α ∈ DA and the 
computational method, m ∈M. Computationally, a DTM is a classifier algorithm for 
finding a proper method of a computational execution of design actions 
 
 DTM = {w, Mα, R}      (3-9)

where: α represents a design action, w is a finite set of decision variables, M is a finite set 
of potential computational methods for an execution of design action, and R is a finite set 
of decision rules. 

3.4.7 Modelling the design activity flow by a reference 
process protocol

The network of design actions is a representative of a reference process protocol (RPP). 
In other words, it can be seen as a process model based on which a framework developer 
models (the part of) of the reasoning mechanism development process. In the design process 
of RMD, the procedural structure of the design process formed by the design actions can 
be captured in and modelled by the RPP. It provides a complete specification or design 
procedure to be followed to complete the design process. Based on the relationships of 
design actions in the RPP, multiple pathways can be created for a development of ASRMs.

In order to explore the possible design flows within the RPP, the causal relationships of 
design actions are constructed by Bayesian network (BN). It is a probabilistic graphical 
model which represents in a directed acyclic graph. A graph consists of a set of nodes and 
a set of directed edges between nodes. In context of the RPP, a node represents a design 
action. An edge connects nodes in the direction of influence to create a design flow. A 
BN plays a role in a decision support to select the best coupled design actions based on 
the probabilistic reasoning. It is possible that multiple usable methods are available to 
execute the considered design action. A decision tree model will be applied to select the 
best option. The probabilistic reasoning incorporates with decision tree models can infer 
the most informative design flow.

A graphical representation of conceptualization of an RPP is shown Figure 3.11. A rectangle 
box represents a process flow model. The circles and shaded/rounded rectangles in a process 
flow model represent a state and a transition, respectively. A dot line represents a composition 
relationship between two subsequent design actions. A black diamond represents a decision 
tree model for every decision point. A sequence of design actions in the network shows 
their temporal relationships. The variable pi is a probabilistic relationship of design actions. 

The design activity flow is represented by a sequence of design actions. Formally:

 P := {αi,αj,αk,…,αn}      (3-10) 
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where: P is a design activity flow, and αi ∈DA.

3�4�8 Generation of recommendation in the case of type B 
observation of non-usual events

The goal of recommendation generation is to propose the most proper design activity 
flow which can rectify the conducted design actions and continue the design process 
when it is blocked. Two types of inference methods are applied for the generation of 
recommendations: (i) exact inference method which finds the perfect match between the 
pattern of designer’s answers and the patterns of decision conditions which are pre-defined 
in the lookup table, and (ii) hybrid inference method which utilizes the RPP based on the 
incorporation of probabilistic reasoning and decision tree models. The generic workflow of 
the recommendation generation in case on type B observation of non-usual event is shown 
in Figure 3.12. 

Since the ARF recognizes a non-usual event, the process of recommendation generation 
follows these steps: 

Step 1:  notify a non-usual event,
Step 2:  identify the current design action, 
Step 3:  organize a dialogue,
Step 4:  capture the pattern of answers replied by the designer,

Figure 3.11: Conceptualization of a reference process protocol
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Figure 3.12: Generic workflow of the recommendation generation in the case of  
                    NUE type B 
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Step 5:  execute the pattern matching of designer’s answers and decision criteria in the 
lookup table, if the best match found, retrieve the best solution then go to step 
10, otherwise go to the next step,

Step 6:  investigate backward in the RPP to find the proper design action by using 
probabilistic reasoning,

Step 7:  infer the potential design flow which includes (i) preceding design action, (ii) 
current design action, and (iii) next design action,

Step 8:  select the proper method to execute the identified design action, if there are 
multiple choices of usable method then apply a decision tree to select the best 
one, otherwise go to the next step,

Step 9:  generate the process-based recommendation,
Step 10: generate the advisory contents for the recommendation,
Step 11: present the recommendation,
Step 12: evaluate designer’s decision on the proposed recommendation.

As a result, the process-based recommendation is constructed in form of the design activity 
flow which can be found in the RPP. Each of them involves the proper usable method to 
perform the design process.  For example, the proposed process-based recommendation is 
shown by the sequence of design actions and their connections with the full lines in Figure 
3.11.

3.5 Functional specification of the computational 
operations in the case of type B observation of non-
usual events

The ARF is a multi-mechanism software system. The included mechanisms, which provide 
context-sensitive services for a designer, have specific functionalities. According to NUE 
type B, the computational mechanisms of the ARF are decomposed into six main functions 
included: (i) F1.0 – to recognize NUE based on a designer’s facial expressions; (ii) F2.0 – to 
identify an obstacle at a certain design action using a dialogue; (iii) F3.0 – to construct a 
reference process protocol; (iv) F4.0 – to identify a procedural obstacle in a design process 
using a reference process protocol; (v) F5.0 – to generate an advisory content; and (vi) F6.0 
– to evaluate the quality of recommendation. The decomposition of the sub-functions is 
shown in Figure 3.13. The requirements considered at the specification of functionalities 
were identified in Chapter 2. Below the specified functions are explained with more 
technical details. 

3.5.1 Functional specification for recognition of non-usual 
event based on a designer’s facial expression

The main function F1.0 is to recognize a non-usual event based on the facial expression of the 
designer. The function was specified based on the requirements FR-M02 - the mechanism 
should recognize doubtful (unexpected) events in the design sessions in quasi-real time. To 
realize this function, the sub functions were specified according to the regular process of 
face recognition and the notification function.
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This includes the following six sub-functions. The sub-function F1.1 is to capture video 
image. It is an input sub-function, which activates a device and captures a designer’s image 
from a video camera. The sub-function F1.2 detects a designer’s face in the video image. The 
captured image is preprocessed in order to highlight the face region.

Normalization and equalization were performed on the original images. Since the face 
region was detected, it is registered into the database. The sub-function F1.3 is to extract facial 
landmark features as input for training a machine-learning algorithm. The sub-function 
F1.4 applies the machine-learning model to classify the certain type of facial expressions. 
The sub-function F1.5 learns the patterns of facial expressions and predicts an event. If the 
designer shows the pattern of facial expressions which are defined as a non-usual event, the 
sub-function F1.6 concludes about a non-usual event and notify the designer about it.

3.5.3 Functional specification for a construction of reference 
process protocol

A reference process protocol is considered as a content-oriented model for an investigation 
of the intended design process. It can be seen as a network of design actions and decision 
points. A decision point is not only a terminal node of preceding action, but it is also a node 
initiates follow up actions. The objective of this function F3.0 is to construct a reference 
process protocol with the composition of three constituent elements includes process flow 
models, a timed action model, and decision tree models. The sub-functions are related to 
the creation of these constituent elements and management of their knowledge.

The main function is decomposed into seven sub-functions. The sub-function F3.1 is to 
create a data model representing design action. The model is a computational representation 
of design action called as a design entity. Each entity contains the specific information 
which is distinct from each other. After modelling the design actions, the sub-function 
F3.2 establishes a repository to store the collect of design entities and related knowledge 
elements. The sub-function F3.3 is to create a representative of process flow model. To 
identify the temporal relationships of the design entities, the sub-function F3.4 creates a 
sequence of design tasks and assigns a design entity to the certain design task. Based on 
the relationships of design entities, the sub-function F3.5 constructs a timed action model. 
The sub-function F3.6 is to construct a decision tree model. Lastly, all three elements are 
consolidated by the sub-function F3.7 to compose a reference process protocol.

3.5.4 Functional specification for an identification of 
procedural obstacle in a design process

The goal of this main function is to find the most appropriate sequence of design actions to 
generate the process-based recommendation. The conducted design actions can be rectified 
by the proposed design actions. The next design action is predicted to continue the design 
process. The reference process protocol is used to investigate the considered design process. 
To achieve this goal, the main function is decomposed into seven sub- functions. Once the 
current design action was identified, the sub-function F4.1 aims at exploring the possible 



129

Fi
gu

re
 3

.1
3:

 F
un

ct
io

na
l d

ec
om

po
sit

io
n 

of
 th

e A
RF



130

sets of process flow models representing the design process in context. It steps back to 
investigate in the RPP to find the possible design actions which produce an input data for 
the current design action. The sub-function F4.2 determines the probabilistic relationships 
of elements in the candidate PFMs and selects the optimal one. Here, the PFM representing 
the amended actual design flow is available.

The sub-function F4.3 applies a decision tree model to select the proper method for each 
design action. The output of this function is the best combination of the current design 
entity and its preceding one. To ensure that all required input-output data is available for the 
coupled design entities, the sub-function F4.4 checks the reachable conditions of states and 
transitions of the PFM. As a next step, the sub-function F4.5 selects the next design action 
based on the probabilistic relations in the RPP. At this point, three design entities (i.e., 
the proposed current design action, its preceding and next ones) and their proper usable 
methods are specified. The sub-function F4.6 generates a proposal to continue the design 
process. A proposal is a basis for the generation of process-based recommendation which 
includes the abovementioned elements. To ensure that all required data is available when 
it is needed, the sub-function F4.7 checks the completeness of information flow throughout 
the recommended design flow.

3.5.5 Functional specification of generation of advisory 
content

The advisory content is a part of the content-based recommendation. It provides an 
informative document related to the proposed design flow and its elements. The generation 
of advisory content function aims at finding the most informative contents to support the 
exaction of the design process and presenting them in meaningful media. The fundamental 
concept for the generation of advisory contents is related to information retrieval. The 
main function is decomposed into seven sub-functions. The sub-function F5.1 pre-processes 
knowledge to generate a recommendation item. It extracts the main contents from a 
knowledge source based on the identified terms, processes the most relevant contents, and 
converts them into a document as a recommendation item.

The sub-function F5.2 establishes a repository of recommendation items. It is a specific 
location to store the recommendation items. Here, the collection of items is available. Since 
the proposal is generated, the sub-function F5.3 explores the possible recommendation items 
to support the utilization of process-based recommendation. If there are multiple choices 
of recommendation items, the sub-function F5.4 selects the best one which provides the 
most informative contents and navigates the designer to the knowledge source. Lastly, 
the sub-function F5.5 consolidates all required contents and constructs them in the human-
understandable format.

3.5.6 Functional specification for an evaluation of the quality 
of recommendation

The function for an evaluation of the quality of recommendation aims at examining 
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the quality of recommendation from the perspective of the designers. The process of 
recommendation generation works in a closed loop. The feedback from the historical 
activities of the designer will be used to recalculate the impacts on the recommendation 
item selection. The results from the evaluation of the designer’s decision are also used to 
improve the performances of recommendation generation engine. Four sub-functions are 
specified. The sub-function F6.1 captures the designer’s responses on the recommendation. 
It is possible that the designer does not accept the proposed recommendation provided by 
the ARF. Two approaches are applied to capture the decision made by the designer: (i) 
providing the form-based user interface to directly obtain information from a designer; (ii) 
determining the deviation between the proposed item and the alternatives.
 
Based on two sources of information, the sub-function F6.2 determines the impact factors 
of the designer’s decision on the recommendation. The sub-function F6.3 determines the 
performances of recommendation. Various metrics can be used e.g., perceived accuracy, 
novelty of recommendation, coverage of recommendation, and time-saving. To this 
end, the sub-function F6.4 determines the overall performances of the recommendation 
generation. It takes both the impact factors from the designer side and the performances of 
recommendation engines into the consideration.

3�6 Allocation of functions to architectural constituents

3�6�1 Reasoning about the allocation of functions to 
architectural constituents

Software mechanisms are the highest-level architectural constituents. They implement 
several operations in order to provide services. A software mechanism includes multiple 
software modules. A module is an abstraction of interrelated software components that 
serve for a specific purpose. Every lower-level element works to accomplish some higher-
level goals. A component includes a set of interrelated algorithms to realize its functions. 
This hierarchical decomposition makes the architecture of the ARF rigorously ordered 
and staged transition from the highest-level specification to lowest-level implementation. 
Designing an appropriate architectural structure of the ARF is important to meet the 
requirements for functional specification, interaction of designer, and allocation of 
computational components.

According to the requirements SR-F01, and SR-F02, the highest-level modules are 
constructed by one-to-one connection of the main functions of the ARF. They are either 
for process monitoring or for supporting decision-making related to the development of 
ASRM algorithms. Figure 3.14 shows the system-level architecting of the ARF, included 
the user interfaces. The process monitoring mechanism comprises three modules, namely: 
(i) module 1.0 – non-usual event detector (NUE-D); (ii) module 2.0 – dialogue-based 
obstacle identifier (DOI); and (iii) module 4.0 - reference protocol-based obstacle identifier 
(ROI). The design support mechanism has three modules: (i) module 3.0 – reference 
process protocol creator (RPC); (ii) module 5.0 – advisory content generator (ACG); 
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and (iii) module 6.0 – quality examiner (QE) module. The technical specifications of the 
architecting module were given in the following sections.

3.6.2 Architectural specifications of process monitoring 
mechanism 

The overall architecture of the mechanism performing the process monitoring functionality 
is shown in Figure 3.15. It consists of three modules which were designed following the 
requirements SR-M01 and SR-M02. The NUE-D module implements the function F1.0 to 
notify a design when a non-usual event is recognized. The DOI module implements the 
function F2.0 that allows the ARF to gather some required information about the current 
design action and to investigate the current state of design action by creating a dialogue. 
The ROI module performs the function F4.0 to investigate the design process by using the 
RPP. The following sub-sections discuss the sub-module level.

3.6.2.1 Architectural specification of non-usual event  detector 
module 

The non-usual event detector (NUE-D) module observes the designer’s facial expressions, 
monitors an event based on the patterns of facial expressions, and notifies a designer if a 
non-usual event is recognized. The NUE-D module is composed of four interrelated sub-

Figure 3.14: System-level architecting of the ARF for handling NUE type B
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modules: (i) the face detector; (ii) the facial feature manager, (iii) the designer’s behavior 
analyzer, and (iv) the event manager. The face detector sub-module connects to the video 
camera in order to obtain video images and capture the designer’s face. It implements 
the computational operations which analyzes the area of face in the captured image and 
registers it the computable format. Two sub-functions are allocated to this sub-module 
including F1.1 (capturing video images), and F1.2 (detecting a designer’s face).

The facial feature manager sub-module deals with the data and information about the 
features of faces and facial expressions including an extraction of facial landmark features, 

Figure 3.15: Architecture of process monitoring mechanism
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a selection of the key features, and storing the features. This sub-module performs the sub-
function F1.3 and organizes the collections of facial expressions, and their features which 
are stored in the database. The designer’s behavior analyzer sub-module is dedicated to two 
sub-functions F1.4 (classifying the facial expressions), and F1.5 (predicting an event). If an 
irregular pattern is found, the event manger sub-module receives the pattern and finds the 
best match in the database. This sub-module performs the sub-function F1.6 to conclude an 
event and send a notification message to a designer. 

3.6.2.2 Architectural specification of dialogue-based obstacle 
identifier module

The dialogue-based obstacle identifier (DOI) module comprised three interrelated sub-
modules: (i) the design action identifier; (ii) the knowledge manager; (iii) the dialogue 
manager. The computation process of this module transforms the information from a 
designer to the best solution based on the exact inference. The design action identifier sub-
module implements the computational components for a realization of two sub-functions, 
F2.1 (to activate a dialogue) and F2.2 (to identify an actual design action).

The knowledge manage sub-module is dedicated to three sub-functions including F2.3 (to 
organize knowledge elements), F2.4 (to handle the patterns of decision conditions), and F2.5 
(to retrieve the questions). This sub-module organizes the formal knowledge and context 
information related to the design action. It provides the knowledge elements as input 
data to the dialogue management sub-module. This sub-module uses the knowledge to 
contextualize the current state of design action. It organizes a dialogue and infers the best 
solution. Thereby, two sub-functions are allocated to this sub-module, which are F2.6 (to 
organize a dialogue) and F2.7 (to conclude the best solution). The expected output of the 
whole module is the proper usable method for the rectification of the actual design action.

3.6.2.3 Architectural specification of reference protocol-based 
obstacle identifier module  

The reference protocol-based obstacle identifier (ROI) module performs the main function 
F4.0. From the architecture point of view, this module contains the main functional and 
computational elements which are considered as the main contribution of our research. The 
expected output is the proposal for solving the procedural obstacle in the design process. 
Three interrelated sub-modules are organized to implement seven sub-functions. The 
context sensitive design process identifier sub-module is dedicated to two sub-functions 
including F4.1 (to explore the possible set of preceding design entities), and F4.2 (to identify 
the best representative of the actual design flow).

The inference engine sub-module performs the hybrid inference in order to find the most 
proper design entities and their usable methods. These elements are input for generating a 
proposal. Three sub-functions are assigned to this sub-module, which are the sub function 
F4.3 (to select the usable method), F4.4 (to check the reachable conditions of a PFM), and 
F4.5 (to predict the next design entity). The obstacle resolver sub-module constructs the 
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elements necessary to create the most informative process flow model and to investigate 
the coverability of the model. This sub-module performs two sub-functions, which are: F4.6 
(to generate a proposal), and F4.7 (to check the completeness of information flow through 
the model).

3.6.3 Architectural specification of decision support 
mechanism

The overall architecture of the decision support mechanism comprises three modules 
as shown in Figure 3.16. It aims at performing the decision support functionality. Each 
module is dedicated for the main function. The CRP module is dedicated to the function 
F3.0 to construct a reference process protocol. The ACG module is allocated to the function 
F5.0 to create an advisory content for the content-based recommendation. The QE module 
is dedicated to the function F6.0 which is for the evaluation of the recommendation. The 
detailed descriptions of the sub-modules are given in the following sections.

3.6.3.1 Architectural specification of reference process 
protocol creator module

The reference process protocol creator (RPC) module is the core component of the decision 
support mechanism. It comprises four interrelated sub-modules: (i) design entity modeler; 
(ii) process flow model configurator; (iii) timed action model builder; and (iv) reference 
process protocol creator. The design entity modeler sub-module deals with the organization 
of knowledge elements related to a design action. It builds a design entity model for 
handling knowledge contents representing a design action. This sub-module serves for the 
realization of the sub-function F3.1 (building a data model) and F3.2 (establishing a repository 
of data models). 

The process flow model configurator sub-module builds a state-transition model to 
represent a process flow model. It employs the structure of a Petri net model to classify 
the configuration of PFMs. The sub functions F3.3 (to represent a process flow model is 
assigned to this sub-module. The timed action model builder sub-module plans to devise 
the two sub-function F3.4 (sequencing design tasks) and F3.5 (constructing a TAM). Lastly, 
the RPP representation creator sub-module is dedicated to two sub-functions including F3.6 
(to build a decision tree model) and F3.7 (to compose of a reference process protocol). The 
expected output of the whole module is a representation of an RPP.

3.6.3.2 Architectural specification of advisory content 
generator module

The advisory content generator module is composed of three interrelated sub-modules: 
(i) recommendation item generator; (ii) recommendation item manager; and (iii) 
advisory content provider. The module consolidates the relevant contents for generating 
the comprehensive recommendation. The recommendation item sub-module is the 
computational operation of processing knowledge contents. It is dedicated to the sub-
function F5.1 (to create a recommendation item). The recommendation item manager sub-
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module serves the sub-function F5.2 (to establishes a repository of recommendation items). 
The advisory content provider sub-module finds the most information for the advisory 
contents and presents the comprehensive recommendation. Three interrelated sub-
functions are planned to allocate to the sub-module, which are F5.3 (to explore the possible 
recommendation items), F5.4 (selects the best recommendation item), and F5.5 (conclude the 
comprehensive recommendation).

3.6.3.3 Architectural specification of quality examiner module

The quality examiner module comprises three interrelated sub-modules: (i) designer’s 
decision reviewer; (ii) performance calculator; and (iii) performance evaluator. The 
ultimate goal of this module is to obtain the feedback designer’s decision on the quality 
of recommendation. The designer’s decision reviewer sub-module intends to serve two 

Figure 3.16: Architecture of decision support mechanism
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sub functions including F6.1 (to capture the designer’s responses), and F6.2 (to determine 
the impact factors of the designer’s decision). The performance calculator sub-module 
is reserved for the sub-function F6.3. Lastly, the sub-function F6.4 (evaluate the overall 
performance) is allocated to the performance evaluator sub-module. 

3.7 Allocation of algorithms to the specified architectural 
constituents

The functionality of the modules has been realized either by adapting existing algorithms 
or by developing a set of new algorithms. Basically, an elementary function or a group of 
elementary functions is executed by an algorithm. In the case of complicated interrelated 
elementary functions, typically more than one algorithm or a purposeful composition of 
them is needed. It is an advantage that some existing algorithms can be reused without 
any change or can be adapted for differing functions. Not only structural integration of the 
algorithms, but also their harmonization in the time dimension is important. All specified 
algorithms, which are discussed in this section, concern and belong to the case of type B 
observation of NUEs.

3�7�1 Allocation of algorithms to the non-usual event detector 
module

Eight algorithms are required for the realization of the functionality for facial expression 
recognition (FER). They are listed in Table 3.2. These algorithms are interrelated to detect 
an unusual event in the design process. It could assume that a designer shows the identified 
facial expression during the execution of a design process. ARF Algorithm A1.01 captures 
video images from a video camera. ARF Algorithm A1.02 is a face detection algorithm. 
The Viola-Jones cascade classifier can be employed for this task. Algorithm A1.03 registers 
the detected face into a database. These three algorithms are interrelated. Thus, they are 
assigned into the sub-module1.10 (face detector). Two algorithms, A1.04, and A1.05 deal 

FN. required algorithms sub-module

F1.1 A1.01: video image capturing 
sM1.10F1.2 A1.02: face detection

A1.03: face registration
F1.3 A1.04: facial feature extraction 

sM1.20
A1.05: feature selection

F1.4 A1.06: classification of facial 
expressions  

sM1.30
F1.5 A1.07: recognition of the patterns of 

facial expressions
F1.6 A1.08: Notify an NUE based on the 

pattern of facial expression sM1.40

Table 3.2: Allocation of algorithms to the NUE-D modulewith the features. They are 
allocated to the sub-module 
(facial feature manager). The 
algorithm A1.04 is facial 
feature extraction algorithm. 
The output of feature 
extraction algorithm contains 
separable and classifiable 
vectors. Several algorithms 
for feature extraction can be 
applied for instance, Gabor 
filters, Susan algorithm, 
and K-mean clustering. The 
algorithm A1.05 is feature 
selection algorithm. 
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Two algorithms,  A1.06 and A1.07, are interrelated in the process of recognition of facial 
expressions. They are devised to implement in the sub-module 1.30. The algorithm A1.06 
is the ML-based feature classifier. The algorithm can be trained to follow one of the face 
recognition approaches which were mentioned in the literature. For validation the algorithm 
A1.06, several standard databases can be used (e.g., Cohn-Kanade dataset, T-FED, and ILF). 
They store a collection of images which represents eight primary different facial emotional 
expressions including neutral, anger, happiness, fear, contempt, surprise, sadness, and 
disgust. The algorithm A1.07 applies the learning algorithm to learn the pattern of facial 
expressions of a designer at runtime during an execution of design process.

When an irregular pattern of the facial expressions is detected, the algorithm A1.08 matches 
that pattern and the identified patterns which are stored in the database to recognize an 
indicator of a non-usual event. It is solely implemented in the sub-module 1.40 (event 
manager). A designer will receive a notification message according to the recognized NUE 
from this sub-module. However, if the best match cannot be found, then the notification is 
sent regularly to the designer and the service is offered. It is the automated verification of an 
unknown event. If the designer accepts the offer, the irregular pattern will be recorded and 
recognized as a non-usual event. Otherwise, it will be stored and classified as a suspicious 
event to be verified. 

3�7�2 Allocation of algorithms to the dialogue-based obstacle 
identifier module

The realization of the main function F2.0 required eight algorithms, as shown in Table 3.3. 
The Algorithm A2.01 activates the dialogue. It aims at inviting a design to provide the 
information about the design process. At the beginning, the algorithm provides information 
about the services and poses the very first question. A form-based user interface is used 
for this purpose. Algorithm A2.02 obtains context information from the designer. This 
information is contextualized with the available knowledge identify the current design 

FN. required algorithms sub-module
F2.1 A2.01: activate a dialogue  

sM2.10F2.2 A2.02: identify a current design 
action

F2.3 A2.03: construct a knowledge 
repository of design 
entities sM2.20

F2.4 A2.04: construct a decision matrix
F2.5 A2.05: retrieve a set of questions
F2.6 A2.06: organize a dialogue 

sM2.30
F2.7 A2.07: execute pattern matching 

Table 3.3: Allocation of algorithms to the  DOI  module
action. These two algorithms 
are planned to implement in the 
sub-module 3.10 (design action 
identifier). 

Three algorithms are related to 
the organization of knowledge 
elements including algorithm 
A2.03, A2.04, and A.2.05. They 
are allocated to the sub-module 
3.20 (knowledge manager). 
The algorithm A2.03 constructs 
a knowledge repository of 
design entities. The knowledge 
elements contain the profile 
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of design entities, a collection of questions, and the lookup tables. The algorithm A2.04 
converts a lookup table into the computable matrix and algorithm A2.05 retrieves the most 
relevant set of questions. The outputs of these three algorithms are used at the execution of 
the sub-module 3.30 (dialogue management). It is planned to implement two algorithms for 
the realization of F2.6 and F2.7, which are A2.06 (organize the dialogue) and A2.07 (execute 
pattern matching).

3�7�3 Allocation of algorithms to the reference process 
protocol creator module

The RPC module is dedicated to the main function F3.0. For the realization of this 
functionality, the planned implementation of the module including thirteen interrelated 
algorithms as listed in Table 3.4. Two algorithms, A3.01 and A3.02 are allocated to the sub-
module 3.10 (design entity modeler). The algorithm A3.01 builds a data model representing 
a design action. The algorithm A3.02 organizes the data models and their related knowledge 
elements. To build a process flow model, a design entity is a primary element for building a 
process flow model. The algorithm A3.03 is designed to perform the function F3.3 (construct 
a PFM). For a development of algorithm A3.03, it could be modified based on the Petri net 
modelling algorithms. The algorithm A3.04 classifies the configuration of the process flow 
models. These two algorithms are assigned to the sub-module 3.20 (process flow model 
configurator). 

When building a timed action model, two functions, F3.4, and F3.4, were taken into account. 
Thereby, five interrelated algorithms, A3.05, A3.06, A3.07, A3.08, and A3.09, were assigned 
to the sub-module 3.30 (timed action model builder). The algorithm A3.05 arranges the 

Table 3.4: Allocation of algorithms to the RPC module

FN. required algorithms sub-module
F3.1 A3.01: modelling a design action  

sM3.10
F3.2 A3.02: generation of a repository of design entities
F3.3 A3.03: construction of the petri-net-like model 

sM3.20
A3.04: net configuration identifier

F3.4 A3.05: sequencing design tasks

sM3.30
A3.06: classification of entity2task

F3.5 A3.07: construct a matrix to handle relations of d-entities
A3.08: construct a matrix to handle composition relations of d-entities
A3.09: timed action modelling

F3.6 A3.10: train a decision tree classifier

sM3.40
A3.11: d-tree induction

F3.7 A3.12: assemble a reference process protocol 
A3.13: graph construction to represent a reference process protocol
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sequence of the design tasks for a particular design process. The algorithm A3.06 classifies 
a design entity to the relevant design task. The algorithm A3.07 identifies the temporal 
relationships of design entities according to the sequence of design tasks. The algorithm 
A3.08 identifies the compositional relationships of design entities. The algorithm A3.09 
constructs the timed action model based on the identified relationships of design entities. 

The implementation of the reference process protocol creator sub-module needed four 
interrelated algorithms. The first two of them were algorithms A3.10 (decision tree induction 
algorithm), and A3.11 (training the classifier algorithm). The other two algorithms were 
A3.12 for assembling the elements of the reference protocol, and A3.13 for construction of 
the graph that represents the reference protocol.

3�7�4 Allocation of algorithms to the reference process-based 
procedural obstacle identified module

To realize the reference protocol-based obstacle identification functionality, ten algorithms 
were designed and integrated in the ROI module as presented in Table 3.5. The required 
algorithms were classified into three groups. Each of them is assigned to a sub-module. 
The first group, including the algorithms A4.01, A4.02, and A4.03, was implemented in 
the sub-module 4.10. They interoperate in order to select the candidate PFMs which best 
represent the actual design process. The algorithm A4.01 aims at exploring the possible 
preceding design actions. The algorithm A4.02 calculates the probability of the preceding 
design actions, which appeared in the actual design process. The algorithm A4.03 selects 
the PFM which best represents the actual design process.

FN. required algorithms sub-module
F4.1 A4.01: identify the n entities of the 

segment design process

sM4.10F4.2 A4.02: calculation of joint distribution 
probability of PFM

A4.03: select the most representative 
PFM in context

F4.3 A4.04: select the best method for the 
PFM in context

sM4.20F4.4 A4.05: reachability checker
F4.5 A4.06: predict the next design action

A4.07: assembling the extended PFM
F4.6 A4.08: proposal generation

sM4.30F4.7 A4.09: building the coverability tree 
for the extended PFM

A4.10: coverability checker

Table 3.5: Allocation of algorithms to the  ROI moduleIn the next group, four 
algorithms, namely 
A4.04, A4.05, A4.06, and 
A4.07, are combined. 
They were assigned to 
the sub-module 4.20 
(inference engine). Two 
inference approaches 
were incorporated to 
construct the most 
informative design 
flow and to select the 
next design action. The 
algorithm A4.04 selects 
the best usable method 
for the considered design 
action. The algorithm 
A4.05 evaluates the 
fulfilment of data 
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requirement throughout the proposed design flow. The algorithm A4.06 selects the most 
potential design action in order to continue the design process. The algorithm A4.07 
consolidates all constituent elements to construct the extended PFM. This model is the basis 
of the proposal generation actions. The sub-module 4.30 encapsulates three algorithms, 
which generate a proposal and check the coverability condition of a PFM. The algorithm 
A4.08 is responsible for the former tasks, while the algorithms A4.09 and A.4.10 perform 
the latter task. The common coverability tree algorithm was modified to create the algorithm 
A4.09. With the intention to check the information flow through the PFM, simulation of the 
coverability tree is realized by the algorithm A4.10.

3�7�5 Allocation of algorithms to the advisory content 
generation module

As presented in Table 3.6, nine algorithms were required for the realization of the 
recommendation content generation functionality. They were allocated to three sub-
modules. Four algorithms, including A5.01, A5.02, A5.03, and A5.04, were assigned to 
the sub-module 5.10 (recommendation item generator). Conceptually, the four algorithms 
are individually responsible for the four steps of converting the unstructured knowledge 
in a knowledge source into the informative contents. The algorithm A5.01 aims at pre-
processing the knowledge obtained from the source into texts. The algorithm A5.02 
finds the relevant contents by matching a query in text. The algorithm A5.03 generates a 
document that contains relevant information about the design actions. The algorithm A5.03 
extracts the terms most frequently occurring in the document.

The task of the sub-module 5.20 (recommendation item manager) is syntactic organization 

 FN. required algorithms sub-module
F5.1 A5.01: convert knowledge 

sources to texts
sM5.10A5.02: match a query in texts

A5.03: generate a document 
A5.04: find top K words

F5.2 A5.05: RecItem modelling
sM5.20A5.06: RecItem repository 

generation
F5.3 A5.07: calculate similarity of 

K terms & RecItem

sM5.30F5.4 A5.08: top N rank of RecItem
F5.5 A5.09: wrap up the 

comprehensive 
recommendation

Table 3.6: Allocation of algorithms to the  ACG module
of the recommendation items. 
Two algorithms were assigned 
to this sub-module, including the 
algorithm A5.05 (modelling the 
recommendation items) and the 
algorithm A5.06 (establishing a 
repository of recommendation 
items)  Three sub-functions were 
dedicated to the process of finding 
the most informative content. 
Each of them was supposed 
to be realized by a particular 
algorithm. Thus, three algorithms 
were assigned to the sub-module 
5.30 (advisory content provider). 
The algorithm A5.07 finds the 
best matching solution for a 
recommendation item. The 
algorithm A5.08 explores the most 
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informative contents and ranks them by similarity scores. The algorithm A5.09 concludes 
about the use of a particular advisory content and presents the constructed recommendation.

3�7�6 Allocation of algorithms to the quality examiner module 
Six required algorithms are specified for the realization of the evaluation of the designer’s 
decision functionality as listed in Table 3.7. Three sub-modules are organized for the four sub-
functions. For the implementation of the sub-module 6.10 (designer’s decision reviewer), 
two algorithms are assigned, including algorithm A6.01, and A6.02. The algorithm A6.01 
captures the decision of the designer. The algorithm A6.02 calculates the impact factors of 
designer’ decision on the recommendation. The sub-module 6.20 (performance calculator) 
plans to implement two algorithms, which are algorithm A6.03 and A6.04. The algorithm 
A6.03 calculates the performance of recommendation. The algorithm and A6.04 perform 
cross-validation to measure the performances.

The sub-module 6.30 (performance evaluator) was prepared for embedding two algorithms, 
namely A6.05 and A6.06. The algorithm A6.05 determines the correlation between the 
‘performance’ of the recommendation in terms of its impacts on the designer’s decisions. 
Finally, all data was brought together to evaluate the overall performance by algorithm 
A6.06. The output of this algorithm is returned to the process of recommendation generation.

3�8 Presenting the operation of the conceptualized 
demonstrative part

3�8�1 Setting up a case of reasoning mechanism design for 
automated parking

The setting-up design scenario is that the parking problem is already defined in the problem 
formulation (PF) session. Specifically, the case is as follows: A car is going to parallel 
park between two cars on the side of the road. Several situations can happen during 
parking, for example, other cars may come in (and through) the scene, pedestrians may 

 FN. required algorithms sub-module
F6.1 A6.01: capture a designer’s decision

sM6.10
F6.2 A6.02: calculate the impact factors on the decision of designer
F6.3 A6.03: calculate the performance measurements of 

recommendation sM6.20
A6.04: cross validation of the performance measurements

F6.4 A6.05: calculate the correlation of performances and designer’s 
decision sM6.30

A6.06 evaluate the overall performances of recommendation

Table 3.7: Allocation of algorithms to the  ACG module
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move through the parking space and along 
the sideway, etc. Accordingly, to capture 
these, situation models are developed 
and stored in the knowledge repository. 
The situation models captured spatio-
temporal information of the relevant 
entities involved in the parking case. 
This information (e.g., the identification 
number of entities, the entity properties, 
the location and orientation of the entities, 
and the relationship of entities) at a point 
in time is stored in the spatial reference 
feature (SFR) matrices as described in Li 
(2019) [15]. As shown in Figure 3.17.a-c, 
the parking situations in different moments 
of time are recorded in SFR matrices. The 
multiple SRF-matrices are composed and 
mapped onto the context information 
reference (CIR)-cube with regard to spatial 
and attributive context information, as 
shown in Figure 3.18. 

Regarding this parking scenario, there are 
three cars in the parking scene. Each SFR 
matrix records the distances between the 
target car and the other cars. These are 
measured by a set of sensors at a point 
in time t. The contents of all cells in the 
SFR matrices are used in the dynamic 
computation process. All relative distances 
can be computed for logical/semantic 
inferring the implications of dynamic 
contexts. 

Figure 3.17.a: Parking situation at the time t

Figure 3.17.c: Parking situation at the time t 
+(l-n)dt

Figure 3.17.b: Parking situation at the time 
t+dt

The reader should be informed here that the impacts of the contextual situations on the 
solution opportunities were determined at the situation analysis stage. At this point, 
we assume that a collection of situation models is already available in the knowledge 
repository. The assignment for a designer is to develop an algorithm which is able to select 
the best parking case in the repository to perform the parking maneuver in the real-life 
street parking problem.
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3�8�2 Scoping the demonstrative example to retrieve the most 
appropriate parking case

In the sample case, the designer is engaged in the design process in the WPE session. The 
objective is to accomplish the design task formulated as below:

D1.0 ‘Construction of an ASRM-algorithm A01 for searching for and retrieving past 
parking cases according to actual situation from the repository of the APAS’.

We assumed that the developed reference process protocol contains the relationships of the 
design actions. These relationships were considered also as the context of the development 
of a machine learning-based algorithm. The detailed description of design sub-tasks and 
related design actions are given below.

(i) Data preparation, which is a task to process raw data into a suitable format prior 
to using these data in processing and analysis. Design actions involved in this sub-
task are, for instance, such as data (i) cleansing, (ii) blending, (iii) reshaping, (iv) 
reformatting, and (v) dimensionality reduction.

Figure 3.18: The theoretical model of the CIR cube for storing and inferring (based on 
[15])
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(ii) Feature selection, which is a task to select the most discriminatory features out of the 
available ones. Design actions to accomplish this sub-task are, for instance, such as (i) 
conducting statistical analysis, (ii) doing feature transformation, and (iii) conducting 
principle component analysis.

(iii) Model training, which is the process of applying an algorithmic model, built from 
a historical dataset, to explore the patterns of data and learning from the patterns to 
predict the dependent variable. Design actions for training the model are, for instance, 
such as (i) selecting a training algorithm, (ii) examining the training set, and (iii) 
attempting to find the finest model.

(iv) Metric selection, which is the task to choose the right metrics for evaluating a learning 
model. The selection of the metrics depends on several criteria, for instance, (i) 
the objective of the model, (ii) the statistical characteristics of dataset, and (iii) the 
expected performances of the model. Design actions are, for example, such as (i) 
identifying the objective, (ii) performing a statistical analysis, and (iii) developing an 
optimization model.

(v) Model scoring, which is the task to compute the metric for the evaluation of the 
performances of the trained model. Design actions involved in this task are, for 
example, such as (i) doing a statistical analysis, and (ii) applying the model with an 
optimization function.

(vi) Model validation, which is the task to test if the trained model is correct and suitable 
in the context of interest. The test is done by applying the model with a new dataset. 
Several methods could be applied to conduct a design action, for instance, (i) the fitting 
performances, (ii) ROV curve, (iii) hyper-parameter optimization, and (iv) statistical 
measures.

Concerning the development of the ML-based model, the list of design actions belonging 
to the considered design sub-tasks are listed in Table 3.8. Throughout the design process, 
the functionalities of the conducted process monitoring support the designer at executing 
the design task. Below, we further elaborate on how the conceptualized ARF works with 
this task in the WPE session.

3�8�3 Integration of the conceptualized part of the active 
recommender framework considering the interactions 
with the designer

The sequence diagram in Figure 3.19 shows the workflow of the ARF supporting the 
designer to perform the design process. The interaction of the ARF and the designer 
happens through user interfaces. In the first computational cycle, the process monitoring 
functionality is activated by the module 1.0 - NUE-D to monitor the designer’s behavior. 
A video camera captures a designer’s face and detects the changes of the facial expression. 
The recognition of an event is based on the available time-distributed information and 
knowledge. Whenever, a suspicious event was detected based on the recognition of 
recorded facial expressions during the execution of the concerned design action. It gives an 
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indication of the occurrence of a non-usual event (NUE). The possible causes of an NUE 
are from lack of information or a wrong assumption with may lead to wrong decision by 
the designer. 

For example, suppose that the algorithm A1.07 detects an irregular pattern of facial 
expressions as shown in Figure 3.20. It sends the information about this pattern to the 
algorithm A1.08 in order to find the best match with the pre-defined patterns in the 
database. Once this pattern is recognized as a non-usual event, it will show a notification 
message to the designer and offer the service. If the designer accepts the offer, the dialogue 
is activated by the module 2.0 (DOI). At this point, the domain specific knowledge and 
context information about the design process of ASRM-algorithm A01 should be available. 
Conceptually, the collection of formal knowledge is stored in the knowledge repository. 
The dialogue poses the first question to identify the current design action in the third 
computation cycle. For example, the designer is working on the feature selection task, and 
struggling with ‘select the attributes’. The ARF should recognize this design action and 
retrieve a set of related questions.

In the fourth computational cycle, the multi-turn dialogue is organized to collect more 
information about the current state of design action. The number of interactions through 
the dialogue is equal to the total number of questions related to the identified design action. 
This process is a part of the recommendation generation using the exact inference approach. 
The detail description of this computational process will be discussed in the Section 3.8.4. 
Based on the exact inference, two possible alternatives are determined, either positive or 
negative results. If it is positive, the solution will be found. In this example, the solution 
is the proper method for executing the design action, ‘select the attributes’. If the proper 
solution is not found, the investigation in the design process is required to find a procedural 
obstacle in the design process. The module 4.0-ROI is activated for the generation of 

design sub-tasks examples of design actions belonging to the sub-task
data preparation cleansing data (e11), dimensionality reduction (e12), split data (e12), 

blending variables (e14)
feature selection select the attribute (e21), generate new features (e22), 

investigate the features (e23)
model training train a classification model (e31), train a regression model (e32), 

train a clustering model (e33)
metric selection perform a cross validation (e41), analyses statistical testing (e42), 

develop an optimization model to select the metrics (e43)
model scoring calculate loss of the model (e51), apply a simulation model (e52), 

apply the trained model with an optimization function (e53)
model validation hyper-parameter optimization (e61), cross validation method (e62), 

sequential feature selection (e63)

Table 3.8: Example for design actions of the development of ML-based algorithm 
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Figure 3.19: Sequence diagram representing the computational workflow of the 
conceptualized part of ARF

process-based recommendation. The descriptions of this computational process will be 
discussed in details in the Section 3.8.6. 

To generate the content-based recommendation, the module 5.0 (ACG) receives two 
options of input data. They can be: (i) the solution produced by the module 2.0 (DOI), or 
(ii) the process-based recommendation generated by the module 4.0 (ROI). For the former 
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on the fundamental of text mining operations. It makes a query on key terms and find the most 
informative contents to support the execution of the design action. In the conceptualization 
of the module 5.0, the fundamental concept of the text similarity is applied. The key terms 
are extracted from knowledge in web pages.  In the fifth computational cycle, the output of 
this process is the content-based recommendation as presented in Figure 3.21 that provides 
(i) the contents of design action, (ii) the proposed method, and (iii) the hyperlink that 
navigates the designer to the informative knowledge source.

For the second option, the operation is in the seventh computational cycle. The input data 
is the proposal provided by the module 4.0. It consists of three design actions and their 
proper methods which represent the most informative design flow. The contents of the 

option, it is operated in the 
fifth computational cycle. 
The input data consists of 
the context information 
about the design action and 
the proposed method. The 
information includes the 
profile of the design action 
i.e., a set of input and output 
variables, textual description 
defining the design action, 
the usable method, and key 
terms indexing the method. 
The process of advisory 
content generation is based 

Figure 3.20: Graph representing the real-time monitoring 
of the patterns of facial expressions

Figure 3.21: Structure of content-based 
recommendation

recommendations for all three elements 
have the same structure as the content-
based recommendation as abovementioned. 
In addition, the process-based 
recommendation shows the procedural 
relationships of these three design actions.  
As a result, the recommendations are 
presented to the designer. She may accept 
the recommendation or select another way 
to rectify the design process. 

In the eighth computational cycle, 
the module 6.0 (QE) will capture the 
decision of thedesigner and use it as 
an input to evaluate the quality of the 
recommendations. The output of this 
process will be feedback to the module 
3.0 in order to improve the performances 
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of recommendation generation in the next cycle of the services. This comes to the final 
stage of the recommendation generation. The designer is back to the design process and 
continues the next design action. It returns to the first computational cycle, the module 1.0 
(NUE-D) continuously monitors the designer’s behaviors and provides the services until 
the end of the design process.

3�8�4 Generation of recommendation using exact inference 
The conceptualization of the process of recommendation generation using the exact inference 
aims at finding the solution to continue the certain design action. The computational 
workflow of the module 2.0 (DOI) is shown in Figure 3.22. It starts with receiving the 
input data from the designer to identify the current design action by the algorithm A2.02. 
In this demonstrative example, let us suppose that the designer is obstructed at ‘selecting 
the attribute’. The algorithm A2.05 will retrieve the set of questions related to this design 
action in the knowledge repository. The dialogue aims at investigating the characteristics 
of data set in order to provide the recommendation to select the proper usable method as 
shown in Table 3.9. According to the criteria in the lookup table, four main questions will 
be posed to the designer by the algorithm A2.06:

 • Q1: Does your dataset have high data dimensionality? yes (if number of features > 20), 
no (otherwise)

 • Q2: Does your dataset have the heterogeneity of features? Yes (if the features follow 
different distribution, no (otherwise)

 • Q3: Does your dataset have the high correlation of features? yes (if two features have 
correlation > 80%, no (otherwise)

 • Q4: Does your dataset contains an imbalanced data? yes (if the total number of different 
two classes is greater than 20%, no (otherwise)

The designer will respond with binary answers to these questions. The ARF captures the 
pattern of the responses of the designer. The set of decision criteria in the lookup table will 
be converted into the binary decision matrix by the algorithm A2.04. The pattern similarity 
is applied to find the perfect match of the patterns. The algorithm A2.07 is employed for 
this task. The solution is found if the sequence of binary value in two patterns is perfectly 
matched. 

Let us suppose the designer replied the answers to the questions following this pattern {yes, 
yes, no, yes}. The combination of these answers describes the characteristics of the dataset 
as follows: the data set contains more than 20 features, each of them follows different 
statistical distributions, less than 20% of the features have correlations among them, and at 
least one feature contains imbalanced data. According to the knowledge in the lookup table, 
it concludes that the best method is ‘Chi-square test’. If the designer replies the answers 
which are diverse from the patterns of decision criteria in the lookup table, it means that no 
proper method suited for this dataset. This implies that the dataset should be modified in 
the previous design action. Thus, the investigation of the design process is needed to find 
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Figure 3.22: Computational workflow of recommendation generation through a dialogue 

the preceding design actions and to offer the recommendation for the modification of the 
dataset.

3�8�5 Construction of the reference process protocol
To demonstrate the generation of a process-based recommendation, the reference process 
protocol (RPP) should be constructed to represent the design process in the target application 
context. This section describes the computational workflow for building a graph representing 
the RPP as shown in Figure 3.23. This workflow is a part of computational operation in 
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the RPC module. Four types of input data should be provided by the sub-module (3.10-
3.30) included: (i) finite set of design entities, (ii) the timed action model, (iii) the decision 
tree models, and (iv) the historical data about the frequency of co-occurrences of design 
actions. We assume the design actions listed in Table 3.8 are members of the set of design 
entities for the construction of the RPP. A directed graph (G) representing an RPP is defined 
as G = (N,L,F) where: N is a finite set of nodes ni ∈ N and L is a finite set of links lij ∈ L, 
which are ordered pair of elements of N, and fij ∈ F is the weight connection of nodes ni and 
nj. It is the frequency of co-occurrence between entity ei and ej. 

The procedure starts with finding the temporal relationships of design entities in the TAM. 
If the relationship is found, then assign the number of frequencies of co-occurrences 
between two entities. The next step creates a finite set of nodes without links. Assign each 
of all design entities to each node. If the frequencies of co-occurrences between entity ei 
and ej is greater than 1, connect node ni and nj with a link lij and label the link lij with fij. 
Otherwise find the next ej+1. Repeat these steps until all entities are included in the graph. 
The direct graph is acyclic. Thus, it checks that no loop has occurred in the graph. If a loop 
is found, remove the link which opposes the sequence of design tasks. Here, the output 
is the directed graph representing the network of design entities. In the next part, it is to 
include the decision tree models into the graph. A decision tree model helps the designer to 
select the proper method for the considered design entities. 

For all entities represented by the nodes of the graph G, if multiple choices of methods mi 
∈M are occurred at ni, then find a decision tree model, which corresponds to design entities 
ei. To do this, it could assume that the decision tree models are constructed and available in 
the knowledge repository. The output of the computational operation is shown as example 
in Figure 3.24. The RPP is supposed to be known by the ARF for the investigation of 

Table 3.9: Lookup table containing the decision conditions associated with the 
useable methodfor the design action, ‘selecting the attribute’

criteria opt.1 opt.2 opt.3 opt.4 opt.5 opt.6
high data dimensionality no no yes yes no yes
heterogeneity of data yes yes yes yes no yes
high correlation of features no yes no no yes yes
imbalanced data no no no yes yes no

usable methods
Pearson’s correlation coefficient 1 0 0 0 0 0
ANOVA correlation coefficient 0 0 1 0 0 0
Kendall’s rank coefficient 0 1 0 0 0 0
Information gain ratio 0 0 0 0 1 0
Chi-square test 0 0 0 1 0 0
Neighborhood component analysis 0 0 0 0 0 1
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Figure 3.23: Computational workflow of a construction of graph representing RPP

procedural obstacle in the design process.

3�8�6 Generation of recommendation using the hybrid 
inference

Since the operation of exact inference in the DOI module gave the negative result, the function 
F4.0 is activated. The ROI module is operationalized to identify the procedural obstacle 
in the design process and propose the recommendation to resolve it. The computational 
workflow of this process is shown in Figure 3.25. It starts with identifying a design entity 
which represents the current design action in the reference protocol. Following the same 
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example in the previous section, the current design action is ‘selecting the attribute (e21)’. 

It could be assumed that the cause of the obstacle in the current design action occurred at 
the preceding one. Then, the algorithm A4.01 uses the RPP to find the possible preceding 
design entities. Three options are considered as shown in Table 3.10. Each of them consists 
of three design entities that connects to the current design entity e21. To select the most 
informative PFM, the probabilistic reasoning is applied by using the algorithm A4.02 and 
A4.03. As results, the second option of candidate PFMs gives the highest value of JDP. 
Three entities are included (e11, e12, e21) in the process flow model.

Here, the preceding design entity ‘dimensionality reduction (e12)’ is selected. The knowledge 
contents stored in the data model will be retrieved as necessary information for generating 
a proposal. In the next step, the proper method will be selected to rectify the current design 
action by using the algorithm A4.04. The design tree model is used for this purpose. To 
predict the proper method, the prediction variables are the pattern of designer’s answers. If 
the designer already answered the questions concerning the design entity (e12), that pattern 
will be retrieved from the knowledge repository. In case of no historical data concerning 
the particular design entity, the dialogue will be organized.  As an example, suppose all 
required data for the prediction is available as shown in Table 3.11. As results, two design 
entities and their proper methods are composed of the informative PFM {(ectx, m̂ctx), (ectx, 
m̂ctx)}. The algorithm A4.05 is deployed to check the completeness of the required data. 

Next, the probabilistic reasoning will be used to find the next design entity in the RPP. The 
algorithm A4.06 finds the possible design actions presented at the nodes in the next step, 

Figure 3.24: Graph representing the RPP for the demonstrative case 
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Figure 3.25: Computational workflow of recommendation generation using  a hybrid 
inference
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candidate 
PFMs

joint distribution 
probability (JDP)

e0→e11→e21 25/(25+6) * 12/
(24+12+30+13) = 0.12

e11→e12→e21 30/(24+12+30+13) 
* 35/(35+10) = 0.299

e11→e13→e21 24/(24+12+30+13) 
* 7/(7+16) = 0.094

Table 3.10: Calculation of JDP for 
candidate PFMs

calculates the JPD based on two design entities 
and candidate next design entities, and select 
the best one with the highest value of JPD. In 
this example, the train a classification model 
(e31) is selected for the next design action. The 
knowledge contents stored in the data model 
of the next design entities will be retrieved as 
contents for recommendation generation. Based 
on the hybrid inference, the process flow model 
including three design entities and their proper 
method {(e12, m̂ctx), (e21, m̂ctx), (e31, mpost)} are 
proposed as the process-based recommendation.

decision variables of DTM replied answers
high data dimensionality no
heterogeneity of data yes
high correlation of features yes
imbalanced data no
noise in dataset yes
missing value no
outlier no
Learning algorithm 
(Classification or Regression) C

ways of contribution in the design 
process. The conceptualization of 
the ARF was done according to the 
case of type B observation of non-
usual events. Two mechanisms 
are devised to perform two 
essential functionalities, process-
monitoring and decision-support. 
The activity-based monitoring is 
applied as the fundamental concept 
for the conceptualization of the 
process monitoring mechanism. 
The reference process protocol 
is proposed as the computational 
means for the conceptualization of 

Table 3.11: Sample of prediction variables used for 
selecting the proper method for (e12) 

As the last step, the algorithm A4.09 and A4.10 check the coverability of the proposal. If 
all required data is completed through the proposal. The content-based recommendation 
will be generated included the advisory contents in the ACG module. As a result of 
the computational operations of the demonstrative part of ARF, the process-based 
recommendation and content-based recommendation are combined in the comprehensive 
recommendation as shown in Figure 3.26. 

3.9 Discussion of the findings

3.9.1 Implications of the findings with regards to the 
implementation of the demonstrative part 

We proposed a novel concept of ARF for the development of ASRMs for a particular APAS. 
At the first step, the notion of the ARF is initiated with a set-up designing ASRMs scenario. 
Based on this initiative idea, the service packages provided by the ARF are proposed to 
support the setup design processes. The ARF can support the designer in the different 
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the decision support mechanism. Two inference approaches are employed for the generation 
of recommendation: (i) exact inference, and (ii) hybrid inference. The implications of 
the conceptualization of the ARF for the implementation of the demonstrative part are 
addressed as follows: 

 • Based on the methodological assumptions, a four-layer framework was proposed 
as the methodological basis of conceptualization of the ARF. The design task D1.0 
‘Construction of an ASRM-algorithm A01’ will be used as the demonstrative case to test 
the system-level functionality. The concept of a particular WPE session will be brushed 
up in the implementation phase.

 • Being forced by the complexity of the implementation of the ARF, we needed to prefer 
implementing a demonstrative part, rather than that of the whole ARF prototype. 

 • The selection of the demonstrative modules was based on their main contributions to 

Figure 3.26:  The comprehensive recommendations provided by the ARF 
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the conceptualized mechanisms. They were supposed to show the main characteristics 
of the implemented mechanism-level functionalities.

 • Monitoring the process flow is needed to observe the design activities which possibly 
obstruct the design process. From the sequence diagram, the involvement of the 
designer in the decision-making process can be observed.

 • The hybrid inference was regarded as the main contribution of the implementation 
of the process-based monitoring mechanism and generation of process-based 
recommendations. At least three sub-modules were considered for the implementation: 
(i) the dialogue manager, (ii) the context-sensitive design process identifier, and (iii) 
the inference engine. 

 • For the implementation of the decision support mechanism, the sub-modules related to 
the construction of the reference process were included in the demonstrative part. The 
chunks of knowledge for the construction of RPP are derived from the design process 
of the example use case.

 • The algorithms are regarded as the lowest-level architectural elements of the ARF. 
They are planned to be included in multiple various computational components. 
The implementation of these components should be planned according to the 
conceptualization of the higher-level of architectural elements. 

3.9.2 Identification of requirements for the implementation of 
the demonstrative part 

Based on the implications for the implementation of the demonstrative part, the requirements 
for the demonstrative implementation are explored. They are categorized into two levels: 
(i) the module level, which is considered as the functional requirement, and (ii) the 
algorithm level which is considered as the computational requirement. The requirements 
were specified based on the considered sub-modules which were discussed in the previous 
section. 

3�9�2�1 Functional requirements

FR01: the DOI module should recognize the actual design situation (state of design 
actions) based on the lowest possible number of answers

FR02: the DOI module should use the lowest possible number of decision criteria to find 
a solution for the problem at hand

FR03: the DOI module should reply a question posed by the designer within 0.1 second

FR04: the RPC module should include the relationships of design actions with a lower 
than 5% of incorrectness of their relations 

FR05: the RPC module should construct an extendable network of design actions with a 
higher than 90% of coverage of the considered design process

FR06: The RPC module should model individual design actions or chains of design 
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actions which are extractable from the computational representation of the network 
of design actions.

FR07: the ROI module should be able to predict and provide proper corrective action (to 
resolve the obstacle in the design process) with a higher than 90% of reliability rate

FR08: the ROI module should be able to identify the conducted design action with a 
probability higher than 90% of accuracy rate

FR09: the ROI module is supposed to generate a recommendation at runtime with a rate 
of higher than 45% justified objective decisions in line with the actual context

FR10: the ROI module should provide a process-based recommendation for the designers 
concerning the avoidance of procedural hindrances with a higher than 90% of 
reliability rate

FR11: the ACG module should offer a content-related (decision making) recommendation 
in varying procedural contexts with a higher than 45% justified objective decisions 
in line with the actual context

3�9�2�2 Computational requirements 

CR01: the algorithm A2.07 should provide a near zero-time response to a returned question

CR02: the algorithm A2.08 should select the best solution with a lower than 5% of 
incorrectness ratio

CR03: the algorithm A3.09 should construct a Timed action model with a lower than 5% 
of incorrect relationships between the concerned design actions

CR04: the algorithm A3.10 should predict the most usable method for a design action with 
a higher than 90% of accuracy rate

CR05: the algorithm A3.11 should construct a process flow model with a lower than 5% of 
incorrectness rate in terms of the number of mismatched elements

CR06: the algorithm A3.12 should include the design entities and decision tree models in 
a graph representing RPP with a lower than 5% of incorrectness rate in terms of the 
number of mismatched elements

CR07: the algorithm A4.01 should include the design entities in the process flow model 
with a higher than 90% of reliable rate in term of the relationships between the 
design entities

CR08: the algorithm A4.03 should retrieve the candidate PFMs in context with a higher 
than 75% of accuracy rate

CR09: the algorithm A4.06 should predict the next design action that includes in the 
proposed recommendation selected by a designer with a higher than 45% of justified 
subjective decisions.

CR10: the algorithm A4.07 should generate a process flow model within less than 0.1 
seconds
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CR11: the algorithm A4.08 should include the design entities in the proposal with a higher 
than 90% of reliable rate in term of the relationships between the design entities

CR12: the algorithm A5.07 should select the recommendation item for a certain design 
action with a less than 5% of incorrectness rate

The technical implementation of these requirements (i.e., architectural design, algorithmic 
programming, specification of resources, and design scenario for the testing case) will be 
discussed in Section 4.2.1 in Chapter 4.
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4�1 Objectives and methodological framing of the third 
research cycle

4�1�1 Research and development objectives
The goal of the third research cycle was to realize the computational mechanisms of the 
ARF, which (i) support various stages of the design process of ASRMs in the case of 
particular S-CPSs; (ii) include multiple computational resources for handling the various 
stages of the design process; (iii) provide recommendations based on process monitoring 
and involvement in design problem solving/decision making; and (iv) gradually aggregate 
data, information and knowledge concerning the design processes and learn support 
opportunities. This chapter presents the implementation principles and procedures of the 
computational mechanisms of the demonstrative part of the ARF, which is dedicated to a 
non-usual event type B.

Based on the forerunning conceptualization of the ARF, we realized that the complexity 
of the computational mechanisms is one of the major challenges in the implementation 
phase. The algorithm-level functional implementation of the considered computational 
mechanisms required fifty-two interoperating algorithms. To cope with structural 
complexity, the architecture of the ARF was decomposed to self-contained sub-modules, 
with due attention to optimizing the functional relationships amongst the computational 
components. This was necessary since the number of components and their relationships 
contributed to the increase of complexity. Putting everything together, we have managed to 
draw up a realistic scope for a demonstrative implementation, which is intended to clarify 

Research cycle 3:
Implementation of a demonstative part of the 
active recommender framework

Chapter 4
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the main characteristics of the ARF, but also avoid any unmanageable complexity of the 
computational implementation.

To achieve the goals and  deal with the challenges of the implementation, there were seven 
specific objectives:: (i) to operationalize the requirements for the implementation; (ii) to 
select the demonstrative parts for the implementation; (iii) to clarify the principles for the 
implementation; (iv) to specify usable resources in the programming environments; (iv) 
to specify the contents of the demonstrative modules; (v) to implement the demonstrative 
modules; (vi) to implement the contents of the demonstrative modules in the given contexts; 
and (vii) to validate the demonstrative implemented modules in the target application 
context. These objectives were considered while setting up an appropriate implementation 
scenario.

4�1�2 Methodological framing
The research cycle was framed methodologically according to the procedural structure of 
design inclusive research (DIR) [1]. The main contribution of the research cycle was the 
computational implementation of the chosen demonstrative part of the ARF. The inquiry 
activities were driven by the need for (i) knowledge aggregation, (ii) completion of the 
constructive (design) activities, and (iii) validation of the implementation. Accordingly, 
there were three procedural phases defined that started with the exploratory research actions, 
continued with the design actions, and concluded the confirmatory research actions. The 
ARF conceptualization knowledge was completed with implementation related knowledge.

The exploratory phase considered three kinds of issues concerning the implementation of 
the demonstrative part of the ARF, namely (i) strategic issues, (ii) tactical issues, and (iii) 
operational issues. The strategic issues concerned four research activities: (i) transformation 
of requirements; (ii) identification of the possible approaches to implementation of the 
demonstrative algorithms; (iii) determining the critical algorithms for the demonstrative 
implementation; and (iv) selection of computational resources for the working environment. 
The research activities concerning the tactical issues focused on the specification of the 
implementation principles for the targeted demonstrative modules. The operational issues 
were related to the programming resources available in programming environments, 
including the fundamental programming language, its built-in functions, applied toolboxes, 
and the library of application development functions.

In the constructive phase, software engineering activities were conducted that concentrated 
on the elaboration of the contents of the demonstrative modules. The whole of the ARF 
was conceptualized as a compound of six modules. However, the demonstrative part was 
reduced to the four modules which were closely associated with recommendation generation. 
These were: (i) the dialogue-based obstacle identification module; (ii) the reference process 
protocol construction module; (iii) the reference protocol-based procedural obstacle 
identifier module; and (iv) the advisory content generating module. As far as architecting 
of the different modules was concerned, they were specified on three levels: (i) on the 
sub-modules level, (ii) on the components level, and (iii) on the algorithms level. The 
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elaborated architectural models arranged both the architectural elements and their structural 
interrelationships on the respective levels. The constructive phase was completed by the 
implementation of all algorithms necessary for the demonstrative part of the ARF.

The confirmatory phase commenced with placing the architectural constituents into the 
context of the target application. The major research activities were: (i) identification of the 
content and procedural elements of the design process in the given context, (ii) specification 
of the design actions in the target application context, (iii) actual operationalization of 
the computational algorithms, and (iv) assessment of the operation against the derived 
implementation requirements. The confirmatory phase ended with a detailed elaboration on 
the findings related to the computational implementation and validation. The results of the 
validation were expected to confirm that the proposed concept and the resources offered by 
the ARF could be utilized in the defined application context.

4�2 Strategic issues of the demonstrative implementation
The conceptualization of the ARF gave priority to two interoperating mechanisms, which 
were decomposed into six modules. We regarded the reference process protocol (RPP) as a 
most novel and most essential constituent in terms of generating recommendations. Two of 
the modules were directly related to the RPP. One of them was Module 3.0 (for construction 
of the RPP) and another one was Module 4.0 (for utilization of the RPP in identification 
of a possible procedural obstacle in the design process). The major challenges of the 
demonstrative implementation were (i) to capture knowledge about the design process in 
the RPP), (ii) to utilize it when inferring the actual state of the design activity flow, and (iii) 
to generate process-based recommendations. However, these two modules do not interact 
with the designer. Therefore, to complete the entire process of recommendation generation 
we selected two other modules. One of them was Module 2.0 (for direct communication 
with the designer through a dialogue), and the other is Module 5.0 (for consolidating the 
recommendations and providing an advisory content to the designer).

Thus, four demonstrative modules have been selected for implementation in this part of the 
promotion study. These are shown in Figure 4.1. From a computational point of view, they 
demonstrate the entire process of context-sensitive recommendation generation. Before 
entering the implementation phase, we have analyzed what computational components 
should be implemented for the ARF. As an outcome of this functional and architectural 
analysis and conceptualization, forty-one algorithms were required and included in the 
demonstrative modules of the ARF. Dedicated implementation specifications were 
elaborated and operationalized for each specific module. In addition, a forerunning 
usability evaluation of the required algorithms was completed based on critical system 
thinking and the criticality of the algorithms from the point of view of the demonstrative 
implementation. An early reflection was also made from the perspective of feasibility by 
considering candidate programming languages and the available developer resources (e.g., 
methods, functions and libraries) of the existing programming environments.
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4�2�1 Transformation of the implementation requirements 
The goal of the transformation of the implementation requirements was to systematically 
convert them into technical specification for algorithmic programming, knowledge 
acquisition, and testing scenario in an application context. The requirements provided 
guidelines not only for functional and other expectations, but also formulated the criteria 
to fulfill in order to meet the requirements. All requirements had to be considered in order 
to functionally harmonize the operations of the implemented modules of the ARF and to 
produce the expected output. The results of the analysis are shown in Table 4.1. It includes 
a technical specification of the modules of the demonstrative implementation

4�2�2 Possible approaches to implementation of the 
demonstrative algorithms

In order to reduce the unnecessary time, costs, and workload that are concomitant with the 
development of algorithms purely from scratch, we applied a different strategy. We also 
considered the availability, applicability, and adaptability of proprietary and commercialized 
algorithms needed for computational implementation. Accordingly, based on the extent of 
their reusability, we classified the relevant algorithms into three groups, namely: (i) existing 
algorithms that can be reused without any modification; (ii) existing algorithms that can 
be adapted for the purpose of application; and (iii) brand new algorithms that should be 
deigned and coded for the specific purpose. The classification of the required algorithms is 
shown in Table 4.2. The classification was based on the below considerations.
As briefed above, the first group included existing algorithms, which were tested and used 
as solutions for particular tasks: for instance, search algorithms, matrix operations, string 
similarity comparators, and descriptive statistical analyzers. Usually, they are available 

Figure 4.1: The general workflow of the recommendation generation according to the 
demonstrative implementation
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in the form of built-in functions or library items of programming environments. If the 
computational functions provided by them are needed, they can be reused in software 
development without modification. The second group included existing algorithms, 
which partially fulfil the needs for certain computational functions, complying interface 
specifications, or handling certain data constructs. However, they offer the opportunity of 
modification for the purpose with reasonable efforts. 

Typically, these are also available in common programming libraries, but they often 
represent proprietary codes or programs that are computational functions shared within 
online communities of software developers. The extent of adaptation needed for making 
this type of algorithms applicable in software engineering, depends on technical, economic, 
knowledge and practical factors and can be largely influenced by the target software and 
environment. 

In our case, these were all considered when selecting and making decisions on the use of 
adaptable codes in the demonstrative computational components. The last group includes 
novel algorithms that have not been designed and coded previously and cannot be derived 
by modifying existing ones. In the process of development of the demonstrative part 
of the ARF, several brand-new algorithms were needed for the realization of the target 

modules algorithmic 
programming

knowledge resources requirements

DOI pattern similarity 
algorithm

knowledge contents about the 
computational methods for 
performing design actions

FR01, FR02, 
FR03, CR01, 
CR02

CRP graph construction, 
visualization and 
analysis
decision tree modelling
matrix-oriented 
operations

domain knowledge about design 
actions and process for ML-
algorithm development
knowledge about the 
characteristics of dataset for 
training ML-algorithm

FR04, FR05, 
FR06, CR03, 
CR04, CR05, 
CR06

ROI probabilistic 
computation and 
analysis
process flow

FR07, FR08, 
FR09, FR10, 
FR11, CR07, 
CR08, CR09, 
CR10, CR11

ACG data mining
text-similarity

knowledge contents about the 
computational methods for 
performing design actions

FR12, CR12

application 
context - 
APAS

ML-based development
statistical analysis

simulation of parking problem FR10

Table 4.1: Technical specification of the modules of the demonstrative implementation
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functionalities. Despite these differences, all the three groups of algorithms had to go 
through various rigorous pre-application and post-application testing.

4�2�3 Determining the critical algorithms for the demonstrative 
implementation

This Section discusses the criticality of the algorithms from the perspective of implementation 
of demonstrative modules. Our assumption was that critical algorithms are (i) novel in 
multiple aspects (new designs and not yet exhaustively tested in practical applications) 
and play a crucial role (influential in the computational implementation of the ARF). In 
addition, we assumed that focusing on the critical algorithms is necessary and sufficient 
for a crude but effective functionality validation of the demonstrative implementation (but 
not for competing with long lasting tests in practical applications). Typically, a critical 
algorithm is an algorithm that influences the operation of a large number of other algorithms 
of a software system. Changes in a critical algorithm may have a large impact on other 
algorithms regarding data provisioning, procedural timing, and operational reliability.

This is especially important because many algorithms are designed to be reactive and 
mutable to inputs. They are often unpredictable in the sense that their outcomes are not easy 
to anticipate and they may produce unexpected effects. They can also be sensitive to data 
values and to change of computational constrains, but they may also depend on multiple 
other factors. What these facts meant for us was that one aspect is probably not sufficient 
and adequate to identify a critical algorithm. Therefore, we determined the criticality of 
algorithms based on a combination of three criteria: (i) complexity of functionality – which 
ranks algorithms according to the complexity of the computational function they realize, 
(ii) data sensitivity – which refers to the impacts of change in the amount of input data on 
the computational performance of an algorithm, and (iii) intensity of human interaction – 
which refers to the degree or  intensity to which an algorithm demands input from the user. 
Figure 4.2 shows a Venn-diagram, which classifies the required algorithms according to the 
implementation criteria.

FN.
type of the required algorithms

adoptable adaptable to be generated
F2.0 A2.01, A2.02 A2.03, A2.04, A2.05, A2.07 A2.06
F3.0 A3.02, A3.08 A3.01, A3.03, A3.10, A3.11  A3.04, A3.05, A3.06, A3.07, 

A3.08, A3.09, A3.12, A3.13    
F4.0 A4.02, A4.05, A4.09, A4.10 A4.01, A4.03, A4.04, A4.05, 

A4.07, A4.08
F5.0 A5.01, A5.02, A5.03, 

A5.04, A5.06
A5.05, A5.07 A5.08, A5.09

Table 4.2: Classification of the required algorithms according to their reusability for 
the demonstrative implementation 
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The criticality analysis of the algorithms was based on those detail descriptions, which 
were included in Section 3.7 in Chapter 3. Interestingly, as shown in Figure 4.2, algorithm 
A4.04 – ‘Select the best method for the process flow model (PFM) in context’ was found to 
be the most critical algorithm. The reason for this was that one of the related requirements 
considered formulated the need to limit the number of interactions with the designer to 
the lowest possible minimum. This in turn imposed a limitation on the total number of 
questions that could be posed to the designer in a dialogue. 

Regardless, most of required algorithms were determined according to the first two 
expectations and do not require direct input from the designer. The investigation of the 
interrelationships among the computational components found that eight of the algorithms 
generated from scratch fell into the overlapping areas in the Venn diagram. These 
algorithms will be further discussed in Section 4.5, which focuses on the specification 
of the computational implementation. Here we talk about the following algorithms: (i) 
algorithm A2.07 – organizes a dialogue, (ii) algorithm A3.12 – assembles the RPP, (iii) 
A3.13 – visualizes the graph of the RPP, (iv) algorithm A4.01 – identifies the n entities 
of the PFM in context, (v) algorithm A4.03 – selects the candidate PFMs in context, (vi) 
algorithm A4.07 – predicts the next design action, (vii) algorithm A4.08 – assembles the 
extended PFM, and (viii) algorithm A4.09 – generates a proposal. 

Figure 4.2: The classification of the required algorithms according to criteria 
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4�2�4 Forerunning considerations
The lowest level of the implementation of the demonstrative part of the ARF raised a number 
of concerns. In addition to the above productivity concerns, the selection of the working 
(programming) environment was also high on the list of concerns. It has an influence on the 
coding (first-time and adaptive) as well as on the logical and data integration of the outcome 
required algorithms. The primary intention was to use as many standard (commercialized), 
widely used, and tested computational resources as possible. The below considerations and 
decisions were made with this in mind.

In general, a programming language is the formal language with a set of instructions which 
provide the desired output. Every programming language is based on certain syntactic and 
semantic rules. In the field of information engineering, several programming languages 
have been widely used, for example, C, Java, Python, and C++. Currently, the computer 
programming languages have evolved into the fifth generation (5GLs). However, this is the 
result of a gradual evolution, rather than an overnight action, which was instructive for us

The first- and second-generation languages (1GLs and 2GLs) were closely related to 
the computational architectures and computational mechanisms [2]. The first-generation 
software was written in machine codes. The second-generation languages were low-level 
assembly languages that were specific to a particular computer and processor [3]. The concept 
of higher-level programming appeared in the case of the third-generation languages (3GLs). 
These languages are generally translated by compliers into machine language/code of the 
target computers for execution. The high-level programming languages were developed for 
general application purposes. Typical representatives are C, C++ and Java. They have been 
applied in business and scientific programming, as well as in other commercial applications. 
The fourth-generation languages (4GLs) include statements similar to statements in human 
languages. These were used mainly in database programming and scripting. Commonly 
known examples of these languages are Perl, Python, Ruby, Go, R and MATLAB. All 
4GLs were designed to reduce programming effort compared with the earlier generations 
[4]. The fifth-generation programming languages are based on constraint-driven problem 
solving. Dedicated mechanisms are applied in the development of the program, rather 
than algorithms written by a programmer. In other words, 5GLs are designed to make the 
computer able to solve a certain problem for a user [5].

According to the specific programming requirements, the DOI module is dedicated to identify 
an obstacle related to a particular design action and to offer a solution based on the exact 
inference. The module monitors what a designer was doing at that time through a dialogue. 
The principles of human-machine interaction using a dialogue, content-oriented decision 
table, and a pattern similarity measure were taken into consideration.  The PRC module 
focused on building a reference process protocol and provision of knowledge concerning 
the constituent elements of RPP including (i) matrix representation for timed action model, 
(ii) construction of ML-based decision tree classifier, and (iii) construction of a graph and 
network. The implementation of ROI module required probabilistic inferring by means of 
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a Bayesian network, and semantic inferring by using the interoperation of a decision tree 
model and probabilistic reasoning. Finally, the implementation of ACG modules required 
an information retrieval approach. For instance, using a context-based similarity measure 
and semantic matching algorithms to select the most informative contents for the proposed 
recommendation. To this end, it required the integration of the implemented modules and 
functionality testing in the application context of street parking problems.

4�2�5 Selection of computational resources for the working 
environment

As posited by the title of the chapter, this research cycle aimed at the implementation 
of a demonstrative part of the active recommender framework. For the purpose of 
implementation, 4GLs were considered. There were however many candidate languages 
and programming environments available. To select the most appropriate one, an IEEE’s 
survey on the top programming languages1 was used, in addition to the consideration of 
the implementation requirements. The former included data from IEEE sources that used 
the above languages and programming environments for academic purposes. The survey 
of the IEEE ranked them based on a relative weighting and by combining eleven metrics 
from eight sources (e.g., Google Search, GitHub, and IEEE Library). The abovementioned 
website allowed us to rank the programming languages based on customized metrics and 
preferred data sources. In view of the requirements and expectations for programming, (i) 
the ranking was based on IEEE spectrum, (ii) data sources from IEEE Xplore digital library 
were selected, and (iii) language types used for enterprise, desktop, scientific applications 
and referenced in academic publications in the years 2019 and 2020 were preferred.

The list of the top ten programming languages is shown in Figure 4.3. From these, there 
were four languages belonging to the category of 4GLs, namely Python: (second ranked), 
R (fourth ranked), Processing (fifth ranked), and MATLAB (sixth ranked). Considered 
the required algorithms, the Processing® package was deemed not to be aligned with our 
application context. It is a software tool that is created to facilitate the development of 
visualization-oriented applications with an emphasis on animation. Thus, the candidate 
working environments to choose from were Python, R, and MATLAB. Table 4.3 shows 
the results of a comparison of the working environments from the perspective of the 
demonstrative implementation.

Our investigation considered not only the main features of the programming languages, but 
also if there were widely tested resources (for instance, built-in computational functions, 
component libraries, and toolboxes) included in the working environments. The candidate 
working environments were compared based on the appropriateness of the useable resources 
for the target implementation (i.e., natural language processing, process modelling, machine 
learning algorithms, and context-aware recommendation options as presented in Table 4.4. 
The brief descriptions of the abovementioned three working environments are as follow.

1 https://spectrum.ieee.org/top-programming-languages/ 
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Python® is a general-purpose 
programming language. It is an 
interpreted language (without 
compiling a program source code 
into machine-language instructions. 
Therefore, it is suited for web 
programming and data science.

R® is a programming language/
environment that has been massively 
used in various businesses for 
statistical analytics and machine 
learning applications. R supports 
scripting-based application 
development and programming. The 
environment includes scripts that can 
be executed independently within 
various applications. The scripts can 
control the applications and can be 
used for the purpose of automation.

MATLAB® is a procedural 
(imperative) programming 
environment mainly for matrix manipulations, implementing algorithms, plotting functions 
and data, and developing user interfaces. As a kernel concept, MATLAB interprets a 
procedure as a set of instructions that can be referenced through a procedure call. This helps 
developers in reusing the library functions and codes. This programming environment 
(language) is widely used for engineering calculations and simulation purposes because it 
is focused on mathematical procedures and models. 

Figure 4.3: Top ten programming languages as 
used and referenced in the academic 
publications (source: [2])

Python R MATLAB
basic language object-oriented 

programming language
interpreted language math and matrix- oriented 

language
primary 
objective

general purpose statistic software 
and data analysis

engineering and technical 
computing

functionalities high-performance linear 
algebra, graphics, and 
statistics

statistical computing 
and graphics 
support

testing algorithm without the 
act of compiling 
software development tools

libraries extensive support 
libraries

widely range 
packages 

standard library, toolboxes, 
user’s development libraries

Table 4.3: Comparison of the working environments from the perspective of the 
demonstrative implementation
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Concerning the required algorithms for the demonstrative modules, there were no significant 
differences in the resources provided by the three programming languages/environments. 
In the context of application for the roadside parking problem, we found that the reusable 
functions/programs supported the simulation of the Ackerman steering.  Several functions 
were available in the robotics system toolbox and the user’s development library of the 
MATLAB for automatic parking. After a qualitative comparison of the three programming 
languages/environments, the MATLAB package was preferable for the demonstrative 
implementation and for the testing of the computational operation in the context of the 
target application.

4�3 Tactical issues of the demonstrative implementation

4�3�1 Fundamentals for the implementation dialogue-based 
obstacle identifier module

The implementation of the dialogue-based obstacle identifier module was based on three 
fundamental principles: (i) human-machine interaction through a dialogue; (ii) content-
oriented decision table; and (iii) exact inference using pattern similarity measure. To 
identify an obstacle in the design process, the ARF communicates directly with a designer. 
It aims at recognizing the current state of design action by capturing the pattern of answers 
supplied by a designer. Natural language is the basis of the communication. Typically, task-
based dialogue systems and Chatbots are used in conversational recommender systems [3]. 
The proposed task-based approaches were designed for a particular task and set up to have 

demo modules Python R MATLAB
DOI module string matching

text processing 
services

text-process 
functionality

text similarity measures
matrix-oriented operation
distance-based similarity measure 
function

RPC module network library
similarity matrix

matrix operation matrix-oriented operation
graph and networks algorithms

ROI module machine learning 
modeling
graph visualization 
and analysis

machine learning 
modeling

statistical analysis and machine 
learning toolbox
graph visualization and analysis

ACG module string matching text-process 
functionality

text analytic processing toolbox
semantic-based algorithms

application 
context -
APAS

N/A N/A Ackerman Kinematics-Robotics 
system toolbox
Ackerman auto parking 
simulation – developer’s library

Table 4.4: Comparison of usable resources for implementing the required algorithms
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short conversation to get information from a user in order to complete the task. Chatbots are 
systems designed for extended conversations, with the goal of mimicking the unstructured 
conversational characteristic of human-human interactions [4]. Therefore, to simplify the 
implementation of the DOI module, we preferred a task-oriented approach.

The ARF interacts with a designer through a multi-turn dialogue. Form-based user interface 
and structured texts for the input are commonly used in the application specific context. 
The very first question is regarding the current design action. The designer replies to the 
question with the term or phase identifying the design action. The text similarity measure is 
applied to match the answer with the design action available in the knowledge repository. 
String-based similarity is used to compare two terms. Each term is modelled as a set of 
tokens. The similarity between the two strings is assessed by manipulating sets of tokens 
such as terms, words, or phrases. Once the current design action is recognized, a set of 
questions will be retrieved. The number of questions is varied according to the actual design 
action. The designer follows the pre-defined dialogue path and replies to the questions with 
binary (i.e., positive or negative) answers. The combination of replies is defined as the 
pattern of answers and will be used as an input for the exact inference.

The design content-orientated decision table contains information to support decision-
making concerning a particular design action. The pieces of information included in the 
table were derived from the condition patterns concerning the decision criteria. To build 
a decision table, we needed to (i) determine the maximum size of the possible solutions, 
(ii) eliminate any impossible situations concerning inconsistencies and redundancies of 
the conditions, and (iii) simplify the table with the potential solutions. A combination of 
different conditions, which corresponds to a certain solution, defines a pattern of decision 
conditions. To find the best solution, exact inferring is applied based on the similarity 
measure of the patterns. The similarity measure is a way of measuring how data samples 
are related or close to each other. It is usually expressed as a numerical value. The similarity 
value gets higher when the data samples are more alike. If two patterns were exactly the 
same, then the similarity value was set to 1, and the solution associated with the pattern of 
decision criteria was selected. Otherwise, no solution was found. It can be assumed that an 
obstacle occurred somewhere in the preceding design actions.

This was the basis of exact inference. Formally: 

         (4-1)

where: solution(j) is the method usable for a particular design action (which corresponds 
to the pattern of decision variable j in the decision table), and vij is the similarity value 
between patterns i and j.

With the intention to calculate the similarity of the patterns, the decision conditions are 
converted into binary values stored in the decision matrix, DMi←{0,1}(m×n), where (1) 
represents the considered criterion, and (0) means otherwise. The pattern similarity can be 
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expressed formally as:

         (4-2)

where: v is similarity between      and     ,     ←{0,1}n is a vector of answers supplied by 
a designer to a certain sequence of questions, where (1) means a positive answer, and (0) 
means a negative answer,      ←{0,1}n is the vector of the considered pattern of binary value 
representing the condition of decision criteria in row k of DMi, n is the total number of 
questions, and m is the total number of patterns in the decision table. 

Calculated using this formula, the value of distance-based similarity is the smallest 
distance between each pair of points. The currently used metrics are: (i) cosine similarity – 
measuring the distance based on the cosine of the angle between two vectors projected onto 
a multi-dimensional space, (ii) the Manhattan distance – calculating the distance between 
two points based on the sum of the absolute difference of their Cartesian coordinates, (iii) 
the Euclidean distance – calculating the distance based on the square root of sum square 
of deviations between two coordinates, and (iv) the Minkowski-distance – expressing 
a generalization of the Euclidean and Manhattan distances. Considering the reusable 
resources that were available in the libraries, the principle of cosine similarity was used as 
the measure of similarity of the patterns. Symbolically:

 
         (4-3)

4�3�2 Fundamentals for the implementation of reference 
process protocol creator module

The principal definition of the concept of the reference process protocol (RPP) was 
described in Section 3.4.6 in Chapter 3. There are other constitutional elements included 
in it: (i) the process flow model (PFM); (ii) the timed action model (TAM); and (iii) the 
decision tree model (DTM). The PFM is a fundamental element of the RPP to represent 
a design entity and its contents (including input-output data, computational method). In 
the implementation of the module, a design entity is a computational representation of 
a design action. As an element of a formalized design process, a design entity contains 
specific contents (which are distinct for each of them). A network of design entities is 
constructed by creating relationships among them in the TAM. If multiple relationships 
occur in the case of any design entity in the network, it defines a decision point, which may 
need decision-support. This support concerns the action of selecting the subsequent design 
entities and the most appropriate method. 

The hybrid inference approach was used for the purpose of selecting the subsequent design 
entities and the most appropriate method. In these actions the RPP is utilized. Eventually, 
the hybrid inference is based on the combination of probabilistic reasoning by means of 
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the Bayesian networks and the model-based reasoning that relies on using the decision tree 
model. To be able to investigate a design process, the RPP was supposed to be known by the 
ARF. In this context, ‘knowing’ means having the specification of the relationships among 
the design entities, rather than knowing the outcome of completing the design entities.

4.3.2.1 Fundamentals to construct a process flow model

A process flow model (PFM) is a state-transition model of the design process, or part 
thereof. It is represented by a Petri-net like model which is represented by the incidence 
matrix. Symbolically:

 PN = (S,T,Cpre,Cpost )      (4-4)

where: si ∈ S is a finite, non-zero set of n states, tj ∈ T is a finite, non-zero set of m transitions, 
Cpre is the input incidence matrix, cpre

(i,j)←{0,1}, and Cpost  is the output incidence matrix, 
cpost

(i,j)←{0,1}. The incidence matrix representation of PFM is defined by: 

 CPFM = (Cpost - Cpre)(n×m) ←{-1,0,1}    (4-5)

The elements of the matrix CPFM represent flow relations of the net configuration of the 
process flow model, PFM, where cpFM

(i,j) ←{-1,0,1} is the directed arc f(i,j) ∈ F←(S×T) ∪ 
(T×S), which is defined by the following conditions:

         (4-6)

where: i ∈ n, and j ∈ m.

The Petri-net models provides various patterns for modelling the net configuration of 
the design process. The basic configuration of Petri-net is a 1-to-1 state machine, which 
comprises one input state and one output state connected by a transition. As shown in Figure 
4.4, all sample types of net configurations are the extensions of a 1-to-1 state machine. 

Using Petri-net model in the implementation of the demonstrative part of the ARF makes 
the challenge less complicated and allows keeping the resulting extension of the PFM 
feasible. A configuration of design actions is classified according to three considered 
patterns, where: 1 ≤ m ≤3 as follows:
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Figure 4.4: Different types of net configuration [5] 

Figure 4.5:  Fluent configuration of a state machine

Pattern 1: 1-to-1 state machine configuration

 S := {sin, sout},  T := {t1}, F:={(sin, t1),(t1,sout)}   (4-7)

Pattern 2: n-to-1 synchronization, which consists of n input states and one output state 
connected by a transition

 S := {s1
in, s2

in,..., sn
in, sout},  T := {t1}, 

  F := {(s1
in, t1), (s2

in, t1),..., (sn
in, t1), (t1,sout)}   (4-8)

Figure 4.6:  Confluent configuration of n-to-1 synchronization  
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Pattern 3: 1-to-n distribution, which consists of one input state and n output states 
connected by a transition

 S := {sin , s1
out, s2

out,..., sn
out, },  T := {t1}, 

  F := {(sin, t1), (t1, s1
out), (t1, s2

out),.... (t1, sn
out)}   (4-9)

Figure 4.7:  Configuration of 1-to-n distribution 

These patterns are the basic elements of a process flow model, which is extended by a 
connector. As a chosen transition, it is included in those cases where n number of input 
states of a process flow element are identical to n number of output states of the preceding 
ones.

 S = {spre
out, spost

in}, T = {tcon },
  F ={(spre

out, tcon ),(tcon, spost
in)}, spre

out ≡ spost
in   (4-10)

Figure 4.9:  Configuration of PFM included an assembly of consecutive process flow 
elements with a connector

4�3�2�2 Fundamentals to construct a decision tree model

Decision trees (DTs) are widely used learning techniques to build classification models that 
closely resemble human cognition [6]. They mimic human thinking logic while making 
a decision. In turn, the designer is able to interpret and understand the logic behind the 
decision process by extracting the interpretable rules with their constraints [7]. Decision 
trees are widely recognized as interpretable models, which divide a complex classification 
task into several simpler ones. As presented in Figure 4.9, a simplified tree classifier can 
be implemented as a hierarchical tree structure, G(V,E), where: V ∈ {V1,V2 } is a finite, 
non-empty set of nodes, V1 is a set of leaf nodes containing the class value, and V2 is the 
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to learn from a small size of a training set, the decision tree induction (DTI) algorithms 
were preferred over the other learning algorithms [9]. The algorithm was used to build 
a tree structure through a series of binary splits from a root node via branches passing 
several decision nodes, until coming to the leaf nodes. Splitting is the process of dividing 
the decision node/root node into sub-nodes according to the given conditions. Various DTI 
algorithms concerning the splitting criteria i.e., ID3, C4.5, CART, CHAID, QUEST have 
been development over years. The most widely used metrics for determining the splitting 
point are based upon information gain and the Gini Index [10]. The metrics measure the 
impurity in the candidate nodes and suggest how heterogeneous or homogeneous a given 
set of data is. If the impurities turn out to be zero, it meant that the data set was classified. 

The information gain is an impurity-based criterion that measures the entropy of a dataset. 
It is interpreted relative to the attribute in the dataset, which is defined as the difference 
between the entropy of set S and the entropy of S_v under the given attribute conditions. The 
concept of the information gain was used in the algorithms ID3 and C4.5. The information 
gain was calculated using the following equation:

         (4-11)

where: g(S,A) is the information gain of attribute A concerning the dataset S, V(A) is the 
set of all possible values for attribute A, and Sv is the subset of S for which attribute A has 
value v. The information gain of learning on the decision tree is equivalent to the mutual 
information of classes and attributes in the dataset.

The concept of Entropy originates from the information theory, and it measures the amount 
of disorder and the unpredictability in a system. At the implementation of the decision tree, 

set of intermediate nodes corresponding 
to one of the attributes. The set of edges 
E represents distinct attribute values. 
The user can reveal the decision-making 
process by following the tree structure. 
The decision model is created as a black 
box in other machine learning algorithms 
(e.g., in SVM and ANN). This means 
that the user, or even the designers of the 
decision algorithm, cannot understand 
how variables are being combined to make 
predictions [8]. This is a reason why the 
concept of a decision tree was selected as a 
decision support means for the RPP.

Because of their (i) flexibility, (ii) robustness 
to noise, (iii) the low computational cost 
for model construction, and (iv) the ability 

Figure 4.9: Simplified structure of decision 
tree  
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it was defined as the expected value of information measuring the uncertain data present 
in the dataset. 
 
         (4-12)

where: pi is the probability of S belonging to class i. 

The Gini Index (GI) is another impurity-based criterion that measures the divergence 
between the probability distributions of the target values of the attributes. It is used in the 
CART algorithm. The formula for a calculation of the Gini impurity is as follows:

         (4-13)

where: IG is the measure of the Gini impurity, n is a number of classes present in the nodes, 
and pi =  ni ⁄n is the probability of class n. 

Common evaluation metrics are used to evaluate the decision tree model, for instance, (i) 
classification-related metrics (e.g., precision, recall, accuracy), and (ii) statistical methods 
(e.g., root mean square error, mean absolute error). The choice of the evaluation metrics 
depends on the task given, for instance, (i) classification, (ii) regression, or (iii) clustering.

The rest of this section discusses the decision tree model for the classification task. The 
key concept of classification-related metrics is derived from the confusion matrix. It is a 
two-by-two table that contains four outcomes produced by a binary classifier [9]: (i) true 
positive (TP) means an outcome that the decision model correctly predicts the positive 
class, (ii) true negative (TN) is an outcome that the model correctly predicts the negative 
class, (iii) false positive (FP) is an outcome that the model incorrectly predicts the positive 
class, and (iv) false negative (FN) is an outcome that the model incorrectly predicts the 
negative class. A descriptive statistical processing of these outcomes provides a meaningful 
metrics as shown in Table 4.5. The evaluation measure aims to reach the operating point that 
minimizes misclassification rate [11]. Commonly, these metrics are used for a comparison 
purpose. To select the optimal model, it can decide based on multiple metrics for instance, 
speed, robustness, scalability, and rule structure [12].

4�3�2�3 Fundamentals to compose the reference process 
protocol

A reference process protocol is represented in the causal probabilistic network of design 
entities. The network consists of the interrelations of multiple sets of a sequence of concurrent 
design entities. Each sequence can be seen as a design activity flow that transforms and/
or adds value to a set of inputs with the common purpose of developing an algorithm. 
The relationships of entities in the network are determined by the timed action model 
(TAM), which is organized according to two conditions: (i) compositional relationship – 
which considers the dependency of the output and input states of two subsequent design 
entities; and (ii) temporal relationships – which assumes that there are no compositional 
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relationships between two considered design entities.

In the latter context, the temporal arrangement of the design entities depends on the sequence 
of design tasks that they belong to. If these two conditions are fulfilled, then it is guaranteed 
that every single entity is placed in the right order in a TAM. However, it is possible that 
multiple relationships occur at any design entities in the network. That means that there 
are multiple alternatives to create a design activity flow. Without acquiring supplementary 
information from a designer, based on the probabilistic reasoning by means of a Bayesian 
network, the RPP provides the necessary decision support.

In the context of the RM design process, a graphical representation of the RPP was 
constructed in the form of a Bayesian network. The nodes of this network represented 
the design entities, ei ∈ ℇ, and the directed arcs between the entities, l(i,j) ∈ L, captured 
the conditional relationships. The probability distribution of the network was symbolical 
expressed as follows [13]: 

         (4-14)

where: p(ei) ∈ P is the conditional probability of entity ei ∈ ℇ, and p(e0) is the conditional 
probability of entity epre. The entity e0 ∈ ℇ represents a node of origin in the graph representing 
RPP. The backward probability distribution p(e0 |epre) is determined by the frequency of co-
occurrence of any pair of entities in the historical processes.

         (4-15)

where: freq(ei, epre) is the frequency of the co-occurrence of entities ei, and epre ∈ ℇ.

In order to compose an RPP, the decision tree model had been trained and stored in the 
knowledge repository. Should there be a need for decision support because of the multiple 
options occurring at an arbitrary decision point, the decision tree model will be used to 
select the best support option.

metrics equations description
Accuracy (A) (TP+TN)/(TP+TN+FP+FN) the ratio of correctness prediction to the total 

number of samples in a data set
Precision (P)   TP/(TP+FP) the ratio of the number of correct positive 

predictions to the total number of positive 
predictions   

Recall (R) TP/(TP+FN) the ratio of the number of correct positive 
predictions to the total number of correct 
predictions 

F1-score (F) (2×(P×R))/(P+R) harmonic mean of precision and recall

Table 4.5: Metrics for evaluation of the classification performances 
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4�3�3 Fundamentals for the implementation of reference 
process protocol-based procedural obstacle identifier 
module 

4�3�3�1 Probabilistic inference by means of Bayesian network

Based on the RPP, this investigation of the design process is performed at two levels: (i) 
focusing on the design actions (in which case, the contents of individual design actions are 
investigated), and (ii) focusing on the design activity flow (in which case, the relationships of 
the design actions are investigated). To identify a procedural obstacle in the design process, 
the latter is exposed to backward reasoning in order to trace back the preceding design 
actions in the RPP. We interpreted this approach as a rationality-based event processing, 
which observes an obstacle in the design process based on the relationships of the elements 
in the RPP. According to our interpretation, the event processing is concerned with which 
design actions are possible to be done in the design process. 

The fundamental principle of probabilistic inference is inferring the actual design activity 
flow based on the probability relationships of n design entities in the RPP. It is calculated 
by the joint probability distribution (JPD) of the segment of the process flow model, PFM. 
Fundamentally, a process flow model is a state-transition model of the design process. As 
such, it represents the actual (current) state of design process. The process flow model 
includes the possible sets of related design entities. Each set can be constructed as a design 
activity flow as the procedural basis of the procedural recommendation generation. The 
actual design activity flow is selected by the candidate segments with the highest value of 
JPD. Symbolically: 

	 Pctx = max (p(P1), p(P2),…, p(Pn))    (4-16)

where: Pctx is the actual design activity flow,  p(P1)  is the joint probability distribution 
of the segment of the process flow model, PFM, Pi  ={ei-(n-1), ei-(n-2), ei-(n-3),…,ei}, n is the 
total number of entities in that segment, and i > n. Adapting the notation of [14], the joint 
probability distribution is calculated as follows: 

         (4-17)

where: en ∈ ℇ is a preceding node of entity ei ∈ ℇ

Let us suppose that the design entity ectx is present at Node e31 in the RPP.  It is possible that 
the segments of actual design activity flow, Pctx, can be found in multiple pathways. This 
situation is shown in Figure 4.10. In this case there happen to be three options for candidate 
segments. They and their elements are described by Equation (4-18):
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         (4-18)

The possible preceding entities are present at Node e21 and Node e22. With respect to Node e22, 
there are two candidate entities e0, which are present at Node e11  and Node e13. Considering 
Node e21, the entity e0 is present at Node e12. To find the best representative segment of Pctx, 
we applied probabilistic inference based on the joint probability distribution (JPD) of the 
segment of the PFM, as defined in Equation (4-16).

4�3�3�2 Hybrid inference for the generation of process-based 
recommendation 

Hybrid inference combines probabilistic reasoning and model-based reasoning to infer the 
design entities and their proper methods, which should be included in the most informative 
PFM. Once a segment of the PFM is selected in a given context, the design entities 
included in the PFM are identified. To rectify the actual design activity flow, computational 
methods are selected for the current design entity and the design entity that precedes it. 
We employed the decision tree classifier to select the most appropriate method M for the 
considered design entities. Machine learning algorithms can generate predictive models on 
target classes for each test case of the datasets. Classification is the task of learning a target 
function that maps each attribute in a dataset to one of the predefined class labels. 

The classifier acquires data in the form of xi ∈ X ⟶     ,  where xi is an attribute derived 
from the patterns of decision criteria corresponding to the class labels     , and mi ∈  is 
the method for a given design entity. The classification process for prediction of usable 
methods can mathematically be described as a function:

Figure 4.10: Backward reasoning for the investigation of the actual design activity flow 
(ectx = e21, n = 3)



184

 
         (4-19)

where:       is a set of classes representing the usable method of the new sample,      is a 
vector of answers replied by the designer, <cls_f> is the classification function, Φ is the 
parameter set of the classification function, and       is the class label of the training set. 

Initially, two design entities with the proper methods are composed. In the next step, 
the forward investigation for the next design entity is performed by using probabilistic 
reasoning. The candidate entities will be explored based on their relations to the current 
design entity in the RPP. The selection process includes the calculation of the joint 
probability distribution of the extended process flow model, which considers three design 
entities. The formula of the extended PFM, Pext, can be expressed symbolically as follows:

 Pext := {(êpre), (êpre),(epost)}     (4-20)

where: Pext is an extended PFM, êpre is the preceding design entity, êctx is the current design 
entity, and epost is the next design entity. As reference for the process-based recommendation 
generation, the extended process flow model is selected that is characterized by the highest 
value of joint probability distribution (JPD).

4�3�4 Fundamental for the implementation of advisory content 
generator module

The advisory contents were considered as sets of knowledge to support the execution of the 
design actions and the proposed method. Knowledge can be stored in various forms, such as 
(i) descriptive texts in a document, (ii) corpus of domain specific knowledge, (iii) structural 
representation of knowledge, and (iv) unstructured texts in webpages. In our case, the 
content-based recommendations are generated based on two sources: (i) the profile contents 
of the design action included in the data model, and (ii) the contents included in knowledge 
sources. For the demonstrative implementation of this module, we used webpages as 
knowledge sources. The fundamental concepts of the computational implementation are 
related to the information retrieval. In the pre-processing stage, information in the web 
pages has been processed and transformed into a recommendation item. The computational 
processes involved (i) extracting the raw texts, (ii) finding the main contents, (iii) creating 
a document, and (iv) indexing the document with key terms.

Text similarity measurement is widely used in text mining operations such as (i) searching 
and information retrieval, (ii) text classification, (iii) information extraction, and (iv) 
document clustering. Recommendations can be computed by several techniques, for 
instance, by estimating text similarity of two documents, and making queries on keywords. 
Measuring the similarity of two documents can be based on four different indicators: (i) 
string-based similarity operates on string sequence and character composition, (ii) corpus-
based similarity determines the similarity between two concepts based on the information 
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extracted from a corpus, (iii) knowledge-based similarity uses information from semantic 
networks to identify the degree of words similarity, and (iv) hybrid text similarities aim to 
combine the mentioned methods to reach the better performance by adopt their benefits. 

We preferred a hybrid method to generate advisory contents. The most informative contents 
are retrieved by making queries based on the key terms defining the usable method. The 
computational process executes the best matching algorithm (called BM25). It is one of the 
hybrid similarity techniques, which combine string-based and corpus-based similarities. 
The BM25 measures the frequency of documents in the collection, in which the given term 
has appeared. This measure is called inverse document frequency (IDF). The best matching 
algorithm is defined by the function:

 BM25(D,Q) = ∑t∈Q (IDF(t)×Wt,D)     (4-21)

where: D is a document, Q is a query, and IDF(t) is the measure of the inverse document 
frequency of the t-th term in the query terms. IDF(t) can also be looked at as a statistical 
weight used to measure a kind of ‘informativeness’ of the term t in a text document 
collection and expressed as a weight factor Wt,D. For the BM25, the actual value of IDF(t) 
is calculated by the following formula:

 IDF(t) = log (N-df(t)+0.5)/(df(t)+0.5)    (4-22)

where: N is the number of documents in the input data, and df(t) is the number of documents 
in the input data containing each term. The weight factor, Wt,D, of IDF(t) can be computed 
by the following formula:

 
         (4-23)

where: tf(t,D) is the frequency of appearance of the term (t) in a document (D), k1   is the 
parameter that controls the scaling function between the term frequency of each matching 
terms and the final relevance score of a document-query pair, k1 > 0, b is the parameter that 
captures how the length of a document affects the relevance score, 0 < b < 1 [15].

4.4 Specification of the resources used for the working 
environment

4�4�1 Fundamental programing language
MATLAB is a proprietary programming environment often used for scientific research, 
in engineering projects, and numerical computation. It has sophisticated data structures, 
contains built-in editing and debugging tools, and supports object-oriented programming 
to create the procedural programming. The demonstrative implementation of the ARF 
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follows the object-oriented and procedural techniques which involve (i) identifying the 
computation components, (ii) analyzing the shared characteristics of the components, and 
(iii) classifying the components based on their similarities. A computation component is 
constructed in an object-oriented programming. An object is specified in a proprietary 
formalism of the MATLAB. It includes a function with a parameter [output]. The function 
is a transformation of (inputs) by the logical operations of <function>. Thus, a formal 
expression of a computational component is as follows:

 component [output] = function(inputs)  (4-24)

The construction of the computational process should take into account the states and the 
output-input transitions of multiple components to achieve the desired state. As evidenced 
above, we followed the computational programing style of MATLAB. To implement a 
module, the related computational components were constructed in the style (form) of 
procedural programming. Putting together everything, the legacy of MATLAB is proven 
by the facts that it (i) included effective resources for programming the algorithms, and (ii) 
facilitated the demonstrative implementation by its built-in functions and toolboxes.

4�4�2 Built-in functions
Matrix operations

The most basic MATLAB data structure is the matrix. A matrix is a two-dimensional, 
rectangular array of data elements arranged in rows and columns. The elements can be 
numbers, logical values (true or false), dates and times, and strings. Matrix operations 
follow the rules of linear algebra. The required size and shape of the inputs in relation to 
one another depends on the operation. In the demonstrative implementation, data structures 
of main variables, for example, decision matrix, Times action model, Process flow model, 
and reference process protocol are constructed in the matrix representations.

Data constructs

Various built-in functions were used for data modelling and knowledge repository building. 
The data model of the object, i.e., a design entity, and the recommendation item were 
constructed in a form of structure arrays, which consisted of multiple fields. Each field 
contains properties of an object which is distinct from each other. These data models are 
stored in the knowledge repository. The functions used for implementing these components 
were: <struct>, <cell2struct>, and <table2struct>. 

Graph and network algorithms

A graph model G(V,E) comprises nodes, vi ∈ V, and edges, ei ∈ E. The structure of a graph 
(its network) is determined by the connections among the nodes. Each node represents an 
entity and each edge represents a connection between two nodes. The connections can be 
definitive or probabilistic. The reference process protocol was conceptualized as a causal 
probabilistic graph. The graph management functions of MATLAB were helpful to support 
the development of the algorithms related to the CRP and ROI module. Several built-in 
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functions could be used, for instance, 
 • <digraph> to construct a directed graph connecting nodes with directional edges 
 • <predecessors>/<successors> to find the preceding or successive nodes in directed 

graph
 • <inedges>/<outedges> to count the number of incoming/outgoing edges from/to a 

node in a directed graph
 • <shortestpath> to find the shortest path between two nodes.

4�4�3 Applied toolboxes
Text analytic processing toolbox

The text analytic processing (TAP) toolbox provides algorithms and visualizations for pre-
processing, analyzing, and modelling text data. The TAP includes tools for processing raw 
text from several sources such as equipment logs, web services, surveys, and operator 
reports. The built-in functions of the TAP toolbox can support various tasks, for example: 
(i) extracting text from files, (ii) extracting individual words, (iii) converting text into 
numerical representation, (iv) computing textual similarity, (v) conducting sentimental 
analysis, and (vi) building statistical models. The functions used in the implementation of 
the ARF were: 
 • text similarity measure functions (which offer several options for computing textual 

similarity of contents in a document and contents in queries, viz., tfidf, PageRank, and 
best matching (bm25))

 • text mining functions (viz., <tokenizedDocument>, <BagOfWord>, <topkword>  
 • document generation functions (viz., <joinWords>, <removeStopWords>, 

<extractSummary>.

Statistical analysis and machine-learning toolbox

The statistical analysis and machine-learning toolbox supports the implementation of 
components that are needed for the construction of a decision tree model. The relevant 
functions are as follows:
 • to train the binary classification tree, <fitctree>
 • to compute the cross-validated classification error, <cvloss>
 • to predict the usable method using the classification tree, <predict>.

Robotics system toolbox

The robotics system toolbox includes tools, functions, and algorithms for designing, 
simulating, and testing mobile robots. We found that some of these resources can be applied 
to simulate parking scenarios as well as to test the operation of the implemented modules. 
For instance: 
 • to create a car-like model that uses Ackerman steering, <AckermannKinematics> 
 • to find an obstacle-free path between start and goal locations within roadmap path 

planner, <findpath>.
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4�4�4 Library of user development functions

Ackerman auto parking 

The program implementing the Ackerman auto parking was developed by Khaled [16]. 
It is able to simulate roadside parking and to use the Ackerman steering functions. Both 
the program and its functions can potentially be modified for various parking scenarios. 
This is an important opportunity from the viewpoint of testing the functionality of the 
demonstrative implementation of the ARF. The simulation is able to show the motion paths 
and to ensure that a parking plan selected by the developed algorithm is working properly.

4.5 Specification of the implementation of the 
demonstrative modules

4�5�1 Architecting and implementation the dialogue-based 
obstacle identifier module

The dialogue-based obstacle identifier (DOI) module comprises three interrelated sub-
modules, namely: (i) sub-module 2.10 – design action identifier, which contains two 
computational components (2.11-2.12); (ii) sub-module 2.20 – knowledge manager, which 
comprises three interrelated computational components (2.21-2.23); (iii) sub-module 2.30 
– dialogue manager which comprises two computational components (2.31-2.32).  Figure 
4.11 shows the interrelationships of the computational components within the DOI module. 
Altogether, eight algorithms were implementation for the DOI module. Here we discuss 
only two algorithms: Algorithm A2.07 – ‘organize a dialogue’ and Algorithm A2.08 – 
‘execute pattern matching’. The list of variables used in the computational components 
included in the DOI module is shown in Table 4.6. 

4.5.1.1 Sub-module 2.10: Design action identifier

The design action identifier sub-module includes the computational components 2.11 and 
2.12. It aims at activating a dialogue and obtaining information directly from the designer 
to identify the current design action. The goal is to introduce a purposeful change in a given 
state of the design activity flow.

Component 2.11 captures and evaluates the designer’s response and activates a dialogue. 
The input data consists of (i) an event which represents a moment in time when the ARF 
recognizes the pattern of designer’s facial expressions, (ii) the response of the designer to 
inquiry of the ARF. The computational process obtains the response from the designer and 
returns a Boolean parameter, which is true if the designer accepts the offer, and returns false 
otherwise. It is an entry point where the ARF interacts with the designer.

Component 2.12 identifies a design action in a given context. When a dialogue is activated, 
the ARF poses the first question to the designer. It asks about the design action, which 
the designer was working on. When the designer replies, the response is used to identify 
the related design entity (which is a knowledge-based representation of a design action). 
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The designer’s answer is captured as a descriptive text in the form-based user interface. 
The technique of token-based similarity is applied to find a design entity. It compares the 
similarity of the terms in order to identify the design action. The identifier of design entity is 
stored in the database. We used the built-in function <contains> of MATLAB to determine 
the similarity of the terms. The function returns 1 (true) if the term denoting the design 
action is found in the recorded name of a design entity and returns 0 (false) otherwise.

4�5�1�2 Sub-module 2�20: Knowledge handler

The knowledge handler sub-module includes three components (viz., components 2.21 
– 2.23), which are interrelated. Component 2.21 generates a repository of knowledge 
elements related to the interpretation of a design action. This component aims at handling the 
domain-specific knowledge, which is needed to find the equivalent design entity. The input 
is a data table, which contains three knowledge elements: (i) a finite set of questions, (ii) 

Figure 4.11: The interrelationships of the computational components of the DOI module
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a collection of lookup tables containing 
a set of decision criteria, and (iii) the 
identified conditions and the potential 
solutions. The computational process 
of generating the repository involves 
the mapping of the relationships of the 
knowledge elements in the data table 
into the relational database.
Component 2.22 constructs a decision 
matrix to capture the binary values 
representing the conditions of the 
decisional options. The matrix captures 
the patterns of conditions to derive 
potential solutions based on the contents 
of the lookup table. Exact inference and 
static knowledge representation are used 
for finding a solution. The computational 
process completed by component 2.22 
can be expressed symbolically so as:

variables description
ectx design entity in context   
ℇ finite set of design entities available 

in the knowledge repository
Qs collection of questions available in 

the knowledge repository
cn decision criteria

DMi decision matrix
dDi vector of answers replied by a 

designer
pi,j identified conditions of decision 

criteria   
sm possible solutions 

sbest the best matching solution

Table 4.6: List of variables used in the 
computational components 
included in the DOI module

 [DEC_M] = capture_DecisionCond(LUT)  (4-25)

where: [DEC_M] is a matrix containing possible patterns of conditions corresponding to 
the decisional options, and [LUT] is a collection of lookup tables. The lookup table is 
manipulated to capture the decision conditions. It can be expressed in a matrix form as 
follows:

         (4-26)

where: sm ∈ S is a finite, non-zero set of potential solutions, cn ∈ C is a finite, non-zero set of 
decision criteria, and [DMi] is the decision matrix for a design entity ei  ∈ ℇ. Mathematically, 
it is specified as follows:

         (4-27)

Each element of this matrix, p(i,j), represents a condition {0,1} for the decision variable 
Ci, so as p(i,j) ←{0,1}, where: (1) indicates that the condition is considered at selecting the 
potential solutions, and (0) means that the condition is not considered. Each row represents 
a pattern of identified conditions for a certain set of decision variable. The size of the matrix 
is  m × n, where: m is the total number of patterns of the decision conditions, and n is the 
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total number of the decision variables.

Component 2.23 retrieves a set of questions that are related to a design entity in a given 
context. Whenever a design entity is recognized in the given context, the ARF will search 
and retrieve sets of relevant questions as contents for making a dialogue.

4�5�1�3 Sub-module 2�30: Dialogue manager

The sub-module 2.30 includes the computational components 2.31 and 2.32. Each 
component serves a specific purpose, but they also interact. The goal of their interaction is 
(i) to organize a dialogue, (ii)to capture the pattern of responses given by the designer to 
the questions, and (iii) to find the best matching solution, which corresponds to the pattern 
of decision conditions presented in the decision matrix. 

Component 2.31 organizes the dialogue between the designer and the ARF. The related 
context information is derived based on the set of questions and collected as structured 
information from the lookup table. The objective of this process is to capture the pattern of 
designer’s responses to a set of decision options. Symbolically:
 
 [dD] = organizeDial(entQs, designerSays) (4-28)

where: [dD] is a vector capturing the pattern of the designer’s answers. The size of this 
vector is equal to the total number of questions. The dialogue is organized by the algorithm 
A2.06 – ‘organize a dialogue’, which manages the sequence of questions and captures 
the pattern of designer’s answers. Computationally, the input data is a finite number of 
questions (Qs) and the responses (answers) by the designer [DesignerSays]. The total 
number of questions is related to the number of decision options in the lookup table for a 
particular design entity. The output data is a vector, dDi←{0,1}, where: (1) means that the 
received answer is ‘yes’, and (0) means that it is ‘no’. 

Component 2.32 finds the best match between the designer’s responses and the set of 
patterns of the decision conditions in the decision matrix. Symbolically:

 [SB] = findBSolution(DEC_M, dD)    (4-29)

where: [SB] is the best matching solution, which is retrieved from a set of solutions 
corresponding to the pattern of conditions in the decision matrix. We used algorithm A2.07 
to calculate the similarity of the patterns of answers provided by the designer and the pattern 
of decision conditions. The best matching solution is found if the similarity value is equal 
to 1. This means that the patterns of answers and the patterns of decision conditions should 
be exactly the same. Otherwise, the algorithm A2.07 concludes that no potential solution 
was found. The algorithm finds a set of design entities in the repository that correspond to 
the concerned design entity. The results are input data for the ROI module and help further 
investigate the obstacle occurring in the design process.
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4�5�2 Architecting and implementation of the reference 
process protocol creator module

The reference process protocol creator (RPC) module has been developed for handling 
process related knowledge in the reference protocol. Figure 4.12 shows the architecture and 
the interrelationships of the components of the module. The computational processes were 
divided into two groups. One group was mainly based on the provision of RPP contents. It 
focused on the principles of gaining information about the constituting elements of RPP. 
They were processed in the sub-modules 3.10-3.30.

Another group was for the composition of constituent elements of the reference protocol. 
It was operationalized in the sub-module 3.40. The implementation of the whole module 
required thirteen algorithms in total. Four algorithms, including A3.10-A3.13, were the 
main constituents for this module. The detailed descriptions of these algorithms are given 
in this section. The variables used for the computational components are listed in Table 4.7.

ARF Algorithm A2.06: organize a dialogue 
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ARF Algorithm A2.07: execute pattern matching

4�5�2�1 Sub-module 3�10: e-Data model builder

In the computational process of constructing the reference process protocol, we defined 
a design entity as a computational representation of a design action. It is a data model, 
which contains the data representing the properties of a design action. This sub-module is 
intended to handle sets of knowledge related to a design entity. It has two computational 
components: the first component is for modelling an individual design entity, the other is 
for construction of a repository to store design entities.

Component 3.11 creates a data model to handle the contents of a design action. The data 
model is composed of five elements, which are formally described as follows:

 [entD] = mdl_EntD(task,Id,inP,outP,mth,dT) (4-30)

where: [Task] is a design task, [ID] is an identifier of a design entity represented as a 
textual description of a design action, [inP] is a set of input parameters, [outP] is a set 
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of output parameters related to [Mth], [dt] is a duration of completing a design action, 
which is computationally executed by a method [Mth], and [entD] is a data model of 
a design entity.

The purpose of component 3.12 is to construct a repository of the design entities. The 
computational implementation is symbolically expressed as:
 
 [Repo_entD] = genRentD(entD)   (4-31)

where: [Repo_entD] is the location of the storage of knowledge resources for construction 
of a reference process protocol. It contains a finite, non-zero set of design entities ei ∈ ℇ. 

4.5.2.2 Sub-module 3.20: Process flow model configurator

A process flow model (PFM) is a state-transition model of a design process. Its primary 
element is represented by a design entity. The sub-module 3.20 uses a Petri-net-like 
structure to represent a PFM and identifies its pattern in order to classify the configuration 
of design entities. There are two interrelated components in this sub-module, component 
3.21 and component 3.22.

Figure 4.12: Interrelation of computational components of RPC module
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Component 3.21 creates a representation 
of the process flow model, which is, 
as mentioned above, a Petri net-like 
structure. The model comprises three 
basic elements that are: (i) a finite set 
of states S, (ii) a finite set of transitions 
T, and (iii) a set of arcs F. The 
computational function <create_PN> 
finds a deviation of incidence matrix 
CPFM  ← (Cpost  - Cpre), and assigns a set 
of markings m0 ← {0,1} to the states 
indicating the initial behavior of the 
model. Formally:

   [PFM] = create_PN(Pre,  
           Post, M0) (4-32)

where: [Pre] is an input incidence 
matrix, and [Post] is an output 
incidence matrix. The dimensions of 
the matrices are m × n , where m is the 
total number of the transitions, and n is 
the total number of the states, [M0] is 
the initial markings on each state, and 
[PFM] represents a process flow model. 

In this representation: si ∈ S is a set of 
states, tj  ∈ T is a set of transitions, and 
f(i,j) ∈ F is a set of arcs connecting a state 
and a transition, and vice versa. An arc 
expresses the flow relation, which is 
captured based on the contents of the 
incidence matrix: c(i,j) ←{-1,0,1}.  

     
    

    (4-33)

Component 3.22 identifies a structure 
of design entity based on the patterns of 
Petri-net configurations. A design entity 
is an element of the process flow model. 

variables description
D finite set of design tasks
di design task i

D design process

ei design entity i
ep

i design entity i associated with a 
certain pattern p of a PFM

et
i design entity i associated with a 

certain design task t
ℇ finite set of design entities stored 

in the knowledge repository
fi,j flow relation of state i and 

transition j
si state i of a PFM
ti transition i of a PFM
M finite set of patterns of PFM 

S finite set of states of a PFM
T finite set of transition of a PFM
F finite set of flow relations of a 

PFM
finite set of computational 
methods

mi method for an execution of 
design entity i

dT decision tree model

P process flow model

R reference process protocol

extR(ei, ej ) external relation of (ei, ej )
intR(ei ) internal relation of ei

seq(et
i, ek

i) temporal relation of (ei, ej ) 
concerning a sequence of design 
tasks (dt, dk )

freq(ei, ej ) frequency of co-occurrences of 
(ei, ej )

Table 4.7: List of variables used in the 
computational components included 
in the RPC module
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This component identifies a certain pattern of design entities, which can be composed into 
a process flow model. Symbolically: 

 [ePFM] = classify_PN(entD)    (4-34)

where: [ePFM] is a finite non-zero set of design entities, which were identified by certain 
patterns of the Petri-net configuration ep

i  ← (ei, mp), and mp ∈ M is a set of the defined 
patterns of the Petri-net configuration. Figure 4.13 shows an example of net configuration 
of a process flow model created by using Algorithm A3.03.

4�5�2�3 Sub-module 3�30: Timed action model builder

A timed action model (TAM) is a time-stamped arrangement of design entities in a design 
process. It is an element of the reference process protocol, which aims at representing 
(and controlling) a sequence of design entities in a design process. The construction of a 
timed action model consists of five interrelated components, which are 3.31-3.35. They are 
implemented as follows: 

Component 3.31 organizes the sequence of design tasks. This organization process aims 
at clarifying a set of design tasks for a given design process and finding the temporal 
relationships among design tasks. Their relationships allow the ARF to find a sequence of 
these tasks. The computational implementation can symbolically be expressed as:
 
 [SeqTask] = sequence_Tasks(D_Task, rules) (4-35)

where: [D_task] is a finite, non-zero set of design tasks, dt ∈ D, and [rules] is a 
finite, non-zero set of rules. Each rule has a Horn’s clause form of ri : p1 ∩ p2…∩ pm → 
ci where p1 ∈ P is the condition part of the rule, ri ∈ R , ci ∈ C is a conclusion defining a 
temporal dependence relation of a pairwise design tasks dt,dt+n ∈ D and t,n ≥ 1. [SeqTask] 
contains a set of conclusions concerning the relations of the considered design tasks. 

Component 3.32 classifies a design entity according to its relevance to design tasks.  This 
process assigns the design entities to a given task whose completion needs them. Each 
task has a chronological order in the design process. To complete the design process, the 
designer may take actions step-by-step, following the sequence of the design tasks, if both 
the starting task and ending task are defined. Without consideration of the composition 
relationships between the design entities, the temporal relationship regulates the places 

Figure 4.13: Information representing a configuration of process flow model – ‘2-to-1 
synchronization’ 



197

of design entities in a design activity flow (i.e. it determines which one should be placed 
before or after another one). The component implementing this is formally expressed as 
follows: 

 [entD_T] = catg_entD(D_Task, entD)  (4-36)

where: [entD_T] is a finite, non-zero set of design entities associated with a certain type 
of design task, et

i ← (ei, dt). 

Component 3.33 constructs a matrix to represent temporal relations of design entities. The 
matrix contains all numerical data needed to capture the arrangement of design entities with 
regard to the possible sequences of the design tasks. It is a computational representation for 
the construction of a timed action model. Symbolically:   

 [eTM] = const_ETM(SeqTask, entD_T)  (4-37)

where: [eTM] is a square matrix, n×n, identifying an arrangement of a couple of design 
entities, and Ne is total number of design entities. The relationship of the entities in the 
matrix qi,j ←{0,1} follows the rule:  

 r1 : p1 ∩ p2 → c1: dt ≺ dt+n     (4-38)

         (4-39)

where: p1 and p2 is a finite, non-zero set of design tasks dt, dt+n ∈ D for a design process D 
and t, n ∈ N

Component 3.34 constructs a matrix to represent the composition relationships of the 
design entities. It aims at capturing the (logical) relations of the entities and converting 
them into a computational representation. Formally:
 
 [eRM] = const_ERM(entD)     (4-40)

where: [eRM] is an entity-relation matrix of dimension n×n. This matrix contains all 
composition relationships between the couples of design entities (ei, ej). There are three 
types of entity relations accounted for, namely: (i) internal relation (which refers to a 
transition from an input state to an output state established by means of an entity ei); (ii) 
external relation (which exists in the case where an output variable of an entity ei is identical 
to an input variable of an entity ej); and (iii) no relation (which means that the entity couple 
made up by ei and ej has no direct relationship). The relationship of the entities ϱi,j ← {0,1,2} 
in the matrix is defined by the following conditions: 
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          (4-41)

where: intR(ei, ej) represents an internal relation of design entities i and j, and extR(ei, ej) 
represents an external relation of design entities i and j, where i ≠ j, and  i, j ∈ Ne.

Component 3.35 constructs a matrix to represent a timed action model. It is a square matrix, 
which specifies the relationships of design entities according to the sequence of design 
tasks and the external interactions. Formally: 

 [TAM] = construct_TAM(eRM, eTM)   (4-42)

where: [TAM] is a square matrix representing a timed action model, whose rows and 
columns are design entities, ei, ej ∈ ℇ. The dimension of the matrix is n×n, where n is total 
number of the considered design entities, and i,j ∈ n. In a TAM, the entity composition 
relationships ti,j ← {0,1} are defined by the external relations of the entities ei and ej. 
These entities are considered as the intended actions to complete design tasks dt and dt+n, 
respectively.

         (4-43)

where: extR(ei, ej) ← {0,1}  is the external relation of ei and ej. It is equal to 1, when entities 
ei and ej have an external type of compositional relationship with each other, otherwise it 
equals to 0. The formula seq(et

i, et+n
j) ← {0,1} represents a timed transition of ei and ej. It 

equals to 1, when (i) ei belongs to a design task tt and ej belongs to a design task tt+n, and 
(ii) these two design tasks have a temporal dependence relation, otherwise it equals to 0. A 
timed action model is constructed by using the algorithm A3.09. The matrix representing a 
TAM is shown in Figure 4.14.

4�5�2�4 Sub-module 3�40: Reference process protocol creator

The sub-module 3.40 comprises three interrelated components (3.41-3.43). The component 
3.41 develops a design tree classifier as one of the main components of the reference 
protocol. The classifier plays a crucial role in the process of design support. It selects the 
most appropriate method concerning a design action and presents it to the designer as a 
recommendation. Component 3.42 is the main contributor to the implementation of the 
proposed ARF. The reason is our fundamental assumption that a mathematical representation 
of a reference protocol can be generated for the computational implementation of 
provisioning process-context dependent recommendations. Component 3.43 is designed 
to visualize a graphical model of the reference protocol for the purpose of communication. 
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The component 3.41 constructs a decision tree model to allow selecting the most appropriate 
method for execution of a design action. This component uses a tree-based non-parametric 
supervised learning approach for classification of the considered methods. The decision 
tree model is trained from the training dataset, which is formed by varying the features 
of the characteristics of the predictors. The component 3.41 employs a learning algorithm 
(LA) for the identification of the classification model. This LA is supposed to provide the 
best fitting relationship between a set of predictors and the associated class labels. The 
computational component is expressed symbolically as:  

 [DTM] = constr_DTM(Mth, DR, DF, S)  (4-44)

where: [DTM] is a decision tree classifier, and [Mth] is a set of methods usable for a 
computational execution of design action.

Each method is identified as a response to a training set. [DR] is a set of decision rules in 
the form of IF-THEN statements. Each rule contains one condition or multiple, conditions, 
that are associated with a prediction. [DF] is a set of data features. Each feature represents 
a decision condition. [S] is a training set containing the instances of the data features. 

The component 3.41 employs the algorithm A3.10 ‘training a decision tree classifier’ to 
train the model. A decision tree was constructed based on an inductive method as presented 
in [7]. A cross-validation technique is applied to determine the accuracy of the model. 
The training set is partitioned into K folds. The prediction accuracy is calculated by the 

Figure 4.14: Matrix representing a Timed Action Model (n = 48)
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following equation.

         (4-45)

where: Ai is the prediction accuracy of the model, N is the number of class labels, and ci,j is 
the total number of the predicted class i that was classified to the actual class j.

The ARF Algorithm A3.11, ‘Decision tree induction’, creates a tree-like structure that 
classifies the instances in one of the given classes by learning some decision rules deduced 
from the data features, or a conditional probability distribution defined on the features and 
classes. The algorithm starts with a training set and an empty tree. In the first step, the 
feature which best splits the training data will be determined as the root node of the tree. 
Selecting the best split is based on the degree of impurity of the child nodes. The training 
set si is partitioned with the aim of having each of the partitions as pure as possible. In the 
demonstrative implementation, the Gini impurity measure is applied as the splitting criteria 
due to the fact that the response to the training data is categorical. 

The instances are tested according to the splitting criteria and assigned to the child node, 
recursively, until it reaches the leaf node, which sorts the instance into the respective class. 
The algorithm terminates if any one of the following three situations occurs: (i) all training 
sample are of the same class, si  ∈ L; (ii) the current feature set is empty, X={∅}; (iii) no 
training samples exist, S={∅}. A detailed description of the Algorithm A3.11 is as follows:

ARF Algorithm A3.10:  train a decision tree classifier
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The decision tree model (DTM) supports the selection of the computational methods 
for testing the performances of the predictive model. Figure 4.15 shows an example of 
the simplified decision tree model and the decision rules, which were extracted from the 
model. The decision variables include (i) the prediction time, (ii) simplicity, and (iii) 
robustness. The five candidate methods are: (i) hyper-parameter optimization, (ii) feature 
transformation, (iii) cross validation, (iv) Chi-square test, and (v) ensemble learning. To 
avoid any fundamental mistakes, it should be mentioned that the training set was arbitrarily 
generated for the demonstrative purpose.

Component 3.42 is the RPP builder. The component constructs a matrix to represent a 
reference process protocol. The matrix contains a set of process flow models and a set of 

ARF Algorithm A3.11: Decision tree induction (DTI)
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a: Example of a decision tree model

b: Rule set extracted from the model

Figure 4.15: An example of the simplified decision tree model and the decision rules

computational methods. Each PFM represents a segment of the design process. It is created 
by a set of design entities and their relationships that are determined in the timed action 
model. A method for the execution of a design entity is selected by using the design tree 
model. The scope of the component is formally represented as follows: 

 [RPP] = compose_RPP (DTM, TAM, ePFM)  (4-46)

where: [RPP] is a matrix representation of a reference process protocol, which contains a 
finite, non-zero set of process flow models. The dimensions of the matrix are m × n , where 
m is the total number of the process flow models, and n is the total number of the design 
entities. 

Each process flow model Pi is represented as a vector, which contains Boolean parameters 



203

vi,j ← {0,1}. Each element of the vector corresponds to one of the design entities in the 
model. The Boolean parameter is set to value ‘1’ if the entity is contained in the design 
process or a part thereof, and ‘0’ otherwise. With these, the design entities are composed 
into the process flow model Pidx. Some of the design entities may require decisional support 
in order to select the best method. The decision tree classifier couples the entities with 
multiple potentials methods. The computational notations of a reference protocol and its 
elements are formally expressed as follows:

         (4-47)

          (4-48)

 dT ≔ {dti,dtj, dtk ,…, dtn}T     (4-49)

where: R is a reference protocol, Pidx is a process flow model idx ∈ m, and dT is a set of the 
decision tree for a selection of the most appropriate method for a certain design entity of 
Pidx. Two algorithms were implemented in this component: (i) algorithm A3.12 – compose 
an RPP; and (ii) algorithm A3.13 – graph construction to represent an RPP. 

The content of the RPP is visualized as a graphical representation of a Bayesian network 
with decision points. The network is constructed based on the conditional independence 
relations of the design entities included in the segments of the design process. The set of 
concerned design entities ei ∈ ℇ is represented as nodes. The relations among the entities 
are represented in the network as directed arcs li ∈ L.

Their relationships are quantified by the frequency of co-occurrences of subsequent entities, 
ei, ej ∈ ℇ. For every decision point, the decision process is done by using the decision tree 
model. The ARF Algorithm A3.13 is used to construct the graph representing the contents 
of the RPP. An example of a graphical visualization of a reference protocol is shown in 
Figure 4.16.

4�5�1 Architecting and implementation of the reference 
protocol-based procedural obstacle identifier module

The reference protocol-based procedural obstacle identifier (ROI) module is the key 
contributor to the demonstrative implementation of the ARF. It comprises three procedural 
sub-modules (4.10, 4.20 and 4.30) as shown in Figure 4.17. The implementation of 
this module aims at demonstrating the computational processes of the utilization of the 
reference process protocol. The output is a proposal, which is a basis of the process-based 
recommendation.

The sub-module 4.10 investigates the RPP in a backward manner in order to find a possible 
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obstacle in the design process. The sub-module 4.20 utilizes the hybrid inference approach 
to select the best method to execute the actual design activity flow and predict the next 
design action. The sub-module 4.30 consolidates the elements of the proposed design 
activity flow and their contents to generate a proposal. The detailed descriptions of five 
algorithms are given below, including algorithms A4.10, A4.03, A.4.04, A.4.06, and A4.08.

4�5�1�1 Sub-module 4�10: Context-sensitive design process 
identifier

The component 4.11 identifies the candidate PFMs that can be representatives of the design 
process in context. Once the current design entity was identified by the DOI module, the 
component 4.11 component finds the preceding design entities in the reference protocol, 
so as: 

ARF Algorithm A3.12: compose an RPP
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  [PFM_ctx] = idn_PFM(RPP, entD_ctx)  (4-50)

where: [PFM_ctx] is the process flow model representing the design process in context, 
Pctx ∈ R. It is assumed that the entity in context ectx, is the last design action in the segment 

ARF Algorithm A3.13: graph construction to represent an RPP
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of the conducted design process. The PFM is segmented with the n number of entities. This 
can be expressed formally as follows:

  Pctx ∶={ectx -(n-1), ectx -(n-2), ectx -(n-3)…, ectx }    (4-51)

where: Pctx  is the PFM representing the segment of the design process in context. To 
investigate the states of the design process, it is assumed that an obstacle occurred in the 
preceding actions. The investigation is performed in multiple iterations. For example, it is 
supposed that there are three subsequent entities included in the PFM, Pctx ∶={eo, epre, epost}.

The entity in context, ectx, is the last element of the model. The preceding entity epre  is in the 
middle. The entity  eo is the first one. These elements are composed to represent the segment 
of the design process in context, where n = 3. The Algorithm A4.01 was implemented to 
execute this component. 

Component 4.12 selects the best representative process flow models. This component relies 
on probabilistic inference.The fundamental concept of the implementation was explained 
in sub-section 4.3.3.1 The computational process includes (i) identification of considered 
design entities, (ii) composition of segment of the process flow model, (iii) calculation of 
the joint probability distribution of the segments, and (iv) selection of the best segment, 
which represents the process flow model in context. The candidate segments with the 
highest joint probability are selected as the best ones. Symbolically: 

 [PFM_B] = select_BP(PFM_ctx)   (4-52)

Figure 4.16: Visualization of graph representing an RPP (number of nodes = 16, number of 
edges = 59)
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where: [PFM_B]is the best representative segment of process flow model in context. 
Included in this component, the Algorithm A4.03 was implemented to select the best 
representative process flow model in context.  

Figure 4.17: Interrelation of computational components of ROI module

Table 4.8:  List of variables used in the computational components of the ROI module 

variables description
dT decision tree model
Pi segment of process flow model

ep
post successive design entity of the entity in context

ep
ctx design entity in context

ep
pre preceding design entity of the entity in context

set of the best methods
p(p̂k) joint probability distribution of a segment of design process
cPctx candidtae process flow model in context 

Pinf informative process flow model 

Pext extended process flow model

R proposal

CTi total sum of vector elements of the input/output sates of R
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4�5�1�2 Sub-module 4�20 – Inference engine

This sub-module includes three interrelated components (4.21- 4.23). The component 4.21 
was designed to explore the possible PFM Pctx options according to the context and to infer 
the most informative one Pinf. Using this result, the component 4.22 checks the reachability 
of  Pinf. Furthermore, the component investigates the proposed design entity in context ectx, 
to confirm that all required input data are available.

ARF Algorithm A4.01: find candidate PFMs in context



209

If the reachability is proven, then it confirms that the configuration of Pinf is completed. 
Otherwise, it will identify the missing entity and add it into the process flow model. The 
reachability condition of the Pinf is rechecked. The process is done iteratively until the 
reachability condition of the Pinf is fulfilled. Then, the component 4.23 predicts the next 
design action, which best matches to Pinf.

Component 4.21 selects the best methods for the elements of the most informative PFM by 
using the decision tree model. The input data consists of (i) the best segment PFM determined 
by the component 4.12, (ii) the decision tree models, and (iii) the captured patterns of the 
designer’s responses, which relate to the design entities belonging to the considered PFM. 
The computational operation of the component is symbolically represented as follows: 

 [iPFM] = hybrid_inf(PFM_ctx, DTM, dD)  (4-53)

where: [iPFM] is the representation of the most informative process flow model which 
includes the design entities with the best method. The computational process is executed by 

ARF Algorithm A4.03: selection of the best representative PFMs in context
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using Algorithm A4.04 – ‘select the best method for the PFM in context’

The component 4.22 checks the reachability of the process flow model. Here, the term 
‘reachability’ simply refers to the possibility of getting from one node to another node 
within a graph. 
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As explained related to the sub-module 3.20, there are three primary types of net 
configurations of a design entity. Each type consists of varied number of input and output 
states. When Pinf is identified, this component checks if the reachability of the design 
entity êctx is achieved when all output-input states of the subsequent elements of êctx are 
composed perfectly. The output is the vector of initial markings mi, which contains Boolean 
parameters. 

The length of  the vector is the total number of input parameters of the target entity in the 
instance. A vector element represents the similarity of the output-input parameters of two 
subsequent entities mi  ←{0,1}. It returns (1), if they are identical and (0), otherwise. The 
condition defines that the reachability of a process flow model is achieved should all vector 
elements of mi be equal to 1. 

         (4-54)

ARF Algorithm A4.04: select the best method for the PFM in context
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where:  mi is a vector element of [M0], spre
out is an output state of a preceding design entity, 

and sin is an input state of the target entity.

If the reachable condition fails, it means that at least one input parameter of the target 
entity is missing. The procedure for checking the reachability is iterated in the next run by 
searching for another preceding design entity having the highest number of co-occurrence 
frequencies with the target entity, to fulfil the missing marking. The investigation of 
state-transition of the design activity flow is done at the lower level of the PFM. In the 
demonstrative implementation, we assumed that the reachable conditions of the PFMs are 
satisfied for all trials. 

The component 4.23 creates a recommendation by predicting the next design entity 
concerning Pinf. The component calculates the joint probability distribution of the extended 
PFM Pext, which includes two elements of êpre, êctx  ∈ Pinf and the successive design entity 
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epost ,. It selects the epost that makesthe Pext, having the highest value of JPD. Symbolically:  
 
 [PFM_ext, iEntD] = infer_ST(iPFM, RPP)  (4-55)

where: [PFM_ext] is the extended process flow model, [iEntD] is the identified design 
entity that makes Pext having highest value of JPD. The inference process is executed by 
using the AFR Algorithm A4.06 – ‘predict the next design action’. The detailed description 
of the AFR algorithm A4.06 is given below.

4�5�1�3 Sub-module 4�30 – Obstacle resolver

The sub-module comprises two interrelated components (4.31-4.32). The component 4.31 
– proposal generation, implements algorithm A4.09 to wrap up the contents for a proposal 
as a process-based recommendation to resolve the procedural obstacle. The component 
4.32 – PFM coverability checker, implements two algorithms (A4.10-A4.11) for building a 

ARF Algorithm A4.06:  predict the next design action
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coverability tree of the proposal and using the tree to check the fulfillment of input/output 
states throughout the proposal. 

Component 4.31 generates the proposal concerning the extended process flow model. At 
this point, all elements of the extended process flow model are identified. They comprise 
three subsequent design entities representing the proposed PFM. This component aims at 
consolidating the information related to (i) the entities included in the net configuration 
of the extended process flow model, (ii) the specification of input-output parameters, and 
(iii) the most appropriate method for each entity. To create recommendation content, this 
component retrieves the key terms related to the contents of recommendation items, which 
are stored in its data model. The symbolic representation of the component is as follows:  

 [PS, eT] = Gen_PS(ePFM, iEntD)   (4-56)

where: [eT] is a collection of key terms related to the design entities, and [PS] is a 
proposal to resolve the cause of the identified obstacle. The proposal R   is formulated by 
using the reference protocol. Symbolically:   

         (4-57)

where: R̂  is a proposal, Pext is the extended process flow model, m̂i, m̂j is a set of the best 
approach corresponding to the given entities epre and ectx, and mk  is a method, which is the 
most frequently used for execution of entities epost. The proposal is generated by using ARF 
Algorithm A4.08 – ‘proposal generation.

The component 4.32 checks the fulfilment of the proposal. This component builds the net 
configuration representing the state-transition models of R and analyzes the coverability 
of the net. It checks if (i) all required data are available, (ii) all connections in the state-
transition models of R are fulfilled, and (iii) the expected output was correctly produced. 
The output is the coverability of the extended process flow model.  The algorithm A4.10 – 

ARF Algorithm A4.08:  Proposal generation‘coverability checker’ returns a logical 
value [true] when the coverability 
condition is satisfied, otherwise it 
returns [false]. Should the latter be the 
case, it indicates what required data 
is missing or where the output-input 
connection between the subsequent 
design entities is broken. This 
information is a supplement to the 
proposal. The coverability of the PFM 
is formally expressed as follows:       
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         (4-58)

where: CTi is total sum of vector elements of the input/output states of R, sin is an input 
state, and sout is an output state of the entities of R, n is the total number of data elements 
for the output states, m is the total number of data elements for the input states, and t is the 
total number of transitions t = N-1. The variable N stands for the total number of design 
entities of R. 

As mentioned in Sub-section 4.3.3.1, the investigation of the design process was performed 
on two levels. One level is the design action level, and another is the state and transition of 
design activity flow level). The coverability of the net configurations of the proposed PFM 
is checked. It is performed iteratively until the convertibility of the PFM is achieved. The 
operational goal of the component 4.32 is confirming that all required data are available for 
all elements of the PFM. With regard to the demonstrative implementation, we assumed 

Figure 4.18: Interrelation of the computational components of the ACG module
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that the coverability condition of PFM is fulfilled for all proposals.

4�5�2 Architecting and implementation the advisory content 
generator module of the ARF

The advisory content generation module consists of three architectural sub-modules with 
nine interrelated computational components as shown in Figure 4.18. The sub-module 
5.30 is considered to be crucial contribution to the implementation of this module. It finds 
the best recommendation item by computing the similarity of terms by identifying the 
elements in the proposal and the terms indexing the recommendation item. The item is a 
knowledge model that contains (i) the knowledge source, (ii) the main contents, and (iii) 
its key terms. Should the best recommendation item be found, it navigates the designer 
to the knowledge source. The advisory content generation aims at providing descriptive 
information related to the proposed process-based recommendation. The contents support 
the designer to operate according to the recommendation. The other two modules (5.10 and 
5.20) are responsible for the processes of modelling the recommendation item and building 
the knowledge repository.

4�5�2�1 Sub-module 5�10: Recommendation item generator

The recommendation item generator sub-module is designed (i) to extract the main 
contents from the knowledge source, (ii) to compile them into a recommendation item, and 
to (iii) index with the key terms. The implementation of the sub-module consists of four 
interrelated computational components (5.11 - 5.14). The implemented algorithms were 
modified based on the built-in functions included in the text analysis process toolbox of 
MATLAB.

Component 5.11 converts the knowledge sources into a text description. It aims at decoding 
contents included in the knowledge sources into a human-readable format. Each source 
contains descriptive contents related to a given design action. Knowledge sources can be 

variables description
Sα knowledge source of 

recommendation contents
Tα terms included in a 

recommendation content
D document containing a 

recommendation content 
simv similarity value
R repository of recommendation 

items

Table 4.9: List of variables used in the 
computational components of 
the ACG module 

in several formats, for instance, webpage, 
electronic corpus, and technical documents. 
An input data is a finite set of strings of 
raw texts  τi ∈ Tα decoded from knowledge 
sources. This component is executed by using 
the reusable functions including web-access 
(e.g., Webread) and content processing (e.g., 
findElement, extractHTMLText) provided 
by MATLAB. The output is a collection 
of raw texts extracted from the knowledge 
sources, si ∈ Sα.

The component 5.12 finds the main contents 
in raw texts. They most probably contain 
irrelevant information concerning the 
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description of a solution how to progress in the design process. The computational process 
selects the relevant contents by finding a query that contains each line of the texts. The 
input data are (i) raw texts, and (ii) a query (which is a set of search strings used to find 
the most relevant content). The output data is a finite set of strings of the main content 
ci ∈ Cα with regard to a query. The component is represented by algorithm A5.02, which 
matches a query to raw texts. This algorithm has been realized by modifying existing code 
according to the built-in functions (e.g., split function, tokenizedDocuments function, and 
token-based similarity function).

The component 5.13 generates a document and extracts frequently used words. This 
component organizes the contents into a well-structured document and analyzes the 
frequency of the words used in the document. The input data is a set of the strings related 
the main content, so as ci ∈ Cα. The output data are (i) a document, which stores contents 
for understanding the word, and (ii) a collection of words frequently used in the document 
called a bag of words. Algorithm A5.03 is implemented based on the modification of the 
built-in functions (e.g., extractSummary, BagOfwords).

Component 5.14 extracts key terms indexing the document. It counts the frequencies of 
words appeared in the documents and selects the most frequently used terms to index the 
document. The output is a finite set of key terms indexing the document. Algorithm A5.04 
– extract key terms, was modified based on the built-in function <topkwords>.

4�5�2�2 Sub-module 5�20: Recommendation items repository 
builder

The sub-module 5.20 comprises two interrelated components 5.21-5.22. They aimed at 
constructing the repository of recommendation items. First, component 5.21 builds a data 
model representing a recommendation item. The model is constructed with three fields 
of its profile contents included: (i) a knowledge source of recommendation item; (ii) a 
document containing the descriptive contents of a solution; (iii) key terms that represent 
the main content in the document. The output is a data model of a recommendation item. 
We used a built-in function <struct> to create the model. 

Second, the component 5.22 constructs a repository of the recommendation items. The 
input data is a collection of knowledge sources. They are evaluated to ensure that each 
knowledge source corresponds to a particular solution. It is stored with a finite set of pairs 
of the knowledge source and the corresponding key terms. The output is a knowledge 
repository stored as a finite set of recommendation items. 

4�5�2�3 Sub-module 5�30: Advisory content provider

The advisory content provider sub-module consists of three interrelated components (5.31-
5.33). The ultimate output is a comprehensive process-based recommendation and its 
advisory contents. 

The component 5.31 determines the similarity of the terms defining a solution and 
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a recommendation item. The computational process calculates the similarity of the 
recommendation items and the string arrays defined a solution. 

 simValue_M = simKterms(query, RECiTem)  (4-59) 

where: [simValue_M] is a matrix containing the similarity values of a set of 
recommendation items and the textual description of a solution, and [Repo_RiTems]
is a repository storing a finite set of recommendation items. This component includes 
the algorithm A5.07 to measure the similarity of the terms defining the solution and the 
recommendation items.

The component 5.32 selects the most relevant recommendation content. According to 
the similarity of recommendation items and the term defining the identified solution, this 
component generates a short-list of the recommendation items ranked according to the 
similarity scores. The best solution is at the first rank which offers URL name to navigate the 
designer to webpage, which contains the most informative advisory content. Symbolically, 
it is specified as:

[BRiTem] = select_BiTem(simValue_M, ReciTems) (4-60)

where: [BRiTem]represents the best recommendation item. 

This component employs the algorithm A5.08 to find the top N ranked recommendation 
items and then creates a ranking of candidate items. It calculates the average value of the 
similarity between the term indexing recommendation items available in the knowledge 
repository and the textual description of the solution/proposal. 

ARF Algorithm A5.07: Calculate text similarity of k-terms and ReciTems
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The component 5.33 displays the recommendation. The process concludes which   overall 
contents related to the best recommendation item, and the intended design entity. By using 
a form-based user interface, the component provides the necessary information structure, 
which, as mentioned earlier, includes the process-based recommendation and its related 
advisory contents. Should the elements of a process-based recommendation be generated, 
the description of the advisory contents is filled in the form.

 [CR] = genCR(BRiTem,PS)   (4-61)

where: [CR]represents the final form of the recommendation, and [PS] is the proposal. 

4�6 Putting the demonstrative implementation into 
application context

4�6�1 On the necessity of testing the demonstrative 
implementation in application context

This section discussed the testing of the realized functionality of the demonstrative 
implementation in the application context of designing a reasoning mechanism for an 
automated parking assist system (APAS). The testing would show how the implemented 

ARF Algorithm A5.08: Top N rank of recommendation items
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modules and components of the concerned mechanisms of the ARF work in the WPE session 
with the design task D1.0. According to the reasoning process of APAS in section 3.9.2 in 
Chapter 3, the task was defined as a development of a machine learning-type algorithm A01 
to predict the most appropriate parking case for an actual parking scenario. The ML-type 
algorithm is not only built into the reasoning mechanisms of the APAS, but it is also known 
for the ARF at the end of the design process. 

To evaluate if the selection of the most applicable motion path for the car to be parked is 
correct, the testing should show that the adapted machine learning-type algorithm builds a 
reasoning model to properly select the motion path. The subject of immediate testing is the 
appropriateness of the machine-learnt model in the given application context. We applied 
the reasoning-with-consequences principle to reason about and to test the functionality 
of the implemented demonstrative part of the ARF. As the ultimate output, the chosen 
motion path fits (appropriate for) the actual parking scenario, that the ML-type algorithm 
works correctly. However, not only the proper working of the machine learning algorithm, 
but also its proper training/learning should be assumed. If these are shown to be correct, 
then the concerned algorithm fulfils the requirements related to the functionality of the 
demonstrative implementation. 

Considering these, the testing process was decomposed to the following stages: (i) showing 
that the selected motion paths are correct (or which one is better); (ii) claiming that then 
the operation of the machine learning algorithm had to be correct; (iii) claiming that then 
the data and training of the machine learning algorithm had to be correct; (iv) claiming 
that then the support provided by the ARF for the design task had to be correct. It must be 
mentioned that this did not allow us to conclude about what might be and what might not be 
proven with regard to a full-scale support of the entire reasoning mechanism design process 
and the service packages of the whole of the ARF.

4�6�2 Introducing the concrete application context 
The guiding assumption concerning the testing of the demonstrative implementation was 
that a self-driving car (level 4) car sought and found a free parking space on the roadside 
and the APAS was activated by the on-board computer for parking the car. The parking 
scenario is shown in Figure 4.19. The APAS collected the necessary information from a set 
of sensors, including (i) a 2D representation of the parking lot (its width and length), and 
(ii) the distances between the car and the other objects (black cars) at a given moment in 
time in the parking scene. The front-side ultrasonic sensor is used for the measurement of 
the size of the longitudinal parking spaces. Basically, it scans the potential parking space 
while passing it. The length of a parking space is computed using the following equation 
[17]. 

         (4-62)

where: D is the length of the empty parking space, Ds is the distance between the front sensor 
and the rear sensors, t0, t1 is the time that the front sensor detects the first and the second 
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significant distance changes, respectively, and t1 is the time that the rear sensor detects the 
first significant distance change. Whilst the car is moving toward the empty parking space, 
the situation reasoning mechanisms of the APAS evaluate the state of the parking scene 
and selects the proper space. Then, the working principle session commences and uses the 
developed ML-type algorithm to find the best match parking case and the actual parking 
situation (ASRM algorithm A01).

The process of evaluation of the best parking cases includes multiple stages of reasoning, 
which in turn requires multiple interrelated algorithms, for instance, (i) an algorithm for 
extracting the morphological information structures from the candidate parking cases 
(ASRM algorithm A02), (ii) an algorithm for comparing the topological sub-structures of 
the motion paths of the past parking cases (ASRM algorithm A03), and (iii) an algorithm 
for adapting the optimally-matching motion path (ASRM algorithm A08). Should the best 
motion plan be selected, it will be converted into the action plan in the decision logical 
generation session (which is not addressed in this dissertation). 

4�6�3 Overview of the testing of the demonstrative 
implementation in the concrete application context

In the simulation of parking scenarios, the evaluation of a parking situation differs from the 
real-life situation. As shown in Figure 4.20, the spatial information of a car is determined 
by a bounding box. The location of the car is identified in the Euclidean space by the x-y 
axis coordinates of the vertices (corners) of the bounding box. It is symbolically expressed 
as follows: 

 car = [x1, x2, x3, x4, y1, y2, y3, y4]      (4-63)

Figure 4.19: Spatial-temporal representation of a parking scenario (adapted from [17])
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where: xi, yi is the x-y coordinates of the vertices (corners) of the bounding box. 

Assumed is that the 2D model of the spatial situation was developed in the preceding design 
session, which centered on ‘situation modelling’. The model was stored in the knowledge 
repository. The situation model contains the spatial-temporal information of the parking 
situation. A descriptor of a situation is used to characterize the situation, which captures a 
set of parameters identifying the locations of cars included in the parking situation at time 
t. Figure 4.21 shows the spatial information of the parking scenario presented in Figure 
4.20. To categorize the similar situations, the similarity measures are calculated based on 
these parameters.

The parking situation is evaluated by the dimensions of parking space and the distance 
between car to be parked and the car following in the driving lane. Three possible parking 
scenarios were determined: (i) parallel parking, (ii) perpendicular parking, and (iii) not 
applicable for parking. After the evaluation of the parking scenarios, a dataset is generated 
from the instances of the seven groups of attributive information, including the distances, 
D1-D6, which correspond to the evaluated parking scenarios.

Figure 4.20: Simulation of a parking scenario  

Figure 4.21: Spatial information representing a parking scenario at initial time t0  
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4�6�4 Development of machine learning algorithm for 
predicting the most appropriate parking case

In practice, a complicated design task is decomposed into multiple design sub-tasks. A 
design sub-task provides a set of design actions, which should be done in order to accomplish 
the concerned element of design process. For the demonstration case, Figure 4.22 shows an 
example of the design actions concerning the design task D1.0. The goal of the design task 
is what parking position and direction the APAS will select to perform a proper parking 
with the minimum number of maneuvers. 

According to the design sub-tasks and the example of design entities as shown in Figure 
4.22, the design activity flow can be created in multiple ways through the network of design 
entities. The interrelationships of design actions associated with the computational methods 
allows the designer to develop the ML-type algorithm A01. However, various constrains 
concerning i.e., logical, theoretical, and practical aspects limit the design actions. These 
conditions influence the construction of the reference process protocol. 

Figure 4.22: Design sub-tasks for a development of machine learning-type algorithm A01
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To train the program developed for selection of the most applicable motion path for the car 
to be parked, the dataset consists of the records of 887 parking cases characterized by six 
features, including the distances, D1-D6. But, in order to be able to test the recommendation 
related to the feature selection task, we added one more feature which is not relevant to 
the parking situation. Hence, the training data set contains seven features (F01-F07). The 
instances of the features correspond to the response variable, which is identified by three 
types of parking positions, where: (0) is not applicable for parking, (1) is parallel parking, 
and (2) is perpendicular parking as shown in Figure 4.23. 

4�6�5 Supporting the development of ML-type algorithm A01 
by the demonstrative implementation of the active 
recommender framework

4.6.5.1 Identification of knowledge content for the decision 
support 

In the process of the recommendation using the RPP, the investigation of obstacle and the 
exploration of the proper design activity flow are done based on the probabilistic reasoning. 
To select the proper usable method, the decision tree model is applied. Referring to the 
work of Rathore and Kumar (2017), they identified ten characteristics of a faulty dataset, 
which have the largest influence on the performance of the learning algorithm [18]. These 
aspects can be applied to analyze the characteristic of the data set for training the decision 
tree model in particular for the first design sub-tasks (i.e., the data preparation, the feature 
selection, and the model training). Hence, we applied these aspects as the prediction 
variables for the selection of the most appropriate method concerning an intended design 
entity related to the first three design sub-tasks 

They are: (i) noise (that reflects the lack of information or unreliable information), (ii) high 
dimensionality of input data (that means having too many features in the training dataset), 
(iii) heterogeneity of the data (that means having different natures of the features e.g., 
discrete, discrete ordered, or continues values in the training dataset), (iv) redundancy in 

Figure 4.23: Dataset for training the ML-type algorithm A01 
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the data (that refers to the similar instances of features describe multiple types of the class 
label), (v) outliers (that refers to the anomalies of data points that are out of the general 
behavior of the training dataset), (vi) missing value (that means values that are left blank 
in the dataset), (vii) amount of training data (that is the number of instances available to 
train the learning algorithm), (viii) class imbalance (that is related to the  number of class 
labels which are not properly distributed), (ix) learning function (that indicates the types 
of learning function that should be performed (i.e., linear  or non-linear)), and (x) type 
of dependent variable (that means the types of output value or response of the learning 
algorithm (i.e., categorical or numerical value).

Considering the rest of the design-sub tasks (i.e., model selection, model scoring, and 
model validation), they focused on the performances of the learning model. Should the 
learning model be trained, the prediction variables concerning the performance metrics 
are considered, including (i) the prediction speed, (ii) robustness of the model, (iii) the 
flexibility of a computational method to perform the evaluation, (iv) the simplicity of the 
computational method to perform the evaluation, and (v) the ease of interpretation of the 
results. Table 4.10 shows the prediction variables, which are related to the design sub-tasks. 
These variables are analyzed and specified with regard to the considered design entity. As 
an example, Table 4.11 presents a sample ruleset that was extracted from the decision tree 
model that was used as selecting the methods related to the design entity ‘fitting a model’. 
It can be remarked that the dataset for training the decision tree was intuitively generated 
for the demonstrative propose. The correctness of the extracted rules was not theoretically 
tested. 

4�6�5�2 Generation of recommendation according to reference 
protocol-based procedural obstacle identification 

For the demonstrative case, the graph representing the RPP includes 51 design entities 
and 442 connections. We assumed that all relationships of the design entities are logically 
valid for the recommendation generation. The expected output is the process-based 
recommendation, which comprises three design entities and their contents. To develop an 
efficient ML-type algorithm, the most crucial design sub-task was the model training. In 
this context we had to assume that a non-usual event could be detected when the designer 
was fitting the model without the consideration of dataset characteristics. 

Figure 4.24: the content of the identified 
current design entity 

By the above-described process, in the 
concrete practical application case, 
the design entity ‘fitting a model (e25)’ 
was identified as the current design 
action. The contents of this design 
entity are shown in Figure 4.24. The 
set of questions was related to some 
prediction variables of the rule set 
including: (i) amount of training 
required, (ii) learning function, (iii) 
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dependent variable, (iv) prediction 
speed, and (vi) robustness. It might 
be the case that - due to lack of 
background knowledge or relevant 
information - the designer cannot 
answer these questions. In this case, 
the ARF will pose sub-questions to 
guide the designer. The answers given 
by the designer are used to identify the 
conditions of the prediction variables 
(for example, {large, linearity, 
categorical value, yes, yes}). 

Based on the combination of the 
answers, it assumed that the exact 
inference cannot find the best match 
pattern for finding the solution. Then, 
the investigation of the obstacle 
using the RPP is executed. The 
joint distribution probability was 
calculated for selecting the preceding 
design entity. As result, the design 
entity, e14 – ‘select the attributes’, and 
the method is ‘information gain’. It 
shows two design entities connecting 
with the red line in the RPP as 
presented in Figure 4.25. The result 
can be interpreted that two design 
entities e14 and e25 executed by the 
method ‘information gain’ and ‘KNN’ 

Table 4.10: Prediction variables influencing the 
selection of usable method 
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1 noise •
2 missing value •
3 dimensionality • •
4 heterogeneity • •
5 redundancy • •
6 outlies •
7 amount of training 

required •

8 class imbalance • •
9 learning function • •
10 dependent variable • •
11 prediction speed • •
12 robustness • •
13 flexibility • • •
14 simplicity • • •
15 ease to interpretation 

of the results • • •

are the most frequently used in the historical cases, but they are probably not suited for the 
identified characteristics of dataset.

It might be the case that the designer dealt with this issue in the one of the historical cases. 
The prediction process is continued. In another case, if the required data for executing the 
prediction process are not available, then a dialogue is activated automatically to request 
(collect) the missing information from the designer. The set of questions related to the 
design entities e14 will be retrieved to organize the dialogue. The designer provides the 
conditions of prediction variables and the ARF uses the decision tree to predict the best 
method for the entity e14. In this case, it was found that ‘Chi-square test’ was selected and 
was already defined as the method for the entity e15. It means that this method was used 
in the historical cases, but it was not the most frequently used with the ‘KNN’ (see Figure 
4.25, where their relationship is shown by the yellow line in the RPP.)
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Here, the prediction variables related to the preceding design entity will be combined with 
the prediction variables of the current design entities. The decision tree will select the 
proper method for the current one. Based on the combination of these prediction variables, 
the ‘decision tree classifier’ was selected. It was identified as the design entity e24 in the 
RPP. Next step, the joint distribution probability will be determined to select the next 
design entity. The popularity-based approach is considered as the basis to the case-related 
recommendation generation. Three design entities are involved in the process. 
 
The result showed that the design entity e48 – ‘evaluate the performance’ was selected 
and the method for performing the entity was ‘analysis of the classification metrics’. The 
proposed design activity flow is shown with the green line in the RPP represented in Figure 

extracted rule set recommendation
1 if imbalanced data = no && learning function = linearity && 

prediction speed = no, then
perceptron based 
neural network

2 if imbalanced data = no && learning function = linearity && 
prediction speed = yes, then

decision tree 
classifier

3 if imbalanced data = no && learning function = non-linearity && 
amount of training data required = small, then

support vector 
machine

4 if imbalanced data = no && learning function = non-linearity && 
amount of training data required = large, then

ensemble classifier

5 if imbalanced data = yes && redundancy = yes && learning 
function = linearity && prediction speed = no, then

perceptron based 
neural network

6 if imbalanced data = yes && redundancy = yes && learning 
function = linearity && prediction speed = yes, then

Bayesian network

7 if imbalanced data = yes && redundancy = yes && learning 
function = non-linearity && amount of training data required = 
small, then

probabilistic based 
neural network

8 if imbalanced data = yes && redundancy = yes && learning 
function = non-linearity && amount of training data required = 
large, then

Support vector 
machine

9 if imbalanced data = yes && redundancy = no && robustness = no, 
then 

K-nearest 
neighborhood 

10 if imbalanced data = yes && redundancy = no && robustness = yes 
&& learning function = linearity, then

probabilistic based 
neural network

11 if imbalanced data == yes && redundancy == no && robustness == 
yes && learning function == non-linearity && prediction speed == 
no, then

K-nearest 
neighborhood

12 if imbalanced data == yes && redundancy == no && robustness == 
yes && learning function == non-linearity && prediction speed == 
yes, then

Gaussian Naïve 
Bayes

Table 4.11:  A rule set extracted from the decision tree concerning the selection of the 
usable method for ‘fitting the learning algorithm’
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Figure 4.25: The proposed design activity flow (presented as sub-graph representing the 
RPP)

Figure 4.26: The comprehensive recommendation presented to the designer

4.25. The advisory contents for these three elements were generated in the module 5.0 – 
ACG. The complete recommendation is shown in Figure 4.26, including both the process-
based recommendation and the content-based recommendation. To proceed with the 
proposed design activity flow, the designer can refer to web pages to get more information 
about the recommended methods.

The ARF makes the recommendation for the designer concerning how to develop the 
machine learning-type algorithm A01. The comprehensive recommendation presented to 
the designer is shown in Figure 4.26. We used MATLAB to generate the process-based 
recommendation provided by the ARF to the designer. The following design actions were 
performed:

 • Design entity e15 – selecting the attributes by using the Chi-square test
 • Design entity e24 – fitting the model by using the decision tree classifier
 • Design entity e48 – evaluation of the model by the analysis of the classification metrics
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For selecting the attributes, the dataset was analyzed by Chi-square test. The advisory 
content explains the description of Chi-square test1.  As shown in Figure 4.27, the Chi-
square scores of two features (F06 and F07) are relatively very low. Hence, they will 
be removed for fitting the decision tree classifier. Five features are used for predicting a 
parking case. To evaluate the performance of the model, the confusion matrix was analyzed 
in terms of its: (i) accuracy, (ii) precision, (iii) recall, and (iv) F1-measure. The description 
and the formulas of these metrics were given in Table 4.5 (in the sub-section 4.3.2.3). 

The testing sample includes 900 instances for each feature. The trial was run for 500 
samples. We also developed the KNN model without the removal of the irrelevant features. 
The evaluation results are shown in Figure 4.28. The accuracy shows that how many of the 
correct parking cases that the algorithm predicts. The precision determines how precise the 
model predicts the predicted positives. It means how many of missing the opportunities 
for parking. The recall measures how many of the actual positives are predicted as true 
positive. It means how many of the predicted parking cases cannot be parked, but the model 
predicts them differently. If the recall value is low, it is high possibility that the predicted 
positive is not suitable for parking. The F1-measures balances the precision and recall. The 
performances of the decision tree classifier are slightly better than the KNN model for all 
metrics. For the demonstrative case, it shows that the recommendation is helpful not only 
eliminating the obstacle in the design process, but also improving the performance of the 
learning model. 

4�6�5�3 Testing the functionality of the ML-type algorithm A01

To confirm that the ML-type algorithm A01 works properly, the selected motion path for 
parking should be tested in the concrete parking case. The criterion is that the selected 
motion path should fit the actual situation. It can be further analyzed in the sub-process of 
generating the parking plan. It should show the reference motion path for parking which can 
be further analyzed for generating the parking plan. Path planning generation determines a 
suitable collision-free path from a given start to a required goal position within the parking 
space. 

To capture the motion path, the state of a vehicle is defined by four elements: 

 carMdl = (x,y,θ,φ)      (4-64)

where: x,y is the coordinates of the location of the vehicle, θ is the orientation angle, and φ 
is the steering angle. 

Since the algorithm is used to predict the parking position, it determines the most similar 
parking situations and the parking cases based on their spatial information. The algorithms 

1 “Chi-square test examines whether each predictor variable is independent of a response variable by 
using individual Chi-square tests. A small p-value of the test statistic indicates that the corresponding 
predictor variable is dependent on the response variable, and therefore is an important feature. A 
large score value indicates that the corresponding predictor is important.” 
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have been tried out in two parking scenarios, which are discussed below.

Parallel parking scenario

The right-side Sub-figure of Figure 4.29 shows the most proper parking case for the actual 
parking situation. The APAS was supposed to have been installed in the blue car. The 
virtual motion path comprises four steps: (i) moving to the pre-parking location, (ii) moving 
forward to reach a ready-to-park position, (iii) moving reverse following the motion path 
to the parking space, and (iv) moving forward to the parking destination. The topological 
sub-structure of the motion path can be modified to fit other parallel parking situations.

Perpendicular parking scenario

The actual parking situation is illustrated in the left-side Sub-figure of Figure 4.30. The 
most similar parking case is selected as shown in the right-side Sub-figure. Typically, 
perpendicular parking is not suited for the roadside parking problem, but the learning 
algorithm has the potential to predict different types of parking positions. The motion path 
is for reverse parking. Its topological structure comprises three steps: (i) moving forward 
to reach a ready-to-park position, (ii) moving reverse following the motion path to the 
parking space, and (iii) turning to the perpendicular position and moving backward to the 
destination. Like in the case of parallel parking, the topological sub-structures of the motion 
path can be modified to fit other perpendicular parking situations. 

These parking scenarios showed that the algorithm A10 was able to select the proper parking 
cases for different parking situations. The motion paths presented in these cases might 
not be the optimal ones for the considered actual situations. Other potential parking cases 
would be selected as the candidates. In the next step of the reasoning sub-process in the 
WPE session, the morphological information of the candidate parking cases needs to be 
extracted and analyzed to find the optimal motion path. 

Figure 4.27: Results of the Chi-square test 
for the feature selection

Figure 4.28: Performance evaluation of 
the trained models 
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4�7 Observed limitations and other concluding remarks

4�7�1 Observed limitations of the demonstrative 
implementation

 • Due to the lack of the knowledge contents for all design entities, the demonstrative 
implementation cannot provide support for the entire process of completing design task 
D1.0. In addition, the recommendation generation was also limited because of the scope 
of the design scenario set up for the to-be-considered design actions.

 • We used string-based similarity to create relationships among the design entities for 
the construction of the RPP. Some terms denoting the input and output variables were 
mismatched because they were depicted by the same terms but, in fact, their parameters 
and data constructs were used in different contexts.

 • The RPP was constructed based on the concept of a Bayesian network. It is represented 
as an acyclic graph. Hence, using the RPP in the recommendation generation cannot 
support iterative loops occurring in the design process. Further research is necessary to 
resolve this logical issue.

 • In the course of functionality testing, the recommendations were generated based 
on various assumptions concerning the theoretical concepts and the practical design 
processes. However, the knowledge contents of the RPP and the decision variables of 

Figure 4.29: The actual parking situation (left) and the retrieved parking case (right) for 
the parallel parking

Figure 4.30: The actual parking situation (left) and the retrieved parking case (right) for 
the perpendicular parking
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the decision tree model were not theoretically tested. Hence, biases might influence the 
findings concerning the recommendations, and the comparative performance of the ML 
algorithms.

4�7�2 Improvement opportunities of the demonstrative 
implementation 

 • The algorithms implemented for a demonstrative purpose. We mainly concentrated on 
the realization of the novel and critical functionalities. Although, the aspect of efficiency 
of the algorithms was not considered yet, the organization of the computational 
workflow provided opportunities to further investigate the potential optimization of 
the developed algorithms.

 • To avoid fundamental mistakes concerning the contents of the generated 
recommendations, the theoretical correctness of the reference protocol and its 
knowledge contents should be validated.

 • It is possible to develop semantic inference for the recommendation generation based 
on the relationships of the knowledge contents included in the RPP. For example, if 
the designer can provide the preference conditions of the decision variables (which 
are related to the multiple usable methods), the ARF will infer the flow of the design 
actions based on the relationships of selected methods.

4�7�3 Concluding remarks
 • The implementation and functionality testing of the modules and algorithms of 

the demonstrative part of the ARF confirmed their correctness from logical and 
computational points of view.

 • Based on the doctrine of hybrid inference, the application of the RPP supports a (semi) 
automated recommendation generation.

 • Using a traceable logical reasoning model, such as the decision tree model, is useful 
for helping the designer to understand the logic of the decision-making concerning the 
selection of usable methods. 

 • Applying probabilistic reasoning makes it possible to generate case-related 
recommendations based on the popularity of the methods in previous (historical) cases.  

 • The testing of the demonstrative modules in the context of APAS confirmed the 
usefulness of the proposed recommendation generation in terms of elimination of 
an obstacle in the design process and of the possibility of continuation of the design 
process.
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5�1 Objectives and methodological framing of the fourth 
research cycle

5�1�1 Research objectives
The computational implementation of the selected demonstrative modules was presented 
in the previous chapter together with a forerunning analysis of the fulfillment of the 
functions implied by the technical requirements. As shown by the completed functional 
validation in the application context, the ML-type classifier was able to select the proper 
parking case from the available parking scenarios. The functional validation also showed 
that the implemented demonstrative modules of the ARF could support the designer with 
conducting the design process in the application context. This chapter focuses on the quality 
of the recommendations provided by the ARF. Usefulness was chosen as the measure of 
the quality because it could be captured by indicators (and not only by quantitative and/or 
qualitative variables).

Usefulness was viewed from the perspective of the designer, and is captured by the 
observable procedural effects of providing situation and obstacle dependent information 
in the semantic body of the recommendation generated by the concerned modules of the 
ARF. In other words, it was examined how useful the provided recommendations are to 
overcome possible procedural obstacles in the design process by the designer. Usefulness of 
the recommendation was assessed in a retrospective way (i.e., after the emergence of some 
procedural blockage), but not in a predictive (preventive) way. Due to the complexity and 
sophistication of this matter, it was left for future research. Thus, the goal of the validation 

Research cycle 4:
Validation of the usefulness of 
the recommendation provided by 
the implemented demostrative module

Chapter 5
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study presented in the rest of the Chapter was to confirm that the recommendations 
generated by the ARF were useful in various situations in the studied application context 
according to the proposed measurable metrics.

The main issue for the validation of usefulness of the recommendations was the active 
and insightful involvement of designers in the design process. It was seen as the most 
influential factor for finding the appropriate method of validation. It was considered with 
emphasis that the current developments in smart agent technologies make it possible 
to replace human participants with smart validation entities in repetitive assessment 
processes. Such programmable surrogates can mimic (i) creative activities; (ii) decision-
making actions; and (iii) the social behavior of human designers. Current research 
knowledge allows for achieving high-fidelity multi-feature surrogates. Having considered 
all these influential factors and the trends and affordances of technological development, 
we preferred to conduct the validation study by using a synthetic validation agent (that is, 
without participation of human designers). Therefore, an agent-oriented validation method 
was devised and applied.  In order to use this approach to usefulness validation, a synthetic 
validation agent (SVA) had to be designed, implemented, and pre-tested carefully.

Concerning the focus of the abovementioned of usefulness validation, six concrete goals 
were set: (i) to specify the target design process and actions in the context of the preferred 
application; (ii) to determine a proper approach to usefulness validation in the context of 
the conducted design process; (iii) to develop a synthetic validation agent that mimics the 
decisions and the behavior of designers; (iv) to investigate the contribution of the parts 
of the demonstrative modules to validation; (v) to assess the usefulness of the provided 
recommendations in terms of an unbroken progression in the design process; and (vi) to 
evaluate the findings and making enhancement proposals towards a better provisioning and 
contents of recommendations.

5�1�2 Methodological framing of the fourth research cycle
As introduced above, the object of validation was the usefulness of the recommendations 
received by the designer with respect to knowing how to progress in the design process 
(i.e., which design action to prefer as the next one.). From a procedural viewpoint, 
usefulness depends on the contents of the recommendations, which should be sensitive 
(i) to the progress (state) of the design process, (ii) to the number of design actions may 
be completed, and (iii) to the accomplishment pursued by the designer (contrary to the 
possible procedural inconsistences).

The activities in the fourth research cycle were driven by the need for both (i) data 
exploration and (ii) validation of the findings about usefulness as shown in Figure 5.1. Data 
were supposed to express the effects of recommendations on progression of the designer in 
the design process. They also had to help with hypothesizing an explanatory theory about 
the conditions and measure of usefulness. These determined the major activities in the 
exploratory part of the research cycle. 
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Structurally, the exploratory part 
of the research cycle included (i) a 
preparation stage (discussed in Sub-
chapter 5.3) and (ii) an execution of 
validation stage (discussed in Sub-
chapter 5.4). The implemented SVA 
was used in the exploratory part of 
the research cycle, which allowed for 
hypothesizing an explanatory theory 
about the usefulness of the situation-
related recommendations at the end 
of this sub-chapter. The exploratory 
part and the confirmatory part of the 
research cycle were connected through 
this explanatory theory.

The confirmatory part of the research 
cycle focused on the consolidation 
of this explanation considering a 
representative set of design actions 
and progression situations. Statistical 
analysis was used as a method of 
testing in this part of the research 
cycle. Beginning with the meaning 
and implications of the theory, the 
confirmatory part of the research cycle 
included (i) an evaluation of the findings 
stage (discussed in Sub-chapter 5.5) and 
(ii) a discussion and interpretation of the 
findings stage (discussed in Sub-chapter 
5.6). Reflecting the ideas of practice-
based research (PBR), the goal of the 
validation was to generate information 
not only about the usefulness of the 
recommendation, but also about 
opportunities for improvement. Figure 5.1: Approach of RC4

5�2 Main issues of validation of the demonstrative 
implementation part

In this sub-chapter, we discuss the issues that were associated with, and influenced the 
validation of, the usefulness of the provided recommendations. The two main issues were: 
(i) the criteria and measures for evaluation, and (ii) the method of evaluation.



238

5�2�1 Criteria and measures of usefulness validation of 
procedural recommendations 

We investigated the metrics that had been used to evaluate the performance of 
recommendation systems. One of our observations was that measures of algorithm 
performance were typically used as evaluation metrics in the case of recommender systems. 
Among others, time-dependency, user behaviors, and computational costs were considered 
as influencing factors and aspects of evaluation metrics [1]. In the numerical evaluation 
either various statistical methods (e.g., root mean square error method, mean reciprocal 
rank method, etc.), or machine learning metrics (e.g., accuracy-based metrics, F-measure, 
etc.) were used.

Considering the objective of usefulness analysis, we had to conclude that the usual 
performance evaluation metrics could not capture the very essence of usefulness. The 
simple reason was that evaluation of the effects of the provided recommendations was not 
a crucial issue in the case of the studied recommendation systems. This raised the need 
for more relevant metrics for usefulness validation. Towards this end, new aspects had to 
be considered such as (i) the perceived cognitive support (e.g., originality – which means 
recommending something new the users did not know or had thought of before); (ii) the 
perceived practical influence (e.g., time saving – which means that the recommendation 
helps reduce search time); and (iii) the perceived quality of the presentation (e.g., sufficiency 
of description – which means providing recommendation content adjusted to the designer) 
[2].

In the literature, usefulness is usually interpreted as utilitarian goodness and not as 
instrumental (usability), pragmatic (problem solving), technical (performance), hedonic 
(pleasure), and/or transcendental (mystic) goodness [3]. Thus, utilitarian goodness has 
been defined as the possible target and the strategic objective of validation. Our hypothesis 
was that a useful recommendation delivers information content that (i) is relevant for the 
continuation of the design process, (ii) the designer can recognize if it corrects or not, and 
(iii) the designer can operationalize the best next design action based on it.

5.2.2 Consideration of a simplified decisional behavior of the 
designers

The issue of having a proper evaluation method orientated our attention to the decisional 
behavior of designers. The major question was how the designers arrive at decisions and 
what they consider when making a decision about the design actions for the execution of 
the design process. Related to the latter, a decisional option Si, is created for the designer 
when - after finishing some related preceding design actions and having their output data – 
she/he selects and operationalizes the next design action. A challenge may be caused by the 
multiplicity of the possible design actions. It was considered that decisional situations were 
determined by the interplay of three decision variables. They are shown and interpreted in 
Figure 5.2.
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The first decision variable was the semantic appropriateness of a recommendation, Ri. 
Based on the actual inference of the concerned module of the ARF, a recommendation may 
be appropriate or inappropriate from the aspect of supporting a decision related to choosing 
the next correct design action to continue the design process with. The second decision 
variable was the recognition of the properness of the recommendation by the designer in 
the given procedural context Di. In spite of its trueness, a proper recommendation can be 
rejected. On the other hand, the designer may consider an improper recommendation as true 
and can accept it. In addition, a third decision variable Ai, was considered to express the 
possible decision alternatives of the designer on the right design action. The underpinning 
argumentation of this as an influential factor is that, based on the recommendation, the 
designer may select a proper design action, but there is a chance of failure at selecting the 
proper design action due to the abovementioned multiplicity or due to a personal mistake. 
On the other hand, incidental proper selection may also occur.

Using these decision variables, the decisional options could be interpreted as a triplet of 
relations. Symbolically:

 Si =  (Ri, Di, Ai )      (5-1)

These were supposed to occur in handling appropriate and inappropriate recommendations 
by the designer. An exhaustive combination of the decisional options leads to a model of 
the decisional behavior of the designer. Eventually, the model captures the eight decisional 
options concerning the acceptance of a recommendation about taking the next design actions. 
The possible combinations of the eight options were sorted into four classes, (i) justified 
objective decision; (ii) unjustified objective decision; (iii) incorrect objective decision; and 
(iv) negatively justified objective decision. The combinations of these options are shown in 

Figure 5.2: Three aspects (or decision variables) of decisional behaviors
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Table 5.1. The descriptions of the decisional options are given below:

 • A type I justified objective decision means that an appropriate recommendation is 
received by the designer, who accepts it and selects a proper design action based on the 
content of the recommendation.

 • A type I unjustified subjective decision means that an appropriate recommendation 
is received by the designer, who rejects it but - contrary to this - finds a proper design 
action independent of the content of the recommendation.

 • A type II unjustified subjective decision means that an inappropriate recommendation 
is received by the designer, who accepts it but - for a certain reason - finds a proper 
design action independent of the content of the recommendation.

 • A type III unjustified subjective decision means that an inappropriate recommendation 
is received by the designer, who rejects it and - contrary to this - finds a proper design 
action independent of the content of the recommendation.

 • A type I incorrect subjective decision means that an appropriate recommendation is 
received by the designer, who accepts it but – for a certain reason - selects an improper 
design action.

 • A type II incorrect subjective decision means that an appropriate recommendation is 
received by the designer, who rejects it but – for a certain reason - selects an improper 
design action.

 • A type III incorrect subjective decision means that an inappropriate recommendation 
is received by the designer, who accepts it, but - contrary to this - selects an improper 
design action.

 • A type II justified objective decision means that an inappropriate recommendation is 
received by the designer, who rejects it, but cannot find a proper design action without 
asking for other recommendation.

aspects of evaluation

recommendation provided by the ARF
appropriate recommendation inappropriate recommendation
acceptance by the designer acceptance by the designer
accepted rejected accepted rejected 
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unjustified 
subjective 
decision I

unjustified 
subjective 
decision II

unjustified 
subjective 

decision III
(+, +, +) (+, -, +) (-, +, +) (-, -, +) 

improper design 
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Table 5.1: Options of decision making by the designer
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This set of options of decision-making lends itself to a formal logic that can be applied in 
computation for the operation of the SVA, but it also needs to fulfil some other operational 
requirements that are discussed below.

5�2�3 Reason and requirements for a synthetic validation 
agent

We defined the term ‘usefulness’ with a specific meaning: a recommendation is useful if the 
designer can unblock a procedural obstacle and continue the design process. We intended 
to assess the usefulness of the recommendations by conducting real life experimentation. 
Towards this goal, initially, we planned to conduct the usefulness validation study by the 
involvement of a probabilistic sample of software algorithm designers and programmers. 
According to the plans, the designers would have used the demonstrative part of the ARF 
and could assess the usefulness of the provided recommendations. However, we faced 
difficulty with the involvement of practicing designers. The difficulty was caused by the 
coronavirus pandemic, which did not make it possible for us to invite designers to conduct 
the planned on-site studies. This orientated our attention to other alternative methodologies 
and computational solutions.

The search for a surrogate method for the validation of the usefulness of the recommendations 
led us the concept of a synthetic validation agent (SVA). By creating an SVA we intend 
to mimic the decisional behavior of the designer and to generate a quasi-experimental 
dataset for the purpose of validation. The above-discussed three decision variables were 
considered as the key elements of the formal reasoning procedure of the SVA. The SVA 
has been conceptualized as a generic means of modeling multiple designers with different 
behavioral patterns in terms of (i) recognizing the appropriateness of recommendations, 
and (ii) executing the implied design action as a correct continuation of the design process.

From a computational point of view, the SVA generates datasets that mimic the (human) 
designers’ decisional behavior as a follow-up on the proposed recommendations. The 
principle of prognostic reasoning was used to predict the possibilities of decision options 
based on the mimicked decisional behavior. As a result, a socially-based indicator could be 
realized to express the usefulness of the obtained recommendations based on the justified 
objective decisions of the designer. In simple terms, implemented in the form of agent-
based behavior simulator, the SVA was used to simulate if the designer could select the next 
correct design action or not.

The SVA was expected to fulfill two types of requirements concerning: (i) simulation of 
decisional behaviors, and (ii) generation of decision data and distributions. The concrete 
requirements are listed in Table 5.2. The requirements concerning decisional behaviors 
formulated the expectation for how a designer responds to the offered recommendations 
(which include four options by the combination of acceptance and rejection of the 
appropriate/impropriate recommendations). The requirements concerning decisional 
data are about the criteria for generating representative probabilistic distribution of the 
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decisional results (i.e., the pattern of choosing proper design actions).

From a computational point of view, the SVA generates datasets that mimic the (human) 
designers’ decisional behavior as a follow-up on the proposed recommendations. The 
principle of prognostic reasoning was used to predict the possibilities of decision options 
based on the mimicked decisional behavior. As a result, a socially-based indicator could be 
realized to express the usefulness of the obtained recommendations based on the justified 
objective decisions of the designer. In simple terms, implemented in the form of agent-
based behavior simulator, the SVA was used to simulate if the designer could select the next 
correct design action or not.

The SVA was expected to fulfill two types of requirements concerning: (i) simulation of 
decisional behaviors, and (ii) generation of decision data and distributions. The concrete 
requirements are listed in Table 5.2. The requirements concerning decisional behaviors 
formulated the expectation for how a designer responds to the offered recommendations 
(which include four options by the combination of acceptance and rejection of the 
appropriate/impropriate recommendations). The requirements concerning decisional 
data are about the criteria for generating representative probabilistic distribution of the 
decisional results (i.e., the pattern of choosing proper design actions).

5�2�4 The process of validation of the usefulness of 
procedural recommendations

The validation process was decomposed into three stages, which were: (i) preparation, (ii) 
execution, and (iii) evaluation. Each stage was then decomposed into multiple research 
activities completed by using specific methods and instruments as shown in Table 5.3. 

 • The preparation stage included four research activities: (i) specification of 
design process and actions; (ii) identification of the demonstrative part involved in 
recommendation generation; (iii) identification of the objective of evaluation; and (iv) 
development of the synthetic validation agent.

 • The execution stage operationalized the computational mechanism of recommendation 
generation as well as the validation agent in the application context. The research 
activities consisted of: (i) identification of validation scenarios; (ii) activation of the 
validation agent; (iii) detection of an unexpected event; and (iv) generation of a case-
based recommendation.

 • The evaluation stage focused on a statistical analysis of the simulation results. 
There were three research activities included in this stage: (i) statistical analysis of 
data; (ii) finding correlations between the considered variables and the indicator of 
usefulness; and (iii) analysis of the findings concerning improvement opportunities of 
the recommendation generation.
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aspects of requirements requirements
simulation of elements of 
decisional behaviors

acceptance of an appropriate recommendation by the designer
acceptance of an inappropriate recommendation by the designer
rejection of an appropriate recommendation by the designer
rejection of an inappropriate recommendation by the designer
aggregated probability of the acceptance/rejection (appropriate/
inappropriate)
the decisional tendency/probability of selecting a proper/improper 
design action by the designer
combine the tendency statistics with the aggregated probability
offer a tested behavioral pattern 

generation of decision 
data and distributions

simulate the operation of recommendation process
generate appropriate recommendations in a statistically normally 
distributed manner
generate inappropriate recommendations in a statistically normally 
distributed manner
predict the probability of decisional options of the recommendation

Table 5.2: List of functional requirements for the synthetic validation agent

5�3 Preparation stage of the validation process

5.3.1 Specification of design activities in the application 
context

In Chapter 4, we discussed how the functionality of the implemented demonstrative 
modules was tested in the case of an automatic parking system (APAS), as application 
context. In the center of this functionality testing was the ML-type algorithm (A01), which 
had been constructed for searching for past parking cases and retrieving the best matching 
ones from the repository of the APAS according to the actual parking situation. 

The validation of the recommendations was also associated with this part of design process. 
The following design activities were completed in the application context. The considered 
part of the design process included six design sub-tasks ranging from the pre-processing 
of the dataset to the evaluation of the trained machine learning model (see the detailed 
descriptions of the design-sub tasks in Sub-section 4.6.4 in chapter 4). The input data was 
a set of sensor data representing the parking situations.

The application designer had to execute one or more design actions to complete each 
individual task. The potential design actions (see Table 5.6 in Chapter 4), which could be 
selected by the designer, were all elements of the reference process protocol. The creative 
aspect of the design process was designing information constructs for training, and its 
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stage methods Instruments
1.0 preparation stage
1.1 specification of the design process 

and actions in application context
content analysis and 
synthesis

1.2 using the demonstrative part for 
recommendation generation

1.3 development of the synthetic 
validation agent

analytic requirements 
specification
creative system thinking programming in a 

software toolcomputer coding
1.4 testing the synthetic validation agent pilot functional testing
1.5 deriving indicator of usefulness prognostic reasoning
2.0 execution stage
2.1 identification of validation scenarios scenario analysis programming in a 

software tool2.2 operationalization of the synthesis 
validation agent

operationalization of the 
implemented mechanisms 
of the ARF and the 
synthetic validation agent 
(SVA)

2.3 detection of an unexpected event
2.4 generation of a case-related 

recommendation
3.0 evaluation stage
3.1 statistical analysis of the data statistical analysis statistical analysis 

toolbox provided 
by a software tool

3.2 correlation analysis of the considered 
variables and the decisional options

correlation analysis and 
synthesis

3.3 improvement opportunities for 
the recommendation generation 
mechanism

system thinking and 
synthesis 

 

Table 5.3: Process of validation of the usefulness of procedural recommendations

expected output was the classification model. This model was used for selection of the 
parking case which matches the actual parking situation best.

5.3.2 Identification of the implemented modules taking part in 
recommendation generation

Only certain components of the implemented demonstrative modules of the ARF contribute 
to generation of recommendations. Their contributions vary. Some of them derive 
information about the procedural situation, others consider reasons about the implications 
of the situations, and yet others construct and communicate the recommendations. These 
components of the ARF are associated with two mechanisms, namely: (i) the process 
monitoring mechanism, which detects a non-usual event and a related procedural obstacle 
in the design process; and (ii) the decision support mechanism, which provides the 
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recommendation to remove the detected obstacle and to continue the design process. The 
functionality of the mechanisms is added up by the lowest level sub-functions, which are 
implemented by the computational algorithms of the ARF. The implemented algorithms 
were purposively integrated into the computational components.

Two alternative approaches were used to generate the recommendations - as shown in 
Figure 5.3. The essence of the first approach was that the pattern of the designer’s responses 
was matched to the decision table within the DOI module. In other words, an interrogative 
interaction with the designer was organized and used as source of information. The essence 
of the second approach was that the reference process protocol was operationalized within 
the ROI module for the same purpose. From the viewpoint of recommendation generation, 
this second approach has a higher significance. For this reason, only the components 
concerned with this approach were involved in the validation study.

5�3�3 Development of the synthetic validation agent as 
surrogate of the designer

  5�3�3�1 Fundamental concepts for deriving the decisional  
model for the agent 

First things first …

A synthetic validation agent (SVA) can be viewed as a system that is situated in some 
environment and is capable of autonomous action in that environment in order to meet its 
design objectives [4]. In our context, the SVA mimics the flow of procedural decisions of 
the human designer as they are made after obtaining the recommendations. The expected 
output of the behavioral simulation made by using the agent is a data set that includes the 
patterns of the decisional behavior of the designer. We aimed at using this synthesized 
dataset to validate the usefulness of the individual recommendations. Striving for this, the 

Figure 5.3: Alternative approaches of recommendation generation 
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challenge was how to capture the features of the decisional behavior of the designer with a 
view to the obtained recommendations.

It was clarified in the preceding chapters that the RPP is a knowledge-based representation 
of the design process of ASRMs from the perspective of knowledge engineering. The 
ARF uses the RPP to generate context sensitive recommendations, which carry specific 
information for the designer in a particular (necessitating) situation. On the other hand, 
the designer is supposed to have her/his own knowledge about the conducted design 
process. Putting together these, the assumption can be posited that the designer shares some 
common knowledge elements with the RPP. When it comes to accepting or rejecting the 
recommendation in the case of hindrance, the designer decides on the next best probable 
design action based on her/his familiarity with the solution generation process and the 
informativeness (usefulness) of the obtained recommendation.

Assumptions concerning the decisional modes for the agent

The designer's 'decision mode' is interpreted as the knowledge possession-dependent 
decisional potential of one individual designer without any further knowledge search, 
sharing, or communicating with others. It was assumed that an actual decision mode of 
the designer depends on the proportion of the common knowledge (ck) characterizing the 
relationship of the designer’s knowledge to the knowledge formally captured in the RPP. 
Thus, ck can be formally defined as the proportion of the knowledge the designer has related 
to the design process, which she/he is actually working on, as compared to the knowledge 
formally captured in the RPP. Formally: 

 Ec = Er ∩ Ed       (5-2)

 ck = n(Ec)/n (Er)       (5-3)

where: ck is the proportion common knowledge, 0 < ck < 1, Er is a finite, non-empty set of 
design entities included in the RPP, n(Ec) ∈ Z is the total number of design entities included 
in the RPP, n(Er) > 0, Ed is a finite, non-empty set of design actions, which are supposed 
to be known by the designer, and Ec is a finite set of common design entities cognitively 
shared by the designer and the RPP. 

It is very unlikely that there is a 100 percent coincidence with regards to the knowledge 
of the designer and the knowledge contained in the RPP. It is also very unlikely that there 
is a 0 percent coincidence between them in a given project because the designer does not 
have competence enough to deal with the problem in that case. Therefore, we took into 
consideration the statistical significance of coincidence and operationalized the statistical 
significance parameter p, with regard to the coincidence. We hypothesized and defined 
three (most likely) domains of the shared knowledge as follows: (i) (0.05 - 0.25) (assumed 
in the case of a less competent designer), (ii) (0.25 - 0.75) (assumed in the case of an 
intermediately competent designer), and (iii) (0.75 - 0.95) (assumed in the case of a highly 
competent designer).
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Based on this interpretation, we introduced the concept of decisional modes (Δi) as the 
representatives of the proportion of the common knowledge indicated by ck. Formally:

         (5-4)

With regard to the practical design actions, the characteristic of three decisional modes can 
be described as follows:

Δ1: The proportion of the common knowledge ck, is between 0.05-0.25. In this case, the 
designer possesses insufficient knowledge to judge the appropriateness of the received 
recommendation, and she/he has no other options to continue the design process. In this 
decision mode, there is a high probability that the recommendation will be accepted. 
The probability will be slightly decreasing when the ratio of the shared knowledge is 
increasing.

Δ2: The proportion of the common knowledge ck, is between 0.25-0.75. In this case, 
the designer may recognize that the recommendation is appropriate to eliminate the 
obstacle in the design process, but she/he may also have other options originating in 
her/his experiences with the design process to be completed. In this decision mode, 
the designer may hesitate to accept a recommendation that she/he is not familiar with. 
For the designer using the familiar design action and method may seem to be a better 
choice. Therefore, the probability of accepting the received recommendation is getting 
lower.

Δ3: The proportion of the common knowledge ck, is between 0.75-0.95. In this case, the 
designer possesses the necessary and sufficient knowledge of the design process to 
assess the appropriateness of the received recommendation. In this decision mode, the 
designer also recognizes how to operationalize the recommendation. Consequently, 
there is a high probability of accepting the recommendation.

The three decisional modes together form a so-called decisional model. This will be 
clarified and further elaborated on below.

Formal representation of the fundamental concept

A decisional model is assumed to be a pattern of decisional behaviors concerning the 
acceptance or rejection of a recommendation. We introduced three formulas to capture the 
pattern, that is for: (i) the probability of the acceptance of a recommendation p(aR), (ii) the 
probability of shared knowledge p(sk), and (iii) the probability of knowing the knowledge 
elements included in the recommendation by the designer p(fk). These formulas are as 
follows:

 p(aR) =  f(sk, fk )       (5-5)

 p(sk) = n(Ep ∩ Ec)/n(Ep ∪ Ec)     (5-6)
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 p(fk) = n(Ep ∩ Ec)/n(Ec)      (5-7)

where: p(aRi) is the probability of the acceptance of a recommendation, Ep is a finite, non-
empty set of design entities included in the considered segment of the design process, and 
Ec is as specified by Equation (5-2).

Graphical representation of the connectivity of the knowledge elements

The RPP can be visualized by a circular graph as shown in Figure 5.4.a. It captures both the 
knowledge elements and their connectivity that serve as the basis of decision-making by 
the synthetic validation agent (SVA). 

The dots in Figure 5.4.a represent the design entities and the dashed lines represent the 
relationships among the entities. The red dots represent the common knowledge elements 
shared by the designer and the RPP. The yellow dots represent the concerned segment 
of the process flow models. The green dots are the knowledge elements shared in the 
recommendation by the designer.

As shown in Figure 5.4.b, the above-described sharing of knowledge can also be 
represented by a Venn diagram. This is, however, only an abstract and simplified model 
of the connectivity of the design entities. As an aggregate of knowledge elements, the set 
Ec includes those common design entities which are shared by the designer and the RPP. 
PFMs is the set of process flow models, and Ep is as specified above. The intersection 
(common parts) of these sets represents the shared knowledge elements, a part of which is 
actually carried by the recommendation, (REC).

Constructing the decision model for the agent

Based on the consideration of these possible decisional situations, a decision model was 
constructed in the form of a function specified by Equation (5-8). This function captures 
the deviation of the probability function of the shared knowledge p(sk), from the probability 
function of the knowledge elements known by the designer p(fk). 

 p(aR) = 1- α*(exp(β*p(sk))-exp(γ*p(fk))    (5-8)

where: α is the expected probability of accepting a recommendation and 0 ≤ α ≤ 1, β is a 
factor (coefficient) determining the acceptance level, and γ is the expected acceptance level, 
and γ < β < 0. A broad scrutiny (logical examination) was applied to test the rationality of 
this decision model. Furthermore, to determine the values of the above defined coefficients 
(factors) of the reference decision model, we set up design scenarios and numerically 
analyzed the outcomes. Figure 5.5 shows the graphical representation of the relationships 
of the decisional modes in the decision model, as implemented in the SVA.
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(a) Graphical representation of the connectivity of the knowledge elements included in 
the RPP

(b) The relations of the knowledge possession of the designer and the knowledge 
elements related to the RPP

Figure 5.4: Visual representation of the fundamental concept for deriving the decision 
model of the agent 
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5.3.3.2 Specification of the functionality of the synthetic 
validation agent

As a generic (system-level) function, the SVA generates a validation dataset that mimics 
the decision patterns of human designers. The requirements specified in Section 5.2.2 were 
used to guide the process of decomposition. In order to facilitate the fulfilment of the posed 
requirements, the mentioned generic function was decomposed into two main functions 
which are: (i) to simulate decisional behaviors (F1.0); and (ii) to generate validation dataset 
(F2.0). The computational sub-functions of the validation agent were derived by a second-
level decomposition of these main  functions. The result of these decompositions is shown 
in Figure 5.6. Below, we explain the sub-functions of the SVA in more detail.

The sub-function F1.1 simulates how much the designer intends to accept the offered 
recommendation. This determines the acceptance probability of the recommendations based 
on the reference decision model. Using this acceptance probability, the sub-function F1.2 
predicts the probability of the behavioral features considering the decisional options. The 
outcome mimics the behavior of the designer in terms of recognizing the appropriateness 
of the recommendations. Considering the possible interplay of the pairs of positive 
(approving) and negative (disproving) decision options, four behavioral options (features) 

Figure 5.5: The relations of the decisional modes as elements of the decisional model 
constructed for the SVA
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were identified: (i) accepting an 
appropriate recommendation; 
(ii) rejecting an appropriate 
recommendation, (iii) accepting 
an inappropriate recommendation, 
and (iv) rejecting an inappropriate 
recommendation. The sub-function 
F1.3 simulates the tendency of 
this decisional behavior of the 
designer. It checks the properness 
of the recommendation by taking 
into account the follow-up design 
actions. Based on the computational 
observation if the designer executes, 
or not, a particular design action the 
sub-function F1.3 identifies the related 
design entity. This is possible owing 
to the one-to-one (computational) 
mapping between the design actions 
and the design entities, Based 

Figure 5.6: Decomposition of the main functions 
of the SVA to sub-functions

on the result of this identification action, the sub-function F1.3 can conclude if a proper 
recommendation was given. This conclusion is shared with the SVA. 

The sub-function F2.1 generates the data model to represent a range of obstacles, which may 
occur at performing certain design actions. In the practical design process, the possibility 
of the occurrence of an obstacle varies according to several factors, for instance, (i) the 
experiences of the designer, (ii) the characteristics of the dataset, and (iii) the complexity 
of the algorithms. Due to the complicatedness of the task of analyzing all of these factors, 
we left this issue for prospective future research. To by pass this issue, we assumed that 
the designer has the chance to face an obstacle at any design actions equally well. This 
assumption was taken into account at the simulation of the data model by the SVA.

The sub-function F2.2 enacts the decisional model to generate a recommendation. This sub-
function is related to the process-based recommendation mechanism of the ARF. It utilizes 
the information included in the RPP to: (i) generate candidate process flow models, (ii) to 
select of design action flow, and (iii) predict the next design actions. The sub-function F2.3 
predicts the patterns of the decisional options. The logic of the procedure underlying the 
operation of the F2.3 starts with a classification of the recommendations in terms of their 
appropriateness. The classification combines the appropriateness and/or inappropriateness 
of each recommendation with the decisional options. The sequence of the decisional options 
indicates a noticeable decision tendency. The decisional tendency shows a probabilistic 
nature (i.e., the probability of what the designer actually selects). The expected output of 
the sub-function F2.3 is the probability of the decisional options, as discussed in Section 
5.2.2.
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5.3.3.3 Specification of the algorithms needed for the smart 
validation agent

For the realization of the discussed functionality of the SVA, twelve algorithms were 
needed. They are presented in Table 5.4. In the case of sub-function F1.1, in terms of 
recognizing the meaning of a recommendation, we considered two decisional options. Four 
algorithms were needed to perform this sub-function. The algorithm A1.01 generates the 
data model that represents the variations of the common knowledge of the designer is 
assumed to have. Each instance contains a set of knowledge elements, which characterize 
an individual designer in the SVA. The input data is the contents of the RPP and the 
proportion of the common knowledge. The algorithms A1.02 and A1.03 are to calculate 
the components of the decisional model, including the probability of shared knowledge 
and the probability of known knowledge elements of the mimicked designer, respectively. 
The algorithm A1.04 uses the decision model to calculate the probability of the acceptance 
of the recommendations. The algorithms A1.01 - A1.04 are executed n times in a loop to 
generate the collective behaviors of all mimicked designers.

Belonging to the sub-function F1.2, the algorithm A1.05 determines the probability of the four 
decisional options (features) according to the level of acceptance of the recommendations. 
For the realization of the sub-function F1.3, two algorithms were specified. The algorithm 
A1.06 identifies the follow-up design entities included in the extended design activity flow 
graph. The algorithm A1.07 analyses the decisional tendency of the mimicked designer 
with regard to the properness of the recommendations. The decision tendency is determined 
based on the following conditions:

functions needed algorithms
F1.0: simulate decisional behaviors of the designer

F1.1 A1.01: generate data model to represent the common knowledge of the designer
A1.02: calculate the probability of shared knowledge elements
A1.03: calculate the probability of known knowledge elements
A1.04: calculate the probability of acceptance of the recommendations

F1.2 A1.05: predict the features of decision behaviors
F1.3 A1.06: identify the follow up design entities

A1.07: simulate decisional tendency concerning the design process
F2.0: generate a validation dataset

F2.1 A2.01: generate data model to represent variation of obstacles in the design process
A2.02: generate the recommendations

F2.2 A2.03: generate data model to represent the variation of the appropriateness of 
recommendations

A2.04: simulate the patterns of decisional behaviors  
A2.05: consolidate the data features

Table 5.4: Specification of the algorithms needed for the computational realization
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          (5-9)

where: ci is the decision tendency of the designer, ci ←{0,1}, where (1) means a proper 
recommendation, and (0) means an improper recommendation Ex is a finite, non-zero set of 
design entities, which are included in the extended design activity flow, and Ec is a finite, 
non-zero set of design actions related to the design process, which are supposed to be 
known by the designer.

The algorithms related to the sub-function F2.1 are employed to enact the computational 
action of recommendation generation. The algorithm A2.01 simulates the process of 
identifying the obstacle in the design process. What simulation means here is that, based 
on the data model, the algorithm selects an entity related to which an obstacle probably 
occurred in the process, and generates a case-related recommendation. The constructed 
data model represents the variation of the obstacles that probably occur in the design 
process. The expected output is a set of possible design entities related to which obstacles 
occur. The algorithm A2.02 is a combination of two ARF algorithms, namely, Algorithm 
A4.03 (for selecting the candidate PFMs), and Algorithm A4.06 (for predicting the next 
design action). The combination of these algorithms is dedicated to the identification of the 
candidate PFMs and to the construction of the design activity flow.

To realize the sub-function F2.1, three interrelated algorithms were required. The algorithm 
A2.03 constructs the data model to represent the variation of the appropriateness of the 
recommendations. The probability of the decisional options is determined by the Algorithm 
A2.04. The algorithm A2.05 consolidates all necessary data features. The expected output 
is the validation dataset that includes the values of (i) all independent variables, (ii) the 
variables related to the knowledge elements of the designer, (iii) the acceptance probability 
of the recommendations, (iv) the probability of the decision tendency of the designer, and 
(v) the probability of the decisional options.

5�3�4 Testing the synthetic validation agent
The objectives of the functionality testing of the SVA were to check if (i) the related 
algorithms produce the outputs according to the expectations, and (ii) the specified functional 
requirements are fulfilled. Four sub-functions were tested, as discussed individually below.

5�3�4�1 Testing of the sub-function F1�1

In line with the assumption concerning the construction of the decisional model, three 
situations related to the knowledge possession of the mimicked designer were considered. 
For the sub-function F1.1, the expectation was that the non-linear relationships of the 
acceptance probability of the recommendations and the proportion of the common 
knowledge should be reflected by the decision model. To check the fulfilment of this, three 
scenarios were tested, in which different number of design entities, 50, 100, and 200, were 
included in the RPP.
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From ck = 0.05 to ck = 0.25, the probability of the acceptance decreased dramatically when 
the proportion of common knowledge increased. This trend was noticeable in the decision 
mode I. From ck = 0.25 to ck = 0.75, the probability of acceptance was slightly decreased 
and reached the lowest value at ck = 0.5. After that, the trend of the probability of acceptance 
changed to show a positive relationship with the proportion of common knowledge. This 
pattern was noticeable in the decision mode II. From ck = 0.75 to ck = 0.95, the acceptance 
probability steadily increased as the proportion of common knowledge of the designer 
was supposed to increase. This pattern was noticeable in the decision mode III. As shown 
in Figure 5.7, the results of this computational experiment indicated that the computed 
patterns of the acceptance levels were consistent with the expectations in the case of each 
scenario,

5�3�4�2 Testing of the sub-function F1�2

The basic requirement for the sub-function F1.2 was an aggregated probability of the 
acceptance of the appropriate or the rejection of the inappropriate recommendations. Three 
independent variables were used in the testing scenarios to determine the probability of 
the features of the decision options: (i) the total number of entities included in the RPP, (ii) 
the accuracy rate of the recommendation generation, and (iii) the proportion of common 
knowledge. In the test, the first two variables were regarded as the constant parameters and, 

Figure 5.7:  The patterns of the acceptance probability of the recommendations according 
to the probability of shared knowledge
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as such, were set to 100 entities and 75 % of the accuracy rate, respectively. We assumed 
that the accuracy rate represented the probability of the appropriate recommendations. 
The third variable was for the set of discrete values of 0.05, 0.25, 0.5, 0.75 and 0.95, 
respectively, representing the five levels of common knowledge.

The results shown in Figure 5.8 indicate that the different patterns (features) of the 
decision options occurred according to their aggregated probabilities. In line with the 
decision model I, the SVA (mimicking a particular type of designers) intended to accept all 
recommendations. In the case of 75 % accuracy rate, the proportion of accepted-appropriate 
and accepted-inappropriate decisions was 0.75: 0.25, respectively. In the domain from ck  
= 0.25 to ck = 0.75, the acceptance probabilities of the recommendations were found to be 
according to the decision mode II. At ck = 0.95, the acceptance probabilities were found to 
be according to the decision mode III. 

The numerical results showed the aggregated probability of the four features (accepted-
appropriateness, rejected-appropriateness, accepted-inappropriateness, and rejected-
inappropriateness) of the decision options. On the approval side of the recommendation 
acceptance, the proportions of accepted-appropriate and accepted-inappropriate decisions 

Figure 5.8:  The patterns of the features of decisional options according to the levels of 
the common knowledge
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were 0.75: 0.25, respectively, for all scenarios. This was similar to the disproval side of the 
recommendation acceptance, where the proportion of the aggregated probabilities of the 
rejected-appropriate and the rejected-inappropriate decisions were 0.75 : 0.25, respectively, 
for all scenarios. This allowed us to conclude that the requirement posed for F1.2 was 
fulfilled.

5�3�4�3 Testing of the sub-function F1�3

The expected output of the sub-function F1.3 was the aggregated probability of selecting 
the proper/improper recommendations by the SVA. To determine the probability of 
the properness of the recommendations, three independent variables were taken into 
a consideration. They were (i) the total number of entities included in the RPP, (ii) the 
proportion of common knowledge, and (iii) the extended design activity flow. In the test, 
the extended design activity flow was chosen based on the highest values of the joint 
probability distribution of the process flow models, which included three entities of the 
case-related recommendation and n number of succeeding design entities.

As in the previous test, the proportion of the assumed common knowledge was set to the 
five levels (i.e., 0.05, 0.25, 0.5, 0.75, and 0.95) at the investigation of the correlations with 
the aggregated probability of the proper recommendations: the knowledge elements of the 
agents were generated randomly by varying the proportion of common knowledge. Three 
scenarios were tested, in which different number of design entities were included in the RPP, 
namely: 50, 100, and 200. The simulation was run for generating 100 recommendations for 
each scenario.

The obtained results showed the aggregated probability of the combined decisional 
tendency of the SVA for the different proportion levels of the common knowledge. They 
are presented in Figure 5.9 for each of the three scenarios. We noticed that the proportion 
of common knowledge and the probability of properness of the recommendations had a 
strong positive relationship. This was ‘signposted’ by the linear trends for all scenarios. 
We confirmed that the algorithms for the realization of F1.3 produced the output as per 
expectation.

5�3�4�4 Testing of the sub-function F2�2

The sub-function F2.2 was about predicting the probability of the four decisional options 
concerning the recommendations. To realize the sub-function F2.2, that is to determine the 
pattern of decision options, the algorithms needed to combine all data that were required 
for the characterization of the decisional behaviors. This included the data concerning (i) 
the recognition of the appropriateness of recommendations, (ii) the features of the decision 
options, and (iii) the properness of the recommendations). Like before, five scenarios were 
defined according to the assumed proportions of the common knowledge (0.05, 0.25, 0.5, 
0.75 and 0.95, respectively) in the computational testing.

In the case of  ck = 0.05, the outcomes were according to the decision model I. All 
recommendations were accepted, but the designer mimicked by the SVA has insufficient 
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knowledge to evaluate the appropriateness of the recommendations. Thus, the pattern of 
the decisional options showed a high proportion of unjustified subjective decisions. In the 
case of  ck = 0.25 to  ck = 0.75, the patterns of decisional options were generated according 
to the decision mode II. In the case of  ck = 0.95, the pattern followed the decision mode 
III. Figure 5.10 shows the results obtained for the probabilities of the decision options for 
each of the five proportion levels of the common knowledge. These results confirmed that 
the requirement for the sub-function F2.2 was fulfilled.

5�3�5 Deriving indicator for usefulness
As explained at the beginning of this chapter, the objective of the validation study was to 
provide (preferable quantifiable) metrics to evaluate the usefulness of the recommendations. 
However, it could not be captured by an exact quantitative variable and function. Therefore, 
we needed to compose a quantitative indicator. The decisional options were shown in Table 
5.1. Their combinations define various decisional situations, which may vary in the design 
process in terms of judging the appropriateness of the recommendations and choosing the 
proper follow up design actions. This latter was interpreted as decisional patterns. The goal 
of the computational simulation was to produce various decisional patterns according to the 
assumed decisional behavior of the designer. The decisional pattern is the basis of deriving 
indicator of usefulness of the recommendations.

Figure 5.9:  The correlations of the aggregated probabilities of the combined tendency of 
the SVA and the proportion of common knowledge
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The method of prognostic reasoning was applied to construct a usefulness indicator 
concerning the recommendation based on the decisional patterns. The term ‘prognosis’ 
means prediction of a final outcome based on preliminary data and calculations [5]. In 
general, prognostic reasoning is a forward-looking process to predict a most likely situation 
based on the current symptoms or indicators [6]. As a first attempt, we defined the usefulness 
indicator as a function of the decisional mode:
 
 Ui   =  f(Δi)        (5-10)

where: Ui   is the evaluated indicator of usefulness, which involves two decisional options: 
(i) type I justified objective decision (JOD_I), and (ii) unjustified subjective decision 
(USD). These two decisional options logically imply that the designer can continue the 
design process. According to the discussed four decisional options, the value of the totaled 
probabilities is equal to 1. Hence, the range of variation of the probability value of the 
indicator of usefulness is between 0 and 1. Symbolically:

 Ui    =  p(u1)+ p(u2)      (5-11)

where: u1 is type I justified objective decision, and u2 is unjustified subjective decision.

Figure 5.10: The patterns of the decisional options according to the proportion of the 
common knowledge.
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5�4 Execution of the usefulness validation of procedural 
recommendations

5.4.1 Identification of the validation scenarios
In order to evaluate the usefulness of the recommendations, we investigated the 
correlations of the possessed knowledge of the SVA and its decisional behavior with a view 
to the recommendations. To realize prognostic reasoning, the proportion of the common 
knowledge possessed by the SVA is used to predict the usefulness of the recommendation. 
The four parameters that established varying validation scenarios were: (i) the total number 
of design entities (N), (ii) the relationships of the design entities (L), (iii) the performance 
of the recommendation generation mechanism (ar), and (iv) the proportion of common 
knowledge (ck). The values of the first two parameters were derived based on the RPP. 
To represent the performance of the recommendation generation, the accuracy rate was 
used for the third parameter. The appropriate recommendation was identified based on 
the assumed normal distribution and the statistic measure related to the accuracy rate. The 
fourth parameter represents the knowledge possession of the designer.  

Two validation scenarios were set up with a constant number of 50 and 100 knowledge 
elements, respectively, for carrying out validation data generation by the SVA. All of the 
three decisional modes were tested based on these two scenarios. The total number of 
entities included in the RPP varied in the particular decisional modes. For all scenarios, the 
accuracy rate was regarded as the controlled variable. The expected accuracy rate was set 
at 75% in the test. The parameter values for the validation scenarios are presented in Table 
5.5.

5�4�2 Operationalization of the synthetic validation agent
Figure 5.11 shows the computational workflow of operationalization of the SVA. Within 
the workflow, three procedural parts were specified. The procedure I was related to the 
execution of the algorithms for the sub-functions F1.1 and F1.2. This procedure included 

parameters scenario I scenario II
maximum number of knowledge elements known 
by the designer (nmax)

50 100

the decisional mode Δ1 Δ2 Δ3 Δ1 Δ2 Δ3

the proportion of common knowledge (ck) 0.15 0.5 0.85 0.15 0.5 0.85
the total number of design entities as the elements 
of the RPP (N) 333 100 59 667 200 118

the total number of connections of the entities in 
the RPP (L)

13,489 1,246 413 55,209 4,938 1,822

Table 5.5: Validation scenarios 
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Figure 5.11: The operationalization of the SVA
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eleven steps to determine the acceptance probability of the recommendations. The procedure 
II was related to the execution of the algorithms for the sub-function F1.3. The expected 
output of this procedure was the set of decision tendencies concerning the properness of the 
recommendations. The procedure III was related to the aggregation of the two sets of data 
related to the decisional behaviors of the SVA and to determining the patterns of decision 
options. The expected output of the overall computational workflow was the (so called) 
validation dataset.

Workflow procedure I:  
Prediction of the probability of the features of the decisional options of the SVA

Input data: (i) the reference protocol (RPP), and (ii) the given proportion of common 
knowledge

Output data: (i) data features containing the independent variables, and (ii) the probability 
of the acceptance of the recommendations

Step 1: simulate using the data model to identify the obstacles in the design process

Step 2: identify the particular design entity related to which the obstacle probably 
occurred

Step 3: construct the candidate process flow models that include the concerned design 
entity

Step 4: construct a design activity flow as the representative of the most informative 
PFM

Step 5: simulate the knowledge elements of the designer mimicked by the SVA

Step 6: identify the design entities which represent the knowledge elements of the 
designer

Step 7: calculate the probability of the shared knowledge 

Step 8: calculate the probability of the known knowledge elements of the designer 
mimicked by the SVA

Step 9: calculate the probability of acceptance of the recommendations

Step 10: consolidate the data features that includes n number of instances

Step 11: calculate the probability of the features of decision options

Workflow procedure II: 
Simulation of the decision tendency of the SVA

Input data: (i) the process-based recommendations, and (ii) the elements of the common 
knowledge possessed by the designer who is mimicked by the SVA

Output data: (i) data features containing the independent variables, and (ii) the set of 
decision tendencies of the designer mimicked by the SVA

Step 1: construct n number of the extended design activity flow  
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Step 2: identify the follow-up design entities 

Step 3: simulate the decision tendency of the designer according to the knowledge 
elements of the designer and the follow-up design entities

Step 4: consolidate the data features that includes n number of decisions

Workflow procedure III:
Prediction of the patterns of the decisional options of the SVA

Input data: (i) the process-based recommendations, (ii) a given accuracy rate of the process 
of recommendation generation, (iii) the data features from the workflow 
procedure I, and (iv) the data features from the workflow procedure II

Output data: a validation dataset

Step 1: simulate the data model to identify the appropriateness of the recommendations

Step 2:  evaluate the appropriateness of the recommendation

Step 3:  simulate the patterns of the decisional options

Step 4:  consolidate the data features for constructing the validation dataset

5.4.3 Identification of the obstacle in the design process
In the practical design process, a non-usual event (NUE) occurs, when the ARF detects the 
irregular pattern of designer’s behavior following his/her procedural decision (concerning 
the next design action and the related design method). This situation is assumed as the first 
step of the simulation of the recommendation generation. It starts with the identification 
of the obstacle which possibly appeared in the design process. This section describes the 
behavior of the designer when he/she experiences an obstacle. Table 5.6 shows the list of 
possible reactions that a designer will behave to response the obstacle at any design actions. 

The lack of information (information deficiency or incompleteness) or a wrong assumption 
may lead to wrong decision of the designer, which may in turn create an NUE. This latter 
appears as an obstacle in the design process. Two accompanying questions arose: (i) what 
may cause information deficiency or incompleteness with regard to a design action, and 
(ii) what may lead to the formulation of a wrong assumption concerning a design action? 
These are fundamental questions since useful recommendations should eliminate the lack 
of information and should prevent a wrong assumption. 

5�4�4 Generation of case-related recommendations
Having identified an obstacle, the concerned module of the ARF generated a procedural 
recommendation and suggested a proper method by considering (processing) the relevant 
segment of the process flow model. The generated recommendation was intended to 
guide the selection of the next design action that would probably lead to a sufficing result. 
Computationally, the formulation of the recommendation relied on the related segment of 
the process flow model, which was captured in the reference protocol Pctx := {epre,ectx,epost} 
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sub-
tasks

potential design 
actions

information deficiency or 
incompleteness

formulation of wrong 
assumption

1.0 cleansing
dimensionality 
reduction
blending
split data

Unable to find incompleteness 
in the dataset
Unable to recognize irrelevant 
data instances
Unable to understand the 
characteristics of the required 
dataset

Removing important 
features from the dataset
Selecting mismatching 
method to pre-process the 
dataset

2.0 extract features
analyze the dataset 
components 
select attributes
select a response

Unable to recognize irrelevant 
features in a dataset
Unable to determine the 
correlation of the features

Selecting incorrect features 
for training a model
Identifying incorrect type 
of predictions

3.0 identify an objective 
of a model
selecting a training 
algorithm 
fitting a model
modify the training set
select the model
export the model 

Unable to recognize 
deficiency or incompleteness 
of the training set
Unable to recognize types 
of predictive features and 
response
Unable to define the objective 
of the trained model

Defining irrelevant 
objective to train the model
Selecting mismatching 
algorithm to train the model
Over fitting the model
Under-fitting the model

4.0 identify the criteria to 
select the evaluation 
metrics
select the metrics
scoring a model 
modify the metrics
optimize the 
parameters

Misunderstanding the goal of 
the trained model
Lack of knowledge about the 
metrics
Unable to define the goodness 
of the model

Selecting mismatching 
metrics for the considered 
training algorithm
Selecting irrelevant metrics 
to evaluate the model
Applying improper metrics 
to evaluate the model

5.0 analyze the metric 
modify the metrics
optimize the 
parameters

Unable to recognize the 
deficiency and incomplete-
ness of the sample set
Unable to analyze the results
Unable to semantically 
interpret the results

Select multiple methods 
for scoring the predictive 
model
Apply the improper method 
for scoring the model

6.0 evaluate performances Unable to identify the 
numerical value to justify the 
goodness of the predictive 
model
Unable to decide the goodness 
of the model

Misinterpreting the 
evaluation metrics
Selecting inefficient model 
due to misinterpretation of 
evaluation metrics

Table 5.6: Reactions of a designer leading to an expected event
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and the set of best methods that could be used to execute the concerned design action, m̂pre, 
m̂ctx,m̂post ∈ M̂. 

In the validation test, the generation of recommendation was simulated by means of the 
Bayesian network embedded in the RPP. The highest value of the joint probability distribution 
(JPD) of the candidate process flow models was selected as a case-related recommendation. 
What the term ‘case-related’ means in this context is that the recommendation was generated 
based on historically-used cases of the concerned design process. The selection of the best 
method was assumed to be done without getting any further information from the SVA. 
Figure 5.12 shows the simulation results of the case-related recommendation generation. 
According to the fundamental concept of deriving the decisional model for the SVA, the 
circular graph representing the RPP. In the figure, the dots represent the design entities and 
the dashed lines represent the relationships among the entities.

In the simulation, the total number of the entities was set to 50 elements. Altogether, a total 
number of 308 links were included in the RPP. In the simulation the design entity e13 was 
identified as the action where the obstacle was appeared. It is shown by the blue dot in 
Figure 5.12. The simulated recommendation involved three entities, e31, e33, and e38. They 

Figure 5.12: Graphical representation of the case-related recommendation generation 
using the RPP
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are connected by the solid red line in Figure 5.12. The yellow dots represent the concerned 
segment of the process flow models (Ep), and the red dots represent the common knowledge 
elements (Ec) shared by the designer and the RPP. 

We set the proportion of common knowledge to 0.5. Thus, there were 25 common knowledge 
elements. The green dots represent the knowledge elements shared in the recommendation 
by the designer. The extended design activity flow included two design entities  e44, e45 ∈ Ex 
which are connected by the green solid line. The entities that connected by the dash blue 
lines are the alternative design activity flows. Based on the numerical value concerning 
the above explanation, the probability of the decision options was determined. These are 
shown in Table 5.7. 

aspects of evaluation

recommendation provided by the ARF
appropriate recommendation 

(0.75)
inappropriate recommendation

(0.25)
acceptance by the designer acceptance by the designer
accepted
0.7977

rejected
0.2033

accepted 
0.7977

rejected 
0.2033

de
ci

si
on

 o
n 

de
si

gn
 

ac
tio

n

proper design 
action selected 
= 2/19

justified 
objective 
decision I

0.1597

unjustified subjective decision 
0.3861

improper design 
action selected
= 4/19

incorrect subjective decision I
0.4273

justified 
objective 

decision II
0.027 

Table 5.7: Determination of the probability of the decision options according to the 
simulated case-related recommendation

5�5 Evaluation of the usefulness of recommendations 

5�5�1 Descriptive statistical analysis of the data for validation 
The validation datasets were generated by using the SVA for simulation. Two scenarios 
were considered based on a constant number (50 and 100 elements, respectively) of the 
knowledge elements of the SVA. We aimed at analyzing the decisional behaviors of the 
simulated agents from two viewpoints: (i) comparing the particular decisional mode in 
the different scenarios, and (ii) comparing the different decisional mode in a particular 
scenario. Two dependent variables were considered: (i) the total number of instances of 
decision options – which represented the properness of recommendations, and (ii) the 
acceptance probability of the recommendations p(aR). 
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Table 5.8 shows the descriptive statistics of the dataset according to the validation scenario 
I. The instances of the type I justified objective decision (JOD_I) and the unjustified 
subjective decision (USD) represented the total number of proper recommendations. 
Meanwhile, the instances of the incorrect subjective decision (ISD) and the type II justified 
objective decision (JOD_II) represented the total number of improper recommendations. 
In view to Δ1, the total number of improper recommendations was bigger than the total 
number of proper recommendations.

decisional mode I decisional mode II decisional mode III
n(RPP) = 333& ck = 0.15 n (RPP) = 100& ck = 0.5 n (RPP) = 59& ck = 0.85
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st
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s

p(aR)
in

st
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ce
s

p(aR)

in
st

an
ce

s

p(aR)

mean std mean std mean std
JOD_I 11 0.079 0.133 42 0.266 0.053 66 0.483 0.066
USD 13 0.468 0.127 66 0.516 0.06 106 0.457 0.08
ISD 145 0.544 0.175 79 0.494 0.072 23 0.501 0.08
JOD_II 21 0.363 0.108 13 0.28 0.042 5 0.039 0.099

Table 5.8: Descriptive statistical data of the validation scenario I – ‘nmax = 50’

In contrast with the decision mode III, the total number of proper recommendations was 
much larger than the total number of improper recommendations.While the proportion 
of the total number of proper recommendations and the improper recommendations was 
also the same. This pattern was similar to the data of the validation scenario II, as shown 
in Table 5.9. Thus, we concluded that, in comparison, a decision mode which had the 
bigger proportion of common knowledge elements yielded in the higher number of proper 
recommendations.

decisional mode I decisional mode II decisional mode III
n(RPP) = 333& ck = 0.15 n (RPP) = 100& ck = 0.5 n (RPP) = 59& ck = 0.85
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p(aR)
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p(aR)

mean std mean std mean std
JOD_I 15 0.092 0.085 35 0.168 0.035 63 0.353 0.507
USD 21 0.529 0.089 59 0.583 0.116 105 0.548 0.088
ISD 129 0.566 0.202 93 0.482 0.141 28 0.489 0.104
JOD_II 19 0.359 0.11 13 0.326 0.05 4 0.093 0.064

Table 5.9: Descriptive statistical data of the validation scenario I – ‘nmax = 100’
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Before normalization, we analyzed the probability of the recommendation acceptance 
by considering the simulated data of the average value of acceptance probability for all 
decisional options. Therefore, the total sum of the probabilities within the same decisional 
mode was greater than one. Different decisional modes showed different patterns of decision 
options. In the case of Δ1, the acceptance probability of JOD_I was very small compared 
to the other options. In the case of Δ2, the smallest value of the acceptance probability of 
JOD_II was found in comparison with the other decisional options.

For all decision modes, the acceptance probability of the USD and the ISD were derived 
for the same proportions (by p(aRi) = 0.5, approximately). This pattern seemed to be 
similar to the statistical data obtained in the case of the scenario II. It confirmed that the 
designers simulated by the SVA tended to accept the appropriate recommendations if the 
proportion of common knowledge elements was comparatively bigger. The total number 
of knowledge elements in the RPP seemed to have not influence on the acceptance of the 
recommendations with regard to the same decisional mode.

5�5�2 Investigation of correlations between the considered 
variables and the decision options

The aim of the work described in this section was to investigate the correlations between 
the considered variables (i.e., the decision modes, Δi and the total number of design entities 
included in the RPP) and the decision options, in particular the JOD_I and the USD. The 
indicator of usefulness relies on these two interrelated features. In our investigation, the 
indicators of usefulness were considered in two validation scenarios. The results are shown 
in Figure 5.13. In this figure, the black dashed line represents the indicator of usefulness 
of the recommendation in the case of the validation scenario I, and the blue solid line 
represents the indicator of usefulness in the case of the validation scenario II. The major 
findings are as follows:

Findings concerning the comparison of the particular decisional modes between 
different scenarios

 • By comparing the results yielded by the particular decisional modes in the two 
validation scenarios, we found that, in the case of Δ2 and Δ3, the usefulness of the 
recommendations was higher when they were generated by a lower number of design 
entities in the RPP. At the same time, in the case of Δ1, the indicators were found to be 
not significantly different in the two scenarios.

 • A lower number of knowledge elements gave a higher probability value of usefulness 
in the case of Δ2 and Δ3. However, in the case of Δ1, it seemed to be not significantly 
different in the two scenarios (n(RPP) = 333, and n(RPP) = 667). We also found that 
when the RPP contained a large number of design entities and the number of knowledge 
elements captured by the SVA increased, the usefulness of the recommendation was 
increased only with a small probability value.
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Findings concerning the comparison of the different decisional modes in the same 
scenario

 • By comparing the results concerning the different decisional modes in the same 
scenario, we found that Δ1 and Δ3 yielded in a higher probability of usefulness than 
Δ2. The patterns of the decision options followed what was assumed for the decisional 
model in the case of both tested scenarios. 

 • Having a constant number of knowledge elements in the SVA, whilst the proportion 
of common knowledge elements decreased due to the increased number of the design 
entities in the RPP, the usefulness slightly decreased in the transition from Δ3 to the 
Δ2 and then it increased in the transition from Δ2 to Δ1. This pattern confirmed that the 
dataset generated by the SVA was valid and sufficient for the validation study.

 • Concerning the features of the usefulness indicator, the following can be stated. The 
probability value of the JOD_I was in a negative correlation with the total number 
of design entities included in the RPP. If the common knowledge elements presented 
by the SVA were fixed to be a given constant number and the total number of design 
entities included in the RPP increased, the probability of the JOD_I decreased. At the 
same time, the proportion of the USD increased as the total number of design entities 
included in the RPP increased. 

Figure 5.13: The correlations of the common knowledge elements and the probability of 
the usefulness indicator of recommendations
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 • Furthermore, no matter if the offered recommendation was useful or not, there was 
a high probability that the SVA either accepted an inappropriate recommendation or 
rejected an appropriate recommendation. The explanation is that it did the acceptance 
or rejection without being aware of the appropriateness of the recommendation.

5�5�3 Opportunities for improving the recommendation 
generation process

Finding opportunities for improving the recommendation generation process is a vital issue 
for the ARF as a whole. From a knowledge engineering point of view, the improvement 
of the recommendation generation can be seen as a knowledge management issue. More 
concretely, the pursued increase in the usefulness of recommendations can be achieved by 
improving the knowledge management related to the RPP. This has legacy since the RPP is 
a computational process model, which contains knowledge about design entities and their 
relationships. As was argued earlier, the proposed RPP is flexible enough to represent even 
complicated (multi-trajectory) design processes. Based on the variable relationships of the 
incorporated design entities, multiple design activity flows can be captured in the RPP. 
This affordance was used as the basis of the recommendation generation in this promotion 
research. When it comes to the evaluation of the usefulness of the recommendations, this 
affordance can also be utilized. When improvement opportunities for the recommendation 
generation are sought for, two variables (i) the decisional modes, and (ii) the indicators of 
the usefulness can be taken into consideration. The former variable has direct influence 
on the actual decision of the SVA, and the latter can be used for the evaluation of the 
recommendation generated using the RPP. These will be discussed below in detail.  

5�5�3�1 Improvement opportunities concerning the decisional 
modes

The concept of decisional modes was introduced to describe the proportion of common 
knowledge possession of the designer in the case of a particular design process. Three 
types of the designers were taken into account based on how competent they are to execute 
the design process. The ARF is able to diagnose computationally what the designer knows 
about a particular design action when an NUE has been detected. However, it cannot 
evaluate how much knowledge an individual designer possesses. The fact of the matter 
is that the knowledge possession of a designer is an uncontrollable variable. On the other 
hand, it strongly influences the acceptance of recommendations. Hence, when looking for 
improvement opportunities, a key issue is how to determine the optimal proportion of the 
common knowledge that is shared by the mimicked designer and the RPP. We argued that 
this information can be used to enhance the usefulness of recommendations. 

Regarding the decisional model of the SVA, the decisional modes have direct relations with 
the acceptance probability of the recommendation. A higher probability of acceptance offers 
a higher possibility of having a useful recommendation. Taking this into consideration, the 
following opportunities seem to be possible for improving the quality of recommendation 
generation: 
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 • In the case of Δ1, although it yielded the highest value for the probability of the 
usefulness indicator, the probability of JOD_I was quite low (less than 0.1 as shown 
for both scenarios by the columns of decisional mode Δ1 in Figure 5.13). The SVA was 
equipped with constant number of knowledge elements of (nd = 50 and 100), while 
the RPP contained a large number of design entities and their relationships. These 
conditions implied that the RPP could represent a rather complicated design process. 
However, to enhance the probability of acceptance, it should also offer a practical and 
executable procedure as part of the recommendation.

 • In the case of Δ2, the lowest probability of the usefulness indicator was obtained in 
comparison with the other decisional modes (as shown for scenario II - nd = 100 - in 
the column of Δ2 in Figure 5.13). An increase in the number of design entities included 
in the RPP decreases the proportion of common knowledge possessed by the SVA. 
This adjustment implies a replacement of the SVA from the Δ2 to Δ1 decisional mode. 
As a result, the acceptance probability of recommendation is increased. However, 
the transition from the Δ2 to Δ1 decisional mode also increases the computational 
complexity of the RPP. 

 • In the case of Δ2, the highest probability value of the JOD_I was obtained (as shown 
for scenario I - nd = 50 - in the column of decisional mode Δ3 in Figure 5.13). The 
reason was that the RPP was constructed for a less complicated design process and 
that the decisional mode Δ3 represented a high proportion of common knowledge of 
the SVA (ck = 0.85). As a consequence, the SVA was able to recognize the appropriate 
recommendations with a higher chance. Therefore, it became evidenced that the 
probability of recognition of the recommendations is a key factor of enhancing the 
acceptance probability of the recommendation.

Considering all different decisional modes together, we could conclude that there were three 
possible ways of enhancing the acceptance probability: (i) offering practical and executable 
recommendations, (ii) offering more recommendations options, and (iii) increasing the 
awareness of the appropriateness of the recommendations.

5�5�3�2 Improvement opportunities concerning the usefulness 
indicator

Concerning the usefulness indicator, it should be expected that the higher probability of 
the indicator is better. It indicates the higher possibility that the designer can continue the 
design process. However, if we consider two features of the indicator, it should be expected 
that the higher probability of JOD_I is better. On the other hand, the lower probability of 
USD should be better. These conditions ensure that the designer is able to recognize the 
appropriateness of the offered recommendation. If considering all expectations concerning 
the usefulness indicator, the preference conditions for the usefulness of the recommendation 
should be (i) the highest value of the probability of the indicator, (ii) the highest value of the 
probability of the JOD_I, and (iii) the lowest value of the probability of the USD. 

Simulations were conducted to quantify the indicators of recommendation usefulness. 
The simulated results are shown in Table 5.10. It was found that no indicator satisfied the 



271

expectations in all decisional modes. On the other hand, there were conflicts found between 
the expected values of the indicator and its features (see the underlined numbers in Table 
5.10). Taking these constraints into consideration, there were three possible options for 
improving the quality of the recommendation generation. 

(i)  If the JOD_I is regarded as the major indicator of recommendation usefulness, then 
the expected probability value of the indicator should be approximately equal to, or 
greater than 0.24. The prognostic reasoning casted light on the fact that the RPP should 
be constructed so as to serve the incompetent designers in decisional mode Δ3. 

(ii) If the USD is regarded as the major indicator of recommendation usefulness, then the 
expected probability value of the USD should be approximately equal to, or less than 
0.25, The conclusion is that the RPP should be constructed so as to serve the competent 
designers in decisional mode Δ3.

(iii) If the overall usefulness indicator is regarded as the primary indicator of recommendation 
usefulness, then the expected value of its probability should be greater than 0.5. This 
implies that the RPP should be constructed so as to serve the incompetent designers in 
decisional mode Δ1.

nd
Δ_1 (ck = 0.15) Δ_2 (ck = 0.5) Δ_3 (ck = 0.85)

JOD_I USD IND JOD_I USD IND JOD_I USD IND
50 0.052 0.525 0.577 0.102 0.36 0.462 0.24 0.316 0.556
100 0.038 0.554 0.592 0.094 0.269 0.363 0.181 0.241 0.422

Table 5.10: The simulated results concerning the usefulness indicators

5.6 Discussion and interpretation of the findings

5�6�1 Assessment of the validation methodology
The methodology validation was a rather complicated design since several aspects had to 
be considered including (i) the underpinning theory, (ii) the procedure of validation, (iii) 
the use of methods and techniques, (iv) the use of instrumentation, and (v) the criteria for 
goodness (e.g., logical correctness of the validation, the reliability of validation process, 
and the consistency of findings). The underpinning theory of the validation study was 
actually not a formal theory (though several elements were captured in abstract models). 
The principles and the activities of the validation study were based on a set of interrelated 
assumptions. They were treated in the promotion research as (axiomatic, intuitively 
accepted) working hypotheses concerning (i) the decision behavior of the designer, (ii) the 
selection of the decision variables, and (iii) the specification of the decisional modes and 
the decisional model. In overall, we hypothesized that these were necessary, and that the 
designer decisional behavior could be described satisfactorily by these, and the decisional 
options could be properly captured. We did not find any evidence about the incorrectness 
of these assumptions neither at completing the research work, not at assessing the logical 
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and computational results.

The validation process was divided into three stages, (i) the preparation stage, (ii) the 
execution stage, and (iii) the evaluation stage. This was a necessary and useful action to 
reduce the innate complexity and make the flow of the specific actions transparent and 
supervisable. Since participation of human designers in the validation process could not be 
considered for technical reasons, a synthetic validation agent (SVA) was conceptualized as 
a means for generation a synthetic validation dataset. Thus, the SVA is the kernel instrument 
in the validation study. The construction of the SVA happened in the same programming 
environments as was used for programming of the demonstrative part of the ARF. The 
typical methods of using the SVA were (i) computational simulation of the SVA, and (ii) 
the analysis of multiple scenarios. The SVA was used both as a research instrument and as 
a flexible software tool in the simulative part of the validation study. Below, we revisit two 
aspects of the validation methodology: (i) the procedure of validation, and (ii) the use of 
the methods for the validation. 

As briefly mentioned above, the decomposition of validation process into the sub-stages 
was advantages since it helped the clarification of the contents and the planning of the 
activities for validation. In each stage, a specific objective and a set of concrete activities 
were specific. It provided a kind of check list of what to do for the validation. The 
decomposition was challenging since it needed a strong mental model and a clear view 
on the logical sequencing of the planned activities and the information sharing between 
them. This challenge was present mainly in the preparation stage, since the functions of 
the SVA needed to fulfill the functional requirements were not well-identified. On the other 
hand, the programming of the SVA was tested and, technically, it worked properly. We 
were able to generate the validation dataset in the execution stage by using the SVA for 
simulation, but the dataset proved to be insufficient for the evaluation of the usefulness of the 
recommendation in the evaluation stage. Therefore, the simulation had to be repeated on a 
broader base. Another procedural inconsistency was observed concerning the specification 
of the validation scenarios and development of the SVA. 

As a time-consuming task, the conceptual development of SVA happened in the preparation 
stage. However, the specification of the validation scenarios happened in the execution stage, 
based on the logical sequence of the planned activities. It was not clear in the preparation 
stage what validation scenarios would the SVA be used. Hence, the issue was that the 
simulation with the help of the SVA in the execution stage might not produce the expected 
data and the testing scenarios ought to have been revised. Consequently, modification in 
the programing of the SVA was needed. Together with the detailed functional testing of the 
SVA in the development phase, it resulted in some repetitive and unnecessary extra work.

As mentioned above, SVA-based simulation was used as the method of generating the 
validation dataset. Concerning the latter, two testing scenarios were identified. The 
expected results were the correlations of the considered variables (e.g., decisional modes, 
probability of acceptance of the recommendation, the probability of the decision options, 
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and the usefulness indicator). The results produced by the repeated simulation showed 
that the SVA-based simulation was an appropriate method when participation of human 
designers in the validation process could not be realized. Notwithstanding, we had to face 
some limitations in terms of this approach, namely: (i) the decisional behaviors mimicked 
by the SVA were limited by the underpinning assumptions, and (ii) a comparative empirical 
evaluation of the obtained simulation results was not possible in the lack of ‘in vivo’ 
experimentation and testing of multiple samples. 

Considering the need for scientific rigor, it means that evaluation of the usefulness was 
correct and acceptable only in the context of using the SVA. The results cannot be applied or 
scrutinized in other contexts without the modification of the assumptions and fundamentally 
changing the research design. Moreover, it must be mentioned, that the validation dataset 
was generated based on the sample data compiled for the particular validation scenarios. 
Since not actual empirical data were available to evaluate the correctness of the simulated 
results, only logical validation could be applied.

5�6�2 Evaluation of the usefulness of recommendation in 
action

The evaluation of the usefulness of the recommendation happened based on the simulation 
dataset generated by the SVA. The data generation was combined with the simulation of 
the case-related recommendation generation. The validation dataset allowed us to explore 
the relationships of the considered variables, in particular the relationship of the decisional 
modes and the patterns of the decisional options. This analysis provided an informational 
basis for the evaluation of the usefulness of the recommendations (including the derivation 
of the usefulness indicator and its features). However, the evaluation of usefulness was 
limited only to the quantitative aspect of the recommendations since it was done based on 
the comparison of the proportions of common knowledge shared by the SVA with regard 
to that of the RPP. As a variable, these proportions were supposed not only to measure how 
many knowledge elements of the SVA possessed related to the design process, but it also 
referred to the (cognitive and rational) competency of the SVA. It implied that the SVA was 
able to infer about the contents of the recommendation before making decision to accept 
or reject the recommendation. However, this feature was not yet included in the decisional 
model of the SVA since it needs further insightful studies and a more comprehensive model.

Considering the evaluation of usefulness in actual design processes, the qualitative aspect 
of the recommendation may be more important than the quantitative aspect. However, 
this is a complex research issue on its own. It concerns the meaning, interpretation and 
comprehension of the recommendation, as well as semantic, pragmatic, and apobetic 
computing. Due to the above characteristics, it is not possible to directly measure how 
much knowledge is possessed by an individual human designer, as it was done in the case 
of the SVA. The pragmatism and contextual dependence of content-wise recommendation 
should be taken into consideration in specific (real-life) design processes, as well as the 
communication and collaboration of multiple designers in a team. Task complexity is 
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also an aspect to consider in future studies. However, we believe that the concept of the 
decision options and the usefulness indicator can be applied to evaluate the usefulness of 
recommendation in real-life. It remains a challenge to learn what and how to capture the 
qualitative aspects of the recommendations and to determine the acceptance probability 
and usefulness with the consideration of this.

5�6�3 Some improvement opportunities for the validation 
Concerning the validation process:

 • Creating an activity-flow visualization for the whole validation process to show the 
planned sequence and interrelatedness of the activities.

 • Specification of the information for the required planned activities and creating an 
information flow visualization to ensure that the required information is available when 
it is needed.

 • Identifying the critical activities, which has the largest influence on the development of 
SVA and the evaluation of usefulness of the recommendation.

 • Considering of external and internal communication and search opportunities to create 
a robust informational basis. 

Concerning the fidelity of SVA

 • Developing a more comprehensive (and more articulated) computational model that is 
based on behavior mapping of real-life human designers.

 • Representing the qualitative aspects of the decisional behavior in the SVA (i.e., 
modifying the decisional model of the SVA by adding new factors and parameters and 
conducting experiments to see how much the SVA is able to recognize the usefulness 
of the recommendation contents with the enhancement).

 • Creating semantic relationships between the contents of the recommendation and the 
decisional model of the SVA in order to enhance the likelihood of the decision behavior 
of the designer.

5�6�4 Some recognized limitations
In the previous section, we highlighted those actions which would improve the use process 
and the fidelity, respectively, of the SVA. Though these enhancements are unquestionably 
useful, they do not resolve some issues that originate in the fundamental concepts and 
assumptions related to the implementation of the SVA implied validation methodology and 
the SVA as a smart validation agent itself. According to our view, these need additional 
research and development and therefore were decided as outstanding from the focus of this 
thesis. Nevertheless, we identified the following limitations the elimination of which could 
improve both the quality and the efficiency of the validation. These are as follows:

 • The lack of published literature on the decisional behavior of designers, in particular in 
context of designing reasoning mechanisms, restricted and made it difficult to enrich 



275

the decisional models of the SVA with available research data.

 • The current decisional behavior of the SVA has been generated based on pragmatic 
assumptions, rather than a comprehensive and tested underpinning theory. This 
influences the reliability of both the SVA as a computational agent and it application 
methodology (which is now simulation focused rather than reasoning focused).

 • There were no empirical data available for a comparative evaluation of the dataset 
generated by the SVA. The evaluation of the usefulness based on a full-scale and fully-
fledged dataset in demanded and feasible if further research is done.

 • At using the SVA, the lack of the consideration of the qualitative aspects of the 
evaluation of usefulness of recommendations is still a limitation. However, it leads to a 
completely different (intellect- rather than data-based) reasoning model.

 • Although there was an effort to consider the recommendations content-wise, the 
application context was however not considered in the used validation process.

 • The validation was done only using one methodology, but using multiple approaches in 
concert would result in a more robust and reliable methodology, though the overheads 
would also be increased.
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6.1 Reflections on the scientific and professional 
contributions of the research

The general objective of this Ph.D. research was to provide evidence that the Ph.D. student 
can do self-governed research and can contribute to the disciplinary development with 
novel tested knowledge. The specific objectives were to aggregate knowledge for, and to 
develop some demonstrative implementation of, an active recommendation framework 
(ARF) as a design enabling tool. The purpose of development was to support the design 
of application specific reasoning mechanisms (integral sets of computational algorithms) 
for S-CPSs. Driven by these objectives, four research cycles were planned and completed.

The four cycles addressed different aspects of the ARF development in the application 
context of an automated parking assist system as the target ASRM. The activities included: 
(i) knowledge aggregation, demarcation of the domain of interest, and specification 
of requirements; (ii) functional and architectural conceptualization of the active 
recommendation framework; (iii) computational implementation and operationalization of 
the demonstrative modules; and (iv) validation of the usefulness of the recommendations 
generated by the implemented demonstrative modules of the ARF. The following sub-
sections present my personal reflections on the work and its findings, as well as a self-
evaluation of the results of the completed research. They discuss the contributions made to: 
(i) the academic and practical knowledge; (ii) the development of active recommendation 
frameworks; (iii) the conceptualization of ASRMs; and (iv) the development of mechanisms 
for real-life automatic parking systems.

Reflections, conclusions, propositions, and 
recommendations

Chapter 6
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6�1�1 Contribution to the academic and practical knowledge
The contribution of the completed research to the academic and practical knowledge 
concerned two scientific areas: (i) the field of intellectualized design support tools; and (ii) 
the field of cognitive engineering of reasoning mechanisms for practical applications. 

Contribution to the field of intellectualized design support tools

The promotion research contributed to the field of intellectualized design support tools 
from three aspects. First, we proposed a theory to underpin the conceptualization of the 
ARF through the integration of two fundamental concepts, namely: (i) the concept of 
active frameworks; and (ii) the concept of recommender systems. The concept of active 
frameworks assumes that a computational system is able to actively monitor behavioral 
changes of the designer in the design process at runtime. The concept of recommender 
systems assumes that context-sensitive recommendations can be generated to support 
design problem solving, for example, in the development process of ASRMs.

Second, we applied an application-oriented approach to demonstrate the crucial elements of 
the conceptualized ARF. At the demonstrative implementation of the ARF, the functionality 
needed for an automatic parking system was considered and tested. Using the domain 
knowledge related to the WPE design session, the implemented modules of the ARF 
support the design of an ML-based complex selection algorithm. This algorithm is able 
to search for proper parking plans based on a set of stored parking scenarios. All of these 
are in line with our working hypothesis stating that an ARF cannot investigate the state of 
design actions without domain specific knowledge and contextual information about the 
design process.

Third, a synthetic validation agent (SVA) was conceptualized to simulate the decision-
making behavior of (human) designers as a computational validation means and approach. 
The validation study focused on the quality of the recommendations in term of their 
usefulness. This characteristic can be interpreted in a broader and a narrower meaning. We 
used the term in the narrower meaning that considers an offered recommendation useful 
if a designer facing a procedural obstacle can resolve the problem and can continue the 
design process based on the recommendation. The SVA generated the dataset to mimic the 
(human) designers’ decisional behavior as a follow-up on the proposed recommendations. 
The principle of prognostic reasoning was used to predict the possibilities of decision 
options based on the mimicked decisional behavior. As a result, a socially-based indicator 
could be realized to express the usefulness of the obtained recommendations based on the 
justified objective decisions of the designer.

Contribution to the field of cognitive engineering of reasoning mechanisms for 
practical applications 

On the one hand, cognitive engineering (CE) means equipping systems with system-level 
decisional intellect. On the other hand, CE means adapting the intellectualized systems to 
the physical and cognitive behavioral processes of the stakeholders. These two dimensions 
of CE are present concurrently at the development of the ARF that offers design support 
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means and tools for the development of smart reasoning mechanisms for S-CPSs. From an 
information engineering point of view, the knowledge about the design actions and the part 
of the design process in the WPE session was captured and processed into system knowledge 
in the form of a reference process protocol (RPP). In the particular application context of 
an APAS, the use of the RPP involves causal probabilistic reasoning in combination with 
ML-based reasoning. Concerning the knowledge and inference methods, CE equips the 
ARF with the capability of supporting design decisions.

6�1�2 Contribution to the development of active recommender 
frameworks

The concept of an active recommendation framework is novel and initially proposed by 
researchers at the hosting Section. The term “framework” means a purposeful enabler that 
arranges and rationalizes design activities, information processing, and designer-system 
interaction. The term “recommender” expresses that, as a complex system, the ARF derives 
context-dependent advices for the designer based on a comprehensive system model of 
the concerned (specific) design process. The term “active” refers to the fact that the ARF 
continuously monitors the design process and spontaneously interacts with the designer 
wherever it is needed in the design process.

From the viewpoint of a computational system, the ARF was proposed as a design-action 
driven context-sensitive recommender system. The ARF is capable of (i) monitoring 
what is happening in the design process, (ii) identifying where a procedural obstacle is, 
and (iii) offering personalized recommendations to the designer to help proceed in the 
design process. This assumes not only monitoring of the process, but also dealing with the 
information contents of the design activities. From a computational point of view, it has an 
innate complexity. Consequently, it could not be implemented in full scale. A demonstrative 
part was realized that is able to present the novel functional abilities of a fully-fledged 
implementation. This demonstrative part operationalizes two interoperating mechanisms, 
namely the process monitoring and the decision support mechanisms.

Considering the development process of the ARF, four aspects of its methodological 
contribution are as follows.

Contribution concerning the development methodology 

There was no standard approach to the development of application-orientated engineering 
recommender systems with specialized processing monitoring capability. We proposed and 
used a multi-layer methodological approach for conceptualization and implementation of the 
ARF. It is a top-down approach, which relies on systematic decomposition of the constituents 
of the ARF system according to four perspectives: (i) functionality; (ii) architecture; (iii) 
computational algorithms and data constructs; and (iv) computational workflow. In addition, 
through the applied multi-layer abstraction of the ARF, it provides a logical scenario of 
the activities. We posit that, in comparison with the traditional methodologies used at the 
development of similar frameworks documented in the literature, this approach effectively 
handles the intrinsic complexity of recommender system development.
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Contribution concerning the conceptualization of the novel system functionality

Another novel methodological contribution of this work is the conceptualization of the 
functionality for recommendation generation using the reference process protocol. To 
facilitate a proper continuation of the design process, recommendations are created by the 
cooperative use of two inference methods: (i) probabilistic reasoning by means of joint 
probability distribution (JPD); and (ii) model-based reasoning using a decision tree model. 
The RPP represents the procedural network of design actions making up the considered 
design process. The ARF generates the process-based recommendation by considering a 
segment of the flow of the design consisting of three design actions: (i) the preceding 
design action, (ii) the current design action, and (iii) succeeding design action. The RPP is 
implemented in the form of a Bayesian network.

Based on the probabilistic relationships captured in the Bayesian network, the ARF can find 
the proper preceding design action by investigating the RPP retrospectively. To modify the 
current design action, the ARF uses the decision tree model to select the most appropriate 
method. Relying on preceding design actions and the (modified) design action at hand, 
the ARF determines the joint probability distribution and finds the next design action in 
the RPP toward the completion of design process. The cooperative use of a probabilistic 
graphical model and ML-based reasoning with regard to the conceptualization of the 
inference engine is a novel functionality of the ARF system.

Contribution concerning computational implementation

The MATLAB package was used for the computational implementation of the 
demonstrative modules of the conceptualized ARF. This developer package provided many 
reusable resources for programing. The reuse of pre-programmed algorithms was useful 
to reduce the workload and allowed us to concentrate on the development of brand-new 
algorithms from scratch. Some noteworthy elements of computational implementation can 
be summarized as follows:

 • The functional specification was done with a view to the interrelated computational 
components. In line with the stated requirements, the computational component 
was designed and implemented to realize one primary function – preferably, by one 
comprehensive algorithm. The functionally critical algorithms were identified based on 
three criteria: (i) functional complexity, (ii) data sensitivity, and (iii) intensity of human 
interaction. This resulted in simplicity and transparency. In addition, this approach 
ensures that modification of an individual algorithm has the lowest possible impact to 
the system-level functionality.

 • From a structuring point of view, the architecture of the whole ARF reflects a 
hierarchical structure. The highest-level architectural element is the whole ARF itself, 
dedicated to the system-level functionality. The lower-level components manifest on 
(i) mechanism level; (ii) module level; (iii) sub-module-level; and (iv) computational 
component (interrelated algorithms) level. Encapsulated in computational components, 
the algorithms are the lowest-level architectural elements.



281

 • In order to fulfil the structural requirements, a hierarchical composition approach was 
employed that supports the handling of the implementation complexity. Accordingly, 
the lowest possible number of components and their relationships were strived for 
at each level of architecting. By doing so, the lowest possible dependencies among 
the elements were achieved. In turn, it ensures that the efforts needed for structural 
adaptation at the framework level will remain low (if modification of the algorithms is 
needed).

 • The reference process protocol was proposed as an essential means for the implementation 
of the process-based recommendation generation. It is system of knowledge, which is 
supposed to known by the ARF. The RPP lends itself to a systematic exploration of the 
potential design flows as well as to the investigation of design process and its action 
elements. The hybrid inference utilizes the RPP to infer the most proper design activity 
flow and propose it to the designer.

 • As a ‘domain of interest’, the WPE selection session of the design process of the APAS 
was considered. Within this, special attention was paid to the critical design task, D1.0, 
and it was used in the functional testing of the implemented demonstrative components. 
The contribution to the WPE selection session was an ML-based algorithm, which is 
able to predict the most appropriate parking case to start with. The ML-algorithm is 
also able to select the applicable motion path for real-life parking scenarios.

 • validation of the system-level functionality of the ARF. Based on the simulations, it 
was confirmed that the selected parking trajectories were appropriate and doable in 
the various parking cases studied. Based on these, it is fair to claim that the support 
services provided by the ARF were efficient for this design task.

Contribution concerning the validation of the implemented demonstrative part of the 
active recommender framework

The goal of validation of the results of ARF development was to check if the proposed 
solution does, or not, what it was supposed to do. Concerning the method of validation, it 
is important to mention some pieces of background information here. It is traceable in the 
literature that using ‘artificial humans’ in repetitive validation tasks has become a trend in 
the literature in the last few years. This approach offers not only new opportunities, but 
also many benefits. Though remote on-line testing of networked systems has also become a 
daily practice, the experiences showed that this cannot be so well controlled as the on-site 
(participatory) experimentation. In the context of validation of the implemented parts of the 
ARF, the following novel methodological elements were considered: 

 • A logical and computational model of a synthetic validation agent (SVA) was 
elaborated as a means for simulation of human decisional behavior. The SVA 
generates a validation dataset that mimics the decision patterns of human designers. 
Three influential factors of the decisional behavior of human designers (as problem 
solving agents) were considered: (i) the appropriateness of a recommendation, (ii) the 
recognition of its properness by the designer, and (iii) the possibility of selecting the 
proper recommendation. These not only have an influence on the decision-making 
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behavior, but they are also correlated with the usefulness of the recommendation. Based 
on these factors, the decisional behavior of the designer was modelled and represented 
by eight decisional options. These decisional options were classified into three groups: 
(i) justified objective decision, (ii) unjustified subjective decision, and (iii) incorrect 
subjective decision.

 • Having the dedicated SVA, the usefulness of recommendations could be tested 
without direct participation of human designers. The analysis of usefulness usually 
required semantic interpretation from the designers’ points of view. The assumption 
was that, depending on their decisional behavior, the designers would take different 
decisional options given the same recommendation. The sequence of their decisions 
forms a decisional path including a combination of negative and positive decisions 
on the recommendations. Thus, usefulness was defined more narrowly. A received 
recommendation is useful if the designer can continue the design process with the 
proposed design flow and action. With this interpretation, the operation of the SVA 
generated the dataset upon which the assessment of the usefulness of the recommendation 
was possible.

 • To assess the usefulness of the individual recommendations, indicators were generated 
based on the principle of prognostic reasoning. These indicators were derived from the 
correlations of common knowledge elements and the collective decisional behaviors of 
the designers. The aggregated probabilistic of the justified objective decision and the 
unjustified subjective decision can be defined as the metric to evaluate the usefulness 
of the recommendation.  

6�1�3 Contribution to the design methodology of application-
specific reasoning mechanisms

Oftentimes, application-specific reasoning mechanisms are more complex structures than 
generic inferring and reasoning mechanisms. This complexity is typically originated in 
the complicatedness of real-life problems as well as in the concomitant data, information 
and knowledge acquisition, pre-processing, and verification/validation tasks. Thus, the 
design methodology of ASRMs should focus on the complete set of (possible or optimized) 
problem solving procedures that are relevant for the application problem at hand. This is in 
contrast to the conceptualization methodology, where the generic reasoning mechanisms 
are developed based on logical inferring schemes or analogical search processes. The 
traditional design methodology of ASRMs starts out from a logical and/or a procedural 
model of operation without the consideration of the dynamic application context. A typical 
example is a cruise control.

In our conceptualization, the design methodology of ASRMs covers the whole process of 
application problem solving, and the varying application context. The contribution of the 
promotion research to the design methodology of application-specific reasoning mechanisms 
manifests in the systematic approach to service-oriented problem interpretation and in the 
high-level decomposition of the design process into purposeful sessions. The proposed 
approach to APAS conceptualization includes the following sessions: (i) computational 
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formulation of the problem, (ii) situation modelling and analysis, (iii) working principle 
exploration, and (iv) decision logic modelling. It is complemented by (v) component-level 
computational detailing, (vi) design and interfacing of the algorithms, and (vii) system-
level prototype integration. Focusing on the particular WPE session, we demonstrated the 
working principle exploration, activities in the context of APAS development.

6�1�4 Contribution to solution generation for a real-life 
automatic parking problem

Known to be time-consuming and frustrating, the search for a parking space in urban areas 
needs long-range search and navigation activities, as well as short-range maneuvering 
activities. Long-range search is connected to car park guidance systems (CPGSs) that 
provide information about location and vacancy by digital communication. Thus, CPGSs 
support drivers in their search for and navigation to an available parking space. Short-
range search can also be based on local CPGSs or, alternatively, on monitoring by self-
observation. The real-life need for automatic parking may appear in the special contexts of 
(i) street (roadside) parking, and (ii) zone (multi-lot) parking.

Automated parking may be combined with both human driving and automated driving. In 
the former case, the assumption is that the driver presses the park key after entering the 
parking zone, and the car will store itself either on the roadside or in a parking area. In 
the latter case, the passenger informs the car about her/his intention to stop and park, and 
all follow-up actions, including payment, are done by the self-driving car. The execution 
of parking needs computations concerning (i) parking vacancy detection and evaluation, 
(ii) reasoning about the best parking lot, (iii) parking the car in the selected lot, and (iv) 
completing the follow up activities that are needed. For input data generation, video and 
sensor technologies are used individually or jointly.

The above description shows that vehicle/car parking is a complex task and its automated 
execution requires multiple smart and collaborative computational reasoning mechanisms. 
These computational mechanisms are functionally connected not only to regional CPGSs, 
but also to (i) input sensing (e.g., using magnetometer and radar for a dual detection and 
monitoring the occupancy of a parking space) and (ii) steering of the car (e.g., fine control 
of the motor, steering mechanism, and applying/releasing the breaks). As it can be seen in 
the literature, current development efforts mainly focus on the physical part or the software 
development part of the parking process, and not on the situated reasoning part.

However, deep learning has recently been used in building practical applications, but this 
can only support the related lot recognition and classification problem. The other activities, 
like car control generation, are yet not sufficiently covered by computational problem 
solving. On the other hand, the proposed ARF has been conceptually equipped with the 
abilities that are needed to support the design of these dedicated reasoning mechanisms. 
It has been developed based on typifying the design activities concerning the various 
reasoning mechanisms, and representing the design activity flow in a reference process 
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protocol. This is a kind of forward-looking conceptualization that considers the end goal 
and identifies the phases (steps) of the process that are needed to achieve the target.

6�2 Main conclusions

6�2�1 Conclusions concerning research cycle 1
Reflections on the methodological approach

The main objectives of the first research cycle were to systematically review and to 
criticality investigate the state of the art of system engineering frameworks (SEFs) 
related to the computational implementation of system-level reasoning. A comprehensive 
literature study was done by applying both quantitative and qualitative methods. The 
quantitative study aimed at exploring the landscape of publications related to the research 
phenomenon. The bibliometric map was constructed based on the wide range of key terms, 
using the VOSviewer software. The primary domain of discourse of the literature study 
was associated with the notion of “framework”. In addition, the interrelatedness of the key 
terms was analyzed.

The strength of the relationships was exposed and displayed in the form of a power map. 
A formal reasoning model was derived from the power map for the qualitative study, 
which included content analysis and interpretation of findings. The requirements for the 
ARF were derived by considering the implications of the findings. The requirements were 
formulated in the regular textual form and their relationships were explored and represented 
as semantic maps. The major reflections on the methodological approach are as follows:

 • This research cycle took advantage of data analytic techniques and software tools 
which could be used for visualization of data and their relationships. This helped create 
a visio-graphical overview of a huge number of publications and the quantification of 
the interrelationships of the key terms. However, the map did not convey the semantic 
meaning of their relationships directly. The interpretation of the map required the 
background knowledge of the researchers. Our intention was to exclude or at least to 
reduce any bias that might have happened during the process of filtering, combining, 
and merging of key terms. However, the subjective interpretations could not be fully 
scrutinized.

 • In the phase of requirement engineering for the different levels of the ARF, the sematic 
map helped us identify the key requirements. A major concern was their feasibility (i.e., 
the possibility of fulfilling their expectations at specification of the functionality of the 
ARF. The investigation of the sematic relationships among the requirements cast light 
on possible inconsistencies among them. We found that the semantic mapping was an 
effective means for the feasibility assessment of the various requirements.

Reflections on the results

The knowledge exploration and aggregation process was supported by a transparent mental 
model. This reasoning model focused on system-level reasoning about frameworks and 
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introduced six domains of interests as contents. The five included system-level knowledge 
domains are: (i) synthetic knowledge, (ii) system awareness; (iii) reasoning mechanisms; 
(iv) decision-making; and (v) system adaptation. These were regarded as enablers for 
system-level reasoning operation. The sixth domain, recommendation generation, was 
considered as a manifestation of system-level service. As mentioned above, in the process 
of content analysis, the implications of the findings were analyzed with the intention to 
identify the requirements for the conceptualization of an ARF. The main reflections on the 
knowledge aggregation phase are as follows:

 • We used the term ‘framework’ as the main key term to perform the search for relevant 
publications and to get to a bibliometric map. Based on the follow up data analysis, a 
network of the related key terms was created and graphically presented.  The related 
key terms were extracted from 2,096 publications. The term ‘framework’ appeared as 
the intermediary link between the other key terms in the network. This was a kind of 
confirmation that the collected publications were relevant to the interest in frameworks. 
However, it could not be guaranteed that all publications on frameworks were indeed 
taken into account in the literature study.

 • In the later stage of the promotion research, we focused on the design support for the 
development of smart reasoning mechanism. The necessity of monitoring the design 
process was not a part of our mental model yet. After conducting the literature study, 
it became clear that providing support service only to solving the application-specific 
design problem was not sufficient. Most of the traditional SEFs operated in a static 
manner. This means that they were not developed to be sensitive to the changes that 
may occur in the context of operation and the behavior of the system at runtime. If these 
traditional principles would have been applied, then a design support framework could 
not recognize what is happening during runtime operation. To avoid this situation, it is 
necessary to equip an ARF with real-time process monitoring capability. Considering 
this fact, we concluded that process monitoring and design decision support had to 
be seen not only as essential, but also interrelated functionalities with regard to the 
operation and computational implementation of the targeted ARF. Their interoperation 
makes it possible to generate context-sensitive recommendations adapted to the runtime 
events and situations in real time.

 • The finding related to the reasoning mechanism development made it clear for us that  
widely-based additional research would have been needed to: (i) explore semantic 
relationships of data and information elements of emerging situations and unknown 
operation based on analogies or ontologies, (ii) create belief networks for representing 
potential associations of knowledge elements in order to fill in incomplete knowledge 
and information over processes, and (iii) adapt reasoning strategies to ill-defined 
problems and heterogeneous knowledge and information representations. However, 
due to the time and capacity constraints, these could not be considered during our 
research.
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6�2�2 Conclusions concerning research cycle 2
Reflections on the methodological approach

The objective of the second research cycle was to conceptualize the whole, and in particular 
a testable demonstrative part, of an ARF to support the development of ASRMs. The main 
research question of this research cycle was associated with the conceptualization of a 
feasible and efficient ARF. The conceptualization of the whole and the constituents of 
the ARF happened in terms of functionality, architecture, computational algorithms, and 
computational workflow. To cope with the complexity of the whole system, a top-down 
decomposition approach was used. As discussed above, the functionality specification and 
testing of the proposed concepts were done by concentrating on the WPE session of the 
design process of an APAS. 

The methodological approach of conceptualization relied on a four-layer decomposition 
of the ARF development process, this included (i) specification of functionality, (ii) 
allocation of the functionality into system architecture, (iii) specification of computational 
algorithms and data structure, and (iv) organization of the operation workflow, including 
communication with the designer. The reflections on the methodological approach are as 
follows: 

 • The complexity of the mechanisms of the ARF was challenging from a realization 
point of view. By using the multi-perspective conceptualization approach in the ARF 
development, we could effectively handle the challenge.

 • The advantage of the multi-perspective conceptualization approach was that it allowed 
us to consider that the constituents of the ARF were interrelated both on the same 
layer and across layers. It also facilitated a kind of pathfinding to the most appropriate 
conceptual elements of the ARF.

 • The dependencies introduced by the four-layer logical decomposition structure created 
a non-linear design process, as opposed to the traditional water fall models. Execution 
of a non-linear design process is a time-consuming task. Rectifying the concept on one 
layer will most probably require the correction of the other layer too. 

Reflections on the results

The main findings of the conceptualization of the ARF can be summarized as follows: (i) 
type B observation of non-usual events was chosen as the basis of the conceptualization of 
the ARF, (ii) two main functionalities (i.e., process-monitoring and decision-support) were 
needed and allocated to two mechanisms in a one-to-one manner, (iii) the mechanisms 
were composed of the lowest possible number of modules and their interactions, (iv) the 
lower-level architecting elements were constructed following the same expectations, (v) 
the architecture of whole ARF was constructed by two mechanisms, six main modules, 
twenty sub-modules, and sixty-three enabling algorithms, (vi) the reference process 
protocol (RPP) was introduced as an essential component of the ARF, (vii) the RPP was 
both a conceptual means of capturing system knowledge and a computational means 
for the generation of process-based recommendations, (viii) two inference approaches 
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(i.e., exact inference and hybrid inference) were employed to generate context-sensitive 
recommendations, and (ix) concentrating on the WPE session only, the ASRM of an APAS 
was used as contextualization of the RPP.

The reflections on the results obtained in the second research cycle are as follows:

 • Compared with similar SEFs, the proposed concept is novel in the field of software 
system design and engineering for three reasons: (i) handling the interdependence by a 
multi-layer design methodological approach; (ii) offering a context-sensitive decision 
support mechanism for the development of ASRMs; and (iii) providing recommendation 
services using a runtime process monitoring mechanism.

 • Even in the conceptualization phase of the ARF, we had to realize a large complexity 
challenge. This became obvious in the implementation phase. Therefore, we tried 
to keep the number of elements and their relationships to the lowest possible level. 
Nevertheless, on the level of computational algorithms, sixty-three algorithms were 
required to realize the system-level functionality of the demonstrative part of ARF. Due 
to resource limitations and time constrains, it was not possible to implement the whole 
ARF and to test it in a real-life environment. 

 • Due to the technical issues experienced in terms of accessibility and monitoring of the 
software execution data of the used design tool, we decided to use a designer activity-
based monitoring approach. This type of monitoring allowed not only to observe 
the executed design actions, but also to observe the designer’s facial expressions. 
Interestingly, we found that the latter enabled capturing the cognitive thinking of the 
designer with regard to the design activities as well as the events in the design process. 
It offers an opportunity to generate recommendations based on the pattern of design 
activities. However, this remained an open issue for future works. 

 • In the conceptualization phase, we considered two separate inference approaches for 
generation of recommendations. The exact inference approach infers a solution based 
on the information obtained from a dialogue with the designer. If a solution cannot be 
found this way, then hybrid inference is necessary. Hybrid inference generates context 
sensitive recommendations in an automated operation based on the RPP. It must 
be mentioned that, in a retrospective investigation of the RPP, it might happen that 
information about the state of preceding design entity is not available. Updating the 
current state of design process needs acquiring state and/or context information from 
the designer. This is a computational gap of the automated recommendation generation 
(and of context-sensitive recommendation generation).

6�2�3 Conclusions concerning research cycle 3
Reflections on the methodological approach

In short, the third research cycle intended to (i) implement the demonstrative modules of the 
ARF, and (ii) test the system-level functionality of the ARF in the application context. To 
avoid an uncontrollable complexity of the implementation, the divide-and-conquer strategy 
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was applied. It involved using (i) a multi-layer structure, (ii) modular design technique, 
and (iii) object-oriented programming. For the purpose of demonstrative implementation, 
MATLAB package was used. The reflections on the methodological approach are as 
follows:

 • In order to handle computational complexity successfully and to realize the 
implementation in a constrained timeframe and with the available resources, we had to 
apply a strict scoping on the implementation. We could consider only a demonstrative 
part of the ARF, in particular, with regard to context-sensitive recommendation 
generation using the RPP. Nevertheless, some other related modules were also needed 
to complete the operation workflow.

 • The functional validation of the demonstrative part was completed with a focus 
only on the design process elements in the WPE design session. This aimed at the 
development of search algorithms for selecting the proper motion path for the actual 
parking problem. Thus, the testing of the functionality was done based on a scenario 
of the relevant design actions, and not throughout the entire process of designing all 
algorithms required for the operation of the ARF. Therefore, the usability of the ARF 
in the application context and the end result of the programmed search algorithm could 
not be tested without considering the complete design process.

 • We applied the reasoning with consequences principle to test the system-level 
functionality of the ARF. This approach is based on a combined logical and analogical 
validation. If the ultimate output is correct, then the hypothesis will be valid. 
Notwithstanding the abovementioned limitations, we found that this logical validation 
approach was beneficial in our case.

Reflections on the results

Four demonstrative modules (i.e., the DOI, ROI, RPC, and ACG modules) were implemented. 
They collectively included thirteen sub-modules and thirty-two computational components. 
Thirteen algorithms have been discussed in detail. The algorithm A4.04 (selecting the best 
usable method) was considered as the critical algorithm, based on its foreseen overall 
impacts. It plays a role in the hybrid inference, which is executed based on the interoperation 
of three other algorithms (including the algorithm A4.01, A4.03 and A4.06). The following 
reflections can be made concerning the results of the third research cycle.

 • The specification of functionality revealed the opportunity of using existing algorithms 
and increasing the utilization of standard algorithms. The organization of the workflow 
and the interaction processes provided opportunity for the development of optimized 
algorithms. 

 • With a view toward a future intelligent (automated) ARF, we decided to operationalize 
the ARF with a limited amount of interaction with the designer. This explains the 
relatively low number of algorithms for human interaction.

 • To be able to sufficiently support application-specific design tasks, the construction 
of a reference process protocol required domain-specific knowledge. In the functional 
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testing, we assumed that all relationships of the design entities in the RPP, as well as 
the decision variables for selecting the usable method, were theoretically correct. The 
recommendations were generated based on this assumption. However, the correctness 
of the theoretical basis of the recommendations was not experimentally tested. This 
must be noted because the quality of the recommendations might not satisfy the 
requirements completely, but it was sufficient for the demonstrative purpose.

6�2�4 Conclusions concerning research cycle 4
The objective of the fourth research cycle was to validate the usefulness of the 
recommendation provided by the ARF. We defined the term ‘usefulness’ to specifically mean 
that the recommendation is useful if the designer can unblock the obstacle and continue the 
design process. Concerning the validation, we faced difficulty with an assessment with the 
involvement of practicing designers. One of the difficulties was caused by the coronavirus 
pandemic, which did not make possible to invite designers to conduct on site studies. This 
orientated our attention to other methodologies and computational solutions.  This is the 
main reason why we discovered and introduced the concept of a synthetic validation agent 
as the surrogate of the designer to handle the situation. The synthetic validation agent aims 
at mimicking the decision behavior of the designer and generating a quasi-experimental 
dataset for the purpose of validation. To capture the possible decisional options of the 
designers, three decision variables were identified. The interplay of the decision variables 
offered eight options, which were sorted into four classes, (i) justified objective decision; (ii) 
unjustified subjective decision; (iii) incorrectness subjective decision; and (iv) negatively 
justified objective decision. 

The agent-designer made the decision based on the assumptions of the possession of 
common knowledge elements shared by the SVA and the RPP. The decision model was 
derived from the relationships of the probability of shared knowledge and the probability 
of knowing the knowledge elements included in the recommendation by the SVA. Three 
decisional modes were the components of the decisional model. The prognostic reasoning 
was applied when deriving the indicator of the usefulness. The decisional options were 
analyzed and based on the interpretation of usefulness. The first two decisional options 
were selected as indicators of the usefulness.

Reflections on the methodological approach

 • A synthesis validation agent (SVA) is an effective means for the generation of the 
synthesis dataset. In our work, it provided the meaningful dataset which can be used for 
the analysis of the correlations of variables for different points of view. The challenges 
for the development of the SVA are how to capture the decision behaviors of the human 
and how to validate the decisional model which operationalizes the decision-making of 
the SVA. The latter is even more challenge from our point of view. 

 • Three decision variables were sufficient for capturing the designer decision options. 
Their interplay simplified the human decisional behaviors and limited the total number 
of the decisional options. This handled the challenge of how to capture the collective 
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behaviors of the designers without the participation of the human designers. 

 • The quantitative analysis is typically used when deriving the decisional model of 
the SVA. We introduced new variables which were related to the relationship of the 
knowledge possession of the SVA and the knowledge elements included in the RPP. 
Three decisional modes were described and quantified as components of the decisional 
model. However, in many problems, it is difficult to collect the data for evaluating 
the model. The logical validation was applied in this situation. It is assumed that the 
decisional model is valid if it gives the reasonable results. 

 • In our study, the SVA-based simulation was used as the method of generating the 
validation dataset. The expected results were the correlations of the considered 
variables (e.g., decisional modes, probability of acceptance of the recommendation, the 
probability of the decision options, and the usefulness indicator). The results produced 
by the repeated simulation showed that the SVA-based simulation was an appropriate 
method when participation of human designers in the validation process could not be 
realized.

 • Notwithstanding, we had to face some limitations in terms of this approach, namely: 
(i) the decisional behaviors mimicked by the SVA were limited by the underpinning 
assumptions, and (ii) a comparative empirical evaluation of the obtained simulation 
results was not possible in the lack of ‘in vivo’ experimentation and testing of multiple 
samples.

Reflections on the results

 • The findings seem to contradict the trend of developing the recommender systems, which 
should contain a huge number of recommendation items. In our work, we concluded that 
the recognition of the appropriate recommendation by the designer is more important 
than its quantitative matter. According to the proportion of common knowledge shared 
by the SVA and the RPP, if it was very low, there was a high probability that the 
SVA could not recognize the appropriateness of the recommendation. This condition 
implied that if the RPP could represent a rather complicated design process, there was 
a high possibility that an unfamiliar recommendation was generated with regard to 
the specific context information. This made the designer uncertain about the offered 
recommendation. Therefore, for the development of the specialized recommender 
system, it should consider a sensible number of recommendation items to be able to 
yield the optimal proportion of common knowledge of the SVA. As a consequence, 
the SVA was able to recognize the appropriate recommendations with a higher chance.

 • Although new aspects of the evaluation metrics concerning the novelty of the 
recommendation items have been introduced in the recent academic publications, this 
aspect might not be suited to the development of the specialized recommender system 
(the ARF for instance). Based on the prognosis of the proportion of common knowledge 
of the agent designer and the usefulness indicator, the recommendations should be 
well-known by the designers. In practical terms, it is impossible to evaluate how much 
possessed knowledge an individual designer. Hence, the offered recommendation 



291

should be practical and executable rather than novel or sophisticated in order to enhance 
the probability of acceptance of the recommendation. 

6�3 Propositions

6.3.1 Scientific propositions 
Proposition 1: The growing complexity of application-specific reasoning mechanisms of 

smart cyber-physical systems implies the need for active support of software 
designers.* (RC1)

The growing complexity of real-life application problems raises the need for sophisticated 
reasoning mechanisms for S-CPSs. Application-specific reasoning mechanisms 
(ASRMs) are often characterized by functional complexity, architectural complexity, 
and computational complexities. In fact, procedural reasoning processes go through 
multiple stages of information processing (e.g., building awareness, situated reasoning 
with incomplete context information, informed decision-making, and runtime adaptation). 
Therefore, their design process usually includes a more complicated set of activities than 
that of the generic reasoning mechanisms. On the other hand, minor errors and mistakes 
occurring in the conceptualization stage may lead to unexpected faults in the operation of 
the designed software mechanisms. As indicated by the increased number of publications 
in the field of system engineering and CPS development, researchers and system designers 
are looking for efficient approaches for designing S-CPSs. Many support tools have been 
developed based on the paradigm of CAD/E systems. The number of publications that 
propose novel design-support tools for designing smart systems is also growing. Not only 
multi-disciplinary collaboration and complexity management are addressed, but also setting 
up application-orientated design scenarios and operationalization of artificial intelligence 
methods. Providing runtime support for reasoning mechanism design is a new challenge 
that implies the need for consideration of process-related recommender systems. These 
developments led to the idea and conceptualization of our active recommender framework 
for providing active support.

Proposition 2:  Recommendation services must be integrated into the decision support 
mechanism to guide designers in the development of application specific 
reasoning mechanisms.* (RC1)

As members of the family of decision-support systems, the emerging engineering 
recommender systems are supposed to provide recommendation services according to the 
state of the process and the solution contents. The provided personalized recommendation 
service depends on the context information, which is either directly provided by the designer 
or captured by the system based the decisions made by designers. This trend provided the 
conceptual idea for the development of an ARF that integrates the add-on recommendation 
services with the decision support mechanisms.
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Proposition 3: Because of multiple limitations, a fully intelligent (automated) active 
recommender framework is currently not feasible. * (RC2)

The state-of-the-art efforts in cognitive engineering are aimed at the development of 
human-like intelligent systems. System intelligence is the ability of systems to derive 
possible solutions and to make appropriate decisions even in uncertain situations. What it 
means in our context is that a fully intelligent (automated) ARF would take over problem-
solving when the designer fails and would explore the space of possible solutions. A fully 
intelligent and automated system is currently not feasible due to lack of knowledge, for 
instance the limitations of technologies, the task complexity, and the trade-off (balance 
between developmental investment and achieved practical support/gain) issues. It might 
be interesting from a scientific point of view, but cannot be operationalized in the case 
of complex application problems due to computational limitations. Therefore, the most 
appropriate strategy is to look for pragmatic, but effective solutions based on partial 
intelligence. In our view, partial intelligence can provide procedural recommendations 
when the designer is hindered. The level of involvement of the ARF and the goal and 
form of the contribution of the ARF to the designer’s activities is still in an early stage 
of understanding. Expert designers can cope with the challenges of the design process, 
but may use multiple, time-consuming iterations, and may ignore mishaps and potential 
threads. The latter can be the entry points for an ARF to provide support services. This 
requires processing context information about the problem at hand, the reasoning of the 
designer, and the actual state of the design process.

Proposition 4: An active recommender framework needs knowledge about the application 
domain and the design context to provide proper recommendation services. 
* (RC2)

In a typical recommendation system, the so called ‘cold start problem’ occurs if information 
about the profile and preferences of the user, and her/his ratings of recommendation items 
are not (sufficiently) known. These pieces of information are part of the explicit knowledge 
possessed by the system. Without this knowledge, recommendation systems cannot produce 
reliable recommendations. To eliminate this problem, context aware recommender systems 
(CRSs) tend to utilize knowledge about the preferences of the users as well as context 
information to produce personalized recommendations. In other words, knowledge is an 
essential element of CRSs that supports situated reasoning and recommendation generation 
based on the context information. The contents of recommendations depend on the 
knowledge acquired by the system. In the development process of ASRMs, the application 
domain and the design context should be converted into system knowledge for the ARF. 
In our specific case, a reference process protocol (RPP) was the means of capturing and 
representing formal knowledge about the design process of ASRMs. Recommendations are 
generated in the actual context of design flow, which is derived from the RPP. It also has 
to be mentioned that the ARF cannot contextualize the design actions and infer about the 
progress in the design process without sufficient domain knowledge. Otherwise, there is a 
high possibility that the delivered recommendations are not proper.
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Proposition 5: The active recommender framework can provide the requested support 
services by concurrently using runtime process monitoring and context-
sensitive decision support. * (RC2)

To be alert and ready to advise, the ARF must be at least active (in an ultimate case, 
even proactive), rather than only reactive. The ARF should be aware of both regular and 
irregular conduct of the design process and the behavior of the designer. According to our 
proposal, the process monitoring mechanism detects an unusual event during the execution 
of the design process, and offers the requested support services in (quasi)real time. The 
support service (recommendation) is generated according to the actual situation and to 
what is needed to resolve a procedural or cognitive blockage. Therefore, the ARF has been 
developed to concurrently use the runtime process monitoring and the context-sensitive 
decision support mechanisms. Both the process monitoring and the decision support 
mechanisms use the RPP for a context-sensitive generation of recommendations. The 
proper connection between these mechanisms should be guaranteed by the computational 
implementation.

Proposition 6:  Either consistency of the information flow or change of the designer’s 
behavior provides sufficient clues for detecting non-usual events.* (RC2)

An event is indicated by the changes in the state of the system and/or the behavior of 
the designer observable at a moment in time. Events allow inferences about something 
that might go or have gone wrong in the design process. A non-usual event (NUE) is a 
sub-class of these events. Conceptually, inferring an obstacle in the design process can be 
based on detecting a non-usual event. Two approaches could be used to detect an event. 
One is process-based monitoring and another is activity-based monitoring. The former one 
observes changes in the information flow of the system. Our experiments showed that, 
concerning the data needed for the observation of an event and the accessibility of data 
sources for this purpose, accessing the software execution data in a set of design tools was 
more complicated than obtaining the data concerning the designer’s facial expressions. 
The latter one observes changes in the behavior of the designer. More specifically, the 
activity-based monitoring observes the designer’s facial expressions. The pattern of 
changes in the facial expression can be associated with the various types of events in the 
design process. The state of the art of ML-based recognition of facial expressions offers the 
opportunity to continuously monitor the designer’s behavior. The ML-based recognition 
approaches can provide sufficient clues to recognize a NUE. To handle the complexity of 
the computational implementation, the activity-based monitoring was chosen in the process 
of conceptualization of the ARF.

Proposition 7: Rule-based reasoning or pattern-based reasoning does not result in 
significantly different outcomes in the case of non-probabilistic inference.* 
(RC3)

Rule-based reasoning infers a solution based on a rule set and the decision conditions 
specified in the form of Boolean parameters. Pattern-based reasoning infers a solution by 
finding the best match in the patterns of decision variables stored in the decision table and 
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considering the valuation of the variables provided by the designer. For the implementation 
of the dialogue-based obstacle identification (DOI) module, the principle of exact inference 
was applied to infer a solution based on a set of answers provided by the designer. An 
exact inference is considered as a sub-class of non-probabilistic inferences. Fundamentally, 
if a set of conditions in the rule set and the pattern of decision variables are identical, 
both approaches provide a similar result. This means that both rule-based reasoning and 
pattern-based reasoning can be applied alternatively for the execution of exact inference. 
Considering the requirements and constraints (i.e., computational complexity and resource 
usability), the pattern-based reasoning was preferred for the demonstrative implementation 
of the ARF.

Proposition 8:  A reference process protocol is the right means for the ARF to provide 
context-sensitive recommendations for the development of ASRMs.* (RC3)

The reference process protocol (RPP) was introduced as a crucial constituent of the ARF 
for generation of process-based recommendations. The RPP models and contextualizes 
the design process of ASRMs and, as such, represents the system-level knowledge of the 
ARF. By definition, RPP is a prescriptive instrumental model of the design process or a 
specific part of the process. In the case of hybrid inference, the RPP is used to generate 
context-sensitive recommendations. The probabilistic reasoning offers multiple choices 
for creating design activity flows. At a decision point in the RPP, the decision tree model 
supports the selection of the most appropriate (usable) method for a particular design entity. 
The crucial constituent nature of the RPP originates in the fact that hybrid inference cannot 
be executed in the lack of system knowledge in the application context.

Proposition 9: The probabilistic relationships need to be included in the reference process 
protocol to make the active recommender framework capable of offering 
case-related recommendations.* (RC3)

The relationships of design entities can be captured in and modelled by the RPP. They make 
the ARF capable of exploring the possible design flows to complete the design process 
for a development of ASRMs. Technically, the ARF finds the design activity flow that 
includes the current design entity by considering the target design entity, if they are in one 
way or other connected in the RPP. It is also possible that multiple design flows exist that 
include connection of two considered design entities. Therefore, probabilistic relationships 
should be included in the RPP to be able to determine the best matching design activity 
flow. In the computational implementation of the RPP, the relationships of design entities 
were quantified by the frequency of co- pairwise occurrences of the entities, which were 
supposed to be used in historical cases. The best design activity flow includes the most 
popular design entities according to the highest value of their joint distribution probability. 
Based on this interpretation, the ARF offers case-related recommendations considering the 
most popular design activity flow.
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Proposition 10:  Traceable logical reasoning model is needed for hybrid inferencing.* 
(RC3) 

Hybrid logical inference was used to infer the most informative segment of the PFM and 
to rectify the current design action. Furthermore, decision tree classifiers were applied 
as decision support models for this purpose. The decision tree classifier used selects the 
most appropriate methods for the intended design actions at any decision points in the 
reference process protocol. The selection of the usable methods is based on the conditions 
of the decision criteria that are captured through the dialogue from the designer’s answers. 
However, it was also possible to implement other machine learning-type algorithms (e.g., 
ANN, KNN, or SVM) for the hybrid inference component, which would probably make 
the performance of the hybrid logical inference more efficient than the decision tree model. 
However, the ML-type algorithms are constructed as black box models – that is, their 
decision process is not logically traceable and explainable. Meanwhile, the decision tree 
is a traceable logical reasoning model, which, on the one hand, provides a technically 
equivalent model to black box models, and on the other hand, they offer a monitoring and 
a better understanding opportunity of how decision is made. It is of a high probability that 
the designer would like to know and requests the ARF to learn/present how the decision 
was made. In addition, we argue that it increases the possibility that the recommendation 
proposed by the ARF is accepted by the designer, if she/he understands the logic of the 
decision-making process. This way, the quality of the recommendations is increased in 
term of their usefulness. Thus, it is important that the knowledge acquired by the ARF 
should be presented in the traceable logical reasoning model.

Proposition 11: A synthetic validation agent needs to properly model and simulate the 
decisional behavior of sample designers.* (RC4)

Current cognitive and computing technologies allow using synthetic software agents for 
various purposes. In the promotion research, a synthetic software agent has been created 
to model the decisional behavior of non-accessible designers in the validation study. The 
programmed agent modelled multiple designers, who variously responded to the offered 
recommendations. The synthetic software agent was supposed to act like the human designer 
in the decision-making process. The agent was designed to recognize the appropriateness 
of recommendations and to model the execution of the proposed design activity flow. 
Without the on-site participation of a human designer in the validation process, we could 
acquire synthetic data that reflected the collective decisional behaviors of designers. From 
the viewpoint of validation, if the agent was not able to properly simulate the decisional 
behavior of the designers, then a meaningful dataset could not be generated. In order to 
ensure a proper operation of the agent, we deployed both quantitative analysis (to derive 
the decision model of the agent) and qualitative analysis (to validate the properness of 
the model logically). As a result, the agent generated meaningful data, which could be 
effectively used for the validation of the usefulness of the recommendations. 
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Proposition 12: Prognostic reasoning that considers the probabilities of decision 
options is an effective means for evaluating usefulness of case-related 
recommendations.* (RC4)

Prognostic reasoning is an effective means for forecasting probabilities. In our validation 
study, we applied it in combination with generating case-related recommendations. By 
definition, the term ‘case-related’ means the recommendation was generated based on 
historically-used cases of the concerned design process. Prognostic reasoning was applied 
to derive indicators of usefulness. The indicator was used not only for the target design 
sub-task, but it was also applied to similar tasks. The usefulness of the case-related 
recommendation could be indicated by prognostic reasoning that could consider the 
probabilities of the decision options. We found that the proposed indicator can be applied 
effectively, if the forecasting of the probability of the acceptance of the recommendation 
hint at a likely outcome.

6�3�2 Socially-contextualized propositions
Based on the research work and the implication of the results, the following socially-
contextualized propositions have been formulated:

Proposition A: Design is gradually transferred to systems.*

Proposition B: Due to the accelerated achievements of the research communities and to 
the diversification of science, no one knows what the state-of-the-art is.*

Proposition C:   Intelligent systems need to detect logical fallacy by their own intelligence 
in order to reach the level of human intelligence.*

Proposition D:  Without the support of a predictive conceptual framework, a system 
designer gets anchored to the first feasible solution, instead of exploring 
and constructing the most beneficial ones.*

Proposition E:  Developing a proper model for a computational agent mimicking the 
collective decisional behavior of people is a complicated task, but 
validation of the decision-making model of one single human agent is even 
more complicated.*

6.3.3 Self-reflective propositions
As basic thoughts emerged while conducting the promotion research, the following self-
reflective propositions have been formulated:

Proposition X: The democratic value is the most important issue in non-democratic 
societies.*

Proposition Y: The process of doing a Ph.D. study is like walking three-steps forward and 
two and a half steps backward.*

Proposition Z:   No one knows that authentic Dutch food is one of the most delicious meals 
in the culinary world.*
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6�4 Recommendations and future works

6�4�1 Possible short-term research 
The research project was conducted for five years of the Ph.D. study. We found new and 
interesting scientific findings when we changed the points of view with regard to the research 
problems. Because of the limitations of the available resources and the time constraints, the 
research topic can be improved upon and short-term follow-up research can be proposed. 
The possible topics may be as follows:

 • A short-term future research can focus on an all-embracing implementation and 
testing of the complete ARF with the improvement opportunities in recommendation 
generation, the utilization of reference process protocol, and algorithm modifications. 

 • The implemented functions can be improved, considering the limitations. More 
sophisticated algorithms can be considered to make these functions more intelligent 
and autonomous.

 • More aspects of validation may be considered in testing the usability of the ARF with 
the participation of designers and testing the applicability in other sessions of the 
design process of ASRMs. 

 • The theoretical correctness of the RPP could be checked before testing the usability of 
the ARF. This may extend to (i) the contents of design entities, (ii) the relationships of 
design entities, and (iii) the prediction variables for training the decision tree model for 
a particular design entity. 

 • Instead of using Bayesian networks and probability-based reasoning, an ontology-
based approach may also be used for capturing the relationships of the design entities 
in the RPP. Ontological reasoning can facilitate semantic inferencing when using the 
RPP. The probabilistic and ontological approaches may be combined with the objective 
of achieving improvement in the reasoning performance of the ARF.

 • Due to the lack of data concerning the designers’ decisions, a quantitative validation of 
the synthetic validation agent (SVA) is a challenge. Research may explore if a surrogate 
method could be developed.

6�4�2 Possible long-term research 
As a prototype of a specialized engineering recommender system, the ARF could be studied 
from many dimensions in the future. For instance, its implementation as an intelligent 
and autonomous system is on top of the list of possible long-term research activities. In 
addition, extending it to support the design process of different ARSMs is also a direction 
with high potential, which may also include the exploitation of novel affordances. Other 
concrete proposals are as follows:

 • Investigation of computational thinking concerning activity-based monitoring 
considering the principles of smart self-adaptive cyber-physical systems.
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 • An analysis of a broader range of factors influencing the decision-making behavior 
of the designer seems to be a sensible research effort. This could contribute to 
increasing the usefulness of the recommendations and to improving the quality of the 
recommendations provided by the ARF.

 • Instead of reasoning with the designer’s behavior exclusively, augmenting the ARF by 
CASE tools and monitoring the information flow between the designer and the tools is 
also a possibility. Eventually, these two event-monitoring approaches can be combined 
in order to offer the recommendation services in a more effective way.

 • Investigation and application of other, not ML-type algorithms, for the runtime 
development of the RPP. 

 • Using 5GLs for a fully-fledged implementation of the ARF and combining it with next 
generation CASE tools.
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