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Ex vivo Validation of PET Imaging

A Review

C.F. Groenendijk
Literature Study - Medical Physics
November 26, 2018

Abstract
Radioresistence to radiotherapy accounts for poor local tumor control in Non-Small Cell
Lung Cancer (NSCLC) patients. On-treatment FDG-PET imaging allows the detection of
radioresistant regions and escalation of the dose to these regions. Pathology is a requisite
in the correlation of FDG uptake with a biological trait. In inoperable NSCLC patients, the
pathology cannot be accessed, introducing the exPET study to maintain viability of resected
tissue specimens. To validate this proposition, ex vivo experiments will be accomplished to
compare pathological characteristics with FDG-PET uptake values. Findings attained from
the investigated studies indicate a desire to an automated detection algorithm of proliferat-
ing cells in Ki-67 immunostained tissue specimens. The ex vivo culturing platform will allow
the assessment of FDG uptake measured by the Inveon microPET scanner. Characterization
of the system will by performed by the use of 3D-printed high spatially encoded geometries
resembling tumor characteristics, introducing a whole new insight in the characterization
of the Inveon microPET system. An ideal method in exploring tumor heterogeneity is pre-
sented thereby proposing development of FDG-PET during radiotherapy treatment in NSCLC
patients.

1
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1. Ex vivo Validation of PET Imaging

A Review

Introduction
Non-Small Cell Lung Cancer (NSCLC) accounts for 80%-85% of all lung cancers of which the
majority are diagnosed as inoperable. Thoracic radiotherapy is the main treatment used in
inoperable stage III NSCLC patients which is associated with poor outcomes, encountering
an average survival of 9 to 11 months and a 2- and 3-year survival of 10-20% and 5-10%
respectively [68]. In the current radiotherapy treatment, a homogeneous dose is delivered to
the tumor. However, since NSCLC tumors are heterogeneousmasses, radiotherapy treatment
leads to a non-homogeneous response within tumors due to radioresistant regions. This is
may be an important cause of poor local tumor control in NSCLC and the result of local
recurrences and treatment failure [66]. The introduction of response imaging during the
course of the treatment was proposed as an initial step to overcome this problem. Measuring
the response non-invasively in vivo by the use of the functional imaging modality positron
emission tomography (PET) could identify resistant regions. Escalating the dose to these
poorly responding regions and reducing it in more susceptible regions may increase local
tumor control whilst minimizing the occurrence of possible side effects [26, 75].

In order tomeasure response, the radioactive tracer 2-deoxy-2-(18F)fluoro-D-glucose (FDG)
can be used to correlate with different biological processes. FDG has been proven feasible in
distinguishing variation in response between tumors [74]. However, the challenge remains to
validate the correlation of the imaging target with a local biological trait. In order to correlate
FDG with a biological trait, a ground truth is required concerning the pathology of the tis-
sue in which biological characteristics can be analyzed. Since it concerns inoperable NSCLC
patients, the pathology cannot be accessed. Maintaining viability of tissue specimens could
be a step towards the ex vivo comparison between pathological characteristics and FDG-
PET imaging outcomes. This task has driven the introduction of the exPET study, stating
the ex vivo validation of PET imaging for radiotherapy response assessment for NSCLC. In
the proposed study ex vivo experiments of NSCLC specimens could allow the detection of
viable regions based on FDG uptake in tissue slices, which will contribute to one of the main
challenges of the exPET study. Other challenges include the imaging of the minuscule tissue
specimens by the use of FDG-PET and the identification of differences in FDG concentrations.
Next, the pathological examination of proliferation active areas is accepted as a challenge in
the exPET study in which it would be highly beneficial to detect the number of proliferating
cells by an automated detection algorithm. Discussed topics include the biological complex-
ity of tumors, concept of dose painting, issue of detecting proliferation active areas based on
a proliferation marker, ex vivo experiments and microPET.

Tumor Heterogeneity
Cancer arises by the occurrence of multiple mutations that create mutant clones [29]. The
development of mutant clones is influenced by intrinsic factors including genetic effects and
extrinsic factors including the the surrounding micro-environment [67]. Variation at the
genetic and phenotypic level is noticed between tumors of different cell and tissue types,
as well as among individuals with the same type of tumor, which is defined as inter-tumor
heterogeneity. However, diversity in genetically distinct subclones is observed within tu-
mors, which is defined as intra-tumor heterogeneity [59]. This heterogeneous collection of
cell types is responsible for the spatially separation of the micro-environment [13]. Infor-
mation about spatial variation has been well observed in pathological examinations showing
coexisting regions of vasculature, cell density, normal tissue involvement, proliferation and
hypoxia [5, 46, 92]. The aforementioned biological characteristics of the tumor influence the
response to radiotherapy [46], explained by the fact that genetic transformations are caused
by cell-intrinsic biological properties [13], showing radioresistant behavior in tumor eradi-
cation [61]. Radio-resistance is an important factor responsible for the failure of radio- and
chemotherapy and the poor prognosis in cancer patients, ultimately leading to metastases
and tumor recurrence [77].
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Dose Painting
Irradiation of the tumor with a larger dose may improve local tumor control. However, dose
escalation to the entire tumor is hampered by the tolerance of surrounded normal tissue [26].
Due to the extreme inter-patient variability in the severity of toxicity after a certain dose of
radiotherapy, the given dose is not at the highest possible level in many individual patients
because dose thresholds are set based on the most sensitive patients [8]. A potential solution
to handle tumor heterogeneity is to boost delivered dose to radioresistant regions [2]. The
determination of the spatial maps visualizing tumor heterogeneity upon which the selective
boosting must be determined can be accomplished by functional imaging techniques before
treatment [78]. This concept of dose painting based on pre-treatment biological images was
introduced by Ling et al. They stated that biological images were of great interest in the dis-
tribution of dose and could be applied in intensity-modulated radiotherapy (IMRT) [50]. By
visualizing areas with potential radio-resistance, additional dose was ’painted’ onto that vol-
ume. An example in which dose painting was employed based on a biological characteristic is
hypoxia, which is characterized by poor oxygenation of the tissue [10]. Hypoxia is one of the
important biological characteristics that instigate radio-resistancy in radiotherapy [52]. This
concept was further performed by Chao et al. who investigated the feasibility of targeting the
tumor based on hypoxic areas and preventing the irradiation of normal tissues by the use of
IMRT. Their results showed a successful method in which an increased dose was delivered in
the hypoxic tumor volume without affecting normal tissue sparing [15]. Furthermore, Mali-
nen et al. compared uniform and non-uniform dose distributions in IMRT based on hypoxic
regions. Results showed a factor three increase in tumor control probability concerning the
non-uniform dose distribution [53], substantiating the concept of dose escalation based on
the biological characteristic hypoxia. Thorwarth et al. investigated the effect on tumor con-
trol probability in different dose escalation plans. Conventional IMRT was compared to a
uniform dose escalation plan and a plan based on dose painting by numbers, both based
on hypoxia. For the latter a map of dose escalation factors was implemented based on dy-
namic [ F]-fluoromisonidazole PET data. Both dose escalation plans were proved to have an
increased tumor control probability where dose painting by numbers was perceived to more
effectively deliver dose compared to an additional uniform dose escalation [79].

The mentioned studies demonstrated that the concept of dose painting based on pre-
treatment images improved local tumor control and that it is a useful method to deal with
tumor heterogeneity. The concept of dose-painting based on response during treatment is of
concern in the proposed study. Several studies verified the feasibility of response assessment
by the use of FDG-PET imaging during the course of a radiotherapy treatment and considered
it as a potential method towards personalized treatments. Aerts et al. investigated whether
high FDG uptake sites within NSCLC tumors remain stable during radiotherapy treatment.
They drew the conclusion that FDG uptake sites do remain stable during radiotherapy, en-
abling the possibility of dose escalations to radio-resistant areas within the tumor determined
by FDG-PET [1]. Furthermore, the group of Van Baardwijk et al. aimed for treatment adap-
tations based on early responses on radiotherapy in NSCLC patients. Outcomes showed
several fluctuations within FDG uptake values during treatment. As a consequence, pre-
dicting response in an early stage appeared to be difficult. According to them, the biological
meaning of these fluctuations must be examined in order to use response based dose esca-
lations accurately in the future [83]. Gillham et al. tested the hypothesis whether FDG-PET
imaging during radiotherapy treatment facilitates dose escalation based on the response of
the treatment. A moderate improvement was observed concerning dose escalation because
FDG uptake did not show a high correlation with radio-resistant areas [33]. Vera et al. ob-
served differences in FDG uptake and a decrease in proliferative activity during treatment in
which they verified the feasibility of FDG imaging before and during radiotherapy [85].

The quoted studies did not compare their outcomes with pathological characteristics, as
a consequence that the question of correlating pathology with an imaging tracer continues
to arise. The ability of FDG-PET to measure proliferative activity in response assessment
is useful because proliferation characterizes viability, allowing FDG-PET to identify viable
tissue areas. This marks the importance of the correlation between pathology and an imaging
tracer.
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1. Ex vivo Validation of PET Imaging

A Review

Ki-67 Proliferation Marker and Automated Detection
A generally acknowledged molecular biomarker to assess proliferation in NSCLC is the Ki-67
protein. The corresponding Ki-67 labelling index (LI) defines the percentage of tumor cell
nuclei that show immunoreactivity [49]. The Ki-67 protein is present in cell nuclei during all
active phases of the cell division cycle. This characteristic makes the protein an appropriate
marker for cell proliferation. However, since the Ki-67 antigen was also present in normal
cells, the utilization of Ki-67 antibodies increased significantly in different types of neoplasms.
The use of Ki-67 in the identification of proliferating cells in tumor tissue is beneficial, since
Ki-67 immunostaining can be executed easily on histology sections of non-small cell lung
cancer.

Studies have been performed to investigate the Ki-67 protein. Yamamoto et al. exam-
ined the correlation of radiotracer uptakes with Ki-67 immunohistochemistry in NSCLC and
observed a significant correlation between FDG uptake and the Ki-67 labelling index [90].
Jakobsen et al. discussed the prognostic role of the Ki-67 labelling index (LI) in NSCLC
patients. They reviewed the potential role of histological subtypes on the use of the Ki-67 la-
beling index of all studies that were performed from 2000 to 2012. It was difficult to compare
studies with different patient populations and applied methodologies, but they concluded
that no agreement was found on the significant influence of the Ki-67 labeling index [39].
In all studies, Ki-67 cut-off values were determined according to hot spots with a certain
percentage of Ki-67 positive cells. This method caused a misleading Ki-67 LI due to hetero-
geneity of proliferating cells in tumors. A more robust method to assess the amount of Ki-67
positive cells in histological subtypes is to analyze whole subtypes, instead of hot spots, with
an automated approach to detect proliferating cells.

The assessment of Ki-67 proliferative activity in tumor slices via automated detection is a
staple of research into breast cancer dynamics [28, 43, 62]. Mohammed et al. explored the
difference between automated detection of the Ki-67 LI versus visual scoring and compared
their accuracies. Automated detection of Ki-67 proliferating cells was accomplished by a nu-
clear scoring algorithm, deriving target areas with accompanying counting scores. Results
showed that automated scoring was in good agreement with visual scoring However, visual
scoring was better in predicting cancer survival, but benefits of automated assessment show
reduced workload compared to manual counting and improved accuracy. Despite, valida-
tion of the automated assessment is required [62]. Konsti et al. performed a similar study,
emphasizing the importance of automated assessment being an independent predictor of sur-
vival in breast cancer [43]. Other studies demonstrated the use of computer assisted image
analysis on digitized slides of human breast cancer, substantiating the fact of improved ac-
curacy compared to manual counting. Furthermore, the reproducibility of computer assisted
assessments is enhanced too. Fasanella et al. mentioned an important statement that it is
not realistic to utilize cut-off values in low, intermediate and high categories of proliferative
activity. This is because cut-off values are varying among the type of antibodies and the
type of assessment [28]. This again shows the benefit of automated assessment over manual
assessment.

Limited studies of automated detection algorithms have been undertaken for NSCLC. The
first of these limited studies was undertaken by the group of Liu et al. in which they auto-
matically quantified the Ki-67 index of neuroendocrine tumors of the lung. The ImageScope
Nuclear v9 algorithm software was used to determine the Ki-67 proliferation index and men-
tioned the role of Ki-67 as an effective diagnostic marker for neuroendocrine tumors [51].

A different molecular biomarker to assess tumor proliferation was used by Chen et al.:
3’-deoxy-3’[ F]-fluorothymidine, [ F]-FLT. They hypothesized that high FLT uptake values
correspond to high proliferation areas in tumors. However, a significant positive correlation
was not found [18]. One potential factor explaining this included the fact that the Ki-67 LI
represents the level of proliferation for only part of the tumor, while the SUV-max corresponds
to the whole tumor. The proposed study will further explore this phenomenon through in-
vestigating the number of proliferating cells immunostained with Ki-67 and correlating them
to observed FDG concentrations in tissue slices.
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Biologic Correlates with FDG
Zhao et al. explored other biological correlates with FDG than proliferative cells. They demon-
strated that the distribution of FDG within the tumor corresponds to glucose transporters
and hexokinase-II (HK-II) [93]. Glucose transporters facilitate the transport of glucose across
the plasma membrane [38] where hexokinase-II strongly regulates glucose metabolism with
a raised level in cancer cells [58]. Enhanced and thus altered expression levels of glucose
transporters and hexokinase-II, stimulated by hypoxic regions, were supposed to contribute
to the elevated FDG accumulation in the central tumor showing a heterogeneous distribution.
Moreover, FDG uptake was favored in hypoxic regions compared to normoxic regions. Fur-
thermore, FDG uptake levels were enhanced in HIF-1𝛼 (hypoxia-inducible factor 1-𝛼) regions.
HIF-1𝛼 is responsible for upregulating genes that play a role in cell survival, angiogenesis and
resistance to radiotherapy. Mamede et al. substantiated the claim that a close correlation
exists between the expression of Glut-1 and HK-II and FDG uptake in NSCLC. Furthermore,
they illustrated that expression of the proliferating cell nuclear antigen (PCNA) correlated
with FDG uptake. In addition to that, nonmalignant tissue regions also show increased FDG
uptake [54], concluding that FDG is not a candidate for differentiating malignant and nonma-
lignant lesions of the lungs. The group of Ahuja et al. immunohistochemically investigated
the expression of cell membrane glucose transporters and suggested that high FDG uptake
values indicate more metabolically active lesions which are at increased risk for relapse irre-
spective of the clinical stage [3].

The diverse outcomes of the above mentioned studies indicate that FDG uptake in tumor
tissue is influenced by several biological characteristics. An important note is that the per-
formed studies are based on patient studies with in vivo FDG measurements in clinical PET
scanners. The proposed study will measure response in a small-animal PET scanner by the
use of ex vivo experiments of tumor specimens.

Ex vivo experiments
The conventional cell line technique in which cell cultures are established enable proliferation
of cells within a certain medium [82], but have limited predictive value with respect to the
biological characteristics of specific cancer types. Permanent modifications that occur in cell
line generation, together with the fact that cell lines do not represent the full heterogeneity
of NSCLCs, make the conventional cell line techniques inappropriate in the assessment of
tumor responses [37].

Research is being done on novel approaches in which short-term primary cultures were
obtained from the tumor which could accurately represent the biological behavior of the
original tumor. In urothelial carcinomas (UC) of the bladder, a new culturing system was
developed by Seifert et al., allowing the successful growth of UC. In addition to previous
strategies, a hypoxic environment was created which increased the tumor cell growth rate.
Subsequently, the addition of certain media to the culturing conditions led to growth and
survival of UC cultures [73]. Sato et al. created an organoid culture platform which could
be implemented in pathological examinations of the intestinal tract. The organotypic tumor
slices reflected more precise the intestinal epithelium than in previous cancer cell lines [72].
The derivation of patient-derived xenograft mouse models in cancer research was a third
example of a strategy for primary tumor culturing. Hidalgo et al. utilized this concept to
study tumor response to drug treatments, however these technique used an in vivo platform
whereupon the added value of ex vivo platforms was highly accentuated [37].

Naipal et al. created a method in which they optimized conditions of existing organotypic
tumor slice techniques that permit ex vivo culturing of primary breast cancer to use in the
assessment of tumor responses to anti-cancer drugs. They were able to maintain the desired
tissue cultures for a minimum of 7 days while preserving cell proliferation, viability and the
morphology of the tissue. Tissue slicing technologies were examined, growth medium was
optimized and an optimal environment was created to enhance the exchange of nutrients.
The authors stated that the developed culture system offers a relatively fast method to identify
therapy-resistant tumors which could lead to an increasing benefit of treatment optimization
and the reduced side effects [63].

In the proposed study, the organotypic tissue slice model will be applied for NSCLCs which
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1. Ex vivo Validation of PET Imaging

A Review

was proven feasible. This allows a useful ex vivo platform to investigate FDG uptake with
pathological characteristics by the use of PET imaging, addressed in the following section.

PET Imaging
Positron emission tomography (PET) is one of the main modalities for tomographic imaging
in nuclear medicine [19], capable of measuring positron emitting isotopes concerning their
spatial distribution and concentration in living subjects [76]. This property allows the de-
termination of intra-tumor heterogeneity which is of high importance in the assessment of
diagnosis, therapy response and survival [27, 80]. Positron-emitting radionuclides attached
to biological tracers are injected into the body and accumulate in certain tissue types based
on appropriate receptors [36]. When a positron is emitted from the biological tracer, it will
annihilate with an electron, resulting in the conversion of two annihilation photons with iden-
tical energies of 511 keV, traveling in opposing directions. Gamma-ray detectors are able to
detect the annihilation photons within a very short time frame mentioning a coincidence
event. By annihilation coincidence detection the localization of the origin of annihilation can
be determined [19]. The performance of a PET scanner is characterized by spatial resolu-
tion, sensitivity, the system scatter fraction and the (noise equivalent) count rates [20, 71].
The spatial resolution of a PET scanner is described by the ability to accurate represent the
unequal distribution of radioactivity in the object. It is officially defined as the ability of the
scanner to differentiate two points in an image, expressed as a minimal distance [71]. The
spatial resolution of a PET scanner is determined primarily by the detector element size [19].
Other impediments include the positron range effect and noncolinearity of annihilation pho-
tons which obviously affect the quality of imaging [22, 87]. According to Levin et al., the
most dominant influence of spatial resolution on the system is the positron range effect [48].
Multiple scattering due to interaction with atomic electrons is responsible for the slowing
down of positrons while travelling through tissue, eventually leading to annihilation with an
electron. The travelled distance between the site of 𝛽 emission and the location of annihi-
lation is called the positron range. The interaction with atomic electrons causes deviations
in the travelling path of the positron, making the positron range an effective range. Since
localization of the coincidence event is based on the annihilation location instead of the site
of 𝛽 emission, the determined position does not correspond with the true position of the
positron emission, creating an error which results in deterioration of the spatial resolution
[71].

Response assessment in tissue samples by PET is limited by the resolution of the scanner
since heterogeneity in the samples is spatially variant on a scale smaller than the scanner
resolution. However, the development of microPET scanners have made it possible to non-
invasively image biological functions in small animals [36]. Subsequently, microPET offers
a high resolution, a high sensitivity and a good count rate performance for low doses of
radiotracers [16]. About 10-15 years ago, many studies were done on the characteristics
and performance evaluation of several small animal PET scanners [41, 42, 45, 76]. In the
proposed study, the Inveon (Siemens) small-animal microPET scanner will be used whose
performance was evaluated by Constantinescu et al. and Chatziioannou et al. [16, 20].
Techniques to improve spatial resolution of the Inveon microPET scanner through the use of
3D-printed tumor resembling phantoms have not been performed yet, introducing a whole
new insight in the characterization of the Inveon microPET system.

A closely related imaging modality that holds the same ability to detect radiotracers as PET
would be Single Photon Emission Computed Tomography (SPECT). However, studies have
shown that the use of a clinical SPECT system with 511 keV collimators lead to reduced
resolution and lower system volume sensitivity but that it varied between different cancer
types. [14, 22, 55]. Due to availability of the Inveon microPET system and the preference
of PET imaging above SPECT imaging concerning resolution and sensitivity, the microPET
imaging modality was selected.

Phantom Experiments
Numerous phantom experiments have been performed on clinical PET scanners. The group
of Wollenweber et al. utilized 3D-printed fillable phantoms that were used to examine the
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detection limit of PET imaging. They mentioned the frequently seen concern about phantom
designs often not reflecting the true nature [89]. In microPET systems, phantom experiments
are accomplished with the generally known NEMA image quality phantom [6] and the Derenzo
phantom [21]. These studies again show designs of phantoms which do not reflect true na-
ture, but the extent to whether it is a limitation is dependent on the purpose of the study.
According to the literature, the proposed study appears to be the first in using 3D-printed
tissue like phantoms. Another limitation in phantom experiments could be the filling proce-
dure. Since a 3D-printing concept will be used, the highly accurate manufacturing process
together with freedom in design customization allows the creation of complex high spatially
encoded geometries in which the filling procedure can be optimized and the phantoms can
easily resemble the tumor slice heterogeneous characteristics.

Conclusion
Heterogeneity of Non-Small Cell Lung Cancers may cause reduced local tumor control and
poor treatment outcomes. The different biologic characteristics within a tumor respond dif-
ferently creating radio-resistance to radiotherapy. Through selectively redistributing the dose
and escalating the dose to the poorly responding regions during the course of the treatment,
normal tissue can be spared, leading to a more effective treatment of the tumor and increase
in local tumor control. However, the challenge remains to validate the correlation of the imag-
ing target with a local biological trait. The introduction of the exPET study will investigate this
validation by carrying out ex vivo experiments of NSCLC tissue specimens immunostained
with the proliferation marker Ki-67. The ex vivo culturing platform will allow the assessment
of FDG uptake measured by the Inveon microPET scanner. The number of proliferating cells
will be assessed by an automated detection algorithm, which was proven to have increased
accuracy in heterogeneous breast cancer by Mohammed et al. The proposed study aims to
substantiate this claim for NSCLC patients in particular. Owing to the group of Naipel et al.,
ex vivo experiments can be accomplished for NSCLC specimens, enabling the measurement
of FDG uptake ex vivo. Ex vivo culturing platforms are of great value in the investigation of
drug response, mentioned by Hidalgo et al. The FDG uptake will be measured in the Inveon
microPET system since normal PET scanners are limited in their spatial resolution to assess
heterogeneity on such a small scale. 3D-printed phantoms will be used to verify the capa-
bility of the Inveon microPET scanner to detect small differences in FDG concentration. The
tissue like 3D-printed phantoms are beneficial since they will serve as a ground truth. By
the assessment of available reconstruction algorithms on the Inveon microPET scanner, the
ideal method in exploring tumor heterogeneity will be developed, leading to insight into the
development of FDG-PET during radiotherapy treatment in NSCLC patients.





2
Characterization of the Inveon microPET

System by the use of 3D-printed
Phantoms

Abstract
Assessment of heterogeneity in tumor specimens in daily clinical PET scanners is hampered
by the resolution of the PET scanner. The development of a microPET system has created the
possibility to investigate uptake of 2-deoxy-2-(18F)fluoro-D-glucose (FDG) in small animals.
However, phantom experiments in which tumor slice heterogeneity is mimicked has not been
performed yet. In this study, the development of novel 3D-printed phantoms gave insight
into a new field of characterization of the Inveon microPET scanner. The capability of the
microPET scanner to distinguish FDG concentrations at a small scale was investigated and
maximized by the implementation of a deblurring technique. The performance of different
image reconstruction algorithms was compared. The deblurring technique was applied on
the microPET results for the most appropriate reconstruction algorithm. The presented work
has shown the ability of the deblurring technique to improve the contrast and transition
between phantom features. The most remarkable contribution of the deblurring technique is
the correction for spillover effects, leading to improved differentiation of different FDG values
in small features, allowing a more accurate representation of measured objects.

Keywords — 3D-printed phantoms - deblurring technique - microPET - FDG
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2.1. Introduction
Positron Emission Tomography (PET) is a functional imaging modality capable able of measuring the
spatial distribution and concentration of positron emitting isotopes. The positron emitting tracer 2-
deoxy-2-(18F)fluoro-D-glucose (FDG) is a glucose analogue widely used in PET imaging [60] which ap-
plication is found in measuring treatment response in tumor regions [74]. Response assessment in
tumor specimens by PET is limited by the resolution of the scanner since heterogeneity in the speci-
mens is spatially variant on a scale smaller than the scanner resolution. The development of microPET
scanners have made it possible to non-invasively image biological functions in small animals [36]. Sub-
sequently, microPET offers a high resolution, a high sensitivity and a good count rate performance for
low doses of radiotracers [16]. Many studies have been performed on the characteristics and perfor-
mance evaluation of several small animal PET scanners [41, 42, 45, 76]. However, a capability study
to accurately detect FDG differences in small tumor specimens was not performed yet. This approach
will be addressed by the development of 3D-printed phantoms in order to characterize the Inveon mi-
croPET system. 3D-printing of phantoms has a number of benefits that include high design complexity
and fast production times. The present work employs on these benefits to develop a set of novel PET
phantoms that mimic the structure of tumour tissue slice heterogeneity.

The performance of a PET scanner is characterized by spatial resolution, sensitivity, system scat-
ter fraction and the (noise equivalent) count rate [20, 71]. The spatial resolution of a PET scanner
is described by the ability to accurately represent unequal distributions of radioactivity in an object.
Physical limitations of PET spatial resolution include the positron range and noncolinearity of annihi-
lation photons, the latter caused by the residual momentum of the annihilated electron-positron pair,
emitting photons with an angle deviant from the expected 180∘ [16]. The error resulting from a shifted
line of response with respect to the true point of annihilation degrades PET spatial resolution. The first
limitation is caused by multiple scattering due to interaction with atomic electrons, responsible for the
slowing down of positrons while travelling through tissue, eventually leading to annihilation with an
electron. The travelled distance between the site of emission and the location of annihilation is called
the positron range. The interaction with atomic electrons causes deviations in the travelling path of the
positron, making the positron range an effective range. Since localization of the coincidence event is
based on the annihilation location instead of the site of emission, the determined position does not
correspond to the true position of the positron emission, creating an error responsible for deterioration
of PET spatial resolution [71].

Images of radiotracer distributions are acquired by tomographic image reconstruction. Reconstruc-
tion algorithms include analytic methods in which a direct mathematical solution is used and iterative
methods which utilize a more complex mathematical solution [4]. In 2D PET data acquisition, data is
collected from a single slice in which septa serve to reject annihilation photons originated from ran-
dom coincidences and scattering events. Data reconstruction can be performed for both analytic and
iterative methods concerning filtered back projection (FBP) and ordered subsets expectation maximiza-
tion in 2D (OSEM2D), respectively. 3D PET data is reconstructed from projection data available from
oblique planes iteratively by 3D ordered subsets expectation maximization (OSEM3D) [19, 91].

Image reconstruction results in PET images consisting of a stack of image planes comprising an
image volume in which each voxel intensity indicates the amount of radioactivity. In the ideal case,
the voxel intensity corresponds directly to the amount of radioactivity in the accompanying feature.
Physical limitations impede this, but attenuation and scatter corrections allow partial compensation.
Despite this, errors in ascribing activity concentrations to small feature volumes are still present due to
image sampling. One limitation is the definite volume of a PET voxel. Image sampling in combination
with physical limitations of the scanner together blur the images. This effect is explained by partial
volume effects and lead to over- and underestimations in quantitative assessments [7].

The presented work characterizes the Inveon microPET scanner by the use of 3D-printed phantoms
which mimick tumor tissue heterogeneity. The development of a deblurring technique is used to ad-
dress the spillover effect associated with microPET image reconstruction. An overview of the phantom
development, design requirements and 3D-printed technique can be found in section 2.2. The theo-
retical explanation concerning the deblurring technique is outlined in section 2.2.8. A comparison of
the deblurred PET data with original PET data is outlined in section 2.3. Finally, a discussion and an
overall conclusion of the presented work can be found in section 2.6.
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2.2. Methods
2.2.1. Inveon microPET
The Siemens Inveon microPET scanner (Siemens Medical Solutions) is a circularly oriented scanner
consisting of 16 detector modules, each composed of four detector blocks oriented in the axial direction.
A total of 25,600 lutetium oxyorthosilicate (LSO) detector crystals are organized in a 16.1 cm ring
diameter. The detector blocks are composed of a 20 x 20 array of 1.59 mm x 1.59 mm x 10.00 mm LSO
crystals. Detector modules are arranged in opposing directions to ensure time coincidence, creating an
effective axial field of view of 12.7 cm and a transverse field of view of 10.0 cm. Each detector within
the scanner is optically connected to a position-sensitive photomultiplier tube by the use of a tapered
multiple-element light guide. Acquired PET data can be arranged into two-dimensional sinograms
or into three-dimensional sinograms with varying span numbers and ring differences. Several image
reconstruction algorithms are available in the Inveon software including the filtered backprojection
(FBP) and 2D ordered-subset expectation maximization (OSEM 2D) resorted by the Fourier rebinning
algorithm if data is sorted into 2D sinograms. When data is sorted into 3D sinograms, the images can
be reconstructed by the use of the 3D ordered subset expectation maximization (OSEM 3D) algorithm
with or without an additional maximum a posteriori (MAP) algorithm [20, 47, 65].

2.2.2. Phantom Development
Phantoms were developed to create fillable tumor tissue like geometries for measurements of detectabil-
ity in PET imaging. The phantoms developed for the experiments were 3D-printed at the Dienst Elek-
tronische en Mechanische Ontwikkeling (DEMO) group at the TU Delft. 3D-printing is a very accurate
manufacturing process that enables the creation of objects one layer at a time [70]. High accuracy
manufacturing from a functional material enables the creation of extreme complex geometries. The
freedom of design customization is highly beneficial in the phantom development for the proposed
study since the phantoms must resemble the tumor slice dimensions and must reflect tumor hetero-
geneity as much as possible. The phantoms are square geometries of 10.0 x 10.0 x 1.0 mm with a
varying internal structure. This requirement is put into practice by printing blocks of varying heights
in random and fixed gradients with respect to each other. A required characteristic of the printed phan-
toms includes an inlet and outlet for the injection of FDG into the phantom. Each phantom inlet and
outlet are composed of thin tubes of 10 mm and a diameter of 1.8 mm. The phantom was filled with
FDG and air was pushed out, performed at an angle of approximately 45 degrees in a phantom holder.
Another important requirement in the phantom design was the minimization of material around the
central part of the phantom to prevent annihilation of positrons in surrounding material and affecting
the PET outcome. This is the argument for the distance of 10 mm from the phantom to the inlet and
can be observed in figure 2.4. However, this design led to a fragile phantom. Multiple designs have
been printed to test for brittleness, eventually resulting in the phantoms shown in figure 2.4a and 2.4.

Table 2.1: Overview printed phantom names and dimensions

Phantom Name Geometry
Snake Tubes
4x4 4x4 blocks
2x2 2x2 blocks
H100 Homogeneous 1 mm
H25 Homogeneous 0.25 mm

2.2.3. Phantom Designs
Table 2.1 shows an overview of the printed phantoms with their names used in this study and their
accompanying geometry. The first phantom that was printed was the 4x4 phantom. The internal
structure of the 4x4 phantom was composed of 16 blocks of 2.5 x 2.5 mm. The heights of the blocks
varied from 0 to 1 mm with steps of 0.25 mm, shown in figure 2.2a. The design of the internal structure
of the 4x4 phantom was chosen to contain fixed gradients and random gradients in order to examine
differences in spillover effects within the phantom. In other parts of the phantom random gradients
are present with varying step sizes. The second phantom was composed of a 2x2 array to mimic a
lower resolution version of the 4x4 array, and possible tumors with lower variation of heterogeneity.
This phantom contains four blocks in total of different height, again varying from 0 mm to 1 mm with
steps of 0.25 mm, shown in figure 2.2b. Consequently, two homogeneous phantoms were printed
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Figure 2.1: Snake dimensions

(a) 4x4 (b) 2x2 (c) H25 (d) H100

Figure 2.2: Phantom internal dimensions

with a height of 1 mm and 0.25 mm respectively (figure 2.2c and 2.2d). At last, a model phantom
was created which served as a snake phantom which resembled a snake geometry (figure 2.1) with
increasing distances between vertical segments. The exact purpose of this phantom will be explained
later on. Criteria on the minimum thickness of the phantom walls needed investigation in order to
guarantee robust walls. Additionally, the optimal printing orientations have been examined to prevent
printing failure or breaking of the phantom. The determined minimum thickness of the phantom walls
is 300 m and the phantom ceiling had a thickness of 400 m.

2.2.4. 3D-printing
The printing process is called Stereolithography (SLA) Direct Light Processing (DLP). In this technique,
the fabrication platform was submerged in the liquid photocurable resin in a ’bat’ configuration, shown
in figure 2.3. Phantom construction occured layer-by-layer by photopolymerization which was spatially
guided by a digital light projector [86]. By the use of a Digital Mirror Device (DMD), shown in figure
2.3, a single image of each layer was illuminated on the platform at once. The use of a digital screen is
responsible for the composition of square pixels in each image, in the end leading to a layer composed of
voxels [31]. The printing performance of the machine is dependent on the characteristics of the printed
object together with the resin properties and layer thickness [86]. The machine characteristics of the
Envisiontec Perfactory Mini include a XY resolution of 33 m or 19 m. The specific profile used to
overlay the pixels leads to a XY resolution of 17 m x 10 m. The voxel resolution in Z is 15 to 150
m. The projector resolution is 1920 x 1200 pixels [24].

2.2.5. Phantom Experiments
The phantom experiments were undertaken at the Department of Radiology and Nuclear Medicine at the
Erasmus MC. Beforehand, x-ray CT scans were taken of all empty phantoms. Filling of the phantoms
was accomplished by the use of 3D-printed phantom holders. The phantom holders were specially
designed to fill the phantoms at an angle of 45∘. Small screws were used to close the inlet and the outlet

Figure 2.3: Visualization of the SLA-DLP printing technique [86]
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Table 2.2: Activity concentrations and injected volumes in the phantom experiments

Snake 4x4 2x2 H100 H25
Start Act. Conc. [Bq/ml] 40.6E+05 40.0+E05 72.4E+05 72.4E+05 40.0E+05
Decay time [min] 9 83 109 61 182
Decay-corr. Act. Conc. [Bq/ml] 38.4E+05 23.7E+05 36.4E+05 49.3E+05 12.7E+05
Volume phantom [ml] 0.108 0.099 0.125 0.177 0.088

(a) Snake phantom (b) Phantom

Figure 2.4: Phantom designs

of the phantom, making the phantom airtight. The phantom was aligned with the microPET scanner
in the axial direction and was attached to a foam bed before starting the acquisition. Afterwards, an
x-ray CT scan was taken of the filled phantom to check for correct filling of the phantoms. The injected
activity concentration, the volume and decay corrected activity concentrations are listed in table 2.2.

PET Acquisition Parameters
With the microPET scanner an acquisition time of 1800 seconds was used for the FDG filled phantoms
with a photopeak at 511 keV, an energy window of 350 - 650 keV and a timing window of 3.432 ns. In all
reconstruction algorithms, no attenuation correction was applied. The images have been reconstructed
into 256 x 256 matrices in the Intel/VAX 4-byte float data type.

2.2.6. PET Data Assessment
PET data was stored in DICOM. The DICOM files were imported into Matlab, 2018. Volumetric data was
provided in a 256 x 256 matrix in a stack of 159 planes with a voxel size of 0.388 x 0.388 x 0.796 mm.
Pixel intensity values per plane of the raw PET data were converted to activity concentrations in /
by the extraction of the rescale slope and rescale intercept from the DICOM header. The rescaling is
implemented as follows:

⋅ (2.1)
where PIV is the original Pixel Intensity Value of the PET data. is the rescale slope and is the

rescale intercept. is the activity concentration in / [40, 57]. Of the PET data a selection of
planes was chosen for each phantom which hold the volume of interest. In order to fully enclose the
volume of interest with a height of 1 mm, four planes each with a height of 0.388 mm were selected.
The four planes of interest were selected by calculating the mean activity concentration present in the
phantom per plane. The four slices with the highest activity concentrations per plane were selected
and visually checked for reliability for further assessment. Inspection of the FBP data showed negative
pixel values in the background of the data. These values were all set to zero in order to proceed the
analysis.



14 2. Characterization of the Inveon microPET System by the use of 3D-printed Phantoms

Figure 2.5: Root Mean Square Difference vs. and

2.2.7. Determination of Activity Concentrations
Measured phantom
Pixel activity concentrations of the four planes were summed, creating a 2D image of the PET data. By
multiplying the activity concentrations by the volume of a voxel and dividing by the voxel’s length and
width, activity values in / were acquired. This approach was explained by the following formula:

∑ ⋅
⋅ ∑ ⋅ (2.2)

where is the activity concentration in a pixel in / per plane, is the volume of a voxel in
ml, equals the plane number, is the height of one voxel in cm and and indicate the
length and width of a pixel in cm.

Computational phantom
A computational phantom was created containing the true activity values in order to perform quan-
titative comparison with the measured PET results. The activity concentrations of the computational
phantom equal the decay corrected injected activities in the phantom. This calculation was made for
each phantom. The true activity concentration was approached by the following formula:

⋅ (2.3)

where is the true activity concentration based on the injected activity concentration , of
which the values are shown in table 2.2. is the decay constant, the elapsed time and is the
height of the compartment in cm in which activity is present.

2.2.8. Image Post-Processing
Due to the limitations in detection, positron range, gamma-ray scattering and lost events, the recon-
structed image estimates are not an exact replication of the object. These effects result in a ”blurred”
estimate of the object to be recovered and can be modelled as:

( , ) ( , ) ( , ) ( , )

in which ( , ) defines the blurred image, ( , ) represents the real, but unknown image and ( , )
stands for the blurring kernel. ( , ) describes the additive Poisson noise.

A deblurring technique was developed in order to correct for part of the deteriorating effects. The
snake phantom served as a training object in order to estimate the point spread function of the system.
Figure 2.1 shows the dimensions of the snake phantom. The distance between the vertical segments
increases with 1.0 mm for each new segment. The purpose of the horizontal space between the lines
of the snake phantom was to assess image resolution improvement after the implementation of the
deblurring technique. The estimated PSF was applied in the restoration process of the reconstructed
images.
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Figure 2.6: Overlay computational phantom with measured PET phantom

Estimation of the Point Spread Function
The first step of the PSF estimation was the implementation of a computational version of the snake
phantom. The computational snake phantom possesses the dimensions of the true snake phantom.
Normalized two-dimensional cross-correlation was computed between the computational object and the
measured PET data in order to accurately align the two objects. The normalized 2D cross-correlation
function provided an offset in the x- and y-direction on which the location of the computational phantom
could be adjusted in order to achieve the best alignment between the two objects. The result can be
observed in figure 2.6.

Of the computational snake phantom, a manually blurred version was created by the use of a
Gaussian smoothing filter. The manually blurred image must resemble the real PET data as much as
possible. Since the extent of blurring in measured PET data was assumed to be anisotropic, a two-
dimensional Gaussian smoothing kernel was used, called an axis-aligned anisotropic Gaussian filter,
containing varying standard deviations along row and column dimensions. To assess the difference
between the two data sets the Root Mean Square Difference (RMSD) was used [11]:

√∫∫ | ( , ) ( , )|
∫ ∫ | ( , )| (2.4)

in which ( , ) equals the normalized version of the known object and ( , ) is the normalized
version of the estimated image. The degree of blurring is determined by the standard deviation of
the Gaussian filter. The 2D Gaussian standard deviations were swept over a range of zero to twenty
in steps of 0.1, with an additional range for further optimization of ± 0.3 with steps of 0.01 and the
resultant computational image was assessed with respect to the measured PET data. The optimal filter
dimensions were given at the absolute minimum of the calculated RMSD. The result is shown in figure
2.5. Convolution of the computational phantom with the anisotropic Gaussian filter (with optimized
dimensions) resulted in a (manually) blurred version of the computational phantom, observed in 2.7b.

The blind deconvolution algorithm in Matlab was used to deblur the manually blurred image and to
reconstruct the PSF belonging to the restored image. From the standard deviations of the 2D Gaussian
filter, the dimensions of the microPET PSF were determined. The dimensions of the PSF served as the
dimensions of the initial estimate of the PSF filled with ones. By deconvolving the initial estimate of
the PSF with the manually blurred image, the likelihood that the restored image was an instance of the
manually blurred image was maximized. Since zero knowledge is available about the distortion of the
image, this algorithm effectively determines the PSF based on an initial guess. The blind deconvolution
algorithm is an iterative process, for which the optimum number of iterations was determined in order
to achieve the most accurate deblurring result. By iteratively check the RMSD between the restored
image and the computational phantom, the optimal number of iterations was found at the lowest RMSD.
This number of iterations was used in the blind deconvolution algorithm together with the manually
blurred image and initial PSF estimate. The result comprised the restored image and a reconstructed
PSF.
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(a) Computational snake (b) Manually blurred snake (c) PET data snake

Figure 2.7: Manual blurring of the computational phantom, compared to real data

Image Restoration
Deblurring of the other phantoms was executed by the Lucy-Richardson deconvolution algorithm. To
improve the restoration process, several parameters were added. The number of iterations was set to
the above mentioned optimized number of iterations. A fundamental problem, however, in the attempt
to deblur the data is noise amplification. By increasing the number of iterations, the deblurred image
can exhibit artifacts which do not represent the actual structure in the original image. To overcome
this problem, a damping parameter was used in order to limit the deviations in regions of the restored
image and the original image. Afterwards, renormalization of the data was performed in order to keep
the total amount of activity equal before and after the deblurring step.

2.2.9. Assessment of Reconstructed Image Quality
The performance of the deblurring technique was assessed by three figures of merit composed of the
contrast, the signal to noise ratio and the RMSD (equation 2.4) of the original data and the deblurred
data. The individual features in the heterogeneous phantoms were numbered in order to easily compare
them, shown in table 2.3a and 2.3b.

Table 2.3: Numbering of phantom compartments

(a) Numbering 2x2 phantom

11 12

21 22

(b) Numbering 4x4 phantom

11 12 13 14
21 22 23 24
31 32 33 34
41 42 42 44

The contrast is defined as:

in which and stand for the mean values of two different features within the phantom. By com-
paring the contrast between features to the contrast of the features in the computational phantom, a
relative contrast ratio results [11]:

.
In the heterogeneous phantoms, contrast was examined between two features within the phantom.

The internal arrangement creates interesting contrast ratios to compare. Figure 2.8 shows the feature
pairs of which the relative contrast ratio were determined. In each subfigure, the colored contours indi-
cate the comparison of two feature pairs which possess the same ratio which should result in the same
relative contrast. Captions below the subfigures indicate the concerned ratios. The same was applied
for the 2x2 phantom, shown in figure 2.9. For the homogeneous phantoms, contrast was assessed by
comparing the phantom ROI with a region in the background, visually depicted in figure 2.10 for the
H100 phantom and figure 2.11 for the H25 phantom.

The Signal-to-Noise Ratio (SNR) was used to assess the amount of noise present in a feature. The
SNR is calculated as follows:
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(a) 0:1 (b) 0:0.5 (c) 1:1 (d) 1:2 (e) 1:4 (f) 2:3 (g) 3:4

Figure 2.8: Contrast comparisons in the 4x4 phantom

(a) 1:2 (b) 1:3 (c) 1:4 (d) 2:3 (e) 3:4

Figure 2.9: Contrast comparisons in the 2x2 phantom

in which equals the mean and stands for the standard deviation of the pixel values in the feature
[11].

Line profiles were analyzed across phantoms in which the raw PET data and deblurred PET data
was compared to the true activity values in the phantom. For all line profiles, the blue line indicates the
true activity values of the phantom. The red line indicate the raw PET data of the concerned phantom.
The green line shows deblurred data of the concerned phantom for the OSEM3DMAP algorithm. All
line phantoms were drawn across the center region of the phantom or segments.

2.2.10. Image Post-Processing
The deblurring technique was applied on the snake phantom data of all reconstruction algorithms.
The reconstruction algorithm which showed the most promising result of the deblurring technique was
selected for further analysis. Consequently, the remaining phantoms were deblurred by the deblurring
technique and the outcomes were examined.

Figure 2.10: Contrast comparison in the H100 phantom Figure 2.11: Contrast comparison in the H25 phantom



18 2. Characterization of the Inveon microPET System by the use of 3D-printed Phantoms

2.3. Results
Results concerning the phantom experiments will be exemplified based on increasing complexity of the
phantoms, starting with the homogeneous phantom of 1 mm, followed by the 0.25 mm thick homoge-
neous phantom, then the 2x2 phantom and at last the 4x4 phantom. This is the fixed structure that
will be maintained in the upcoming results.

2.3.1. CT Images
Preliminary to the phantom PET experiments, a CT scan was acquired of all empty phantoms to check
the internal geometry. Afterwards, a CT scan was acquired of the FDG filled phantoms to check for
air bubbles. Figures 2.12, 2.13, 2.14, 2.15, and 2.16 show the CT images of each phantom in their
empty condition, a side view and the FDG filled version of the phantom. The CT scans were extensively
inspected on the presence of air bubbles and were proved to be qualified for analysis.

(a) CT H100 phantom empty (b) CT H100 phantom side view (c) CT H100 phantom filled

Figure 2.12: CT images of the empty, side view and filled H100 phantom

(a) CT H25 phantom empty (b) CT H25 phantom side (c) CT H25 phantom filled

Figure 2.13: CT images of the empty, side view and filled H25 phantom

(a) CT 2x2 phantom empty (b) CT 2x2 phantom side view (c) CT 2x2 phantom filled

Figure 2.14: CT images of the empty, side view and filled 2x2 phantom

(a) CT 4x4 phantom empty (b) CT 4x4 phantom side view (c) CT 4x4 phantom filled

Figure 2.15: CT images of the empty, side view and filled 4x4 phantom
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(a) CT snake phantom empty (b) CT snake phantom side view (c) CT snake phantom filled

Figure 2.16: CT images of the empty, side view and filled snake phantom

2.3.2. Image Post-Processing
A visual representation of the estimated PSF with the PSF values was shown in figure 2.17. Figure 2.18
shows the overlay of the computational phantoms with the measured PET phantoms.

(a) 3D PSF (b) PSF values

Figure 2.17: Visualization of the Point Spread Function and its values

(a) Overlay H100phantom (b) Overlay H25 phantom

(c) Overlay 2x2 phantom (d) Overlay 4x4 phantom

Figure 2.18: Overlay of computational phantoms with measured phantoms



20 2. Characterization of the Inveon microPET System by the use of 3D-printed Phantoms

2.3.3. Homogeneous Phantom H100
The upcoming section discusses the result of the PET experiments for the homogeneous phantom of
1 mm. The maximum and mean activities are shown in table 2.4. Iterative algorithms perform con-
siderable better in the reconstruction of the data than in the analytic algorithm, showing a difference
of almost 25% for the mean activity. The standard deviation in the phantom is 1% to 2% lower in
OSEM3D(MAP). Relative contrast ratios are shown in table 2.5, showing similar results for the recon-
struction algorithms. The SNR of two regions of interest in the H100 phantom is shown in table 2.6.
ROI 1 includes the whole phantom where ROI 2 includes a centered region in the phantom. In a larger
region (ROI 1) the SNR is improved in OSEM3D algorithms. However, for smaller regions (ROI 2), FBP
and OSEM2D perform better, showing a large difference in SNR compared to OSEM3D algorithms.

Table 2.4: Maximum and mean activity values per algorithm - H100 phantom

H100 phantom
True values FBP OSEM2D OSEM3D OSEM3DMAP

Max. Activity [Bq/cm ] 4.93E+06 2.08E+06 2.41E+06 3.26E+06 3.46E+06
W.r.t. True Maximum (%) 100 42.2 48.9 66.2 70.2
Mean Activity [Bq/cm ] 4.93E+06 1.76E+06 2.07E+06 2.75E+06 2.94E+06
W.r.t. True Mean (%) 100 35.6 42.0 55.7 59.6
Average SD/ROI [Bq/cm ] 0 2.69E+05 2.88E+05 3.54E+05 3.74E+05
W.r.t. mean act. (%) 0 15.3 13.9 12.9 12.7

A comparison of line profiles across the H100 phantom of the original data and deblurred data with
the OSEM3DMAP algorithm was show in figure 2.19 and 2.20. The horizontal line indicates a line
profile in the axial direction of the scanner. The vertical line profile was made in the radial direction
of the scanner. The raw PET data of the H100 phantom shows a smooth transition of activity values
across the borders of the phantom. Deblurred data shows a sharper transition at the edges. The line
profile in the radial direction (figure 2.20) shows less consistent values across the line.

Table 2.5: Relative contrast ratios for different algorithms per ROI - H100 phantom

H100 phantom
𝐶 /𝐶

FBP OSEM2D OSEM3D OSEM3DMAP
ROI 1,000 0,999 1,000 1,000

Table 2.6: Signal-to-noise ratios for different algorithms per ROI - H100 phantom

H100 phantom
SNR

FBP OSEM2D OSEM3D OSEM3DMAP
ROI 1 14,171 15,204 16,089 16,868
ROI 2 58,196 61,828 30,625 42,941
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(a) Axial line - H100 true (b) Axial line - H100 raw

(c) Axial line profile H100

Figure 2.19: Axial line across phantom with line profile - H100

(a) Rad. line - H100 true (b) Rad. line - H100 raw

(c) Radial line profile H100

Figure 2.20: Radial line across phantom with line profile - H100
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2.3.4. Homogeneous Phantom H25
The 0.25 mm homogeneous phantom shows a large difference between the maximum activity values
between the reconstruction algorithms, ranging from 46% to 89% of the true value. However, for the
mean activities this effect is not observed. An opposite result is seen in the standard deviation within
the H25 phantom compared with the H100 phantom. Standard deviation is significantly higher in the
OSEM3D algorithms. Relative contrast ratios in the H25 phantom show slightly worse contrast than
in the H100 phantom. Improved SNRs are shown for both ROIs for the FBP and OSEM2D algorithm.

Table 2.7: Maximum and mean activity values H25 phantom for each reconstruction algorithm

H25 phantom
True values FBP OSEM2D OSEM3D OSEM3DMAP

Max. Activity [Bq/cm ] 3,18E+05 1.47E+05 1.84E+05 2.85E+05 2.85E+05
W.r.t. True Maximum (%) 100 46.2 57.9 89.6 89.6
Mean Activity [Bq/cm ] 3,18E+05 9.44E+04 1.10E+05 1.36E+05 1.32E+05
W.r.t. True Mean (%) 100 29.7 34.6 42.8 41.5
Average SD/ROI [Bq/cm ] 0 1.29E+04 1.57E+04 2.85E+04 2.80E+04
W.r.t. mean act. (%) 0 13.7 14.3 21.0 21.2

The line profiles across the H25 phantom are shown in figure 2.21 and 2.22. In the radial line
profile, extreme activity enhancements are observed close to the edges in the deblurred data. These
enhancements are also observed in the raw data, but the deblurred data intensifies this effect. As in
the H100 phantom, deblurred data shows sharper transitions at the edges of the phantom in the axial
and radial direction.

Table 2.8: Relative contrast ratios for different algorithms per ROI - H25 phantom

H25phantom
𝐶 /𝐶

FBP OSEM2D OSEM3D OSEM3DMAP
ROI 0,981 0,998 0,999 0,999

Table 2.9: Signal-to-noise ratios for different algorithms per ROI - H25 phantom

H25phantom
SNR

FBP OSEM2D OSEM3D OSEM3DMAP
ROI 1 10,759 10,064 6,277 6,217
ROI 2 21,110 19,963 14,089 14,496
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(a) Axial line - H25 true (b) Axial line - H25 raw

(c) Axial line profile - H25

Figure 2.21: Axial line across phantom with line profile - H25

(a) Rad. line - H25 true (b) Rad. line - H25 raw

(c) Radial line profile - H25

Figure 2.22: Radial line across phantom with line profile - H25
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2.3.5. 2x2 Phantom
The true and measured activity values of the 2x2 phantom are listed in table 2.10. The same trend
concerning the maximum activity values is shown in the 2x2 phantom as in the previous homogeneous
phantoms. FBP shows the lowest recovery values of the activity values and the highest standard devia-
tion per feature of the phantom. OSEM2D shows the lowest standard deviation per feature, indicating
the most homogeneous distribution of activity values across each feature. The OSEM3DMAP shows
the highest recovery for both the mean and maximum activity values in the phantom. Relative contrast
ratios in table 2.11 show higher values in iterative algorithms, especially in OSEM3D. FBP shows the
lowest relative contrast ratios between features within the 2x2 phantom. SNR values show diverse
outcomes for the 2x2 phantom. A remarkable observation is that OSEM3D and OSEM3DMAP show
higher SNRs for the regions with low activity values, while FBP and OSEM2D show higher SNRs for the
regions with high activity values.

Table 2.10: Maximum and mean activity values 2x2 phantom for each reconstruction algorithm

2x2 phantom
True values FBP OSEM2D OSEM3D OSEM3DMAP

Max. Activity [Bq/cm ] 3.64E+06 1.34E+06 1.57E+06 2.50E+06 2.59E+06
W.r.t. True Maximum (%) 100.0 36.8 43.0 68.7 71.1
Mean Activity [Bq/cm ] 2.28E+06 7.46E+05 8.98E+05 1.20E+06 1.27E+06
W.r.t. True Mean (%) 100.0 32.8 39.5 52.9 55.7
Average SD/ROI [Bq/cm ] 0 1.60E+05 1.69E+05 2.53E+05 2.69E+05
W.r.t. Mean Act. (%) 0 21.4 18.8 21.0 21.2

The main argument for the creation of heterogeneous phantoms was to look at the capability of
the scanner to distinguish FDG concentrations. To assess this capability, the proportions of activity
values within features with respect to other features are compared. The true proportions between ac-
tivity values based on the compartment heights are shown in figure 2.13. The number 1.0 stands for
a printing height of 0.0 mm indicating the highest activity values present in that compartment. The
other compartments 0.500, 0.250, and 0.750 refer to printing heights of 0.5 mm, 0.75 mm and 0.25
mm. Table 2.14, 2.15, 2.16 and 2.17 visualize the activity value proportions determined by the different
reconstruction algorithms. Comparison with the true data shows a best match with OSEM3DMAP pro-
portions. The true ratio between feature 21 and 22 equals 0.33. The OSEM3DMAP ratio between these
features equals 0.372, which is higher than in OSEM3D: 0.375. The true ratio between feature 12 and
22 equals 0.67. The OSEM3DMAP ratio between these features equals 0.670, which is more accurate
than in OSEM3D: 0.681. Ratios between other features are calculated, concluding that OSEM3DMAP
matches best with the true proportions.

Table 2.11: Relative contrast ratios for different algorithms per ROI - 2x2 phantom

2x2 phantom
𝐶 /𝐶

Feature FBP OSEM2D OSEM3D OSEM3DMAP
11-12 0,856 0,861 0,998 0,987
11-21 0,813 0,818 0,945 0,937
12-22 0,876 0,909 0,950 0,985
21-22 0,788 0,803 0,908 0,914
11-22 0,811 0,778 1,066 0,987

A comparison of the line profiles across the 2x2 phantom can be observed in figures 2.23, 2.24, 2.25
and 2.26. Two line profiles across the features are drawn in the radial direction and two line profiles
across the features are drawn in the axial direction. Activity fluctuations in the radial direction seem to
occur more often in high activity areas: compare feature 11 with feature 22. The lower activity regions
(feature 12 and 21) show less fluctuations in activity values. The line profiles across the features in the
axial direction do not show high fluctuations in activity values and represent more smooth transitions,
whereby the deblurred data shows slightly sharper transitions than the raw data.
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Table 2.12: Signal-to-noise ratios for different algorithms per ROI - 2x2 phantom

2x2 phantom
SNR

FBP 21,678 7,385
3,819 18,436

OSEM2D 25,797 7,678
5,060 17,588

OSEM3D 11,215 8,752
6,594 13,632

OSEM3DMAP 11,061 8,738
7,958 13,848

Table 2.13: True proportions between activity values in the 2x2 phantom

1.000 0.500
0.250 0.750

Table 2.14: FBP

1,000 0,556
0,344 0,792

Table 2.15: OSEM2D

1,000 0,554
0,342 0,800

Table 2.16: OSEM3D

1,000 0,501
0,276 0,736

Table 2.17: OSEM3DMAP

1,000 0,505
0,280 0,753
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(a) Line 11-21 - 2x2 true (b) Line 11-21 - 2x2 raw

(c) Radial line profile 11-21 - 2x2 phantom

Figure 2.23: Radial line profile 11-21 - 2x2 phantom

(a) Line 12-22 - 2x2 true (b) Line 12-22 - 2x2 raw

(c) Radial line profile 12-22 - 2x2 phantom

Figure 2.24: Radial line profile 12-22 - 2x2 phantom
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(a) Line 11-12 - 2x2 true (b) Line 11-12 - 2x2 raw

(c) Axial line profile 11-12 - 2x2 phantom

Figure 2.25: Axial line profile 11-12 - 2x2 phantom

(a) Line 21-22 - 2x2 true (b) Line 21-22 - 2x2 raw

(c) Line profile 21-22 - 2x2 phantom

Figure 2.26: Axial line profile 21-22 - 2x2 phantom
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2.3.6. 4x4 Phantom
The true and measured activity values of the 4x4 phantom are listed in table 2.18. Same results con-
cerning the reconstruction algorithms is observed in this phantom compared with the other phantoms.
The highest standard deviation per region of interest is shown in the OSEM3D algorithm. By analyzing
the SNRs of the 4x4 phantom in table 2.20, FBP is the obvious winner showing the highest SNRs, with
OSEM2D on second place. With regard to relative contrast ratios, the same observations in the 4x4
phantom are seen as for the 2x2 phantom: OSEM3D(MAP) showing significantly higher contrast in
comparison with FBP and OSEM2D (table 2.19). The comparison of feature pairs with equal contrast
ratio of the true phantom (figure 2.8) show conspicuous results shown in table 2.19 in which each two
rows of contrast ratios should indicate equal contrast ratios. The majority of the feature pairs do not
comply with this fact.

Table 2.18: Maximum and mean activity values 4x4 phantom for each reconstruction algorithm

4x4 phantom
True values FBP OSEM2D OSEM3D OSEM3DMAP

Max. Activity [Bq/cm ] 2.37E+06 7.75E+05 9.51E+05 1.56E+06 1.59E+06
W.r.t. True Maximum (%) 100 32.6 40.1 65.7 66.8
Mean Activity [Bq/cm ] 1.26E+06 4.50E+05 5.37E+05 6.66E+05 6.75E+05
W.r.t. True Mean (%) 100 35.7 42.6 52.9 53.5
Average SD/ROI [Bq/cm ] 0 8.30E+04 9.93E+04 1.65E+05 1.65E+05
W.r.t. mean act. (%) 0 18.4 18.5 24.8 24.5

The proportions of activity values between features with respect to other features are compared for
the 4x4 phantom. The true proportions between activity values based on the compartment heights are
shown in table 2.21. Table 2.22, 2.23, 2.24 and 2.25 visualize the activity value proportions determined
by the different reconstruction algorithms showing under- and overestimations of the activity values.
Comparison with the true data shows a best match with OSEM3DMAP proportions. Interesting features
are number 14 and 34 (table 2.3b), both features which should not supposed to contain activity values
so should both possess the value 0. Feature 14 equals 0.291 and feature 34 equals 0.408 in which the
latter was surrounded by high activity values, an explanation of the enhanced value. Features 21, 31
and 41 are supposed to contain the value 0.25 but equal 0.238, 0.243 and 0.228 respectively. A value
lower than the true value, indicating spill-out of activity to the background.

Table 2.19: Relative contrast ratios for different algorithms per ROI - 4x4 phantom

4x4 phantom
𝐶 /𝐶

Feature FBP OSEM2D OSEM3D OSEM3DMAP
21-31 Inf Inf Inf Inf
22-32 Inf Inf Inf Inf
14-24 0,458 0,493 0,613 0,623
34-44 0,234 0,287 0,433 0,441
12-13 0,038 0,026 0,029 0,024
32-33 0,691 0,708 0,834 0,828
22-23 0,990 1,064 1,184 1,188
42-43 1,132 1,134 1,182 1,179
23-24 0,133 0,227 0,605 0,618
43-44 0,315 0,321 0,661 0,682
11-12 0,227 0,256 0,366 0,366
11-21 0,684 0,728 0,916 0,900
13-14 0,222 0,245 0,365 0,368
14-24 0,458 0,493 0,613 0,623

A comparison of the line profiles across the 4x4 phantom are shown in figures 2.27 to 2.34. Line
profiles are examined across each row or column of features. The line profiles in the axial direction
are interesting for the second row (21-22-23-24) and the fourth row (41-42-43-44) which both possess
the same gradient of height differences, showing the same trend of activity values across the gradient.
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Table 2.20: Signal-to-Noise ratios for different algorithms per ROI - 4x4 phantom

4x4 phantom
SNR

FBP

4.63 5.72 4.90 1.76
3.68 6.92 10.08 9.39
3.68 5.59 17.25 2.98
2.97 4.43 5.65 7.66

OSEM2D

3.93 5.34 5.62 1.72
3.72 6.80 9.68 9.79
3.69 5.75 16.00 2.59
3.17 5.23 6.98 6.57

OSEM3D

2.26 3.44 6.94 1.35
3.66 6.15 8.38 5.08
3.81 5.15 10.67 1.79
2.92 4.57 5.72 3.36

OSEM3DMAP

2.35 3.54 6.73 1.35
3.66 6.11 8.12 4.91
3.81 5.20 10.95 1.77
2.91 4.59 5.73 3.47

Table 2.21: True proportions between activity values in the 4x4 phantom

1.000 0.250 0.500 0.000
0.250 0.500 0.750 1.000
0.250 0.500 1.000 0.000
0.250 0.500 0.750 1.000

Deblurred data shows improvement in activity value transitions between different compartments. The
extreme fluctuations present in the data of the 2x2 phantom were less visible in the 4x4 phantom data,
seen in figure 2.31. The fluctuations in data seen in figure 2.32 are explained by the adjacent high
activity values of column 3 (figure 2.33). Figure 2.34 shows the obvious improvement of the deblurred
data with respect to raw data showing enhanced maximum values and lowered minimum values.

Table 2.22: FBP

1,000 0,760 0,741 0,472
0,330 0,644 0,963 1,000
0,281 0,626 1,000 0,570
0,267 0,577 0,914 1,000

Table 2.23: OSEM2D

1,000 0,734 0,721 0,438
0,304 0,608 0,937 1,000
0,282 0,618 1,000 0,526
0,269 0,575 0,912 1,000

Table 2.24: OSEM3D

1,000 0,640 0,628 0,292
0,239 0,519 0,841 1,000
0,242 0,565 1,000 0,410
0,229 0,511 0,828 1,000

Table 2.25: OSEM3DMAP

1,000 0,640 0,630 0,291
0,238 0,516 0,838 1,000
0,243 0,568 1,000 0,408
0,228 0,509 0,823 1,000
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(a) Line - 4x4 true (b) Line - 4x4 raw

(c) Line profile 11-12-13-14

Figure 2.27: Line profile 11-12-13-14 - 4x4 phantom

(a) Line - 4x4 true (b) Line - 4x4 raw

(c) Line profile 21-22-23-24

Figure 2.28: Line profile 21-22-23-24 - 4x4 phantom
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(a) Line - 4x4 true (b) Line - 4x4 raw

(c) Line profile 31-32-33-34

Figure 2.29: Line profile 31-32-33-34 - 4x4 phantom

(a) Line - 4x4 true (b) Line - 4x4 raw

(c) Line profile 41-42-43-44

Figure 2.30: Line profile 41-42-43-44 - 4x4 phantom
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(a) Line - 4x4 true (b) Line - 4x4 raw

(c) Line profile 11-21-31-41

Figure 2.31: Line profile 11-21-31-41 - 4x4 phantom

(a) Line - 4x4 true (b) Line - 4x4 raw

(c) Line profile 12-22-32-42

Figure 2.32: Line profile 12-22-32-42 - 4x4 phantom



2.3. Results 33

(a) Line - 4x4 true (b) Line - 4x4 raw

(c) Line profile 13-23-33-43

Figure 2.33: Line profile 13-23-33-43 - 4x4 phantom

(a) Line - 4x4 true (b) Line - 4x4 raw

(c) Line profile 14-24-34-44

Figure 2.34: Line profile 14-24-34-44 - 4x4 phantom
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Table 2.26: RMSD for all phantoms & reconstruction algorithms

RMSD values
FBP OSEM2D OSEM3D OSEM3DMAP

4x4 phantom 0,840 0,843 0,789 0,786
2x2 phantom 0,786 0,805 0,761 0,774
H100 phantom 0,537 0,551 0,555 0,548
H25 phantom 0,939 0,952 0,963 0,965

2.3.7. RMSD Values
An overview of RMSD values per phantom and per algorithm is shown in table 2.26. To recap from
section 2.2.8: the RMSD describes the amount of similarity between the phantom based on the PET
measurements and the computational phantom. RMSD values do not show extreme differences be-
tween the reconstruction algorithms. For the heterogeneous phantoms slightly better RMSD values
are seen in OSEM3D and OSEM3DMAP. For the homogeneous phantoms, FBP and OSEM2D show a
slightly better RMSD.

2.4. Deblurring of the Snake Phantom
The deblurring technique is applied on the snake phantom for all reconstruction algorithms. The
result of the deblurring technique is shown in figure 2.36 in which for each reconstruction algorithm
a line profile is taken for the raw data and the deblurred data (figure 2.35). For each reconstruction
algorithm the deblurred data shows a more accurate representation of the data with respect to the true
data. Both OSEM3D and OSEM3DMAP show capability of complete distinction between the two most
right segments of the snake phantom. Since OSEM3DMAP shows the highest deblurring performance,
the deblurring technique was applied on the remaining phantoms for the OSEM3DMAP reconstruction
algorithm. The results are shown in the following section.

(a) Axial line - true data (b) Axial line - raw data

Figure 2.35: Lines across snake phantom
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Figure 2.36: Line profiles raw and deblurred SNAKE phantom per reconstruction algorithm

2.5. Deblurred outcomes of OSEM3DMAP
Homogeneous H100 Phantom
In the H100 phantom, a large increase in maximum activity is observed in deblurred data (table 2.27),
while a small increase in mean activity is seen, resulting in increased standard deviation in the phan-
tom. The SNR decrease in both ROIs in the deblurred data, a rational observation when standard
deviations are increased (table 2.28). The relative contrast shows a minimal increase (table 2.29).

Table 2.27: Maximum and mean activity raw data vs. deblurred data - H100

H100 phantom
True values Raw data Deblurred data

Max. [𝐵𝑞/𝑐𝑚 ] 4,93E+06 3,46E+06 4,41E+06
W.r.t. True Max (%) 100 70,2 89,4
Mean [𝐵𝑞/𝑐𝑚 ] 4,93E+06 2,94E+06 3,10E+06
W.r.t. True Mean (%) 100 59,6 62,8
Av. SD/ROI [𝐵𝑞/𝑐𝑚 ] 0 3,74E+05 5,07E+05
W.r.t. Mean Act (%) 0 12,7 16,4

Table 2.28: SNR raw vs. deblurred data - H100

H100 phantom
SNR

Feature Raw data Debl Data

OSEM3DMAP ROI 1 16,87 11,48
ROI 2 42,94 30,55

Homogeneous H25 Phantom
A remarkable observation in the deblurred data of the H25 phantom is the recovery of the maximum
activity above the true maximum: a value of 105%, shown in table 2.30. The mean activity shows
only an increase of 2%. SNR values (table 2.31) and relative contrast (table 2.32) values show similar
outcomes compared with the H100 phantom.
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Table 2.29: Relative contrast raw vs. deblurred data - H100

H100 phantom
𝐶 /𝐶

Feature Raw data Debl Data
OSEM3DMAP ROI 0,9995 0,9996

Table 2.30: Maximum and mean activity raw data vs. deblurred data - H25

H25 phantom
True values Raw data Deblurred data

Max. [𝐵𝑞/𝑐𝑚 ] 3,18E+05 2,85E+05 3,34E+05
W.r.t. True Max (%) 100 89,7 105,1
Mean [𝐵𝑞/𝑐𝑚 ] 3,18E+05 1,32E+05 1,39E+05
W.r.t. True Mean (%) 100 41,6 43,8
Av. SD/ROI [𝐵𝑞/𝑐𝑚 ] 0 2,80E+04 3,90E+04
W.r.t. Mean Act (%) 0 21,2 28,0

Table 2.31: SNR raw vs. deblurred data - H25

H25 phantom
SNR

Feature Raw data Debl Data

OSEM3DMAP ROI 1 6,22 4,73
ROI 2 14,50 10,51

Table 2.32: Relative contrast raw vs. deblurred data - H25

H25 phantom
𝐶 /𝐶

Feature Raw data Debl Data
OSEM3DMAP ROI 0,9994 0,9995

2x2 Phantom
Deblurring of the heterogeneous 2x2 phantom shows the largest improvement in the proportions of the
activity values, shown in table 2.36. Improvement is seen between features 21 and 22: a ratio of 0.333
for true data, 0.372 for raw data and 0.328 for deblurred data. Between features 21 and 12, the ratio
improves from 0.554 to 0.518 with a true ratio of 0.50. SNR values for deblurred data only increases in
feature 21 (table 2.34). Relative contrast increases between all features for deblurred data (table 2.35).

Table 2.33: Maximum and mean activity raw data vs. deblurred data - 2x2

2x2 phantom
True values Raw data Deblurred data

Max. [𝐵𝑞/𝑐𝑚 ] 3,64E+06 2,59E+06 3,29E+06
W.r.t. True Max (%) 100,0 71,1 90,4
Mean [𝐵𝑞/𝑐𝑚 ] 2,28E+06 1,27E+06 1,33E+06
W.r.t. True Mean (%) 100,0 55,7 58,3
Av. SD/ROI [𝐵𝑞/𝑐𝑚 ] 0 2,69E+05 3,49E+05
W.r.t. Mean Act (%) 0,0 21,2 26,3
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Table 2.34: SNR raw vs. deblurred data - 2x2

2x2 phantom
SNR raw data SNR dbl data

OSEM3DMAP 11,061 8,738 5,438 6,678
7,958 13,848 8,780 10,276

Table 2.35: Relative contrast raw vs. deblurred data - 2x2

2x2 phantom
𝐶 /𝐶

Feature Raw data Debl Data

OSEM3DMAP

11-12 0,987 1,078
11-21 0,937 1,013
12-22 0,985 1,125
21-22 0,914 1,013
11-22 0,987 1,023

Table 2.36: Deblurred data activity proportions - 2x2

1.000 0.471
0.244 0.745

4x4 Phantom
A great improvement in the proportions of the deblurred activity values of the 4x4 phantom is ob-
served, reflecting the true height proportions more accurately. This result can be observed in a 3D
representation of the 4x4 phantom shown in figure 2.37, for the true data, raw data and deblurred
data. Transitions between phantom compartments are smooth for the raw data and show more sharp
transitions between compartments in the deblurred data.

(a) 3D representation 4x4 true
data

(b) 3D representation 4x4 raw
data

(c) 3D representation 4x4
deblurred data

Figure 2.37: 3D representation of the 4x4 phantom: true, raw and deblurred data

Regarding the proportions, remarkable differences are seen between features that are surrounded
by large height differences compared to small surrounding height differences. For example feature 12
which is surrounded by very high activities compared to features 21, 31 and 41 of which the latter
features resemble more true activity, while feature 12 is more than doubled compared to the other
features. Same results are observed regarding the maximum and mean activity values in deblurred
data as in the other phantoms (table 2.37). SNR values per feature are lowered for deblurred data
(table 2.38), but relative contrast values between features show again significant improvement, shown
in table 2.39. The majority of feature pairs show higher similarity in the deblurred data than in the
raw data.

Images of measured PET data and deblurred PET data of all phantoms is shown in figure 2.38.
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Table 2.37: Maximum and mean activity raw data vs. deblurred data - 4x4

4x4 phantom
True values Raw data Deblurred data

Max. [𝐵𝑞/𝑐𝑚 ] 2,37E+06 1,59E+06 2,13E+06
W.r.t. True Max (%) 100 66,8 89,9
Mean [𝐵𝑞/𝑐𝑚 ] 1,26E+06 6,75E+05 7,03E+05
W.r.t. True Mean (%) 100 53,5 55,8
Av. SD/ROI [𝐵𝑞/𝑐𝑚 ] 0 1,65E+05 2,30E+05
W.r.t. Mean Act. (%) 0 24,5 32,6

Table 2.38: SNR raw vs. deblurred data - 4x4

4x4 phantom
SNR raw data SNR deblurred data

OSEM3DMAP

2.35 3.54 6.73 1.35 1,72 2,52 4,95 1,05
3.66 6.11 8.12 4.91 3,48 5,36 7,67 3,00
3.81 5.20 10.95 1.77 3,57 5,20 6,01 1,16
2.91 4.59 5.73 3.47 2,42 3,49 4,33 2,30

Table 2.39: Relative contrast raw vs. deblurred data - 4x4

4x4 phantom
𝐶 /𝐶

Feature Raw data Deblurred data

OSEM3DMAP

21-31 Inf Inf
22-32 Inf Inf
14-24 0,623 0,734
34-44 0,441 0,615
12-13 0,024 0,211
32-33 0,828 0,991
22-23 1,188 1,206
42-43 1,179 0,910
23-24 0,618 0,954
43-44 0,682 0,915
11-12 0,366 0,530
11-21 0,900 0,997
13-14 0,368 0,524
14-24 0,623 0,734

Table 2.40: Proportions deblurred OSEM3DMAP data - 4x4 phantom

1.000 0.517 0.596 0.186
0.207 0.465 0.760 1.000
0.219 0.503 1.000 0.252
0.212 0.475 0.769 1.000
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(a) Raw data - H100 phantom (b) Deblurred data - H100 phantom

(c) Raw data - H25 phantom (d) Deblurred data - H25 phantom

(e) Raw data - 2x2 phantom (f) Deblurred data - 2x2 phantom

(g) Raw data - 4x4 phantom (h) Deblurred data - 4x4 phantom

(i) Raw data - snake phantom (j) Deblurred data - snake phantom

Figure 2.38: Deblurred images of the OSEM3DMAP reconstruction algorithm
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2.6. Discussion & Conclusion
In the presented work, an in depth examination on the performance of the Inveon microPET system was
accomplished in which the available reconstruction algorithms available on the system were compared.
This was the first step of the presented work. The second step included the development of a deblurring
technique in order to deblur the reconstructed data and correct for the spillover effect. The deblurring
technique has been applied on phantom experiments with the microPET scanner based on the most
appropriate reconstruction algorithm.

Phantom experiments accomplished with the microPET scanner have been performed based on 3D-
printing technologies for the NEMA phantom [6] and the Derenzo phantom [21]. The present work
appeared to be the first in using 3D-printed phantoms reflecting tumor heterogeneity and showed great
performance in the use to characterize the microPET system. Points of concern with respect to the
3D-printing material could include the absorption of FDG by the material and the formation of air bub-
bles during filling. Research showed that the first concern was not applicable and that FDG was not
absorbed by the 3D-printed material [32]. To overcome the problem of air bubble formation, multiple
designs were printed and tested for the filling of the phantom. This process was optimized, resulting
in an airtight compartment without the presence of bubbles.

The performance of the Inveon microPET system was quantified for different reconstruction al-
gorithms with accompanying figures of merit. The results regarding the capability of reconstruction
algorithms to reconstruct true values showed what was expected: maximum and mean activity values
were higher for more complex reconstruction algorithms compared to mathematically less complex algo-
rithms since iterative algorithms are built to reconstruct data more accurately [88]. High deviations in
reconstructed data were mainly observed in iterative algorithms which is a generally known observation
for iterative reconstruction algorithms since increasing number of iterations amplify noise artifacts [17].

The investigation of the signal-to-noise ratios in the phantom features for different reconstruction
algorithms allowed a useful method to compare reconstruction performance. However, the determi-
nation of signal-to-noise ratios for extreme small features as in the 4x4 phantom brings doubt in the
reliability of the ratios. The relative contrast for the homogeneous phantoms couldn’t be reliably com-
pared since contrast was determined between the ROI in the phantom and a region in the background.
As mentioned in section 2.2.6, reconstructed FBP data showed negative pixel values in the background
which were all set to zero, therefore creating an unreliable approach of the relative contrast with respect
to other algorithms.

A main point of concern includes the alignment of the computed phantom with the phantoms in
the PET images. Despite the 2D cross-correlation in order to perfectly align the phantoms, an error
was present in the alignment of the phantoms. This point of concern is caused by the limited pixel
dimensions of the microPET scanner (0.39 mm x 0.79 mm). The dimensions refrain to resemble the
exact phantom dimensions of 10.0 x 10.0 mm (and features of 2.5 mm x 2.5 mm and 5.0 mm x 5.0
mm). The chosen dimensions of the computational phantom are slightly smaller than the true dimen-
sions with an error of 112 m in one single feature of the 4x4 phantom in the x-direction, and 448
m in total in the x-direction. In the y-direction this equals 171 m for a single feature in the 4x4

phantom, and 683 m in total in the y-direction, accounting for an error of 4.48% in the x-direction
and an error of 6.83% in the y-direction. A comparable concern was observed in the z-direction in the
H25 phantom. The region in which activity is present was 0.25 mm. With a slice thickness of 0.39
mm, an underestimation of the mean activity values in this phantom was generated. This was indeed
observed in the low mean activity values compared to the other phantoms.

The deblurring technique was applied on the snake phantom for all reconstruction algorithms. Re-
sults showed improved spatial resolution in the OSEM3D algorithms with increased maximum values
and lowered minimum values, approaching more the true activity values. Regarding the deblurring
technique, the OSEM3DMAP algorithm performed best in contrast improvement of the PET images and
sharper edges between features within the phantom, therefore allowing a correction strategy for the
spillover effect. However, edge artifacts are present in OSEM3D and OSEM3DMAP. They appear as an
intensification of the activity at a sharp transition in the phantom, preventing a true representation
of the activity distribution within a feature. Edge artifacts were less observed in FBP. Tsutsui et al.
reported that edge artifacts are dependent on the iteration number of the reconstruction algorithm and
object size [81], two concepts which must be further addressed in future work.

The presented work has shown the ability of the deblurring technique to improve the contrast and
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transition between phantom features. The most remarkable contribution of the deblurring technique
is the correction for the spillover effects, leading to improved differentiation of FDG values in small
features. MicroPET scanners that apply the deblurring technique on PET images would be capable to
deblur the images and represent a more accurate representation of the measured object.
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Ex vivo Validation of PET Imaging for
Response Assessment in Non-Small

Cell Lung Cancer

Abstract
Response based dose-painting in Non-Small Cell Lung Cancer (NSCLC) patients during treatment based
on high 2-deoxy-2-(18F)fluoro-D-glucose (FDG) regions is an effective method to overcome the challenge
of intra-tumor heterogeneity. The challenge remains to validate the correlation of the imaging target
with a local biological trait. Pathology is required to assess the challenge. However, since the study
concerns inoperable patients, the pathology cannot be accessed. An ex vivo culturing platform is set
up to validate PET imaging tracers for response assessment of NSCLC patients and to correlate FDG
uptake with the number of proliferating cells. An unbiased method is presented to assess the number of
proliferating cells present in histology images. From ten NSCLC patients the pathology is examined. Of
each individual tumor slice the number of proliferating cells is determined with an automated detection
method in viable tissue whereupon a linear mixed-effects model is used to investigate FDG uptake with
the number of proliferating cells within patients. Results show that no significant correlation exists
between FDG and the number of proliferating cells. This implicates that FDG uptake in tumor slices
does not significantly reflects the number of proliferating cells. Therefore, FDG was not suitable as a
highly selective tracer for response based imaging during radiotherapy treatment in NSCLC.

Keywords — Non-Small Cell Lung Cancer - Ki-67 - proliferating cells - FDG uptake - automated
detection method - pathology - ex vivo
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Note
The following work is written by multiple authors of the Erasmus Medical Center, Rotterdam. The
following sections are written by other authors: section 3.1, 3.2.1, 3.2.2, 3.2.3, 3.2.4. The sections
3.2.5, 3.2.6, 3.2.7, 3.3, 3.4 and the abstract are written by C.F. Groenendijk.

3.1. Introduction
Lung cancer is the leading cause of cancer related deaths, with 1.6 million deaths worldwide [30].
Non-Small Cell Lung Cancer (NSCLC) accounts for 80-85% of all lung cancer diagnoses and is there-
fore the most common type of lung cancer. Many patients are diagnosed with inoperable NSCLC and
about 40% of patients with advanced stage disease [69]. Advanced stage NSCLC patients are offered
chemo-radiation treatment, but despite this 3-year survival is only 27% [35]. Intra-tumor heterogeneity
of NSCLCs plays a key role in the development of therapy resistance and negatively influences radio-
therapy outcomes, since specific sub-regions of the tumor may be resistant to chemo-radiotherapy
[56, 64]. Therefore, dose-painting, a technique that allows one to more precisely prescribe different ra-
diation dosimetries to different areas within the tumor, may be a very effective method to overcome this
challenge of intra-tumor heterogeneity. Thanks to recent advances in proton therapy and robotic radio-
surgery, it is technically feasible to deliver a high boost of radiation specifically to small sub-regions
of a tumor without compromising the treatment tolerance. The most pragmatic strategy for improving
radiotherapy outcome is response-based dose-painting. First, patients are treated with a conventional
radiation plan, followed by response measurement. Next, according to the response of different intra-
tumor areas, the remaining fractions are boosted in the poorly responding tumor regions. However,
the main challenge for response-based dose-painting is to measure response noninvasively in 3D in
vivo. Positron emission tomography (PET) imaging using 2-deoxy-2-[18F]fluoro-D-glucose (FDG) is cur-
rently used in the clinic for radiation treatment planning [25]. Whether PET tracers could be useful
to noninvasively identify differences in response across the tumor should be validated first. The gold
standard for determining therapy response is pathologic examination of the resected tissue (either by
biopsy material or surgical specimen). However, it is not feasible to relate in vivo PET imaging results
to ex vivo resected material. Recently, we have developed technology to keep organotypic tissue slices
of breast tumors alive ex vivo for at least one week [63]. The advantage of this tumor model system
is that the tumor cells remain in their natural (micro)environment. Under optimal culture conditions,
the fraction of tumor cells that is dividing remains constant for a period of at least one week, indicat-
ing that these conditions faithfully mimic tumor growth in the patient [63]. Organotypic tissue slices
from NSCLCs would represent a useful ex vivo model system to test whether tracer uptake corresponds
with pathologic examination. The aim of this study is to set up an experimental procedure to validate
PET imaging tracers for response assessment of NSCLC patients ex vivo. Using this procedure, we
determined whether FDG uptake reflects the number of proliferating tumor cells.

3.2. Methods
The experimental setup of the presented study is composed of multiple steps, described in the following
subsections. An overview of the procedure is displayed in figure 3.1.

3.2.1. NSCLC specimens
Residual fresh NSCLC tissue was prospectively collected from lobectomy specimens in the Erasmus MC
Cancer Institute in Rotterdam, The Netherlands between 20-01-2016 and 06-06-2017. After macro-
scopic evaluation of the surgical specimen by trained pathologists, residual tumor tissue was collected
for our research purposes according to the “Code of proper secondary use of human tissue in the Nether-
lands” established by the Dutch Federation of Medical Scientific Societies and approved by the local
Medical Ethical committees. Patients who had objected to secondary use of residual tumor material for
research purposes were not included in this study.

3.2.2. Tissue slicing and culturing
Tumor samples were collected in a RPMI culture medium. Tissue slicing was performed using a Leica VT
1200S Vibratome with slice thickness set at 300 m, vibration amplitude at 3.0 mm and slicing speed
at 0.45 mm/sec, as described previously [63]. Slicing was performed under semi-sterile conditions;
without the use of a flow hood. No contaminations were encountered under these conditions. Slices
were cultured within 6 hours after the tumor was removed from the patient. Lung tissue slices were
cultured at 5% CO at 37 ∘C and at atmospheric oxygen levels, under constant rotation at 60 rpm using
a Stuart SSM1 mini orbital shaker that was placed in the incubator. For culture medium conditions,
we tested our customized breast medium [63], DMEM/HAM1:1 with 10% FCS and antibiotics and RPMI
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Figure 3.1: Experimental setup

with 10% FCS and antibiotics. The number of proliferating cells after 2, 5 and 7 days of culture was
determined to identify the optimal medium condition. Proliferating cells were labeled using 3 g/ml
5-Ethynyl deoxyuridine (EdU) (Invitrogen) during the last 2 hours before fixation.

3.2.3. PET imaging
For PET imaging, 3.4 – 8.1 MBq FDG was added to the culture medium and was incubated on an orbital
shaker at 60 rpm for 30 minutes at room temperature. Next, the tumor samples were transferred to well
plates containing PBS and washed for 30 minutes on an orbital shaker (60 rpm) for 30 minutes. This
wash step was repeated for 10 minutes in another well plate with fresh PBS. To have a fixed orientation
during and after the PET scan, the tumor slices were put into a Falcon cell strainer (Fisher Scientific).
The cell strainer containing the tumor sample in their turn were fixed in the well of a six well plate.
In the well PBS was present with a liquid level height high enough to prevent the tumor sample from
drying out, and low enough to prevent the tumor sample from floating. A 30 minute emission scan
of a single bed position was made on a microPET scanner (Siemens Inveon, Knoxville, USA). The PET
scans were reconstructed using the OSEM3D algorithm (2 iterations) and the Maximum A Posteriori
(MAP) algorithm (18 iterations). The smoothing factor was set to 0.8 mm, the matrix was 256 resulting
in a voxel size of 0.4 mm. The resulting images were analyzed using the Siemens Inveon Research
Workplace software. For each tumor slice the mean uptake concentration in kBq/mL divided by the
activity concentration in the culture medium was calculated by drawing ROIs around the tumor slice.

3.2.4. Fixation, sectioning and immunostaining
After PET acquisition, tumor slices were fixed in 10% neutral buffered formalin for at least 24 hours at
room temperature. Subsequently, tumor slices were embedded in paraffin and from each 300 m thick
tumor slice, three 4 m sections were generated for microscopy analysis at approximately 50 m, 150
m and 250 m of the tumor slice. For optimizingmedium conditions, EdU incorporation was visualized

using Click-It chemistry (Invitrogen) by incubating samples for 30 minutes with freshly made Click-It
Alexa Fluor 594 cocktail (manufacturers protocol). Samples were mounted using Vectashield mounting
medium with DAPI. Standardized double immunohistochemistry staining was performed using primary
antibodies.

3.2.5. Pathologic examination by an automated detection method
Introduction
A script was created which automatically detected and counted the number of Ki-67 positive cells in
histology images. The performance of the script was examined and validated by a pathologist in order
to create an unbiased cell counting method. The validation of the script was performed based on a
validation protocol, explained later in this section. The data set concerned ten NSCLC tumors, each
composed of multiple tumor slices with multiple coupes.

Extraction of 40x magnification histology images
High resolution images of the histology samples were obtained using the Hamamatsu NanoZoomer
Slide. 40x magnification images were taken. Their output was visually assessed with the NDPITools
software in ImageJ to ensure no abnormalities [23].

Method
Validation of the script started with the extraction of random regions of interest from the 40x magni-
fication histology images in order to create an unbiased methodology. At first, a script was created
to produce regions of interest of 250 x 250 m. These dimensions permitted an easy observation of
the complex structures in the histology images, allowing easy manual counting by the pathologist.
Secondly, the selection of the first ROI of each tumor slice was accomplished by the assessment of a
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random starting point within 500 x 500 pixels from the upper left corner of each image. The remaining
ROIs were selected in a systematic way. In order to prevent the acquirement of validation images in
which no tumor tissue was visible, the area of tumor tissue visible with respect to the total area in a
ROI was determined. The minimal required tumor tissue area within a ROI was set to 75% since this
creates a large pool of ROIs to randomly select from. In the case a region of interest contained a low
density of tumor tissue – which is often the case due to a lot of gaps present in the tissue – the 75%
boundary still creates a few images to apply the random selection to, so this boundary makes a good
compromise. Out of this pool of images, a ROI is selected randomly and the validation image was saved.

Automated detection method
The automated detection method was developed in ImageJ. The RGB histology images were splitted
according to their color channels. The red channel was assessed, allowing the highest contrast, and
a threshold was visually set to detect Ki-67 proliferating cells. The optimization of the threshold value
was achieved by back and forth comparing of the result with the pathologist. The Ki-67 positive cells
were counted based on an area range of 1.963 ×10 to 4.909 ×10 cm per cell with a diameter of 5
m and 25 m respectively. The circularity was chosen to vary between 0.50-1.00.

Validation Protocol
For each validation image the pathologist manually counted the Ki-67 positive cells in tumor tissue
and stroma tissue and manually registered the numbers in a database. The automated detection
method was implemented on the validation images. Subsequently, the automatically counted number
of positive cells by the script (tumor and stroma separated) was compared with the manually counted
number of positive cells by the pathologist. This protocol was first applied on a set of images used as
training set. The performance of the script was intensively discussed with the pathologist and adjusted
to meet the requirements of the pathologist as much as possible. This resulted in an optimized version
of the detection method which was then applied on a new set of images, the test set. The performance
of the script with respect to the pathologist was assessed by a fitted regression line. Validity of the
regression fit was evaluated through an R-squared metric.

3.2.6. Automated viability assessment
The detection of metabolically active regions was approached by the division of tumor tissue with stroma
tissue based on the immunohistochemical staining with keratin. For this assessment, the same ap-
proach was used as in the automated detection method. Tissue slices were assessed in ImageJ at 40x
magnification. The first step was to calculate the total number of proliferating cells in the whole coupe,
of which a mask was created and saved: a mask of Ki-67 positive cells. By the application of a color
thresholder program on the original image the separation of keratin stained areas from stroma (un-
stained) areas was achieved. The appropriate threshold was applied, following by the application of a
dilation operator and the closing of holes. The result included a mask representing the keratin positive
areas and was combined with the mask of the Ki-67 positive cells. Overlapping regions of Ki-67 positive
cells with the positive keratin mask were detected. In this way the positive cells that were present at
boundaries of keratin positive areas were included to tumor tissue. This image was called the division
image. By adding up the original image with the division image, a stroma version of the original image
was created. By inverting the division image and adding it with the original image, a tumor version
of the image was created. Of both the tumor and stroma image the number of proliferating cells was
determined. Again, the performance of the division between tumor tissue with stroma tumor was in-
tensively discussed with the pathologist and adjusted to meet the requirements of the pathologist as
much as possible.

3.2.7. Linear Mixed-Effects Regression Modeling
A linear mixed-effects regression analysis was performed for the correlation between FDG uptake and
the number of vital tumor cells per slice by the use of Matlab. A linear mixed-effects regression model
was used to investigate data of multiple groups and fit it simultaneously. The model was able to account
for the fact that FDG uptake in multiple tumor slices of the same patient differ from FDG uptake in
multiple tumor slices of other patients. The linear mixed-effects model was described by the following
formula:

(3.1)

which was associated with fixed and random parameters including independent and dependent errors
[9]. The parameter equaled the response variable denoted by the mean activity. This was the de-
pendent variable measured per observation. The predictor variable was the independent variable
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and included the number of proliferating cells present in viable tumor tissue with an accompanying
vector of the fixed-effects regression coefficients: . The parameter included all random factors that
affect the uptake of FDG that are uncontrollable and were compared between patients (the grouping
variable Z), with a vector of random regression parameters . The residuals are denoted by [12]. The
significance of the inclusion of random effects in this model was verified by the use of a Likelihood Ratio
Test. The Likelihood Ratio Test compared a model with and without random effects. Correlations were
considered statistically significant at . .

(a) Histology image (b) Stroma version (c) Viable version

(d) Histology image (e) Stroma version (f) Viable version

Figure 3.2: Example automated viability assessment
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Figure 3.3: Detection method vs. pathologist - total Ki-67 positive cells

Figure 3.4: Detection method vs. pathologist - Ki-67 positive cells in viable tissue

Figure 3.5: Detection method vs. pathologist - Ki-67 positive cells in stroma tissue
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3.3. Results
3.3.1. Automated detection method
An example of the performance of the automated detection method on a histology image is shown in
figure 3.6. Three randomly selected regions are extracted in which the detection algorithm is applied.
The yellow contours show the detection of the Ki-67 positive cell nuclei.

(a) Region 1 (b) Region 2 (c) Region 3

(d) Detection in region 1 (e) Detection in region 2 (f) Detection in region 3

Figure 3.6: Example performance detection algorithm

3.3.2. Automated viability assessment
The performance of the analysis of metabolically active regions by the developed method was visually
clarified in figure 3.2. The figures 3.2a and 3.2d show part of a histology image. Figures 3.2b and
3.2e show the stroma version of the tumor slice and figures 3.2c and 3.2f show the metabolically active
regions of the tumor slice.

3.3.3. Validation protocol
The performance of the script with respect to the pathologist is assessed by a fitted regression line
of which the results are shown in figures 3.3, 3.4 and 3.5. For the number of Ki-67 positive cells in
the total slice, in viable tissue and in stroma tissue, the R values equal R . , R . and
R . respectively.

3.3.4. Statistical analysis
For each patient, the mean activity uptake per tumor slice is compared to the number of proliferating
cells in viable tissue. This relation is visualized in scatter plots with fitted regression lines per patient in
one graph shown in figure 3.7. The scatter plots suggest different slopes and intercepts of FDG uptake
against proliferating cells per patient. This is the motivation behind the implementation of a random
intercept and slope model, assuming a possible correlation between them. The result of the Likelihood
Ratio Test to verify the significance of the inclusion of random effects in our model gives a p-value of
. . . This indicates the significance of random effects in the linear mixed-effects model.
The estimate of the linear-mixed effects model is 4.2825 for the fixed-effects regression coefficient ,
based on a 95% confidence interval (CI). Random effects covariance parameters based on a confidence
interval of 95% show a residual standard deviation of 17138 Bq, indicating large variations between
individual patients. The p-value for the fixed effects (95% CIs) equals 0.31451, indicating that the
number of proliferating cells does not significantly accounts for variation in FDG uptake.
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Figure 3.7: Fitted regression lines per patient, expressed in mean activity against number of proliferating cells
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3.4. Discussion & Conclusion
In the presented work, an experimental procedure was developed to validate the FDG-PET imaging
tracer for response assessment of NSCLC patients ex vivo. Measuring response non-invasively in vivo
by FDG-PET to identify resistant regions is a generally used methodology in NSCLC treatment. Es-
calating dose to poorly responding regions may increase local tumor control whilst minimizing the
occurrence of possible side effects [2]. Whether FDG could be useful to noninvasively identify differ-
ences in response should be validated by correlating uptake with the number of proliferating cells.
NSCLC slices have been shown to remain vital ex vivo for at least 7 days [63] and can thus be employed
for direct ex vivo comparison of FDG uptake and pathologic examination. Using this procedure, the
correlation between FDG uptake and the number of proliferating tumor cells was investigated by the
use of a linear mixed-effects model.

For the assessment of the number of proliferating tumor cells, the development of an automated
detection method was proven feasible together with the detection of metabolically active regions. This
methodology was widely accomplished in breast cancer studies [28, 43, 62] but limited in lung cancer
studies [51], making the presented study of added value in this research area. Validation of the detec-
tion method was accomplished by a pathologist whereupon a regression analysis was performed.

The regression analysis based on the R metric gave a rough interpretation how well the developed
script fitted with the pathologists manual counting results. A main question is how large R needs to
be for the regression to be valid. The fit regarding the number of cells in the whole slice and the tumor
tissue gave relative high R values compared to R values for stroma tissue. This was explained by the
small amount of proliferating cells meaning that a counting error between the script and the pathologist
has a larger consequence in stroma tissue than in tumor tissue. Another explanation was that an exact
agreement of the counting results was used of which one may discuss the extent of this problem since a
difference of a few cells for large quantities may not be harmful. The great benefit of unbiasedness in cell
counting across all tumors was the most important argument to make use of an automated detection
method. Since the R metric doesn’t tell the entire story, the R values could be further evaluated with
residual plots and other model statistics like Light’s kappa to investigate agreement between observers
[44], and Cohen’s kappa [34]. The method could be improved by selecting a certain range in which the
counted number was valid instead of using an exact agreement of the counting results.

The result of the linear mixed-effects regression model showed an overall weak but positive correla-
tion between FDG uptake and the number of proliferating cells with a large variation between individual
patients. The p-value indicated that the number of proliferating cells does not significantly accounts
for variation in FDG uptake. The diverse outcomes that were observed between patients are explained
by the numerous other biological characteristics that influence FDG uptake in cancerous tissue. Bio-
logical characteristics include the existence of hypoxia and enhanced levels of glucose transporters and
glucose metabolism regulators [54, 93]. The correlation of FDG uptake with hypoxia inducible factor-1
and GLUT-1 in NSCLC was confirmed by van Baardwijk et al. [84]. The fact that FDG uptake in NSCLC
does not reflect proliferation, but is influenced by therapy-resistant pathways was already mentioned
by [2]. Further explanation is found in the comparison between FDG, a marker for metabolic activity
with Ki-67, a proliferation marker. The radiotracer FDG was a good candicate for this study. However,
the use of for example [ F]-FLT, a marker for proliferation or [ F]-misonidazole should be considered.

A weak point in the assessment of ex vivo FDG uptake is that response ex vivomight not be the same
as response in vivo despite the mimicking of tumor (micro)environment. Factors could be difficulties
in the access to nutrients or adapted behavior of signal molecules at the edges of the slices. This is an
element which must be explored in further research.

The presented investigation implicates that FDG uptake in tumor slices does not significantly reflects
the number of proliferating cells. Therefore, FDG is not a highly selective tracer for response based
imaging during radiotherapy treatment in NSCLC.





4
Future Perspective

The preceding chapters presented the work of the characterization of the microPET scanner by the use
of 3D-printed phantoms in combination with the ex vivo validation of FDP-PET uptake with pathological
examination in non-small cell lung cancer. This work was performed in order to explore the capabilities
of the microPET scanner in detecting FDG uptake differences at a small scale and contribute to the
development of FDG-PET imaging during radiotherapy treatment in NSCLC patients. This chapter de-
scribes work that has been done but was not completely finished, therefore offering future perspectives
regarding this Master Thesis.

Regarding chapter 3 of this Master Thesis, analysis have been done on the intra-slice comparison
of the number of proliferating cells per unit area in the tumor tissue with FDG uptake values per unit
area in (2D) PET images. The first step that was performed included the creation of a heatmap of the
histology sections, indicating the extent of proliferating cells per unit area in the histology sections.
This unit area could be based on the scanner’s spatial resolution or on the dimensions of the PET
pixels. An example was shown in figure 4.1a in which a histology slice is shown. For this slice the
number of proliferating cells was calculated for areas of 250 m x 250 m and expressed in number
of proliferating cells per mm visualized by a heatmap in figure 4.1b. Figure 4.1c shows the overlay of
the histology slice with the accompanying heatmap of the proliferating cells/mm . Dark squares indi-
cate a low number of proliferating cells present in that area. Bright squares indicate a high number
of proliferating cells present in that area. The following step included the 2D cross-correlation of the
PET data of the concerned tumor slice with the histology image for a perfect overlay. This step has
not been succeeding and is the main step for future research. The concluding step would include the
assessment of the number of proliferating cells per unit area with FDG uptake in the accompanying
area.

Regarding Chapter 2 of this Master Thesis, the deblurring technique has been applied on PET im-
ages of tumor specimens. An example of a PET image of a tumor specimen is shown in figure 4.2a. A
deblurred version is shown in figure 4.2b on which the deblurring technique was applied. Deblurred
versions of PET tumor slice data will serve as more accurate representations of the tumor slices which
was proven by phantom experiments in chapter 2 of this Master Thesis.

Regarding the quantification of the PET phantom experiments, there must be a comprehensive look
at the absolute activity concentrations in the phantoms. A selection of elements that require extensive
elaboration include the exact improvement of the spatial resolution, alignment of the computational
phantom with measured data by the use of a high resolution approach, the positron range effect and
streaking artifacts as a result of image deblurring.
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(a) Histology slice

(b) Heatmap proliferating cells per mm

(c) Overlay histology slice with accompanying heatmap

Figure 4.1: Histology slice with accompanying heatmap
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(a) PET image tumor slice

(b) Deblurred PET image tumor slice

Figure 4.2: Example of PET data tumor specimen and deblurred version
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PSF Estimation

1 [V_S, spatial_S ,dim_S] = dicomreadVolume( '/media/ c e l e b r i t y /Seagate Backup Plus ...
Drive/MEP/PET experiments/PET_phantoms/OSEM3D+MAP/Phantom ...
snake/20180419_snake_OSEM3D-MAP/ . . .

2 1 .2 .826.0 .1 .3417726.3 .859524741 / . . .
3 1 .2.826.0.1.3417726.3.532305.20180830121010453 ' ) ;
4 V1_S = squeeze (V_S) ;
5

6 Num_slices = s i z e (V1_S,3 ) ;
7

8 f o r i = 1: Num_slices
9 E_S = sum(V1_S( i , : , : ) ,1) ;

10 E_S = permute (E_S, [ 2 3 1 ] ) ;
11 E_S(E_S<0) = 0;
12 max_slice ( i ) = max(max(E_S(97:152 ,58 :96) ) ) ;
13 end
14 [ s l i c e , index ] = sort ( max_slice ( : ) , ' descend ' ) ;
15 top = index (1 :4 ) ;
16 disp ( top ' ) ;
17 disp ( max_slice ( top ) ) ;
18

19 pixeldepth_S = 0.388192 ;
20 H_stack = pixeldepth_S∗ s i z e ( top ,1 ) ;
21 H_voxel = H_stack/numel( top ) /10;
22 E_S = (sum(V1_S( 1 3 8 : 1 4 1 , : , : ) ,1) )∗H_voxel ;
23 E_S = permute (E_S, [ 2 3 1 ] ) ;
24

25 RescaleSlope_S = 8.0059989584E2 ;
26 RescaleIntercept_S = 0;
27 E_S = E_S∗RescaleSlope_S + RescaleIntercept_S ;
28

29 pixeldepth_S = 0.388192 ;
30 slicedepth_S = 0.796 ;
31 scale_S = slicedepth_S/pixeldepth_S ;
32

33 f i gu re ; axis equal ; imagesc (A) ;
34 colormap ( in ferno ) ;
35 axis image o f f ;
36 set ( gca , ' dataAspectRatio ' , [ pixeldepth_S slicedepth_S 1 ] ) ;
37

38 max_E_S = max(max(E_S) ) ;
39 E_S_norm = E_S./max_E_S;
40

41 max_Ideal = max(max( Idea l ) ) ;
42 Ideal_norm = I d e a l . /max_Ideal ;
43

44 Sx = 0 .1 :0 .1 : 2 0 ;
45 Sy = 0 .1 :0 .1 : 2 0 ;
46

47 f o r k = 1: numel(Sx)
48 f o r l = 1: numel(Sy)
49 S_blurred = imgauss f i l t ( Ideal_norm , [ Sx(k) Sy( l ) ] , ' Padding ' , ...

' symmetric ' , ' FilterDomain ' , ' auto ' ) ;
50

51 A = ( abs ((E_S_norm- S_blurred ) ) ) . ^2;
52 A_x = sum(A,2 ) . /y_Ideal ;
53 A_xy = sum(A_x) . /x_Ideal ;
54

55 B = ( abs (E_S_norm) ) . ^2;
56 B_x = sum(B,2 ) . /y_Ideal ;
57 B_xy = sum(B_x) . /x_Ideal ;
58 RMSD(k , l ) = sqrt (A_xy./B_xy) ;
59 end
60 end
61

62 [Sx_max, Sy_max] = ind2sub ( s i z e (RMSD) , f ind (RMSD==min(min(RMSD) ) ) ) ;
63 f p r i n t f ( ' Lowest RMSD i s %10 . 8 f . ' ,RMSD(Sx_max, Sy_max) ) ;
64 f p r i n t f ( 'STDDEV in x i s %10 . 5 f . ' ,Sx(Sx_max) ) ;
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65 f p r i n t f ( 'STDDEV in y i s %10 . 5 f . ' ,Sy(Sy_max) ) ;
66

67 range = 0 .3 ;
68 SSx = (Sx(Sx_max) - range ) :0 .01 : ( Sx(Sx_max)+range ) ;
69 SSy = (Sy(Sy_max) - range ) :0 .01 : ( Sy(Sy_max)+range ) ;
70

71 f o r k = 1: numel(SSx)
72 f o r l = 1: numel(SSy)
73 S_blurred_opt = imgauss f i l t ( Ideal_norm , [ SSx(k) SSy( l ) ] , ' Padding ' , ...

' symmetric ' , ' FilterDomain ' , ' auto ' ) ;
74

75 A = ( abs ((E_S_norm- S_blurred_opt ) ) ) . ^2;
76 A_x = sum(A,2 ) . /y_Ideal ;
77 A_xy = sum(A_x) . /x_Ideal ;
78

79 B = ( abs (E_S_norm) ) . ^2;
80 B_x = sum(B,2 ) . /y_Ideal ;
81 B_xy = sum(B_x) . /x_Ideal ;
82 RMSD_range(k , l ) = sqrt (A_xy./B_xy) ;
83 end
84 end
85 [Sx_max_2, Sy_max_2] = ind2sub ( s i z e (RMSD_range) , f ind (RMSD_range==min(min(RMSD_range) ) ) ) ;
86 f p r i n t f ( ' Lowest RMSD i s \%10 . 8 f . ' ,RMSD_range(Sx_max_2, Sy_max_2) ) ;
87 f p r i n t f ( 'STDDEV in x i s \%10 . 5 f . ' ,SSx(Sx_max_2) ) ;
88 f p r i n t f ( 'STDDEV in y i s \%10 . 5 f . ' ,SSy(Sy_max_2) ) ;
89 [ x_Ideal , y_Ideal ] = s i z e ( Idea l ) ;
90

91 A = ( abs (( Ideal_norm -E_S_norm) ) ) . ^2;
92 A_x = sum(A,2 ) . /y_Ideal ;
93 A_xy = sum(A_x) . /x_Ideal ;
94

95 B = ( abs ( Ideal_norm) ) . ^2;
96 B_x = sum(B,2 ) . /y_Ideal ;
97 B_xy = sum(B_x) . /x_Ideal ;
98 RMSD_dblvsbi = sqrt (A_xy./B_xy) ;
99 disp (RMSD_dblvsbi) ;

100

101 PSF_x_R = 2∗ c e i l (2∗SSx(Sx_max_2) )+1;
102 PSF_y_R = 2∗ c e i l (2∗SSy(Sy_max_2) )+1;
103

104 PSF_size_R = ones (PSF_x_R,PSF_y_R) ;
105 V = .0001 ;
106 WT = edge ( Ideal , ' Sobel ' ) ;
107 WT(5 :end -4 ,5 :end -4) = 1;
108

109 E_blurred = imgauss f i l t ( Ideal_norm , [ SSx(Sx_max_2) SSy(Sy_max_2) ] , ' Padding ' , ...
' symmetric ' , ' FilterDomain ' , ' auto ' ) ;

110

111 f o r i = 1:10
112 J_R = deconvblind ( E_blurred , PSF_size_R , i ) ;
113 J_R_max = max(max(J_R) ) ;
114 J_R_norm = J_R./J_R_max;
115 C = ( abs (( Ideal_norm -J_R_norm) ) ) . ^2;
116 C_x = sum(C,2 ) . /y_Ideal ;
117 C_xy = sum(C_x) . /x_Ideal ;
118

119 D = ( abs ( Ideal_norm) ) . ^2;
120 D_x = sum(D,2 ) . /y_Ideal ;
121 D_xy = sum(D_x) . /x_Ideal ;
122 RMSD_blnd( i ) = sqrt (C_xy./D_xy) ;
123 end
124 [ ssrS , sndS ] = min(RMSD_blnd) ;
125 [ i jS , j i S ] = ind2sub ( s i z e (RMSD_blnd) , sndS) ;
126 disp ( sndS)
127 f i gu re ;
128 plot (RMSD_blnd) ;
129 hold on
130 plot ( sndS , ssrS , ' or ' )
131 hold o f f
132 text ( sndS∗1 .05 , ssrS , 'Minimum ' )
133
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134 [J_R,PSF_rec_R] = deconvblind (E_blurred , PSF_size_R , sndS) ;
135 DEBL_E_S2 = deconvlucy (E_S,PSF_rec_R,5 , sqrt (V) ) ;
136

137 E_S_counts = sum(sum(E_S,1 ) ) ;
138 DEBL_E_S2_counts = sum(sum(DEBL_E_S2,1 ) ) ;
139 Delta_ESDBL = 1 - abs (E_S_counts -DEBL_E_S2_counts)/DEBL_E_S2_counts ;
140 DEBL_E_S_REN = DEBL_E_S2.∗Delta_ESDBL;
141

142 xi = [59 9 4 ] ;
143 yi = [132 132 ] ;
144 impro f i l e ( Ideal , xi , yi ,10000 , ' nearest ' ) ;
145 xi = [59 9 4 ] ;
146 yi = [132 132 ] ;
147 impro f i l e (E_S, xi , y i ) ; gr id on ; hold on
148 xi = [59 9 4 ] ;
149 yi = [132 132 ] ;
150 impro f i l e (DEBL_E_S_REN, xi , y i ) ;
151

152 ptsOrig inal = detectSURFFeatures ( Idea l ) ;
153 ptsDistorted = detectSURFFeatures (DEBL_E_S1_n) ;
154

155 [ f eaturesOrig ina l , val idPtsOrig inal ] = extractFeatures ( Ideal , ptsOrig inal ) ;
156 [ featuresDistorted , val idPtsDistorted ] = extractFeatures (DEBL_E_S2, ptsDistorted ) ;
157

158 indexPairs = matchFeatures ( featuresOrig ina l , f eaturesDistorted ) ;
159 matchedOriginal = val idPtsOrig inal ( indexPairs ( : , 1 ) ) ;
160 matchedDistorted = val idPtsDistorted ( indexPairs ( : , 2 ) ) ;
161

162 f i gu re ;
163 showMatchedFeatures ( Ideal ,DEBL_E_S2, matchedOriginal , matchedDistorted ) ;
164 t i t l e ( ' Overlay idea l vs . deconvolved data - SNAKE - OSEM3DMAP' ) ;
165

166 [ tform , in l i e rDi s to r ted , i n l i e r O r i g i n a l ] = estimateGeometricTransform ( matchedDistorted , ...
matchedOriginal , ' s i m i l a r i t y ' ) ;

167

168 C = normxcorr2 ( Ideal ,DEBL_E_S1_n) ;
169 f igure , sur f (C) , shading f l a t
170

171 [ ypeak , xpeak ] = f ind (C==max(C( : ) ) ) ;
172 yof fSet = ypeak - s i z e ( Ideal , 1 ) ;
173 xof fSet = xpeak - s i z e ( Ideal , 2 ) ;
174

175 f i gu re ;
176 imagesc ( Idea l ) ;
177 colormap ( ' gray ' ) ;
178 axis equal
179 axis image o f f
180 set ( gca , ' dataAspectRatio ' , [ 1 1 1 ] ) ;
181 imrect ( gca , [ xo f fSet +1, yof fSet +1, s i z e ( Ideal , 2 ) , s i z e ( Ideal , 1 ) ] ) ;
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Validation protocol with ROI extraction

1 //random s e l e c t i o n of region of i n t e r e s t to use fo r the va l idat ion
2 getDimensions ( width , height , channels , s l i c e s , frames ) ;
3 dir = getDirectory (” image ”) ;
4 name = getTit l e ( ) ;
5 t i le_x = 1098; //1 p ixe l i s 0 .00002277 cm dus 500 um z i j n 2195 p ixe l s ( naar ...

beneden afgerond )
6 t i le_y = 1098; //dus 250 um i s 1098 p ixe l s ( naar boven afgerond )
7 numTiles = 2 // percentage of samples
8 numRow = (( height/ ti le_x )/numTiles ) ;
9 numCol = (( width/ ti le_x )/numTiles ) ;

10

11 f o r ( i = 0; i < numRow; i++)
12 {
13 f o r ( j = 0; j < numCol ; j++)
14 { i f ( i == 0 && j == 0) {
15 xOffset1 = ( numTiles ∗ random ∗ j ∗ ( t i le_x ) ) + random∗500;
16 yOffset1 = ( numTiles ∗ random ∗ i ∗ ( t i le_y ) ) + random∗500;
17 makeRectangle ( xOffset1 , yOffset1 , tile_x , t i le_y ) ;
18 roiManager (”Add”) ;
19 } e l s e {
20 xOffset = numTiles ∗ j ∗ ( t i le_x ) + xOffset1 ;
21 yOffset = numTiles ∗ i ∗ ( t i le_y ) + yOffset1 ;
22 makeRectangle ( xOffset , yOffset , ti le_x , t i le_y ) ;
23 roiManager (”Add”) ;
24 }
25 }
26 }
27 roiManager (”show a l l with l a b e l s ”)
28 print (”The number of ROIs in the image are ” + roiManager (” count ”) ) ;
29

30 //Determination of the ROI' s with tumor area above 75%
31 f o r (k = 0; k < roiManager (” count ”) ; k++){
32 roiManager (” s e l e c t ” , k) ;
33 run (” Duplicate . . . ” , t i t l e=Tile + k+1) ;
34 run (” Gaussian Blur . . . ” , ”sigma=3”) ;
35 run (”8 - b i t ”) ;
36 setAutoThreshold (” Default ”) ;
37 setThreshold (205 , 255) ;
38 run (” Convert to Mask”) ;
39 run (” Invert ”) ;
40 run (” Analyze Par t i c l e s . . . ” , ” s i z e =0- I n f i n i t y display c l ea r include summarize”) ;
41 c lo se () ;
42 }
43 }
44

45 \ sect ion ∗{Automated detect ion method \& viable t i s s u e separation }
46 \mcode{
47 function action ( input , f i lename ){
48 open( input + fi lename ) ;
49

50 //Counting pos i t ive c e l l s TOTAL s l i c e
51 t i t l e = getTit l e ( ) ;
52 run (” Duplicate . . . ” , ” t i t l e =[ t i t l e ] ” ) ;
53 run (” Sp l i t Channels ”) ;
54 c lo se () ;
55 c lo se () ;
56 run (” Gaussian Blur . . . ” , ”sigma=2”) ;
57 setAutoThreshold (” Default ”) ;
58 setThreshold (0 , 65) ;
59 run (” Convert to Mask”) ;
60 run (”Watershed”) ;
61 run (” Analyze Par t i c l e s . . . ” , ” s i z e=0.0000001257 -0 .000004909 c i r c u l a r i t y=0.50 -1 .00 ...

show=Masks c l ea r summarize add”) ;
62 rename(” mask_pos_cells ”) ;
63 c lo se ( t i t l e + ” ( red ) ”) ;
64

65 // Determine the area of the t i s s u e in the image
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66 selectWindow ( t i t l e ) ;
67 run (” Duplicate . . . ” , ” t i t l e =[Area tota l s l i c e ] ” ) ;
68 run (” Gaussian Blur . . . ” , ”sigma=3”) ;
69 run (”8 - b i t ”) ;
70 setAutoThreshold (” Default ”) ;
71 setThreshold (205 , 255) ;
72 run (” Convert to Mask”) ;
73 run (” Invert ”) ;
74 run (” Analyze Par t i c l e s . . . ” , ” s i z e =10000- I n f i n i t y c l ea r include summarize add”) ;
75 c lo se () ;
76

77 // Divis ion Tumor from Stroma
78 selectWindow ( t i t l e ) ;
79 run (” Duplicate . . . ” , ” t i t l e =[ o r i g i n a l image ] ” ) ;
80 selectWindow ( t i t l e ) ;
81 run (” Gaussian Blur . . . ” , ”sigma=2”) ;
82 run (” Color Threshold . . . ”) ;
83 // Color Thresholder 2 .0 .0 - rc -43/1 .52b
84 min=newArray(3) ;
85 max=newArray(3) ;
86 f i l t e r=newArray(3) ;
87 a=getTit l e () ;
88 run (”HSB Stack ”) ;
89 run (” Convert Stack to Images ”) ;
90 selectWindow (”Hue”) ;
91 rename(”0”) ;
92 selectWindow (” Saturation ”) ;
93 rename(”1”) ;
94 selectWindow (” Brightness ”) ;
95 rename(”2”) ;
96 min[0]=211;
97 max[0]=255;
98 f i l t e r [0]=” pass ” ;
99 min[1]=65; //140 //85

100 max[1]=255;
101 f i l t e r [1]=” pass ” ;
102 min[2 ]=0;
103 max[2]=255;
104 f i l t e r [2]=” pass ” ;
105 f o r ( i =0; i <3; i++){
106 selectWindow(””+ i ) ;
107 setThreshold (min [ i ] , max[ i ] ) ;
108 run (” Convert to Mask”) ;
109 i f ( f i l t e r [ i ]==”stop ”) run (” Invert ”) ;
110 }
111 imageCalculator (”AND create ” , ”0” ,”1”) ;
112 imageCalculator (”AND create ” , ”Result of 0” ,”2”) ;
113 f o r ( i =0; i <3; i++){
114 selectWindow(””+ i ) ;
115 c lo se () ;
116 }
117 selectWindow (” Result of 0”) ;
118 c lo se () ;
119 selectWindow (” Result of Result of 0”) ;
120 rename(a) ;
121 // Colour Thresholding - - - - - - - - - - - - -
122 run (”Make Binary ”) ;
123 run (” F i l l Holes ”) ;
124 rename(”mask_stromatumor”) ;
125

126 //Combine pos i t ive c e l l s + tumor/stroma
127 imageCalculator (”Add create ” , ”mask_pos_cells ” , ”mask_stromatumor”) ;
128 run (” Analyze Par t i c l e s . . . ” , ” s i z e=0.000001 - I n f i n i t y c i r c u l a r i t y =0-0 .75 show=Masks”) ; ...

//hogere ondergrens?
129 rename(” d iv i s i on ”) ;
130 run (” Dilate ”) ;
131 run (” F i l l Holes ”) ;
132 c lo se (” mask_pos_cells ”) ;
133 c lo se (”mask_stromatumor”) ;
134

135 //Counting pos i t ive c e l l s in TUMOR
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136 imageCalculator (”Add create ” , ” o r i g i n a l image ” , ” d iv i s i on ”) ;
137 rename(”tumor”) ;
138 run (” Duplicate . . . ” , ” ”) ;
139 tumor_2 = getTit l e ( ) ;
140 run (” Sp l i t Channels ”) ;
141 c lo se () ;
142 c lo se () ;
143 selectWindow (tumor_2 + ” ( red ) ”) ;
144 run (” Gaussian Blur . . . ” , ”sigma=2”) ;
145 setAutoThreshold (” Default ”) ;
146 setThreshold (0 , 65) ;
147 run (” Convert to Mask”) ;
148 run (”Watershed”) ;
149 run (” Analyze Par t i c l e s . . . ” , ” s i z e=0.0000001257 -0 .000004909 c i r c u l a r i t y=0.50 -1 .00 ...

summarize”) ;
150 c lo se (tumor_2 + ” ( red ) ”) ;
151

152 //Counting pos i t ive c e l l s in STROMA
153 selectWindow (” d iv i s i on ”) ;
154 run (” Invert ”) ;
155 imageCalculator (”Add create ” , ” o r i g i n a l image ” , ” d iv i s i on ”) ;
156 rename(” stroma ”) ;
157 c lo se (” d iv i s i on ”) ;
158 run (” Duplicate . . . ” , ” ”) ;
159 stroma_2 = getTit l e ( ) ;
160 run (” Sp l i t Channels ”) ;
161 c lo se () ;
162 c lo se () ;
163 selectWindow (stroma_2 + ” ( red ) ”) ;
164 run (” Gaussian Blur . . . ” , ”sigma=2”) ;
165 setAutoThreshold (” Default ”) ;
166 setThreshold (0 , 65) ;
167 run (” Convert to Mask”) ;
168 run (”Watershed”) ;
169 run (” Analyze Par t i c l e s . . . ” , ” s i z e=0.0000001257 -0 .000004909 c i r c u l a r i t y=0.50 -1 .00 ...

summarize”) ;
170 c lo se (stroma_2 + ” ( red ) ”) ;
171 run (” Close All ”) ;
172 }
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Linear Mixed-Effects Modeling

1 Activity = [11431 .59805 ; 136 .31303 ; 23175 .936 ; 36504 .383 ; 31711 .744 ; 16 .12335 ; ...
698315 .8 ; 560333 .94 ; 341344 .41 ; 4890 .76233 ; 5039 .49173 ; 13442 .385 ; 10784 .34 ; ...
13514 .74071 ; 34775 .04 ; 4239 .054 ; 6847 .41 ; 43827 .2 ; 44100; 8860 .8 ; 8712; 65573 .9 ; ...
107419 .5 ; 63913 .2 ; 38734 .5 ; 1519 .60326 ; 5961 .6 ; 3314 .0975 ; 17152; 8016; 119314; ...
9118 .6 ; 19686 .4 ; 657 .01857 ; 5410 .8 ; 6397 .597 ; 1153 .26232 ; 7524; 13130] ;

2 Total_cel ls = [3956 8522 5692 6913 5652 4390 988 755 1458 3023 1450 2473 3838 3355 3138 ...
2676 3934 552 687 2862 1886 4383 6103 2886 6635 1198 5173 2063 5836 2006 7837 7066 ...
12657 2563 3468 5173 787 2019 724 ] ;

3 Tumor = [3049 ; 7550; 4540; 5820; 4963; 1044; 518; 516; 1165; 2745; 925; 1132; 1655; ...
1137; 1916; 1614; 2296; 465; 554; 2698; 1688; 3698; 5430; 2611; 6139; 679; 3030; ...
982; 2688; 1504; 5901; 5963; 9009; 1467; 3084; 2125; 531; 1186; 380 ] ;

4 Stroma = [907 972 1152 1093 689 3346 470 239 293 278 525 1341 2183 2218 1222 1062 1638 ...
87 133 164 198 685 673 275 496 519 2143 1081 3148 502 1936 1103 3648 1096 384 3048 ...
256 833 344 ] ;

5 Patients = c e l l s t r ( [ 'L07 ' ; 'L07 ' ; 'L08 ' ; 'L08 ' ; 'L08 ' ; 'L08 ' ; 'L10 ' ; 'L10 ' ; 'L10 ' ; 'L12 ' ; 'L12 ' ; . . .
6 'L13 ' ; 'L13 ' ; 'L13 ' ; 'L13 ' ; 'L14 ' ; 'L14 ' ; 'L17 ' ; 'L17 ' ; 'L17 ' ; 'L18 ' ; 'L18 ' ; 'L18 ' ; 'L18 ' ; 'L18 ' ; . . .
7 'L20 ' ; 'L20 ' ; 'L20 ' ; 'L20 ' ; 'L20 ' ; 'L20 ' ; 'L21 ' ; 'L21 ' ; 'L21 ' ; 'L21 ' ; 'L21 ' ; . . .
8 'L22 ' ; 'L22 ' ; 'L22 ' ] ) ;
9

10 Activity ( 7 : 9 , : ) = [ ] ;
11 Tumor( 7 : 9 , : ) = [ ] ;
12 Patients ( 7 : 9 , : ) = [ ] ;
13

14 BigAnalysis = table ( Patients ,Tumor, Activity ) ;
15 BigAnalysis .Patients = categor i ca l ( BigAnalysis .Patients ) ;
16

17 f i gu re ;
18 gscatter ( BigAnalysis.Tumor , BigAnalysis .Activity , BigAnalysis .Patients , [ ] , ' . ' ,25) ;
19 hold on
20 t i t l e ( ' Simple l i n e a r model f i t ' , ' FontSize ' ,15)
21 xlabe l ( 'Number of p r o l i f e r a t i n g c e l l s ' , ' FontSize ' ,15)
22 ylabe l ( ' Activity ' , ' FontSize ' ,15)
23

24 c l c
25 lme_intercept = f i t lme ( BigAnalysis , ' Activity ¬ Tumor ' ) ;
26 lme_intercept_slope = f i t lme ( BigAnalysis , ' Activity ¬ Tumor + (1+Tumor| Patients ) ' ) ;
27

28 [¬ ,¬ , rE f f e c t s ] = randomEffects ( lme_intercept_slope ) ;
29

30 f igure ,
31 scat te r ( rEf fects .Est imate (1 :2 :end ) , rEf fects .Est imate (2 :2 :end ) )
32 t i t l e ( 'Random Ef fec t s ' , ' FontSize ' ,15)
33 xlabe l ( ' Intercept ' , ' FontSize ' ,15)
34 ylabe l ( ' Slope ' , ' FontSize ' ,15)
35

36 compare( lme_intercept , lme_intercept_slope , ' CheckNesting ' , true )
37 lme_matrix = fit lmematrix (X, y ,Z,G, ' CovariancePattern ' , ' Diagonal ' ) ;
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Example figures of merit 4x4 phantom

1 %% Compartments quant itat ive ana lys i s idea l phantom
2

3 comp11_ID = ID_4x4(117:122 ,76:78) ;
4 comp12_ID = ID_4x4(117:122 ,79:81) ;
5 comp13_ID = ID_4x4(117:122 ,82:84) ;
6 comp14_ID = ID_4x4(117:122 ,85:87) ;
7

8 comp21_ID = ID_4x4(123:128 ,76:78) ;
9 comp22_ID = ID_4x4(123:128 ,79:81) ;

10 comp23_ID = ID_4x4(123:128 ,82:84) ;
11 comp24_ID = ID_4x4(123:128 ,85:87) ;
12

13 comp31_ID = ID_4x4(129:134 ,76:78) ;
14 comp32_ID = ID_4x4(129:134 ,79:81) ;
15 comp33_ID = ID_4x4(129:134 ,82:84) ;
16 comp34_ID = ID_4x4(129:134 ,85:87) ;
17

18 comp41_ID = ID_4x4(135:140 ,76:78) ;
19 comp42_ID = ID_4x4(135:140 ,79:81) ;
20 comp43_ID = ID_4x4(135:140 ,82:84) ;
21 comp44_ID = ID_4x4(135:140 ,85:87) ;
22

23 mu11_ID = mean2(comp11_ID) ; mu12_ID = mean2(comp12_ID) ; mu13_ID = mean2(comp13_ID) ; ...
mu14_ID = mean2(comp14_ID) ;

24 mu21_ID = mean2(comp21_ID) ; mu22_ID = mean2(comp22_ID) ; mu23_ID = mean2(comp23_ID) ; ...
mu24_ID = mean2(comp24_ID) ;

25 mu31_ID = mean2(comp31_ID) ; mu32_ID = mean2(comp32_ID) ; mu33_ID = mean2(comp33_ID) ; ...
mu34_ID = mean2(comp34_ID) ;

26 mu41_ID = mean2(comp41_ID) ; mu42_ID = mean2(comp42_ID) ; mu43_ID = mean2(comp43_ID) ; ...
mu44_ID = mean2(comp44_ID) ;

27

28 %% Quantitative ana lys i s ROIs
29

30 comp11_EF = E_F(117:122 ,76:78) ;
31 comp12_EF = E_F(117:122 ,79:81) ;
32 comp13_EF = E_F(117:122 ,82:84) ;
33 comp14_EF = E_F(117:122 ,85:87) ;
34 comp11_DBL = DEBL_E_F_REN(117:122 ,76:78) ;
35 comp12_DBL = DEBL_E_F_REN(117:122 ,79:81) ;
36 comp13_DBL = DEBL_E_F_REN(117:122 ,82:84) ;
37 comp14_DBL = DEBL_E_F_REN(117:122 ,85:87) ;
38

39 comp21_EF = E_F(123:128 ,76:78) ;
40 comp22_EF = E_F(123:128 ,79:81) ;
41 comp23_EF = E_F(123:128 ,82:84) ;
42 comp24_EF = E_F(123:128 ,85:87) ;
43 comp21_DBL = DEBL_E_F_REN(123:128 ,76:78) ;
44 comp22_DBL = DEBL_E_F_REN(123:128 ,79:81) ;
45 comp23_DBL = DEBL_E_F_REN(123:128 ,82:84) ;
46 comp24_DBL = DEBL_E_F_REN(123:128 ,85:87) ;
47

48 comp31_EF = E_F(129:134 ,76:78) ;
49 comp32_EF = E_F(129:134 ,79:81) ;
50 comp33_EF = E_F(129:134 ,82:84) ;
51 comp34_EF = E_F(129:134 ,85:87) ;
52 comp31_DBL = DEBL_E_F_REN(129:134 ,76:78) ;
53 comp32_DBL = DEBL_E_F_REN(129:134 ,79:81) ;
54 comp33_DBL = DEBL_E_F_REN(129:134 ,82:84) ;
55 comp34_DBL = DEBL_E_F_REN(129:134 ,85:87) ;
56

57 comp41_EF = E_F(135:140 ,76:78) ;
58 comp42_EF = E_F(135:140 ,79:81) ;
59 comp43_EF = E_F(135:140 ,82:84) ;
60 comp44_EF = E_F(135:140 ,85:87) ;
61 comp41_DBL = DEBL_E_F_REN(135:140 ,76:78) ;
62 comp42_DBL = DEBL_E_F_REN(135:140 ,79:81) ;
63 comp43_DBL = DEBL_E_F_REN(135:140 ,82:84) ;
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64 comp44_DBL = DEBL_E_F_REN(135:140 ,85:87) ;
65

66 mu11_EF = mean2(comp11_EF) ; mu12_EF = mean2(comp12_EF) ; mu13_EF = mean2(comp13_EF) ; ...
mu14_EF = mean2(comp14_EF) ;

67 mu21_EF = mean2(comp21_EF) ; mu22_EF = mean2(comp22_EF) ; mu23_EF = mean2(comp23_EF) ; ...
mu24_EF = mean2(comp24_EF) ;

68 mu31_EF = mean2(comp31_EF) ; mu32_EF = mean2(comp32_EF) ; mu33_EF = mean2(comp33_EF) ; ...
mu34_EF = mean2(comp34_EF) ;

69 mu41_EF = mean2(comp41_EF) ; mu42_EF = mean2(comp42_EF) ; mu43_EF = mean2(comp43_EF) ; ...
mu44_EF = mean2(comp44_EF) ;

70 mu11_DBL = mean2(comp11_DBL) ; mu12_DBL = mean2(comp12_DBL) ; mu13_DBL = ...
mean2(comp13_DBL) ; mu14_DBL = mean2(comp14_DBL) ;

71 mu21_DBL = mean2(comp21_DBL) ; mu22_DBL = mean2(comp22_DBL) ; mu23_DBL = ...
mean2(comp23_DBL) ; mu24_DBL = mean2(comp24_DBL) ;

72 mu31_DBL = mean2(comp31_DBL) ; mu32_DBL = mean2(comp32_DBL) ; mu33_DBL = ...
mean2(comp33_DBL) ; mu34_DBL = mean2(comp34_DBL) ;

73 mu41_DBL = mean2(comp41_DBL) ; mu42_DBL = mean2(comp42_DBL) ; mu43_DBL = ...
mean2(comp43_DBL) ; mu44_DBL = mean2(comp44_DBL) ;

74

75 sig11_EF = std2 (comp11_EF) ; sig12_EF = std2 (comp12_EF) ; sig13_EF = std2 (comp13_EF) ; ...
sig14_EF = std2 (comp14_EF) ;

76 sig21_EF = std2 (comp21_EF) ; sig22_EF = std2 (comp22_EF) ; sig23_EF = std2 (comp23_EF) ; ...
sig24_EF = std2 (comp24_EF) ;

77 sig31_EF = std2 (comp31_EF) ; sig32_EF = std2 (comp32_EF) ; sig33_EF = std2 (comp33_EF) ; ...
sig34_EF = std2 (comp34_EF) ;

78 sig41_EF = std2 (comp41_EF) ; sig42_EF = std2 (comp42_EF) ; sig43_EF = std2 (comp43_EF) ; ...
sig44_EF = std2 (comp44_EF) ;

79 sig11_DBL = std2 (comp11_DBL) ; sig12_DBL = std2 (comp12_DBL) ; sig13_DBL = ...
std2 (comp13_DBL) ; sig14_DBL = std2 (comp14_DBL) ;

80 sig21_DBL = std2 (comp21_DBL) ; sig22_DBL = std2 (comp22_DBL) ; sig23_DBL = ...
std2 (comp23_DBL) ; sig24_DBL = std2 (comp24_DBL) ;

81 sig31_DBL = std2 (comp31_DBL) ; sig32_DBL = std2 (comp32_DBL) ; sig33_DBL = ...
std2 (comp33_DBL) ; sig34_DBL = std2 (comp34_DBL) ;

82 sig41_DBL = std2 (comp41_DBL) ; sig42_DBL = std2 (comp42_DBL) ; sig43_DBL = ...
std2 (comp43_DBL) ; sig44_DBL = std2 (comp44_DBL) ;

83

84 mu_ROI_ID = mean2(ID_4x4(117:140 ,76:87) ) ;
85 mu_ROI_raw = mean2(E_F(117:140 ,76:87) ) ;
86 mu_ROI_DBL = mean2(DEBL_E_F_REN(117:140 ,76:87) ) ;
87

88 max_ROI_ID = max(max(ID_4x4(117:140 ,76:87) ) ) ;
89 max_ROI_raw = max(max(E_F(117:140 ,76:87) ) ) ;
90 max_ROI_DBL = max(max(DEBL_E_F_REN(117:140 ,76:87) ) ) ;
91

92 sig_ROI_ID = std2 (ID_4x4(117:140 ,76:87) ) ;
93 sig_ROI_raw = std2 (E_F(117:140 ,76:87) ) ;
94 sig_ROI_DBL = std2 (DEBL_E_F_REN(117:140 ,76:87) ) ;
95

96 %% SNR for each region raw data
97

98 SNR_4x4_11 = mu11_EF/sig11_EF ;
99 SNR_4x4_12 = mu12_EF/sig12_EF ;

100 SNR_4x4_13 = mu13_EF/sig13_EF ;
101 SNR_4x4_14 = mu14_EF/sig14_EF ;
102

103 SNR_4x4_21 = mu21_EF/sig21_EF ;
104 SNR_4x4_22 = mu22_EF/sig22_EF ;
105 SNR_4x4_23 = mu23_EF/sig23_EF ;
106 SNR_4x4_24 = mu24_EF/sig24_EF ;
107

108 SNR_4x4_31 = mu31_EF/sig31_EF ;
109 SNR_4x4_32 = mu32_EF/sig32_EF ;
110 SNR_4x4_33 = mu33_EF/sig33_EF ;
111 SNR_4x4_34 = mu34_EF/sig34_EF ;
112

113 SNR_4x4_41 = mu41_EF/sig41_EF ;
114 SNR_4x4_42 = mu42_EF/sig42_EF ;
115 SNR_4x4_43 = mu43_EF/sig43_EF ;
116 SNR_4x4_44 = mu44_EF/sig44_EF ;
117

118 %% SNR for deblurred data
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119

120 SNR_4x4_11_DB = mu11_DBL/sig11_DBL ;
121 SNR_4x4_12_DB = mu12_DBL/sig12_DBL ;
122 SNR_4x4_13_DB = mu13_DBL/sig13_DBL ;
123 SNR_4x4_14_DB = mu14_DBL/sig14_DBL ;
124

125 SNR_4x4_21_DB = mu21_DBL/sig21_DBL ;
126 SNR_4x4_22_DB = mu22_DBL/sig22_DBL ;
127 SNR_4x4_23_DB = mu23_DBL/sig23_DBL ;
128 SNR_4x4_24_DB = mu24_DBL/sig24_DBL ;
129

130 SNR_4x4_31_DB = mu31_DBL/sig31_DBL ;
131 SNR_4x4_32_DB = mu32_DBL/sig32_DBL ;
132 SNR_4x4_33_DB = mu33_DBL/sig33_DBL ;
133 SNR_4x4_34_DB = mu34_DBL/sig34_DBL ;
134

135 SNR_4x4_41_DB = mu41_DBL/sig41_DBL ;
136 SNR_4x4_42_DB = mu42_DBL/sig42_DBL ;
137 SNR_4x4_43_DB = mu43_DBL/sig43_DBL ;
138 SNR_4x4_44_DB = mu44_DBL/sig44_DBL ;
139

140 %% contrast
141 % [ 1 : 1 ]
142 CNT_EF_1 = ( abs (mu21_EF - mu31_EF) ) /(mu21_EF + mu31_EF) ;
143 CNT_DB_1 = ( abs (mu11_DBL - mu12_DBL) ) /(mu11_DBL + mu12_DBL) ;
144 CNT_ID_1 = ( abs (mu21_ID - mu31_ID) ) /(mu21_ID + mu31_ID) ;
145 CNT_4x4_1_EF = CNT_EF_1/CNT_ID_1;
146 CNT_4x4_1_DB = CNT_DB_1/CNT_ID_1;
147

148 CNT_EF_2 = ( abs (mu22_EF - mu32_EF) ) /(mu22_EF + mu32_EF) ;
149 CNT_DB_2 = ( abs (mu11_DBL - mu12_DBL) ) /(mu11_DBL + mu12_DBL) ;
150 CNT_ID_2 = ( abs (mu22_ID - mu32_ID) ) /(mu22_ID + mu32_ID) ;
151 CNT_4x4_2_EF = CNT_EF_2/CNT_ID_2;
152 CNT_4x4_2_DB = CNT_DB_2/CNT_ID_2;
153

154 % [ 0 : 1 ]
155 CNT_EF_3 = ( abs (mu14_EF - mu24_EF) ) /(mu14_EF + mu24_EF) ;
156 CNT_DB_3 = ( abs (mu11_DBL - mu12_DBL) ) /(mu11_DBL + mu12_DBL) ;
157 CNT_ID_3 = ( abs (mu14_ID - mu24_ID) ) /(mu14_ID + mu24_ID) ;
158 CNT_4x4_3_EF = CNT_EF_3/CNT_ID_3;
159 CNT_4x4_3_DB = CNT_DB_3/CNT_ID_3;
160

161 CNT_EF_4 = ( abs (mu34_EF - mu44_EF) ) /(mu34_EF + mu44_EF) ;
162 CNT_DB_4 = ( abs (mu11_DBL - mu12_DBL) ) /(mu11_DBL + mu12_DBL) ;
163 CNT_ID_4 = ( abs (mu34_ID - mu44_ID) ) /(mu34_ID + mu44_ID) ;
164 CNT_4x4_4_EF = CNT_EF_4/CNT_ID_4;
165 CNT_4x4_4_DB = CNT_DB_4/CNT_ID_4;
166

167 % [ 1 : 2 ]
168 CNT_EF_5 = ( abs (mu12_EF - mu13_EF) ) /(mu12_EF + mu13_EF) ;
169 CNT_DB_5 = ( abs (mu11_DBL - mu12_DBL) ) /(mu11_DBL + mu12_DBL) ;
170 CNT_ID_5 = ( abs (mu12_ID - mu13_ID) ) /(mu12_ID + mu13_ID) ;
171 CNT_4x4_5_EF = CNT_EF_5/CNT_ID_5;
172 CNT_4x4_5_DB = CNT_DB_5/CNT_ID_5;
173

174 CNT_EF_6 = ( abs (mu32_EF - mu33_EF) ) /(mu32_EF + mu33_EF) ;
175 CNT_DB_2 = ( abs (mu11_DBL - mu12_DBL) ) /(mu11_DBL + mu12_DBL) ;
176 CNT_ID_6 = ( abs (mu32_ID - mu33_ID) ) /(mu32_ID + mu33_ID) ;
177 CNT_4x4_6_EF = CNT_EF_6/CNT_ID_6;
178 CNT_4x4_6_DB = CNT_DB_6/CNT_ID_6;
179

180 % [ 2 : 3 ]
181 CNT_EF_7 = ( abs (mu22_EF - mu23_EF) ) /(mu22_EF + mu23_EF) ;
182 CNT_DB_2 = ( abs (mu11_DBL - mu12_DBL) ) /(mu11_DBL + mu12_DBL) ;
183 CNT_ID_7 = ( abs (mu22_ID - mu23_ID) ) /(mu22_ID + mu23_ID) ;
184 CNT_4x4_7_EF = CNT_EF_7/CNT_ID_7;
185 CNT_4x4_7_DB = CNT_DB_7/CNT_ID_7;
186

187 CNT_EF_8 = ( abs (mu42_EF - mu43_EF) ) /(mu42_EF + mu43_EF) ;
188 CNT_DB_2 = ( abs (mu11_DBL - mu12_DBL) ) /(mu11_DBL + mu12_DBL) ;
189 CNT_ID_8 = ( abs (mu42_ID - mu43_ID) ) /(mu42_ID + mu43_ID) ;
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190 CNT_4x4_8_EF = CNT_EF_8/CNT_ID_8;
191 CNT_4x4_8_DB = CNT_DB_8/CNT_ID_8;
192

193 % [ 3 : 4 ]
194 CNT_EF_9 = ( abs (mu23_EF - mu24_EF) ) /(mu23_EF + mu24_EF) ;
195 CNT_DB_2 = ( abs (mu11_DBL - mu12_DBL) ) /(mu11_DBL + mu12_DBL) ;
196 CNT_ID_9 = ( abs (mu23_ID - mu24_ID) ) /(mu23_ID + mu24_ID) ;
197 CNT_4x4_9_EF = CNT_EF_9/CNT_ID_9;
198 CNT_4x4_9_DB = CNT_DB_9/CNT_ID_9;
199

200 CNT_EF_10 = ( abs (mu43_EF - mu44_EF) ) /(mu43_EF + mu44_EF) ;
201 CNT_DB_2 = ( abs (mu11_DBL - mu12_DBL) ) /(mu11_DBL + mu12_DBL) ;
202 CNT_ID_10 = ( abs (mu43_ID - mu44_ID) ) /(mu43_ID + mu44_ID) ;
203 CNT_4x4_10_EF = CNT_EF_10/CNT_ID_10;
204 CNT_4x4_10_DB = CNT_DB_10/CNT_ID_10;
205

206 % [ 1 : 4 ]
207 CNT_EF_11 = ( abs (mu11_EF - mu12_EF) ) /(mu11_EF + mu12_EF) ;
208 CNT_DB_2 = ( abs (mu11_DBL - mu12_DBL) ) /(mu11_DBL + mu12_DBL) ;
209 CNT_ID_11 = ( abs (mu11_ID - mu12_ID) ) /(mu11_ID + mu12_ID) ;
210 CNT_4x4_11_EF = CNT_EF_11/CNT_ID_11;
211 CNT_4x4_11_DB = CNT_DB_11/CNT_ID_11;
212

213 CNT_EF_12 = ( abs (mu11_EF - mu21_EF) ) /(mu11_EF + mu21_EF) ;
214 CNT_DB_2 = ( abs (mu11_DBL - mu12_DBL) ) /(mu11_DBL + mu12_DBL) ;
215 CNT_ID_12 = ( abs (mu11_ID - mu21_ID) ) /(mu11_ID + mu21_ID) ;
216 CNT_4x4_12_EF = CNT_EF_12/CNT_ID_12;
217 CNT_4x4_12_DB = CNT_DB_12/CNT_ID_12;
218

219 % [ 0 : 0 .5 ]
220 CNT_EF_13 = ( abs (mu13_EF - mu14_EF) ) /(mu13_EF + mu14_EF) ;
221 CNT_DB_2 = ( abs (mu11_DBL - mu12_DBL) ) /(mu11_DBL + mu12_DBL) ;
222 CNT_ID_13 = ( abs (mu13_ID - mu14_ID) ) /(mu13_ID + mu14_ID) ;
223 CNT_4x4_13_EF = CNT_EF_13/CNT_ID_13;
224 CNT_4x4_13_DB = CNT_DB_13/CNT_ID_13;
225

226 CNT_EF_14 = ( abs (mu14_EF - mu24_EF) ) /(mu14_EF + mu24_EF) ;
227 CNT_DB_2 = ( abs (mu11_DBL - mu12_DBL) ) /(mu11_DBL + mu12_DBL) ;
228 CNT_ID_14 = ( abs (mu14_ID - mu24_ID) ) /(mu14_ID + mu24_ID) ;
229 CNT_4x4_14_EF = CNT_EF_14/CNT_ID_14;
230 CNT_4x4_14_DB = CNT_DB_14/CNT_ID_14;
231

232 %% RMSD idea l vs . deconvolved
233 E_F_max = max(max(E_F) ) ;
234 E_F_norm = E_F./E_F_max;
235

236 ID_4x4_max = max(max(ID_4x4) ) ;
237 ID_4x4_norm = ID_4x4./ID_4x4_max;
238

239 DEBL_E_F_max = max(max(DEBL_E_F_REN) ) ;
240 DEBL_E_F_REN_norm = DEBL_E_F_REN./DEBL_E_F_max;
241

242 [ x_ID_4x4,y_ID_4x4 ] = s i z e (ID_4x4_norm) ;
243

244 A = ( abs ((ID_4x4_norm-E_F_norm) ) ) . ^2;
245 A_x = sum(A,2 ) . /y_ID_4x4 ;
246 A_xy = sum(A_x) . /x_ID_4x4 ;
247

248 B = ( abs (ID_4x4_norm) ) . ^2;
249 B_x = sum(B,2 ) . /y_ID_4x4 ;
250 B_xy = sum(B_x) . /x_ID_4x4 ;
251 RMSD_dblvsbi = sqrt (A_xy./B_xy) ;
252 disp (RMSD_dblvsbi) ;
253

254 %% Proportions based on mean ac t iv i ty in ROIs IDEAL PHANTOM
255 Prop11_4x4_ID = mu11_ID/mu11_ID;
256 Prop12_4x4_ID = mu12_ID/mu11_ID;
257 Prop13_4x4_ID = mu13_ID/mu11_ID;
258 Prop14_4x4_ID = mu14_ID/mu11_ID;
259

260 Prop21_4x4_ID = mu21_ID/mu24_ID;
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261 Prop22_4x4_ID = mu22_ID/mu24_ID;
262 Prop23_4x4_ID = mu23_ID/mu24_ID;
263 Prop24_4x4_ID = mu24_ID/mu24_ID;
264

265 Prop31_4x4_ID = mu31_ID/mu33_ID;
266 Prop32_4x4_ID = mu32_ID/mu33_ID;
267 Prop33_4x4_ID = mu33_ID/mu33_ID;
268 Prop34_4x4_ID = mu34_ID/mu33_ID;
269

270 Prop41_4x4_ID = mu41_ID/mu44_ID;
271 Prop42_4x4_ID = mu42_ID/mu44_ID;
272 Prop43_4x4_ID = mu43_ID/mu44_ID;
273 Prop44_4x4_ID = mu44_ID/mu44_ID;
274

275 %% pROPORTIONS 4X4 PHANTOM rows
276 Prop11_4x4_EF = mu11_EF/mu11_EF;
277 Prop12_4x4_EF = mu12_EF/mu11_EF;
278 Prop13_4x4_EF = mu13_EF/mu11_EF;
279 Prop14_4x4_EF = mu14_EF/mu11_EF;
280

281 Prop21_4x4_EF = mu21_EF/mu24_EF;
282 Prop22_4x4_EF = mu22_EF/mu24_EF;
283 Prop23_4x4_EF = mu23_EF/mu24_EF;
284 Prop24_4x4_EF = mu24_EF/mu24_EF;
285

286 Prop31_4x4_EF = mu31_EF/mu33_EF;
287 Prop32_4x4_EF = mu32_EF/mu33_EF;
288 Prop33_4x4_EF = mu33_EF/mu33_EF;
289 Prop34_4x4_EF = mu34_EF/mu33_EF;
290

291 Prop41_4x4_EF = mu41_EF/mu44_EF;
292 Prop42_4x4_EF = mu42_EF/mu44_EF;
293 Prop43_4x4_EF = mu43_EF/mu44_EF;
294 Prop44_4x4_EF = mu44_EF/mu44_EF;
295 %% pROPORTIONS 4X4 PHANTOM DEBLURRED ROWS
296 Prop11_4x4_EF = mu11_EF/mu11_EF;
297 Prop12_4x4_EF = mu12_EF/mu11_EF;
298 Prop13_4x4_EF = mu13_EF/mu11_EF;
299 Prop14_4x4_EF = mu14_EF/mu11_EF;
300

301 Prop21_4x4_EF = mu21_EF/mu24_EF;
302 Prop22_4x4_EF = mu22_EF/mu24_EF;
303 Prop23_4x4_EF = mu23_EF/mu24_EF;
304 Prop24_4x4_EF = mu24_EF/mu24_EF;
305

306 Prop31_4x4_EF = mu31_EF/mu33_EF;
307 Prop32_4x4_EF = mu32_EF/mu33_EF;
308 Prop33_4x4_EF = mu33_EF/mu33_EF;
309 Prop34_4x4_EF = mu34_EF/mu33_EF;
310

311 Prop41_4x4_EF = mu41_EF/mu44_EF;
312 Prop42_4x4_EF = mu42_EF/mu44_EF;
313 Prop43_4x4_EF = mu43_EF/mu44_EF;
314 Prop44_4x4_EF = mu44_EF/mu44_EF;
315

316 %% deblurred columns
317 Prop11_4x4_DB = mu11_DBL/mu11_DBL;
318 Prop21_4x4_DB = mu21_DBL/mu11_DBL;
319 Prop31_4x4_DB = mu31_DBL/mu11_DBL;
320 Prop41_4x4_DB = mu41_DBL/mu11_DBL;
321

322 Prop12_4x4_DB = mu12_DBL/mu12_DBL;
323 Prop22_4x4_DB = mu22_DBL/mu12_DBL;
324 Prop32_4x4_DB = mu32_DBL/mu12_DBL;
325 Prop42_4x4_DB = mu42_DBL/mu12_DBL;
326

327 Prop13_4x4_DB = mu13_DBL/mu33_DBL;
328 Prop23_4x4_DB = mu23_DBL/mu33_DBL;
329 Prop33_4x4_DB = mu33_DBL/mu33_DBL;
330 Prop43_4x4_DB = mu43_DBL/mu33_DBL;
331
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332 Prop14_4x4_DB = mu14_DBL/mu44_DBL;
333 Prop24_4x4_DB = mu24_DBL/mu44_DBL;
334 Prop34_4x4_DB = mu34_DBL/mu44_DBL;
335 Prop44_4x4_DB = mu44_DBL/mu44_DBL;
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