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HYDROINFORMATICS AND APPLICATIONS OF 

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 

IN WATER-RELATED PROBLEMS 

Gerald A. Corzo Perez 1 and Dimitri P. Solomatine 1 ,2,3

1 IHE Delft Institute for Water Education, Delft, The Netherlands 
2 Water Resources Section, Delft University of Technology, De(ft, The Netherlands 

3 Water Problem Institute o
f 

the Russian A ·aderny o
f

S •fences, Moscow, Russia 

In recent years, there has been a surge of interest in 
machine learning (ML) and artificial intelligence (Al) due 
to the effectiveness of deep learning algorithms and the 
increasing availability of large data sets. This chapter 
provides a brief overview of the applications of Al and 
ML techniques in hydroinformatics, a field that deals with 
advanced information technology, data analytics, and 
modeling for aquatic environment management. Data­
driven models are becoming more common in water 
management as they can reveal hidden patterns in 
data and offer improved accuracy in certain situations. 
This chapter highlights the importance of spatiotempo­
ral data analysis, pattern recognition, and optimization 
approaches in water resources management under uncer­
tainty. It does not offer a comprehensive review of all 
methods but rather focuses on selected ML techniques 
widely used in water-related problems. Additionally, the 
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2 Advanced Hydroinformatics 

chapter discusses the challenges associated with using 
ML models, such as black-box criticisms, and the potential 
of hybrid models that combine the strengths of ML and 
physically based process models for more robust solutions 
in hydroinformatics. 

1.1. Introduction 

Hydroinformatics deals with advanced information technology, data 
analytics, modeling artificial intelligence (AI), and optimization applied 
to problems of aquatic environment for the purpose of informing manage­
ment. Many of these technologies have become standard tools that support 
water management decisions around the world. However, the technologies 
are developing further, new ones are emerging, and this allows for applying 
them to more complex and interesting problems. One can find multiple 
examples when environmental and hydrological problems have been dealt 
with not only by employing physically based (process) models, but also 
advanced data analysis tools and machine learning models have been used. 
Using AI techniques in geosciences has a long history. Hydroinformatics 
formulated by Abbott (1991) 30 yr ago, has been defined as a union of 
computational hydraulics (CH) and AI (so that HI== CH u AI), and during 
the last three decades we have been witnessing a much wider use of AI, 
with a large number of successful practical applications. The first stage 
of such development ha been covered, for example, in the edited volume 
Practical hydroinformatics: Computational intelligence and technological 
developments in water applications (Abrahart et al., 2008), and in dozens 
of other books and hundreds of research papers covering these new 
developments. 

Currently, we see a new wave of interest in machine learning (ML) 
and AI, which is partly explained by the demonstrable effectiveness of the 
new generation of deep learning algorithms and availability of large data 
sets (see, e.g., Nearing et al., 2021), and this brings new possibilities for 
hydroinformatics research and practice. With an increasing amount of 
data collected about the environment, physically based models are more 
and more complemented and sometimes even replaced by data-driven 
models. Lacking the ability of physically based models to explain the 
physics of underlying processes, data-driven models are however able to 
discover the hidden patterns in data and often can be more .accurate, 
and play an important supporting role, in water management. Pattern 
recognition (e.g., automatic identification of flooded areas on satellite 
images) has been one of the main tasks solved by machine learning and 
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lately has been given an additional push by the development and use of 
deep learning an important class of machine learning algorithms, and 
of AI in general. Data analytics plays an important role in water resources 
when data are multidimensional and spatial and time dimensions have 
to be dealt with in a coordinated fashion. In relation to water resources 
both dimensions were always important, but recently the need to handle 
huge amounts of remote sensing data ("big data") has become more 
pronounced. These developments have motivated new research efforts 
in the context of predicting hydrological extremes and call for te ting 
novel approaches of spatiotemporal data analysi and machine learning. 
Due to much easier acce s to supercomputing facilities, there are increased 
possibilities to study the models uncertainty (typically using Monte 
Carlo frameworks), and machine learning can also play a role in building 
predictive models of such uncertainties. An issue in water resources 
management is optimal planning and operation under uncertainties, and 
this is where the role of AI-driven approaches is also becoming more 
important. Classical optimization approaches (gradient-based nonlinear 
optimization) typically cannot help much, since such optimization is mode] 
based, and objective functions (and their gradient ) cannot be analytically 
expres ed. Optimization approaches developed under the framework 
of computational intelligence (various types of randomized search e.g. 
evolutionary approaches) have been the focus of hydroinformatics for 
three decades, but the new problems and the increased data availability 
lead to the necessity of testing new approaches and their critical analy is. 

This chapter aims at presenting a brief overview of AI- and ML-related 
building processes and methods widely used for water-related problems, in 
the context of the chapters presented in this volume. AI is a concept that 
covers a wide area of science and technology, however quite often it is used 
interchangeably with ML, which is in fact a narrower notion. One may find 
in literature quite a large number of AI- and ML-related subareas: big data 
data mining, pattern recognition (PR), natural language processing (NLP) 
neural networks deep learning, and so on. We will not go into a discus­
sion about terminology and differences in AI and ML· for the purpose of 
this chapter and the issues covered in the book, it would be right to use a 
somewhat narrower term, that is, machine learning. 

ML techniques have been widely used in water resources during the 
last decades however at the same time one may observe also inadequate 
use of ML-related modeling procedures, unjustified selection of algorithms, 
and even lack of understanding of why a model provide good or poor per­
formance in mathematical and statistical sense. There is al o well-known 
criticism of ML and statistical techniques by practitioners who are used to 
employing physically based (process) models· they are pointing out that a 
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water resources problem interpretation i hidden in the so-called black box 
of a ML model. There is indeed a challenge of posing the problem in the 
right way: how domain knowledge can drive election building, and tun­
ing a ML model. Lack of data and its uncertainty also makes it difficult for 
practitioners to feel confident about ML models. 

On the other hand, the strength of ML is in its ability to represent 
the relationships between inputs and outputs, provided enough data are 
available. Although the relatively recent advances in deep learning have 
opened the door to the new ways of using spatiotemporal data and 
at the same time motivating new algorithm development from spatial 
patterns and in general, all types of computer vision algorithm , not all 
problems can be tackled by ML. Input and output relations can be so 
complex that ML techniques may not be able to find the hidden patterns, 
and in such cases hybrid models combining power of ML and process 
models (so-called physics-aware AI· see, e.g., Jiang et al., 2020) would 
be needed. Such hybrid approaches are given now increased attention in 
hydro informatics. 

This chapter is not intended to provide a comprehensive review of 
methods (which are covered in hundreds of books and in the referred 
literature herein), but rather focuses on some important elements of ML 
model building, and presents ba ics of several selected ML techniques 
quite widely used in solving water-related problems, allowing for feeling 
the flavor ' of ML. 

1.2. Key Principles of ML/Hydroinformatics 

1.2.1. Al and ML Definitions 

There is a large number of evolving definitions of AI, and this can 
be explained by its permanent evolution and shifts in priorities and 
the advances in the used mathematical instruments. Many literature 
sources point out that for the first time the term AI was used in 1956 
at the Dartmouth Conference, were John McCarthy, Alan Turing, and 
other founding fathers of AI, help to coin the term artificial intelligence. 
One of the definitions reads: "AI is the field devoted to building artificial 
animals (or at least artificial creatures that, in suitable context appear to 
be animals) and for many, artificial persons ( or at least artificial reatures 
that, in suitable contexts, appear to be per ons)" (Stanford Ency lopedia of 
Philosophy, 2018). On the other hand, Wikipedia define it as the' intelli­
gence demonstrated by machines unlike the natural intelligence displayed 
by humans and animals' (Artificial Intelligence, 2022). Yet another 
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definition (sometimes referred to as being given by IBM) state that 
'AI leverages computers and machines to mimic the problem-solving 
and decision-making capabilitie of the human mind. All the e defiui­
tions differ in details, but are very similar in the main idea: a machine 
(a programmed computer) i suppo ed to imitate some behavior of a living 
creature. 

An old debate regarding whether humans will be replaced by machine 
has been reinitiated in variou public media in the view of the latest devel­
opments in AI, especially generative AI, a implemented for example 
in platforms like ChatGPT. Indeed AI has evolved into different types 
related to an extent to which it may take over ome of humans' activities. 
The first ideas of what could be achieved are purely rea tive, which is highly 
related to the beginnings of computer science where AI does not have 
any memory which basically mean no initial data base or information of 
processes. This concept can be applied to solving narrow specialized tasks. 
For example, a forecast is performed based only on the current ituation, 
limited historical samples and known variables. Further development can 
lead to building up memory, by collecting previous experience and more 
complex and voluminous data and continue adding it to the memory. 
Such AI systems have enough memory or experience to support humans 
in performing various task but their ability is still limited and they 
are still seen as a helping hand. For example it can provide adaptive 
forecasts depending on the context such as previous performance, climatic 
conditions, type of a river basin and other . An even higher level of AI 
can be explained as a theory of mind (Premack & Woodruff 1978) where 
AI can understand thoughts and em tions and interact ocially. Thi type 
of concept needs an integration of many component of AI development 
of more sophisticated mathemati al app ratus so uch developments 
are still at a rudimentary level. At the top level, it i po ible to con ider 
how these systems can become aware of life and even become elf-aware. 
This concept link to the idea that AI machine an create new knowledge 
and at the same time, build internal ystem concepts that link intelligence 
sentience, and consciousness. 

Advances of AI have been numerous and applied in various areas. 
We should admit however that in water resources, only a few of such 
developments have been used and these relate to application of pecific 
machine learning techniques. 

Figure 1.1 presents a schematization of some of the key techniques of 
ML, with references to decades when these methods tarted to develop. 
Due to a wide application of ANN this ar hitecture is presented in 
more detail. One of the relatively new development is natural language 
processing (NLP)· it uses deep learning (DL) to train model that help 
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interpret text and reinforcement learning concept to use D L. Pattern 
recognition uses convolutions and DL, which develop pattern recognition 
to extract features. Finally metaheuristics provide the basis for new models 
of DL. The following are some of the concepts used in this chapter: 
1. ML (machine learning). Mathematical models that aim to represent

groups and/or input-output relationships from data
2. NLP (natural language processing). The use of language elements, in

general, text encoded into numbers and its analysis, mainly from the
transformation of text and processing it to solve, replicate semantics
and understand them

3. Pattern recognition. ML can be characterized as a subarea that
explores how data and their attributes (variables or features) can
be detected. Many ML algorithms do implicitly detect patterns and
therefore these areas are interrelated. Computer vision is an important
area of their application. It is worth noting that a number of important
pattern recognition mathematical apparatus and algorithms are not
explicitly positioned in the machine learning realm for example,
procedures of denoising and filtering, segmentation of images, 3D
virtual reality patterns, vector fields flow, but they for sure contribute
to solving the pattern recognition problems.

1.2.2. Machine Learning (ML) 

There are various ways of contextualizing ML. From the perspective of 
computer science, the concept of ML can be seen as aiming at changing the 
programming paradigm (Fig. 1.2). Aim here is to develop a computer pro­
gram that will not require significant analysis to understand how to create 
an algorithm to obtain certain responses· instead, a ML algorithm, theo­
retically can learn from inputs and responses (outputs). 

In many applications, however, ML is not seen as a tool to gen­
erate computer programs but instead is expected to help in building 
input-output models by learning from data, in other words data-driven 
models (see Fig. 1.6). Their use is quite varied and most of the time is 
justified by the idea that a system might be very complex and we may 
not observe all the internal states of a modeled system or process (e.g. in 
hydrological modeling this may be soil moisture). This implies that if we 
have a complex system, with only a limited understanding of the driving 
variables of a natural process ( or any process in general) and we can 
measure the consequences of events (i.e., outputs resulting from particular 
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Figure 1.2 Differences between traditional programming and ML, s seen in
computer science: (a) Computer science algorithm developm nt; (b) Machine
Learning algorithm development.

inputs), then with this information, it is possible to generate ML model 
(Fig. 1.3) . 

In most cases, the ML engines (e.g., artificial neural networks) work 
with numerical (real-valued) data, so are, in fact, nonlinear regression mod­
els. If data are nonnumerical (e.g., classes, images, or words), they have to 
be first transformed ( encoded) into numerical form, and then processed. 

In relation to Earth sciences, wide adoption of ML ha not been fast, 
to say the least, since many scientists were pointing out that there i no clear 
justification for using these algorithms. Their reasoning wa that the mod­
els, as descriptors of reality, should b� based on scientifi understanding of 
processes (e.g., physics), and not on a statistical encapsulation of data et . 
Water resources are not an exception in this sense, and early applications 
of ML have been criticized, as they end up reproducing natural problems 
that do not need to be reproduced abstractly with ML, which was arguably 
resulting often in building a blind representation of a well-known problem. 

However, during the last two to three decades, there have been many 
examples of successful applications of ML reported and implemented 
in decision support systems. It has been shown that ML methods are 
often more accurate than the traditional hydrologic models in forecasting 
(see, e.g., Nearing et al., 2021; Arsenault et al., 2023). ML also helps to 
replace complex slow-running physically based models: a ML model is 
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trained on data generated by a process model and such fast metamodel 
(surrogate) would replace a much slower process model in operational 
systems and therefore be used in real-time forecasting to provide warnings 
in an efficient manner. ML-based pattern recognition algorithms can also 
help to automate the detection of critical scenarios, combining variable 
that might not be easily related physically and capturing nontrivial 
relationships and patterns implicitly present in data, reproducing thus 
complex phenomena . Therefore, ML has become a powerful analytical 
and predictive tool. 

Aside from ML there are other areas in AI worth attention, that is nat­
ural language processing and metaheuristics, and they are also considered 
due to their potential for water resources management. 

1.2 .3 .  Natural Language Processing (NLP) 

The Internet has allowed us to arrange access to billions of documents, 
images and audio and video material in very different areas of human 
activities. It would be interesting to understand if and how we can use these 
data for solving water resources problems. Data on the Internet are often 
not structured and linked to a variety of sources, from web ites of organiza­
tions, to social media, news, biogs, videos, and more. In many cases useful 
data are presented as text. The idea of text mining is not new; however, the 
large amount of data available on the Internet, in the form of text format, 
has generated a boom in developing intelligent tools, ref erred to as natural 
language processing (NLP).  NLP can be defined as the ability of a com­
puter program to understand human language as it is spoken and written, 
that is natural language (Sun et al . ,  2022). It starts with the idea of pro­
cessing text and develops ways to interpret and reproduce it. The ways of 
understanding how we write have been formalized in tools for sentiment 
analysis of text, generation of text, correction of text text extraction, and 
concept of artificial assistants. 

NLP converts letters, words and phrases into numerical representa­
tion. This is done sometimes in simple terms, like numbering each word in 
a phrase and repeating the number when the word repeats itself. However 
the results of this numerical representation need to follow the basics of 
the language (Khurana et al. ,  2023). Therefore, typically the process of 
interpreting the language focuses on five steps: 
1. Lexical (morphological) analysis : In essence it i breaking text

into paragraphs, phrases and words. Furthermore it is possible
to understand at the level of individual words the morphemes as
the smallest units of a word. Last, lexical analysis identifies the



Hydroinformatics and Applications of Al and ML 1 1

morphemes and al lows us to characterize the word and under tand 
its meaning knowing its root form. The final objective of thi step is 
to help to identify words which are normally referred to as tokens 
since the original word in fact pos esses ome information and, for 
programming, it is a sequence of character which repre ent a unit of 
information. 

2. Syntax analysi : it allows for checking the grammar and with thi the
way words are arranged in a sentence. As a consequence this order
al low us to find how words should be normally arranged. Using
this information it is po ible to build relationships between them.
Knowing this, it is possible to assess the parts of a sentence (POS) and
tag thi information based on the structure found.

3. Semantic analysis : This step aims at finding the meaning of the tate­
ment, how the phra e read literally. This understanding provides the
basis for rejecting syntactically valid but il logical statements.

4. Discourse integration: The context in which a phra e is u ed can be
very important so this step aim at establishing links between the dif­
ferent sentences espe ially the immediately preceding one.

5. Pragmatic analysis this concept u es a set of rule that de cribe
cooperative dialogs as in ocial content. What can be found in social
media and common interactions can become a rule and with thi we
can comprehend the way the communication takes place.
NLP sentiment analysis in marketing for example has developed

tools  that allow us to provide basic knowledge extraction or information 
provider from how people feel about a product, and with this has 
opened numerous possibilities in decision making and understanding of 
people's behavior. In water resources e eral exploratory projects have 
been carried out at the IHE Delft Institute for Water Education aiming at 
understanding how people write about their water bodies in ocial media 
and newspaper (see Fig. 1.4). The concept presented here i ba ed on 
media information on the Web on how people express (share) feeling in 
the form of text in the media. Thi concept applies to society in general 
and not only to citizens per se which wil l  include how policy maker and 
news also influence the media and therefore citizens. Thi cycle ha two 
parts since people tend to be usceptible to changing their feeling toward 
other people ba ed on media information. With thi the media is at the 
same time the engine that moves people but it al o records all action on 
citizens publication . 

Application of NLP technologies resulted in development of AI 
chatbots. Conventional chatbots have evolved since 1966 (Weizenbaum 
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1 966) when the fir t concept of a chat algorithm wa onceived a chatter­
bot program ELIZA and wa defined as a program designed to interact 
with people by simulating human conver ati n. Sin e then there have 
been plenty of tools and publications u ing sequential fun tional database 
and object-oriented programming concept . Mo t of these conventional 
programming techniques were too o tly in development in term of 
time and are not flexible enough to adapt to new data and new concept . 
However in the last 5 to 7 yr te hnology using AI to improve the way we 
create chatbots has advanced considerably, and chatbot ha e been made 
widely available by their inclu ion into standard smartphone oftware. 
Such chatbots serve a front-end engines to interpret human queries 
and then acce s knowledge ba e to generate answer . These knowledge 
ba es can encap ulate vast amounts of data stored on Internet servers 
worldwide, and they can be een a ML ystems trained on the e data . 
Examples are Google Assistant (Google) Alexa (Amazon) and SIRI 
(Apple) . In 2022-2023, the new noticeable implementations have been 
released: ChatGPT (OpenAI a ubsidiary of Microsoft) Bard (Google) 
and Ernie (Baidu) . 

1 .2 .4. Pattern (Image) Recognition 

The area of image analy i and interpretation has been a fo us in 
computer science and ML for everal decades and it is often referred to 
as pattern recognition. In thi context a pattern is an image that need 
to be identified interpreted and classified. For example recent research in 
atmo pheric and hydrologic science ha focu ed on how pattern in patial 
data can be identified, likened to typical hydrometeorological event and 
later u ed to predicts u h event . 

ln water resource , pattern recognition techniques have been applied 
mainly to remote ensing (spatial data) finding flood pattern after extreme 
rainfall identifying river networks and catchment land-use cover le�rning 
from patterns of remote sen ing bands. For example, in remote sen ing, 
numerou pixels in a crop area are surveyed on site and then mapped to 
image bands. Having each sample as a training element to learn what the 
image band combinations are can be interpreted a this is quite important 
for obtaining the right spatial information about land cover and agri ul­
tural practices. As an example recent work on determining the patial 
extents of drought anomalie and the spatiotemporal pattern of rainfall 
that lead to floods can be mentioned (Corzo et al. 201 8 ·  Diaz et al. 2020· 
Khoshnazar et al. , 202 1 • Varouch ki et al. 2021 ) .  
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1.3 .  Model Building and Input Variable Selection in Machine
Learning for Water-related Problems 

ML procedures are described in detail in many book (e.g. , Haykin, 
1999). In relation to the use of ML in water-related problems most papers 
and books present similar modeling frameworks (Fig. 1.5) .  For example, 
Elshorbagy et al . (2010) compiled information about methodologies used in 
various studies, presenting a general-purpose framework , which was tested 
on several relevant water-related cases. Similar frameworks can be found 
also in more recent publ ications (e.g. , Potgieter & Dahlberg, 2022). 

A large number of procedures for designing data-driven models 
(learning systems) have been proposed in different areas. Some of these 
procedures have been generalized in such a way that they can be appl ied 
to other model ing approaches (Mitchell, 2007· Pyle, 1999; Abrahart et al. ,  
2008) .  Corzo Perez (2009) presented the concept of characterizing the 
way models can include physical-based knowledge. A typical procedure of 
model building, presented, for example, by Haykin (1999) and many other 
authors, is as follows: 
1. Explore the problem and solution spaces, and state the problem.
2. What is the expected result and how will it be used?
3. Select the input and output variables (features).

4. Specify the appropriate modeling methods and choose the tools
(software and algorithms).

5. Prepare and survey the data. Partition the date into the training,
verification and test subsets.

6. Build (train) the model ,  using training and val idation subsets.
7. Test (val idate) the model , using the test subset.
8. Apply the model and evaluate the results.

In real ity, the process of model ing is not linear but continuous with 
feedback loops. For example, a lack of particular data may lead to a change 
in the modeling method selected. For these processes, there is a sort of 
checklist, or golden rules, widely accepted in the ML community, helping 
a modeler in the process of model building. 
1 . Clearly define the problem that the model will help to solve.
2. Specify the expected solution for the problem.

3 . Evaluate i f  the del ivered solution will be accepted and used in practice.
4 . Learn the problem, collect the domain knowledge, analyze and under­

stand it.
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5. Let the problem drive the modeling effort including selection of
techniques, data preparation, and so on. Take the best tool for the
job not just a job you can do with the available tool.

6 . Clearly define assumptions and con traints, and discus them with
domain knowledge experts.

7. Refine the model iteratively (try different things until the model seems
as good as it is going to get).

8. Make the model as simple as possible but no simpler. This rule is
formulated sometimes in different way , such as K ISS for example
(keep it sufficiently simple). Another formu]ation i the minimum
description length principle which states that the best model is the
smalle t (including the information to pecify both the form of
the model and the values of the parameter ). More generally this
idea is widely known as the Occam's razor principle formulated
by William of Occam in 1320 in the following form: have all the
unneeded philosophy off the explanation.

9. Define instabilities in the model and its sensitivity ( critical areas where
small changes in inputs lead to large changes in output or even to
model crash).

10. Define uncertainties in the model ( critical areas and ranges in the
data set where the model produces low-confidence predictions). Try
to reduce such uncertaintie

1 1 . Draw conclusions from model application. 
The model training process (Fig. 1.6) is in fact solving an optimization 

problem: minimization of the difference between the mea ured and 
predicted results through the update of the model parameter erve as 
decision variables in this optimization problem. 

1.3 . 1. Data Partitioning 

In ML data are typically partitioned into three subsets which ideally 
should be statistically similar. 
1 .  Training data: Data used to calculate the model error with the aim of 

its minimization by updating the model parameters. 

2. Validation ( or cross-validation) data: Data required for the intermedi­
ate evaluation of the model performance at various step of training.
These data are used either to tune the model structure or to aid the
early stopping of training to prevent overfitting. A common practice
is also to use the so-called n-cross-validation procedure (n is often set
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Figure 1 .6  Tra ining a Mach ine Learning model as an iterative optimization pro­
cess. X is a vector of input variables (forcing); e is the parameters vector (decision
variables); D is the error metrics to be min imized, the function measuring the 
difference between the predicted (Y) and the measured values (M) .  

to l 0) . In l 0-fold cross-validation, 10 models are trained on 90% of 
the training set and val idated on the remaining 10%. A similar perfor­
mance of al l models shows that the modeling process can be seen a 
successful and any model can be taken as the final model , or the final 
model could be an en emble of all these n trained models. 

3. Te ting ( or verification) data: Data u ed for the final performance
assessment of a model before its use. It requires a subset that has not
been used during model training.

1 .3 .2. Input Variable Selection (IVS) (Feature Engineering) 

It is important to ensure that a ML model would use the data and 
variables relevant for the objective of data analysis or model ing. Selecting 
the relevant variables (feature ) i referred to a feature engineering, or 
input variables selection (IVS) .  Input variables ha e to have relatedne 
to the output, and the simplest method here would be to u e correlation 
analysis, or average mutual information (AMI . The correlation analy i 
reflects only l inear relation hips; therefore, when processes are highly 
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nonlinear, AMI would be a better choice. A detailed presentation of IVS 
procedures can be found in Guyon and Elisseeff (2003), and, in relation to 
water modeling, in Bowden et al. (2005a, 2005b) and Galelli and Castel letti 
(20 1 3). 

One of the important steps in ML is data transformation, preprocess­
ing and postprocessing of data (Pyle, 1 999). For some of the methods, such 
as multilayer perceptron artificial neural networks (MLP ANNs), data 
transformation (normalization) is almost a must. Other methods benefit 
from this because it typically leads to improved performance. 

In ML, the selection of input variables is of great importance and this 
process is quite different from that normal ly used in process-based mod­
eling. Having a large volume of measurements and even knowing what 
input variables drive the output in physical terms, doe not guarantee the 
high accuracy of a model. In most cases, it is necessary to identify ( 1 )  when 
and (2) to what extent these inputs contribute to the model output. Since 
information about the modeled phenomena is not always available in ML, 
most methods rely on statistics and information theory to determine the 
appropriate input variables for data-driven models. 

Normally, the input selection process starts with all the knowledge 
(data) about the process that wm be modeled, and then the selection space 
is narrowed based on a more detailed analysis. In contrast to hydrological 
process-based models, ML allows for the inclusion of any variable ( or its 
combination) even of those that do not necessarily force the phenomenon 
(discharge) directly. For example, rainfall runoff models may use past dis­
charges to forecast current or future ones· however, they are not the actual 
triggers of flood situations (in relation to hydrological modeling see, e.g., 
discussion in Moreido et al., 202 1 ). 

To consider past information about the modeled phenomenon, often 
a model has to be fed with previous (lagged) values of an input variable, 
perhaps aggregated. In the context of hydrological foreca ting, these are 
typically precipitation and discharges optimal ly lagged. In this context lag 
is defined as the number of time steps by which a time series is shifted from 
its current value, itself (when autocorrelated), or relative to the correspond­
ing time values of another time series (when cross-correlated). Table 1 . 1 
presents an example of building an input data matrix with the lagged pre­
cipitation ( current time is assumed to be O 1 /0 1 /20 1 5). 

Understanding of how much delayed inputs are correlated with output 
is used to make a comparative graph of autocorrelation or cross-correlated 
variables (Fig. 1.7). In principle, all lags can be important to represent dif­
ferent types of responses due to the memory of the system. However, every 
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Table 1 . 1 Example  of the i n put matri x generat ion for a ra i nfa l l -ru noff model 
(Ourthe r iver  bas i n ) .  

Date 

0 1 /0 1 /20 1 5  

Precipitation 

(mm) 

4.37 

Lag prec Lag prec Lag prec Lag pr c 
I day 2 day 3 day 4 day 

,_ -- --- -t------+----

02/0 1 /20 1 5  1 1 .72 4.37 ----------+----
03/0 1 /20 1 5 33 .57 1 1 .72 4.37 

04/0 1 /20 1 5 32 .20 33.57 1 1 .72 4.37 

05/0 1 /20 1 5  8.20 32.20 33.57 1 1 .72 4.37 
__., _____ ..,_ __ ....__ _______ ......., __ --I 

06/0 1 /20 1 5  0.56 8.20 32 .20 33 .57 1 1 .72 
- - ~

07/0 1 /20 1 5  

08/0 1 /20 1 5 

09/0 1 /20 1 5  

1 0/0 1 /20 1 5  ----
1 1 /0 1 /20 1 5  

1 2/0 1 /20 1 5  -----
1 3/0 ] /20 1 5  

1 4/0 1 /20 1 5  

1 5/0 1 /20 1 5  
r- - --

1 6/0 1 /20 1 5  

26.4 1 0.56 8 .20 32.20 33 .57 

28 .84 26.4 1 0.56 8 .20 32.20 

0.23 28 .84 26.4 1 0.56 8 .20 

0.77 0.23 28 .84 26.4 1 0.56 

1 0.79 0.77 0.23 28 .84 26.4 1 

1 .27 1 0.79 0.77 0.23 28 .84 

32 .60 1 .27 1 0.79 0.77 0.23 

37 .05 32 .60 1 .27 1 0.79 0.77 

1 . 1 5 37 .05 32 .60 1 .27 1 0.79 

0. 1 6 1 . 1 5 37 .05 32 .60 1 .27 

0. 1 6 1 . 1 5 37 .05 32 .60 

0. 1 6 1 . 1 5 37 .05 

0. 1 6 1 . 1 5  

0. 1 6

Di charge 

(m3/s) 

4.37 

1 1 .72 

33 .57 

32 .20 

8 .20 

0.56 

26.4 1 

28 .84 

0.23 

0.77 

1 0.79 

1 . 27 

32.60 

37 .05 

1 . 1 5 

0. 1 6

new variable represents an increase in the degrees of freedom in the 
problem and an unnecessary increase in a model complexity and possibly 
may lead to overfitting. 

In this problem of rainfall-runoff, as stated before, the size of the basin 
plays an important role in what is to be expected from the complexity of the 
model. Although average precipitation is considered, it is often not enough 
to include only one or two lagged variables in the model. Precipitation 
events taking place close to the discharge measurement point would lead 
to an increase in discharge with a lag, which could be much smaller than 
the average one, and events far from this point would have a larger lag. This 
leads to another type of problem, which is spatiotemporal in nature. 

The correlation coefficient is commonly used to determine mathemati­
cal linear relations between two samples of random variables or time series. 
In the case of building a rainfall runoff model, the variables are lagged 
precipitation and discharge. The lag time, leading to a high correlation 
would be the one to adopt as the most probable candidate for the final 
model. 
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Sin e the correlation coefficient can be misleading if not enough data 
are u ed or there could be events with a different correlation structure it 
could be u eful to employ the two other analy is techniques: 1) to analyze 
the variation of the correlation coefficient with different sizes of data sets 
and (2) to perform the correlation analy is eparately for certain events, for 
example with the discharge in a particular range. 

It should be noted that a number of ML models ( e.g. recurrent neural 
networks; see below) are ba ed on an architecture where the whole time 
series ( or its part) representing an input variable i fed into the model 
and the choice of the previou (lagged) values and their weighting is done 
via an optimization process during the model training. In uch cases IVS is 
in choosing the right variable (rather than specific lagged values), without 
paying much attention to how they should be lagged in a model ince this 
is done automatically. 

1 .3 .3 .  Optimization 

The third step shown in Figure 1 .5 is the modeling proce per se which 
in prin ip]e is called learning and i an optimization process to choose the 
model parameter and the structure to fit the model output to the measured 
(target) values. N umerous single-objective and multiobjective optimization 
te hnique are available for such purpo es and they are typically very pe­
cific to each of the techniques. It is not pos ible to state that one tech­
nique will always provide a better solution than another. This can be partly 
explained by the existence of random components in many algorithm 

1 .3 .4. Model Evaluation (Testing) 

The final step in the training proce i the e aluation of the model s 
performance. After the model is optimized and a u h probably �le ted 
after some validation iteration are done the error of the model on te t data 
is used to as ess the resulting model performanc 

It is worth mentioning that in proce -ba ed modeling in situation of 
poor data availability, data partitioning into training, validation and test 
subsets is not always carried out o proper model testing may be difficult 
to arrange. However in machine learning exerci es the procedure of data 
partitioning are normally followed. 

The error measure (metrics) used in the training (learning) proce of 
the ML model (typically based on the mean squared error) should not be 
seen as the only way of model performance estimation. Commonly vi ual 
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comparison, additional tests on extreme phenomena ( crash tests), and a 
benchmark or reference model are used to assess the quality of the model 
as well. It is difficult to choose only one performance measure for a good 
model, so model training can be posed also as a problem of multiobjec­
tive optimization; on multiobjective machine learning, see, for example, 
Corzo and Solomatine (2006)· and on multitask learning, a good intro­
ductory overview is given by Ruder (20 1 7) .  In �uch cases, the modeling 
results should preferably be a matter of further discussions with stakehold­
ers about the selection of a ingle model out of a Pareto-optimal set of 
models generated as a result of multiobjective optimization (training). 

1 .3 .5 .  Uncerta inties in  the Process of Bu i ld ing a Model 

Modeling leads to a generation of new knowledge and new insights 
into the modeled processes, and typically involves cycles of progressive 
refinement and improvement, and even reformulations of the initial 
modeling goals. Some of possible questions raised during modeling 
experiments and the related cycles, are shown in Figure 1 .8. Each of 
these questions is associated with an uncertain variable in the process. 
Uncertainty in data inevitably propagates to models' outputs. Changes in 
data partitioning also lead to different model parameterizations. Changes 
in the input variables set can lead to different model outputs and hence 
varying performance. Many ML models require random initializations of 
parameters, so that multiple runs may lead to different results. Finally the 
idea of having one objective function in the optimization process, where 
the real problem can normally have multiple objectives, makes the model 
biased to a certain modeling objective. For example, a ML model built for 
high flow might not be optimal for low flows and vice versa. Since there is 
no perfect measure for performance, there is uncertainty associated with 
the choice of what is defined as optimal in the modeling process. 

In ML theory and practice all these problems have been studied, are 
quite well understood and adequate techniques have been developed. 
For example, n-fold cross-validation is used to deal with uncertainties 
in data partitioning. Uncertainty is reduced if instead of using a single 
model multiple (ensemble) models are built, based on different parameter 
(weights) randomizations, and then aggregated using (dynamic) weighting. 
The problem of multiregimes of the modeled system and seasonality is 
solved by modular or committee systems (Corzo & Solomatine, 2007b, 
2007 a· Kayastha et al. ,  20 1 3). For pro bl ems related to the IVS, feature 
engineering offers a number of techniques (see Guyon & Elisseeff 2003 ; 
Bowden et al. ,  2005a, 2005b; Galleli & Castelletti, 20 1 3). Robustness 
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of models can be increased also by encoding inputs and generating 
new features aggregating variables and thus reducing the input space 
dimension. 

Uncertainty of the final model can be effectively studied u ing Monte 
Carlo technique . More, uncertainty of model outputs when working with 
new data in the future can be estimated by using methods like M LUE 
(Shrestha et al. ,  2009), which encapsulates the results of Monte arlo anal­
ysis of parametric uncertainty in a ML model, and U N EEC (Solomatine & 
Shrestha, 2009) and its extension (Wani et al., 20 1 7), where residual uncer­
tainty is encapsulated in a ML model, and its probability den ity function 
can be forecasted for the new inputs and model runs. 

1 .4. Advanced Techniques in Machine Learning for Water 
Resources Applications 

A wide range of machine learning (ML) models has been extensively 
used in water resource applications. Among the reported re earch, a ignif­
icant focus has been placed on five to seven popular technique in luding 
linear regression multilayer perceptron (MLP) AN N, radial-basis function 
(RBF) AN N, support vector machines, MS model and regre sion tree ran­
dom forests, and, more recently, LSTM ( deep learning) network . 

Machine learning plays a crucial role in various water re ource task 
such as hydrological modeling flood forecasting, drought prediction and 
water resource management. Depending on the nature of the output, the e 
application areas can be broadly classified in to either clas ification or 
regression (numerical prediction) problems. In this chapter, we not only 
explore the popular ML techniques employed in water resources but also 
explicitly focus on the fascinating realm of deep learning. Deep learning 
characterized by architectures ba ed on recurrent multilayered neural 
networks, has garnered significant attention in recent years. Specifically, 
we delve into Long Short-Term Memory (LSTM) networks, Gated 
Recurrent Units (GRUs) and convolutional networks, which are widely 
used in water-related applications. By providing detailed explanations 
and insights into these techniques, this chapter aims to equip researcher 
and practitioners in the field of hydroinformatics with a comprehen ive 
understanding of the various ML and deep learning approache employed 
in water resources applications. 

Classification problems involve predicting a discrete (nominal) output 
such as whether a flood event will occur or not. In classification, ML mod­
els are trained to output a class. For this purpose, regre ion model (like 
AN N) can be used as well: the predicted numerical value is encoded as a 
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clas index . For example, in the case of flood foreca ting a ML numerical 
prediction model can be trained to predict the discharge values, but the final 
result will be pre ented as a binary class: "no flood ' (if discharge is below 
a predefined threshold) and ' flood' (otherwise) . 

There are al o other ways of encoding classes : data are transformed 
and the problem is formulated as having N binary outputs where N is the 
number of classe . For example in ca e of two possible outcome (like no 
flood and flood) output vectors (real-valued) would be either (0, 1) for 
flood conditions or ( 1  0) for no-flood conditions. A regression ML model is 
trained to reproduce real-valued vector . If for the new inputs thi model 
gives an output vector close to (0 1) for example (0 . 11 0 .85) ,  then it i 
interpreted as flood, and if it is close to ( 1  0) for example (0. 15 0. 9 1) it is 
interpreted as no-flood. 

However in water resources a mu h more widely spread type of prob­
lem is a regression (numerical prediction) problem, which aims to predict 
a continuous output such a the di harge of a river or the water level 
in a re ervoir. For example, in the case of water resource management a 
ML model is employed to predict the re ervoir inflows water demand and 
water availability, and then to use the predictions to optimize the water 
allocati n .  

This section investigates the use of machine learning techniques in 
water resources, emphasizing their relevance and efficacy. I t  begins by 
looking into artificial neural networks (ANNs) with a focus on the popular 
multilayer perceptron (MLP) ANN. MLP ANN are popular in water 
re ources re earch due to their apacity to handle complicated interactions 
and big data sets. The section gives a review of MLP ANN architecture 
and training procedures, emphasizing its applicability to water resource 
modeling. Following that, the subject hift to regres ion and model tree 
as well as bagging and boosting trategies for developing en emble model . 
These methods provide modular solution as well as tati tical tool for 
increasing model tability, accuracy and generalization. In regre ion and 
model trees, the combination of decision trees with linear model �Hows 
for flexible modeling of nonlinear connections while bagging and boost­
ing approaches improve performance by combining numerous model . 
The se tion also discu ses the recent spike in intere t in deep learning, 
particularly in relation to water resources. Deep learning a represented 
by recurrent neural networks, exhibits exceptional ability in managing 
time series data and capturing complicated patterns. Long short-term 
memory (LSTM) networks, in particular have hown considerable 
potential in hydrological modeling by overcoming long-term dependency 
concerns. The section emphasizes the significance of u ing deep learning 
methods into water management and forecasting. Overall this in-depth 
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examination of machine learning approaches in water re ources highlights 
their potential and u efulne s in furthering re earch and applications in 
the field. 

1 .4. 1 .  Artificial Neural  Networks (ANNs) 

The most widely used ANN is a multilayer perceptron (MLP). An 
MLP ANN consists of multiple layers of interconnected node (neuron • 
Fig. 1.9) that process input vector to produce a vector output (often a 
single value, however). The node in each layer first linearly combine inputs 
and then apply a nonlinear function (sigmoid or hyperbolic tangent) to 
transform the input further and pass the result to the next layer whereas 
the final layer ·produces the network' output. MLP are typically trained 
by backpropagation, a method that progres ively adjusts the weight 
between nodes to minimize the difference between the network's output 
and the desired output' it can be seen as a specialized version of nonlinear 
gradient-based optimization. MLP may have several intermediate (hidden) 
layers, but the most widely used architecture u es only one. On details see, 
for example Haykin (1999) and many other books and Internet resources. 

Overall MLP ANNs have proven to handle complex nonlinear rela­
tionships and large amounts of data, and can make predictions with high 
accuracy. There are hundreds of succe sful applications of ANN in water 
resources (see, e.g., Abrahart et al . ,  2012) and a MLP ANN is often seen 
as the first choice of a ML model. 

1 .4.2.  Regression and Model Trees 

Following a modular approach to modeling, a data-driven model 
should compri e several submodels. The training set is split into ubsets 
corresponding to a particular subprocess to be modeled, and then each 
module (Fig. 1.1) is trained on these nonintersecting subsets (actually, 
these subsets can be inter ecting leading to ome versions of en emble 
models, but this option is not considered here). When a new input vector i 
presented, it is first classified into one of the regions ( corresponding to the 
subsets) for which the modu les were trained, and then only one module 
is run to generate the prediction. A class of such methods employing 
consecutive progressive splits is typically referred to as trees. Examples are 
decision trees, regression trees (Breiman, 1984), which use zero-order mod­
els, that is, constants, in leaves; multiadaptive regre sion plines (MARS) 
(Friedman, 199 1 )· and M5 model trees (Quinlan 1992) which use linear 
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regression models in leaves (Fig. 1 .10, adopted from Bhattacharya & 
Solomatine, 2005). 

Since for each data instance (input vector) only one lo al model is 
used for prediction, there is a problem with compatibility at the bound­
ary between the regions for which the modules are re pon ible. For the 
two neighboring input vectors the predicted outputs could be di tinctive. 
A solution could be to update the local models to make them compati­
ble at the boundaries, as is done in the MS model tree algorithm through 
smoothing. Wang and Witten (1996) presented the MS algorithm based on 
the original MS algorithm but were able to deal with enumerated attribute 
treat mi sing values, and use a different splitting termination condition .  
Several advantages of using the model tree are that it i a non ... bla k-box 
model, understandable, easy to use and to learn, fast in training, robust 
when dealing with missing data, able to handle a large number of features 
and able to tackle tasks with very high dimensionality. It ha been hown 
that M5 model trees have accuracy similar or exceeding that of MLP ANNs 
( on water-related applications see e.g., Bhattacharya & Solomatine 2005; 
Solomatine & Xue, 2004). 
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In ummary, MS model trees are a type of machine learning algorithm 
that combines the trengths of regression trees and linear models allowing 
for more flexibility in modeling nonlinear relation hips. 

1 .4 .3 .  Bagging and Boosting Techniques for Bui lding 
Committee Models 

Bagging 

Two or more models who e output are combined form a commit­
tee model. Statistical technique widely u ed in preparing data for building 
such models are bagging and boosting. The e methods are used to gener­
ate sub amples of data, which are used to train several models and then 
combine them in a committee. 

The term bagging comes from bootstrap aggregating (bagging) which 
is an algorithm used to improve classification and regres ion models in 
terms of tability and classification accuracy. It also reduces variance and 
helps avoid overfitting. Bagging can be een a a special case of the model 
averaging approach. Bagging was proposed by Leo Breiman (1984). 

Given a tandard training set D of size n bagging generate m new 
training sets Di of size n' � n, by sampling examples from D uniformly 
and with replacement. By sampling with replacement it is likely that some 
example will be repeated in each Di. If n' = n then for large n the set Di 
is expected to have 63 .2% of the unique examples of D with the re t being 
duplicates. This kind of sample is known a a boot trap sample. The m 
models are built using the above m bootstrap samples and combined by 
averaging the output (for regre sion) or voting (for cla ification). Sin e 
the method averages several predi tors, it i not useful for improving linear 
model . 

Random Forest 

A very popular algorithm based on bagging that u e tree-like stnictur­
ing of data is the random forest algorithm (Breiman 2001 ). It is an ensem­
ble method that combines multiple decision tree (in the original version 
regression trees) to make predictions. The basic idea behind this method is 
to build a large number of decision (regre sion) trees using random subsets 
of the data and features and then combine the prediction of these trees to 
make a final prediction. 

The random forest algorithm works by fir t selecting a random sub­
set of the data called a bootstrap ample to use as the training et for 
each decision tree. Then for each tree, a random subset of the features is 
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selected to use as the split variables at each node. The algorithm then grows 
a decision tree using this random subset of data and features. This pro­
cess is repeated many times to build a large number of decision trees, each 
with its own random subset of data and features. Finally, the predictions 
of all the trees (constituting an ensemble) are combined to make a final 
prediction. 

One of the advantage of random forest is that it can reduce overfitting 
by averaging out the predictions of many decision trees. The algorithm also 
has the ability to handle large numbers of input variables and nonlinear 
relationships between the input variables and the target variable, which is 
a limitation of linear regression models. 

Boosting 

Boosting is an approach leading also to a committee (ensemble) of 
ML models, but it is a sequential model, where each subsequent model is 
dependent on the outcome of the previous. Boosting assigns weak learn­
ers to a weighted subset of the original data set. Weak learners have little 
predictive ability and perform just marginally better than random guess­
ing . Subsets that were previously misclassified are given more weight and 
hence the probability to be selected for the subsequent learner. As a result, 
the ensemble has good generalizing ability. The two widely used versions 
of boosting are gradient boosting (Friedman, 2001) and adaptive boost­
ing, AdaBoost (on its realization for regression problems, AdaBoost. RT, 
see Shrestha & Solomatine, 2006) . A popular implementation of the for­
mer is in XGBoost (extreme gradient boosting) a C++ library with APis 
for several languages (XGBoost, 2023) , which is extensively employed in 
various types of applications. 

1 .4.4. Deep Learning 

In relation to water resources, lately, a lot of attention has been given 
to the so-called deep learning, a general term given to architectures based 
on recurrent multi]ayered neural networks. Especially popular are long 
short-term memory (LSTM), gated recurrent units (GRUs· a version of 
LSTM), and convolutional networks. Deep learning (DL) is commonly 
referred to models with large number of layers and complex nodes with 
memory, for example, able to handle time series ' deep in time" or process 
images. DL has become a fashionable term, and currently is widely used, 
sometimes even (incorrectly) replacing a more general term ML. 
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1 .4.5. Recurrent Neura l  Networks (RNNs) and LSTM 

RNN 

RNN s are designed to automatically learn and understand the mutual 
relationship between inputs which are provided in sequential order. RN N s 
are often applied to NLP and peech recognition, since they have sequential 
structure fit to process long time series (Fig. 1 .11 ). In a typical RNN the 
output become a variable of state (h) used a input into the ame network 
for the following time step in the sequence. 

Long Short-Term Memory (LSTM) Networks 

Traditional RNNs face difficulties in train ing model with long 
equences, e pecially vanishing or exploding gradient problem. Thi 

problem was addressed in many studies, and one of the most popular 
techniques nowadays i the long- hort-term-memory (LSTM) network 
which was introduced by Hochreiter and Schmidhuber (1997). This and 
later development allowed for much wider adoption of deep learning in 
time series forecasting. 

Learning of su h long-term dependencies between inputs and outputs 
is vital in hydrological modeling because the lag time between hydrological 
processes may vary from days to years. For instance the long lag time can 
be seen in the cases of glaciers now, and groundwater processes (Kratzert 
et al., 2019). Due to developments of new DL algorithm in the la t everal 
years, there has been clear revival of interest in using ML in water-related 
problems. The e have demonstrated high accuracy for example in flood 
forecasting (e.g . ,  Kratzert et al. 2019· Kao et al. 2020; Arsenault et al . ,  
2023) and drought forecasting (Brust et al. 2021 • Dikshit & Pradhan, 
2021). 

Kratzert et al. (20 1 9) investigated the use of LSTM in rainfall runoff 
hydrology using Catchment Attributes and Meteorology for Large-Sample 
Studie (CAMELS) data sets for numerou catchment . The authors also 
studied the extent to which a single LSTM model could be regionalized, 
that is, applied to other catchment . As a re ult, the LSTM predicted di -
charge with good accuracy compared with the reference model. The final 
conclusion claims that by using LSTM the problem that is generally related 
to ML models of being black box models could be overcome, and expla­
nation is in the following .  In LSTM the cell tate s behavior in respon e 
to the hydrological trend and patterns can be physically interpreted, for 
in tance, by analyzing the melting state of the cell tate in comparison with 
the change in temperature. Con equently, with low temperatures, there is a 
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certain increase in the cel l state and when the temperature exceeds certain 
degree , the cell state starts to decrease (this imitates the snow accumulation 
and melting processes). 

Examples of recent appfo;ations of DL in hydrometeorological prob­
lems which are characterized by very large data et can be mentioned also. 
Schultz et al. (202 1) evaluated numerical weather prediction models, whi h 
are quite important for analyzing al l types of water re ources problems. In 
this work, it is highlighted that DL is not yet widely used within the numer­
ical weather prediction (NWP) context mainly due to the lack of both the 
interpretability of the neural network and the physical constraints. They 
mention also that many of the early experiments u ing imple neural net­
work did not capture the complexity of weather proces es. Although these 
limitations are important, there are three main rea on for considering DL 
for weather prediction problems. Fir t large amounts of data are currently  
available. Second new architectures of  the neural networks have been devel­
oped that can capture wel l  the time dependencie (RNN s) as well as pa­
tial distributions and imagery such as the convolutional neural network 
(CN N) .  Third the computational power capacity needed for training such 
networks (graphical and specialized proces or available on the loud) has 
become e ily available. All this bring the latest advanced ML techniques 
at the disposal of modeler and forecasters in water resources, leading thus 
to optimal water management. 

For further information on the use of AI and ML in Earth y tern 
science the reader is directed for example to the recorded lectures at the 
Summer School "Artificial Intelligence for Earth System Science (Al4ESS 
2020) where some of the method and impres ive applications are 
pre ented. 

1 .5. Future Directions and Challenges 

Use of modeling and forecasting tools is indispensable for effe�tive 
water management. Traditional ly such models belonged to the clas of 
the process-ha ed (physical ly based) model , typically based on numerical 
solution of differential equations of water motion. During the la t three 
decades advances in machine learning techniques, increased comput­
ing power and data availability have led to changes in this land cape. 
Hydroinformatics i seen as the major area where machine learning uch 
algorithms have been tested and applied to a large variety of water•related 
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problems, and have proven to be tools effectively complementing, and 
sometimes replacing physically based models. An improved physical 
representation does not necessarily guarantee an increased accuracy and 
utility of traditional models, so alternative ways are sought. This chapter 
presented an overview of the main approach in ML, relevant for this 
volume, in most cases with references to the authors' own experience, and 
to the sources for further reading. 

There is currently a serious change in the attitude toward the 
data -driven models within the practicing modelers community and the 
current discussions in the hydrological literature is an indicator of this (see, 
e.g., Nearing et al., 202 1 ;  Beven, 2020). ML not only provides techniques
for modeling, but also enhances ability of citizens to get access and better
understand the modeling results via the natural language processing
(NLP) and intelligent chatbots.

We see the future advances of modeling technologies in more effective 
combination of various types of models and their hybridization (e.g. ,  in the 
line of physics-aware AI see J iang et al. 2020) and coevolution (as outlined 
by Razavi et al., 2022). Out of the experience of the authors, we see the 
following as the main future directions: 
1. Integration of Al and ML into operational water management: Inte­

grating AI and ML models into real-time decision support systems for
efficient and adaptive water management is one potential approach.
This  entails creating models that can adapt to changing environ­
mental circumstances in real time and improve water allocation and
distribution.

2. Improved data availability and quality: ML models require access
to high-quality diversified data. Future work should concentrate on
improving data-gathering methods, strengthening data-sharing chan­
nels, and creating approaches for dealing with missing or incomplete
data. This will aid in the development of more accurate and robust
ML models.

3. Uncertainty quantification and risk assessment: Addressing uncer­
tainty and mea uring risks associated with machine learning
predictions are major problems. Future research should concentrate
on creating approaches for quantifying uncertainties in ML-based
predictions, as well as incorporating risk assessment frameworks for
improved decision making under uncertainty.

4. Explainability and interpretability of ML models: ML models partic­
ularly deep learning models, are often considered black boxes due to
their complex structures. Enhancing the interpretability and explain­
ability of ML models in water resource applications is an important
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direction. This will enable stakeholders to understand the reasoning 
behind model predictions and build trust in their use. 

5. Integration of domain knowledge and expert systems (hybrid models) :
Integration of domain knowledge and expert systems can boost ML
models. To increase model accuracy and interpretability future initia­
tives include constructing hybrid models that integrate ML methods
with physics-based models or expert knowledge.

6. Ethical and responsible AI: As AI and ML play an increasing role
in water resources management, addressing ethical considerations,
data privacy and bias becomes crucial. Future efforts should focus on
developing guidelines standards, and frameworks for the ethical and
responsible use of AI in water-related applications.

7. Bridging the research-practice divide: It is critical to translate research
results into practical applications and to develop cooperation among
scholars, practitioners, and policymakers. Future directions should
emphasize knowledge transfer, capacity building, and effective com­
munication to ensure that ML techniques are effectively applied in
real-world water management scenarios.
Finally, the chapter presented a thorough assessment of the future

directions and difficulties in the field of hydroinformatics and machine 
learning for water-related problems. As we navigate the ever-changing 
world of water resource management, it is evident that embedding AI and 
machine learning technologies into operational ystem provides a viable 
path toward better water allocation and distribution. However, in order to 
fully exploit these technologies' promise, data availability and quality must 
be enhanced uncertainties measured, and dangers analyzed. Furthermore, 
the explainability and interpretability of ML models domain knowledge 
integration, ethical issues, and effective knowledge transfer are critical 
topics that require study. We can support sustainable water management 
practices and assure the appropriate and successful use of AI and ML 
in tackling the ever-growing complexities of water-related concern by 
embracing these difficulties and investigating the recommended future 
approaches. 
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