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With advancements in reusable liquid rocket engine technology
to meet the diverse demands of space missions, engine systems have
become increasingly complex. In most cases, these engines rely on
stable open-loop control and closed-loop regulation systems. However,
due to the high degree of coupling and nonlinear dynamics within
the system, most transient adjustments still depend on open-loop
control. Open-loop control often fails to provide the optimal control
strategy when encountering external disturbances. To address this
issue, we introduce the intrinsically motivated twin delayed deep

Received 7 June 2024; revised 3 September 2024; accepted 17 September
2024. Date of publication 14 October 2024; date of current version 14
April 2025.

DOI. No. 10.1109/TAES.2024.3471494
Refereeing of this contribution was handled by C.-H. Lee.

This work was supported in part by the China Scholarship Council un-
der Grant 202306110030 and in part by the National Natural Science
Foundation of China (NSFC) Innovative Research Group Project “Matter
Transport and Energy Transformation in Space Power System” under Grant
T2221002.

Authors’s addresses: Yuwei Liu, Yuqiang Cheng, and Jianjun Wu are
with the College of Aerospace Science and Engineering, National
University of Defense Technology, Changsha 410073, China, E-mail:
(liuyuweil 9 @nudt.edu.cn; cheng_yuqiang@163.com; jjwu@nudt.edu.
cn); Yang Liis with the Shanghai Institute of Microsystem and Information
Technology, Chinese Academy of Sciences, Shanghai 201210, China,
E-mail: (yang.li-4@outlook.com); Wei Pan is with the Department of
Cognitive Robotics, Delft University of Technology, 2628 CD Delft, The
Netherlands, E-mail: (panweihit@gmail.com). (Corresponding authors:
Jianjun Wu; Wei Pan.)

0018-9251 © 2024 IEEE

2250

deterministic (TD3) algorithm, specifically designed for the startup
process of LOX/Kerosene high-pressure staged combustion engine.
This approach leverages intrinsic motivation to enable the algorithm
to adapt to the abrupt parameter changes during the start-up process.
A series of comprehensive experiments were conducted to verify the
effectiveness of our method. The experimental results demonstrate
that our method outperforms both the PID method and previous
researchers’ reinforcement learning methods based on the TD3 algo-
rithm and DDPG, achieving a faster and more stable start-up process
and significantly enhancing engine performance.

[. INTRODUCTION

With the increasing complexity of human space mis-
sions and the in-depth exploration and utilization of space,
the performance requirements for rocket engines are also
increasing [1], [2]. The liquid propellant rocket engine
(LRE), as the most important power device at present,
needs to undergo complex transient dynamic processes
during launch and flight, such as ignition, thrust adjustment,
and shutdown [3]. The accurate control of these transient
processes is crucial to ensuring the reliability and safety of
the engine. Although traditional control methods perform
well in many cases, their limitations gradually become
apparent when dealing with highly nonlinear, multivari-
able, and extreme operating conditions [4]. Furthermore,
since SpaceX achieved the engineering of reusable rocket
engines, reusable engines have also emerged as a prominent
research focus in the field of engine studies, presenting
new challenges and potential solutions to traditional control
methods [5], [6], [7].

Therefore, with respect to the control issues of rocket
engines, particularly for reusable engines, researching con-
trol over operational condition variations is crucial. This
research must ensure not only precise control of engine
performance during individual launches but also consider
long-term maintainability and reusability [8], [9]. Minimiz-
ing damage to engine components is essential, as it signif-
icantly impacts engine stability, reliability, and reusability
[10]. Consequently, the control system must be capable of
adapting in real time to changes in engine conditions, and
it should adjust control strategies to address potential per-
formance degradation and fault progression over extended
periods of use [11]. Furthermore, as the complexity and
frequency of launch missions increase, traditional control
methods may struggle with the requisite response speed
and adaptability needed for rapidly evolving environments
and parameters [12]. In traditional engine start-up control,
most valve control logic is developed through extensive
ground testing. While these control strategies ensure that
the engine operates within a safe and reliable range, they
are inadequate for current closed-loop control systems and
future reusable engines. This traditional approach cannot
effectively respond to unexpected situations during flight
or address conditions not considered during ground tests.
Moreover, it does not take into account the engine’s lifespan
and long-term maintainability, necessitating maintenance
after each use, which prolongs the launch cycle. Therefore,
as the demands of space missions continue to grow, the need
for optimized engine control will also increase.
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In this context, reinforcement learning (RL) offers a
novel possibility. It continuously optimizes control strate-
gies by learning from interactions with the environment,
thereby adapting to changes in the environment and its own
performance [13]. RL has been extensively researched for
a variety of task requirements in the aerospace domain,
including drone trajectory optimization [14], [15], aviation
braking [16], spacecraft lunar landings [17], spacecraft
maneuvers in space [18], and launch vehicle guidance [19],
[20].

Falcone and Pulnam [21] implemented deep reinforce-
ment learning (DRL) within the domain of aviation brak-
ing, and designed a 3-D reward function to ensure a sta-
ble learning trajectory for RL agents. They proposed a
deep Q-learning architecture tailored for aviation brake
maneuver planning and decision-making. This architecture
leverages parallel simulations and a directional exploration
strategy that utilizes locally observable environments. A
Comparative analysis with the most recent autonomous
pneumatic braking heuristic algorithms was conducted.
The findings indicated that DRL methods are capable of
making more robust decisions under extreme conditions.
Tipaldi et al. [22] analyzed multiple specific applications
of current RL technology in the aerospace field, such as
guidance, navigation, and control systems for spacecraft
landing on planets, orbit transfer, trajectory planning for
interstellar missions, attitude control systems for space-
craft, guidance for rendezvous and docking and approach
maneuver scenarios, constellation orbit control, as well as
on-board decision-making, operation scheduling, and rover
path planning for spacecraft. They explored how to meet the
mission requirements of spacecraft through RL solutions
and implement a controller (i.e., RL agent) that is robust
to system uncertainty and can adapt to constantly changing
environments. For each application field, the core elements
of the RL framework were also discussed, including reward
functions, RL algorithms, and environmental models for RL
agent training, which are key guiding factors for solving
spacecraft control problems through the RL framework.
Maicke [23] conducted a comprehensive review of the
application of machine learning in rocket propulsion sys-
tems, focusing on four primary areas: 1) fault diagnosis, 2)
modeling assistance, 3) control, and 4) experimental data
analysis. He discussed the reasons behind the relatively
slow adoption of machine learning in this field compared to
computational fluid dynamics. These reasons include:

1) the state of the propulsion system directly impacts
the overall state of the rocket, necessitating a con-
servative approach to development to ensure safety;

2) effective application of machine learning in rocket
propulsion not only demands expertise in machine
learning algorithms but also requires a deep under-
standing of the specific field to develop appropriate
machine learning tools for propulsion systems;

3) challenges related to data reliability and extrapola-
tion, such as acquiring reliable experimental data for
propulsion systems and using this data to create a
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high-fidelity database, are critical for advancing the
use of interest-based learning tools in propulsion.

In subsequent studies, Dresia et al. [24] investigated the
benefits of using neural network controllers with open-loop
sequences. Before use, train the control using a simu-
lated environment. The neural network was found to be
closer to the reference values used for testing. They hope
to expand control research to explain further unexpected
events, including adaptation to exercise operations in un-
stable situations. Zavoli et al. [25] used neural networks
as an alternative model for predicting the performance of
hybrid rocket engines. Establish a medium-fidelity HRE
trajectory model for generating sample data for network
training. Finally, the trained network is used as an alternative
HRE model in the multidisciplinary optimization process
to determine the optimal HRE design and ascent trajectory
for the Vettore Europeo di Generatione Avanzata-derived
three-stage launch vehicle, where HRE replaces the last two
stages of the original four-stage rocket. Oestreich et al. [26]
proposed a six-degree-of-freedom rotating target docking
excitation strategy using RL for spacecraft rendezvous and
docking problems, which is effectively applied to satellite
services and automatic docking of orbital debris. Adopting
a proximal strategy optimization algorithm, this method
performs well in simulated environments, optimizing per-
formance, and controlling costs.

With the continuous strengthening of research on the
application of artificial intelligence in spacecraft guidance,
navigation, and control, Brandoniso et al. [27] adopted
DRL to reconstruct the shape of unknown target objects in
relative dynamic scenes, achieving adaptive guidance and
control. Similarly, in the context of spacecraft navigation
and guidance, Ciabatti et al. [28] employed DRL alongside
transfer learning techniques. These methods were used to
train models that excel in specific environments. Impor-
tantly, they successfully transferred these strategies to new
environments while maintaining their optimal performance.
Horger et al. [29] conducted preliminary development of a
controller based on RL for the efficient operation of reusable
engines. Their study focused on a propulsion system using
N,O/C,Hg as green propellants. The control objectives in-
cluded adjusting the mixture ratio and combustion pressure.
The existing test bench was modeled in EcosimPro / ESPSS
and controlled through a simulation model using DRL
for controller training. Preliminary experiments validated
the fundamental capabilities of the RL-based controller in
actual rocket propulsion systems, marking an important
step toward safe and intelligent engine control. In addition,
Horger et al. [30] proposed a controller for cold gas thruster
pressure based on a RL method. Through simulation and
experimental data, they demonstrated the controller’s sta-
bility and accuracy in various pressure setpoints and target
pressure tracking tasks. However, the Horger’s approach
involved continuous open-loop control of thrust, with lim-
ited consideration given to transient closed-loop control.
Amarthya et al. [31] applied RL to spacecraft automatic
thrust vector control systems. By analyzing sensor data and
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simulation models, the agent autonomously determined the
optimal thrust vector and magnitude, achieving efficient
closed-loop control. However, they only employed a greedy
algorithm, and the trained model did not fully converge.
Waxenegger-Wilfing et al. [32] studied a certain type of
gas-cycle rocket engine system and analyzed the control
strategy of engine transient regulation using the RL method.

Although researchers have extensively applied RL
across the aerospace sector, studies on its application to
LRE systems are relatively scarce. Notably, the work by
Waxenegger [33] and colleagues on RL control for open-
cycle engines made some progress but still faces significant
limitations. For instance, their research did not analyze
LOX/Kerosene high-pressure staged combustion engine,
nor did it sufficiently consider the sequence and coordina-
tion of valve opening times. As a result, it remains unclear
whether RL control methods based on the TD3 algorithm
are applicable to actions that require a specific sequence. For
reusable engines, an incorrect valve sequence can severely
impact the engine’s service life. Based on this, we believe it
is necessary to delve deeper into this issue. Consequently,
this article aims to optimize the start-up and transient control
of liquid rocket engines by improving RL algorithms and
control strategies.

Our research mainly includes the following points.

1) By incorporating RL into the startup process of
an LOX/Kerosene high-pressure staged combustion
engine and considering the characteristics of param-
eter variations during startup, we successfully trans-
formed the engine startup problem into a RL prob-
lem. This was achieved by defining the observation
and action spaces and utilizing an engine simulation
platform alongside RL algorithms.

2) Based on the characteristics of the startup process in
the gas generator staged combustion cycle engine,
we designed a segmented reward function that in-
cludes both hard and soft constraints. In addition,
we proposed improvements to the TD3 algorithm,
enabling the reward function to stabilize quickly
during training. We further designed, trained, and
evaluated an RL controller.

3) We conducted a quantitative comparison between
open-loop control and PID controllers in engineering
applications and compared these methods with those
used by previous researchers.

[I. PRELIMINARIES AND MODELING

In this section, we will briefly introduce the relevant
concepts of RL and the LOX/Kerosene high-pressure staged
combustion engine study in our work. RL is a type of
machine learning [33]. DRL is an organic combination of
RL and deep learning, which breaks through the limita-
tion of traditional tabular RL methods that can only use
low-dimensional inputs and have better feature extraction
ability than other function fitting methods. It is considered
the most promising development direction in the field of
artificial intelligence.
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A. Basic Theory of Reinforcement Learning

RL can be abstracted as a Markov decision process,
where the agent observes its state S; at time ¢ and selects
action a, based on strategy 7. The environment feedbacks
the reward r,, to the agent for the next moment, and the
agent enters a new state S;4;.

According to different learning objectives, RL can be
divided into two categories: 1) value-based RL algorithms
and 2) policy-based RL algorithms. The goal of value-based
RL algorithms is to learn an optimal action state value func-
tion Q*(s, a), and typical algorithms include Q-learning,
state-action-reward-state-action (SARSA), etc. The goal of
policy-based RL algorithms is to learn an optimal policy 7 *,
and typical algorithms include trust region policy optimiza-
tion (TRPO), proximal policy optimization (PPO), etc. On
the basis of these two methods, Konda and Tsitsiklis pro-
posed an actor-critic algorithm [34], which combines value-
based methods with policy-based methods, while learning
both the policy function and value function. Compared
with strategy-based and value-based RL algorithms, the
actor-critic algorithm has advantages, such as high sample
utilization, small variance in value function estimation, and
fast training speed.

B. TD3 Algorithm

DRL is centered around RL, and on this basis, it utilizes
the powerful fitting ability of artificial neural networks
to fit the policy function and state action value function
Q(s, a). The deep deterministic policy gradient algorithm
(DDPG) combines the actor-critic algorithm with the deep
Q-network algorithm (DQN) and is a typical DRL algo-
rithm. The DDPG algorithm incorporates a target network
into the actor-critic algorithm framework, making network
training more stable. However, there are issues with high
estimation and high variance in the DDPG algorithm.

In response to issues identified in the DDPG algo-
rithm, the twin delayed deep deterministic policy gradient
(TD3) algorithm offers several enhancements. To address
the problem of overestimation inherent in the DDPG’s critic
network, TD3 introduces a second critic network. This dual
critic setup operates by fitting the agent’s action-state value
function using both networks. During the evaluation of the
action-state value function, both critic networks provide
separate evaluations, and the lower of the two values is
selected as the definitive action-state value for the agent.
The method for updating the action-state value in the TD3
algorithm is structured as follows:

y < r+ymin Qp, (s 74 (s')) - M

In the formula, Qp, (5", g (s")) and Qp, (8", 7y (s')) represent
the estimated values from the two critic networks, respec-
tively.

The high squared error prevalent in the DDPG algorithm
can lead to several adverse effects, such as a reduced learn-
ing rate, decreased learning performance, and an unstable
learning process. The TD3 algorithm addresses this issue by
introducing regularization methods, namely, the integration
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Fig. 1. Structural diagram of LOX/Kerosene high-pressure staged

combustion engine.

of random noise into the actions of the intelligent agent.
This modification in the agent’s actions, post noise addition,
aims to enhance the robustness and stability of the learning
process

a< 7y (s)+e e~clip(N©0,6),—c.c). (2

In the formula: w4 (s") is the action output by the actor
network; € is a random noise.

The TD3 algorithm uses gradient descent for updating,
and the gradient formula of the strategy network is as
follows:

Vol (@) =N""Y " Va4 (5, Dlazry ) VoTs(s).  (3)

In the formula: Qy, (s, a) is the value of the action state,
7y (s) is the strategy of the intelligent agent, and V is the
sign of the gradient.

However, in traditional RL algorithms, each update is
randomly sampled from the experience pool, and the se-
lected samples are used to update the neural network. The
selection of samples directly determines the convergence
speed and results of the algorithm.

C. Rocket Engine System
In this article, an LOX/Kerosene high-pressure staged
combustion engine is studied and its system diagram is
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shown in Fig. 1. The engine operates on a staged com-
bustion cycle, where a small amount of propellant is
burned in the precombustion chamber and a gas generator
is employed. Low-temperature liquid oxygen and room-
temperature kerosene were used as oxidants and fuels,
respectively. This gas generator operates with an oxygen-
rich mixture ratio. The generated gas is used to drive the
gas turbine. This turbine is mechanically connected to
the pump, which provides power. The pump then pressurizes
the fuel and oxidizer before delivering them to the combus-
tion chamber.

In this system, kerosene serves as a cooling medium to
cool the main combustion chamber before all of it enters the
gas generator for combustion. Typically, the Laval nozzle
includes a noncooled nozzle extension (NE) that accelerates
the combustion gas and generates thrust. The engine oper-
ating conditions are regulated by five flow control valves
(VGO, VGF, VCF, VRFE, VGP). VGO is a gas generator
oxidizer valve used to regulate the mixing ratio of the
gas generator; VGF and VCF are the gas generator fuel
regulating valve and the combustion chamber fuel valve,
respectively. VRF is a fuel flow control valve that can
regulate the flow of the gas generator at low thrust while
ensuring sufficient cooling of the thrust chamber. VGP is a
gas bypass valve located downstream of the gas generator
and upstream of the turbine, which can be used to regulate
the power of the turbine and adjust the mixing ratio of the
entire system. IGN represents the ignition system of the gas
generator and main combustion chamber.

The use of RL for rocket engine control has the follow-
ing advantages.

1) Rocket engines are complex systems with high ther-
modynamic fluid mechanical coupling and high en-
ergy release ratios. For traditional PID control, some
parameters need to be analyzed for observability and
controllability, or complex control logic needs to be
designed. RL does not require a closed-loop or dis-
play of mathematical equations for the entire system
and directly uses nonlinear simulation models.

2) The working process of rocket engines is complex,
and any disturbance in the environment may have an
impact on the engine’s state. LRE did not consider
the impact of various usage scenarios on the engine
during the initial design process, especially the cur-
rent reusable engine. RL can learn environmental
dynamics by simulating training RL strategies (such
as neural network weights).

3) RL can design different rewards for different task
stages to achieve different goals.

The current shortcomings of RL:
The design of reward functions requires a lot of manual
experience.

[lI.  INTRINSICALLY MOTIVATED TD3 (IM-TD3)

To better adapt the TD3 algorithm for the start-up pro-
cess of the LOX/Kerosene high-pressure staged combustion
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engine, we propose the intrinsically motivated TD3 (IM-
TD3) algorithm. Improvements to the algorithm include
preprocessing, selecting appropriate observation and action
spaces, and designing a reward function specifically for the
engine startup process.

A. Preprocessing

This algorithm incorporates two main improvements
over the standard TD3: 1) conducting ten iterations of
updates during the training process; and 2) employing an
annealing learning rate. These enhancements can further
increase the stability and efficiency of the algorithm, par-
ticularly suitable for handling the complex or multimodal
reward structures designed for the engine start-up process,
especially in the face of “discontinuous” states encountered
during engine start-up.

Next, we will detail the two key improvements made.
First, during the training process, we perform ten iterations
of updates instead of a single data sampling and network up-
date. Each time the training function is called, ten indepen-
dent iterative updates are executed. During engine start-up,
if the start-up is successful, the engine’s state parameters
can undergo sudden changes, with some parameters expe-
riencing multiple shifts within a fraction of a second. In
such cases, a single round of data sampling and updating
may not adequately capture all significant state changes in
a timely manner. In each training iteration, the algorithm
samples multiple data batches from the experience replay
buffer. This not only enhances the utilization rate of data but
also, through multiple samplings, increases the diversity of
the training process, helping the algorithm to capture a more
varied set of state-action relationships.

During the start-up process of a rocket engine, in addi-
tion to dramatic parameter changes, there are also issues,
such as start-up failures and unstable combustion. This
requires the model to handle sudden state changes and
fluctuations. By computing the cumulative loss from ten
iterations of updates and averaging it, we can smooth the
training process, reduce random fluctuations in parameter
updates, and thereby enhance the algorithm’s stability. An-
other advantage of this method is that it allows for gradual
adjustments of the learning rate during the training process
to meet the needs of different training phases. Through
the annealing learning rate strategy, it facilitates a smooth
transition from rapid learning to fine-tuning.

On the other hand, the IM-TD3 algorithm incorporates
an annealing learning rate. An annealing learning rate typ-
ically involves progressively reducing the learning rate as
training advances. During the engine start-up process, it is
essential, particularly in the early stages, to experiment with
various valve opening sequences and degrees to achieve
successful engine ignition. After the engine starts, excessive
valve actuation should be avoided as it can cause parameter
oscillations. The benefits of implementing an annealing
learning rate include the following.

1) Enhanced Initial Learning Efficiency: A higher
learning rate in the early stages allows the algorithm
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to converge quickly, reducing significant losses and
enhancing learning efficiency. Maintaining a higher
initial learning rate could help the algorithm escape
local minima or saddle points, encouraging the agent
to explore different actions. This is particularly cru-
cial for navigating the complex environments associ-
ated with the engines discussed in this article, ensur-
ing rapid performance improvements and successful
engine start-up.

2) Increased Stability in Later Phases: To prevent
system parameter fluctuations and oscillations af-
ter the engine has successfully started, the learn-
ing rate’s gradual reduction decreases the model’s
update steps. This adjustment helps stabilize the
model during the later stages of learning, refining
its response to the environment. As the learning rate
diminishes, the algorithm may stabilize at a global
optimum or a favorable local optimum, minimizing
excessive adjustments as the learning nears an opti-
mized state and preventing oscillations.

B. Observation and Action Space

To Train and Use IM-TD3: It is necessary to define
the observation space and action space of the agent. Ob-
servation space, which refers to the variables received by
the agent from the environment at each time step, requires
sufficient information to clearly define the current state of
the system. In this article, we set the observation space as
follows:

S = [Pg. Pc, F, ny, nyp, MRgG, Posvco, Posyar, Posycr] -

“)

It contains nine state parameters, where Pg, Pc, F, n,,
nipp, and MRgg are the pressure of the gas generator, the
pressure of the main combustion chamber, the magnitude
of thrust, the speed of the main turbine, the speed of the
fuel prepressure pump, and the mixing ratio of the gas
generator. Posygo, Posygr, and Posycr are the opening of
the controlled valve. Normalize the observation space using
steady-state reference values. Therefore, the observation
space and method proposed for this engine are not limited
to the simulation environment in this article. In other engine
systems or environments, some parameters, such as engine
turbine efficiency, cannot be directly measured.

The action space A of the agent consists of the opening
degrees of three valves.

A = [Posygo, Posvgr, Posycr] . (5)

At each time step, the RL agent receives environmental
observation results and sends control signals to the engine’s
control valve. The interaction frequency between the RL
agent and the environment is 25 Hz.

C. Reward Sharping

The rewards used for training IM-TD3 and evaluating
the actions of valves consist of the following different
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components:

Reward = rgget + 7'f + Fmix + Tpos + Fact- (6)
The first item is
Farge = 1 — Y _ clip ( ’8—’“ ,0.2) (7)
i,ref

&

where ¢; € [Pg, Pc, F, n;, ngpp] is the target value for dif-
ferent parameters. Each reward component in this item
is trimmed to a maximum value of 0.2 to improve the
cumulative reward during training balance initiation and
steady-state periods. The second reward is

rp=1—clip(|F — Fet/Fel , 1) . ®)

Target thrust is one of the important indicators of the engine
system, which directly reflects the performance and load
capacity of the engine system. The third reward is

MRGG.rei—MRgG . » MRgg
: I <1
Fmix = 1 — MRGGrer f MRGG rer 9)
0, otherwise.

If the mixing ratio of the gas generator is lower than the
preset mixing ratio, it will cause the temperature of the gas
generator to rise, causing high-temperature gas to impact
the gas turbine, which may cause damage to the gas turbine.
The next reward is

= | A2

1 — Wﬂ

where Act; € [Posygo, Posygr, Posycg] represents the
opening degrees of the three valves, encouraging attempts
to open the valves before the system reaches stability;
represents the change in valve position between two-time
steps before and after the valve, which is used to penalize
the reciprocating action of the valve. Through this term, it
can suppress the oscillation caused by the agent frequently
acting as the valve during the system start-up process. The
last reward

1, ifATVGO < ATVGF < ATVCF
0.5, if (ATVGO < ATVGF or
ATVGO < ATVCF or
ATVGF < ATVCF) and
not (ATygo < ATvgr < ATvcg).

if Time < 4
otherwise

(10)

Y

Tact =

Among them, AT represents the opening time of the valve.
This reward is designed based on the characteristics of
the LOX/Kerosene high-pressure staged combustion engine
system and engine testing experience, ensuring that the
oxidizer valve opens earlier than the fuel valve and the gas
generator fuel valve opens earlier than the main combus-
tion chamber fuel valve. This condition-triggered reward
is expected to enable the agent to use the “discontinuous”
state of the engine during the training process, ensuring that
VGO, VGF, and VCF can be opened in the correct order.
As previously mentioned, the design of the reward
function is crucial in balancing multiple control objectives,
including ensuring that valves open in the correct sequence,
rapidly achieving target operating conditions, minimizing
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Algorithm 1: Intrinsically Motivated TD3 (IM-TD3).
1: Initialize critic networks Qp,, Qg,, and actor
network i, with random parameters 6, 6,, ¢.
2: Initialize target networks 0] < 0, 6} < 6,,
¢ <« ¢.
3: Initialize replay buffer B and learning rate
schedulers.
4: fort=1toT do
5: fori =1to 10 do
training updates

> Perform ten iterative

6: Sample replay buffer to get transitions
(s,a,r,s',d).
7 Disable gradient calculations for target
updates:
8: Compute target action
a =my(s') + clipNV (0, 0), —c, ¢).
9: Compute target Q values
Q' = min(Qy, (s, a'), Qg (s', a)).
10: Compute target
Qtargel =r+0-d)-y-0.
11: Update critic networks using mean square
error (MSE) loss: MSE(Qq (s, @), Qarget)-
12: if i mod policy_freq = O then
13: Update actor network by maximizing
critic’s Q values.
14: Soft update target networks 6/ and ¢’ .
15: end if
16: Adjust learning rates using schedulers.
17: end for
18: end for

steady-state error, reducing system overshoot, and decreas-
ing valve oscillations. These control objectives are reflected
in the various components of the reward function, each
targeting specific performance indicators.

The engine control methodology based on IM-TD3
necessitates the training and evaluation of the agent. During
the training phase, the agent generates different actions
through its policy and receives rewards through interaction
with the environment. These rewards are used to adjust
the policy, aiming to identify the optimal control strategy.
During the evaluation phase, the policy remains constant
while the performance of the agent is assessed under varying
conditions.

In our study, random noise was incorporated into the
policy for action generation during the training process
to ensure the agent learned appropriate control strategies.
The design conditions considered were thrusts of 1200
and 920 kN. In the evaluation phase, we calculated the
values of rewards under different control logics and assessed
the strategic performance at both design conditions. The
control actions related to the state were deterministic, with
exploration noise set at 0.001. For further detailed discus-
sions on continuous control problems in RL, Riedmiller has
extensively elaborated in literature [35].
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Fig. 2. 1200-kN open-loop start timing, parameter changes, and reward acquisition.

V. INTELLIGENT AGENT TRAINING AND SYSTEM
SIMULATION

In this article, we utilize Simulink for modeling and
simulation. Simulink offers robust tools and logic libraries
that facilitate the simulation of systems ranging from simple
dynamics to complex control systems. As depicted in Fig. 1,
an engine system was established using Simulink.

The start-up of the engine involves complex discontinu-
ous processes, such as cold filling, exhaust, and ignition. In
this study, the filling process of the engine was ignored, and
it was assumed that the propellant had already been filled to
the main valves and immediately entered the gas generator
and combustion chamber when the valves opened.

When the system starts working, first open the liquid
oxygen main valve in front of the gas generator. Under
the pressure of the storage tank, liquid oxygen enters the
gas generator. Subsequently, the fuel in the starting box
compresses the ignition agent in the ignition duct and enters
the gas generator, igniting and burning with the preentered
liquid oxygen. The fuel in the starting box is controlled by
the gas generator valve to enter and participate in combus-
tion ata small flow rate. This article simplifies the simulation
of this process by controlling the ON/OFFstate of the liquid
oxygen main valve and the fuel valve of the gas generator.
When the engine enters the primary process, the fuel valve
in the combustion chamber opens, and the throttle valve
is in a low flow state. For the simulation of this process,
this article uses the ON/OFFstate of the flow control valve
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to achieve this. At the beginning of ignition, the fuel flow
entering the gas generator is the starting flow rate. The
mixing ratio of the gas generator rapidly decreases, and
the temperature of the oxygen-rich gas increases, driving
the main turbine to rotate. Therefore, the time sequence of
valve opening and the size of valve opening in a gas engine
determine the thermodynamic conditions and mechanical
stresses experienced by the components during the engine
starting process. Incorrect starting sequence may cause
difficulty in starting the engine, or even damage the engine.

Fig. 2 shows the open-loop starting sequence obtained
from the experiment. First, the VGP valve is in an open
state from the beginning, then the VGO valve opens at
t = 1.1 s, and second, the VGF valve opens at t = 1.4 s.
Usually, the fuel will ignite smoothly at 7 = 1.5 s. To ensure
the smooth entry of fuel into the main combustion chamber,
itis necessary to open the VCF and close the VGP to ensure
sufficient power output from the turbine. Therefore, starting
at t = 1.4 s, VGP is closed, and all the gas from the gas
generator is used for turbine work. Pressure is established
in front of the VCF valve. When r = 1.6 s, open VCF,
and the main combustion chamber begins to burn. During
the entire start-up process, VGP is a flow-regulating valve
that increases the fuel of the gas generator to maintain
combustion stability. The engine reaches a steady state after
approximately 4 s. In Fig. 2, the valve switch settings were
adjusted to achieve the main combustion chamber pressure
of approximately 18 MPa and the gas generator chamber
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Fig. 3.

pressure of approximately 37 MPa. The mixture ratios were
approximately 55.5 for the gas generator and approximately
2.4 for the main combustion chamber. From the results
shown in Fig. 2, we can observe that the overshoot in the gas
generator is greater than in the combustion chamber. This is
because the gas generator operates at a higher pressure and
has a smaller volume compared to the combustion chamber,
making it more sensitive to pressure fluctuations. In addi-
tion, since the gas generator operates under oxygen-rich
combustion, its mixture ratio decreases over time. It is also
evident from the reward function that the mixture ratio of
the gas generator consistently remains equal to or greater
than the target value, which causes the ry,ix = 1 shortly after
the engine starts the process.

In addition, Fig. 2 displays the distribution of cumulative
rewards for open-loop control under 1200-kN operating
conditions, comprising five distinct reward components.
In the open-loop control strategy, because the valves are
activated only once, the reward components rpos and 7
contribute significantly to the total reward. This outcome
highlights the importance of optimizing valve operations
in the design of the reward function and underscores the
need for meticulous adjustments during the actual control
process.

We examined various thrust reference values, specifi-
cally 1200 and 920 kN. At the thrust of 920 kN, the main
combustion chamber pressure was approximately 14 MPa,
and the gas generator chamber pressure was about 31 MPa.

LIU ET AL.: IM-TD3: A REINFORCEMENT LEARNING APPROACH FOR LIQUID ROCKET ENGINE START-UP OPTIMIZATION

920-kN open-loop start timing, parameter changes, and reward acquisition.

The mixture ratio for the gas generator was around 40,
while that for the main combustion chamber was approx-
imately 1.8. The timing sequence of the valve activation
remained unchanged; however, the degree of valve open-
ing was altered, as depicted in Fig. 3. As shown in the
results in Fig. 3, compared to the 1200-kN operating con-
dition, the 920-kN condition exhibits smaller overshoot in
both the gas generator and the main combustion chamber,
but the system’s response time is longer. However, the total
reward trends of the two operating conditions are relatively
similar. In the following analysis, we simulated and assessed
the dynamic characteristic curves of an open-loop start-up
sequence, a set of PID controllers, the TD3 algorithm, and
the IM-TD3 algorithm.

V.  SIMULATION RESULT AND DISCUSSION ANALYSIS

In this section, based on the simulation platform, we
evaluated the performance of RL in engine control using
steady-state error and cumulative rewards. In addition, we
compared our results with the TD3 algorithm-based RL
method used by Waxenegger et al. [30] and the DDPG
algorithm-based RL method. However, the use of the TD3
algorithm in this engine model did not yield the desired
outcomes, resulting only in curves of parameter changes
associated with unsuccessful start-ups. We first presented
the parameter variation trends of open-loop control, PID
control, and RL control under 1200-kN operating condi-
tions, as shown in Fig. 4.
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Fig. 4. Under the 1200-kN condition, the trends in parameter changes and the rewards obtained through Open-loop control, PID control, the TD3
method, the DDPG method and IM-TD3 method.

From Fig. 4, the first row shows the results of open-loop
control during engine start-up. In this mode, the steady-state
values are close to the design conditions, but there is sig-
nificant parameter fluctuation at start-up, characterized by
noticeable oscillations and overshoots. This could poten-
tially impact the entire engine system, reducing the engine’s
lifespan. For the 920-kN condition, the mixture ratio in
the gas generator under open-loop control is below the
values required by the design conditions. This could lead to
overheating of the gas generator, and the high-temperature
gases produced might damage the turbine.

In closed-loop control, parameter fluctuations are sig-
nificantly reduced, and the engine’s overshoot is effectively
minimized. We utilized three PID controllers to regulate the
opening of the VGO, VGF, and VCEF, thereby controlling
the combustion chamber pressure, gas generator mixture
ratio, and thrust. These adjustments in closed-loop control
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contribute to more stable and reliable engine operation,
aligning with the operational requirements and enhancing
overall performance and safety. The variables in the system
are coupled, for example, changing VGO will have an im-
pact on the other two variables. Therefore, to avoid system
oscillation, we adopted three independent PID controllers
for control. From Fig. 4, it can be seen that in PID control,
the overshoot and fluctuation of system parameters are
smaller than those in open-loop control, but it will increase
the time for the system to reach a steady state. Due to the sig-
nal composition of the PID controller, the output shape has
certain limitations and cannot provide the optimal control
signal. Therefore, there is a deviation between the mixing
ratio of thrust and gas generator and the design value. During
the start-up process, there may be fluctuations in the mixing
ratio in the gas generator, which may cause instantaneous
temperature peaks in the gas generator. Although there is
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a deviation between the mixing ratio and the design value
in PID control, in steady-state, this value is greater than the
expected mixing ratio, the fuel ratio of the gas generator is
lower than the expected value, and the gas generator will
not overheat. Moreover, compared with the other two types
of control, PID control achieved the lowest reward under
920-kN operating conditions.

The third row represents the parameter changes under
the RL method based on the TD3 algorithm. Despite trying
various parameter configurations, the TD3 algorithm failed
to successfully start the engine, possibly due to its limited
ability to handle the complex dynamics within the system.
From the attempted startup processes, we observed signifi-
cant fluctuations in parameters, such as thrust, combustion
chamber pressure, and mixture ratio, indicating that the TD3
algorithm lacks control stability and response efficiency in
this system.

The fourth row shows the parameter variations based
on the DDPG algorithm for the RL control method. The re-
sults indicate that the DDPG algorithm exhibits fluctuations
during control, with a significant deviation between the gas
generator’s mixture ratio and the target value. However, it
achieves a relatively high total reward in the initial stage.
However, under the 920-kN operating condition, the DDPG
algorithm causes significant oscillations in the gas genera-
tor’s mixture ratio, resulting in a lower cumulative reward
compared to the IM-TD3 algorithm.

The fifth row shows the starting parameters of the IM-
TD3 RL method, and the adjustment curves of VGO, VGEF,
and VCF under 1200- and 920-kN conditions are shown
in Fig. 5, respectively. Compared with Figs. 2 and 3, the
valve does not open monotonically but has a certain degree
of variation. It is precisely because of such changes that
IM-TD3 can start faster than PID. As shown in Fig. 4,
it can effectively control the pressure in the combustion
chamber and engine thrust. In addition, the IM-TD3 directly
considers the issue of overheating in the gas generator,
ensuring that the mixing ratio of the gas generator is within
the design target range. Similar to PID control, the IM-
TD3 effectively reduces parameter fluctuations during the
start-up process and achieves values closer to the design
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Valve adjustment using IM-TD3 RL method under 1200-kN (left) and 920-kN (right) operating conditions.

specifications. The IM-TD3 adjusts the valves based on
the relationship between the current valve status and the
target values, as the valve states are incorporated into the
state space during the IM-TD3 training process. In Figs. 4
and 6, during the IM-TD3 adjustment, there were some
overshoots in the pressure and thrust of the main combustion
chamber. The reason for this phenomenon was that the
IM-TD3 aimed to make the engine reach a steady state faster
in order to pursue greater cumulative rewards. Therefore,
a balance was made between the speed of the overshoot
and reaching a steady state. From the characteristics of this
strategy, we can analyze that IM-TD3 RL has the potential
to dynamically adjust actions based on real-time data under
different conditions, optimizing engine performance.

To quantitatively assess the efficacy of this approach,
Table I presents the steady-state values, cuamulative rewards,
and total relative errors obtained by open-loop control,
PID control, DDPG, and IM-TD3 under 1200- and 920-kN
operating conditions.

From Table I, it can be seen that the cumulative relative
error in open-loop control is the smallest, indicating that the
deviation of each parameter in open-loop control is within
an acceptable range. However, for cumulative rewards, the
DDPG and the IM-TD3 are higher than open-loop control,
indicating that open-loop control can still be improved.
It is not difficult to see from Figs. 4 and 6 that there
are significant overshoots and fluctuations in the starting
process of open-loop control. In reality, if the valve can
open nonlinearly, then the engine can achieve a fast and
smooth flexible starting. In engineering practice, it is un-
likely to obtain the optimal flexible starting scheme through
repeated experiments. Therefore, it is necessary to choose
open-loop starting with some acceptable deviations, rather
than spending a lot of time and money searching for the
optimal valve starting sequence. But for reusable engines,
as the engine is used, its components will wear out, its per-
formance will gradually deteriorate, and other disturbances
in space may cause deviations from the original open-loop
control target operating conditions. Therefore, closed-loop
control is needed to provide feedback and eliminate these
interferences.
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Fig. 6. Under the 920-kN condition, the trends in parameter changes and the rewards obtained through open-loop control, PID control, the TD3

method, the DDPG method, and IM-TD3 method.

TABLE I
Performance Summary of Control Algorithms Under Different Target Thrusts

Steady-state Values

Target Thrust (kN)  Algorithm  Reward Relative Error

2260

Thrust(kN) P MRgg
OLS 431.49 1191.26 18.79 5541 0.0514
1200 PID 420.06 1177.17 18.68 55.83 0.0646
DDPG 456.45 1195.6 19.05 57.63 0.1023
IM-TD3 444.67 1197.09 18.99 55.77 0.0641
OLS 435.77 920.88 14.54 40.23 0.0045
920 PID 413.28 917.84 14.53 40.56 0.0134
DDPG 451.73 930.42 14.80 40.67 000437
IM-TD3 452.45 922.24 14.57 40.25 0.0085

* Relative Error = 3 (

=

€ isref

E€i—Eq, ref

)

Boldface is the closest thing to a desirable result.
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VI. CONCLUSION

This article proposes an RL control method for transient
regulation during the start-up process of an LOX/Kerosene
high-pressure staged combustion engine. Utilizing the en-
gine simulation platform, the IM-TD3 algorithm was em-
ployed to learn the optimal strategy. The start-up process
under various operating conditions was examined and com-
pared with the open-loop control and PID control used in the
experiment. The results indicate that the IM-TD3 achieves
the maximum reward by minimizing parameter fluctuations
within an acceptable steady-state error range and allows
for control through real-time interaction. However, some
aspects of this research require further improvement in
future studies.

This article analyzes the transient control of the starting
process. Not considering engine performance degradation
or other interfering factors is crucial for repeatable engines.
Therefore, in future work, it is necessary to study state
estimation and interference suppression. On the other hand,
complex models may also generate prediction errors due to
factors not taken into account or model errors. Therefore, it
is necessary for the controller to have sufficient robustness.

The generalizability of the controller is also a critical
consideration. When designing control strategies for rocket
engines, it is crucial to ensure that the controller possesses
robust generalizability. This requires the controller to func-
tion effectively across a variety of operating environments
and to adapt to various potential system changes. This
necessitates a careful distinction in the reward function
between constraints that affect engine safety and those that
impact performance.

Specifically, constraints that affect safety can be consid-
ered as hard constraints, while those impacting performance
can be viewed as soft constraints. Hard constraints primarily
focus on the safe operation of the engine; violating these
constraints could lead to equipment damage or system fail-
ure. To reinforce such constraints, negative rewards can be
designed to immediately terminate unsafe control strategies.
For example, if the temperature of the gas generator exceeds
safe thresholds, potentially damaging the turbine, a rule
could be set to issue a significant negative reward and im-
mediately stop the strategy if the mixture ratio falls below a
specific safety threshold. Soft constraints, on the other hand,
are generally associated with engine operational efficiency
and performance optimization. Although violating soft con-
straints does not immediately endanger system safety, it can
lead to suboptimal performance or reduced efficiency. In
these cases, smaller negative rewards can effectively guide
the control strategy to meet performance requirements while
avoiding unnecessary operational extremes. For instance,
if the engine cannot quickly reach a predetermined oper-
ational state during start-up, a moderate negative reward
could be designed to encourage optimization of the start-up
process without needing to halt training entirely.

By incorporating RL algorithms capable of offline learn-
ing, we can enhance model training speed and deploy the
trained models from offline to online environments. The
primary reason for the lengthy training time in RL is its

LIU ET AL.: IM-TD3: A REINFORCEMENT LEARNING APPROACH FOR LIQUID ROCKET ENGINE START-UP OPTIMIZATION

reliance on online interaction with the environment. In
practical engineering, extensive ground tests for training
are not feasible. However, using test run data or offline data
to train the model can not only improve the efficiency of RL
but also make it more suitable for applications like engines,
where data are scarce.

Particularly for reusable rocket engines, RL can refine
its decision-making process by utilizing historical flight
data and real-time feedback, thus enhancing operational
efficiency and extending the engine’s lifespan. By imple-
menting such an intelligent control system, we can progress
toward more efficient, economical, and sustainable space
launch services.
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