

Delft University of Technology

Document Version

Final published version

Citation (APA)

Karpavičius, A., Gouder, M., Seifert, J., Sanchez, A. R., & Witte, S. (2025). High-speed computational imaging with path-corrected fly-scan ptychography. In *2025 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2025* (2025 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2025). IEEE.
<https://doi.org/10.1109/CLEO/EUROPE-EQEC65582.2025.11109582>

Important note

To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright

In case the licence states "Dutch Copyright Act (Article 25fa)", this publication was made available Green Open Access via the TU Delft Institutional Repository pursuant to Dutch Copyright Act (Article 25fa, the Taverne amendment). This provision does not affect copyright ownership.

Unless copyright is transferred by contract or statute, it remains with the copyright holder.

Sharing and reuse

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

**Green Open Access added to [TU Delft Institutional Repository](#)
as part of the Taverne amendment.**

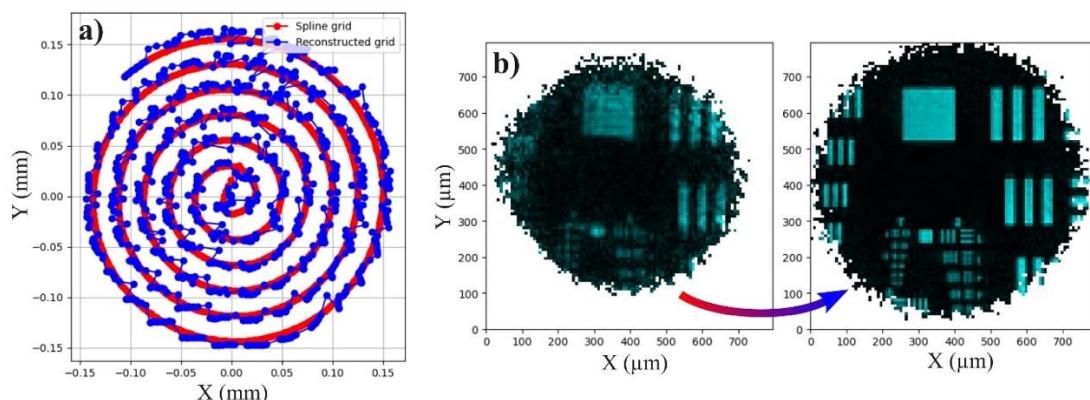
More information about this copyright law amendment
can be found at <https://www.openaccess.nl>.

Otherwise as indicated in the copyright section:
the publisher is the copyright holder of this work and the
author uses the Dutch legislation to make this work public.

High-speed computational imaging with path-corrected fly-scan ptychography

Augustas Karpavičius^{1,2,3}, Matthias Gouder^{1,2}, Jacob Seifert^{1,2}, Aaron Rivera Sanchez^{1,2,3}, Stefan Witte^{1,2,3}

1. Advanced Research Center for Nanolithography, Amsterdam, The Netherlands


2. Laserlab Vrije Universiteit, Amsterdam, The Netherlands

3. Imaging Physics, Faculty of Applied Sciences, Technische Universiteit Delft, Delft, The Netherlands

Ptychography is a computational imaging technique that enables the reconstruction of the amplitude and phase of an object and an illumination field using a series of recorded diffraction patterns [1]. Compared to conventional imaging techniques, ptychographic measurements offer more comprehensive information about the reconstructed object without requiring high-quality lenses, while also accommodating correction of experimental imperfections such as distance inaccuracies, angular misalignments, and other experimental errors. However, as ptychography is not a single-shot measurement technique, it is time-consuming, with a significant part of the measurement time attributed to the scanning process. Such mechanical scanning is inherently slow due to the acceleration limitations of the sample stage and the time required for stabilization [2].

In this study, we propose a fly-scan ptychographic lensless imaging approach to accelerate the measurement process, wherein the object moves continuously along an arbitrary scanning trajectory rather than in discrete steps during the acquisition of diffraction patterns. This continuous motion eliminates the overhead associated with the movement and settling of the sample positioning system, thereby significantly reducing the time wasted when data is not being collected. However, the continuous motion of the sample during an exposure causes averaging of rapidly varying fine features in the diffraction patterns, resulting in a loss of contrast in our captured images. Consequently, performing a conventional ptychographic reconstruction on this washed-out dataset yields inferior results when compared to step-scan measurement. To maintain a high resolution we need to adapt our forward model to account for this decoherence in our measurement.

The continuous object movement in the experiment is described by decomposing the reconstructed object into identical modes, which are then shifted along the initial fly-scan path [3]. This approach, combined with automatic differentiation (AD), not only facilitates fly-scan reconstruction but also enables precise correction and reconstruction of the fly-scan trajectory, significantly enhancing reconstruction quality without relying on expensive and complex high-speed sample tracking systems. Without the need for high-precision sample positioning and tracking, we can perform a fly-scan measurement in a conventional ptychographic measurement setup. With this reconstruction algorithm, we increase the measurement speed by several times and up to an order of magnitude for strongly diffracting samples (only limited by the camera framerate), while still being able to achieve diffraction-limited image reconstructions of the object. Our AD-based reconstruction algorithm provides a way to correct for deviations in the scan path, allowing us to maintain diffraction-limited resolution even when the fly-scan trajectory is not precisely known.

Fig. 1 Experimental fly-scan ptychography results: a) Initial spline-approximated scangrid and reconstructed experimental scangrid achieved by fly-scan object mode decomposition algorithm; b) Object reconstructions when using a spline-approximated scangrid (left), and when using a reconstructed scangrid achieved by fly-scan object mode decomposition algorithm (right).

[1] P.W. Hawkes and J.C.H. Spence in, Springer Handbook of Microscopy, P.W. Hawkes and J.C.H. Spence eds. (Springer Nature, 2019), Chapter 17, "Ptychography".

[2] J. Deng, Y.S.G. Nashed, S. Chen, N.W. Phillips, T. Peterka, R. Ross, S. Vogt, C. Jacobsen, and D.J. Vine, "Continuous motion scan ptychography: characterization for increased speed in coherent x-ray imaging," *Opt. Express* **23**, 5438-5451 (2015).

[3] M. Odstrčil, M. Holler, and M. Guizar-Sicairos, "Arbitrary-path fly-scan ptychography," *Opt. Express* **26**, 12585-12593 (2018).