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Abstract

Offline reinforcement learning (RL) trains policies from pre-collected data, valu-
able in scenarios where real-world interaction is costly or risky. This paper system-
atically investigates the interpretability-performance trade-off of decision tree policies
in a framework that reframes offline RL as supervised regression. Through extensive
empirical evaluation of single and decomposed decision trees against an XGBoost en-
semble on diverse D4RL environments, we show that compact trees, though inherently
interpretable, suffer significant performance loss. Conversely, achieving competitive re-
turns with larger trees sacrifices practical human auditability. Critically, return-to-go
(RTG) conditioning introduces significant behavioral fragility; policies, despite struc-
tural transparency, exhibit unpredictable responses to RT'G shifts, complicating their
practical interpretability in dynamic environments. Owur findings demonstrate that
structural simplicity alone is insufficient for practical transparency in goal-conditioned
RL, underscoring the need for further research in robustly interpretable sequential
decision-making systems.

1 Introduction

Offline reinforcement learning (RL) enables training decision-making policies exclusively
from pre-collected datasets, without further online interactions [I} 2]. This approach is par-
ticularly valuable in domains where real-world experimentation involves significant risks,
costs, or practical barriers. For example, offline RL can be used to derive insulin dosing
strategies from healthcare records [I]], develop autonomous driving policies based on previ-
ously collected sensor data [3], or operate robotic manipulators safely in hazardous industrial
environments [4].

Despite these promising applications, current state-of-the-art offline RL: methods—such
as deep neural networks or large ensembles of decision trees—often produce policies that
behave as opaque, "black-box" systems. Their internal reasoning is difficult for humans to
interpret or verify [5, [6] [7]. In safety-critical scenarios, such opacity can severely limit user
trust, regulatory acceptance, and ultimately, practical deployment. Thus, addressing this
interpretability-performance trade-off remains a crucial research area.

Our work builds upon the approach introduced by Koirala and Fleming in an earlier
version of their paper [§] (subsequently updated in [9]), where they reframed offline RL as a
supervised regression problem, using gradient-boosted decision-tree (GBDT) ensembles to
predict actions based on three inputs: the current state, the timestep, and the return-to-go
(RTG), defined as the cumulative future reward the agent aims to achieve. While their
approach achieves excellent performance across benchmark tasks, the resulting models are
ensembles—collections of hundreds to thousands of individual trees working together. This
inherent complexity poses significant challenges for practical interpretability.

In contrast, single decision trees such as Classification and Regression Trees (CART) [10]
are inherently interpretable, presenting decision logic as a clear hierarchical structure where
each prediction follows a traceable path of simple comparisons. This interpretability makes
them attractive for safety-critical applications where understanding why a decision was made
is as important as the decision itself. However, interpretable models face a fundamental
constraint: they must remain simple enough for human comprehension, which traditionally
limits their capacity to handle complex continuous-control tasks. Existing interpretable RL
methods typically distill compact trees from pre-trained neural networks or employ other
indirect approaches. Koirala’s supervised regression framework, however, opens a different
path: training decision trees directly from offline data using the same inputs (state, timestep,



return-to-go) that proved successful for ensembles. This direct training approach in Koirala’s
specific setup has not been systematically explored for interpretable offline RL policies.

This paper directly addresses this gap and the inherent interpretability-performance
trade-off. Our main research question is: What are the interpretability-performance trade-
offs when using CART trees for offline reinforcement learning compared to GBDT ensem-
bles? To answer this, we explore how interpretability constraints affect performance by
systematically varying the structure and complexity of CART-based policies, including both
unified trees and decomposed forms that emphasize local decision logic. We also investi-
gate how performance varies with the RTG value used during evaluation, as prior work
indicates its significant influence on policy behavior, robustness, and interpretability in
return-conditioned settings.

Our contributions include: (1) comprehensive empirical comparison of single trees versus
ensembles under identical conditions; (2) systematic analysis of how tree complexity affects
performance in continuous control tasks; and (3) investigation of return-to-go conditioning
effects on both performance and interpretability. Taken together, these insights offer practi-
cal guidance for navigating the trade-off between interpretability and performance in offline
RL systems.

The remainder of this paper is organized as follows: Section [2] reviews relevant litera-
ture and theoretical context. Section [3] formalizes the supervised regression approach and
introduces our model families. Section [ details the experimental setup, including eval-
uation protocols and our custom experimentation pipeline. Section [b| presents empirical
findings. Section [f] discusses reproducibility and ethical considerations. Section [7] interprets
the results, and Section [§ concludes with final insights and future directions.

2 Background and Related Work

Offline reinforcement learning (RL) trains decision-making policies solely from pre-collected
data without further environment interaction [IJ, 2], proving beneficial in scenarios where
direct exploration is hazardous, expensive, or impractical (e.g., healthcare, autonomous
driving [IT), 12]). Despite their effectiveness, standard offline RL methods, particularly
those employing deep neural networks and large ensembles, often suffer from opacity due to
their difficult-to-interpret decision-making, rendering them unsuitable for safety-critical or
regulated environments [I3] [5].

2.1 Levels and Definitions of Interpretability

Interpretability in machine learning (ML) refers to the degree to which humans can under-
stand a model’s prediction rationale [I4] [I5]. Doshi-Velez and Kim [I5] differentiate be-
tween intrinsic interpretability (inherently transparent models) and post-hoc interpretabil-
ity (explanations generated after training). Recent surveys highlight two complementary
dimensions: point-explainability (explaining a specific action) and global-understandability
(understanding overall model rules) [I3, [I6]. Achieving interpretability, especially globally,
remains challenging in complex continuous-control tasks due to the sophisticated decision
boundaries required to perform effectively [I7 [18].



2.2 Decision Trees as an Interpretable Policy Class

Decision trees, especially Classification and Regression Trees (CART), are widely regarded
as a cornerstone of interpretable machine learning due to their transparent decision-making
process [10]. Unlike opaque neural networks or ensemble methods, decision trees construct
explicit hierarchical pathways where predictions follow a traceable sequence of conditional
statements. This fundamental transparency has made them attractive for applications re-
quiring algorithmic accountability and human oversight.

While inherently transparent, practical interpretability exists on a spectrum: shallow
trees (depth <5, <32 leaves) are cognitively tractable and verifiable by humans [5] [6]. This
has led to approaches like VIPER [19] and DTPO [20] that distill compact trees from neural
networks for interpretable RL.

However, this interpretability incurs a steep cost in representational capacity, as trees
constrained to human-auditable sizes (depth < 10) often underfit complex continuous control
tasks [21, 22]. As trees grow deeper, their decision logic, while still visible (transparent),
quickly becomes too complex for human auditing (losing practical interpretability).

This interpretability-performance tension remains underexplored for axis-aligned deci-
sion trees directly trained as policies in RL. While very large trees (e.g., depth > 20) lose
human auditability, their structural transparency (deterministic paths from observation to
output) fundamentally differs from neural network opacity, motivating our systematic ex-
ploration of their performance at scale.

2.3 Offline RL as Supervised Regression

Framing offline RL as supervised regression simplifies sequential decision-making into a
familiar supervised learning framework [8] [23]. Koirala and Fleming showed that Gradient-
Boosted Decision Tree (GBDT) ensembles like XGBoost (collections of many shallow trees)
achieve competitive performance and efficient training [8, 24]. However, these ensembles,
often comprising ~1000 trees, severely limit global interpretability [I§].

2.4 Challenges with RTG Conditioning

Return-to-Go (RTG) conditioned models, like Decision Transformer (DT), explicitly condi-
tion actions on a scalar return target (the sum of future rewards the agent aims to achieve),
reshaping RL as conditional sequence modeling [23] 25]. While powerful, RT'G conditioning
introduces significant sensitivity and opacity. Small variations in the initial RTG value can
significantly impact the resulting policy behavior, raising questions about reliability and
robustness [26, 27]. Brantley et al. [26] specifically noted that return-conditioned poli-
cies require careful tuning and near-deterministic environmental assumptions, which can be
difficult to achieve in practice.

2.5 Actuator-Level Interpretability in Roboticﬂ

Beyond global interpretability, robotics often requires transparency at the individual actua-
tor or joint level [28] TT]. Modular approaches, decomposing the overall control policy into
individual actuator policies, enable engineers to reason more straightforwardly about local
actions and simplify diagnostics. Our Multi-output CART (M-CART) approach extends

1An actuator is a component of a machine that is responsible for moving or controlling a mechanism or
system, for example, a robot’s joint or a motor that controls a specific movement.



this philosophy by training a separate decision tree for each actuator dimension, providing
granular, actuator-specific interpretability at the expense of potentially reduced global co-
ordination [28]. Evaluating this trade-off offers insights into practical interpretability for
complex continuous-control scenarios.

2.6 Knowledge Gap and Contribution

No prior work systematically evaluates axis-aligned CART trees trained from scratch as
interpretable offline RL policies in continuous-control settings. Existing interpretable RL
approaches rely heavily on distillation from complex neural teacher networks, oblique splits,
or hybrid policy forms, and generally lack thorough analyses of depth, leaf count, pruning,
and RTG sensitivity for simpler regression-based policy classes.

To address this gap and the our main research question, What are the interpretability-
performance trade-offs when using CART trees for offline reinforcement learning compared
to GBDT ensembles?, our research aims to answer the following sub-questions: SQ1: How
do CART policies perform, in absolute and relative terms, when benchmarked against GBDT
ensembles on standard offline RL tasks? SQ2: How do different aspects of tree complexity
affect both policy performance and human-level interpretability? SQ3: How does the return-
to-go (RTG) conditioning mechanism influence the robustness and real-world auditability
of these tree-based policies?

3 Methodology

To systematically address the sub-questions posed in Subsection [2:6 this section details
our approach. We first describe the adopted regression-based offline RL framework, then
introduce the policy model classes evaluated, and finally outline their learning objectives
and how their performance and interpretability are assessed.

3.1 Offline RL as Supervised Regression

We adopt the offline reinforcement learning (RL) formulation originally proposed by Koirala
and Fleming [8] (subsequently updated in [9]). This approach reframes policy learning as su-
pervised regression, avoiding environment interaction and complex dynamic programming,
this method treats offline RL as a straightforward supervised task: predicting the action
given the current state, the desired return-to-go (RTG), and the timestep. This fram-
ing bypasses the need for bootstrapping targets, policy gradients, or Q-value estimation,
significantly simplifying the training process.

Inputs and Outputs

Each training data point is constructed from pre-collected trajectories. For each timestep ¢
in a trajectory, the model receives a set of input features:

e State (s;): Represents the continuous observation of the environment at timestep ¢.

e Normalized Return-to-Go (Rt): This scalar value represents the sum of future re-
wards the agent aims to achieve from timestep ¢ until the end of the episode. It is derived
from the unnormalized return, R; = Zfzt 7, where 1y is the reward at timestep k and



T is the final timestep of the trajectory. This R, is then normalized using environment-
specific reference values (Rpin and Ry.x) from the dataset, ensuring consistency across

tasks:
- Rt - Rmin

R = —"——
Rmax - Rmin

e Timestep (¢): The current discrete time index within the episode.

The target output is the action a; observed in the dataset at timestep t.

Training Objective

The objective is to train a policy model m mapping (st,f%t,t) to the corresponding action
a;. This is achieved by minimizing the mean squared error (MSE) between predicted
actions a;, and true recorded actions a; over the offline dataset:

. 2
0" = argmeinit: ‘ a; — w(st,Rt,t;G)H

Here, 0 represents the parameters of the policy model 7. In Koirala and Fleming’s original
work, 7 is instantiated as a gradient-boosted ensemble, specifically XGBoost.[8]

Simulation and Evaluation

Once trained, the policy model 7 functions as the decision-making component during envi-
ronmental simulation. Evaluation involves deterministic roll-outs, where the policy interacts
with the environment to assess its ability to achieve high returns across full episodes.

The simulation of the trained policy begins with an initial state (sg) observed from the
environment and a predefined target return (Ro) at timestep ¢ = 0. At each subsequent
timestep, the model predicts an action (a;) by taking the current state (s;), the dynamically
evolving return-to-go (R;), and the current timestep (¢) as its inputs. This predicted action is
applied to the environment, which provides a new state (s;+1) and a reward (r;). Critically,
the return-to-go for the next step is updated by decrementing it with the received reward,
ensuring that the policy’s target return aligns with the actual rewards accumulated. This
iterative process of observation, action prediction, environment stepping, and RTG update
continues until the episode concludes, either by reaching a terminal state or a maximum
episode length.

This evaluation scheme distinguishes itself from traditional RL, where policies are typ-
ically purely Markovian (dependent only on the current state). Here, the policy addition-
ally conditions on a dynamically evolving RTG target, rendering the observed behavior
sequence-dependent. This formulation enables faster training, but introduces new dynamics
and potential sensitivities during policy evaluation. The primary performance metric is the
mean normalized return across multiple evaluation episodes.

3.2 Policy Model Classes and Experimental Design

To address our research questions on the interpretability-performance trade-off in offline
RL, we systematically evaluate three policy model classes within the supervised regression
framework. This allows direct comparison of inherently interpretable models against a high-
performing, opaque benchmark, and investigation of interpretability constraints.



3.2.1 Performance Benchmark: Gradient-Boosted Decision Trees (XGBoost)

As a high-performance baseline (for SQ1), we utilize XGBoost [24]. GBDTs are ensemble
methods that sequentially build many shallow decision trees. While effective, their ensemble
nature, typically comprising hundreds to thousands of trees, renders them globally opaque.
To ensure a fair and reproducible comparison, we reproduced the XGBoost baseline results
using the official XGBoost library, as original authors’ code was unavailable.

3.2.2 Interpretable Policy Variants (CART and M-CART)

To investigate the interpretability-performance trade-off and the impact of tree complexity
(SQ2), we employ two inherently interpretable decision tree architectures:

Single Decision Tree (CART) The Single Decision Tree (CART) serves as our
main interpretable policy. Implemented using the scikit-learn library for Python [29],
a CART model partitions the input space through hierarchical, axis-aligned splits. This
yields transparent decision logic where each prediction follows a traceable path to a leaf [10].
This transparency, especially for compact trees, makes them practically interpretable. We
systematically vary parameters like tree depth and maximum leaves to explore how these
constraints affect performance and auditability.

Multi-output CART (M-CART) To further enhance interpretability, particularly in
high-dimensional action spaces, we introduce Multi-output CART (M-CART). This
variant trains a separate decision tree for each individual action dimension. For an IN-
dimensional action space, this results in N independent CART trees, each predicting one
component. This decomposition is motivated by the hypothesis that specialized, smaller
trees per actuator can yield more localized and practically auditable logic, even if the overall
policy is complex. This design promotes localized interpretability at the actuator level,
facilitating granular understanding and diagnostics.

3.2.3 Assessing RTG Conditioning Robustness

To address the influence of RT'G conditioning on policy behavior and practical interpretabil-
ity (SQ3), we perform comprehensive RTG sweeps during policy evaluation. Policies are
tested by prompting them with a wide range of RTG values. This allows us to assess policy
robustness to varying return targets, identify optimal conditioning strategies, and under-
stand how the structural transparency of decision trees interacts with the dynamic nature
of RTG conditioning, vital for real-world auditability in goal-conditioned RL.

This systematic experimental design enables rigorous evaluation of the interpretability-
performance trade-off across different tree complexities and RTG conditions, providing in-
sights for deploying interpretable offline RL systems. Our implementation and experimental
pipeline are publicly availabl«sﬂ to ensure reproducibility.

4 Experimental Setup

This section details the experimental setup for evaluating decision tree policies in offline
reinforcement learning (RL). We describe the benchmark environments, the hyperparameter

thtps ://github.com/rae-ra/Decision-Trees-vs.-Ensembles-in-Regression-Based-0ffline-RL
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search space for our models, and the evaluation protocol used to assess performance and
interpretability.

All models—CART, M-CART, and the XGBoost baseline—are tested on nine continuous-
control tasks from the D4RL benchmark suite [2]. These tasks span three environments
(HalfCheetah, Hopper, Walker2d) and three dataset types: Medium (partially trained),
Medium-Replay (transitions logged during training), and Medium-Expert (mixed medium
and expert trajectories).

4.1 Model Families and Search Space

Our experiments use the following hyperparameter search design for the policy models.

XGBoost hyperparameters. We replicate the ensemble baseline of Koirala and Flem-
ing [9], using 1,000 gradient-boosted trees with depth 6 and learning rate 0.1.

Shared hyperparameter grid. For the interpretable models (CART and M-CART),
we sweep over the following hyperparameters: Tree depth ({2, 3, ..., 10, 15, 20, 25}), Max
leaves ({8, 32, 64, 128, 1024, unlimited}), and min_samples_leaf ({1, 5, 10, 50}). We vary
min_samples_leaf to encourage structural diversity, but we do not report its independent
effects, as our analysis is structured around broader capacity tiers.

Interpretability tiers. We categorize model complexity using four tiers:

SMALL Depth < 3 or < 8 leaves (fully human-auditable)

MEDIUM Depth < 5 or < 32 leaves (cognitively tractable)

LARGE Depth < 20 and < 1024 leaves (transparent but hard to audit)
UNBOUNDED Depth up to 30, no leaf constraint (maximal capacity)

Model-specific structure and tier coverage. CART models are trained as sin-
gle multi-output regressors and evaluated across the entire interpretability spectrum, from
SMALL to UNBOUNDED tiers.

M-CART models, by contrast, predict each action dimension with a separate tree (e.g.,
3 trees for Hopper and 6 for HalfCheetah and Walker2d). To manage the resulting growth
in total model size, M-CART evaluation is restricted to the SMALL, MEDIUM, and LARGE
tiers only (depth < 20, leaves < 1024). This decomposition enables more localized decision
logic while preserving comparability within shared capacity limits.

4.2 Evaluation Protocol

Each model is trained on the full offline dataset. Evaluation uses deterministic rollouts
with five fixed random seeds (0—4) and ten episodes per seed. For each seed, we sweep
over RTG prompts {0.10,0.15,...,1.00, ﬁmax}—where Rmax denotes the normalized return
corresponding to the maximum trajectory return in the dataset—and report the highest
mean normalized return:

Rachieved - Rref,min

Score = x 100

Rref,max - Rref,min



5 Results

This section presents the empirical evaluation of interpretable decision tree policies (CART
and M-CART) against an XGBoost ensemble baseline across nine D4RL continuous-control
environments. We examine the impact of interpretability constraints on policy performance
and analyze key behavioral characteristics.

Training and evaluation followed the standardized protocol (Section , including RTG
sweeps, fixed-seed rollouts, and performance normalization. Model hyperparameters are
detailed in Section [£.I] Unless otherwise stated, we report mean normalized return over five
seeds, with error bars indicating standard deviation.

The section is structured as follows: §5.1] validates our XGBoost replication; §5.2| com-
pares overall model family performance; §5.3] examines capacity-dependent trade-offs; §5.4]
analyzes RTG sensitivity; and §5.5 discusses tree complexity and generalization, including
M-CART’s depth scaling (§5.5.2)).

5.1 XGBoost Baseline Verification

Table [I] compares our reproduced XGBoost scores with the original results reported by
Koirala and Fleming [9]. Our reproduction aligns within a few normalized return points
in most environments, confirming our evaluation pipeline’s validity. However, discrepan-
cies occur, notably in hopper-medium-replay and walker2d-medium-expert (deviations of 8
and 24 points, respectively). These gaps likely stem from implementation details or eval-
uation subtleties not fully specified in the original paper. Nonetheless, our reproduction
captures the general performance profile and provides a stable reference point for analyzing
interpretability—performance trade-offs

Table 1: Normalized return comparison between our XGBoost reproduction (Reproduced), with
Std. Dev. the standard deviation, and results from Koirala and Fleming [§] (Paper). Std. Dev.
While most results are closely aligned, larger deviations appear (e.g. walker2d-medium-ezpert).

Environment Paper Reproduced Std. Dev.
halfcheetah-medium 43.19 43.7 0.80
halfcheetah-medium-replay 40.91 41.5 0.74
halfcheetah-medium-expert 90.34 87.2 5.24
hopper-medium 72.91 66.0 5.70
hopper-medium-replay 91.66 83.3 5.46
hopper-medium-expert 109.85 112.3 2.74
walker2d-medium 82.73 85.6 1.89
walker2d-medium-replay 87.86 86.2 11.50
walker2d-medium-expert 108.96 85.1 4.21

5.2 Model Family Performance Comparison

Table [2] summarizes the best-performing configurations for CART, M-CART, and XGBoost
across all nine D4RL tasks, selected by highest average per-seed return (each seed’s score
reflects its best RTG value). CART’s best configurations derive exclusively from the UN-
BOUNDED tier, while M-CART’s optimal performance comes invariably from the LARGE
tier. XGBoost generally achieves the highest returns, though CART performs competitively
in several tasks, even outperforming XGBoost in hopper-medium. Despite size constraints,
M-CART performs moderately well in certain tasks (e.g., hopper-medium-ezpert). These re-



sults benchmark the maximal performance of tree-based policies against GBDT ensembles,
as observed in our experiments.

Table 2: Best normalized return per environment and model family. Bold values indicate the
highest performance in each row. XGBoost generally achieves the highest performance, but CART
and M-CART can be competitive in specific environments (e.g. hopper-medium).

Environment CART M-CART XGBoost Paper
HalfCheetah
Medium 42.3 36.7 43.7 43.19
Medium-Replay 37.2 33.8 41.5 40.91
Medium-Expert 47.4 38.2 87.2 90.34
Hopper
Medium 79.9 57.5 66.0 72.91
Medium-Replay 67.7 16.4 83.3 91.66
Medium-Expert 105.6 80.9 112.3 109.85
Walker2d
Medium 80.0 42.3 85.6 82.73
Medium-Replay 32.9 14.7 86.2 87.86
Medium-Expert 79.6 22.8 85.1 108.96
Average 63.6 38.1 76.8 80.93

5.3 Capacity—Performance Trade-offs

We partition all CART and M-CART models into four capacity tiers: SMALL, MEDIUM,
LARGE, and UNBOUNDED (defined in Section[4.1)). Figure[l|and Table[3|summarize that per-
formance generally scales with model capacity. Interpretable models (SMALL and MEDIUM
tiers) recover only 13-14% of XGBoost'’s performance (average 76.8), while UNBOUNDED
CART approaches ensemble-level scores (average 63.6) at the cost of practical auditabil-
ity. Notably, M-CART (average 38.1) surpasses CART (average 29.3) in the LARGE tier,
suggesting modular decomposition improves efficiency under shared complexity constraints.

Interpretability vs. Performance by capacity tier

80 Model family et
= XGBoost baseline (76.8)
701 mEE cart

= m-cart

[=)]
o
L

Sy
o
L

Average normalized return
[WEEEN
o o
| !

N
o
L

[
o
L

o
I

SMALL MEDIUM LARGE UNBOUNDED
Capacity tier

Figure 1: Average normalized return by capacity tier. Performance increases with model com-
plexity. M-CART outperforms monolithic CART in the LARGE tier, highlighting modular gains.



Table 3: Numerical breakdown of average performance per capacity tier. Only UNBOUNDED CART
approaches ensemble-level scores.

Capacity Tier CART M-CART XGBoost Ceiling

SMALL 8.0 4.3
MEDIUM 10.7 10.5
LARGE 29.3 38.1 6.8
UNBOUNDED 63.6 —

5.4 RTG Sensitivity Analysis

We analyze the impact of return-to-go (RT'G) input values on the performance of tree-based
policies. Let p denote the RTG input value. Our evaluation, primarily focusing on an
UNBOUNDED CART model (depth 30, unbounded leaves, minimum 5 samples per leaf) on
hopper-medium-ezpert, reveals that these policies exhibit high sensitivity to p.

Figure 2] and Table [4] vividly illustrate this volatility. For instance, at a fixed prompt
p = 0.85, the model’s return ranges from 13.59 (seeds 0-1) to 97.78 (seed 3)—an 84-point
spread. At p = 0.90, seed 4 peaks at 113.52, yet drops to 58.55 when p is reset to 0.85.
The model remains unchanged in all cases; only the RTG input differs.

This observed sensitivity manifests in two key forms: (1) distinct optimal RTG values
across different training seeds, and (2) abrupt performance swings from small RTG shifts at
test time. Such fragility highlights how return conditioning can significantly dominate policy
behavior. While XGBoost shows similar sharp RTG-local optima and regular trends, CART
models exhibit erratic fluctuations across both seeds and prompts, complicating practical
interpretability despite their transparent structure.

RTG sweep — Ho-ME
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CART
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Return-to-Go Input (Normalized)

Figure 2: hopper-medium-expert: RTG sweep for CART and XGBoost. The plots display how
performance varies across RT'G prompts (x-axis) and training seeds standard deviation (error bars).
The CART tree exhibits abrupt and highly erratic fluctuations in performance, which complicates
its practical interpretability despite its transparent structure.

5.5 Tree Complexity and Generalization Patterns

We now examine how model structure—particularly tree depth—impacts performance across
environments, focusing on both monolithic (CART) and modular (M-CART) trees.
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Table 4: Numerical Evidence of RT'G Fragility for CART on hopper-medium-expert. Each entry
shows the normalized return for a fixed RT'G prompt p. Seed 4 drops from 113.52 at p = 0.90 to
58.55 at p = 0.85, despite no change to the model itself

Seed p=085 p=090 p=095 p=1.00

0 13.59 73.68 79.15 110.28
1 13.59 73.68 79.15 110.28
2 33.18 60.35 89.30 60.57
3 97.78 88.93 30.96 27.48
4 58.55 113.52 101.62 79.14

5.5.1 Depth Scaling in CART

Figure [3] illustrates the distinct generalization behaviors of CART models across different
environments with unbounded leaf settings. These plots display the best-per-seed mean
return, revealing how model complexity impacts performance and potential overfitting.

The analysis of these performance curves reveals several key insights. For instance,
Hopper-Medium-Ezpert (Figure shows continuous performance improvement, ex-
ceeding 105% return, suggesting no saturation or overfitting within tested depths (20-30),
though such depths are practically uninterpretable. In contrast, Walker2d-Medium (Fig-
ure clearly shows overfitting, with performance declining and error bars widening at
depth 30. HalfCheetah-Medium (Figure exhibits a saturation plateau around 42 re-
turn from depth 15, indicating no further gains with increased complexity. Finally, Hopper-
Medium (Figure presents mixed behavior, peaking around depth 20 before becoming
unstable. These results illustrate that environments respond differently to increased model
complexity, and that strong performance often requires depths well beyond typical inter-
pretability limits (e.g. depth > 10).

5.5.2 M-CART Performance Across Depth

This section examines how decomposed M-CART policies scale with depth under shared
capacity constraints. Figure[d]shows performance curves for two environments, using models
capped at 1024 leaves and depth < 20 (within the LARGE tier).

Performance improves gradually up to depth 10, then it rises sharply—indicating that
even decomposed policies benefit significantly from added capacity. In hopper-medium-
expert, M-CART reaches over 80 normalized return points (~72% of XGBoost score), high-
lighting the potential of modular decomposition to recover strong performance while retain-
ing localized interpretability.

6 Responsible Research

This work supports safer reinforcement learning by investigating interpretable offline poli-
cies—an essential concern in high-stakes domains [I5} [5]. While black-box models may
perform well, their opacity hinders auditability and trust. Our analysis of single-tree and
modular variants highlights key trade-offs between performance and transparency.

We ensure reproducibility through fixed seeds, deterministic rollouts, exhaustive hyper-
parameter and RT'G sweeps, and reporting of per-seed and per-prompt results. To support
replication, all training, configuration, and evaluation code will be publicly released.
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Figure 3: CART Performance across Environments (Unbounded Leaves). Error bars:
Standard deviation. These plots show how increasing maximum tree depth impacts the best-per-
seed mean return for CART models across four distinct environments. Responses to increasing
model complexity vary by environment, highlighting differences in generalization behavior. Com-
petitive performance necessitates depths beyond typical interpretability limits.
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Figure 4: M-CART depth scaling. Error bars: Standard deviation. Both configurations operate
with < 1024 leaves. Performance increases with depth, approaching ensemble scores in Ho-ME.
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This work is not deployed in real-world safety-critical systems. However, our findings
show that even structurally transparent models can exhibit erratic behavior under small
RTG changes—a fragility that undermines practical interpretability. If such models were
misapplied in deployment, this sensitivity could lead to inconsistent or unsafe outcomes. We
thus emphasize that transparency alone does not guarantee robustness. Further evaluation
in stochastic or human-interactive settings remains essential.

7 Discussion

This section interprets our empirical findings, addressing the research sub-questions outlined
in Section (SQ1-SQ3). We discuss the observed interpretability-performance trade-offs
and the impact of tree complexity, followed by an analysis of RT'G conditioning effects,
before outlining the study’s limitations and broader implications.

Interpretability-Performance Trade-offs and the Impact of Tree Complexity.
Our findings demonstrate a fundamental interpretability-performance trade-off for tree-
based policies (SQ1). Compact decision trees (SMALL and MEDIUM tiers) with constrained
depth and leaf counts, while cognitively interpretable, consistently yield low normalized
D4RL scores. Conversely, larger UNBOUNDED CART configurations approach or match
XGBoost performance, showcasing their capacity to learn complex policies. However, this
high performance often necessitates depths (e.g., > 10) and leaf counts that exceed prac-
tical human auditability [Bl [6], effectively transforming them into black-box models from a
cognitive standpoint.

The performance profiles across different environments further illuminate these trade-offs
(SQ2). In tasks like hopper-medium, CART demonstrates competitive performance, even
surpassing our XGBoost reproduction. This suggests that simpler environment dynamics
or policy requirements may be more amenable to interpretable single-tree solutions. Con-
versely, environments such as halfcheetah-medium-expert or replay variants present more
complex optimal policies or diverse, sometimes suboptimal, data distributions [2]. Learn-
ing effective policies from such data appears to require greater model capacity, explaining
why CART and M-CART struggle significantly compared to XGBoost. While M-CART’s
overall performance is generally lower than monolithic CART, its relative strength in the
LARGE tier, particularly in environments like hopper-medium-expert, hints at the potential
of modular decomposition for achieving strong results under strict complexity budgets [28].

Behavioral Fragility and RTG Sensitivity. Another central finding concerns the be-
havioral fragility of return-conditioned tree policies (SQ3). Despite their white-box struc-
tural transparency, CART policies exhibit strong sensitivity to the RTG prompt (p). As
observed in tasks like hopper-medium-expert, small shifts in p at test time can yield erratic
performance changes across different seeds. This phenomenon poses a significant challenge
to practical interpretability, likely caused by the policy’s tendency to learn highly specialized
responses to specific RT'G values present in the offline training data [26].

Return conditioning fundamentally alters how these models are understood. In classical
decision trees, the same state deterministically maps to the same action. Here, the same
state can yield different actions depending on p. Since RTG evolves dynamically during
test-time execution (p;41 = pr — 7¢), an auditor must reconstruct the full reward trajectory
to explain a given decision [27]. This introduces a latent, time-evolving control signal into
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an otherwise transparent model. In essence, a model may be white-box in structure yet
black-box in its runtime behavior.

Consequently, structural simplicity alone is insufficient for interpretability [16]. Even
shallow or sparse trees can become opaque if behavior is significantly influenced by p. In-
terpretability must account not only for model structure, but also for the hidden influence
of time-varying inputs.

Limitations and Threats to Validity. Our study’s findings are subject to several lim-
itations. First, the evaluation was conducted on nine D4RL continuous-control environ-
ments [2], which may not represent the full spectrum of RL tasks. Second, the offline nature
means our policies are not subjected to real-time interaction. Third, while we performed
comprehensive hyperparameter sweeps within predefined tiers, the search space for deci-
sion trees is vast [I0], and other configurations could yield different trade-offs. Finally, our
interpretability analysis primarily focuses on structural transparency; other facets such as
feature importance warrant further investigation.

In summary, this work systematically demonstrated the complex trade-off between inter-
pretability and performance for tree-based policies in offline return-conditioned RL (SQ1-SQ3).
While structural simplicity often entails performance costs, the observed RTG sensitivity
crucially undermines the practical auditability of even transparent models. This highlights
a critical area for future research in responsible and trustworthy sequential decision-making.

8 Conclusions and Future Work

This thesis investigated the viability and behavioral characteristics of interpretable decision
tree policies in offline reinforcement learning. Our findings reveal inherent trade-offs between
model transparency and performance: small, cognitively interpretable decision trees yield
modest performance, while achieving high returns often necessitates models of such com-
plexity that their practical auditability is severely diminished, effectively transforming them
into black boxes from a human comprehension standpoint [5, [6]. Crucially, we identified
return-to-go (RTG) sensitivity as a significant factor undermining these policies’ practical
interpretability, where despite a tree’s transparent structure, its behavior becomes opaque
when critical decisions are heavily influenced by dynamically evolving, unobserved RTG
input, leading to unpredictable performance shifts [26].

These findings contribute to the growing understanding of interpretable machine learning
in sequential decision-making. We empirically demonstrated that directly applying tradi-
tional interpretable models in return-conditioned RL faces significant hurdles—not only in
bridging the performance gap with ensemble methods like XGBoost [24], but also in main-
taining true behavioral transparency under dynamic input conditioning. Our work highlights
that structural interpretability alone is insufficient for guaranteeing auditability in complex,
state-dependent, and goal-conditioned systems.

Looking forward, addressing RTG fragility is a critical direction for developing more
trustworthy interpretable RL policies. One promising avenue is to replace explicit RTG
prompts with more semantically meaningful, interpretable conditioning signals, such as hi-
erarchical subgoal conditioning. Approaches similar to Hierarchical Decision Transform-
ers [25] could guide policies through learned, interpretable waypoints rather than relying
on raw return values difficult to set, interpret, and maintain consistently. Furthermore,
future research should explore the generalizability of these findings across a wider array of
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reinforcement learning domains, including continuous-control environments, robotic simu-
lation tasks, and diverse offline dataset distributions beyond D4RL [2]. Investigation into
alternative interpretable model architectures, or the integration of complementary explain-
ability techniques, could also yield valuable insights into mitigating the observed perfor-
mance—interpretability trade-off. Ultimately, the goal is to develop robust, high-performing,
and auditable RL agents suitable for real-world high-stakes applications where trust and
traceability are paramount.
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