
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Resilient Synchromodal
Transport through Learning
Assisted Hybrid Simulation
Optimization Model
M.Sc. Thesis:
Transport, Infrastructure, and Logistics
Muhammad Satrya Dewantara

Resilient Synchromodal Transport through
Learning Assisted Hybrid Simulation

Optimization Model

by

Muhammad Satrya Dewantara

Student Name Student Number

Muhammad Satrya Dewantara 4861159

Master of Science in Transport, Infrastructure and Logistics
to be defended on August 28th 2024

Supervisors: Dr. Bilge Atasoy
Dr. Ir. M. Saeednia

Faculty: Faculty of Civil Engineering and Geoscience
Report Number: 2024.TIL.8970

Preface

My primary motivation for pursuing a master’s degree was to learn coding and to gain a deep technical
understanding of freight and logistics—objectives that TU Delft has fully met. I never imagined that I
would be creating a simulation of a complex system, let alone integrating a machine learning agent
into it. These achievements have been possible thanks to the unwavering support of many individuals
throughout my time at TU Delft, particularly over the past five months while working on this thesis
project.

I would like to express my heartfelt gratitude to those who made the completion of this thesis possible.
My sincere thanks go to my daily supervisor, Dr. Ir. Mahnam Saeednia, who introduced me to this
topic and encouraged me to push beyond my comfort zone. Together with my chair, Dr. Bilge Atasoy,
they provided exceptional guidance and valuable insights throughout the process. I am also deeply
appreciative of Dr. Saiedeh Razavi and Siyavash Filom for their collaboration on the integration work,
as well as Dr. Neil Yorke-Smith for the discussions that significantly strengthened my understanding of
reinforcement learning. To my family and friends, thank you for your intangible support, and to Puitry
Neurita, thank you for always being there when I needed it most.

Lastly, it is meaningful to me that this thesis will be defended on August 28th, which would have been
my late father’s birthday. I hope this work serves as a fitting birthday present for him. I believe I have
put forth my best effort into this thesis, and I hope it offers even a small glimpse of inspiration to those
who read it, offering something valuable to learn. As David Silver said, ”Life is one big training set.”

Muhammad Satrya Dewantara
Delft, August 2024

i

Summary

Synchromodality is a concept developed to address the growing freight trade and its dynamics. Its
objective is to thrive in the highly competitive transportation market and meet growing customer de-
mands by enhancing flexibility and offering more customized services. This flexibility attribute enables
real-time mode shifts to respond and adapt to unexpected circumstances in the uncertain and compet-
itive market. To fully leverage this flexibility, certain requirements must be met. It is suggested that
Logistics Service Providers (LSPs) can make the most of this feature when shippers agree to mode-
free or a-modal requests. In this scenario, LSPs have the freedom to choose the mode of transport
that best suits the cargo’s delivery, provided it meets the customer’s requirements. This flexibility is a
significant departure from traditional transportation approaches, offering a responsive and adaptable
solution in the face of dynamic market conditions. The flexibility allows the services to adapt and react
to disruptions which will be the focus of this thesis.

The main objective of this research is to propose a learning-assisted model under synchromodal frame-
work in creating a resilient multi-modal transport, addressing the unknown duration of disruption in
port-inland freight transportation. The model is designed to capture disruption scenarios and provide
reaction strategies to maintain its performance. On top of that, a learning approach is incorporated
to enhance the model performance in providing the reaction strategies. While it has the potential to
improve the performance of synchromodal framework, a thorough literature review shows that only a
few studies propose the integration of a learning approach in the synchromodal framework.

The model comprises three main modules: Simulation Module, Optimization Module, and Learning
Agent. The scope of the simulation only covers the inbound shipment from the main port to the inland
terminal neglecting the return trip back to its origin. The main objective of this simulation is to capture
the dynamic nature of disruptions in the hinterland freight network representing real-world operations
to create an environment for implementing a decision support system. 5 Profiles of service disruptions
and 3 profiles of demand disruptions are developed and applied to the network.

Upon receiving a new request or detecting a disrupted shipment, the optimization module is triggered
to initiate the planning or re-planning process. The matching decision involves assigning a service
line to the shipment. Additionally, the optimization module proposed in this research enables various
analytical methods to plug-in to serve as a central planner.

A reinforcement learning technique is integrated into the model, allowing it to decide whether to wait
or reassign according to the solutions suggested by the optimization module. This learning approach
enables the model to make more informed decisions, balancing the benefits of reassignment with the
potential advantages of waiting. The integration of simulation-based synchromodal framework with a
reinforcement learning agent is the novel idea proposed in this research.

The Learning Assisted Model is implemented in a case study. A service network is adapted from
the European Gateway Services (EGS) network, now known as Hutchinson Ports Europe Intermodal
(HPEI). This network connects the Hutchinson Ports ECT in the Port of Rotterdam to inland terminals
in the Netherlands, Belgium, and Germany through the Rhine-Alpine corridor. Demand is generated
randomly based on the service capacity proportion of each origin-destination pair within the network.

a matching problem optimization algorithm from an existing study is integrated as a plug-in to the
optimization module and acts as the centralized planner. To address a run-time issue, a solution pool
is provided during the planning, therefore reducing the number of triggering the optimization model.

The complete model is trained through 20,000 episodes before the implementation. In the implemen-
tation, the learning-assisted model uses a greedy policy by choosing the action with the highest value
function. The greedy policy is evaluated by comparing it to the always wait as the benchmark pol-
icy. Always wait means, the affected shipments always stay with the given itinerary and wait until the

ii

iii

disruption ends

The results show that the greedy policy by the RL agent outperforms the benchmark policy in 16 out
of 20 simulations of different disruption occurrences. the cost savings by the learning-assisted model
range from 0.08% to 15.96%. If the calculation only considers the affected requests, the highest savings
from greedy policy over benchmark policy reaches 35.7%. The amount of savings depends on the
severity of delays caused by the disruptions in the network. Furthermore, the experiment of different
disruption profile sets shows that the RL agent still outperforms the benchmark policy on different sets
of occurrence rates ranging to 30% difference from the one used in the training.

There are important limitations in each module that affect the quality of the final model including limited
disruption data, limitations in the algorithm used for matching algorithms, and value function updating
for the RL agent. The implications of those limitations are the run-time issues and the required episodic
training. Ultimately, this affects the quality of actions taken during implementation.

The main finding of this research is that integrating Reinforcement Learning (RL) into a synchromodal
framework could enhance the resilience of port-inland freight transportation. This is evidenced by the
superior performance of the RL-integrated model compared to the benchmark policy (Always Wait).
Additionally, the model demonstrates consistent resilience across various disruption scenarios, as indi-
cated by its stable performance under a certain extent of different occurrence probabilities from those
used in training.

While there is room for improvement, the results suggest that this model could serve as a founda-
tion for future research. Potential research directions include implementing communication schemes
among RL agents for different shipments, exploring deep reinforcement learning techniques, and re-
fining disruption profiles. These enhancements could further improve the model’s effectiveness and
adaptability.

Contents

Preface i

Summary ii

1 Introduction 1
1.1 Background and Problem Definition . 1
1.2 Research Gap . 2
1.3 Research Approach . 3

1.3.1 Research Objective and Contribution . 3
1.3.2 Research Question . 3
1.3.3 Methodology . 4

1.4 Report Outline . 5

2 Literature Review 6
2.1 Concept of Synchromodality . 6
2.2 Disruption in Multi-modal Freight Transportation . 7
2.3 Modelling Resilient Synchromodal Framework . 8

2.3.1 Dynamic Models for Synchromodal Framework 8
2.3.2 Simulation-based Models in Freight Transport . 9

2.4 Learning Approaches in Freight Transport . 10
2.4.1 Supervised and Unsupervised Learning in Freight Transport 10
2.4.2 Reinforcement Learning in Synchromodal Framework 11

2.5 Literature Review Summary . 12

3 Modelling Disruptions in Multi-modal Freight Transportation 13
3.1 Disruptions in Multi-modal Freight Transportation . 13
3.2 Disruption Categorization . 15

4 Model Formulation 17
4.1 Problem Description . 17
4.2 Simulation Module . 18

4.2.1 Simulation Requirement and Key Performance Indicator (KPI) 19
4.2.2 Simulation Input . 19
4.2.3 Simulation Description . 20

4.3 Hybrid Simulation-Optimization . 25
4.3.1 Affected Request Detection . 26
4.3.2 Optimization Module . 27

4.4 Reinforcement Learning Approach . 28
4.4.1 Markov Decision Process . 28
4.4.2 RL Action . 30
4.4.3 RL State . 31
4.4.4 Reward System . 32
4.4.5 Updating Action Value Function . 32

4.5 Learning Assisted Hybrid Simulation-Optimization . 34

5 Model Verification 35
5.1 Model Input . 35
5.2 Simulation Verification . 36
5.3 Heuristic Model . 37
5.4 Hybrid Simulation-Optimization Verification . 38
5.5 Learning Assisted Model Verification . 39

iv

Contents v

5.6 Preliminary Results . 40

6 Case Study 44
6.1 Case Study Input . 44
6.2 Optimization Model Plug-In . 45
6.3 Model Integration . 47

6.3.1 Adjustment in Path Generation Algorithm . 47
6.3.2 Adjustment in Capacity Updating . 47
6.3.3 Addressing the Run-Time Problem . 48

6.4 Model Training . 49
6.4.1 Initial Training Result . 49
6.4.2 Initial Findings . 51
6.4.3 Improvement for Episodic Training . 51
6.4.4 Model Re-Training . 52

6.5 Results and Numerical Experiment . 53
6.5.1 Default Case Result . 53
6.5.2 Experiment on Different Disruption Sets . 56
6.5.3 Experiment on Different Demand Instances . 61
6.5.4 Experiment on Different Cost Parameters . 62

7 Discussion 63
7.1 Limitations . 63

7.1.1 Simulation Module . 63
7.1.2 Optimization Module . 63
7.1.3 Reinforcement Learning . 64
7.1.4 Data Deficiency . 64

7.2 Result Interpretation and Implication . 65
7.2.1 Result Interpretation . 65
7.2.2 Implication to the real-world . 66

8 Conclusions and
Possible Future Research 67
8.1 Conclusions . 67
8.2 Recommendations for Future Research . 68

A Scientifc Paper 74

B Optimization Model Constraints 89

C Case Study Datasets 91

List of Figures

1.1 Methodology . 5

2.1 Synchromodal Added Values (Tavasszy et al., 2015) . 7
2.2 Agent-environment Interaction in Markov Decision Process (source: (Sutton and Barto,

2018)) . 11

4.1 Synchromodal Flexibility . 18
4.2 Synchromodal Network Representation . 19
4.3 Shipment and Service Simulation Flow Process . 22
4.4 Shipment Cost Calculation (For one trip) . 24
4.5 Disruption Generator Flow Process . 25
4.6 Complete Simulation Flow Process . 26
4.7 Simulation Module Flow Process . 26
4.8 Exclusion of Affected Request . 27
4.9 Hybrid Simulation-Optimization Flow . 28
4.10 Markov Decision Process in Hybrid Simulation-Optimization 29
4.11 RL Agent Framework . 31
4.12 Example Cases of Reward Calculation . 33
4.13 Learning Assisted Hybrid Simulation-Optimization Flow 34

5.1 RL Agent Reward Generation . 41
5.2 RL Agent Training Result . 42
5.3 Total Cost Comparison (Verification) . 42
5.4 Shipment Cost Comparison . 43

6.1 EGS Service Network source: (Zhang et al., 2023) . 45
6.2 Integration with an Existing Optimization Model . 46
6.3 Loading Sequence Regulation . 49
6.4 Episodic Training Result . 50
6.5 Performance Comparison . 50
6.6 Disruption Cases in Service Line . 51
6.7 Service Lines Operational Time Window . 52
6.8 Episodic Training for 50000 Episodes . 53
6.9 Policy Comparison (Multiple Cases) . 54
6.10 Comparison Between Always Wait and Greedy Policy in Episodic Simulations 54
6.11 Cost Comparison per Shipment . 55
6.12 Cost Element Comparison . 56
6.13 Comparison Between Solution Pool Approach and Always Optimize in Episodic Simula-

tions . 57
6.14 Total Costs for Different Disruption Sets . 58
6.15 Aggregated Costs Comparison . 58
6.16 Sensitivity Analysis with Different Disruption Occurrence Probability 59
6.17 Performance Comparison by Number of Cases . 60
6.18 Short and Sever Delays Experiment . 60
6.19 Sensitivity Analysis with Different Demand Instances . 61
6.20 Sensitivity Analysis with Different Cost Parameters . 62

vi

List of Tables

1.1 Overview of Studies Proposing Related Models . 3
1.2 Methodology . 4

2.1 Available Models of Synchromodal Framework in Literature 9

3.1 Disruptions in Freight Transportation . 13
3.2 Different Ways to Include Disruption in Models of Synchromodal Transport 14
3.3 Service Disruption Profile . 15
3.4 Request Disruption Profile . 16

4.1 Simulation Notation . 21

5.1 Distance Between Terminals . 35
5.2 Service Lines . 36
5.3 Shipment Requests . 36
5.4 Cost Parameters . 36
5.5 Simulation Module Verification Results . 37
5.6 Possible Combinations . 37
5.7 Affected Request Detection Verification . 39
5.8 Heuristic Model Verification . 40
5.9 Learning Assisted Model Verification . 40
5.10 Two Policies Comparison . 41

6.1 Adjustments for Model Integration . 49
6.2 Modified Service Disruption Profile . 53
6.3 Disruption Scenarios . 57

C.1 Barge Line Distance Network . 91
C.2 Train Line Distance Network . 91
C.3 Truck Line Distance Network . 91
C.4 Fixed Service Lines . 92
C.5 Truck Service Lines . 93
C.6 Request Dataset . 94

vii

1
Introduction

1.1. Background and Problem Definition
Hinterland freight transport plays an essential role in logistic activities. Despite the fact that container
shipments spendmost of their time on deep sea transport in the global supply chain, hinterland transport
takes a cost proportion ranging from 40-80% from the total shipping costs of container (Notteboom
and Rodrigue, 2005) showing its significance in the whole chain. Most ports around the world have
recognized the hinterland connection as one of the most important issues (Merk and Notteboom, 2015)
To connect the main port to its hinterland, containers could be transported by road (truck), railway (train),
waterway (barge), or a combination of them.

Road transportation dominates inland freight movement, accounting for 77% of the EU’s freight in 2020
Eurostat (2020). Logistic Service Providers (LSPs) often prefer unimodal transport primarily due to its
inherent reliability Tavasszy et al. (2015). However, road transport introduces several externalities,
including accidents, road damage, environmental harm, and congestion (Santos et al., 2010). The
Intermodal concept was introduced to shift the freight flow to other transport modes, such as barge and
train. It can offer a cheaper option for inland freight transport due to the economics of scale Tavasszy
et al. (2015). Despite its cost-effectiveness, the share of intermodal transport remains low due to its lack
of flexibility. The concept of synchromodality aims to increase the attractiveness of intermodal transport.
By having a flexibility feature within the intermodal transport, synchromodal transport provides a higher
number of combined routes, thus creating added values in the trade-off between price and time to the
shippers Tavasszy et al. (2015).

Another reason why conventional intermodal is less preferred compared to trucks is the disruptions
and variations in the network due to uncertainties (Delbart et al., 2021). Disruptions and uncertainties
negatively contribute to the efficiency of conventional intermodal transport (Delbart et al., 2021) and
could cause a severe economic loss. Disruption with low occurrence probability but high impact such
as COVID-19 increased the logistic cost by 12% globally (Rodríguez-Clare et al., 2023). From another
spectrum where disruption occurs frequently, a study by (Schlake et al., 2011) estimates $15.2 Million
loss in a year due to train delays. The estimation made in 2011 is likely to have a significantly higher
value today.

The flexibility of trucks in terms of route and schedule allows them to better handle uncertainties in the
road network, while it is not the case in intermodal transport where the schedule of barge and train are
generally fixed. In addition to the added values in the price and time trade-off, the flexibility feature
in synchromodality concept equips the multi-modal transport system to react better to disruptions if
compared to the conventional intermodal. For instance, theoretically, the containers that are supposed
to be carried by barge could be shifted to train if there is a disruption in the barge network.

The type of disruptions in the network vary and could appear both on the supply and demand side. On
the supply side, examples of unexpected events are labor strikes, accidents, or broken infrastructure

1

1.2. Research Gap 2

(Delbart et al., 2021). Meanwhile, the example of disruption in the demand side is, in the hinterland
transport, the change of release time of containers in the port due to customs issues. Each disruption
type may have a different frequency and severity to the logistic chain (Ambra et al., 2019). In dealing
with disruptions, different reactions could be taken. As mentioned earlier, containers could be reallo-
cated to other mode service types (Guo et al., 2020) or wait for the next departure in the same mode
service (Hrušovský et al., 2021).

This research investigates how to create a resilient intermodal freight transport system that leverages
the flexibility offered by synchromodality. The resilience of a freight transport network is defined by its
ability to recover from disruptions and is measured by the effort required to restore normal operations
(Chen and Miller-Hooks, 2012). It provides a learning-based modular framework capable of capturing
the disruptions and generating a reaction plan. Developing the comprehensive model as mentioned
above with practical solutions creates a challenge for scholars. Not only filling the gap of knowledge,
the model should be practical to be implemented at the industry level, thus, shifting the freight transport
paradigm away from road dependency towards more sustainable and flexible options. The modular
framework utilizes optimization, simulation, and machine learning techniques allowing plug-and-play
possibility for connecting with different existing/under development models and is extensible, making it
applicable to different eco-systems of port-inland connections, expected to improve the solution space
in generating decisions to react to the disruptions.

1.2. Research Gap
Synchromodal transport in inland freight transport has been studied for the last couple of years. Sev-
eral static models have been well investigated under the synchromodal framework. However, static
models have their limitations when it comes to addressing the real-time planning and uncertainties in
synchromodal systems (Qu et al., 2019).

Dynamic models for synchromodal transport have also been proposed in several studies. These re-
searchers have different approaches to capturing the uncertainties or disruptions and propose a real-
time solution by utilizing the flexibility feature in synchromodal framework. Existing studies of synchro-
modal by Ambra et al. (2019), Di Febbraro et al. (2016), Hrušovský et al. (2021), and Layeb et al. (2018)
propose simulation-based models that are capable of capturing the dynamic behavior and disruptions
in the network. However, while these simulation-based models offer valuable insights, none have thor-
oughly explored reaction strategies of container reallocation or rerouting as proposed by Guo et al.
(2020). Given the difficulty in altering the service network in reaction to disruptions, the combination
of a simulation-based model and container reallocation strategy is an interesting gap to address in this
thesis.

Furthermore, recent works by Guo et al. (2022), Larsen et al. (2023b), and Zhang et al. (2023) show
evidence that learning approach can improve the performance of the synchromodal framework. Inte-
grating the learning approach into the decision support system could provide a powerful tool for dealing
with disruption. In reality, the duration of disruption is usually unknown, thus creating another challenge
in the decisionmaking of reaction strategies. Therefore, this thesis considers to incorporate the learning
approach on top of the simulation-based model to see how it improves the resilience of the synchro-
modal transport. The comparison of these related studies with the model proposed in this thesis is
presented in Table 1.1.

From those studies, the closest modeling approach to this thesis are the ones proposed by Guo et al.
(2022) and Zhang et al. (2023). Nevertheless, there are essential differences either from conceptual
or methodological perspectives between this thesis and those two studies.

First, none of those studies use a simulation-based approach to capture the dynamic behavior of the
disruption in the multimodal transportation network. The similarity of this thesis with those two studies
is the integration of reinforcement learning (RL) approach, which leads to the second argument. This
thesis employs an RL agent to assist the replanning module in response to disruptions, whereas the
model proposed by Guo et al. (2022) serves as a centralized platform responsible for the entire ship-
ment planning process. Third, the action space of the RL agent in this thesis is to select between ’wait’

1.3. Research Approach 3

Table 1.1: Overview of Studies Proposing Related Models

Source Service
Disruptions

Request
Disruptions

Simulation
-based

Learning
Agent

Cost-based
Reward system

(Ambra et al., 2019) v v
(Di Febbraro et al., 2016) v v
(Hrušovský et al., 2021) v v
(Guo et al., 2020) v
(Guo et al., 2021) v v
(Qu et al., 2019) v v
(Larsen et al., 2021) v
(Larsen et al., 2023a) v
(Larsen et al., 2023b) v v
(Guo et al., 2022) v v v v
(Zhang et al., 2023) v v
This thesis v v v v v

or ’reassign’, with the optimization model narrowing down the solution space. In contrast, Guo et al.
(2022) covers all possible matches between shipments and services in the solution space.

The above arguments bring this thesis closer to the study by Zhang et al. (2023). However, the reward
system in this thesis is different from the model proposed in that study. Zhang et al. (2023) proposes
the RL agent is granted a discrete reward either 1 or 0 based on whether or not the delay occurs
due to the disruptions with respect to the taken actions. For example, if the action taken is to wait,
and the disruption does not cause delay, the RL agent receives a reward of 1, and 0 if it removes the
shipment from the assigned service. Consequently, this approach does not differentiate rewards based
on shipment volume, nor does it account for the amount of delay time. Conversely, this thesis proposes
a negative cost value as the reward. By having this, the same delay with higher shipment volume is
penalized more, enabling the RL agent to prioritize shipments with higher volume.

1.3. Research Approach
To address the problem in the research gap, the research objective along with the research questions
are determined to provide clearer direction for this thesis.

1.3.1. Research Objective and Contribution
The main objective of this research is to propose a learning-assisted model under synchromodal frame-
work in creating a resilient multi-modal transport, addressing the unknown duration of disruption in
port-inland freight transportation. The model is designed to capture disruption scenarios and provide
reaction strategies to maintain its performance. On top of that, a learning approach is incorporated
to enhance the model performance in providing the reaction strategies. While it has the potential to
improve the performance of synchromodal framework, a thorough literature review shows that only a
few studies propose the integration of a learning approach in the synchromodal framework.

1.3.2. Research Question
In accordance with the objective, research questions are formulated as follows:

”To what extent does a learning approach improve the resilience of a synchromodal framework in
coping with disruptions?”

This main research question is accompanied by a series of sub-questions designed to provide a com-
prehensive understanding of the subject matter:

1. What are the types of disruptions in the synchromodal transport and what strategies are applied
to react to them?

2. How can a synchromodal framework under disruption be adequately modeled?

1.3. Research Approach 4

3. How can reaction strategies under synchromodal framework be modeled in response to the dis-
ruptions?

4. How can a learning approach be incorporated into the synchromodal framework to provide a
better solution space?

5. How does the learning-based synchromodal framework perform under the disruptions?

This thesis will construct a simulation-based model supported by a learning approach under synchro-
modal framework focusing on hinterland transportation. The model provides a modular structure that
enables the integration with optimization models with different objectives for hinterland transport plan-
ning to generate reaction strategies in response to disruptions. The contribution of this study will be
a novelty of a model, a combination of hybrid simulation-optimization assisted by a learning approach
under synchromodal framework.

1.3.3. Methodology
The main research question and its sub-questions will be answered by applying a series of methodolo-
gies as elaborated in the table 1.2

Table 1.2: Methodology

SRQ Method Remarks

1 Literature review
The literature review will generate
type and classification of disruptions
to be incorporated in the model

2 Simulation model
Simulation model using discrete-event
system will be employed to mimic
the synchromodal operation

3 Hybrid simulation-
optimization model

Hybrid model to connect the simulation
with an optimization model

4 Learning approach Develop algorithm of learning approach
to enhance the reaction strategy

5 Case study Test the model under different scenarios
to measure the performance

SRQ: Sub research question

In summary, there are five methods performed for all the sub-questions including literature review,
simulation model, hybrid model, learning approach, and the case study. It is important to note that the
optimization model formulation is not part of this research. Instead, the simulation model is constructed
to be capable of integration with an available optimization model.

Literature Review

In the initial phase before constructing the model, a literature review is undertaken to gain an under-
standing of disruptions in synchromodal network. The identified disruptions will be categorized and
used in the later model. The categorization could encompass aspects such as frequency, duration,
and distribution of occurrence. Moreover, the literature review serves to gain insight of how synchro-
modal framework is modeled

Simulation Model

The first step in constructing the dynamic model of synchromodal framework is a simulation model.
A discrete-event simulation will be employed to mimic the process in the synchromodal network and
also capture the disruptions both in supply and demand. Supply network of port-hinterland will be
constructed including the location of the inland terminal and service schedule of barge, truck, and train.
The demand will be a shipment request from the terminal. The simulation model is formulated to be a
modular structure, thus, enabling the plug-in of an optimization model.

1.4. Report Outline 5

Figure 1.1: Methodology

Hybrid Simulation-Optimization

Once the simulation is done, it will be connected to an available optimization model. This approach is
adapted from Hrušovský et al. (2021) which combines a simulation and an optimization model. The
optimization model will solve a matching problem between the shipment request and the service net-
work, thus providing an itinerary for each request. The request will be used as an input in the simulation
model. The optimization model will run in every time interval or if there is a disruption in the network.
The disruption will be an input to the optimization model generated by the simulation model.

Learning Approach

This learning approach will also be embedded in the Hybrid Simulation-Optimization model and use
input generated from the simulation. The learning approach will focus on the demandmanagement side
andwill support the optimizationmodel in creating the decision, especially in response to the disruptions.
One possible method for the learning approach algorithm is reinforcement learning. Adopted from
Zhang et al. (2023), it is possible to combine a learning approach with an optimization model.

Case Study

After the model is completed and verified, the case study is conducted. The case study will use real
network data for the supply side to represent the real-world operation. The demand side will depend
on the data availability and could use a synthetic dataset. The model is tested under various scenarios
to see the performance measured in key performance indicators such as cost, time, or emissions.

Each methodology employed for this research will be completed in steps and illustrated in Figure 1.1

1.4. Report Outline
This thesis report consists of 8 chapters starting with an introduction to define the problem statement
and elaborate the research approach. Chapter 2 elaborates the fundamental theory behind the resilient
synchromodal framework and investigates the models in existing studies. Chapter 4 explains how the
synchromodal framework is modeled in this thesis including the hybrid simulation-optimization and the
embedded learning approach. Chapter 5 Verifies the complete model with synthetic data to evaluate
if the model work according to the conceptual logic. Chapter 6 implements the complete model from
Chapter 4 using real-world data and analyze the output with respect to the sub-research question 5.
Finally, the discussion about the limitation and result interpretation is presented in Chapter 7 followed
by the conclusion of the whole thesis and recommendation for future research in Chapter 8.

2
Literature Review

A literature review is performed to gain insight and understanding about how to construct the model un-
der synchromodal framework. The section starts with an explanation of the concept of synchromodality
and the disruptions in the freight network to get the reader in the same context before delving deeper
into how it is modeled in various existing studies.

2.1. Concept of Synchromodality
Synchromodality is a concept developed to address the growing and dynamic freight trade. Its objec-
tive is to thrive in the highly competitive transportation market and meet growing customer demands
by enhancing flexibility and offering more customized services (Tavasszy et al., 2015). In recent years,
various studies have aimed to define synchromodality. A study concludes that synchromodality is a
planning system of multi-modal transport that integrates supply chain stakeholders to flexibly adapt
transport modes based on real-time insights (Acero et al., 2022). Another study describes Synchro-
modality as an efficient, reliable, flexible, and sustainable service enabled by stakeholders’ coopera-
tion supported by real-time information sharing (Giusti et al., 2019). De Juncker et al. (2017) describes
Synchromodality as real-time transport planning using real-time information from different parties to
increase flexibility, reliability, efficiency, and sustainability.

Notice that synchromodality has been defined in several studies with slight differences. Nonetheless, all
the studies always include flexibility and real-time planning with shared information aspects. Acero et al.
(2022) identifies four distinct dimensions of synchromodality including visibility, integration, multi-modal
transport, and flexibility. In synchromodal environments, visibility is crucial and involves the exchange of
real-time information and data among multiple stakeholders to optimize operations (Acero et al., 2022).
This data includes demand forecasts and distribution network status from customers, transport network
conditions, and timely updates from logistics partners and subcontractors (Acero et al., 2022). This
real-time information is integrated among various actors to support mode choice decisions. Unlike the
integration seen in conventional intermodal transport, synchromodal transportation relies on horizontal
integration, which extends beyond a single logistics chain to encompass different intermodal chains
(Tavasszy et al., 2015).

The horizontal integration opens up more options in the network and creates added values to the multi-
modal transport through a higher number of service line combinations. (Tavasszy et al., 2015) illustrates
those added values of synchromodal transport in a two-dimensional chart as shown in Figure 2.1. On
the left hand side, the chart shows a classical cost-time trade-off among different modes where truck
is the fastest mode with a high price and barge (waterways) is the opposite. The combination of the
different modes through intermodal transport creates more choices as represented by T1 to T9 dots in
the right chart. With the horizontal integration under the synchromodal framework, the number of mode
service combinations could increase dramatically, providing more non-dominated solutions (Tavasszy
et al., 2015).

6

2.2. Disruption in Multi-modal Freight Transportation 7

Figure 2.1: Synchromodal Added Values (Tavasszy et al., 2015)

This broader integration fosters flexibility in mode choice, enabling real-time adaptation to changing
circumstances. Flexibility allows for real-time mode shifts, helping to navigate unexpected challenges
in a volatile and competitive market (Acero et al., 2022). To fully capitalize on this flexibility, certain
conditions must be met. It is suggested that Logistics Service Providers (LSPs) can maximize this
feature when shippers agree to mode-free or a-modal requests (Acero et al., 2022). In this scenario,
LSPs have the freedom to select the mode of transport that best suits the cargo’s delivery require-
ments. This flexibility marks a significant departure from traditional transportation approaches, offering
a more responsive and adaptable solution in dynamic market conditions. Beyond the added value from
increased mode combinations, flexibility is a key benefit of synchromodal transport, allowing services
to adapt and react to disruptions (Giusti et al., 2019), which will be the focus of this research and will
be elaborated on further in the following sections.

There are many types of disruptions in the freight transport network, ranging from a natural disaster
with less frequency to the operational disruption that can occur more frequently (Wide et al., 2022). In
the case of a more frequent disruption, a real-time reactions are necessary. This is how synchromodal
transport theoretically performs better under a disrupted network compared to conventional intermodal
transport. For example, if there is a disruption in a certain service line, a container can be moved to
other available service lines (Hrušovský et al., 2021) as well as transported to a different transship-
ment terminal with the same end destination (Ambra et al., 2019). This is possible to be done under
synchromodal framework due to the real-time visible information and the flexibility feature.

From the implementation perspective, several factors enable the effective implementation of synchro-
modal transport. Pfoser et al. (2016) identify that sophisticated planning and ICT/ITS technology are
key enablers, recognized for their significant importance and high feasibility. Additionally, A-modal
booking or modal free booking, as one of the key enablers, has already been adopted by many compa-
nies (Alons et al., 2019). Mode-free booking is a type of contract where LSPs are given the authority to
combine shipments and use different modes of transport (Acero et al., 2022). These findings provide
a positive indication of the progress in synchromodal transport development. However, the implemen-
tation of this concept faces challenges, primarily due to the need for cooperation and information ex-
change among various Logistic Service Providers (LSPs) (Alons et al., 2019). While the industry works
towards establishing a robust framework for collaboration, scholars have the opportunity to further ex-
plore the potential of the synchromodal framework, thus ensuring optimal benefits when the concept is
fully embraced by the industry.

2.2. Disruption in Multi-modal Freight Transportation
The global supply chain relies significantly on freight transportation. Any disruption in the logistic chain
could result in severe economic loss to different parties. Take the example of the Covid-19 pandemic

2.3. Modelling Resilient Synchromodal Framework 8

which caused a reduction in capacity in the logistic service network due to ports being closed, fewer
workers, and container shortage (Rodríguez-Clare et al., 2023). It estimates roughly a 12% increase in
the logistic costs globally (Rodríguez-Clare et al., 2023). In inland transport, a study simulates a barge
service network under disruption scenarios in the US resulting an increase in the cost of nearly $900
million over a year period (201, 2019). At the operational level, a study estimated a loss of $15.2 million
a year in 2011 due to train delays (Schlake et al., 2011). These disruptions in the multi-modal freight
transport is discussed in more detail in Chapter 3

2.3. Modelling Resilient Synchromodal Framework
Synchromodal transport in hinterland freight transport has been studied for the last couple of years.
Several static models have been well investigated under the synchromodal framework. The static
models referred to in this thesis are the analytic models that provide results or solutions based on
static information. It could be both a deterministic approach or a stochastic approach such as a robust
optimization model. However, static models have their limitations when it comes to addressing the
real-time planning and uncertainties in synchromodal systems (Qu et al., 2019). Therefore, this thesis
focuses on the dynamic models to address this challenge.

2.3.1. Dynamic Models for Synchromodal Framework
Dynamic models for synchromodal transport have been proposed in several studies. A Synchromodal
Transportation Re-planning (STP) for hinterland transport is developed using a mixed integer linear
programming (MILP) (Qu et al., 2019). The model is tested and run several times under various types
of disruption events including shipment uncertainties and delays in the network by providing shipment
rerouting and service rescheduling. The service rescheduling includes the railway service which in
practice is quite complex. This model is comprehensive and covers disruptions on both supply and
demand sides. However, the model has not yet been integrated into a dynamic environment. From a
different approach, a dynamic matching problem is proposed to deal with uncertain shipment requests
(Guo et al., 2020). In this model, the shipment requests are not completely known, but rather sequen-
tially announced using a rolling horizon approach. This approach is adopted by another model for a
global shipment matching problem and improved by incorporating disruptions in the service network
(Guo et al., 2021). The reaction to disruption in these two models are reallocation planning of the
containers.

Other studies proposed an agent-based model to simulate the synchromodal framework. An agent-
based model is developed to assess the implementation of Synchromodality in retail goods between
distribution centers (DC) in Belgium and France. The model compares the performance of unimodal, in-
termodal, and synchromodal for cost, time, and emissions. Themodel applies a synchromodal scenario
by putting logic for each agent to reroute to the nearest and cheapest terminal if there is a disruption in
the network, and monitor the impact on cost, time, and emission (Ambra et al., 2019). Another study
proposed an agent-based framework for cooperative planning (Di Febbraro et al., 2016). The model
uses decentralized optimization with a negotiation scheme. It breaks down the problem into several
sub-problems and lets the agents communicate with other agents to achieve each objective under dis-
rupted scenarios. The model provides a sequence plan and re-plans it when exogenous events occur.

A study uses a centralized model predictive control (MPC) to crate a routing plan for containers and
vehicles simultaneously. MPC allows the model to capture the dynamics in the network, including
uncertainties in travel time and mode capacity, and make decisions according to predictions (Larsen
et al., 2021). This model is enhanced by using a co-planning approach by having an exchange of
information realistically between different parties in the logistic chain resulting in a reduction of total
container transportation costs as well as the travel distance (Larsen et al., 2023a).

A decision support system is proposed using a hybrid simulation-optimization model under synchro-
modal framework (Hrušovský et al., 2021). It employs an offline model to create the initial plan and an
online model to react to the disruptions and selects one of three possible policies: wait, transshipment,
or detour. The disruptions are categorized according to frequency and duration by assigning them to

2.3. Modelling Resilient Synchromodal Framework 9

a random variable in the simulation. The online model will be triggered if there is a disruption occurs.
The result of the study shows that the transshipment policy has the lowest share in all scenarios. This
result could be a subject for future research since transshipment or mode shift plays an important role
in Synchromodal. The other policy in this model is to wait, which is essentially the traditional reaction,
and detour, which is practically difficult for barge and/or freight trains.

Another simulation-based optimization model under the synchromodal framework is proposed by Layeb
et al. (2018). Similar to the model proposed by Hrušovský et al. (2021), the model solves a service
network design problem by finding the optimal service schedule in a real case study. It includes the
stochastic behavior by assuming random variables following certain distributions for demand and travel
time, while not explicitly introducing disruptions in the network. The proposed model shows a 90% on-
time and full delivery performance.

In general, there are multiple ways to address disruption on the service network and provide reaction
under synchromodal framework. The reaction strategy could be waiting, altering the service network
(Hrušovský et al., 2021), or rerouting the container (Guo et al., 2020; Larsen et al., 2021). The summary
of the literature review of the dynamic model under synchromodal framework is presented in Table 2.1.

Table 2.1: Available Models of Synchromodal Framework in Literature

Source Model Disruption
Scenarios Reaction to Disruption

Ambra et al. (2019) Agent-based Simulation
- Decentralized optimization Service network Wait or re-route to the other cheap

and close terminal

Di Febbraro et al. (2016)

Agent-based Model
- Discrete event system
- Decentralized optimization
- Negotiation scheme

Service network Reoptimize the sequence plan

Hrušovský et al. (2021)

Hybrid simulation-optimization
- Agent-based simulation
- Service network design problem
- Centralized optimization

Service network

- 3 Reaction policies: wait,
transshipment, detour
- Triggered every disruption
occurrence

Guo et al. (2020)

Dynamic Optimization
- Rolling horizon approach
- Matching problem
- Centralized optimization

Request/demand Reallocation every time interval
to accommodate new requests

Guo et al. (2021)

Dynamic Optimization
- Rolling horizon approach
- Matching problem
- Stochastic approach
- Centralized optimization

Service network and
request/demand

Reallocation every time interval to
accommodate new requests

Qu et al. (2019)
Replanning Optimization
- Service network design problem
- Centralized optimization

Service network and
request/demand

Used after disruption occurrence.
- Shipment flow replanning
- Service rescheduling

Larsen et al. (2021)

Model Predictive Control
- Simultaneous container and
vehicle routing
- Consider limited number of
trucks in the network
- Centralized optimization

Service network Container and/or truck rerouting

Larsen et al. (2023a)

Co-planning Method
- Consider limited number of trucks
in the network
- Decentralized optimization
- Exchange of information in a
realistic level

Service network Container and/or truck rerouting

2.3.2. Simulation-based Models in Freight Transport
Logistics problem-solving typically employs two primary methodologies: Analytical Methods and Sim-
ulation Methods (Lyu et al., 2023). Analytical Methods encompass techniques such as linear program-
ming and regression analysis. Among these, Mixed Integer Linear Programming (MILP), a subset of lin-
ear programming, excels at generating optimal solutions concerning decision variables and constraints.
Analytical methods are frequently harnessed to address logistics issues like routing, scheduling, and

2.4. Learning Approaches in Freight Transport 10

location problems. However, they exhibit limitations in capturing the dynamic and transient aspects of
models (Lyu et al., 2023).

Another approach is the utilization of simulation models. This category encompasses methodologies
such as Monte Carlo Simulation (MCS), System Dynamics (SD), Agent-Based Models (ABM), and
Discrete-Event Simulation (DES). All these simulation techniques provide the means to incorporate
stochastic elements (Kogler and Rauch, 2018). Nonetheless, DES stands out due to its straightforward
model structure, allowing it clearly represent a complex system through a chain of events (Kogler and
Rauch, 2018). DES quantitatively represents real-world scenarios, simulating dynamics event by event
and generating detailed performance reports (Goti, 2010). However, the result of a simulation model
heavily relies on the data scale and accuracy as the model input (Motraghi and Marinov, 2012).

Simulation is a descriptivemethod and a common approach in the field of freight transportation research
to provide a real representation of a freight operation for various objectives. Motraghi and Marinov
(2012) develops a simulation model to analyze the existing railway system and to select options from
the proposed railway system according to its utilization. Another study by Lyu et al. (2021) proposed a
simulation model in combination with a Geographic Information System (GIS) to present the operations
of urban pickup and delivery. This model is proposed to help the industry gain an understanding of the
existing operations. On a broader scale, an integrated logistics and transportation system is simulated
using discrete event simulation (Xu and Hancock, 2004). The simulation encompasses not only the
physical aspect of a product supply chain but also the flow of information (Xu and Hancock, 2004).

To extend the benefit of a simulation model, a combination with optimization methods can help the
decision makers to assess possible policies for a specific problem (Oliveira et al., 2016), which could
be referred to as a decision support system. As elaborated in the previous section, Hrušovský et al.
(2021) and Layeb et al. (2018) use a simulation model to capture the dynamic behavior and incorporate
an optimization model to solve a service network design problem. Another example is proposed by
Gallardo et al. (2021), a sequential optimization simulation framework in which the optimization module
provides infrastructure arrangement and is evaluated by the simulation module. These studies present
the extension of the simulation model by generating a solution from the optimization model instead of
testing different scenarios to find the optimal solution

2.4. Learning Approaches in Freight Transport
In this thesis, the learning approach means employing machine learning (ML) techniques in solving
freight transport-related problems. In general, the ML technique consists of three main categories:
Supervised Learning, Unsupervised Learning, and Reinforcement Learning. Machine learning has
been applied in various aspects of freight transportation. It ranges from predictive analytics such as
demand forecasts to decision making tools such as operation planning (Filom et al., 2022). In a more
advanced approach, a number of studies proposed a learning-based approach in the dynamic model.

2.4.1. Supervised and Unsupervised Learning in Freight Transport
A supervised learning is essentially a model to predict an output by learning from a labeled training
(Barua et al., 2020). This labeled data basically tells the model which output is supposed to be, given
the input data. The model is trained to extrapolate to predict a correct action for situations outside
the training data (Sutton and Barto, 2018). Methods such as linear regression, logistic regression, or
more sophisticated methods like artificial neural networks fall under the supervised learning category.
Unsupervised learning on the other hand does not rely on labeled data, but the model is employed to
find a hidden pattern within training data (Barua et al., 2020). The clusteringmethod such as K-Means is
a common method used for unsupervised learning. A raw dataset can be grouped into several clusters
with similar characteristics to improve the result of supervised learning (Barua et al., 2020).

Geng et al. (2015) applies supervised learning, using a regression method to predict the container
throughput of a port given socio-economic indicators. The accurate forecast of container throughput
plays an important role in determining the direction of the port development, scale of investment, and
berth location (Geng et al., 2015). Kourounioti et al. (2016) proposed another machine learning method
to improve a decision making in container stacking policies. The research employs an artificial neural

2.4. Learning Approaches in Freight Transport 11

Figure 2.2: Agent-environment Interaction in Markov Decision Process (source: (Sutton and Barto, 2018))

network (ANN) to predict the container’s dwell time in the stacking yard as well as identify its key
determinants. Zhou et al. (2020) proposed an unsupervised learning model using K-Means algorithm
to determine the location of the joint distribution center of restaurant industry in China. The proposed
model is able to decrease the number of vehicles on the road as well as the delivery costs.

Reinforcement learning is another concept and different from the previous two concepts. A reinforce-
ment learning model is developed to find a correct action under a certain state. Unlike supervised and
unsupervised learning, in Reinforcement Learning, a learning agent is trained through a series of inter-
actions with an environment instead of a given dataset (Sutton and Barto, 2018). The agent is given a
reward for each action taken according to the agent’s objective. By maximizing the reward, the agent
can determine the best action for different states (Barua et al., 2020).

2.4.2. Reinforcement Learning in Synchromodal Framework
To make the reinforcement learning work, a Markov decision process (MDP) should be formulated
to define the interaction between the learning agent and the environment (Sutton and Barto, 2018).
Given the objective, the agent with a state will choose an action and interact with the environment. The
environment then gives the agent the updated state and reward according to the taken action. This
becomes a looping process until the agent reaches a terminal state which breaks the looping process.
The illustration of that looping process can be seen in Figure 2.2.

The approach to solving the problem using reinforcement learning is divided into model-based and
model-free. Model-based is when the agent has the means to predict the environment’s response to
any action taken which could be deterministic or stochastic, while in model-free approach the agent
relies only on learning (Sutton and Barto, 2018). In the model-free approach, the agent is trained
through episodic training and updates its value function. The value function represents how good the
current state of an agent is relative to its goal. There are several methods to update this value function
such as Monte-Carlo which uses experience from sample episodes, or Temporal Difference and Q-
Learning by bootstrapping for the final outcome of expected rewards (Sutton and Barto, 2018). Using a
combination of exploitation and exploring the lower immediate reward to find possible larger long-term
returns, the agent generates an updated value function to be used as a reference in taking action for
future exercise.

There are already a couple of studies proposing a model using a learning approach under synchro-
modal framework such as a study by Larsen et al. (2023a) which enhances the model in Larsen et al.
(2023b) with a departure learning method. There are even fewer studies proposing a reinforcement
learning technique under synchromodal framework. Guo et al. (2022) adopts the reinforcement learning
approach in the global shipment matching problem under dynamic and stochastic travel time settings
to address the curse of dimensionality of applying dynamic programming for solving the objective fol-
lowing Bellman’s equation. The study formulates a transition function containing the information of the
state over time to be used in each decision epoch. The states include the attributes of the shipment
in the decision epoch t including the shipment’s itinerary, position, set of accepted shipments, and the
shipment’s arrival time.

The reward system in this model uses the costs of moving a shipment from an origin terminal to its

2.5. Literature Review Summary 12

destination terminal via a certain service. The costs consist of travel costs, loading, unloading, stor-
age, carbon tax, and delay penalty. The value function in the model is defined according to matching
shipment r ∈ R with service s ∈ S creating a function Q(r, s). This value function is updated over time
using Q-Learning algorithm. This study compares the performance of RLA model with Myopic (MA)
and Stochastic approach (SA). The findings show that RLA achieves higher total profits and reduced
computation time across all instances when compared to MA and SA.

Another study using reinforcement learning technique under synchromodal framework is proposed by
Zhang et al. (2023). This study builds on top of an Adaptive Large Neighborhood Search (ALNS)
proposed in the study by Zhang et al. (2022) to address the service time uncertainty in synchromodal
transport. Unlike the study by Guo et al. (2022) the learning agent in this study works side by side with
the ALNS model instead of replacing its role. The learning agent receives the states from ALNS when
an unexpected event occurs. The states consist of relevant information on shipments including the
current time, passed terminals affected by unexpected events, travel time, and delay tolerance. The
action space in the learning agent consists of request removal and insertion. Request removal means
to remove the request from the assigned itinerary, while insertion means to put the shipment into a new
itinerary after the removal.

The reward system used in the model by Zhang et al. (2023) is a 1 or 0 value. This reward is granted
to the agent if the right action is taken with respect to the possible delay due to unexpected events.
For instance, if removal action is taken, and the unexpected events cause a delay in the original plan,
the learning agent receives the reward, otherwise if there is no delay. The ALNS model evaluates the
actions taken by the learning agent and gives the reward accordingly. The learning agent updates
the value function using a deep Q-Network making it capable of estimating a value of any state even
though the learning agent has not yet visited that state. The result shows that the implementation of
reinforcement learning in the decision making process improves performance by reducing the delays
in the network.

2.5. Literature Review Summary
Synchromodal transport is an emerging concept to replace the previous intermodal concept with ben-
efits providing added values to customers through more combination of multi-modal freight service
(Tavasszy et al., 2015). Additionally, synchromodal transport with flexibility feature supported by real-
time information on freight network, is capable of reacting to disruption and creating a more resilient
freight network.

In addressing the real-time decision under synchromodal assumptions, dynamic models are proposed
in various studies. Replanning model using MILP (Qu et al., 2019), shipment matching problem using
rolling horizon approach (Guo et al., 2020, 2021), or simulation-based model (Di Febbraro et al., 2016;
Ambra et al., 2019; Hrušovský et al., 2021) solve different problems in the network with different ap-
proaches with a same objective: To create a resilient synchromodal transport in response to disruptions.
However, As the disruptions in network modelled as a stochastic problem, simulation-based would be
suitable since it is proven to work well in solving stochastic problems (Layeb et al., 2018).

Furthermore, recent works by Guo et al. (2022) and Zhang et al. (2023) integrate the dynamic model
with the RL technique and prove that using RL in synchromodal framework could increase its perfor-
mance. Despite the same approach, both studies propose different ways of formulating the state, action,
and reward system for the RL agent. This provides insights into formulating RL under synchromodal
framework and could be a strong basis for integrating the RL technique with a simulation-based model
to create a resilient synchromodal framework.

3
Modelling Disruptions in Multi-modal

Freight Transportation

This chapter provides a more detailed elaboration of the types of disruptions in freight transportation
and how to categorize them to be used in the simulation.

3.1. Disruptions in Multi-modal Freight Transportation
The disruption in the freight network varies in type and impact and may require different reaction strate-
gies either at strategic, tactical, or operational levels. It can be distinguished according to the frequency
and severity, categorized into endogenous and exogenous factors (Hrušovský et al., 2021), and come
from different sources such as nature or human acts (Wang, 2016). Different types of disruptions in
a freight network are mentioned in several studies as shown in the table 3.1. Another way to catego-
rize the disruptions is by separating them into two spectrum as elaborated by Wide et al. (2022): low
occurrence probability but severe impact, and high occurrence probability with low impact. The cate-
gorization of the disruptions could be useful to simplify a model while keeping the realistic behavior.

Table 3.1: Disruptions in Freight Transportation

Disruption Source
Act of nature Hrušovský et al. (2021), Wang (2016)
Demand changes Hrušovský et al. (2021), Guo et al. (2020)
Travel Time Uncertainties Guo et al. (2020)
Labor strike Wang (2016)
Terrorist attack Wang (2016)
Blockage, detours, and road works Ambra et al. (2019)
Train/Railway maintenance Ambra et al. (2019)
Railway accident Ambra et al. (2019)
Suspension of dock operation Pant et al. (2015)
Water level fluctuation Jonkeren et al. (2011), Pant et al. (2015)
Customs Issue Maersk (2023)
Port Congestion Maersk (2023)

There are various ways to include disruptions in a model. Ambra et al. (2019) Create a simulation model
under synchromodal framework and develop three profiles of disruptions capturing disruptions in train
and truck network. Each profile has a certain severity represented by the duration of the event along
with the probability of occurrence. Hrušovský et al. (2021) divided the disruptions into four scenarios
with different durations and specific occurrence intervals and used them as input in a simulation model.

13

3.1. Disruptions in Multi-modal Freight Transportation 14

Table 3.2: Different Ways to Include Disruption in Models of Synchromodal Transport

Source Model

Ambra et al. (2019)

Divided 3 disruption profile differ in duration and occurrence probability
and simulated using Monte Carlo:
Profile 1: Prob = 30-40%/year, Duration = uniform(1-3) hour(s)
Profile 2: Prob = 6-9%/year, Duration = uniform(3-6) hour(s)
Profile 3: Prob = 6-9%/year, Duration = uniform(1-3) day(s)

Di Febbraro et al. (2016) Create a set of exogenous events including new orders, delays, and
change of supply network that may stochastically occur

Hrušovský et al. (2021)

Location is chosen randomly, duration and frequency are based on
literature. The frequency uses a fixed time interval
4 scenarios are provided:
Scenario 1: Duration 2 hours, interval 2 hours
Scenario 2: Duration 6 hours, interval 2 hours
Scenario 3: Duration 12 hours, interval 8 hours
Scenario 4: Duration 24 hours, interval 8 hours

Guo et al. (2021)

Spot shipment with probability distributions including:
Type, origin, destination, volume, announce time, release time,
due time, freight rate, and delay cost.
Service uncertainty as a random variable including:
Travel time, departure time, and arrival time

Qu et al. (2019)
- Shipment delay release time: 0.5h - 1.5h
- Shipment volume change: -30% - +30%
- Service delay 0.5h - 1.5h

Van Riessen et al. (2015) - Late and early service departure: 6h, 12h, and 24h
- Cancellation of services

Zhao and Dick (2024) 16 levels of railway disruption, modeled in different duration time
ranging from 3 to 48h.

Durán-Micco et al. (2023) Disruptions are modelled as delays and cancellations of train services
following an exponential distribution.

Karam and Reinau (2022)

- Disruption on road network characterized with location, occurrence
time, and duration.
- Monte Carlo sampling procedure is used on historical data to
generate the unexpected event.
- Truck travel time uniformly distributed between 60-80km/hr

Gao and Liu (2022)

3 Specific disruptions:
- Terrorist attack: random location and arcs’ capacity = 0,
- Earthquake: random location and reduce arcs’ capacity,
- Snowy weather: random location and reduce arcs’ capacity.

Wide et al. (2022)
Delay scenario in train network ranging from 30-240 mins. Establised
5 scenarios of disruption with each scenario has a different level of
information completeness.

Abadi and Ioannou (2014)
Disruption in port is modeled by 2% capacity reduction for every
disruption scenario. The model is run under 15 scenarios from
2% to 30% capacity reduction.

Pant et al. (2015) Uses mathematical equations to represent cargo loss due to
disruption in a certain location

Guo et al. (2021) employs random variables including travel time, departure time and arrival time, re-
quest volume, and other request attributes to represent disruptions in both service network and spot
shipment requests. A different approach was proposed by Gao and Liu (2022) by simulating specific
high-impact disruption scenarios including terrorist attacks, earthquakes, and heavy snow represented
by different capacity reductions in the affected links. The result of a thorough literature review of how
to model the disruptions in freight networks can be seen in the table 3.2. Despite its various types, the

3.2. Disruption Categorization 15

different disruption impacts and severity could be generalized and represented into different categories
of delay duration and capacity reduction. On the demand side, the disruption could be modeled by
having a change in the request attributes. The categorization of disruptions is essential to reduce the
complexity of the simulation model while still keeping the essential dynamic behavior.

3.2. Disruption Categorization
In this thesis, the disruption in the freight network is divided into two components encompassing dis-
ruptions on the service network and on the requests. The disruption profiles are created for each
component with each profile representing a group of similar disruptions along with the possible impact
and occurrence frequency.

On the supply side, the disruption categorization has more profiles than the request disruption. Five
distinct profiles are developed to represent different types of service disruptions as detailed in Table 3.3.
Each profile contains a group of disruptions with similar characteristics. The first profile is a frequent
disruption that could cause a short delay on either the train or truck network. This could be caused
by road congestion for trucks (Ambra et al., 2019), or technical and communication problems on trains
(Palmqvist et al., 2022). The second profile is a delay in barge service lines which, for instance, is
caused by congestion in the river due to locks or high traffic (Barkley and Mcleod, 2022). The third
profile, adopted from (Ambra et al., 2019) is a possible delay due to more severe disruptions such as
bad weather or systems maintenance. These disruptions could result in operations being halted for a
certain period. The fourth profile is a disruption in the terminal such as operational problems, or port
congestion (PoR, 2024). The fifth profile is a reduction on barge carrying capacity due to the fluctuation
of river water level (van Dorsser et al., 2020)(CCNR, 2020). The low water level restricts barges from
carrying containers with their full because the barges need to reduce the draft, while the high water
level could limit the height of the stacked containers on the barge to prevent collisions with bridges

Table 3.3: Service Disruption Profile

Profile Description Mode/
Location

Effect in the
Simulation

Duration Capacity
Reduction

Occurrence
per Year

1 Operational delays, road congestions
Train,
Truck

Delay 1-3h 0% 30%

2 Operational delays, canal congestion Barge Delay 1-6h 0% 35%

3 Bad weather, labor strike, accident,
systems maintenance

Train,
Barge

Delay 12-48h 0% 6%

4 Terminal congestion, operational
delays

Terminal Delay 1-3h 0% 30%

5 High and low water level Barge
Carrying
capacity
reduction

12-24h 15-20% 10%

On the request side, three disruption profiles are considered, including two profiles of changes in
container release time and a profile of alterations in shipment volume. In port-inland transportation,
changes in the release time could happen due to several causes such as the late arrival of the mother
vessels, which can cause delays of release time up to seven days (Statista, 2022) or more minor issues
such as customs clearance which cause delays of less than a day. Meanwhile, the volume changes
could come from the shippers due to, for instance, unexpected increases in demand beyond long-term
contracts. The request disruption profiles are presented in Table 3.4.

Note that there is no duration associated with request disruptions; severity is instead defined by the
delay in release time and changes in volume. Unlike delays in service disruptions, which cause op-
erations to wait until the disruption ends, delays on the request side directly change the release time,
allowing the system to ’know’ the delay as soon as it occurs. This distinction is crucial because only
service disruptions trigger the Reinforcement Learning agent to address unknown durations, a topic
that will be discussed later in this report.

3.2. Disruption Categorization 16

Table 3.4: Request Disruption Profile

Profile Description Location
Effect in the
simulation

Delay
Release

Valume
Change

Occurrence
per Year

6 Demand change Shipment Volume
change

- -30% to +30% 30%

7 Customs issues, main port operational
delays

Shipment
Release
time

change
1-6h - 30%

8 Mother vessels arrival delays Shipment
Release
time

change
1-7d - 5%

The disruption profiles are created based on two spectrums as explained by Wide et al. (2022) elab-
orated in Chapter 2. The high probability with a low severity level is represented by high occurrence
per year and low value of severity (column 5 and 6) as attributed in Profile 1, Profile 2, Profile 4, Profile
6, and Profile 7. The other spectrum, the low probability with high severity disruption is attributed in
Profile 3, Profile 5, and Profile 8. Notice that each profile can only occur in certain locations. The third
column in the table indicates the possible location of disruption when it occurs. It could be either in a
terminal, a service line, or directly on the shipment.

The severity and frequency in some profiles are derived from literature or other references, while the
rest use assumptions due to insufficient available information. Profile 1 and 3 are adapted directly
from Ambra et al. (2019) with additional information about barge disruption from TheLoadstar (2022).
Profile 2 is deduced from average barge performance published by Port of Rotterdam (PoR, 2024).
This source provides information about delayed and on-schedule barges in Port of Rotterdam in a year
period. Profile 5 combines two information from van Dorsser et al. (2020) about the capacity reduction,
and from CCNR (2020) for the occurrence probability. However, the information is for barge in general.
For the container vessels, as the scope of this thesis, the information is strengthened by an analysis
from another thesis work by Zhang (2024). The analysis shows low water level occurrence from 2011
to 2022, with an impact of 15-20% carrying capacity reduction during that period.

Profile 6 refers to scenarios developed in a study by Qu et al. (2019) where six different demand change
scenarios are applied ranging from -30% to +30% of volume fluctuation. Finally, the severity of change
in the shipment’s release time is deduced from a database published by Statista (2022) as explained
earlier. However, due to insufficient information, the severity for profile 7, and the occurrence probability
of both profile 7 and 8 are assumed. The assumption is still based on the two spectrums (Wang, 2016)
mentioned above.

4
Model Formulation

This section elaborates on themodeling part employed in this research. As explained in Chapter 1 there
are three main steps encompassing: 1) Constructing an environment for a simulation, 2) Combining
the simulation model with an optimization model to create a hybrid simulation-optimization model, 3)
Integrating a learning approach to the hybrid simulation model. These steps are formulated under
the synchromodal framework following several assumptions of the implementation of synchromodal
transport.

4.1. Problem Description
The research examines hinterland freight transportation, specifically focusing on the unidirectional flow
of shipments from the main port to various inland terminals. Each terminal is interconnected via ded-
icated service lines, which are exclusively served by one mode of transport—either barges, trains, or
fleets of trucks. The study primarily considers container shipments originating from the main port and
destined for different inland terminals. It does not address the final leg of transportation from these
terminals to distribution centers or warehouses. The shipments may be transported directly or through
multiple service lines, involving transfers at transshipment terminals, thus constituting a multi-modal
transport network.

There are multiple actors involved in this hinterland multi-modal transportation including:

1. Logistic Service Providers (LSPs).
2. Flexible Transport Operators.
3. Fixed Schedule Transport Operators.
4. Centralized Planner.

In this thesis, LSPs represent shippers, functioning as customers for transport operators, who deliver
cargo between terminals. These operators are categorized into flexible and fixed schedule services.
Flexible services, typically trucks, can adjust their departure times and destinations according to specific
requests. Meanwhile, fixed schedule services, such as trains and barges, operate on predefined routes
and schedules. While capable of transporting larger volumes per vehicle resulting in lower costs due
to the economic of scale, they generally take longer time to deliver compared to truck services.

In traditional intermodal transport, each operator works independently but may collaborate with LSPs
and other operators to create one comprehensive logistics chain from origin to destination. Tradition-
ally, no centralized planner coordinates the entire network or synchronizes different services across
logistics chains. In contrast, synchromodal transport assumes the presence of a centralized planner or
orchestrator(Giusti et al., 2019)) with comprehensive information from LSPs and operators, enabling
them to synchronize services and achieve horizontal integration across various logistics chains.

17

4.2. Simulation Module 18

Within this context, terminals and service lines are collectively referred to as the ”service network,” while
shipments are termed ”requests” throughout the remainder of the report. Real-world operations often
face disruptions in both the service network and requests, manifesting as delays, capacity reductions,
or changes in shipment release times. Under a synchromodal framework, the service network adapts
flexibly in real-time to these disruptions. This flexibility primarily involves reallocating containers or
matching them with available services, rather than altering fixed service schedules, which is typically
challenging in practice. The flexibility feature is illustrated in Figure 4.1.

Figure 4.1: Synchromodal Flexibility

Figure 4.1 depicts a shipment originally scheduled to travel from a main port to an inland terminal via
barge service. The figure illustrates a disruption in the barge service and, through the flexibility feature
of the synchromodal system, shows that the shipment can be seamlessly shifted to train service, as
indicated by the solid red line. This reallocation of containers does not require any changes to the
current frequency or schedule of the service lines, as long as it satisfies the service time window.

To enable the synchromodal framework in the service network, the model follows several assumptions
according to the definition outlined in Chapter 2. First, this research assumes full disclosure of enough
required information among operators and LSPs, allowing the central planner to re-route a shipment
flexibly. Moreover, the information is exchanged in real-time assuming the necessary ICT infrastructure
is available. Finally, The modal free booking is applied to all shipments granting full authorization to
the planning in reallocating the containers.

4.2. Simulation Module
The simulation module is designed to represent a real-world operation of hinterland multi-modal freight
transport using a discrete-event simulation method. Before going into the explanation of how this
module works, it is important to note that several key assumptions are held in this simulation to reduce
the complexity without compromising the important aspects of the research scope.

1. There are an unlimited number of truck service lines, therefore, all the shipments assigned to
truck service could always be carried.

2. Constant waiting time for truck arrival to pick up shipments. In real-world operation, this depends
on the location of the depot.

3. Land side activities are neglected. The operation inside the terminal such as handling and moving
a container from one yard to another yard is simplified into one activity

4. All containers in the same shipment are transported in the same service.
5. After completing a trip, a service is automatically back to the origin terminal, neglecting the return

trip.
6. Service lines do not make multiple stops, meaning they only serve two nodes encompassing an

origin and a destination terminal

4.2. Simulation Module 19

4.2.1. Simulation Requirement and Key Performance Indicator (KPI)
This simulation module is developed to represent a real-world hinterland synchromodal freight trans-
portation and evaluate the performance of the network. Later, it will be integrated with a optimization
module and a learning agent to create a decision support tool under synchromodal framework. To
achieve its ultimate objective, several requirements are set as listed below:

1. The simulation module must apply disruption in a hinterland multi-modal freight transport network.
2. The simulation module must calculate and record the transport cost of a shipment.
3. The simulation module must be capable of generating accurate necessary output anytime within

the simulation time to be used as input in the optimization module
4. The simulation module must accommodate different input datasets and be capable of scaling up.

The main objective of this simulation is to capture the dynamic nature of disruptions in the hinterland
freight network representing real-world operations to create an environment for implementing a decision
support system. To measure the performance of the decision support system, the costs of transporting
shipments from the origin to the destination terminal are chosen to be the KPI. The total costs consist
of at least a storage cost, travel costs, a handling cost, and a delay penalty. These cost components
are highly related to the time performance, thus, it is sufficient to set only the cost to be a single KPI.

4.2.2. Simulation Input

Figure 4.2: Synchromodal Network Representation

The inland terminals are represented by nodes located at various locations. Multiple nodes of inland
terminals could be located within the main port and serve as origin points for loading shipments onto
transport modes. Other nodes are scattered further in the hinterland as the transshipment terminals
or destination points. These terminals are characterized by handling capacity affecting the loading
or unloading time. In this simulation, several parameters are assumed infinite such as stacking yard
capacity and vehicle buffer area. Violation of these parameters could result in terminal congestion and
could cause a delay. Rather than creating parameters, the port congestion is modeled using random
variables to represent unexpected events which will be discussed further in the later part.

The first input of the simulation module is the service network, containing the physical parameters of the
network. Each pair of nodes are linked by arcs representing service lines of a specific mode type. The
arc’s physical parameter is a length indicating a physical distance from one terminal to another. Two
arcs of different mode types connecting the same nodes might have different physical distances due
to different physical infrastructures. For example, traveling from Terminal A to Terminal B might take
only 70 km by barge while it can take 100 km by truck. The layout of the service network is illustrated
in Figure 4.2.

4.2. Simulation Module 20

The second input is the service lines containing the operational parameters including travel speed,
carrying capacity, origin and destination, and departure time. These parameters play an essential role
in determining the occurrence of events in the discrete event simulation. The service lines consist of
three modes: barge, train, and truck. Barge and train services follow a fixed schedule, whereas truck
services are more flexible, adapting the departure time to demands. There could be multiple lines of
the same mode between two nodes. For instance, If there are three train services from Terminal A to
Terminal B weekly, the input data will reflect three distinct sets of operational parameters. Truck services
are modeled with a flexible capacity, assuming availability to match demand, such as deploying a fleet
of 50 trucks for a request of 50 containers.

The third main input for the simulation module is the requests. These requests represent shipments
from the main port to various inland terminal destinations. Each request consists of a bundle of contain-
ers bound by a single contract and shares the same origin and destination. Therefore, each request
is characterized by an origin, a destination, and a container volume. Additionally, time parameters
such as announcement time, release time, and due time are specified for each request. The due time
reflects the customer’s expectations, with any delay beyond this time incurring a penalty.

The fourth input is the cost structure divided into service network-related costs and shipment-related
costs. Service network costs include storage, handling, and travel costs. Storage costs may vary
between terminals due to different levels of service and terminal operators. The handling costs are
unique to each type of mode as various transport modes require different handling equipment. Travel
costs are split into two components: one dependent on travel time, and the other on distance traveled.
The shipment-related cost is the delay penalty. The delay penalty is the cost for one container for
every time unit delay. The delay penalty per container could be different for different shipments. In real
practice, high-value items such as electronics incur a higher delay penalty compared to lower-value
cargo like garment products. In this simulation, however, a delay penalty is considered the same for all
shipments.

Finally, the last input is the disruption profile containing several categories of disruptions as discussed
in Chapter 3

4.2.3. Simulation Description
To formulate the simulation module, sets and parameters are determined as presented in Table 4.1.
The notation in the table is used in the equation for time and cost calculation in the simulation pro-
cess. Sets and parameters in the simulation module are derived from the input while the variables
are determined during the simulation process. The simulation module consists of three main compo-
nents: mode service, shipment, and disruption. Each component has its process, intertwining with one
another through an object-oriented model.

Mode Service Process

The fixed schedule mode service operates on a regular basis with predetermined departure times and
routes, beginning at a specific origin terminal and concluding at a designated destination. In contrast,
the truck services only commence the operation once a shipment is assigned, making the departure
time contingent on the shipment’s release time. Before departure, the process initiates with the mode
of service arriving at the origin terminal. Since the return trip is neglected, the mode service is assumed
to arrive and be available at the origin terminalWtk minutes before the scheduled departure time. This
early arrival facilitates the start of the loading process, during which the mode service remains idle until
loading is complete. The loading process depends on the number of containers assigned to the mode.
If the loading duration extends beyond the planned departure time, this results in a late departure.

The mode of service then travels to the next destination according to its speed and distance. The
simulation module calculates the travel time and determines the actual arrival time following Equation
4.4. Upon arrival at the destination terminal, the mode service waits until all the assigned requests
are unloaded. As mentioned in the assumptions, the trip from the hinterland back to the origin point is
neglected, therefore, in this simulation, the mode waits for the next departure time and automatically
starts the process over from its origin point for the next service loop. This cycle repeats continuously
until the end of the simulation period for that episode.

4.2. Simulation Module 21

Table 4.1: Simulation Notation

Sets and indices
N Set of terminals i ∈ N
K Set of service lines k ∈ K
R Set of requests s ∈ S
P Set of disruption profiles p ∈ P

Parameters
δk Travel distance for service line k [km]
ok Origin of mode service k
dk Destination of mode service k
vk Travel speed of mode service k [km/hour]
uk Carrying capacity of mode service k [TEU]
Dtk Departure time of mode service k
Wtk Time window for loading of mode service k [minutes]
hsk Handling speed of mode service k per TEU [minute/TEU]
Cn

k Associated cost for mode k, n ∈ [1, 2, 3], C1
k are the distance re-

lated travel cost [Euro/km/TEU], C2
k are the time related travel cost [Eu-

ro/hour/TEU], and C3
k are the handling cost [Euro/TEU]

or Origin of request r
dr Destination of request r
atr Announce time of request r
ar Release time of request r
br Due time of request r
nr Number of containers in one shipment for request r [TEU]
Cd

r Cost of delay for request r [Euro/hour/TEU]
Cs Storage unit cost [Euro/hour/TEU]

Variables
Rk Set of assigned request(s) for mode k r ∈ Rk

Kr Set of assigned service mode(s) for request r k ∈ Kr

Avtk Time a mode k available for loading
Htk Total handling time for loading or unloading
Dtactk Actual departure time of mode service k
Atk Arrival time of mode service k
Strk Storage time before loading to mode k
Avtr Time a request k available after unloading
lr Delay time for each request r
SCr Total storage cost of request r [Euro]
HCr Total handling cost of request r [Euro]
RCr Total travel cost of request r [Euro]
LCr Delay cost of request r [Euro]
TCr Total cost of request r from released to delivery [Euro]

The whole mode service process explained above is translated into a pseudo-algorithm presented in
Algorithm 1

Shipment Process

The shipment components, or requests, follow a distinct process within the simulation, interacting with
the mode service component. Each shipment is generated in the simulation environment at its desig-
nated announcement time, which serves as preliminary information prior to the shipment’s availability
for pickup at the main port. Following the announcement, the shipment remains at the port until its
release time, at which point it becomes available at the origin terminal. Once it is released, it waits until
the assigned mode service is available for loading. The storage duration, from release to the start of

4.2. Simulation Module 22

Algorithm 1 Service Mode Process
1: Let t be the current time
2: while t < simulation duration do
3: Wait until arrival time Avtk
4: Update current location pk = origin terminal ok
5: Wait Htk minutes until loading finishes
6: if current location pk is disrupted then
7: Wait until disruption ends
8: end if
9: Wait until actual departure time Dtactk

10: Update current location pk = service line name k
11: Travel to the next terminal for δk

vk

12: if current location pk is disrupted then
13: Wait until disruption ends
14: end if
15: Update current location pk = destination terminal dk
16: if current location pk is disrupted then
17: Wait until disruption ends
18: end if
19: Arrive at destination and wait until unloading finishes for Htk
20: Update scheduled departure time Dtk for next departure

loading, is recorded.

The assignment of a shipment to a mode service will be further discussed in the later section. During the
loading process, the costs are calculated according to the shipment volume. For shipments assigned
to a fixed schedule service, the departure time hinges on the completion of loading for all shipments
allocated to the same mode service. Once loaded, the shipment remains with the mode service until
it reaches the next terminal, where it is promptly unloaded and stored at the destination terminal. The
unloading cost is computed similarly to the loading cost.

After unloading, the shipment updates its location based on the mode service’s destination. If this loca-
tion is not the final destination of the shipment, it updates its release time and restarts the process—from
loading to transit—according to the designated itinerary. If the current location is the end destination
and arrives beyond the due time, the delay penalty is calculated according to the late duration. The
pseudo-algorithm of the shipment process is presented in Algorithm 2.

Although the service mode and shipment have their own process, there are some interactions between
them. The formalization of these flow processes along with their interaction is illustrated in Figure 4.6.

Figure 4.3: Shipment and Service Simulation Flow Process

4.2. Simulation Module 23

Algorithm 2 Shipment Process
1: Let t be the current time
2: Let k be the assigned service
3: Wait until announce time atr
4: Update current location pr = request origin or
5: while t < request release time ar do
6: Wait until release time ar
7: if Request r is disrupted then
8: Update volume or release time
9: end if
10: end while
11: while Current location is not request destination dr do
12: Wait for assigned mode arrival
13: Start being loaded
14: Calculate storage time STrk

15: Calculate handling cost C3
knr

16: Update current location pr = service line name k
17: Update service k free capacity
18: Wait until service k arrives at destination dk
19: Calculate travel cost C1

kδk + C2
k
δk
vk

20: Start being unloaded
21: Update service k free capacity
22: Calculate handling cost C3

knr

23: Update current location pr = service destination dk
24: Update k to next mode in Itinerary
25: end while
26: if t > request due time br then
27: Calculate delay penalty LCr

28: end if
29: Calculate Total cost TCr

30: =0

Simulation Variable Calculation

The chain of process in the mode service and request lies on the equations to calculate the time vari-
ables mentioned in Table 4.1. Furthermore, the time variables also determine the transport costs of
each shipment. The equations to calculate the time-related variable of mode service are presented in
Equation 4.1 to 4.4, while Equation 4.6 to Equation 4.8 are used to determine time-related variable of
requests.

Avtk = Dtk −Wtk k ∈ K (4.1)

Htk = hsk
∑
r∈Rk

nr k ∈ K (4.2)

Dtactk = max(Dtk, (Avtk +Htk)) k ∈ K (4.3)

Atk = Dtactk +
δk
vk

k ∈ K (4.4)

Avtr = Atk +Htk k ∈ Kr, r ∈ R (4.5)
Strk = Avtk − ar k ∈ Kr, r ∈ R (4.6)
ar = Avtr r ∈ R (4.7)
lr = max(0, Avtr − br) k ∈ Kr, r ∈ R (4.8)

Equation 4.1 to Equation 4.4 regulate the calculation of mode available time Avtk, handling time Htk,
actual departure timeDtactk , and arrival time respectively Atk. Equation 4.6 calculates the storage time

4.2. Simulation Module 24

Strk depending on the request’s release time ar. The release time is updated after a request arrives
in the next terminal following Equation 4.7. This update affects the storage time in the next leg. Lastly,
the delay time is calculated following Equation 4.8.

Based on the determined time, the shipment cost can be calculated following Equation 4.9 to Equation
4.13. The equations are mostly straightforward just by multiplying time by unit costs. Equation 4.11 also
adds a distance variable to calculate the travel cost. Equation 4.10 consists of loading and unloading
for each mode service, therefore the calculation is multiplied by 2.

SCr =
∑
k∈Kr

CsStrk r ∈ R (4.9)

HCr =
∑
k∈Kr

2C3
knr r ∈ R (4.10)

RCr =
∑
k∈Kr

C1
kδk +

∑
k∈Kr

C2
k

δk
vk

r ∈ R (4.11)

LCr = Cd
r lr r ∈ R (4.12)

TCr = SCr +HCr +RCr + LCr r ∈ R (4.13)

The above calculations apply under an undisrupted scenario. Under the disrupted network, the time
calculation might be affected due to unavailable or delayed service. For example, in Equation 4.3, the
actual departure time Dtactk is only affected by the loading time Htk, while in the disrupted scenario,
the actual departure time might be later because the service waits until the disruption ends.

Figure 4.4 is presented to give an illustration of how the shipment cost is calculated throughout the
simulation process. The figure shows a calculation for a single trip. For an itinerary with a transshipment
in between, the calculation is repeated except for the delay penalty. The delay cost is only calculated
after the request is available at the request’s end destination.

Figure 4.4: Shipment Cost Calculation (For one trip)

Disruption Process

The disruptions are applied according to the disruption profile, and each is generated independently
within its designated profile. The simulation applies eight disruption profiles, five for disruptions in
the service network and three others for request disruptions. The process of the generator initiates by
randomly determining the time of occurrence according to each profile’s occurrence probability following
an exponential distribution. This is a common approach to model inter-arrival time in a simulation. The
occurrence per year is converted into an occurrence rate (λ) by relating the annual frequency (f) of
the disruption to the number of minutes in a year (t). as shown in Equation 4.14. For example, the
occurrence probability of the service disruption Profile 1 is 30% each year, meaning it happens around
110 times every year. Since the time unit is in minutes, the frequency is divided by 525,600 minutes,
resulting in the value of (λ) around 0.0002.

λ =
f

t
(4.14)

Upon determining the time of occurrence, the simulation then identifies the specific location of the dis-
ruption. For disruption on requests, the generator selects a shipment that has already been announced

4.3. Hybrid Simulation-Optimization 25

but has not yet been released. For the service disruption the profile with more than one possible loca-
tion, for instance, the service disruption profile 3, the algorithm applies the random variable in two steps.
First, it determines in which mode type or terminal the disruption will occur, then it chooses a specific
location accordingly. For instance, if the mode ”Train” is selected, the subsequent step pinpoints which
train line will experience the disruption. Both steps utilize a uniform distribution, assuming an equal
likelihood of disruption across all locations

Next, the generator determines the severity of the disruption. For the disruption on requests, a multiplier
value is generated following a uniform distribution. This multiplier value alters either the release time or
volume of the request. For the service disruption, the severity is represented by the duration or capacity
reduction depending on the type. It is determined according to the lower bound and upper bound in
each disruption profile. The duration is chosen randomly following a uniform distribution adopting the
approach in the study by Ambra et al. (2019).

Finally, the simulation module logs and implements each disruption based on its occurrence time. The
impact of disruptions on requests typically results in straightforward adjustments to shipment parame-
ters. On service lines, disruptions that create delays temporarily halt the operational process until the
disruption concludes, whereas capacity reduction only decreases the parameters without stopping the
operation. The entire flow of the disruption generator, including these dynamics, is illustrated in Figure
4.5.

Figure 4.5: Disruption Generator Flow Process

The complete flow of the simulation encompassing the shipment and mode service process running
under a disrupted network is presented in Figure 4.6. As explained before, the disruption on requests
only applies in the small time window after a shipment is announced and before it is released. However,
the disruption on the service line could occur anytime in the chain of events causing the disrupted
request to wait until the disruption ends as illustrated in Figure 4.7. This always wait policy represents
the absence of synchromodal framework and potentially causes severe delays in shipment delivery
which will be addressed in the next section. These disruption occurrences are represented by the red
arrows connecting the disruption generators (red boxes) and the shipment and service mode process
in the picture.

4.3. Hybrid Simulation-Optimization
In the previous section, a variable Kr is presented in Table 4.1. This variable indicates the assigned
itinerary to a shipment consisting of a set of service lines. This mode assignment to each shipment
depends on various parameters and is highly correlated to the performance of the freight network. An
optimal mode assignment could result in low costs of transporting all the requests from the origins
to their destinations. In conventional intermodal transport, this itinerary comes from LSPs. However,

4.3. Hybrid Simulation-Optimization 26

Figure 4.6: Complete Simulation Flow Process

Figure 4.7: Simulation Module Flow Process

under the synchromodal framework, it is assumed that there is a centralized planner who has access
to real-time shipment and service data as well as authorization to assign shipments to service modes,
thus shipment requests are delivered according to their requirements. The objective could vary such
as minimizing cost, maximizing on-time delivery, or minimizing emissions. Therefore, in this thesis, the
centralized planner has a role in creating a shipment plan every certain time interval.

Planning and simulating the transport could normally be performed separately. For every time interval,
all necessary data from requests are given to a planner to create a shipment plan. Then, the shipment
plan is executed as an input in the simulation. This planning process is called an offline planning.
However, if there is a disruption in the network, the shipment can only wait until the disruption ends.
Through the synchromodal framework, a planning module could be integrated into the simulation and
automatically triggered to create a new shipment plan in case of disruption.

There are various analytical methods to perform shipment planning, ranging from heuristic methods
following first come first serve (FIFO) principal, or sophisticated optimization techniques with various
objectives as mentioned earlier. The hybrid simulation-optimization model in this thesis is proposed to
enable integration with different optimization models as long as it satisfies the system’s requirement.
The optimization model should match the announced requests with available services considering the
time and cost parameters associated with the service lines. The optimization module is embedded
in the simulation module and acts as the centralized planner. It is capable of performing a replanning
immediately after a disruption occurs. The real-time data from the simulation is sent directly as an input
of the replanning.

4.3.1. Affected Request Detection
To perform the replanning or online planning, it is important to filter the input to the affected ones.
This logic is adapted from model proposed by Hrušovský et al. (2021) and Zhang et al. (2023). In
both studies, an affected request algorithm is employed to determine the affected request based on
the disruption occurrence time and location. This algorithm is employed to reduce the input size and
number of changes in the network due to the replanning (Hrušovský et al., 2021; Zhang et al., 2022).
Therefore, an affected request detection algorithm is implemented in the simulation.

4.3. Hybrid Simulation-Optimization 27

The detection algorithm has access to all the requests’ real-time information within the network, thus, it
knows the current location of all requests. It is important to distinguish between the affected requests
and disrupted requests. The affected requests are only the ones that are still possible to be re-routed.
There are three specific cases where a shipment is excluded from the affected requests despite the
disruption in its itinerary. First, if the shipment is in a terminal or on board of a service line and the
disruption occurs in that location (case 1). Second, if the shipment is on a service line, and a disruption
occurs in that service line’s destination terminal (case 2). Third, if the disruption occurs at the shipment’s
end destinations (case 3), the replanning in these three cases will not help the shipment to avoid
disruption. The illustration of them is presented in Figure 4.8.

Figure 4.8: Exclusion of Affected Request

This detection algorithm as presented in Algorithm 3 is only triggered if a disruption in the service net-
work occurs since disruptions on request are explicitly located in a specific shipment. First, the algorithm
only considers the requests that are already assigned to service lines. It populates all the assigned ser-
vice modes including that mode’s destination, resulting in a complete route for each shipment. This
route is used to identify whether or not a shipment is affected by the disruption. The detection excludes
the shipment with cases as described in Figure 4.8. After all affected requests are located, the detection
algorithm sends the affected shipment list to the central planner to assign new service modes.

Algorithm 3 Affected Shipment Detection
1: Input: Service disruption location pd, shipment data: assigned itinerary Kr, current location pr,
destination dr

2: Output: Set of affected request AR
3: Let Ract be the set of active requests in the network
4: Initiate an empty list AR for affected request list
5: for each r ∈ Ract do
6: Initiate empty list Lr for request route
7: if Mode services are assigned to request r then
8: for mode k ∈ Kr do
9: Add k and its destination dk to list Lr

10: if Current location pr in Lr, remove from the list then
11: Remove end destination dr from Lr

12: if service disruption location pd is in Lr then, add r to AR

4.3.2. Optimization Module
This optimization module is essentially the centralized planner of the network. The procedure of plan-
ning and replanning are the same and only differ in the input and trigger timing. For the planning
process, the input will be all the announced requests during the decision epoch time and triggered in
a fixed time interval while replanning input is the affected request list and triggered only during a dis-
ruption occurrence. Aside from the requests list, a list of on-going disrupted locations is also an input
to the optimization module both for planning and replanning process. It removes the disrupted service
line from the possible solution space if the disruption profile causes delays in the service network.

The removal of a disrupted service network is based on the logic in the simulation module that a dis-

4.4. Reinforcement Learning Approach 28

rupted service line stops working until the disruption ends. Since the optimization module has no
information about the disruption duration, it is assumed that the disrupted service lines are unavailable
when the optimization module is triggered.

The scope of this thesis is to propose a model with a modular structure, allowing the plug-ins of different
optimization techniques. The optimization module could have different methods, or different objectives
as long as the output is a matching plan between shipment requests and service modes. The opti-
mization module is considered as a black box with expected output given the input from the simulation
module. Therefore, any available optimization methods with the same input and output as explained
earlier could work in this model

After receiving the request list from either the announced request list or the affected shipment detection,
the optimization module is triggered to perform a planning or replanning process. The optimization
module follows some constraints in making the matching decision. The matching decision is then used
to assign a service line to the shipment. In the replanning process, the new assignment is used to
replace the original itinerary. In contrast with the always wait policy presented in Figure 4.7, this hybrid
simulation-optimization model always reassigns affected shipments to new service lines as presented
in Figure 4.9 because the disrupted location is removed from the possible solution space.

Figure 4.9: Hybrid Simulation-Optimization Flow

4.4. Reinforcement Learning Approach
The combination of the optimization module with the simulation module to execute planning as well as
replanning under disruption scenarios is expected to offer a more resilient performance of the network.
The hybrid simulation-optimization changes the policy from always wait to always reassign. Reassign-
ing a request to another service line under a disruption case could potentially increase the resilience
of the freight network and is possible to execute under synchromodal framework. However, in some
cases, it is better for a shipment request to just wait until the disruption ends and continue its journey
according to its original itinerary. For instance, if a disruption occurs for a short time or it occurs in a
terminal that is still far ahead in the journey and likely to end once the shipment arrives. The problem
is that the duration of a disruption is usually unknown. Based on this, a reinforcement learning tech-
nique is integrated into this model, therefore, the model could decide if it is better to wait or reassign
considering the experience of the learning agent.

Using a value function, a reinforcement learning (RL) agent is capable of choosing the best action given
a specific state by learning from past experience and a series of training. Instead of relying on labeled
data like supervised learning, the RL agent is guided by a reward system to indicate which action is
the best. It is important to model the action, state, and reward system properly to have an optimal RL
agent. Along with that, a Markov Decision Process (MDP) should be formulated as a basis for RL in
having interaction with the environment by applying actions, updating the state, and getting rewards.

4.4.1. Markov Decision Process
MDP represents a sequential decision process in which the action taken in a state affects the next state
and the reward generation. In this hybrid simulation-optimization model of synchromodal transport, the
decision process could vary. Let us take a perspective from a shipment since it is assumed that the

4.4. Reinforcement Learning Approach 29

service network is fixed. In the case of disruption, the possible decision could be: ”when to take a
certain service line”, ”which service line to take”, or ”should an affected shipment just wait until the
disruption ends”. From those possible decisions, there is a large size of decision space. For instance,
to answer the question ”when to take a certain service line”, a decision to take the same service line
in different time steps are two different decisions. Furthermore, there are many service lines in the
network, making the decision space even larger. Multiplying both the number of time steps and the
number of service lines results in thousands of possible decisions. These possible decisions later will
be the action space to be considered in the model. In addition to the action space, the state space
could also be very large. Each shipment and service line has various attributes and keep changing
over time. For example, the location of a shipment and a service line might be different at time step t
and at time t+1. It is important to formulate the state properly so that the learning agent only considers
the relevant states.

The action and state space in this synchromodal transport could be large as explained above. However,
it is possible to narrow down that space by eliminating the irrelevant possible actions and states. Instead
of considering all the possible actions, the RL agent can be set to work as a supplementary for the
optimization module that has a role in providing the reassignment solution. In the previous section, the
hybrid simulation-optimization works by assigning a shipment to a new service line in case of disruption.
It sends back the output from the optimization module to the simulation module directly to execute. Here
the process could be slightly modified. The optimization module sends the reassignment solution to
the RL, then the RL agent decides if reassigning to a new service or waiting for the disruption to end
would be the best action to take. By doing this, the RL does not have to consider the irrelevant actions
because they are already eliminated in the optimization module. This narrows down the action space
into two: Reassign and Wait. The timing of taking action is also limited to only after the disruption
occurrence because RL agent is only triggered once the optimization module provides a reassignment
solution.

In this approach, the environment which the RL agent has an interaction with, is the simulation module.
Every time the RL agent is called to take an action due to a disruption occurrence, the simulationmodule
will process the action and provide feedback consisting of an updated state and reward. The Markov
Decision Process of interaction between RL agent and the simulation module is presented in Figure
4.10

Figure 4.10: Markov Decision Process in Hybrid Simulation-Optimization

Notice that there is a branching flow from the simulation module in sending state information to the RL
agent. This is because there is a probability of a case where RL agent needs to take a follow-up action
before reaching the terminal state. The terminal state here is the state where the agent is no longer
taking action and will be elaborated more later in this section. Before going to that explanation, it is
necessary to define the action to be clearer.

4.4. Reinforcement Learning Approach 30

4.4.2. RL Action
Now, what do the ”reassign” and ”wait” actions exactly mean? Since it is the information that will
be exchanged between RL agent and the simulation module, it needs to be clear so the feedback
information would also be relevant. Those actions consist of a list of service lines, indicating which
combination of service lines a request is going to be carried by. Assume a Request X is assigned to
Barge1 and then transferred to Train1 before reaching its end destination, then, the assigned mode
Kr is [Barge1, Train1]. If there is a disruption, and the optimization module suggests the reassignment
to Truck2, then the possible action set will stay with the original itinerary, wait: [Barge1, Train1], and
reassign: [Truck2]. The RL then chooses between those two options. However, to make it more
granular, the itinerary is considered as a series of actions, and the action itself only contains a single
service line. For instance, if in that case, the RL chooses to wait, then, the action is [Barge1], and save
the [Train1] for the next action in the future. Therefore, after taking Barge1 and arriving at Barge1’s
destination, the simulation module will update the state to the RL agent, grant the reward, and take the
next action Train1. There is no decision-making anymore at this stage since the possible action is only
one, unless a disruption occurs during this process.

If there is another disruption in the network and it affects the same request as discussed above, then
the optimization module is triggered again, suggesting another possible action. Here, the action from
the previous decision epoch is interrupted without waiting to arrive at the next terminal. The state
is immediately updated, the reward for the previous action is granted, and a new action is taken by
the RL agent according to the suggested possible set of actions from the optimization module. In the
Request X example where RL takes the action set Barge1 and Train1, if the disruption happens before
the request arrives at Barge1’s destination, the future action (Train1) will be replaced by the new set of
action taken by RL agent in this decision epoch. This process continues following the feedback loop
presented by Figure 4.10 until that request is delivered, which is the terminal state.

Another problem is if there are multiple requests affected by a disruption, and this happens most of the
time if a service disruption occurs. In this case, the decision made by the RL agent for each request is
independent of other requests. In a way, there are multiple RL agents assigned for different requests
and work in parallel, and it is called RL sub-agent. Once an RL sub-agent is assigned to a request, the
loop starts until it reaches the terminal state for that request. If any disruption happens again in the
future affecting the same request, that request is not assigned to a new RL sub-agent. This framework
allows the RL sub-agent to make an action based on the action taken in the previous decision, such
that an action within the same request is not independent of its previous action. From the explanation
above, it seems like the RL agent works on a decentralized architecture. However, this is not the case
in this framework. Even though the RL sub-agent makes decisions independently for each request, it
has one centralized value function, updated whenever a reward is granted. This process is illustrated
in Figure 4.11.

The horizontal arrows indicate the parallel process of each sub-agent assigned to a request. The
vertical arrow from the decision making loop to the action value function is the information sent to the
RL agent to update the action value function, which will be discussed in more detail in the later section.
The arrow from the action value function back to RL-sub agent is information about the action taken
specifically for each request. The action is chosen following the ϵ-greedy policy.

Since the action is chosen by referring to action value function, the greedy policy means the action with
the highest value is always chosen. However, to balance the exploration and exploitation (Sutton and
Barto, 2018), the action is chosen following the ϵ-greedy policy. Instead of always taking the action with
the highest action value function, the ϵ value provides a small amount of probability so the RL agent
sometimes chooses an action with a lower value and explores the probability of having a better reward
in a longer run. To determine the action probability π(a | s) according to the ϵ value, Equation 4.15 is
applied. m is the number of possible actions and a∗ is the best action according to action value function
Q(s, a).

The details of selecting action following the ϵ-greedy policy are presented in Algorithm 4. This process
is performed independently for each affected request r ∈ Ar and returns the chosen itinerary Ic based
on the chosen action a.

4.4. Reinforcement Learning Approach 31

Figure 4.11: RL Agent Framework

π(a | s) =

{
ϵ
m + 1− ϵ if a∗ = argmax

a∈A
Q(s, a)

ϵ
m otherwise

(4.15)

Algorithm 4 Action Generator
1: Input: Affected request r, state of the request sr, set of possible itinerary Ir, ϵ for ϵ-greedy policy,
action value function Q(s, a)

2: Output: Set of chosen itinerary Ic (Wait or Reassign)
3: Wait action await is the first element of the list in wait itinerary iw ∈ Ir
4: Reassign action areassign is the first element of the list in reassign itinerary ir ∈ Ir
5: Possible action A = {await, areassign}
6: Determine action probability π(a | s) using equation 4.15
7: Action a is chosen randomly according to action probability
8: Chosen itinerary Ic is determined according to the chosen action =0

4.4.3. RL State
From the perspective of a centralized planner of synchromodal transport, it is rather complicated to
define the state of the RL agent. If all the shipments and all the service attributes are considered, the
state space is going to be very large as explained earlier in this section. Since it is already elaborated
that the perspective is narrowed down to a single shipment, it is easier the determine the state know-
ing that each request has its independent decision-making process. The state considered in this RL
approach consists of 6 features: the request’s current position, the request’s destination, the request’s
due time, the request’s volume, the type of disruption, and the current time.

The first 4 features are the attributes related to each request. The first one could change over time
and could be either in a terminal or on a service line if it is on board. The rest are the same as given
in the input of the simulation. The disruption profile is according to the type of disruption that happens
when an action is being taken by RL agent. It is important to note that the RL agent only provided
information about a type of disruption rather than the duration or probability distribution used in the
disruption generator. It is still practical in real-world operations since the type of disruption is usually
known. The last one is the time feature. it provides a sense of time to the RL agent so it can distinguish
the same decisions in different time steps.

4.4. Reinforcement Learning Approach 32

The state updating occurs every decision epoch and every time a request finishes an action. Using the
previous example of Request X where the RL takes a set of actions of Barge1 and transfers to Train1,
the RL agent receives a new state once the Barge1 arrives at its destination. The current location
and current time will be updated, and the disruption profile will be updated to ”no disruption”. This is
because the disruption feature indicates the type of disruption when an action is being taken. In this
case, disruption happens when action Barge1 is taken, while Train1 is only a follow-up action without
being triggered by a disruption. Anytime a disruption happens, the RL agent receives a new state
from the environment. If a second disruption affects a request while the request is still waiting for the
assigned mode to arrive, the RL agent still receives a new state for the new current time and updated
disruption type while keeping the current location as is.

4.4.4. Reward System
The reward system plays a crucial role in determining the performance of an RL agent. Reward can be
given in various ways. Take a common example provided in Sutton and Barto (2018) of a chess game,
every action is rewarded 0 until the end of the game depending if a player wins, loses, or ties. The
reward can also be given incrementally during the process as long as each action indeed has a value
toward the end objective. Another example is a grid world where an object is rewarded -1 every time
it moves one grid, and gets a huge reward when it arrives at the destination. The -1 acts like a cost
to move for one grid. This way, the object will find the shortest path to achieve the destination while
minimizing the cost. The incremental reward and negative reward to apply a cost to the RL agent can
be adapted to synchromodal framework case.

The cost of transporting a request from a certain terminal to the next terminal is used in this model as
a reward for taking an action. The cost consists of storage, travel, handling, and also delay costs. If
the RL agent takes a longer route, it will be penalized by a higher travel cost, if the RL agent’s action
results in the request waiting longer for departure, it will be penalized by a higher storage cost, and
so on. However, taking action which has a higher cost in one aspect, can have a lower cost in other
aspects. This is a trade-off that must be solved by RL in providing optimal actions. The reward is set to
a negative cost, therefore, while the agent chooses an action based on the value function, it will choose
the action with the negative values closest to 0, thus minimizing the costs.

Following the framework in Figure 4.11, the reward system is also given separately for each sub-agent.
There are different cases of how the reward is given to the RL agent. First, in the case an action is
completed without being interrupted by any disruption, a reward is given in the amount of transporting
from one terminal to the next terminal starting from the time the RL takes the associated action con-
sisting of storage, handling, travel costs, and delay cost (if any). Second, if a request is affected by a
disruption while it is on board a service line, the RL selects action immediately but only executes once
the request arrives at the next terminal. Therefore, the reward is only calculated after the request is
unloaded at the next terminal. Third, If a request is affected by disruption multiple times, therefore the
RL is triggered more than once for the same request. In this case, the reward for the last action from
the previous decision epoch is given immediately after the RL agent takes the new actions. These
scenarios are illustrated in Figure 4.12

The storage costs in the reward are also affected by the time of action is taken. For example, if a request
starts at terminal A and is released at 8:00, the storage cost is calculated from that point. However, for
the RL agent, the storage cost for rewards starts to be calculated when an action is taken by RL. So,
if this request in the example is affected by a disruption at 10:00 while it is still waiting for the assigned
mode, the storage cost for the reward is only calculated from 10:00 until the request is loaded to the
assigned mode. Because of this, the actual storage cost is likely to be different from the storage cost
in the reward. Furthermore, because the RL agent only works for affected requests, the total reward is
not going to be the same as the total actual cost in the simulation. The reward generation process is
presented by Algorithm 5.

4.4.5. Updating Action Value Function
Estimating a value function is the holy grail of the RL algorithm. It is a function that tells the RL agent
how good it is being in a certain state (Sutton and Barto, 2018). In RL, a value function is strongly

4.4. Reinforcement Learning Approach 33

Figure 4.12: Example Cases of Reward Calculation

related to a policy. Sutton and Barto (2018) defines a policy as a map containing a probability of taking
an action a given a state r. To put in the context of this thesis, always wait and always reassign are
examples of a policy. It means that whatever the given state r, the probability of taking an action ”wait”
is 100% for the first policy, and taking action ”reassign” is 100% for the second policy. By applying this
policy through a series of training episodes, the RL agent can estimate the value function and determine
how good it is being in a state r. The value function of a state (s) depends on the immediate reward
and discounted expected reward for the future possible state.

The action value function is similar to the value function. The slight difference is, instead of only telling
the agent how good it is being in a given state r, more specifically it tells the agent how good it is taking
an action a in a given state r. To estimate the action value function of a specific policy π, the Equation
4.16 is applied.

qπ(s, a) = E[Gt | St = s,At = a] = E

[∞∑
k=0

γkRt+k+1 | St = s,At = a

]
(4.16)

Gt is the total reward of the immediate reward with all the discounted successive rewards in the future.
The objective of the RL agent here is to find the optimal policy π so that by applying this policy, the
maximum reward could be generated. This could be done just by taking every action following ϵ-greedy
and keep updating the action value function q(s, a) until it converges. As explained in Chapter 2, there
are multiple techniques to update the action value function. In this thesis, off-policy Temporal Difference
Control, Q-learning technique, is employed by following Equation 4.17. UnlikeMonte Carlo, Q-Learning
does not have to complete one full episode to update the action value function, instead uses the current
estimate in the equation. This method proves to reach convergence faster (Sutton and Barto, 2018).

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
(4.17)

At in Equation 4.17 represents the taken action at time-step t, while a represents any possible action
from state St+1. In this model, if the action in t+ 1 is not triggered by disruption, then the action is the
service line in the itinerary saved from the previous decision epoch. In the case of disruption, there are
two possible actions that will be chosen according to its maximum Q(St+1, a) value. In this model, the
action value function q(s, a) is initiated with zero values for every state and action and will be updated
through a series of training episodes. All the notations in the equation refer to Sutton and Barto (2018)
textbook. To distinguish the notations between reward and request, for the rests of the report in this
thesis, the reward is denoted by Γ.

4.5. Learning Assisted Hybrid Simulation-Optimization 34

Algorithm 5 Reward Generator
1: Input: Affected request r, state of the request s, action a
2: Output: Immediate reward Γ
3: Let Ic be the itinerary
4: Start calculating reward Γ in the shipment process
5: Wait until r is available at the next terminal
6: if a is a future action (not Ic(0)) then
7: Update request state s
8: Wait until the r is available at the next terminal
9: end if
10: if r is disrupted again while waiting then
11: if a is a future action then Break
12: end if
13: if Request is on board of a service line then
14: Wait until r is available at the next terminal
15: end if
16: Interrupt the waiting process for action a
17: end if
18: if Request r is delivered then
19: Next state s′ = 0
20: Next action a′ = 0
21: else
22: Next state s′ = Current state
23: Next action a′ = next service mode in Ic
24: end if
25: Grant reward Γ for action a

4.5. Learning Assisted Hybrid Simulation-Optimization
The reinforcement learning technique is integrated with the previous hybrid simulation-optimization
to create a complete decision support system in creating a resilient synchromodal framework. The
simulation module acts as an environment to simulate the freight network including the disruptions in
a stochastic manner. The optimization module acts as a planner providing a matching plan between
requests and available service lines with the objective of minimizing shipment costs. Finally, the integra-
tion with RL agent adds the capability of learning from experience to address the problem of unknown
information about disruption duration. The three modules work together by exchanging information as
shown in the flow diagram presented in Figure 4.13 forming a complete model of Learning Assisted
Hybrid Simulation-Optimization for hinterland freight transportation under synchromodal framework.

Figure 4.13: Learning Assisted Hybrid Simulation-Optimization Flow

5
Model Verification

In this chapter, verification is performed to evaluate if the proposed model works correctly. A synthetic
service network and requests are generated as the input and the results will be evaluated afterwards.
A simple heuristic model is constructed to be plugged into the model and act as a centralized planner.
Despite the output from the heuristic model is not the optimal solution, it can still be used to evaluate
the whole model since the objective of this chapter is to see if the model works rather than to provide
the best solution to the network. The proposed model is implemented using Python 3.10.6

5.1. Model Input
This model requires five main inputs as elaborated in Chapter 4 encompassing a service network,
service lines, requests, cost structure, and disruption profile. The service network and the disruption
profile are as presented in Figure 4.2 and Table 3.1. The distance of each node used in the network
is presented in Table 5.1. The table consists of matrices containing distances in kilometers for each
service mode. The first column is the origin terminals, and the first row is the destination terminals. The
dashes indicate that a certain mode service line is unavailable between two terminals.

Table 5.1: Distance Between Terminals

Barge Network Train Network Truck Network
Node A B C D Node A B C D Node A B C D
A 0 70 - 100 A 0 - 100 - A 0 80 120 120
B - 0 - - B - 0 60 60 B - 0 70 70
C - - 0 - C - - 0 - C - - 0 -
D - - - 0 D - - - 0 D - - - 0

The network consists of 2 barge lines, 3 train lines, and 25 truck fleets. The truck service is available in
every connection of 2 terminals except between Terminal C and Terminal D. Fixed schedule service is
only available for one departure every week. The departure times are generated randomly while consid-
ering the interval between services to ensure distributed availability. The departure time only indicates
the first-week departure and will be repeated for every 7-day interval, therefore the announcement time
values in the table are all 0. The snippet of the service lines input data is presented in Table 5.2. Column
K is the service name and columns ’o’ and ’o2’ are the origin and destination respectively.

The shipment request for the model verification only contains 90 shipment requests. All requests depart
from Terminal A with a destination to Terminal C or Terminal D. No request has an end destination to
Terminal B to reduce the complexity and only let Terminal B be a transshipment terminal. The snippet
of the input data of the request on the first week is presented in Table 5.3. ptime, dtime, and atime
are pickup time, due time, and announcement time. Those time parameters are generated randomly
while ensuring a well-distributed request throughout the period. The volume (qr) is set using a random

35

5.2. Simulation Verification 36

Table 5.2: Service Lines

K o o2 Departure
(hour)

Capacity
(TEU)

Speed
(km/hour)

Barge1 TerminalA TerminalB 30 160 15
Barge2 TerminalA TerminalD 52 160 15
Train1 TerminalA TerminalC 76 90 45
Train2 TerminalB TerminalC 40 90 45
Train3 TerminalB TerminalD 36 90 45
Truck1 TerminalA TerminalC 99999 99999 75

number between 10 to 40 with an interval of 5, and the assigned mode (k) is left to 0 and will be filled
up during the simulation.

Table 5.3: Shipment Requests

ID origin destination ptime dtime qr
(TEU) k atime

Request1 A C 15 70 40 0 0
Request2 A D 42 90 20 0 0
Request3 A C 48 120 35 0 0
Request4 A D 50 98 15 0 0
Request5 A C 88 136 30 0 0
Request6 A D 50 98 15 0 0
Request7 A C 34 106 20 0 0

Next, the cost parameters are derived from the study by Zhang et al. (2022). The storage costs are
assumed the same for every terminal in the network. Similar to storage costs, the delay penalty is
set to be the same for every shipment without considering the different time windows as explained in
Chapter 4. The cost parameters are presented in Table 5.4.

Table 5.4: Cost Parameters

Unit Barge Train Truck
Service Related Cost
Travel cost (C1

k) Euro/km/TEU 0.0213 0.0653 0.2758
Travel cost (C2

k) Euro/hour/TEU 0.6122 7.54 30.98
Handling cost (C3

k) Euro/TEU 3 18 18
Storage Cost (Cs) Euro/hour/TEU 1 1 1
Shipment Related Cost
Delay penalty (Cd

r) Euro/hour/TEU 1 1 1

5.2. Simulation Verification
To evaluate if the simulation module works correctly, it is verified by adjusting parameters and see if
the results change according to the expectation. 10 Scenarios are developed to test if the simulation
works as expected. The total cost from the benchmark model is generated to be compared in the veri-
fication process. In the benchmark model, only service disruptions are applied. Including the request
disruptions in the model could result in unpredictable results because it could possibly generate either
higher or lower costs in the end. In contrast, the service disruptions are expected to always increase
the total costs. The total cost of the benchmark model is AC434,138.

The first four scenarios involve only one request r in the input and compare the costs with manual
calculations to evaluate if the process of request component works properly. Scenario 5 and 6 are
also applied to request r to test the request parameters by adjusting the release time and due time
and see the effect on the storage cost and delay penalty. Scenario 7 and 8 test the effect of adjusting

5.3. Heuristic Model 37

parameters in the service line by reducing the vehicle speed and carrying capacity. The reduction
of service capacity is expected to increase the total shipment costs. Finally, scenario 9 and 10 are
developed to verify the disruption process in the simulation. Scenario 9 compares the non disrupted
scenario with the benchmark scenario and Scenario 10 applies a bottleneck disruption in Terminal B
(referring back to the network) and is set to last until the end of the simulation.

The module passes all the scenarios with the results presented in Table 5.5

Table 5.5: Simulation Module Verification Results

No Description Expected Results Actual Results

1 Compare manual calculation
for the storage cost SCr = 666 SCr = 666

2 Compare manual calculation
for the handling cost HCr = 1680 HCr = 1680

3 Compare manual calculation
for the travel cost RCr = 728.45 RCr = 728.45

4 Compare manual calculation
for the delay penalty LCr = 80.67 LCr = 80.67

5 Set an earlier due time for a
request LCr > 80.67 LCr = 880.67

6 Set an earlier release time for a
request SCr > 666 SCr > 866

7 Reducing speed of all service
modes

∑
r∈R TCr > 434, 138

∑
r∈R TCr = 507, 336.99

8 Reducing carrying capacity of
fixed schedule service

∑
r∈R TCr > 434, 138

∑
r∈R TCr = 1, 024, 381.38

9 Compare disrupted and non
disrupted (nd) scenario

∑
r∈R TCnd

r < 434, 138
∑

r∈R TCr = 417, 211.07

10 Set constant disruption in
transhipment terminal There are undelivered requests 6 requests are undelivered

5.3. Heuristic Model
To fill the centralized planner role, a simple heuristic model is developed. The heuristic model works
by assigning a request to a service line with the nearest departure time in the same week. It prioritizes
by seeking a compatible fixed scheduled service. If there is nothing available in the same week, the
heuristic model will assign the request to the truck service.

Table 5.6: Possible Combinations

ID Pick-up Delivery Services
Comb1 TerminalA TerminalC Train1
Comb2 TerminalA TerminalC Barge1, Train2
Comb3 TerminalA TerminalC Truck1
Comb4 TerminalA TerminalC Truck2
Comb5 TerminalA TerminalC Truck3

To ensure a compatible route, possible arc combinations are pre-determined according to the service
schedule given in the input. The possible combination only provides either all fixed schedule or truck-
only service. There is no combination of both for example Barge1 to Terminal A, then transferred to
Truck11 to reach Terminal C. Truck service from transshipment terminal (Terminal B) might only be
chosen in case of replanning. Furthermore, Truck service from Terminal A to Terminal B is omitted.
These restrictions are applied based on the assumption that if a truck service is chosen, then it will
transport the request directly to the end terminal. Therefore, there are 26 possible combinations in
total consisting of 2 multi-modal services, 4 direct fixed schedule services, and 20 truck services. A
snippet of possible combinations is presented in Table 5.6.

5.4. Hybrid Simulation-Optimization Verification 38

Those possible combinations are filtered according to on-going disruptions before being processed in
the heuristic model. The combination filtering and mode assignment process using a heuristic model
are presented in Algorithm 6 and Algorithm 7. The on-going disruptionD could be a terminal or a service
line denoted with p, while the set of possible services consists of subsets of service lines combination
c, as shown in the column ”Services” in Table 5.6.

The filtering and the heuristic algorithm are triggered whenever the planning or the replanning is needed.
Using the the available combination, the heuristic model produces a matching plan consisting of old
plan and new plan for each request. In the replanning procedure, these two options will be used for
the RL agent in the later process to choose between reassign the new mode or wait by staying with the
old mode.

Algorithm 6 Combinations Filter
1: Input: Set of ongoing disruption locationD, Set of possible service combination Spc, Set of service
lines K

2: Output: Set of available service combinations Sac

3: Initiate Sac with all possible combination in Spc

4: for each p ∈ D do
5: for each c ∈ Sac do
6: if p is in c then
7: remove c from Sac

8: else
9: if p is not in c then
10: for k ∈ c do
11: if k’s destination is p then remove c from Sac

12: break

Algorithm 7 Heuristic for Matching Problem
1: Input: Request List (could be for planning or replanning) Rplan, Set of possible available combina-
tion Sac

2: Output: Mode assignment k for every r ∈ Rplan

3: for each r ∈ Rplan do
4: Let ar be the request’s release time
5: Initiate an empty list Scc for possible service line combinations
6: Initiate an empty list Kold

r for the current assigned mode (for replanning)
7: Initiate an empty list Knew

r for the suggested mode assignment
8: if r has mode assignment Kr (not empty) then
9: Store Kr as Kold

r

10: for each c ∈ Sac do
11: Let Dtck be the departure time of the first service in list c
12: if ar < Dtck then
13: Knew

r = c
14: break
15: if there is no possible combination that fits then
16: Knew

r = Kold
r

5.4. Hybrid Simulation-Optimization Verification
The verification method of the integration of a replanning module in the simulation together with affected
request detection is different from simulation verification. The additional module is highly related to the
disruption occurrence. Therefore, instead of adjusting parameters, the verification is applied by testing
the model in different random disruption scenarios, by setting a different random seed, and seeing how
it behaves.

5.5. Learning Assisted Model Verification 39

The first verification is performed to evaluate the affected request detection. The random seed is set
to 10 and 11, and a sample of disruption is evaluated from the model output logs. Two random seed
values are required to have all needed disruption samples. The sample disruption is a service disruption
on TerminalB, Train2, and Barge2. Referring back to the network in Figure 4.2, the expected affected
requests for disruption on TerminalB are the ones in Terminal A and are assigned to Barge1. Disruption
in Train2 is expected to affect requests with end destination to TermincalC via Barge1 and Train2. It
affects the requests in TerminalA or on Barge1. Disruption in Barge2 also only affects the request in
TerminalA with the end destination to TerminalD via Barge2.

Table 5.7 presents the result of the verification. The result shows that the algorithm manages to deter-
mine the affected requests accurately as defined in the logic

Table 5.7: Affected Request Detection Verification

No Disruption Location Affected Requests (Model Output)

1
seed=10
Day 15 - 12:45
Disruption at TerminalB

Request 23, Request24. These requests are in TerminalA
and are assigned to Barge1 with one of them destined to
TerminalC and the other to TerminalD

2
seed=10
Day 16 - 10:26
Disruption on Train2

Request13, Request23. Both requests are on board (Barge1)
when the disruption occurs

3
seed=11
Day 2 - 16:37
Disruption on Barge2

Request02, Request04, Request06, Request08, Request10.
These requests are assigned to Barge2 during the weekly planning
and are still waiting at Terminal A

The second step is to verify the heuristic model proposed earlier. The combination filter and heuristic
algorithm are verified together by taking disruption samples from simulating different random seed.
The disruption samples are selected both for single disruption and overlapping disruption. Overlapping
disruption is when a disruption occurs while another disruption in a different location is still going. In
these disruption samples, the replanning results are evaluated whether any of the replanned requests
are assigned to disrupted modes. If none, then the verification is successful. The results are also
compared to the expected reassignment solution space to evaluate if the heuristic algorithm works
according to the designed logic.

For this verification, the random seed is set to 20 and 30 to generate enough variations in the samples.
The results are presented in Table 5.8. The expected results are described in the second column
according to the location of the requests when the disruptions occur and their end destinations. The
model manages to eliminate the disrupted location from the solution space indicated by none of them
in the actual reassignment result. Moreover, the actual reassignment fits the solution space described
in the expected reassignment. This indicates that the heuristic model passes the verification.

5.5. Learning Assisted Model Verification
The last piece of the model is integrating the RL agent into the hybrid simulation-optimization. To
verify if the integration works according to the conceptual logic, the three main functions inside the
algorithm: action generation, reward generation, and action value function updating are evaluated.
Four scenarios are created to cover all the function verification. Within those scenarios, three sub-
scenarios are developed to test the reward generation.

The first scenario is developed to check the action value function updating. The model runs for a
couple of episodes in random seed=0 and is verified if the action value function is updated for the
same disruption in a different episode. The second scenario is to verify the action generation. After the
first scenario, the action value function is already updated and action generation can be evaluated if
RL agent selects an action based on the action value function. The model runs using random seed=0
and each decision made by RL is recorded and evaluated. The third scenario is to test the explorative
actions by adjusting the ϵ value. Finally, the last scenario is to test the reward generation by comparing

5.6. Preliminary Results 40

Table 5.8: Heuristic Model Verification

No Disruption Location Expected Reassignment Actual Reassignment

1

Seed=20
Day 9 - 18:41
Disruption on Barge1
Affected: Request13, 14, 16

Request13 reassigned to
Train1 or Truck to Truck5

Request14 and 16 reassigned to
Barge2 or Truck21 to Truck25

Request13: Train1
Request14: Barge2
Request16: Barge2

2

Seed=20
Day 15 - 21:04
Disruption on Barge2
Affected: Request22, 24

Request22 reassigned to
Barge1 or Truck6 to Truck10

Request24 and 16 reassigned to
Train3 or Truck16 to Truck20

Request22: Barge1
Request24: Train3

3

Seed=20
Day 36 - 17:48
Disruption at TerminalB
Disrupted service lines:
Barge1 and Truck6 to Truck10
Affected: Request51, 52

Request51 reassigned to
Train1 or Truck1 to Truck5

Request52 reassigned to
Barge2 or Truck21 to Truck25

Request51: Train1
Request52: Barge2

4

Seed=30
Day 16 - 07:34
Disruption on Train3 and Train1
Affected: Request25, 29

Request25 reassigned to
Barge1 or Truck1 to Truck5

Request29 reassigned to
Barge1 or Truck1 to Truck5

Request25: Truck3
Request29: Truck2

the output in the logs with manual calculation for 3 three cases elaborated in Chapter 4 section 3.4.4
about the reward generation.

The result presented in Table 5.9 indicates that the model works according to the conceptual logic. The
action and reward generation function shows the same result in comparison with manual calculations.
The action value function also shows updated values after several training episodes.

Table 5.9: Learning Assisted Model Verification

No Description Expected Results Actual Results

1

Model runs for 5 episodes and
Q(s,a) updating is checked for
a specific disruption on a specific
request

Q(s, a) for both reassign
and wait are 0 in the first
episode and change for
every episode

Episode 1:
Q(s,a) wait = 0
Q(s,a) reassign = 0

Episode 5
Q(s,a) wait = -6389.6
Q(s,a) reassign = -4709.35

2 The ϵ value is set to 0.05 and first
30 decisions are evaluated

Take most of the action
based of higher Q(s, a)

30 out of 30 decisions made
according to higher Q(s,a)

3 The ϵ value is set to 0.4 and first
30 decisions are evaluated

Take more explorative
action than ϵ = 0.05

24 out of 30 decision made
according to higher Q(s,a)

4 Compare reward calculation with manual calculation for 3 cases
Case1 Reward for a1 = -6380.64 Reward for a1 = -6380.64
Case2 Reward for a1 = -1704.41 Reward for a1 = -1704.41
Case3 Reward for a1 = -588.66 Reward for a1 = -588.66

Reward for a2 = -485.56 Reward for a2 = -485.56

5.6. Preliminary Results
By embedding the heuristic algorithm, the learning assisted hybrid simulation-optimization is complete.
The time horizon for each simulation is ten weeks. The three possible policies consisting always wait,

5.6. Preliminary Results 41

always reassign, and optimal policy are run using the model. The always wait is a policy without having
a replanning procedure and represents a naive intermodal framework. The always reassign is a policy
that triggers the heuristic algorithm every time a disruption occurs and always accepts the solution.
This represents a naive synchromodal framework without the RL agent. The last policy is by employing
the RL agent to find the optimal policy using ϵ-greedy policy (refer back to Chapter 4). To balance the
exploration and exploitation.

In this verification, the model runs for 100 episodes to train the RL. In the episodic training, the RL
agent applies the ϵ-greedy policy and updates its value function. After the episodic training finishes,
the model runs again for one time with the RL agent, this time, applying a greedy policy. In the greedy
policy, the RL agent always chooses the action with the highest action value. The results of the total
cost of each policy are compared to see how the model performs with different policies. The random
seed is set to 0, therefore each episode has the same disruption occurrences. This simplification is
only used for verification, thus the performance improvement of RL agent could be seen despite the
small number of training episodes.

Table 5.10 presents the result of always wait and always reassign policy. The result shows that in
this particular case, the always reassign policy outperforms the always wait by having around 17%
lower total cost. The preliminary results of these two policies show that the ’always reassign’ policy
manages to reduce the storage cost and delay penalty by taking longer routes indicated by higher travel
costs. Additionally, the different handling cost parameter of barge services with the other two modes
of services also creates lower total handling cost in the ’always reassign’ policy.

Table 5.10: Two Policies Comparison

Always Wait Always Reassign
Total Storage Cost 136,137.55 99,039.67
Total Handling Cost 84,078.00 71,046.00
Total Travel Cost 100,561.85 116,529.37
Total Delay Penalty 77,166.33 42,430.45
Total Cost 397,943.73 329,045.49

Figure 5.1 and 5.2 present the results of the RL agent training throughout 100 episodes of simulation.
Figure 5.1 shows the total reward generated every episode and Figure 5.2 presents the total costs. The
RL agent manages to generatemore reward throughout the training period and indicates a convergence
after around 40 training episodes. Since the reward is the negative cost, the RL agent performs better
if the total rewards are closer to 0.

Figure 5.1: RL Agent Reward Generation

In contrast, the total costs for each training episode in Figure 5.2 shows a decrease over time. This is

5.6. Preliminary Results 42

coherent with the generated reward over the training period. The green dashed line is the total cost of
always wait policy while the red dashed line is the total cost of always reassign policy. The RL agent
outperforms the two other policies way before it reaches convergence.

Figure 5.2: RL Agent Training Result

The result of the model runs with greedy policy along with the comparison with the two other policies
is presented in Figure 5.3. The preliminary results show that the RL agent performs better by keeping
the travel cost lower than always reassign and reducing the delay and storage costs even more, in
this particular case, by having 24% lower total cost compared to always reassign policy. Given the
parameters and disruption cases in this verification, it is important to note that the better performance
of always reassign over always wait policy does not imply the superiority of one policy over the other
in all cases. A different sequence of disruptions may result in a different outcome. As for the learning-
assisted model, it is expected to always perform better, or at least mimic the performance of the best
policy between the other two. This result is yet to be seen and proven in the numerical experiment with
a larger network and larger shipment numbers.

Figure 5.3: Total Cost Comparison (Verification)

The total costs between the three policies are compared in more detail presented by Figure 5.4. Each

5.6. Preliminary Results 43

Figure 5.4: Shipment Cost Comparison

bar shows the cost for each shipment for different policies characterized by different colors. The chart
only includes shipments that are affected by the disruption therefore having different across different
policies. The chart shows that the RL agent, in most cases, effectively selects the action—either wait
or reassign—that results in the lowest cost. In some cases, the greedy policy does not yield the lowest
cost. Take the example of request 73, the wait policy generates much lower shipment costs. This
might happen due to capacity restriction of the service line. Since the current model does not consider
capacity, each action taken for a different shipment can cause capacity problems on other shipments,
thus, that shipment needs to wait for the next departure of the service.

6
Case Study

This chapter discusses the implementation of the proposed model using a larger demand dataset and
a more complex network using a real-world data. On top of that, a more sophisticated optimization
model is plugged into the optimization module, replacing the FIFO heuristic model, to provide more
cost-effective matching solutions and capable of handling larger networks. Furthermore, a numerical
experiment is conducted to perform a sensitivity analysis using the complete model.

6.1. Case Study Input
For the case study, the service network uses a real port-hinterland network, with synthetically gen-
erated request datasets ensuring well-distributed values. The cost parameters and disruption profile
remain the same with those used during the model verification in Chapter 5. The service network is
adapted from the European Gateway Services (EGS) network, now known as Hutchinson Ports Europe
Intermodal (HPEI). This network connects the Hutchinson Ports ECT in the Port of Rotterdam to inland
terminals in the Netherlands, Belgium, and Germany through the Rhine-Alpine corridor. The details of
the network, including distances between terminals and the service schedule, are derived from a study
by Zhang et al. (2023).

The network comprises 10 terminals, with 3 of them located in the Port of Rotterdam and the rest
scattered across inland terminals. It includes 49 barges, 33 trains, and 34 truck service lines operating
between these terminals. The network is illustrated in Figure 6.1. Each service line represents one
origin and one destination with a unique departure time each week. Some connections have multiple
lines for the same mode of service from the same origin-destination pair but with different departure
times, indicating service frequency. As explained in Chapter 4, each service line only serves two nodes,
with no modes providing multiple stops at different terminals. While truck services have one line for
each origin-destination pair, it is assumed that truck service capacity is unlimited and can accommodate
multiple departures as per assigned requests. The carrying capacities of barge and train services are
160 TEU and 90 TEU, respectively. Travel speeds are 15 km/hour for barges, 45 km/hour for trains,
and 75 km/hour for truck services. The distances between terminals vary for each service mode. All
datasets used in this case study can be found in the Appendix C.

Requests are generated randomly according to the service capacity proportion of each origin-destination
pair. For instance, the number of services connecting Delta to Nuremberg is much higher than those
connecting Delta to Willebroek, so the request volume from Delta to Nuremberg is proportionally higher.
Requests are announced in batches, each consisting of multiple shipment requests. The announce-
ment time for each batch is set to the 6th day of each week, except for the first batch, which is announced
on the first day of simulation. Since this thesis focuses on cargo flow from themain port to the hinterland,
only three terminals in the Port of Rotterdam (Delta, Euromax, and HOME) are considered as origins,
with the other seven being destination terminals. Release times are generated randomly between 0 to
4 days after the announcement time, while due times are selected randomly between 2 to 7 days after
the release time. Shipment volumes range from 5 to 30 TEUs. For the default scenario, 800 requests

44

6.2. Optimization Model Plug-In 45

Figure 6.1: EGS Service Network
source: (Zhang et al., 2023)

are generated and announced proportionally over 12 weeks. This default demand scenario is used to
train the RL agent.

6.2. Optimization Model Plug-In
For the case study, a matching problem optimization algorithm inspired from Filom and Razavi (2023)
and Guo et al. (2021) is integrated as a plug-in to the optimization module, replacing the naive heuris-
tic algorithm in Chapter 5. The model is originally designed as a learning-based robust optimization
consisting of a prediction module and a decision module. The prediction module is used to derive
uncertainty sets for road travel time. The uncertainty sets then are fed to the downstream robust op-
timization model in the decision module. Based on uncertainty sets, the robust reformulation is done
to convert the robust optimization model to a deterministic model which is solved by mathematical
solvers. However, from this comprehensive framework, only a fragment of the decision module, the de-
terministic optimization model, is plugged into the optimization module of the learning-assisted hybrid
simulation-optimization, illustrated in Figure 6.2.

The inputs of the optimization model are shipment requests and service lines. It uses a path-based ap-
proach and employs a preprocessing algorithm to generate paths from available service lines to reduce
the computational burden within the optimization model. The path generation algorithm consists of all
possible services that satisfy the spatiotemporal requirements and transshipment feasibility. These
paths are essentially the same idea as ”arc combinations” used as input in the heuristic model (Chap-
ter 5). The difference is that the arc combinations in the previous heuristic model are pre-determined
manually, while in this optimization model, a pre-processing algorithm is constructed, allowing more
scalable and versatile utilization.

The path is generated according to each service line’s departure and arrival time and each path is
attributed with all the cost components including the transshipment and storage costs if any. The cost
calculation of each path considers all the modes of service within the path. If there are two modes of
service in one path, then the travel cost is the total of those two modes’ travel costs given the travel
distance and time in the path. Since the departure and arrival time is known, the storage time is
calculated according to the service schedule of the mode of service in the path used for calculating the
path storage cost. For the truck service, the storage time is always 1 hour because of the assumption
that the truck is always available 2.5 hours after the assigned request is released and has a 1.5-hour
time window used for handling within those 2.5 hours. The path capacity is determined based on the

6.2. Optimization Model Plug-In 46

smallest service line’s capacity within one path. For instance, if a path consists of a barge and a train,
the path capacity is 90 TEU because the train capacity is 90 TEU and it is smaller than the barge
capacity. By limiting the maximum number of arcs within one path to three, from the total 82 fixed
schedule services and 34 truck lines, the algorithm generates 796 possible paths in the network.

Figure 6.2: Integration with an Existing Optimization Model

The objective of the optimization model is to minimize the total transport cost including travel, trans-
shipment, storage delay, canal, handling, and emission. This model was originally designed using a
case study in Great Lakes, Canada, therefore there is a canal cost that applies to that context. The
objective function is adjusted to fit the model with the context of the case study in this thesis. The canal
cost and emission cost are eliminated from the objective function resulting in the equation presented
in Equation 6.1.

The deterministic mathematical formulation of the problem is presented as follows:

min
xt,yt

(∑
r∈R

vr(1− yt) +
∑
r∈R

∑
s∈S

csx
t
rsur +

∑
r∈R

∑
s∈S

cTrix
t
rsur +

∑
r∈R

∑
i∈I

cSi x
t
rsS̃

s
riur

+
∑
r∈R

cDr d̃rri +
∑
r∈R

cLriur

) (6.1)

The objective function in Equation 6.1 attempts to maximize the number of matches and minimize the
total transportation cost which includes six terms: the first term enforces the model to match shipment
requests as many as possible. The second term determines the transportation cost, the third term
denotes the transshipment cost, the fourth term accounts for storage cost, the fifth term shows the
delay penalty costs, and the final term represents the loading/unloading cost. The mathematical model
works according to 22 constraints as presented in B.

The optimization model is designed to work using a rolling horizon approach to cover the dynamics
of requests’ announcement time and match all the requests with the same announcement time to the
possible paths. Each decision making process for each announcement time is called a decision epoch.
After each decision epoch, the optimization model updates the free capacity of the paths according to
the matching decision. This updated free capacity is used in the next decision epoch, therefore captur-
ing the effect of each decision epoch on the capacity. The discrete time step used in this model is an
hour and with each time step the optimization model fetches the announced demand. The time horizon
of the whole rolling horizon only covers one departure and does not simulate a recurring operation,
therefore neglecting the possibility that unmatched requests can be covered in the next departure of
the same path.

By integrating the optimization model into the optimization module, the planning process will generate
shipment plans that minimize costs. As a result, the initial plan derived from offline planning will have a
lower cost compared to the heuristic algorithm used in Chapter 5. This leads to a different performance
for the always wait policy. Since the heuristic algorithm does not offer the optimal solution, the always
wait policy performs poorly in verification. However, integrating this optimization model is expected to
enhance the performance of the always wait policy.

6.3. Model Integration 47

6.3. Model Integration
Even though from the conceptual perspective, the optimization model is compatible with the optimiza-
tion module plug-in, there are some adjustments needed for the integration. The adjustments are
required to address the following differences between the two frameworks.

1. Different assumption in truck service. The hybrid simulation-optimization considers unlimited ca-
pacity and availability of trucks while it is limited in the plug-in model.

2. The plug-in model updates the path capacity after each hourly-based decision epoch, while the
demand in the hybrid simulation-optimization is captured on a weekly basis.

3. The plug-in model hasmuch less running time sensitivity compared to the learning-assisted hybrid
simulation-optimization which needs a quick runtime for learning agent episodic training.

6.3.1. Adjustment in Path Generation Algorithm
The first adjustment in the integration part is in the path algorithm. In the plug-in model, the path
generation algorithm considers a scenario-based truck service and affects the combination of service
lines in generating the paths. The truck service also affects the path capacity due to the limited capacity.
In the integration, the truck is always available whenever any requests are assigned to a truck service,
therefore every path has an additional path by replacing one of the service lines in the path with a
truck service as long as a truck service line is available in that specific origin-destination pair. Since
the capacity of the path is based on the smallest capacity of service mode in the path, the inclusion of
truck services with unlimited capacity does not affect the capacity.

6.3.2. Adjustment in Capacity Updating
The second adjustment is to address the capacity updating problem. In the plug-in model, because
it works on path-based approach, the matching between one request to a certain path can affect the
free capacity of other paths that consist the same service line. For instance, if a request is assigned
to path1 consisting of Barge1 and Train2, this request will also consume the free capacity of the other
paths that have Barge1 and Train2 within it. Therefore, a capacity updating is needed. The capacity
is updated after each decision epoch, meaning the capacity is updated hourly. It works in the plug-in
model because the total volume of demand announced hourly is less likely to exceed the free capacity.

In the hybrid simulation-optimization model, the planning module is triggered weekly capturing all the
demand announced in the previous week and all the unmatched demand from the previous planning
epoch and recovering each path capacity after delivering goods to the destination terminal. If the
approach from the plug-in model is not adjusted, the path capacity is updated only after the planning
process each week is done and it will result in a capacity constraint violation because of the huge
volume of total demand throughout 1 week and fetched in one decision epoch. All requests might be
assigned by respecting the free capacity of each path at the beginning of the planning phase, but it does
not consider the capacity reduction due to the assignment to the same service line from a different path
during the matching process.

The adjustment is done by modifying the rolling horizon approach. First, the function of the original
rolling horizon is removed, making the plug-in model static. Then, it is triggered only during the planning
and replanning phase. During the planning process, all the requests announced in the previous week
are populated and passed as one input to the optimization module. From the perspective of the plug-in
model, referring to its original algorithm, the requests are considered to have the same announcement
time and it is the time when the optimization module is triggered. However, to address the capacity
updating problem, the rolling horizon approach is needed. This time, a dummy announcement time
is embedded in each request. The first request in the list will have an announcement time equal to
one, while the request number n will have an announcement time equal to n. This modification in the
rolling horizon algorithm will make the plug-in model match the requests one by one and update the free
capacity of paths after each request matching. This means that one decision epoch is only providing a
matching solution for one request.

6.3. Model Integration 48

6.3.3. Addressing the Run-Time Problem
In the model with a heuristic algorithm plugged into the optimization module, it takes a very short time
to finish one training episode. It takes around 2 hours to have a 20000 episodic training. in contrast,
by integrating an optimization algorithm, with the given input, the integrated model needs around 6
to 7 minutes to complete one episode. This is mainly because the optimization algorithm has much
heavier computational work compared to the heuristic algorithm used during verification (Chapter 5.
Additionally, the scale of the network and the number of instances used in this case study is larger.
With the 6-minute run-time, it is impossible to give the RL agent a sufficient number of episodic training
to see its improved performance. Therefore, adjustment is required to decrease the solution time.

It is identified that the main bottleneck of the long run-time is the solution time of the optimization
model. Each time the simulation module triggers the optimization module, it takes time to generate
matching solutions for each request. The planning phase takes longer than the replanning because in
the planning the number of requests to consider is much larger compared to affected requests as input
in the replanning phase. Therefore, the first modification is to separate the planning process from the
episodic training. The optimization algorithm is run separately before starting the episodic training and
matches all the 800 instances at one time. The matching results are then attached to each request
in the input, so, instead of having an empty list of assigned mode k, each request has an itinerary in
the shipment input table for the simulation. Without having the separation of the planning process, the
simulation triggers the optimization module every week in every episode and always gets the same
matching results. This separation approach saves all the unnecessary computational burden that only
offers the same matching results.

To perform this separation, a modification in the optimization model needs to be made. The current
rolling horizon does not consider a recurring process of a service, while in the simulation, the service is
available for the next week after each departure. The modification is made by tweaking the algorithm
so the departure time in the path database is updated if an announcement time of the shipment in the
input is later than the service departure time. To anticipate any unmatched shipment, the simulation
still triggers the optimization module but only passes the requests that do not yet have itineraries with
them. This way, the computational burden during the planning phases can be significantly reduced.

The next bottleneck is in the replanning process. The computational burden in the replanning phase
could vary depending on the number of affected requests. A modification is made to reduce the number
of optimization algorithm triggers during the replanning process. It is by providing a solution pool con-
sisting of K-best solutions for each shipment during the planning process. Instead of providing only one
solution during the planning phase, the optimization algorithm generates multiple solutions consisting
of a second, third best solution up to ten solutions in the pool. These solutions are used during the re-
planning process as backup itineraries. The simulation algorithm will eliminate the disrupted itineraries
and take the best from the remaining solutions. Whenever a shipment departs from one terminal, it also
eliminates other solutions that use different routes from that terminal. The optimization algorithm could
still be triggered in the replanning process if there are shipments with no remaining backup itineraries
in the solution pool. This approach could reduce the number of triggers during the replanning and
ultimately reduce the runtime. However, it could also create suboptimal solutions since it does not
consider all the constraints in the real-time. This will be a subject of analysis of the optimality gap in
the later section by comparing the model using the default approach which triggers the optimization
algorithm whenever is needed.

The solutions pool approach reduces run-time but introduces a risk where reassigning requests could
consume the capacity of undisrupted shipments. For instance, if two disrupted requests, each with 20
containers, are both reassigned to Barge1 from the second-best solution in the pool, and Barge1 only
has 30 units of free capacity, an issue arises. An undisrupted request originally scheduled for Barge1
might not be loaded due to the capacity limit, causing it to miss its departure and wait for the next
one. This issue, present in the previous model due to the heuristic algorithm’s disregard for capacity
constraints, was supposed to be solved by the optimization model that considers these constraints.
However, it re-emerges with the solution pool approach.

This problem is significant because the reinforcement learning (RL) algorithm cannot account for the
additional costs incurred from undisrupted requests missing their departures. To address this, an al-

6.4. Model Training 49

Figure 6.3: Loading Sequence Regulation

gorithm was developed to regulate the loading sequence by prioritizing undisrupted requests. This
ensures that only reassigned requests might miss the departure due to capacity issues. The extra
costs from these delays penalize the RL agent, providing valuable experience to guide future deci-
sions. The illustration of this is presented in Figure 6.3. The summary of the model adjustment for
integration work is presented in Table 6.1.

Table 6.1: Adjustments for Model Integration

Before Adjustment After Adjustment

Path Generation Algorithm Scenario based truck service Flexible truck service, adding more
combination of mode in the path database

Capacity Updating
Update the free capacity for every
decision epoch (could include multiple
requests in one decision epoch

Update the free capacity for every one
request matching decision

Planning Process Triggered every one planning interval
(one week in simulation)

Provide all the itineraries for all requests in
advance and use the matching solutions in
every start of new episodic trainig as input

Replanning Process Triggered every time there is an
affected request

Create a solution pool during the planning
process, and take the next best solution for
the affected request

Loading Sequencing Unregulated loading sequence Prioritizing non-disrupted request

6.4. Model Training
The first step in evaluating the performance of the model is to train the RL agent. The default demand
scenario consisting of 800 requests is used and the requests are distributed across 12 weeks period
making it announced around 70 requests each week. To generate the path, the travel cost for each
service line must be calculated. With all the properties of each service line and two parameters of travel
cost comprising the time-related and distance-related cost, the total travel cost for each service line can
be calculated.

The simulation is set to have a 14-week duration to make sure all the requests are delivered in case
some of them have long delays resulting in more representative results for all delivery processes. Each
episode of training has a different random seed to ensure different disruptions. In the training, only the
service disruption is included, because the demand disruption does not trigger the RL agent (refer back
to discussion in Section 4.2.2). Finally, the model is set to have 50,000 training episodes.

6.4.1. Initial Training Result
After running for over 8,300 training episodes, which took approximately 70 hours, the model was
evaluated to ensure the training was progressing as intended before continuing with additional episodic

6.4. Model Training 50

(a) Total Cost - Episodic Training (b) Total Reward - Episodic Training

Figure 6.4: Episodic Training Result

training. Figure 6.4 illustrates the RL agent’s performance improvement over the training period. To
reveal the underlying trend and remove the noise, the rolling mean technique is applied to the data
with 400 episode window size. Chart 6.4a displays the total cost per episode, where a lower cost
indicates better performance. In contrast, chart 6.4b shows the reward per episode, with higher rewards
signifying better performance. Over the course of 8,300 training episodes, the RL agent demonstrates
a downward trend in total cost and an upward trend in rewards, indicating that it is learning to take
better actions based on its experience from previous episodes.

The performance of the trained RL agent is tested through a greedy policy against the two designated
naive policies discussed in Chapter 5: ”always wait” and ”always reassign”. The performance is evalu-
ated through 5 different disruption datasets. The first one uses the default disruption dataset, the rest
are designed to have a higher occurrence probability to apply more disruptions in the network. Figure
6.5 presents the total cost comparison for each policy in each disruption set. D1 to D5 represent the
disruption sets where D1 has the less frequent occurrence probability and D5 with more disruptions.

Figure 6.5: Performance Comparison

6.4. Model Training 51

6.4.2. Initial Findings
From this result, it appears that the RL agent’s greedy policy does not generate the lowest costs in
all scenarios. However, it still outperforms the always reassign policy. On this basis, a more thorough
investigation was carried out to get a better conclusion. The simulation provides the logs of events,
and within it, action values in each RL’s decision epoch are recorded. In the default scenario, out of 57
actions taken in response to disruptions, 45 were in states the RL agent encountered rarely or never
before. When the agent has only experienced a state once, it has only tried one action (either waiting
or reassigning) and has no knowledge about the alternative option, indicated with action values equal
to 0. This limitation contributes to the RL agent’s performance being inferior to the always wait policy.

Another finding is that the always wait policy outperforms other policies because most disruptions do
not cause delays in the network, especially those involving service lines. Considering the operational
time window from when a service line is available at the origin terminal to its arrival at the destination
terminal, most disruptions occur during non-operational times and thus do not cause delays in the
network. For instance, if a barge is available for loading at 01:30, departs at 03:30, and arrives at the
destination terminal at 21:00, the operational time is about 22 hours, with the rest of the week being
non-operational. Therefore, disruptions typically happen during non-operational times and do not cause
delays. Although some terminal disruptions may result in late arrivals and missed departures, this is
infrequent. Consequently, the RL agent has limited opportunities to demonstrate improvements in
handling disruptions. Nonetheless, it is also important for the RL agent to learn to take wait actions
when disruptions do not cause delays. However, the agent fails to do so due to insufficient experience.

6.4.3. Improvement for Episodic Training

Figure 6.6: Disruption Cases in Service Line

To enhance the quality of training, the disruption scenarios need to be modified. From the input side, it
has been observed that several service lines are never utilized throughout the simulation. This could
be due to an imbalance between supply and demand or synchronization issues caused by limitations
in the service schedule dataset. Furthermore, it is crucial to understand how disruptions occur in the
simulation and their effects on requests, especially for disruptions in the service lines. Figure 6.6 illus-
trates an example of a disruption in one service line, along with its impact on the requests within the
simulation. Generally, there are three types of disruptions:

1. Case 1 - Non-operational Time Disruption: This occurs during non-operational hours. While
some requests might be affected because the service line is part of their itinerary, it is unlikely
to cause delays unless the disruption happens right before departure and lasts long enough to
delay the departure.

2. Case 2 - In-transit Disruption: This occurs between the loading at the origin and unloading at the
destination terminal. This causes delays to the shipment already on board, but these shipments
cannot alter their itinerary as they are already in transit. Therefore, they are excluded from the
affected requests (refer to Section 4.3.1). The requests affected are those assigned to this service
for the next departure. However, since the disruption is unlikely to last a week, it generally does
not create delays for these requests.

6.4. Model Training 52

3. Case 3 - Pre-loading Disruption: This occurs before shipments are loaded onto the service.
This can cause delays in departure from or arrival at the origin. In this scenario, requests might
be affected, and rerouting to a new itinerary could be an option.

From the above elaboration, it is clear that case 3 is more critical compared to the other two in deter-
mining the RL agent’s performance. By exposing more disruptions of case 3 in the training process,
the RL will learn to choose better action between reassigning and waiting depending on the type and
duration of the disruption. On this basis, there are 2 main modifications applied to the model.

First, the disruption generator will prioritize applying disruptions within a smaller time window of the
simulation horizon. Instead of considering all the service lines in the network, the disruption generator
will focus on those within the operating time window. This approach significantly reduces the number
of potential disruption locations. Figure 6.7 illustrates the operational time window over a week. The
blue bars indicate operational time windows of service lines, while the rest represent non-operational
times. The procedure for applying disruptions begins by sampling a start time t (red dashed line) for
the disruption. Previously, the generator considered all the service lines at time t, while now, only the
blue bars (operational times) at time t are considered to get disrupted indicated by yellow x marks in
the figure.

Figure 6.7: Service Lines Operational Time Window

Second, the size of the requests is reduced to decrease the computational burden and allow easier
investigation. This approach is expected to ensure that more significant disruptions are exposed to the
RL agent. In addition, for the training, the occurrence rate and range of duration of each disruption
profile are increased to expose the RL agent to more disruptions, ensuring more efficient training as
presented in Table 6.2.

6.4.4. Model Re-Training
After the disruption algorithm is modified to expose the RL agent to more impactful disruptions, the RL
agent is run through episodic training again. This time the number of instances used in the training

6.5. Results and Numerical Experiment 53

Table 6.2: Modified Service Disruption Profile

Profile Description Mode/
Location

Effect in the
Simulation Duration Capacity

Reduction
Occurrence

Rate

1 Operational delays, road congestions Train,
Truck Delay 3-6h 0% 0.00063

2 Operational delays, canal congestion Barge Delay 3-9h 0% 0.00072

3 Bad weather, labor strike, accident,
systems maintenance

Train,
Barge Delay 12-48h 0% 0.00012

4 Terminal congestion, operational
delays Terminal Delay 3-6h 0% 0.00063

5 High and low water level Barge
Carrying
capacity
reduction

12-24h 15-20% 0.00012

is only 200 shipments announced for 3 week period. The simulation horizon is reduced to 5 weeks
with the smaller service schedule in the input. The model is trained for 50,000 Episodes, and for every
1,000 episodes, the action value function in the form of Q-table is extracted to be used in the result
analysis.

Figure 6.8 presents the result of the training over 50,000 episodes with the rolling mean applied using
a 2,500-episode window. The trend shows that the cost and the reward start converging by starting to
show a flat trend. After the model completes around 10,000 training episodes, both the improvement
in mean total costs and rewards are not as significant as in the early training stage. Nonetheless, the
training continues to expose the RL agent with more experiences, thus, resulting in a resilient model to
react to various disruption scenarios.

(a) Total Cost - Episodic Training (b) Total Reward - Episodic Training

Figure 6.8: Episodic Training for 50000 Episodes

6.5. Results and Numerical Experiment
6.5.1. Default Case Result
After the episodic training is completed, the RL agent performance is compared with the benchmark
policies (always wait and always reassign). The performance comparison is performed by simulating
each policy through multiple episodes with randomized disruption. Instead of sampling one case, the
evaluation through multiple episodes can show how each policy responds to different cases of scenar-
ios, thus, providing more insightful information about the resilience of the policy. In this experiment,
the greedy policy (learning-assisted) is simulated seven times using different Q-table extracted from
different amounts of training episodes ranging from 1,000 to 50,000 training episodes. The disruption
profile set used in this evaluation is the same as the ones used in the training. Each policy is simulated
20 times and plotted using a box plot presented in Figure 6.9.

Figure 6.9 shows the total costs of each policy. GP{NUMBER} indicates the greedy policy with the

6.5. Results and Numerical Experiment 54

Figure 6.9: Policy Comparison (Multiple Cases)

number of training when the Q-table is extracted. On one hand, always wait policy significantly outper-
forms always reassign policy with the given disruption profile set. However, it shows some outliers with
high costs in 4 cases indicating unstable performance. On the other hand, the greedy policy shows
improvement along with the number of training and outperforms the always wait policy in some cases.
In the beginning, the greedy policy shows unstable performance indicated by the high variance of to-
tal costs. The performance is getting stable as the training episodes increase. Additionally, the total
cost average of the greedy policy keeps decreasing along with more completed training episodes. At
50,000 training episodes, the greedy policy manages to have a lower mean of total costs compared to
the always wait policy.

Although showing the improvement relative to the benchmark policy, the chart does not clearly show
how the learning-assisted model performs. To see this, the investigation is taken into more detail by
comparing each episode. In this evaluation, the always reassign policy is excluded since it was clearly
outperformed in Figure 6.9. With the same disruption profile set, the total cost in each episode is
compared between greedy policy using the Q-table after 50,000 episodes and always wait policy. The
result is presented in Figure 6.10

Figure 6.10: Comparison Between Always Wait and Greedy Policy in Episodic Simulations

The blue bars and orange bars represent the total cost of each policy respectively. The lower cost
indicates a better performance of one policy over the other. The red dashed line is the total cost of

6.5. Results and Numerical Experiment 55

a non-disrupted scenario. It is interesting that in a few cases, such as case C20, the total cost of a
disrupted scenario appears lower than the non-disrupted. This happens because of several unique
cases. For instance, in case C20, one request is planned in the first week to take service in the week
after because its release time is slightly more than the departure time of the service mode in the first
week. However, because of the delay in the departure time of the service, the shipment can be loaded
to the assigned service in the first week, thus, resulting in lower storage costs.

The chart reveals that in only 4 out of 20 simulations, the always wait policy incurs lower total costs
compared to the greedy policy. Among these 4 simulations, C3 exhibits an insignificant difference. This
suggests that with the same disruption profile used for training, the greedy policy generally makes bet-
ter decisions in response to disruptions with 80% of cases the greedy policy yields better performance.
In these 20 sample cases, the cost savings by the greedy policy range from 0.08% to 15.96%. If the
calculation only considers the affected requests, the highest savings from greedy policy over bench-
mark policy reaches 35,7%. The amount of savings depends on the severity of delays caused by the
disruptions in the network. However, a closer examination at the action level shows instances where
the greedy policy makes worse decisions than the always wait policy.

(a) Case C7 (b) Case C17

Figure 6.11: Cost Comparison per Shipment

Further investigation is conducted into case 7 (C7), where the greedy policy results in higher total
costs. Each request with different total costs is compared between the two policies, with the results
presented in Figure 6.11a. The chart shows the cost difference between shipments delivered by the
greedy policy and the always wait policy. Negative values (green bars) indicate that the greedy policy
generates lower costs, while positive values (red bars) indicate higher total costs. The solid blue lines,
with reference to the right side y-axes, indicate the number of actions taken for each shipment. The
chart highlights that the greedy policy yields a significantly higher cost for request 128. This correlates
with the number of actions taken for these requests.

The Q-learning technique updates each action value in a given state by considering the reward and the
discounted future state, as explained in Equation 4.17. This method captures stochastic behavior by
updating the action value function after visiting a certain state. If a state occurs frequently, the action
value will continuously update until it converges. Conversely, if a state is rarely visited, the action
value function remains less updated according to the rewards from this state. In the case of Requests
128, the number of actions (blue line) reflects how often the shipments are affected by disruptions.
These requests are disrupted multiple times, and such multiple disruptions, especially up to five in
one shipment, are rare in the training set given the disruption profile. Consequently, the action value
function suggests taking immediate actions without anticipating future disruptions, as the model has
not frequently encountered such scenarios during training.

In contrast, the case C17 where the greedy policy outperforms the always wait policy, there is no case
where the shipment is disrupted multiple times. Figure 6.11b presents the shipment cost difference for
case C17 and the blue lines show that all disrupted shipments only take 1 action meaning they are only
disrupted once, resulting in overall better performance of the greedy policy.

Another observation is made to see how the decision made by the RL agent relates to each cost

6.5. Results and Numerical Experiment 56

component (Storage, Travel, Handling, and Delay). From the same case, each cost component is
compared between 2 policies as presented in Figure 6.12. The y-axis scale is set to be the same with
each tick representing 50,000 Euro to give easier comparison across different cost components. The
scaling ignores case C16 since it is an extreme case with a significantly higher cost.

(a) Storage Cost Comparison (b) Travel Cost Comparison

(c) Handling Cost Comparison (d) Delay Penalty Comparison

Figure 6.12: Cost Element Comparison

The result shows that greedy policy tends to take the option with higher travel cost, indicated by Figure
6.12b, to reduce the storage cost and delay penalty as shown in Figure 6.12a and Figure 6.12d. Mean-
while, handling costs are not really affected by different policies. It is essential to understand that this
tradeoff behavior is a result of the given cost parameters as it is directly linked to the reward system.
The tradeoff behavior might change if the cost parameters used for the training are different

The current approach of the greedy policy involves selecting an itinerary from the solution pool for
reassignment, and only triggers the optimization algorithm if there is no possible solution found in the
solution pool. This method is compared to consistently triggering the optimization (always optimize)
module during replanning. Figure 6.13 illustrates the comparison results. The cyan bars represent
the total cost of always triggering the optimization module. The results indicate that the greedy policy
using the solution pool generally performs better. This is because, in the always optimize case, the
optimization module generates several solutions during replanning that are different from the solution
pool given the real-time information and they are not explored during the training. Ultimately, this leads
to suboptimal decision-making. However, in some cases such as case 14 (C14) and case (C10), the
always optimize policy yields lower total costs. Further investigation reveals that the optimization model
generates several solutions distinct from the solution pool that results in lower costs. This suggests
that the solutions provided by the optimization module during replanning could potentially yield better
performance if selected correctly.

6.5.2. Experiment on Different Disruption Sets
The second experiment is to evaluate the model that has completed 50,000 training episodes with
different disruption scenarios and compare the performance with the benchmark policies. To perform

6.5. Results and Numerical Experiment 57

Figure 6.13: Comparison Between Solution Pool Approach and Always Optimize in Episodic Simulations

the experiment and deduce the change of behavior across different types of disruption, sets of disruption
profiles are established and presented in Table 6.3. The disruption on trucks is omitted from profile1
due to technical reasons while it also hardly affects the network. The durations of the low severity
profile (Profile1, Profile2, and Profile4) are the same as the disruption set used during the training.
The disruption sets are characterized by different occurrence rates. S1 is scenario 1 with the lowest
occurrence rate with the same values with the disruption set before modified as presented in Chapter
4. The occurrence rate keeps increasing two times for each disruption set until the set S5 with an
extremely frequent occurrence rate. To put it in context, the occurrence rate of the default disruption
set used in the training is between S2 and S3. The result of the second experiment is presented in
Figure 6.14

Table 6.3: Disruption Scenarios

Profile Severity Location Impact Type LB Duration UB Duration Occurrence Rate (Lambda)
S1 S2 S3 S4 S5

Profile1 Low Train Delay 3 6 0.00021 0.00042 0.00084 0.00168 0.00336
Profile2 Low Barge Delay 3 9 0.00024 0.00048 0.00096 0.00192 0.00384
Profile3 High Train, Barge Delay 12 48 0.00004 0.00008 0.00016 0.00032 0.00064
Profile4 Low Terminal Delay 3 6 0.00021 0.00042 0.00084 0.00168 0.00336

Profile5 Low Barge
Capacity
reduction

12 24 0.00004 0.00008 0.00016 0.00032 0.00064

The experimental setup is nearly the same as the first experiment. The model is simulated 20 times for
each disruption set and policy. The total cost of each simulation is shown in Figure 6.14. The greedy
policy is plotted in blue colors while the always wait policy is in orange colors. The first notable finding
is that changes in the disruption occurrence rate affect the total costs, especially in S4 and S5. As
disruption frequency increases, so do the total costs, as indicated by the ascending trendline.

An interesting observation is that the learning-assisted model performs best under disruption scenar-
ios S2 and S3. However, its performance declines compared to the benchmark policy as disruption
frequency increases. Although the greedy policy shows more stable performance, indicated by fewer
outliers, many cases yield higher costs compared to the always wait policy as the disruption frequency
increases. This decline is due to differences between the probability distributions in this experiment
and those used during episodic training. S2 and S3 are most similar to the distributions used in training,
allowing the greedy policy to perform well in these cases.

In the less frequent disruptions, the greedy policy has almost the same performance as the benchmark
policy. This is because the fewer disruptions in the network, the closer the always wait policy with the

6.5. Results and Numerical Experiment 58

Figure 6.14: Total Costs for Different Disruption Sets

Figure 6.15: Aggregated Costs Comparison

optimal policy. This is also indicated by the fact that only 64 times the RL agent is triggered in total
throughout 20 simulations. In contrast, the RL agent is triggered 219 times in the default disruption set.

This finding is also indicated by the aggregated costs presented in Figure 6.15. The figure presents the
total costs throughout the 20 simulations for each disruption set. It provides the overall performance
of the policy. The chart shows that across all disruption sets, the total costs generated by the greedy
policy are lower than the always wait policy. In particular, the cost gap in S2 and S3 is larger compared
to the other disruption sets.

To see the comparison more clearly, the cost comparison in each disruption set is investigated. The
result is presented in Figure 6.16. The 5 charts indicate that as the disruption frequency increases,
the performance gets more unstable. The observation indicates that even though the greedy policy
shows an overall poorer performance in disruption sets with more than 2 times the occurrence rate of
the default scenario (S4 and S5), it can still avoid the cost getting extremely high. Meanwhile, there
are a few cases where the always wait policy yields a significantly high cost such as C1 in disruption
set S3 and C8, C10, and C17 in disruption set S5.

Despite overall better performance in the aggregated total costs, the data demonstrates that the greedy
policy outperforms the benchmark policy only in scenarios S2 and S3 based on the number of simu-
lations where it achieves better results. Specifically, Figure 6.17 summarizes the performance across
various disruption sets. As explained earlier, in disruption set S1, the greedy policy is outperformed by

6.5. Results and Numerical Experiment 59

the always wait because in the lower disruption frequency, the always wait policy is getting closer to
the optimal solutions. A thorough investigation reveals there are several unstable values, again due to
the stochastic environment.

(a) Disruption (S1) (b) Disruption (S2)

(c) Disruption (S3) (d) Disruption (S4)

(e) Disruption (S5)

Figure 6.16: Sensitivity Analysis with Different Disruption Occurrence Probability

One sample is investigated in case 1 (C1) of disruption set S1. It is found that one request takes
a reassign action from Barge-Train to Barge-Barge-Train. A detailed comparison shows that before
taking the action, the value function indicates that reassign has a better value than wait. However, after
taking the reassign action and updating the value function, the updated value of the reassign action
becomes worse compared to wait. This could be caused by multiple disruptions occurring after the wait
action during training, which alters the value function.

In disruption sets S2 and S3, the greedy policy performs better in 13 and 16 out of 20 simulations,
respectively. This indicates that the greedy policy is more effective approximately 65% to 80% of the

6.5. Results and Numerical Experiment 60

Figure 6.17: Performance Comparison by Number of Cases

time when the probability distribution closely resembles the episodic training. Meanwhile, in disruption
sets S4 and S5, the greedy policy performance is declining due to many disruptions in the network
creating more multiple disruptions for one shipment.

The next experiment on the disruption set is to simulate the model through 2 distinct scenarios: Short
delay disruptions and severe delay disruptions. For the short delay, the disruption profile4 is omitted
from the disruption set, while the severe delay only includes the disruption profile4. The occurrence
rate used in this experiment is the same as the default case in the episodic training. However, to apply
enough disruption, the probability occurrence for severe disruption set is slightly increased to the same
level as in disruption set S3 from the previous experiment to apply more disruption but still keeping the
distribution closer to the one used in the training. The result of this experiment is presented in Figure
6.18

(a) Total Cost - Short Delays (b) Total Cost - Severe Delays

(c) Action Proportion - Short Delays (d) Action Proportion - Severe Delays

Figure 6.18: Short and Sever Delays Experiment

6.5. Results and Numerical Experiment 61

The two charts on the left represent the result of applying short delays while the charts on the right
show the result of applying severe delays. Figure 6.18a shows that the disruptions create many delays
indicated by only one case with the same total cost (C3). This is possible due to the high disruption
occurrence rate. However, the low severity of the disruption makes the optimal solution closer to the
always wait policy. The poor performance of the RL in some cases, again, is caused by multiple
disruptions in one shipment. An important point to highlight is, due to the low severity disruption, the
highest savings by the RL-agent are only 2.4%.

In contrast, in the severe delays scenario, the costs between greedy policy and always wait in most
cases are almost the same due to the low occurrence rate as presented by Figure 6.18b. However,
once the disruption creates delays in the network, the RL-agent can produce higher savings compared
to the short-delayed disruption. The savings in the severe delay scenario reaches up to 3.65%.

The charts at the bottom (Figure 6.18d and Figure 6.18c) present the proportion of actions between
wait and reassign taken by the RL agent. Some cases in the severe delays scenario are blank because
there was no action taken by the RL agent in that specific case. As expected, in the severe delays,
despite only a few actions taken due to low disruption frequency, the proportion of taking reassign action
is generally higher than wait action.

6.5.3. Experiment on Different Demand Instances
The third experiment simulates the model using different demand instances, with nine sets ranging
from 50 to 350 requests. Each set employs the default disruption profiles and is repeated 20 times to
ensure robustness. The aim is to analyze the model’s sensitivity to varying numbers of requests by
aggregating and comparing the total costs from the 20 simulations for each instance.

(a) Total Costs Differences (b) Total Missing Departures

(c) Performance Comparison by Number of Cases

Figure 6.19: Sensitivity Analysis with Different Demand Instances

Figure 6.19a illustrates the differences in aggregated total costs between the two policies. Green bars

6.5. Results and Numerical Experiment 62

indicate that the greedy policy incurs lower costs, while red bars indicate the opposite. The results show
that the greedy policy outperforms the always wait policy in most cases as demand increases. This
demonstrates the greedy policy’s superior ability to handle a larger number of instances, as indicated
by the number of missed services shown in Figure 6.19b. Missed departures, a result of capacity
constraints, are fewer under the greedy policy, indicating more accurate reassignment decisions.

The poorer performance at lower demand levels can be attributed to the always wait policy being closer
to the optimal solution due to fewer affected requests during the simulation. Additionally, any suboptimal
decisions made by the reinforcement learning algorithm are more impactful on total cost when there
are fewer disruptions to offset with better actions.

Figure 6.19c shows the number of simulations where each policy performs better across different de-
mand instances. From 50 to 200 instances, the greedy policy gains performance as demand increases.
However, beyond 200 instances, the trend does not provide a conclusive comparison, with both policies
exhibiting similar performance levels. The suboptimal performance of the greedy policy beyond 200
instances might be due to the lack of demand variance during training. Additionally, larger instances
make the network more sensitive to missed departures. In many cases, the value of a particular action
becomes inaccurate because, during training, a reassign action in a certain disruption might generate
a lower cost. However, in the experiment with larger instances, the same reassign action might incur
a much higher cost due to missed departures caused by insufficient service line capacity.

6.5.4. Experiment on Different Cost Parameters
The final experiment investigates the model’s sensitivity to changes in storage cost parameters. The
storage cost was selected for modification due to its significant impact on the cost tradeoff between the
greedy policy and the always wait policy, as discussed in Section 6.5.1. The default case is used as
the reference where the storage cost is 1. The storage cost for the experiment is set to start at 0.2 and
incrementally increases by 0.2 until it reaches 2. This experiment aims to assess the sensitivity of the
greedy policy’s performance across varying cost parameters.

Figure 6.20 illustrates the performance comparison of the two policies under these different storage cost
parameters. The findings indicate a significant drop in the greedy policy’s performance as the storage
cost is lower than the default case. This decline occurs because the model tends to select itineraries
with higher travel costs to avoid increased storage costs due to delays according to the cost parameters
used in the training. With lower storage costs, shipments become less sensitive to delays, thus, the RL
agents’ value function is no longer relevant. In contrast, the greedy policy maintains its performance
as the storage cost increases because the cost tradeoff is still relevant. However, the greedy policy
performs best under the default cost scenario. This is because the reward system is determined by the
cost parameters used during training. Deviations from these costs impact decision-making accuracy,
even if the changes favor the tradeoff.

Figure 6.20: Sensitivity Analysis with Different Cost Parameters

7
Discussion

The work of this research is divided into three distinct processes comprising, constructing the freight
simulation environment, integrating a plug-in matching algorithm, and developing the reinforcement
learning agent. Even though the centerpiece of this project is the implementation of the RL, the two
other modules play as much important role as all the information, input, and output of each module,
flows among them. One small error in one module could cause a collapse in the whole model. The
discussion of this research is structured according to those three modules.

7.1. Limitations
7.1.1. Simulation Module
The simulation module aims to create a dynamic environment for hinterland freight transport, captur-
ing disruptions and simulating network delays resulting from these disruptions. By modeling the in-
teractions among the three components—shipment, service, and disruption—delays are expected to
emerge organically. More severe network delays provide greater opportunities for the RL agent to im-
prove performance. However, the simulation must also maintain realism, ensuring the network is not
excessively disrupted to create delays artificially. Striking this balance between realism and providing
sufficient improvement opportunities for the RL agent is crucial to this research.

One limitation of the simulation module that influences the results is its scope and assumptions. The
scope is limited to inbound cargo from the main port to the inland terminal, leading to a technical as-
sumption that service modes return directly to their origin without considering the return trip. Including
cycle-based operations could capture disruptions during the return trip, potentially causing delays in
picking up shipments at the origin terminal. Additionally, the assumption that one service mode only
serves one origin-destination pair limits shipment choices to either staying in the current mode or trans-
ferring to another mode or line at the next stop, which could create a more realistic yet complex problem.

The disruption profiles are formulated based on available literature and published datasets. The qual-
ity of these profiles depends on the amount of accessible data. Common disruptions, such as bad
weather at the terminal, are not included due to limited information, yet these profiles could significantly
impact the RL agent’s outcomes. Creating disruption profiles based on historical data would enhance
the RL agent’s reliability. Another important disruption not included in the model is mode-specific in-
frastructure disruptions, such as railway disruptions affecting multiple train lines with the same origin
and destination.

7.1.2. Optimization Module
The optimization module provides shipment planning both offline (regular planning) and online during
disruptions. It features a plug-and-play capability for different optimization techniques or objectives,
provided they meet the required input and output criteria. Different optimization algorithms yield vary-
ing results. For instance, the heuristic algorithm discussed in Chapter 5 results in the always reassign

63

7.1. Limitations 64

strategy outperforming the always wait strategy, significantly improving when applying the RL-assisted
model. This is because the heuristic algorithm’s initial solution does not aim to minimize total cost, al-
lowing the reassign option to excel, and the RL model to select the optimal choices between the two. In
the case study, the plug-in model aims to minimize costs. Therefore, the always wait policy already pro-
vides the best solution in a non-disrupted environment, explaining the more significant improvements
observed during verification compared to the case study.

A limitation of the optimization algorithm is its runtime. Ideally, the simulation triggers the optimization
module whenever required. However, to achieve convergence in training the RL agent, modifications
are necessary, as detailed in Chapter 6. This affects the overall performance of the learning-assisted
model because the solutions provided by the optimization module during replanning, depending on the
circumstances, may differ from those in the solution pool used in the episodic training.

While the current model manages to yield better performance relying on the solution pool approach,
there is a potential to improve it further by generating optimal solutions during the training, ultimately
training the RL with higher action choice quality.

7.1.3. Reinforcement Learning
The central brain of the RL agent is the value function. It consists of the value map for each action
taken in a state. The first limitation of this research in the RL part is that we use a tabular method, Q-
Learning, for updating the value function during the training. While it manages to reach convergence
and ultimately provide findings of implementing a learning agent in the whole model, it creates several
limitations in this research.

The tabular method requires the learning agent to visit each state frequently to reach convergence.
This caused the RL to require a huge amount of training episodes. With the limited time resources and
the run-time constraint from the plug-in model. There are still states where the RL has not visited often
enough, partly because it is a rare case, resulting in suboptimal decision-making in a few cases.

This also restricts the formulation of the states considered by the RL, increasing the number of features
in the state will increase the exploration space during the training and increase the required amount of
training. The formulation of the states is also an important part of making the RL work. The challenge
is to find the sweet spot between keeping a low number of features to minimize the amount of episodic
training and having many features to allow the RL to have more knowledge of different states and
distinct the optimal action for the given state. The proposed model in this thesis utilizes six features
of states including request’s current position, the request’s destination, the request’s, due time, the
request’s volume, the type of disruption, and the current time. The possible way to increase the feature
for this model could be the number and total volume of all affected requests at the given time. In the
high number of disruptions, the RL agent might choose to wait to avoid capacity problems in the given
reassign option.

Another interesting discussion point is the timing of decision-making. The proposed models trigger
online planning and take immediate action whenever a disruption occurs. However, in some cases,
delaying the decision-making process until a more decisive moment could prevent unnecessary sub-
optimal decisions. For example, consider a disruption in a service line affecting a shipment, request1,
which is scheduled to take Barge1 while waiting at the terminal. The optimization module might suggest
switching to Train1. The decision to wait or reassign could be deferred until just before one of these
options is ready for loading. This approach accounts for the possibility that the disruption might resolve
before the original itinerary’s loading time, ultimately resulting in no delays.

7.1.4. Data Deficiency
Another important aspect of this research is the data used for training the model. The service network
data in the case study is based on a real-world network derived from the literature. However, the
demand is generated synthetically. Efforts have been made to balance transport supply and demand
by estimating the capacity proportion of each origin-destination pair and using that proportion as a
basis to generate demand. Despite these efforts, several unutilized services were still found in the
network. This results in fewer affected requests because some disruptions occur in these unutilized
service modes.

7.2. Result Interpretation and Implication 65

Cost parameters used in the training are also derived from the literature. It is acknowledged that these
cost parameters do not reflect real-world costs accurately. However, the costs are the main driver of
the RL agent’s learning since the reward system is based on the shipment cost as a consequence of
taking action.

7.2. Result Interpretation and Implication
7.2.1. Result Interpretation
The objective of the proposedmodel is not solely to achieve the highest cost savings. While significantly
lower costs resulting from the actions taken indicate excellent performance, the amount of cost savings
also depends on the delays in the network. Given the dynamic and complex nature of these delays, it
is more important for the RL model to outperform the naive benchmark policy across various disruption
scenarios. This aligns with the primary objective of the research: to create a resilient synchromodal
framework.

Resilient freight transport is measured by a system’s ability to recover from disruptions (Chen and
Miller-Hooks, 2012). In this model, the key performance indicator (KPI) used to measure disruption
impact is the total cost. Achieving lower costs compared to the benchmark in specific cases indicates
that the framework responds more effectively to disruptions, restoring performance to its original state.
Moreover, demonstrating better performance across different scenarios, as shown by the proposed
model in the case study, highlights the model’s ability to recover from disruptions, thus enhancing its
resilience.

Given the limitations elaborated in the previous section, the proposed model evidently provides added
values as a decision support system in response to disruptions. 80% better performance in 20 test
cases in the default scenario provides a strong indication that the learning-assisted model manages to
respond well to disruptions. Due to the stochastic environment, it is indeed possible for the RL agent
to make suboptimal decisions in some cases.

It is important to address the reason behind the poor performance in several cases. From the result
analysis, the primary issue is that the RL agent often selects suboptimal actions in rarely visited states.
Given the disruption probability during training, scenarios where a shipment is disrupted multiple times
are infrequent. When an event occurs infrequently, the value function does not get updated accordingly.

For instance, in a certain state, the value of taking a wait action might be -1000, while the value of a
reassign action might be -500. Suppose during training, the RL agent encounters another disruption in
the selected service line. In this new state, both action values are very low, such as -3000 and -3500. In
this situation, the RL agent updates the value function of the initial reassign action, previously -500, to
a lower value. However, if the first state is visited again and no second disruption occurs after selecting
reassign, the value function will be updated again, gradually aligning with the most probable scenarios.

One way to address this could be by determining a feature to distinguish the infrequent events from the
frequent ones. For instance, if the second disruption is a port congestion, the port congestion usually
happens during a high vessel traffic. Providing a ’current vessel traffic’ as a feature could help the
RL agent distinguish the first state in the above case, in a way predicting the disruption. This indeed
requires a huge and reliable dataset.

Another important point to highlight is the ability of the RL agent tomaintain performance across different
environments. RL can uncover hidden distributions in a given dataset through training, enabling it to
operate effectively in stochastic environments. However, if the RL agent encounters a problem with a
different distribution, its performance could be affected. Therefore, exposing the RL agent to excessive
disruptions during training does not necessarily lead to better implementation performance. Instead, it is
more effective to train the agent with disruptions or datasets that closely resemble real-world scenarios.
Furthermore, it is crucial for a model to avoid overfitting and to be effective beyond a single specific
case. This research demonstrates that the RL agent in the proposed model consistently outperforms
the benchmark policy, even when disruption occurrence rates vary by up to 30%.

Finally, according to the result analysis, the concept of integrating a learning-agent into a decision sup-
port system could work. Referring to the previous discussion, the proposed model is trained using a

7.2. Result Interpretation and Implication 66

limited dataset and several assumptions. On top of strengthening the algorithm using a more sophisti-
cated approach, the provision of reliable datasets including the network, disruptions, and costs will be
the key determinant of the learning agent’s performance.

7.2.2. Implication to the real-world
Disruptions are common in freight transportation, ranging from minor delays due to congestion to ex-
traordinary events like the Suez Canal blockage. This research proposes a model centered on an
operational-level decision support system, serving as a foundation for further development in line with
technological advancements in the port-logistics industry.

The synchromodal concept underpins this model, allowing shipments to be re-routed flexibly using
real-time information. Although not yet fully implemented industry-wide due to various success factors,
operators like Hutchinson Ports Europe Intermodal (HPEI) have begun adopting this concept, indicating
its emerging significance in the industry. As technological advancements align with the requirements
of synchromodality, integrating RL within the synchromodal framework could provide valuable insights
for future implementation once all enablers are in place.

Even with the current model, if the RL is properly trained, a synchromodal planner could use it to assist
in decision-making during disruptions. A simple implementation could involve developing software that
incorporates the trained agent. When a disruption occurs, the planner identifies the affected containers
and inputs this information, along with all relevant states at the time, into the software. The software
then suggests actions for each shipment. While not definitive, this tool can offer valuable technical
insights to planners, complementing their broader judgment.

Giusti (2019) suggests digital twins as a key enabling technology for synchromodality. In a more ad-
vanced scenario, the proposed model could be integrated with a digital twin system that replicates all
operations in real-time. In the event of a disruption, the system would automatically identify the af-
fected shipments and their real-time states, passing this information to the learning-assisted model, as
demonstrated in this thesis. This integration would eliminate the need for manual information transfer
by the planner, streamlining the decision-making process.

8
Conclusions and

Possible Future Research

8.1. Conclusions
The objective of this research is to propose a learning-assisted model to address the unknown duration
of disruption in port-inland freight transportation. The research should uncover the answer to the main
research question ”To what extent does a learning approach improve the resilience of a synchromodal
framework in coping with disruptions?”. The answers to this question are dissected into several answers
to the sub-questions as follows.

1. ”What are the types of disruptions in the synchromodal transport and what strategies are applied
to react to them?”
Disruptions in synchromodal transport can be categorized according to frequency and severity
andmay require different reactions from strategic, tactical, to operational levels. At the operational
level, the types of disruptions are mentioned in numerous studies including bad weather, water
level fluctuation, labor strikes, accidents, or congestion. These various types, however, could
be grouped into two distinct spectrum: Low occurrence probability with severe impact, and high
occurrence with low impact. The disruptions can have an impact either on the service or demand
side. On the service side, the impact could be a delay or reduction in carrying capacity, while on
the demand side, the impact could be the change in demand requirements such as volume and
release time. In response to the disruption, a couple of reaction strategies can be implemented
including waiting, transshipment, service re-routing, or shipment reallocation.

2. ”How can a synchromodal framework under disruption be adequately modeled?”
To model disruptions in a synchromodal framework, a discrete event simulation is developed to
capture the dynamic behavior of these disruptions. The simulation consists of three main compo-
nents: mode service, shipment, and disruptions. The interaction between mode service and ship-
ment simulates port-inland freight operations. Five service disruption profiles and three request
disruption profiles are created to apply disruptions within the freight network. Each disruption
profile is characterized by its type of impact, severity, occurrence probability, and potential loca-
tion. The simulation module generates disruptions based on these profiles, following a specific
probability distribution. Disruptions in the service network can cause delays by halting opera-
tions at disrupted locations (terminals or service lines) for a randomly determined duration. This
simulation forms the basis for understanding the behavior of a synchromodal framework under
disruption in this research.

3. ”How can reaction strategies under synchromodal framework be modeled in response to the
disruptions?”
The reaction strategies developed in this research focus on operational-level decisions. Given
the difficulty of altering fixed schedule services, container reallocation or re-routing is employed
to respond to disruptions by assigning shipments to different service lines. The proposed model

67

8.2. Recommendations for Future Research 68

includes an optimization module that creates shipment plans consisting of container itineraries.
This optimization module acts as a centralized planning tool, facilitating both offline and online
planning. Offline planning is executed according to a fixed time interval, representing a regular
shipment planning. Online planning is triggered only in response to disruptions, targeting affected
requests specifically. Additionally, the optimization module is designed to integrate seamlessly
with various optimization techniques, making the model scalable for future enhancements.

4. ”How can a learning approach be incorporated into the synchromodal framework to provide a
better solution space?”
After executing the online planning, shipments will have the option to take different service lines
to avoid disruptions. An RL agent is developed to aid in the decision-making process, deter-
mining whether to reassign the shipment based on the online plan or to stick with the original
offline itinerary. An RL sub-agent is attached to each affected shipment to monitor the sequen-
tial decision-making process and collect rewards, which are used to update a centralized value
function. Rewards are based on the actual costs incurred from the chosen actions, with the value
function being updated using the Q-learning technique. By exposing the RL agent to various
disruptions, it learns from experience and can provide improved reaction strategies over time.

5. ”How does the learning-based synchromodal framework perform under the disruptions?”
After completing 50,000 episodes of training, a case study using real service network data was
conducted. The learning-assisted model was simulated 20 times using a greedy policy and com-
pared with the benchmark policy of always waiting. The greedy policy outperformed the bench-
mark in 16 out of 20 simulations or 80% of the time, achieving cost savings of up to 15.96% of
the total cost compared to the benchmark, or 35.7% when considering only the affected requests.
While the extent of cost reduction depends on network delays, the model’s ability to perform better
across various disruption scenarios is more crucial than the specific amount of savings. Addition-
ally, the model proves to still provide better performance compared to the benchmark policy in a
certain range of different probability distributions of the disruption, as indicated by the result of up
to 30% difference in occurrence rate. The overall performance suggests that the proposed model
can create a more resilient synchromdoal framework by utilizing reinforcement learning.

8.2. Recommendations for Future Research
The results of this research indicate that utilizing a learning approach within a synchromodal framework
could bring added value and serve as a foundation for future research directions. Related to the disrup-
tion scenarios, incorporating data-driven disruptions and additional profiles, such as severe disruptions
at terminals or service line infrastructure, could provide more realistic scenarios for the RL agent and
enhance the reliability of the model. Additionally, this thesis treats disruptions at the main port as a
random variable related to shipment release time. Expanding the simulation to include port operations
and mother vessel arrivals could capture greater complexity and broader disruptions, leading to a better
training environment for the RL agent.

Regarding the optimization module, the current model integrates only a fragment of a sophisticated
learning-based optimization model. Future research could explore integrating a comprehensive pre-
dictive optimization model while streamlining datasets for both learning approaches. Another potential
direction involves integrating a meta-heuristic optimization model to address run-time issues, enabling
the optimization module to be triggered consistently during training and fully exploring the model’s po-
tential.

For the learning agent, three distinct future research directions are proposed. First, if the scope of
the network could be expanded to between Distribution Centers (DC), the action space could include
cancellation orders if the RL predicts that the late delivery might no longer be relevant to the customer’s
requirements. Second, In the current model, each sub-agent attached to a shipment aims to minimize
costs related to that shipment, and collectively, these sub-agents are expected to lower the total system
cost. However, conflicts among multiple agents could arise due to capacity constraints. Implementing
a communication scheme between multiple sub-agents to generate actions leading to system-wide
optimization could be a valuable future direction. The third direction involves addressing the limitations
of the current model by implementing deep reinforcement learning techniques. This approach allows
the model to estimate values of unvisited states, enabling the RL agent to perform well without visiting

8.2. Recommendations for Future Research 69

all states. This would allow for more complex state features and more accurate decisions without
significantly increasing training time.

By addressing the run-time and reducing the required episodic training, the model can be improved in
several ways. The experiment of different hyperparameters can help to identify their optimal values.
Additionally, experiments using different inputs for different episodic training could be performed. To-
gether, hyperparameter tuning and diverse episodic training will indicate the best training strategy to
maximize the model’s potential. Furthermore, the experiment of different scenarios can be extended
with more case samples to provide more representative performance results.

Bibliography

(2019). Barge Traffic Disruptions and Their Effects on Shipping Costs in Agricultural Freight Corridors
Summary. Technical report, U.S. Department of Agriculture, Washington, DC.

Abadi, A. and Ioannou, P. (2014). Optimization strategies for resilient freight transport and sustainability.
In Proceedings of the IEEE Conference on Decision and Control, volume 2015-February, pages
6472–6477. Institute of Electrical and Electronics Engineers Inc.

Acero, B., Saenz, M. J., and Luzzini, D. (2022). Introducing synchromodality: One missing link between
transportation and supply chain management. Journal of Supply Chain Management, 58(1):51–64.

Alons, K., Fontys, H., Somers, G., and Van Duin, J. H. R. (2019). MOVING FROM INTERMODAL TO
SYNCHROMODAL TRANSPORT: A MATURITY MODEL APPLIED TO A CASE STUDY IN NORTH-
WESTERN EUROPE MOVING FROM INTERMODAL TO SYNCHROMODAL TRANSPORT: A 1
MATURITY MODEL APPLIED TO A CASE STUDY IN NORTHWESTERN EUROPE Research Cen-
tre Sustainable Port Cities/Faculty of Technology, Policy and Management, Moving @ 8 Rotterdam.
Technical report.

Ambra, T., Caris, A., and Macharis, C. (2019). Should I stay or should I Go? Assessing intermodal and
synchromodal resilience from a decentralized perspective. Sustainability (Switzerland), 11(6).

Barkley, A. and Mcleod, K. (2022). Congestion and consolidation: An empirical study of a barge ship-
ping merger. Regional Science and Urban Economics, 93.

Barua, L., Zou, B., and Zhou, Y. (2020). Machine learning for international freight transportation man-
agement: A comprehensive review. Research in Transportation Business and Management, 34.

CCNR (2020). WATER LEVELS AND AVAILABLE VESSELS’ DRAUGHT AT GAUGING STATIONS
ON RHINE AND DANUBE.

Chen, L. and Miller-Hooks, E. (2012). Resilience: An indicator of recovery capability in intermodal
freight transport. Transportation Science, 46(1):109–123.

De Juncker, M. A. M., Huizing, D., del Vecchyo, M. R. O., Phillipson, F., and Sangers, A. (2017).
Framework of Synchromodal Transportation Problems. pages 383–403.

Delbart, T., Molenbruch, Y., Braekers, K., and Caris, A. (2021). Uncertainty in intermodal and synchro-
modal transport: Review and future research directions.

Di Febbraro, A., Sacco, N., and Saeednia, M. (2016). An agent-based framework for cooperative plan-
ning of intermodal freight transport chains. Transportation Research Part C: Emerging Technologies,
64:72–85.

Durán-Micco, J., Jordehi, S. A., and Macharis, C. (2023). Evaluating synchromodal transport with
agent-based simulation. In Transportation Research Procedia, volume 72, pages 619–626. Elsevier
B.V.

Eurostat (2020). 77% of inland freight transported by road in 2020.

Filom, S., Amiri, A. M., and Razavi, S. (2022). Applications of machine learning methods in port opera-
tions – A systematic literature review. Transportation Research Part E: Logistics and Transportation
Review, 161.

Filom, S. and Razavi, S. N. (2023). Decarbonization throughmodal shift using a synchromodal platform:
A case study in the Great Lakes.

70

Bibliography 71

Gallardo, P., Murray, R., and Krumdieck, S. (2021). A sequential optimization-simulation approach for
planning the transition to the low carbon freight system with case study in the North Island of New
Zealand. Energies, 14(11).

Gao, S. and Liu, N. (2022). Improving the resilience of port–hinterland container logistics transportation
systems: A bi-level programming approach. Sustainability (Switzerland), 14(1).

Geng, J., Li, M.-W., Dong, Z.-H., and Liao, Y.-S. (2015). Port throughput forecasting by MARS-RSVR
with chaotic simulated annealing particle swarm optimization algorithm. Neurocomputing, 147:239–
250.

Giusti, R., Manerba, D., Bruno, G., and Tadei, R. (2019). Synchromodal logistics: An overview of
critical success factors, enabling technologies, and open research issues. Transportation Research
Part E: Logistics and Transportation Review, 129:92–110.

Goti, A., editor (2010). Discrete Event Simulations. Sciyo.

Guo, W., Atasoy, B., and Negenborn, R. R. (2022). Global synchromodal shipment matching problem
with dynamic and stochastic travel times: a reinforcement learning approach. Annals of Operations
Research.

Guo, W., Atasoy, B., van Blokland, W. B., and Negenborn, R. R. (2020). A dynamic shipment matching
problem in hinterland synchromodal transportation. Decision Support Systems, 134.

Guo, W., Atasoy, B., van Blokland, W. B., and Negenborn, R. R. (2021). Global synchromodal transport
with dynamic and stochastic shipment matching. Transportation Research Part E: Logistics and
Transportation Review, 152.

Hrušovský, M., Demir, E., Jammernegg, W., and Van Woensel, T. (2021). Real-time disruption man-
agement approach for intermodal freight transportation. Journal of Cleaner Production, 280.

Jonkeren, O., Jourquin, B., and Rietveld, P. (2011). Modal-split effects of climate change: The effect
of low water levels on the competitive position of inland waterway transport in the river Rhine area.
Transportation Research Part A: Policy and Practice, 45(10):1007–1019.

Karam, A. and Reinau, K. H. (2022). A Real-Time Decision Support Approach for Managing Disruptions
in Line-Haul Freight Transport Networks. IEEE Transactions on Intelligent Transportation Systems,
23(12):24765–24777.

Kogler, C. and Rauch, P. (2018). Discrete event simulation of multimodal and unimodal transportation
in the wood supply chain: A literature review. Silva Fennica, 52(4).

Kourounioti, I., Polydoropoulou, A., and Tsiklidis, C. (2016). Development of Models Predicting Dwell
Time of Import Containers in Port Container Terminals – An Artificial Neural Networks Application.
Transportation Research Procedia, 14:243–252.

Larsen, R. B., Atasoy, B., and Negenborn, R. R. (2021). Model predictive control for simultaneous
planning of container and vehicle routes. European Journal of Control, 57:273–283.

Larsen, R. B., Guo, W., and Atasoy, B. (2023a). A real-time synchromodal framework with co-planning
for routing of containers and vehicles. Transportation Research Part C: Emerging Technologies, 157.

Larsen, R. B., Negenborn, R. R., and Atasoy, B. (2023b). A learning-based co-planning method with
truck and container routing for improved barge departure times. Annals of Operations Research.

Layeb, S. B., Jaoua, A., Jbira, A., and Makhlouf, Y. (2018). A simulation-optimization approach for
scheduling in stochastic freight transportation. Computers and Industrial Engineering, 126:99–110.

Lyu, Z., Pons, D., and Zhang, Y. (2023). Emissions and Total Cost of Ownership for Diesel and Battery
Electric Freight Pickup and Delivery Trucks in New Zealand: Implications for Transition. Sustainability
(Switzerland), 15(10).

Bibliography 72

Lyu, Z., Pons, D., Zhang, Y., and Ji, Z. (2021). Freight operations modelling for urban delivery and
pickup with flexible routing: Cluster transport modelling incorporating discrete-event simulation and
GIS. Infrastructures, 6(12).

Maersk (2023). Top 9 reasons for shipping delays.

Merk, O. and Notteboom, T. (2015). Port Hinterland Connectivity. Technical report.

Motraghi, A. and Marinov, M. V. (2012). Analysis of urban freight by rail using event based simulation.
Simulation Modelling Practice and Theory, 25:73–89.

Notteboom, T. E. and Rodrigue, J. P. (2005). Port regionalization: Towards a new phase in port devel-
opment. Maritime Policy and Management, 32(3):297–313.

Oliveira, J. B., Lima, R. S., and Montevechi, J. A. B. (2016). Perspectives and relationships in Supply
Chain Simulation: A systematic literature review. Simulation Modelling Practice and Theory, 62:166–
191.

Palmqvist, C. W., Lind, A., and Ahlqvist, V. (2022). How and Why Freight Trains Deviate From the
Timetable: Evidence FromSweden. IEEEOpen Journal of Intelligent Transportation Systems, 3:210–
221.

Pant, R., Barker, K., and Landers, T. L. (2015). Dynamic impacts of commodity flow disruptions in
inland waterway networks. Computers and Industrial Engineering, 89:137–149.

Pfoser, S., Treiblmaier, H., and Schauer, O. (2016). Critical Success Factors of Synchromodality: Re-
sults from a Case Study and Literature Review. In Transportation Research Procedia, volume 14,
pages 1463–1471. Elsevier B.V.

PoR (2024). Barge Performance Monitor.

Qu, W., Rezaei, J., Maknoon, Y., and Tavasszy, L. (2019). Hinterland freight transportation replan-
ning model under the framework of synchromodality. Transportation Research Part E: Logistics and
Transportation Review, 131:308–328.

Rodríguez-Clare, A., Ulate, M., and Vasquez, J. P. (2023). Supply Chain Disruptions, Trade Costs, and
Labor Markets A framework of international trade with unemployment. Technical report.

Santos, G., Behrendt, H., Maconi, L., Shirvani, T., and Teytelboym, A. (2010). Part I: Externalities and
economic policies in road transport. Research in Transportation Economics, 28(1):2–45.

Schlake, B. W., Barkan, C. P., and Edwards, J. R. (2011). Train delay and economic impact of in-service
failures of railroad rolling stock. Transportation Research Record, (2261):124–133.

Statista (2022). Average monthly delays for late container vessel arrivals worldwide from January 2019
to July 2022.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning : an introduction.

Tavasszy, L. A., Behdani, B., and Konings, R. (2015). Intermodality and Synchromodality. SSRN
Electronic Journal.

TheLoadstar (2022). Barge delays on N Europe waterways surge to highest peak in years.

van Dorsser, C., Vinke, F., Hekkenberg, R., and van Koningsveld, M. (2020). The effect of low water
on loading capacity of inland ships. European Journal of Transport and Infrastructure Research,
20(3):47–70.

Van Riessen, B., Negenborn, R. R., Lodewijks, G., and Dekker, R. (2015). Impact and relevance of
transit disturbances on planning in intermodal container networks using disturbance cost analysis.
Maritime Economics and Logistics, 17(4):440–463.

Bibliography 73

Wang, X. (2016). Optimal allocation of limited and random network resources to discrete stochastic
demands for standardized cargo transportation networks. Transportation Research Part B: Method-
ological, 91:310–331.

Wide, P., Kalahasthi, L. K., and Roso, V. (2022). Efficiency effects of information on operational dis-
ruption management in port hinterland freight transport: simulation of a Swedish dry port case. Inter-
national Journal of Logistics Research and Applications.

Xu, J. and Hancock, K. L. (2004). Enterprise-wide freight simulation in an integrated logistics and
transportation system. In IEEE Transactions on Intelligent Transportation Systems, volume 5, pages
342–346.

Zhang, K. (2024). Scenario Based analysis of port-hinterland transportation modes.

Zhang, Y., Guo, W., Negenborn, R. R., and Atasoy, B. (2022). Synchromodal transport planning
with flexible services: Mathematical model and heuristic algorithm. Transportation Research Part C:
Emerging Technologies, 140.

Zhang, Y., Negenborn, R. R., and Atasoy, B. (2023). Synchromodal freight transport re-planning under
service time uncertainty: An online model-assisted reinforcement learning. Transportation Research
Part C: Emerging Technologies, 156.

Zhao, J. and Dick, C. T. (2024). Predicting and measuring service disruption recovery time in railway
gravity hump classification yards. Journal of Rail Transport Planning and Management, 29.

Zhou, Y., Xie, R., Zhang, T., and Holguin-Veras, J. (2020). Joint Distribution Center Location Problem
for Restaurant Industry Based on Improved K-Means AlgorithmWith Penalty. IEEE Access, 8:37746–
37755.

A
Scientifc Paper

74

Resilient Synchromodal Transport through Learning
Assisted Hybrid Simulation Optimization Model

Satrya Dewantara∗, Bilge Atasoy†, Mahnam Saeednia‡
∗Department of Transport and Planning, TU Delft, Delft, The Netherlands

muhammadsatryadewantara@student.tudelft.nl
†Department of Maritime and Transport Technology, TU Delft, Delft, The Netherlands

b.atasoy@tudelft.nl
‡Department of Transport and Planning, TU Delft, Delft, The Netherlands

m.saeednia@tudelft.nl

Abstract—The increasing volume of global freight trade, cou-
pled with economic growth, necessitates ongoing innovation in
optimizing freight operations. Over the past decade, the concept
of synchromodality has been explored to encourage a modal shift
from unimodal to multimodal transport. Synchromodality, with
its flexibility feature, can create more resilient freight transport
systems. Various models employing different techniques have
been proposed to establish a resilient synchromodal framework
capable of reacting to disruptions. However, there are only few
studies addressing the unknown duration of disruptions. This re-
search proposes a learning-based modular framework comprising
to capture the dynamics of disruptions in multimodal transport
and learn to make more effective decisions, thus addressing
the challenge of limited prior knowledge about disruptions and
enabling fast responses to disruptions.

Index Terms—Synchromodality; Resilient freight transport;
Learning-based decision support framework

I. INTRODUCTION

Road transportation dominates inland freight movement,
accounting for 77% of the EU’s freight in 2020 [1]. Logistic
Service Providers (LSPs) often prefer unimodal transport
primarily due to its inherent reliability [2]. However, road
transport introduces several externalities, including accidents,
road damage, environmental harm, and congestion [3]. The
Intermodal concept promotes a shift of freight transport to
other modes, such as barge and train. It can offer a cheaper
option for inland freight transport due to the economics of
scale [2]. Despite its cost-effectiveness, the share of intermodal
transport remains low due to its lack of flexibility. The concept
of synchromodality aims to increase the attractiveness of
intermodal transport. By having a flexibility feature within the
intermodal transport, synchromodal transport provides a higher
number of combined routes, thus creating added values in the
trade-off between price and time to the shippers [2].

Disruptions uncertainties negatively contribute to the ef-
ficiency of conventional intermodal transport [4] and could
cause a severe economic loss. Disruption with low occurrence
probability but high impact such as COVID-19 increased the
logistic cost by 12% globally [5]. From another spectrum
where disruption occurs frequently, a study by [6] estimates
$15.2 Million loss in a year due to train delays. This estimate
made in 2011 will have a significantly higher value today.

This research investigates how to create a resilient inter-
modal freight transport system that leverages the flexibility
offered by synchromodality. The main research question of this
paper is ”To what extent does a learning approach improve
the resilience of a synchromodal framework in coping with
disruptions?”. The resilience of a freight transport network
is defined by its ability to recover from disruptions and is
measured by the effort required to restore normal operations
[7]. This paper provides a learning-based modular framework
capable of capturing the disruptions generating a reaction plan.
Developing the comprehensive model as mentioned above
with practical solutions creates a challenge for scholars. Not
only filling the gap of knowledge, the model should be
practical to be implemented at the industry level, thus, shifting
the freight transport paradigm away from road dependency
towards more sustainable and flexible options. The modu-
lar framework utilizes optimization, simulation, and machine
learning techniques allowing plug-and-play possibility for
connecting with different existing/under development models
and is extensible, making it applicable to different ecosystems
of port-inland connections, expected to improve the solution
space in generating decisions to react to the disruptions.

The paper is organized as follows: Section II provides a
brief literature review. In section III, the disruption profiling
is explained, followed by model formulation in Section IV.
The model is implemented in Section V using a network
adapted from a real-world operation. Finally, the research is
concluded in Section VI to answer the main research question
and providing directions for possible future research.

II. LITERATURE REVIEW

A. Concept of Synchromodality

Synchromodality is a concept developed to address the
growing freight trade and its dynamics. Its objective is to
thrive in the highly competitive transportation market and
meet growing customer demands by enhancing flexibility
and offering more customized services [2]. In recent years,
various studies have aimed to define synchromodality. A study
concludes that synchromodality is a planning system of multi-
modal transport that integrates supply chain stakeholders to
flexibly adapt transport modes based on real-time insights [8].

Another study describes synchromodality as an efficient, reli-
able, flexible, and sustainable service enabled by stakeholders’
cooperation supported by real-time information sharing [9].
[10] describes synchromodal as real-time transport planning
using real-time information from different parties to increase
flexibility, reliability, efficiency, and sustainability.

The flexibility attribute of synchromodality allows for real-
time mode shifts, helping to navigate unexpected challenges
in a volatile and competitive market [8]. To fully capitalize on
this flexibility, certain conditions must be met. It is suggested
that Logistics Service Providers (LSPs) can maximize this
feature when shippers agree to mode-free or a-modal requests
[8]. In this scenario, LSPs have the freedom to select the mode
of transport that best suits the cargo’s delivery requirements.
This flexibility marks a significant departure from traditional
transportation approaches, offering a more responsive and
adaptable solution in dynamic market conditions. Beyond the
added value from increased mode combinations, flexibility is
a key benefit of synchromodal transport, allowing services to
adapt and react to disruptions [11], which will be the focus of
this research.

B. Dynamic Models for Synchromodal Framework

Dynamic models for synchromodal transport have been
proposed in several studies. A Synchromodal Transportation
Re-planning (STP) for hinterland transport is developed using
a mixed integer linear programming (MILP) [12]. Using a
different approach, a dynamic matching problem is proposed
to deal with uncertain shipment requests [13]. In this model,
the shipment requests are not completely known, but rather
sequentially announced using a rolling horizon approach. This
approach is adopted by another model for a global shipment
matching problem and improved by incorporating disruptions
in the service network [14]. The reaction to disruption in these
two models are reallocation planning of the containers.

Other studies propose an agent-based model to compare the
performance of unimodal, intermodal, and synchromodal for
cost, time, and emissions. The model applies a synchromodal
scenario by putting logic for each agent to reroute to the
nearest and cheapest terminal if there is a disruption in the
network, and monitor the impact on cost, time, and emis-
sion [15]. Another study proposed an agent-based framework
for cooperative planning [16]. The model uses decentralized
optimization with a negotiation scheme. It breaks down the
problem into several sub-problems and lets the agents com-
municate with other agents to achieve each objective under
disrupted scenarios. The model provides a sequence plan and
re-plans it when exogenous events occur. A decision support
system is proposed using a hybrid simulation-optimization
model under synchromodal framework [17]. It employs an
offline model to create the initial plan and an online model
to react to the disruptions and selects one of three possible
policies: wait, transshipment, or detour. The disruptions are
categorized according to frequency and duration by assigning
them to a random variable in the simulation. The online model
will be triggered if there is a disruption occurs. The result of

the study shows that the transshipment policy has the lowest
share in all scenarios. This result could be a subject for future
research since transshipment or mode shift plays an important
role in Synchromodal. The other policy in this model is to
wait, which is essentially the traditional reaction, and detour,
which is practically difficult for barge and/or freight trains.

More recent studies integrate a learning approach within the
synchromodal framework, such as a study by [14] that adopts
the Reinforcement Learning (RL) approach in the global ship-
ment matching problem under dynamic and stochastic travel
time settings to address the curse of dimensionality of applying
dynamic programming for solving the objective following
Bellman’s equation. Another study using RL technique under
synchromodal framework is proposed by [18]. This study
builds on top of an Adaptive Large Neighborhood Search
(ALNS) proposed in the study by [19] to address the service
time uncertainty in synchromodal transport. Unlike the study
by [14] the learning agent in this study works side by side with
the ALNS model instead of replacing its role. Integration of the
RL approach in the synchromodal framework has a potential
to address the variation in the nature of disruptions in the
network. This is considered in the study [18], in which the
RL agent works together with an optimization model, and a
binary reward system is employed depending on whether a
delay occurs due to disruptions and the taken actions. Their
approach does not account for shipment volume or the length
of the delay. In contrast, this research proposes a negative cost
value as the reward. This method considers a higher delay
penalty for higher shipment volumes, allowing the RL agent
to prioritize larger shipments. Extensive disruption scenarios
are incorporated for an improved learning process. The dis-
ruptions impact both demand and services, a feature that has
not been extensively studies in the literature. The modular
framework offers a plug and play mechanism allowing for
improving/replacing/extending the modules as needed.

III. DISRUPTION CATEGORIZATION

The disruption in the freight network varies in type and
impact and may require different reaction strategies either
at strategic, tactical, or operational levels. It can be distin-
guished according to the frequency and severity, categorized
into endogenous and exogenous factors [17], and come from
different sources such as nature or human acts [20]. Another
way to categorize the disruptions is by separating them into
two spectrum as elaborated by [21]: low occurrence probability
but severe impact, and high occurrence probability with low
impact. The categorization of the disruptions could be useful
to simplify a model while keeping the realistic behavior.

In this research, the disruption in the freight network is
divided into two components encompassing disruptions on the
service network (supply side) and the requests (demand side).
Each profile represents a group of similar disruptions along
with the possible impact and occurrence frequency.

On the supply side, the disruption categorization has more
profiles than the request disruption. Five distinct profiles are

TABLE I: Service Disruption Profile

Profile Description Mode/
Location

Effect in the
Simulation Duration Capacity

Reduction
Occurrence

per Year

1 Operational delays, road congestions
Train,
Truck

Delay 1-3h 0% 30%

2
Operational delay,
canal congestion

Barge Delay 1-6h 0% 35%

3
Bad weather, labor strike, accident,
systems maintenance

Train,
Barge

Delay 12-48h 0% 6%

4 Terminal congestion, operational delay Terminal Delay 1-3h 0% 30%

5 High and low water level Barge
Carrying capacity

reduction
12-24h 15-20% 10%

TABLE II: Request Disruption Profile

Profile Description Location Effect in the
simulation

Delay
Release

Valume
Change

Occurrence
per Year

6 Demand Change Shipment Volume
change - -30% to + 30% 30%

7 Customs issues, main port operational
delays Shipment Release time

change 1-6h - 30%

8 Mother vessels arrival delays Shipment Release time
change 1-7d - 5%

developed to represent different types of service disruptions
as detailed in Table I. Each profile contains a group of
disruptions with similar characteristics. The first profile is a
frequent disruption that could cause a short delay on either
the train or truck network. This could be caused by road
congestion for trucks [15], or technical and communication
problems on trains [22]. The second profile is a delay in barge
service lines which, for instance, is caused by congestion in
the river due to locks or high traffic [23]. The third profile,
adopted from [15] is a possible delay due to more severe
disruptions such as bad weather or systems maintenance.
These disruptions could result in operations being halted for a
certain period. The fourth profile is a disruption in the terminal
such as equipment problems or port congestion [24]. The
fifth profile is a reduction on barge carrying capacity due to
the fluctuation of river water level [25], [26]. The low water
level restricts barges from carrying containers with their full
capacity because the barges need to reduce the draft, while the
high water level could limit the height of the stacked containers
on the barge to prevent collisions with bridges.

On the request side, three disruption profiles are considered,
including two profiles of changes in container release time
and a profile of alterations in shipment volume. In port-inland
transportation, changes in the release time could happen due
to several causes such as the late arrival of the mother vessels
which can cause delays of release time up to seven days [27]
or more minor issues such as customs clearance which cause
delays of less than a day. Meanwhile, the volume changes
could come from the shippers due to, for instance, unexpected
increases in demand beyond long-term contracts. The request
disruption profiles are presented in Table II.

The disruption profiles are created based on two spectrums
explained by [21]. The high probability with a low severity
level is represented by high occurrence per year and low value
of severity (column 5 and 6) as attributed in Profile 1, Profile

2, Profile 4, Profile 6, and Profile 7. The other spectrum, the
low probability with high severity disruption is attributed in
Profile 3, Profile 5, and Profile 8. Each profile can only occur
in certain locations. The third column in the table indicates
the possible location of disruption when it occurs. It could be
either in a terminal, service line, or directly on the shipment.

IV. MODEL FORMULATION

The research examines hinterland freight transportation,
specifically focusing on the unidirectional flow of shipments
from the main port to various inland terminals excluding the
final leg of transportation from these terminals to distribution
centers or warehouses. Each terminal is interconnected via
dedicated service lines, which are exclusively served by one
mode of transport, i.e. barges, trains, or fleets of trucks. The
shipments may be transported directly or through multiple
service lines, involving transfers at transshipment terminals,
thus constituting a multi-modal transport network.

Real-world operations often face disruptions in both the
service network and requests, manifesting as delays, capacity
reductions, or changes in shipment release times. Under a
synchromodal framework, the service network adapts flexibly
in real-time to these disruptions. This flexibility primarily in-
volves reallocating containers or matching them with available
services, rather than altering fixed service schedules, which is
typically challenging in practice.

To enable the synchromodal framework in the service
network, the proposed model follows several assumptions.
This study assumes the disclosure of enough information (in
real time) among stakeholders to allow the central planner
to re-route a shipment flexibly, assuming the necessary ICT
infrastructure is available. Moreover, the modal free booking
is applied to all shipments granting full authorization to the
planning in reallocating the containers.

Fig. 1: Simulation Flow Process

A. Simulation Module

The main objective of this simulation is to capture the
dynamic nature of disruptions in the hinterland freight network
representing real-world operations to create an environment for
implementing a decision support system.

The inland terminals are represented by nodes located at
various locations. Multiple nodes of inland terminals could
be located within the main port and serve as origin points
for loading shipments onto transport modes. Other nodes are
scattered further in the hinterland as the transshipment termi-
nals or destination points. These terminals are characterized by
handling capacity affecting the loading or unloading time. In
this simulation, several parameters are assumed infinite such
as stacking yard capacity and vehicle buffer area. Violation
of these parameters could result in terminal congestion and
could cause a delay. Rather than creating parameters, the port
congestion is modeled using random variables to represent
unexpected events.

The simulation module has three main components includ-
ing service, shipment, and disruptions processes. The service
is divided into fixed and flexible schedule services. The
fixed schedule follows a predetermined departure time while
flexible services depend on assigned requests. The service
processes are characterized by the operation parameters of
each mode including travel speed, carrying capacity, origin
and destination, and departure time. These parameters play an
essential role in determining the occurrence of events in the
discrete event simulation.

Each shipment consists of a bundle of containers bound by
a single contract and shares the same origin and destination.
Therefore, each request is characterized by an origin, a desti-
nation, and a container volume. Additionally, time parameters
such as announcement time, release time, and due time are
specified for each request. The due time reflects the customer’s
expectations, with any delay beyond this time incurring a
penalty. The shipment and services follow parallel processes

while interacting with each other. The simulation keeps track
of the actual costs for transporting each shipment from its
origin the its destination. The cost components consist of
storage, handling, travel, and delay penalty.

During the simulation process, the disruptions are enforced
according to the profiles explained earlier. The disruption on
requests only applies in a small time window after a shipment
is announced and before it is released. However, the disruption
on the service lines and terminals could occur anytime in the
chain of events causing the disrupted request to wait until
the disruption ends. The always wait policy represents the
absence of synchromodal framework by always staying with
the original itineraries despite the occurrence of disruptions,
and potentially causing delays in shipment delivery. The
simulation flow in Figure 1 represents the interaction between
shipments, services, and disruptions.

B. Hybrid Simulation-Optimization

The mode assignment to each shipment depends on various
parameters and is highly correlated with the performance of
the freight network. An optimal mode assignment could result
in low costs of transporting all requests from their origins to
destinations. Under synchromodal framework, it is assumed
that there is a centralized planner who is responsible for
generating a shipment plan at regular intervals. Thus, shipment
requests are delivered according to their requirements consid-
ering various objectives such as minimizing costs, maximiz-
ing on-time delivery, or minimizing emissions. Additionally,
through the synchromodal framework, a planning module
could be integrated into the simulation and automatically
triggered to create a new shipment plan in case of disruption.

The modular framework presented in this study enables
various analytical methods to plug-in, acting as a central
planner. These could range from simple strategies such as
first come first serve (FIFO) principle, heuristic methods or
sophisticated optimization models with various objectives. The

Fig. 2: Learning Assisted Hybrid Simulation-Optimization Flow

role of the optimization module that is embedded in the
simulation module, is to match requests with available services
considering the time and cost parameters associated with the
service lines.

The detection algorithm is employed to determine the af-
fected request based on the disruption occurrence time and
location. It is important to distinguish between the affected
requests and disrupted requests. The affected requests are only
the ones that are still possible to be re-routed. There are
three specific cases where a shipment is excluded from the
affected requests despite the disruption in its itinerary. First,
if the shipment is in a terminal or on board of a service line
and the disruption occurs in that location (case 1). Second, if
the shipment is on a service line, and a disruption occurs in
that service line’s destination terminal (case 2). Third, if the
disruption occurs at the shipment’s end destinations (case 3),
the replanning in these three cases will not help the shipment
to avoid disruption.

Upon receiving a new request or detecting a disrupted
shipment, the optimization module is triggered to initiate
the planning or re-planning process. The matching decision
involves assigning a service line to the shipment. In the
replanning process, the new assignment replaces the original
itinerary. In contrast to the always wait policy, this hybrid
simulation-optimization model always reassigns affected ship-
ments to new service lines as the disrupted location is excluded
from the possible solution space.

C. Reinforcement Learning Approach

Reassigning a shipment to a different service line during a
disruption can potentially improve the resilience of the freight
network and is feasible within a synchromodal framework.
However, in some situations, it may be better for a shipment to
wait until the disruption ends and then continue on its original
itinerary. For example, if the disruption is expected to be brief
or occurs at a terminal far ahead in the journey, where it is
likely to be resolved before the shipment arrives. The challenge
lies in the uncertainty of the disruption’s duration. To address
this, a reinforcement learning technique is integrated into the
model, allowing it to decide whether to wait or reassign based

on the learning agent’s experience. This approach enables the
model to make more informed decisions, balancing the benefits
of reassignment with the potential advantages of waiting.

Using a value function, the RL agent can select the best
action for a given state by learning from past experiences
and extensive training. Unlike supervised learning, which
relies on labeled data, the RL agent is guided by a reward
system that indicates the effectiveness of each action. Properly
modeling the action, state, and reward system is crucial for
developing an optimal RL agent. Additionally, formulating a
Markov Decision Process (MDP) is essential as it provides the
framework for the RL agent to interact with the environment,
apply actions, update states, and receive rewards as illustrated
in Figure 3.

Fig. 3: Markov Decision Process in Learning Assisted
Hybrid Simulation-Optimization

The action space for RL agent in this model consist of two:
reassign and wait. Now, what do the ”reassign” and ”wait”
actions exactly mean? Since it is the information that will
be exchanged between RL agent and the simulation module,
it needs to be clear so the feedback information would also
be relevant. Those actions consist of a list of service lines,
indicating which combination of service lines a request is
going to be carried by. Assume a Request X is assigned to
Barge1 and then transferred to Train1 before reaching its end
destination, then, the assigned mode Kr is [Barge1, Train1].
If there is a disruption, and the optimization module suggests
the reassignment to Truck2, then the possible action set will
stay with the original itinerary, wait: [Barge1, Train1], and

reassign: [Truck2]. The RL then chooses between those two
options. However, to make it more granular, the itinerary is
considered as a series of actions, and the action itself only
contains a single service line. For instance, if in that case,
the RL chooses to wait, then, the action is [Barge1], and
save the [Train1] for the next action in the future. Therefore,
after taking Barge1 and arriving at Barge1’s destination, the
simulation module will update the state to the RL agent,
grant the reward, and take the next action Train1. There is
no decision-making anymore at this stage since the possible
action is only one, unless a disruption occurs during this
process.

The decision made by the RL agent for each request is
independent of other requests. In a way, there are multiple RL
agents assigned for different requests and work in parallel, and
it is called RL sub-agent. Once an RL sub-agent is assigned
to a request, the loop starts until it reaches the terminal state
for that request. If any disruption happens again in the future
affecting the same request, that request is not assigned to
a new RL sub-agent. This framework allows the RL sub-
agent to make an action based on the action taken in the
previous decision, such that an action within the same request
is not independent of its previous action. From the explanation
above, it seems like the RL agent works on a decentralized
architecture. However, this is not the case in this framework.
Even though the RL sub-agent makes decisions independently
for each request, it has one centralized value function, updated
whenever a reward is granted. This approach is illustrated in
Figure 4.

Fig. 4: RL Agent Framework

From the perspective of a centralized planner in synchro-
modal transport, defining the state of the RL agent is complex.
The state space becomes exceedingly large if all shipments and
service attributes are considered. However, by narrowing the
perspective to a single shipment, defining the state becomes
more manageable, given that each request has an independent
decision-making process. In this approach, the state consists

of six features: the request’s current position, destination, due
time, volume, type of disruption, and the current time. This
framework allows decision making at the level of shipments,
represented by RL sub-agents, enabling decision making based
on the previous actions taken, ensuring that actions within the
same request are not independent of each other.

The reward system is also implemented separately for each
sub-agent. The RL agent uses this reward to update the action
value function Q(s, a) for each state s and action a using the
off-policy Temporal Difference Control, Q-learning technique
by following Equation 1. Unlike Monte Carlo, Q-Learning
does not have to complete one full episode to update the
action value function, instead, it uses the current estimate in
the equation. This method proves to reach convergence faster
[28].

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)

−Q(St, At)
] (1)

The total transportation cost between terminals, including
transport and storage, handling, and delay costs, is used as
a reward for actions. The reward calculation starts when a
disruption impacts a shipment and continues until either an
action resolves the issue or another disruption affects the same
shipment. Since rewards are negative costs, the agent selects
actions based on the value function, choosing those with values
closest to zero to minimize costs.

This framework allows the RL sub-agent to make decisions
based on the previous action taken, ensuring that actions
within the same request are not independent of each other.
The learning technique is integrated with the existing hybrid
simulation-optimization to create a comprehensive decision
support system for a resilient synchromodal framework. These
three modules work together by exchanging information, as
illustrated in the flow diagram in Figure 2, forming a complete
model of Learning-Assisted Hybrid Simulation-Optimization
within the synchromodal framework.

V. CASE STUDY

For the case study, the service network uses a real port-
hinterland network, with synthetically generated requests. The
service network is adapted from the European Gateway Ser-
vices (EGS) network, now known as Hutchinson Ports Europe
Intermodal (HPEI). This network connects the Hutchinson
Ports ECT in the Port of Rotterdam to inland terminals in
the Netherlands, Belgium, and Germany through the Rhine-
Alpine corridor. The details of the network, including distances
between terminals and the service schedule, are derived from
a study by [18].

The network comprises 10 terminals, with 3 of them located
in the Port of Rotterdam and the rest scattered across inland
terminals. It includes 49 barges, 33 trains, and 34 truck
service lines operating between these terminals. The network
is illustrated in Figure 5. Each service line represents one
origin and one destination with a unique departure time each
week. Some connections have multiple lines for the same

Fig. 5: EGS Service Network
source: [18]

mode of service from the same origin-destination pair but with
different departure times, indicating service frequency. Each
service line only serves two nodes, with no modes providing
multiple stops at different terminals. While truck services
have one line for each origin-destination pair, it is assumed
that truck service capacity is unlimited and can accommodate
multiple departures as per assigned requests. The carrying
capacities of barge and train services are 160 TEU and 90
TEU, respectively. Travel speeds are 15 km/hour for barges,
45 km/hour for trains, and 75 km/hour for truck services. The
distances between terminals vary for each service mode.

Requests are generated randomly according to the service
capacity proportion of each origin-destination pair. For in-
stance, the number of services connecting Delta to Nuremberg
is much higher than those connecting Delta to Willebroek, so
the request volume from Delta to Nuremberg is proportionally
higher. Requests are announced in batches, each consisting
of multiple shipment requests. For the default scenario, 200
requests are generated and announced proportionally over 3
weeks. This default demand scenario is used to train the RL
agent.

A. Optimization Model Plug-In

For the case study, a matching problem optimization algo-
rithm inspired by [29] and [30] is integrated as a plug-in to
the optimization module. The model is originally designed as
a learning-based robust optimization consisting of a prediction
module and a decision module. The prediction module is used
to derive uncertainty sets for road travel time. The uncertainty
sets, then, are fed to the downstream robust optimization model

in the decision module. Based on uncertainty sets, the robust
reformulation is done to convert the robust optimization model
to a deterministic model which is solved by mathematical
solvers. However, from this comprehensive framework, only a
fragment of the decision module, the deterministic optimiza-
tion model, is plugged into the optimimzation module of the
learning-assisted hybrid simulation-optimization.

The inputs of the optimization model are shipment requests
and service lines. It uses a path-based approach and employs
a preprocessing algorithm to generate paths from available
service lines to reduce the computational burden within the
optimization model. The path generation algorithm consists
of all possible services that satisfy the spatiotemporal require-
ments and transshipment feasibility.

The path is generated according to each service line’s
departure and arrival time and each path is attributed with all
the cost components including the transshipment and storage
costs if any. The cost calculation of each path considers all
the modes of service within the path. If there are two modes
of service in one path, then the travel cost is the total of those
two modes’ travel costs given the travel distance and time in
the path. Since the departure and arrival time is known, the
storage time is calculated according to the service schedule of
the mode of service in the path used for calculating the path

storage cost.

min
xt,yt

(∑
r∈R

vr(1− yt) +
∑
r∈R

∑
s∈S

csx
t
rsur

+
∑
r∈R

∑
s∈S

cTrix
t
rsur +

∑
r∈R

∑
i∈I

cSi x
t
rsS̃

s
riur

+
∑
r∈R

cDr d̃rri +
∑
r∈R

cLriur

) (2)

The objective of the optimization model is to minimize the
total transport cost including travel, transshipment, storage de-
lay, canal, handling, and emission. This model was originally
designed using a case study in Great Lakes, Canada, therefore
there is a canal cost that applies to that context. The objective
function is adjusted to fit the model with the context of the case
study in this research. The canal cost and emission cost are
eliminated from the objective function resulting in the equation
presented in Equation 2.

The Equation 2 attempts to maximize the number of
matches and minimize the total transportation cost which
includes six terms: the first term enforces the model to match
shipment requests as many as possible. The second term
determines the transportation cost, the third term denotes the
transshipment cost, the fourth term accounts for storage cost,
the fifth term shows the delay penalty costs, and the final term
represents the loading/unloading cost.

by integrating an optimization algorithm, with the given
input, the integrated model needs around 6 to 7 minutes to
complete one episode. This is mainly because of the high
computational work in solving the optimization problem. With
the 6-minute run-time, it requires a huge amount of time to
give the RL agent a sufficient number of episodic training
to see its improved performance. Therefore, adjustment is
required to decrease the solution time.

The first modification is to separate the planning process
from the episodic training. The optimization algorithm is run
separately before starting the episodic training and matches
all the demand instances at one time. The matching results
are then attached to each request in the input, so, instead of
having an empty list of assigned services, each request has
an itinerary in the shipment input table for the simulation.
Without having the separation of the planning process, the
simulation triggers the optimization module every week in
every episode and always gets the same matching results. This
separation approach saves all the unnecessary computational
burden that only offers the same matching results.

The second modification is made to reduce the number of
optimization algorithm triggers during the replanning process.
It is by providing a solution pool consisting of K-best solutions
for each shipment during the planning process. Instead of
providing only one solution during the planning phase, the
optimization algorithm generates multiple solutions consisting
of a second, third best solution up to ten solutions in the
pool. These solutions are used during the replanning process
as backup itineraries. The simulation algorithm will eliminate

the disrupted itineraries and take the best from the remaining
solutions. Whenever a shipment departs from one terminal,
it also eliminates other solutions that use different routes
from that terminal. The optimization algorithm could still be
triggered in the replanning process if there are shipments
with no remaining backup itineraries in the solution pool.
This approach could reduce the number of triggers during
the replanning and ultimately reduce the runtime. However,
it could also create suboptimal solutions since it does not
consider all the constraints in the real-time.

The solutions pool approach reduces run-time but introduces
a risk where reassigning requests could consume the capacity
of undisrupted shipments. For instance, if two disrupted re-
quests, each with 20 containers, are both reassigned to Barge1
from the second-best solution in the pool, and Barge1 only
has 30 units of free capacity, an issue arises. An undisrupted
request originally scheduled for Barge1 might not be loaded
due to the capacity limit, causing it to miss its departure and
wait for the next one.

This problem is significant because the reinforcement learn-
ing (RL) algorithm cannot account for the additional costs
incurred from undisrupted requests missing their departures.
To address this, an algorithm was developed to regulate the
loading sequence by prioritizing undisrupted requests. This
ensures that only reassigned requests might miss the departure
due to capacity issues. The extra costs from these delays
penalize the RL agent, providing valuable experience to guide
future decisions.

B. Model Training

The first step in evaluating the performance of the model is
to train the RL agent. The default demand scenario consisting
of 200 requests is used and the requests are distributed across
3 weeks period making it announced around 60 to 70 requests
each week. To generate the path, the travel cost for each
service line must be calculated. With all the properties of each
service line and two parameters of travel cost comprising the
time-related and distance-related cost, the total travel cost for
each service line can be calculated.

The simulation is set to have a 5-week duration to make sure
all the requests are delivered in case some of them have long
delays resulting in more representative results for all delivery
processes. Each episode of training has a different random
seed to ensure different disruptions. In the training, only the
service disruption is included, because the demand disruption
does not trigger the RL agent. Finally, the model is set to
have 50,000 training episodes and for every 1,000 episodes,
the action value function in the form of Q-table is extracted
to be used in the result analysis.

The three possible policies consisting always wait, always
reassign, and RL-based policy are evaluated using the model.
The always wait is a policy without having a replanning
procedure. The always reassign is a policy that triggers the
optimization algorithm every time a disruption occurs and
always accepts the solution. This represents a naive synchro-
modal framework without the RL agent. The last policy is by

(a) Total Cost - Episodic Training (b) Total Reward - Episodic Training

Fig. 6: Episodic Training for 50000 Episodes

employing the RL agent to find the optimal policy using ϵ-
greedy policy during the training. To balance the exploration
and exploitation [28], the ϵ value provides a small amount of
probability so the RL agent occasionally chooses an action
with a lower value and explores the probability of having a
better reward in a longer run. However, for the implementation,
a greedy policy is applied by always selecting actions with a
higher value in the given states.

Figure 6 presents the result of the training over 50,000
episodes using ϵ-greedy policy with the rolling mean applied
using a 2,500-episode window. The trend shows that the
mean total cost and the reward start converging by starting to
show a flat trend. After the model completes around 10,000
training episodes, both the improvement in mean total costs
and rewards are not as significant as in the early training stage.
Nonetheless, the training continues to expose the RL agent
with more experiences, thus, resulting in a resilient model to
react to various disruption scenarios.

C. Results and Numerical Experiment
After the episodic training is completed, the RL agent per-

formance using greedy policy is compared with the benchmark
policies (always wait and always reassign). The performance
comparison is performed by simulating each policy through
multiple episodes with randomized disruption. Instead of sam-
pling one case, the evaluation through multiple episodes can
show how each policy responds to different cases of sce-
narios, thus, providing more insightful information about the
resilience of the policy. In this experiment, the greedy policy
(learning-assisted) is simulated seven times using different Q-
table extracted from different amounts of training episodes
ranging from 1,000 to 50,000 training episodes. The disruption
profile set used in this evaluation is the same as the ones used
in the training. Each policy is simulated 20 times and plotted
using a box plot presented in Figure 7.

Figure 7 shows the total costs of each policy.
GP{NUMBER} indicates the greedy policy with the

number of training when the Q-table is extracted. On one
hand, always wait policy significantly outperforms always
reassign policy with the given disruption profile set. However,
it shows some outliers with high costs in 4 cases indicating
unstable performance. On the other hand, the greedy policy
shows improvement along with the number of training and
outperforms the always wait policy in some cases. In the
beginning, the greedy policy shows unstable performance
indicated by the high variance of total costs. The performance
is getting stable as the training episodes increase. Additionally,
the total cost average of the greedy policy keeps decreasing
along with more completed training episodes. At 50,000
training episodes, the greedy policy manages to have a lower
mean of total costs compared to the always wait policy.

Although showing the improvement relative to the bench-
mark policy, the chart does not clearly show how the learning-
assisted model performs. To see this, the investigation is taken
into more detail by comparing each episode. In this evaluation,
the always reassign policy is excluded since it was clearly
outperformed in Figure 7. With the same disruption profile
set, the total cost in each episode is compared between greedy

Fig. 7: Policy Comparison (Multiple Cases)

Fig. 8: Comparison Between Always Wait and Greedy Policy
in Episodic Simulations

policy using the Q-table after 50,000 episodes and always wait
policy. The result is presented in Figure 8.

The blue bars and orange bars represent the total cost of
each policy respectively. The lower cost indicates a better
performance of one policy over the other. The red dashed line
is the total cost of a non-disrupted scenario. It is interesting
that in a few cases, such as case C20, the total cost of a
disrupted scenario appears lower than the non-disrupted. This
happens because of several unique cases. For instance, in case
C20, one request is planned in the first week to take service
in the week after because its release time is slightly more
than the departure time of the service mode in the first week.
However, because of the delay in the departure time of the
service, the shipment can be loaded to the assigned service in
the first week, thus, resulting in lower storage costs.

The chart reveals that in only 4 out of 20 simulations,
the always wait policy incurs lower total costs compared to
the greedy policy. Among these 4 simulations, C3 exhibits
an insignificant difference. This suggests that with the same
disruption profile used for training, the greedy policy generally
makes better decisions in response to disruptions with 80% of
cases the greedy policy yields better performance. In these
20 sample cases, the cost savings by the greedy policy range
from 0.08% to 15.96%. If the calculation only considers the
affected requests, the highest savings from greedy policy over
benchmark policy reaches 35,7%. The amount of savings
depends on the severity of delays caused by the disruptions in
the network.

Further investigation at the action level reveals a correlation
between the number of actions taken for a request and its
total cost. The RL agent, in a few cases, takes multiple
actions for a single shipment because the shipment experiences
multiple disruptions. The Q-learning technique updates each
action value in a given state by considering the reward and
the discounted future state, as explained in Equation 1. This
method captures stochastic behavior by updating the action
value function after visiting a certain state. If a state occurs
frequently, the action value will continuously update until it
converges. Conversely, if a state is rarely visited, the action
value function remains less updated according to the rewards

from this state. Given the disruption profile, such multiple
disruptions are rare in the training set. Consequently, the action
value function suggests immediate actions without anticipating
future disruptions, as the model has not frequently encountered
these scenarios during training.

Another observation is made to see how the decision made
by the RL agent relates to each cost component (Storage,
Travel, Handling, and Delay). From the same case, each cost
component is compared between 2 policies as presented in
Figure 9. The y-axis scale is set to be the same with each
tick representing 50,000 Euro to give easier comparison across
different cost components. The scaling ignores case C16 since
it is an extreme case with a significantly higher cost.

The result shows that greedy policy tends to take the option
with higher travel cost, indicated by Figure 9b, to reduce the
storage cost and delay penalty as shown in Figure 9a and
Figure 9d. Meanwhile, handling costs are not really affected
by different policies. It is essential to understand that this
tradeoff behavior is a result of the given cost parameters as it
is directly linked to the reward system. The tradeoff behavior
might change if the cost parameters used for the training are
different

The current approach of the greedy policy involves se-
lecting an itinerary from the solution pool for reassignment,
and only triggers the optimization algorithm if there is no
possible solution found in the solution pool. This method is
compared to consistently triggering the optimization (always
optimize) module during replanning. Figure 10 illustrates the
comparison results. The cyan bars represent the total cost
of always triggering the optimization module. The results
indicate that the greedy policy using the solution pool generally
performs better. This is because, in the always optimize case,
the optimization module generates several solutions during
replanning that are different from the solution pool given the
real-time information and they are not yet explored during the
training. Ultimately, this leads to suboptimal decision-making.
However, in some cases such as case 14 (C14) and case (C10),
the always optimize policy yields lower total costs. Further
investigation reveals that the optimization model generates
several solutions distinct from the solution pool that results
in lower costs. This suggests that the solutions provided by
the optimization module during replanning could potentially
yield better performance if selected correctly.

D. Experiment on Different Disruption Sets

The experiment is performed to evaluate the model that has
completed 50,000 training episodes with different disruption
scenarios and compare the performance with the benchmark
policies. To perform the experiment and deduce the change of
behavior across different types of disruption, sets of disrup-
tion profiles are established and presented in Table III. The
disruption on trucks is omitted from profile1 due to technical
reasons while it also hardly affects the network. The disruption
sets are characterized by different occurrence rates. S1 is
scenario 1 with the lowest occurrence rate. The occurrence
rate keeps increasing two times for each disruption set until

(a) Storage Cost Comparison (b) Travel Cost Comparison

(c) Handling Cost Comparison (d) Delay Penalty Comparison

Fig. 9: Cost Element Comparison

the set S5 with an extremely frequent occurrence rate. To put
it in context, the occurrence rate of the default disruption set
used in the training is between S2 and S3. The result of the
second experiment is presented in Figure 11a

The experimental setup is nearly the same as the first ex-
periment. The model is simulated 20 times for each disruption

Fig. 10: Comparison Between Solution Pool Approach and
Always Optimize in Episodic Simulations

set and policy. The total cost of each simulation is shown
in Figure 11a. The greedy policy is plotted in blue colors
while the always wait policy is in orange colors. The first
notable finding is that changes in the disruption occurrence rate
affect the total costs, especially in S4 and S5. As disruption
frequency increases, so do the total costs, as indicated by the
ascending trendline.

An interesting observation is that the learning-assisted
model performs best under disruption scenarios S2 and S3.
However, its performance declines compared to the benchmark
policy as disruption frequency increases. Although the greedy
policy shows more stable performance, indicated by fewer
outliers, many cases yield higher costs compared to the always
wait policy as the disruption frequency increases. This decline
is due to differences between the probability distributions in
this experiment and those used during episodic training. S2
and S3 are most similar to the distributions used in training,
allowing the greedy policy to perform well in these cases.

In the less frequent disruptions, the greedy policy has almost
the same performance as the benchmark policy. This is because
the fewer disruptions in the network, the closer the always wait
policy with the optimal policy. This is also indicated by the fact
that only 64 times the RL agent is triggered in total throughout

TABLE III: Disruption Scenarios

Profile Severity Location Impact Type LB Duration UB Duration Occurrence Rate (Lambda)
S1 S2 S3 S4 S5

Profile1 Low Train Delay 3 6 0.00021 0.00042 0.00084 0.00168 0.00336
Profile2 Low Barge Delay 3 9 0.00024 0.00048 0.00096 0.00192 0.00384
Profile3 High Train, Barge Delay 12 48 0.00004 0.00008 0.00016 0.00032 0.00064
Profile4 Low Terminal Delay 3 6 0.00021 0.00042 0.00084 0.00168 0.00336

Profile5 Low Barge
Capacity
reduction

12 24 0.00004 0.00008 0.00016 0.00032 0.00064

(a) Total Costs for Different Disruption Sets (b) Aggregated Costs Comparison

Fig. 11: Experiment on Different Disruption Sets Results

20 simulations. In contrast, the RL agent is triggered 219 times
in the default disruption set.

This finding is also indicated by the aggregated costs
comparison presented in Figure 11b. The figure presents the
total costs throughout the 20 simulations for each disruption
set. It provides the overall performance of the policy. The chart
shows that across all disruption sets, the total costs generated
by the greedy policy are lower than the always wait policy. In
particular, the cost gap in S2 and S3 is larger compared to the
other disruption sets.

Despite overall better performance in the aggregated total
costs, the data demonstrates that the greedy policy outperforms
the benchmark policy only in scenarios S2 and S3 based on
the number of simulations where it achieves better results.
Specifically, Figure 12 summarizes the performance across
various disruption sets. As explained earlier, in disruption set
S1, the greedy policy is outperformed by the always wait
because in the lower disruption frequency, the always wait
policy is getting closer to the optimal solutions. A thorough
investigation reveals there are several unstable values, again
due to the stochastic environment.

In disruption sets S2 and S3, the greedy policy performs
better in 13 and 16 out of 20 simulations, respectively. This
indicates that the greedy policy is more effective approximately
65% to 80% of the time when the probability distribution
closely resembles the episodic training. Meanwhile, in disrup-
tion sets S4 and S5, the greedy policy performance is declining
due to many disruptions in the network creating more multiple
disruptions for one shipment.

Fig. 12: Performance Comparison by Number of Cases

The next experiment on the disruption set is to simulate the
model through 2 distinct scenarios: Short delay disruptions and
severe delay disruptions. For the short delay, the disruption
profile4 is omitted from the disruption set, while the severe
delay only includes the disruption profile4. The occurrence
rate used in this experiment is the same as the default case
in the episodic training. However, to apply enough disruption,
the probability occurrence for severe disruption set is slightly
increased to the same level as in disruption set S3 from the
previous experiment to apply more disruption but still keeping
the distribution closer to the one used in the training. The result
of this experiment is presented in Figure 13

(a) Total Cost - Short Delays (b) Total Cost - Severe Delays

(c) Action Proportion - Short Delays (d) Action Proportion - Severe Delays

Fig. 13: Short and Sever Delays Experiment

The two charts on the left represent the result of applying
short delays while the charts on the right show the result of
applying severe delays. Figure 13a shows that the disruptions
create many delays indicated by only one case with the same
total cost (C3). This is possible due to the high disruption
occurrence rate. However, the low severity of the disruption
makes the optimal solution closer to the always wait policy.
The poor performance of the RL in some cases, again, is
caused by multiple disruptions in one shipment. An important
point to highlight is, due to the low severity disruption, the
highest savings by the RL-agent are only 2.4%.

In contrast, in the severe delays scenario, the costs between
greedy policy and always wait in most cases are almost
the same due to the low occurrence rate as presented by
Figure 13b. However, once the disruption creates delays in the
network, the RL-agent can produce higher savings compared
to the short-delayed disruption. The savings in the severe delay
scenario reaches up to 3.65%.

The charts at the bottom (Figure 13d and Figure 13c) present
the proportion of actions between wait and reassign taken by
the RL agent. Some cases in the severe delays scenario are
blank because there was no action taken by the RL agent in
that specific case. As expected, in the severe delays, despite
only a few actions taken due to low disruption frequency, the

proportion of taking reassign action is generally higher than
wait action.

VI. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
RESEARCH

This paper proposes a modular simulation-optimization de-
cision support tool to address the dynamic nature of demand
and disruption in synchromodal transport. To address the un-
known duration of disruptions in the synchromodal framework,
an RL agent is integrated. Always wait policy is selected as
a benchmark policy, in which a shipment always stays with
its original itinerary even though disruptions occur. The other
policy is the greedy policy through the RL-assisted model
where the RL-assisted selects actions between wait or reassign
in reaction to disruptions. The RL-assisted model outperforms
the benchmark policy by using its experience to choose the
proper actions in response to disruptions.

From the performance comparison, the research answers
the underlying question ”To what extent does a learning ap-
proach improve the resilience of a synchromodal framework in
coping with disruptions?”. After completing 50,000 episodes
of training, a case study using real service network data
was conducted. The learning-assisted model was simulated 20
times using a greedy policy and compared with the benchmark

policy of always waiting. The greedy policy outperformed
the benchmark in 16 out of 20 simulations or 80% of the
time, achieving cost savings of up to 15.96% of the total
cost compared to the benchmark, or 35.7% when considering
only the affected requests. While the extent of cost reduction
depends on network delays, the model’s ability to perform
better across various disruption scenarios is more crucial
than the specific amount of savings. Additionally, the model
proves to still provide better performance compared to the
benchmark policy in a certain range of different probability
distributions of the disruption, as indicated by the result of up
to 30% difference in occurrence rate. The overall performance
suggests that the proposed model can create a more resilient
synchromodal framework by utilizing reinforcement learning.

The results of this research indicate that utilizing a learning
approach within a synchromodal framework could bring added
value and serve as a foundation for future research directions.
First, incorporating data-driven disruptions and extensive pro-
files, such as severe disruptions at terminals or service line
infrastructure, could provide more realistic scenarios for the
RL agent and enhance the reliability of the model. Second,
integrating a meta-heuristic optimization model to address run-
time issues, enabling the optimization module to be triggered
consistently during training and fully exploring the model’s
potential. Third, Implementing a communication scheme be-
tween multiple sub-agents to generate actions leading to
system-wide optimization could be a valuable future direction.
Finally, addressing the limitations of the current model by
implementing deep reinforcement learning techniques. This
approach allows the model to estimate values of unvisited
states, enabling the RL agent to perform well without visiting
all states. This would allow for more complex state features
and more accurate decisions without significantly increasing
training time.

REFERENCES

[1] Eurostat, “77% of inland freight transported by road in 2020,” 2020.
[2] L. A. Tavasszy, B. Behdani, and R. Konings, “Intermodality and Syn-

chromodality,” SSRN Electronic Journal, 4 2015.
[3] G. Santos, H. Behrendt, L. Maconi, T. Shirvani, and A. Teytelboym,

“Part I: Externalities and economic policies in road transport,” Research
in Transportation Economics, vol. 28, pp. 2–45, 1 2010.

[4] T. Delbart, Y. Molenbruch, K. Braekers, and A. Caris, “Uncertainty
in intermodal and synchromodal transport: Review and future research
directions,” 4 2021.

[5] A. Rodrı́guez-Clare, M. Ulate, and J. P. Vasquez, “Supply Chain Dis-
ruptions, Trade Costs, and Labor Markets A framework of international
trade with unemployment,” tech. rep., 2023.

[6] B. W. Schlake, C. P. Barkan, and J. R. Edwards, “Train delay and
economic impact of in-service failures of railroad rolling stock,” Trans-
portation Research Record, pp. 124–133, 12 2011.

[7] L. Chen and E. Miller-Hooks, “Resilience: An indicator of recovery ca-
pability in intermodal freight transport,” Transportation Science, vol. 46,
no. 1, pp. 109–123, 2012.

[8] B. Acero, M. J. Saenz, and D. Luzzini, “Introducing synchromodality:
One missing link between transportation and supply chain management,”
Journal of Supply Chain Management, vol. 58, pp. 51–64, 1 2022.

[9] R. Giusti, D. Manerba, T. G. Crainic, and R. Tadei, “The synchronized
multi-commodity multi-service Transshipment-Hub Location Problem
with cyclic schedules,” Computers and Operations Research, vol. 158,
10 2023.

[10] M. A. M. De Juncker, D. Huizing, M. R. O. del Vecchyo, F. Phillipson,
and A. Sangers, “Framework of Synchromodal Transportation Prob-
lems,” pp. 383–403, 2017.

[11] R. Giusti, D. Manerba, G. Bruno, and R. Tadei, “Synchromodal logistics:
An overview of critical success factors, enabling technologies, and
open research issues,” Transportation Research Part E: Logistics and
Transportation Review, vol. 129, pp. 92–110, 9 2019.

[12] W. Qu, J. Rezaei, Y. Maknoon, and L. Tavasszy, “Hinterland freight
transportation replanning model under the framework of synchromodal-
ity,” Transportation Research Part E: Logistics and Transportation
Review, vol. 131, pp. 308–328, 11 2019.

[13] W. Guo, B. Atasoy, W. Beelaerts van Blokland, and R. R. Negenborn,
“Dynamic and Stochastic Shipment Matching Problem in Multimodal
Transportation,” Transportation Research Record, vol. 2674, pp. 262–
273, 2 2020.

[14] W. Guo, B. Atasoy, and R. R. Negenborn, “Global synchromodal
shipment matching problem with dynamic and stochastic travel times: a
reinforcement learning approach,” Annals of Operations Research, 2022.

[15] T. Ambra, A. Caris, and C. Macharis, “Should I stay or should I Go?
Assessing intermodal and synchromodal resilience from a decentralized
perspective,” Sustainability (Switzerland), vol. 11, no. 6, 2019.

[16] A. Di Febbraro, N. Sacco, and M. Saeednia, “An agent-based framework
for cooperative planning of intermodal freight transport chains,” Trans-
portation Research Part C: Emerging Technologies, vol. 64, pp. 72–85,
3 2016.

[17] M. Hrušovský, E. Demir, W. Jammernegg, and T. Van Woensel, “Real-
time disruption management approach for intermodal freight transporta-
tion,” Journal of Cleaner Production, vol. 280, 1 2021.

[18] Y. Zhang, R. R. Negenborn, and B. Atasoy, “Synchromodal freight
transport re-planning under service time uncertainty: An online model-
assisted reinforcement learning,” Transportation Research Part C:
Emerging Technologies, vol. 156, 11 2023.

[19] Y. Zhang, W. Guo, R. R. Negenborn, and B. Atasoy, “Synchromodal
transport planning with flexible services: Mathematical model and
heuristic algorithm,” Transportation Research Part C: Emerging Tech-
nologies, vol. 140, 7 2022.

[20] X. Wang, “Optimal allocation of limited and random network resources
to discrete stochastic demands for standardized cargo transportation
networks,” Transportation Research Part B: Methodological, vol. 91,
pp. 310–331, 9 2016.

[21] P. Wide, L. K. Kalahasthi, and V. Roso, “Efficiency effects of infor-
mation on operational disruption management in port hinterland freight
transport: simulation of a Swedish dry port case,” International Journal
of Logistics Research and Applications, 2022.

[22] C. W. Palmqvist, A. Lind, and V. Ahlqvist, “How and Why Freight
Trains Deviate From the Timetable: Evidence From Sweden,” IEEE
Open Journal of Intelligent Transportation Systems, vol. 3, pp. 210–
221, 2022.

[23] A. Barkley and K. Mcleod, “Congestion and consolidation: An empir-
ical study of a barge shipping merger,” Regional Science and Urban
Economics, vol. 93, 3 2022.

[24] PoR, “Barge Performance Monitor,” 2024.
[25] C. van Dorsser, F. Vinke, R. Hekkenberg, and M. van Koningsveld,

“The effect of low water on loading capacity of inland ships,” European
Journal of Transport and Infrastructure Research, vol. 20, no. 3, pp. 47–
70, 2020.

[26] CCNR, “WATER LEVELS AND AVAILABLE VESSELS’ DRAUGHT
AT GAUGING STATIONS ON RHINE AND DANUBE,” 2020.

[27] Statista, “Average monthly delays for late container vessel arrivals
worldwide from January 2019 to July 2022,” 2022.

[28] R. S. Sutton and A. G. Barto, Reinforcement learning : an introduction.
2018.

[29] S. Filom and S. N. Razavi, “Decarbonization through modal shift using
a synchromodal platform: A case study in the Great Lakes,” 2023.

[30] W. Guo, B. Atasoy, W. B. van Blokland, and R. R. Negenborn, “Global
synchromodal transport with dynamic and stochastic shipment match-
ing,” Transportation Research Part E: Logistics and Transportation
Review, vol. 152, 8 2021.

B
Optimization Model Constraints

Constraints for the complete optimization model used for the optimization module are as follows:

ytr ≤
∑

s∈S+
or

xt
rs, ∀r ∈ Rt, (B.1)

ytr ≤
∑

s∈S−
dr

xt
rs, ∀r ∈ Rt (B.2)

∑
s∈S+

or

xt
rs ≤ 1, ∀r ∈ Rt (B.3)

∑
s∈S−

dr

xt
rs ≤ 1, ∀r ∈ Rt (B.4)

∑
s∈S−

or

xt
rs ≤ 0, ∀r ∈ Rt (B.5)

∑
s∈S+

dr

xt
rs ≤ 0, ∀r ∈ Rt (B.6)

∑
s∈S+

i

xt
r,s ≤ 1, ∀r ∈ Rt, i ∈ I \ {or, dr} (B.7)

∑
s∈S−

i

xt
r,s ≤ 1, ∀r ∈ Rt, i ∈ I \ {or, dr} (B.8)

∑
s∈S+

i

xt
r,s =

∑
s∈S−

i

xt
r,s, ∀r ∈ Rt, i ∈ I \ {or, dr} (B.9)

∑
r∈Rt

xt
r,sur ≤ U t

s , ∀s ∈ S (B.10)

Ds +B(1− xt
rs) ≥ ar + fL

i ur, ∀r ∈ Rt, s ∈ S (B.11)

ztrsp ≤ xt
rs ∀r ∈ Rt, s ∈ S, p ∈ S (B.12)

ztrsp ≤ xt
rp ∀r ∈ Rt, s ∈ S, p ∈ S (B.13)

ztrsp ≥ xt
rp + xt

rs − 1 ∀r ∈ Rt, s ∈ S, p ∈ S (B.14)

Ds + ts + 2fL
i ≤ Dp +B(1− ztrsp), ∀r ∈ Rt, s ∈ Smarine ∪ Srail ∪ Struck, p ∈ S, i ∈ I \ {or, dr} (B.15)

89

90

cLri =
∑
s∈S+

i

cLi x
t
r,s, ∀r ∈ Rt, i = or (B.16)

cLri =
∑
s∈S−

i

cLi x
t
r,s, ∀r ∈ Rt, i = dr (B.17)

cTri =
∑
s∈S+

i

∑
p∈S−

i

cTi z
t
rsp, ∀r ∈ Rt, i ∈ I \ {or, dr} (B.18)

S̃s
ri = max(0, (Ds − ar − fL

i ur).x
t
rs) ∀r ∈ Rt, s ∈ S, i = or (B.19)

S̃p
ri = max(0, (Drp−Drs−ts−2fL

i).z
t
rsp) ∀r ∈ Rt, s ∈ Smarine∪Srail∪Struck, p ∈ S, i ∈ I\{or, dr} (B.20)

S̃s
ri = max(0, (er −Ds − ts − fL

i).x
t
rs) ∀r ∈ Rt, s ∈ Smarine ∪ Srail ∪ Struck, i = dr (B.21)

d̃sri = max(0, (As + fL
i − er).x

t
rs) ∀r ∈ Rt, s ∈ Smarine ∪ Srail ∪ Struck, i = dr (B.22)

Constraints B.1 and B.2 guarantee the platform accepts requests only if there are available services
departing from the request’s origin and arriving at the request’s destination, respectively. Constraints
B.3 and B.4 check that at most one service matches with request r ∈ Rt with the same origin and des-
tination, respectively. Constraints B.5 to B.8 are responsible for eliminating subtours from the solution
in which constraints B.6 and B.7 are designed to remove the subtours from shipment request origin
and destination, respectively. Moreover, constraints B.8 and B.9 are designed so that each itinerary
must have one origin and destination. Constraint B.9 ensures flow conservation at transshipment ter-
minals. Constraint B.10 ensures that the total amount of containers matched with service s ∈ S does
not surpass the service available capacity at decision epoch t ∈ T . Constraint B.11 guarantees that the
departure time of service minus loading time (based on container volumes) should be earlier than the
request release time, for matched requests and services. B is a large number to make the constraint
valid when a request is matched with a service (i.e. xt

rs = 1).

Constraints B.12-B.14 maintain the logic of the transshipment problem through binary variables xt
rp

and ztrsp. The first one denotes the potential service p ∈ S that could be matched with service s ∈ S at
ds where the destination of the transshipment service is similar to the request destination (i.e, dp = dr).
The binary variable ztrsp equals 1 if and only if xt

rs = 1 and xt
rp = 1 indicating that the transshipment

occurred between service s and p. Constraint B.15 ensures the temporal feasibility of transshipment at
the intermediate terminal. Constraints B.16 and B.17 calculate the loading and unloading cost at the
origin and destination of the request, respectively. Constraint B.18 determines the transshipment cost
including both loading and unloading costs at the transshipment terminal. Constraints B.19-B.21 are
designed to calculate storage cost. Constraint B.19 determines the storage cost at the origin terminal.
Constraint B.20 computes the storage cost at the transshipment terminal, and constraint B.21 computes
the storage cost at the destination terminal. Constraint B.22 determines the delay time at the destination
intermodal terminal of the request.

C
Case Study Datasets

Table C.1: Barge Line Distance Network

N Delta Euromax HOME Moerdijk Venlo Duisburg Willebroek Neuss Dortmund Nuremberg
Delta 0 15 37.5 75 195 240 165 255 - -
Euromax 15 0 - 82.5 202.5 247.5 172.5 262.5 - -
HOME 37.5 - 0 45 165 232.5 157.5 - - -
Moerdijk 75 82.5 45 0 150 180 - - - -
Venlo 195 202.5 165 150 0 - - - - -
Duisburg 240 247.5 232.5 180 - 0 - 37.5 - -
Willebroek 165 172.5 157.5 - - - 0 - - -
Neuss 255 262.5 - - - 37.5 - 0 - -
Dortmund - - - - - - - - 0 -
Nuremberg - - - - - - - - - 0

Table C.2: Train Line Distance Network

N Delta Euromax HOME Moerdijk Venlo Duisburg Willebroek Neuss Dortmund Nuremberg
Delta 0 - - - 180 270 - 225 315 675
Euromax - 0 - - 202.5 292.5 - 247.5 337.5 697.5
HOME - - 0 - 157.5 247.5 - - - -
Moerdijk - - - 0 135 180 - - - -
Venlo 180 202.5 157.5 135 0 - - 67.5 112.5 495
Duisburg 270 292.5 247.5 180 - 0 - - 67.5 450
Willebroek - - - - - - 0 - - -
Neuss 225 247.5 - - 67.5 - - 0 - -
Dortmund 315 337.5 - - 112.5 67.5 - - 0 -
Nuremberg 675 697.5 - - 495 450 - - - 0

Table C.3: Truck Line Distance Network

N Delta Euromax HOME Moerdijk Venlo Duisburg Willebroek Neuss Dortmund Nuremberg
Delta 0 15 37.5 75 195 240 150 262.5 300 675
Euromax 15 0 45 90 210 247.5 165 270 315 712.5
HOME 37.5 45 0 45 172.5 202.5 112.5 225 255 660
Moerdijk 75 90 45 0 135 180 95 - - -
Venlo 195 210 172.5 135 0 60 - 67.5 112.5 495
Duisburg 240 247.5 202.5 180 60 0 - 37.5 67.5 450
Willebroek 150 165 112.5 95 - - 0 - - -
Neuss 262.5 270 225 - 67.5 37.5 - 0 - -
Dortmund 300 315 255 - 112.5 67.5 - - 0 -
Nuremberg 675 712.5 660 - 495 450 - - - 0

91

92

Table C.4: Fixed Service Lines

K Origin Destinatin Departure Arrival Travel Time Capacity Speed
Barge1 Delta Euromax 53 55 2 160 15
Barge2 Delta HOME 53 56.5 3.5 160 15
Barge3 Delta Moerdijk 3 9 6 160 15
Barge4 Delta Moerdijk 15 21 6 160 15
Barge5 Delta Moerdijk 27 33 6 160 15
Barge6 Delta Moerdijk 39 45 6 160 15
Barge7 Delta Moerdijk 51 57 6 160 15
Barge8 Delta Moerdijk 63 69 6 160 15
Barge9 Delta Moerdijk 75 81 6 160 15
Barge10 Delta Moerdijk 87 93 6 160 15
Barge11 Delta Moerdijk 99 105 6 160 15
Barge12 Delta Moerdijk 111 117 6 160 15
Barge13 Delta Moerdijk 123 129 6 160 15
Barge14 Delta Moerdijk 135 141 6 160 15
Barge15 Delta Moerdijk 147 153 6 160 15
Barge16 Delta Moerdijk 159 165 6 160 15
Barge17 Delta Venlo 12 26 14 160 15
Barge18 Delta Venlo 18 32 14 160 15
Barge19 Delta Venlo 36 50 14 160 15
Barge20 Delta Venlo 42 56 14 160 15
Barge21 Delta Venlo 60 74 14 160 15
Barge22 Delta Venlo 66 80 14 160 15
Barge23 Delta Venlo 90 104 14 160 15
Barge24 Delta Venlo 96 110 14 160 15
Barge25 Delta Venlo 120 134 14 160 15
Barge26 Delta Duisburg 82 99 17 160 15
Barge27 Delta Duisburg 102 119 17 160 15
Barge28 Delta Willebroek 68 80 12 160 15
Barge29 Delta Willebroek 98 110 12 160 15
Barge30 Delta Willebroek 146 158 12 160 15
Barge31 Delta Neuss 80 98 18 160 15
Barge32 Euromax Moerdijk 3 9.5 6.5 160 15
Barge33 Euromax Moerdijk 51 57.5 6.5 160 15
Barge34 Euromax Moerdijk 99 105.5 6.5 160 15
Barge35 Euromax Venlo 27 41.5 14.5 160 15
Barge36 Euromax Venlo 75 89.5 14.5 160 15
Barge37 Euromax Duisburg 103 120.5 17.5 160 15
Barge38 Euromax Willebroek 112 124.5 12.5 160 15
Barge39 Euromax Neuss 66 84.5 18.5 160 15
Barge40 HOME Moerdijk 5 9 4 160 15
Barge41 HOME Moerdijk 53 57 4 160 15
Barge42 HOME Moerdijk 101 105 4 160 15
Barge43 HOME Venlo 99 111 12 160 15
Barge44 HOME Venlo 126 138 12 160 15
Barge45 HOME Duisburg 51 67.5 16.5 160 15
Barge46 HOME Willebroek 20 31.5 11.5 160 15
Barge47 Moerdijk Venlo 95 106 11 160 15
Barge48 Moerdijk Duisburg 71 84 13 160 15
Barge49 Duisburg Neuss 120 123.5 3.5 160 15
Train1 Delta Venlo 16 21 5 90 45
Train2 Delta Venlo 40 45 5 90 45
Train3 Delta Venlo 9 14 5 90 45
Train4 Delta Venlo 33 38 5 90 45

93

Table C.4 continued from previous page
K Origin Destinatin Departure Arrival Travel Time Capacity Speed
Train5 Delta Venlo 57 62 5 90 45
Train6 Delta Venlo 81 86 5 90 45
Train7 Delta Venlo 105 110 5 90 45
Train8 Delta Venlo 129 134 5 90 45
Train9 Delta Duisburg 41 48 7 90 45
Train10 Delta Duisburg 75 82 7 90 45
Train11 Delta Duisburg 99 106 7 90 45
Train12 Delta Duisburg 113 120 7 90 45
Train13 Delta Neuss 110 116 6 90 45
Train14 Delta Dortmund 88 96 8 90 45
Train15 Delta Nuremberg 51 67 16 90 45
Train16 Delta Nuremberg 99 115 16 90 45
Train17 Euromax Venlo 78 83.5 5.5 90 45
Train18 Euromax Venlo 102 107.5 5.5 90 45
Train19 Euromax Duisburg 75 82.5 7.5 90 45
Train20 Euromax Duisburg 99 106.5 7.5 90 45
Train21 Euromax Neuss 77 83.5 6.5 90 45
Train22 Euromax Dortmund 78 86.5 8.5 90 45
Train23 Euromax Nuremberg 79 95.5 16.5 90 45
Train24 HOME Venlo 86 90.5 4.5 90 45
Train25 HOME Duisburg 27 33.5 6.5 90 45
Train26 HOME Duisburg 75 81.5 6.5 90 45
Train27 Moerdijk Venlo 75 79 4 90 45
Train28 Moerdijk Duisburg 77 82 5 90 45
Train29 Venlo Neuss 112 114.5 2.5 90 45
Train30 Venlo Dortmund 113 116.5 3.5 90 45
Train31 Venlo Nuremberg 114 126 12 90 45
Train32 Duisburg Dortmund 121 123.5 2.5 90 45
Train33 Duisburg Nuremberg 122 133 11 90 45

Table C.5: Truck Service Lines

K Origin Destination Departure Arrival Travel Time Capacity Speed
Truck1 Delta Euromax 99999 99999 0.2 99999 75
Truck2 Delta HOME 99999 99999 0.5 99999 75
Truck3 Delta Moerdijk 99999 99999 1 99999 75
Truck4 Delta Venlo 99999 99999 2.6 99999 75
Truck5 Delta Duisburg 99999 99999 3.2 99999 75
Truck6 Delta Willebroek 99999 99999 2 99999 75
Truck7 Delta Neuss 99999 99999 3.5 99999 75
Truck8 Delta Dortmund 99999 99999 4 99999 75
Truck9 Delta Nuremberg 99999 99999 9 99999 75
Truck10 Euromax HOME 99999 99999 0.6 99999 75
Truck11 Euromax Moerdijk 99999 99999 1.2 99999 75
Truck12 Euromax Venlo 99999 99999 2.8 99999 75
Truck13 Euromax Duisburg 99999 99999 3.3 99999 75
Truck14 Euromax Willebroek 99999 99999 2.2 99999 75
Truck15 Euromax Neuss 99999 99999 3.6 99999 75
Truck16 Euromax Dortmund 99999 99999 4.2 99999 75
Truck17 Euromax Nuremberg 99999 99999 9.5 99999 75
Truck18 HOME Moerdijk 99999 99999 0.6 99999 75
Truck19 HOME Venlo 99999 99999 2.3 99999 75
Truck20 HOME Duisburg 99999 99999 2.7 99999 75

94

Table C.5 continued from previous page
K Origin Destination Departure Arrival Travel Time Capacity Speed
Truck21 HOME Willebroek 99999 99999 1.5 99999 75
Truck22 HOME Neuss 99999 99999 3 99999 75
Truck23 HOME Dortmund 99999 99999 3.4 99999 75
Truck24 HOME Nuremberg 99999 99999 8.8 99999 75
Truck25 Moerdijk Venlo 99999 99999 1.8 99999 75
Truck26 Moerdijk Duisburg 99999 99999 2.4 99999 75
Truck27 Moerdijk Willebroek 99999 99999 1.266667 99999 75
Truck28 Venlo Duisburg 99999 99999 0.8 99999 75
Truck29 Venlo Neuss 99999 99999 0.9 99999 75
Truck30 Venlo Dortmund 99999 99999 1.5 99999 75
Truck31 Venlo Nuremberg 99999 99999 6.6 99999 75
Truck32 Duisburg Neuss 99999 99999 0.5 99999 75
Truck33 Duisburg Dortmund 99999 99999 0.9 99999 75
Truck34 Duisburg Nuremberg 99999 99999 6 99999 75

Table C.6: Request Dataset

Request ID Origin Destination Release
Time

Due
Time Volume Assigned

Mode
Announcement

Time
Request1 1 8 3 76 7 0 0
Request2 1 9 0 112 29 0 0
Request3 1 4 9 122 11 0 0
Request4 1 9 44 166 22 0 0
Request5 1 8 74 168 24 0 0
Request6 1 6 94 151 28 0 0
Request7 2 8 13 90 28 0 0
Request8 2 9 40 152 12 0 0
Request9 2 8 12 143 27 0 0
Request10 1 9 59 149 14 0 0
Request11 1 6 3 151 15 0 0
Request12 1 9 0 88 9 0 0
Request13 2 8 70 162 6 0 0
Request14 2 6 73 191 27 0 0
Request15 1 5 2 153 15 0 0
Request16 3 6 94 168 22 0 0
Request17 1 9 96 217 11 0 0
Request18 1 5 75 179 21 0 0
Request19 3 10 39 199 7 0 0
Request20 2 10 42 102 5 0 0
Request21 1 9 59 204 15 0 0
Request22 2 10 15 169 28 0 0
Request23 3 8 30 115 28 0 0
Request24 1 9 7 137 5 0 0
Request25 1 4 32 174 10 0 0
Request26 3 9 55 217 18 0 0
Request27 1 5 47 138 17 0 0
Request28 1 6 80 186 26 0 0
Request29 1 10 43 159 21 0 0
Request30 1 5 74 215 15 0 0
Request31 1 9 61 141 10 0 0
Request32 1 8 55 114 27 0 0
Request33 1 9 11 63 13 0 0
Request34 3 8 7 79 18 0 0

95

Table C.6 continued from previous page

Request ID Origin Destination Release
Time

Due
Time Volume Assigned

Mode
Announcement

Time
Request35 1 9 28 81 17 0 0
Request36 1 8 8 121 28 0 0
Request37 1 8 7 60 30 0 0
Request38 1 6 64 135 22 0 0
Request39 1 9 9 68 9 0 0
Request40 1 5 62 223 22 0 0
Request41 1 10 47 202 28 0 0
Request42 3 10 25 133 15 0 0
Request43 1 10 0 84 16 0 0
Request44 1 8 76 182 6 0 0
Request45 1 5 92 231 9 0 0
Request46 1 8 20 144 25 0 0
Request47 1 9 87 152 29 0 0
Request48 3 8 29 147 17 0 0
Request49 1 9 82 228 5 0 0
Request50 2 9 14 111 14 0 0
Request51 2 8 25 121 21 0 0
Request52 1 10 28 160 22 0 0
Request53 3 10 41 206 23 0 0
Request54 1 5 45 175 21 0 0
Request55 1 9 13 74 23 0 0
Request56 1 10 59 189 5 0 0
Request57 2 10 45 155 17 0 0
Request58 2 6 50 133 9 0 0
Request59 1 9 78 181 27 0 0
Request60 2 9 10 74 19 0 0
Request61 1 5 37 147 24 0 0
Request62 3 10 3 73 12 0 0
Request63 1 5 74 196 7 0 0
Request64 1 8 78 154 22 0 0
Request65 1 10 25 95 15 0 0
Request66 1 9 86 162 23 0 0
Request67 1 8 238 372 30 0 144
Request68 2 8 181 347 23 0 144
Request69 2 10 166 231 24 0 144
Request70 1 8 199 308 9 0 144
Request71 1 9 184 234 16 0 144
Request72 3 5 208 260 25 0 144
Request73 1 5 218 277 14 0 144
Request74 2 10 172 263 25 0 144
Request75 1 8 198 295 27 0 144
Request76 1 10 230 311 10 0 144
Request77 2 10 197 362 30 0 144
Request78 1 9 147 314 26 0 144
Request79 1 4 228 388 20 0 144
Request80 1 6 154 260 14 0 144
Request81 2 8 198 346 30 0 144
Request82 1 9 167 222 30 0 144
Request83 1 9 157 272 28 0 144
Request84 1 9 223 273 8 0 144
Request85 1 8 203 292 10 0 144
Request86 3 10 211 314 17 0 144
Request87 1 8 203 279 12 0 144

96

Table C.6 continued from previous page

Request ID Origin Destination Release
Time

Due
Time Volume Assigned

Mode
Announcement

Time
Request88 1 10 220 378 21 0 144
Request89 2 9 181 331 10 0 144
Request90 1 8 203 256 20 0 144
Request91 1 8 180 315 6 0 144
Request92 1 10 229 296 9 0 144
Request93 1 5 177 292 27 0 144
Request94 2 10 162 330 13 0 144
Request95 1 8 183 282 9 0 144
Request96 2 9 216 285 28 0 144
Request97 3 9 214 340 28 0 144
Request98 1 4 189 333 8 0 144
Request99 2 4 155 310 11 0 144
Request100 2 5 180 327 13 0 144
Request101 1 8 238 342 20 0 144
Request102 1 9 174 315 24 0 144
Request103 2 6 188 262 8 0 144
Request104 2 5 178 275 8 0 144
Request105 1 8 152 226 25 0 144
Request106 2 10 189 299 12 0 144
Request107 1 7 179 285 23 0 144
Request108 1 10 197 275 15 0 144
Request109 1 6 198 259 14 0 144
Request110 1 9 229 312 9 0 144
Request111 1 9 228 385 30 0 144
Request112 2 9 239 366 10 0 144
Request113 1 9 215 280 10 0 144
Request114 3 8 187 302 9 0 144
Request115 1 10 203 353 9 0 144
Request116 1 8 208 277 16 0 144
Request117 2 5 186 336 22 0 144
Request118 1 10 172 269 15 0 144
Request119 1 10 155 204 26 0 144
Request120 2 9 216 288 5 0 144
Request121 3 8 230 311 14 0 144
Request122 1 6 192 318 13 0 144
Request123 3 8 201 361 8 0 144
Request124 1 10 190 342 6 0 144
Request125 2 9 214 376 9 0 144
Request126 1 9 197 359 23 0 144
Request127 1 6 172 291 28 0 144
Request128 3 10 208 299 17 0 144
Request129 2 10 240 360 9 0 144
Request130 1 10 150 273 14 0 144
Request131 2 9 226 347 26 0 144
Request132 1 10 222 313 11 0 144
Request133 2 10 356 487 19 0 312
Request134 3 10 397 548 25 0 312
Request135 1 10 326 415 8 0 312
Request136 1 8 386 440 8 0 312
Request137 1 8 338 408 27 0 312
Request138 3 10 338 401 26 0 312
Request139 2 7 404 551 9 0 312
Request140 1 8 361 519 10 0 312

97

Table C.6 continued from previous page

Request ID Origin Destination Release
Time

Due
Time Volume Assigned

Mode
Announcement

Time
Request141 1 9 331 479 17 0 312
Request142 1 8 324 492 15 0 312
Request143 3 10 333 486 26 0 312
Request144 1 8 378 477 24 0 312
Request145 1 8 400 546 5 0 312
Request146 1 8 388 509 27 0 312
Request147 1 6 324 399 29 0 312
Request148 1 8 342 465 14 0 312
Request149 1 9 354 504 13 0 312
Request150 1 9 361 506 6 0 312
Request151 3 6 323 484 11 0 312
Request152 1 5 327 392 28 0 312
Request153 1 6 385 513 7 0 312
Request154 1 9 360 489 12 0 312
Request155 1 5 387 458 29 0 312
Request156 1 10 401 468 14 0 312
Request157 1 8 358 504 5 0 312
Request158 1 8 360 488 13 0 312
Request159 1 6 392 478 24 0 312
Request160 1 5 346 441 25 0 312
Request161 2 8 335 395 19 0 312
Request162 1 5 387 466 27 0 312
Request163 3 6 381 518 25 0 312
Request164 1 8 354 422 5 0 312
Request165 3 8 359 519 7 0 312
Request166 2 6 343 471 14 0 312
Request167 1 9 354 499 21 0 312
Request168 1 5 316 443 30 0 312
Request169 1 9 345 422 28 0 312
Request170 3 6 328 442 17 0 312
Request171 1 10 403 533 25 0 312
Request172 1 9 331 422 24 0 312
Request173 1 8 356 472 22 0 312
Request174 1 5 395 474 12 0 312
Request175 2 10 385 506 8 0 312
Request176 3 8 361 471 7 0 312
Request177 1 5 351 506 27 0 312
Request178 1 8 355 503 25 0 312
Request179 1 8 328 390 25 0 312
Request180 3 9 348 485 10 0 312
Request181 3 9 323 457 17 0 312
Request182 1 9 356 411 16 0 312
Request183 1 8 323 487 16 0 312
Request184 3 9 360 517 12 0 312
Request185 1 5 372 457 20 0 312
Request186 2 10 389 466 20 0 312
Request187 1 8 377 430 23 0 312
Request188 3 7 349 416 11 0 312
Request189 1 8 366 443 24 0 312
Request190 1 6 321 401 10 0 312
Request191 1 6 391 502 11 0 312
Request192 1 8 348 516 27 0 312
Request193 2 9 366 433 7 0 312

98

Table C.6 continued from previous page

Request ID Origin Destination Release
Time

Due
Time Volume Assigned

Mode
Announcement

Time
Request194 2 10 352 458 17 0 312
Request195 1 9 316 383 16 0 312
Request196 1 10 326 428 30 0 312
Request197 1 9 329 461 9 0 312
Request198 3 6 335 384 30 0 312
Request199 2 10 490 594 5 0 480
Request200 1 5 546 661 11 0 480

	Preface
	Summary
	Introduction
	Background and Problem Definition
	Research Gap
	Research Approach
	Research Objective and Contribution
	Research Question
	Methodology

	Report Outline

	Literature Review
	Concept of Synchromodality
	Disruption in Multi-modal Freight Transportation
	Modelling Resilient Synchromodal Framework
	Dynamic Models for Synchromodal Framework
	Simulation-based Models in Freight Transport

	Learning Approaches in Freight Transport
	Supervised and Unsupervised Learning in Freight Transport
	Reinforcement Learning in Synchromodal Framework

	Literature Review Summary

	Modelling Disruptions in Multi-modal Freight Transportation
	Disruptions in Multi-modal Freight Transportation
	Disruption Categorization

	Model Formulation
	Problem Description
	Simulation Module
	Simulation Requirement and Key Performance Indicator (KPI)
	Simulation Input
	Simulation Description

	Hybrid Simulation-Optimization
	Affected Request Detection
	Optimization Module

	Reinforcement Learning Approach
	Markov Decision Process
	RL Action
	RL State
	Reward System
	Updating Action Value Function

	Learning Assisted Hybrid Simulation-Optimization

	Model Verification
	Model Input
	Simulation Verification
	Heuristic Model
	Hybrid Simulation-Optimization Verification
	Learning Assisted Model Verification
	Preliminary Results

	Case Study
	Case Study Input
	Optimization Model Plug-In
	Model Integration
	Adjustment in Path Generation Algorithm
	Adjustment in Capacity Updating
	Addressing the Run-Time Problem

	Model Training
	Initial Training Result
	Initial Findings
	Improvement for Episodic Training
	Model Re-Training

	Results and Numerical Experiment
	Default Case Result
	Experiment on Different Disruption Sets
	Experiment on Different Demand Instances
	Experiment on Different Cost Parameters

	Discussion
	Limitations
	Simulation Module
	Optimization Module
	Reinforcement Learning
	Data Deficiency

	Result Interpretation and Implication
	Result Interpretation
	Implication to the real-world

	Conclusions and Possible Future Research
	Conclusions
	Recommendations for Future Research

	Scientifc Paper
	Optimization Model Constraints
	Case Study Datasets

