
Benchmarking the hyper-parameter sensitivity of VAE
models for cancer treatment

Armin Korkic

25-06-2021

Responsible Professor: 

Supervisors:

Marcel Reinders

Stavros Makrodimitris, Tamim Abde-
laal, Mohammed Charrout, Mostafa elT-
ager

Abstract

Cancer has been known as a deadly and complex disease to tackle. By applying
machine learning algorithms we hope to improve personalized treatment for cancer pa-
tients. These machine learning algorithms are trying to learn a (latent) representation
of the input. The problem is that this representation is hard to interpret and to observe
the actual connections between the input and the output. That is why these algorithms
are considered to behave like a black-box. In this research, a benchmark is conducted
to measure how sensitive these algorithms are to changes in their hyper-parameters.
The focus of this experiment are different types of variational auto encoders. We will
measure how sensitive they are to changes in their: latent space dimension, learning
rate and type of optimizer. The models will be trained on a dataset that contains the
RNA gene-expression of different types of cancer tissues. To conclude that the opti-
mizer may play the most important role performance wise for VAE models. Using the
optimizer Adam and RMSprop results overall in lower reconstruction loss and overall
in a more consistent performance.

1 Introduction
Cancer is a deadly disease that costs the lives of thousands of people yearly in the Nether-
lands alone [1]. While treatment for this disease continues to be very difficult, there are
many factors at play when analyzing cancer growth and development. These factors can
differ heavily between patients, which makes it difficult to converge treatment into a single
methodology. That is why a wide set of possible treatments exists. The patient has many
options of different treatments, but it may not be clear for the medical experts which one
is the best. Personalized treatment through the use of machine learning could enable us to
increase the success of cancer treatment, such as in the case of oral cancer [2]. By enter-
ing patient data into the algorithm and a certain type of treatment, it could be possible
to predict the outcome of that treatment. One machine learning model that could make
these predictions possible are VAEs (Variational Auto-Encoders) [3]. Studies have shown

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



the promising potential of using VAEs in the field of medicine. They have been used to
estimate drug responses of different patients [4].

VAEs are a type of artificial neural network which is used to learn a latent space from
the input data. The VAE could use this lower dimensional representation of the data to
recreate the original data. VAEs are based on Auto-Encoders. Auto-Encoders can only
encode and decode a single data point, but VAEs go beyond a single data point. They
learn a latent distribution from the data, which allows them not only to encode and decode
existing data, but also they can produce new data. This is one advantage in using VAEs,
they are a generative model which gives them much more capabilities than regular Auto-
Encoders. It are these generative features that can be used within the field of medicine
to make personalized predictions for individual patients. However these algorithms are not
easy to grasp or to use due to their black-box nature.

In this research different VAE models will be benchmarked with data retrieved from
cancer cells to find how these different VAE models react to hyper-parameter changes.
Answering this question gives more clarity to these black-box algorithms and would make
it easier for data-scientists to tweak the hyper-parameters of their models to more optimum
settings. Research related to this upcoming research is for example a study in the university
of Pennsylvania [5]. They have attempted to extract biological relevant latent space from a
cancer transcriptomes data set using a VAE. However this paper has only studied the use
of a single type of VAE model on this data set and have not measured the performance by
varying the hyper-parameters [6]. In this research the same data set will be used, but the
performance of four different types of VAE models will be bench marked.

Section Two will contain an explanation of the Methodology used within this research.
In Section Three all the Auto-Encoder models are briefly discussed and how they differ
form each other. Following in Section Four the experiment setup is highlighted and all the
detail needed for the reader to reproduce the experiment. Then in Section Five the results
are presented within dot-plots. Section Six will discuss the ethical facets of doing research
within the field of machine learning. Section 7 will contain a discussion about the results
found in Section 5 and a conclusion is made. Finally in Section 8 a reflection of the previous
research is discussed and how future research may proceed.

2 Methodology

2.1 Problem Analysis
The research question is; "How sensitive are different VAE models to the choice of hyper
parameters". Due to the non-deterministic nature of machine learning algorithms, a purely
analytical approach will be insufficient to better understand these algorithms and therefore
an experimental approach will be needed. Machine learning algorithms got their name due
to their capabilities of changing and or learning their internal logic and reasoning of certain
problems. Their logic changes based on the problem they are solving, on how the model
is set-up and the data from which they are learning from. Because of his highly variable
internal structure, it is difficult to make a purely a-priori analysis of these models.

To tackle the research question an experiment is there to retrieve empirical data to then
perform an analysis a-posteriori of these models. The experiment will include a benchmark
different models, namely; VAE, IWAE, Info VAE and LogCosh VAE, from which their results
will be documented. The four different models fall under the category of "Auto-Encoders",
but they are all similar enough that the same benchmark experiment can be performed on

2



them all. Afterwards the results for every model will be reviewed and comparisons will
be made between the different models. Based on the results conclusions are made on the
sensitivity of hyper-parameter changes of the models.

2.2 Method Description
A purely analytical approach of answering the research question is very difficult due to the
nature of these algorithms and therefore a more empirical approach is conducted. A bench-
mark is performed through a gird-search on every model. A selection of hyper parameters
and their values is made and used for the gird search. The models are trained with a cer-
tain configuration and at the same time their performance is measured through a validation
set. In this experiment performance is defined as the reconstruction loss and the amount of
epochs until convergence. Training continues until the performance results of the validation
set have converged. All the converged results are gathered and plotted on a dot plot to
visualize the sensitivity of the results.

3 VAEs
This upcoming section will briefly explain the different VAE models on which research will
be conducted on and how these models differ from each other. But first a brief explanation
will be given about auto encoders. The list below will contain all the VAE models on which
research will be conducted.

• Standard VAE [3]

• IWAE [7]

• InfoVAE [8]

• LogCosh VAE [9]

3.1 Autoencoder
An auto encoder is a type of neural network which exists out of two parts, the encoder and
the decoder. The encoder exists out of neurons in which each layer is consequently smaller
then the previous layer. The output of the encoder is known as the latent space. The
decoder is often very similar to the encoder except that the layer sizes are reversed, so first
the smallest size and then the larger ones. However there are models in which the encoder
and the decoder differs very much.

The auto encoder functions as follows; the model takes as input a vector, which may
represent an image, medical data or other type of data. The vector is fed through the
encoder and then through the decoder. The model compares the input and the output with
each other and propagates through the model to adjust the weights and biases. The model
tries to recreate the original input by processing it into the latent space. And afterwards
tries to recreate the original image from this laten space.

The loss of the auto encoder is calculated by taking the mean-squared error of the input
and the output vector.

loss =MSE(input, output)

3



3.2 VAE
A VAE is a machine learning model which is derived from the machine learning model "Auto
Encoders". A VAE performs seemingly similar, however the VAE learns a distribution of
the data instead a single latent space, which means that the VAE can generate new unseen
samples of the data. An auto encoder can learn to encoder and to decode different types
of data, but a VAE could also generate new samples of this data. The VAE uses the
reparameterization trick to learn this distribution [3].

The loss of this model is also calculated differently than the loss of the auto-encoder
model. The loss is the sum of the mean-squared error of the input and output and the KL
divergence multiplied by the KL-weight.

loss =MSE(input, output) +KLDweight ∗KL(N(µ, σ), N(0, 1))

3.3 IWAE
The IWAE (Importance Weighted Auto Encoder) is variant of the regular VAE, but tries to
improve this model by introducing importance sampling. The model takes into account mul-
tiple samples to approximate posterior. Through this the model can learn a more complex
latent space. The loss function of this model is given below.

loss =
exponent(xi)∑
exponent(xj)

∗ (MSE(input, output) +KLDweight ∗KL(N(µ, σ), N(0, 1)))

3.4 Info VAE
The Info VAE is very similar the regular VAE, but it replaces ELBO (Evidence Lower
Bound) criteron for MMD (Maximum Mean Discrepancy). By making this change to the
VAE, the Info VAE tries to solve the problem of "Uninformative Latent Code" and "Variance
Over-estimation in Feature Space" [10]. The loss function for this model is as follows.

recon_loss =MSE(input, output) +KLDweight ∗KL(N(µ, σ), N(0, 1)))

KLD_loss = KL(N(µ, σ), N(0, 1)))

bias_correction = BatchSize ∗ (BatchSize− 1))

loss = β∗reconloss+(1−α)∗KLDweight∗KLD_loss+(α+reg_weight−1)/bias_correction∗MMD_loss

3.5 LogCosh VAE
The LogCosh VAE is also very similar to the Standard VAE, however it differs mainly in its
loss function. The standard VAE calculated the reconstruction loss by the Mean-Sqaured
Error, but the LogCosh VAE replaces it with the log hyperbolic cosine loss. The formula
for the loss function is given below.

loss =
1

α

∑
log(cosh(α(input− ouput))) + ∗KLDweight ∗KL(N(µ, σ), N(0, 1))

4



4 Experimental Setup

4.1 Experimental Description
The models will be bench marked through the use of a grid search over the following hyper-
parameter; the learning rate, latent space and optimizers.

By tweaking the learning rate it can be expected to see changes in how fast the models
learns from the data, however when this parameter is set too high this model could "jump"
over local optimum points and therefore not reach a good performance rate. But if this
learning rate is too low, it might be that the model gets stuck within a local optimum point
while unable to escape his current point and never find a global optimum.

The latent space size represents the size of the latent vector of the model. The bigger
the size the more dimensions the model has to encode the data. However if this size is too
big, the model takes longer to learn and might not even use the full dimensionality of the
vector which renders a part of the latent space unused. However, if this number is too small
then the model is forced to cram all the data into a small distribution, which could have an
affect on the overall performance of the model, since some data needs a minimum of features
to be represented sufficiently.

Finally the optimizer serves as a way for the model to adept certain training parameters
during training to hope-fully better learn from the data. This adaptability of learning is
achieved different by every optimizer. For this benchmark the grid search will be performed
with 3 different optimizers; Adam, SGD and RMSprop.

The models will be trained on a RNA Gene-Expression dataset of different cancer tissues
[6]. The model will have a single hidden layer of size 200. Then the grid search will be
performed over the following set of hyper parameters.

• Learning rate = [0.00001, 0.0001 , 0.001 , 0.01, 0.1]

• Latent space = [10, 20, 30, 50, 100, 200]

• Optimizer = [Adam, SGD, RMSprop]

The data will be split into 2 different sets, a training set and a validation set. The models
will be trained on the training set, while the validation set will be untouched by the models
and will serve as a way to measure the performance of the models. Training will continue
until the performance of the model has stopped increasing with a certain factor. Then the
validation loss will be registered and the amount of epochs until convergences will be noted
down.

4.2 Experimental Setup: The Data
The data used for training the models derives from the TCGA (The Cancer Genome Atlas)
[6]. This data contains information about the RNA gene expression of different cancer
tissues, in which the rows represent the cancer tissues and the columns are the RNA genes.
There are roughly 11000 samples and every sample has roughly 17000 features. For this
experiment the original data set has been processed to contain only the 5000 most variable
genes. The reason for this is that some genes are not very interesting to investigate, since
they are the same for all cancer or other bodily tissues, this way the algorithms can focus
on more important genes while training. Secondly, this would also boost performance time
wise since there is less data to process the algorithms can learn much quicker from the data.

5



This manner of processing the data before training is copied from another research that
trains a VAE called ’tybalt’ with the same dataset. [11]

After the data has been processed it is almost ready for training. Before training, the
data is split between two sets, the training set and the validation set. The training has 90%
of the original data while the validation set has 10% of the original data. The two sets have
no samples that overlap, so they both contain unique samples.

4.3 Experimental Setup: The model
As previously mentioned this experiment does a grid search over 4 different VAE models over
3 different hyper parameters, however such models have more hyper parameters. Therefore
a list will be given that presents the hyper-parameters that have stayed the same through
out the grid search.

Hyperparameter
Input layer size 5000
Amount of Hidden Layers 1
Hidden Layer size 256
Batch size 1000
Scheduler Gamma 0.95
Weight Decay 0.00
Number of Samples (IWAE) 5
MMD Weight (Info VAE) 110
KLD Weight (Info VAE) -9.0
Reconstruction Weight (Info
VAE)

10.5

Gradient Clip Val (Info VAE) 0.8
Alpha (LogCosh VAE) 10.0
Beta (LogCosh VAE) 1.0

Some details worthy of noting that can’t be explained within the table given above. All
models feed their calculation forward through linear neural networks, afterwards the calcu-
lations are normalized into values between ’0’ and ’1’. After the results are normalized, a
ReLu (Rectified Linear Unit) activation function is applied to the calculated results. How-
ever at the last layer of the decoder, the results are not normalized and instead of the ReLu,
a sigmoid activation function is applied to the calculated results.

Worthy of mentioning is also how in this experiment is decided when the models should
stop training. The models have been set to train for 100 epochs however, when the validation
loss is decreasing and the difference of the reconstruction loss between two epochs is 1% then
the algorithm decides to stop learning.

4.4 Experimental Setup: Code and Experiment environment
Most of the code used for this experiment has been borrowed from a public python library
called PyTorch-VAE [12]. This library contains different versions of VAE models which can
be used for the dataset CelebA, which contains facial images of celebrities [13]. However,
since the data doesn’t contain images it was important that the implementation of these
models within this library had to be changed. The models used convolutional neurons, so

6



the models were changed to use linear neurons to make calculations. Also the code was
set-up to be used with the CelebA dataset, so it was changed that the models could be run
on the TCPA cancer gene expression dataset. The library was originally copied and used
on the TU Delft gitlab.

The training was done on a Dell laptop with 16gb of RAM, on a GPU with GTX-1050Ti
on Windows 10. The code base used for this experiment is written in python 3.

5 Results
In the upcoming section the results of the grid search will be presented. The results are
formatted within a dot-plot in which the x-axis represents the latent dimension, the y-axis
represents the learning rate, the colour of the circles represents the reconstruction loss of the
validation set and the size of the circle represents on which epoch the model is converged.
There are 3 dot-plots per model. The 3 dot-plots are there because of the 3 optimizers that
are grid-searched per model. The results are presented with short description of noticeable
results.

5.1 VAE
Important to note for the Vanilla VAE model results is that when the model is run with
RMSprop with a learning rate of 0.1, the model outputs NaN values. Within the dot-plots
these values are not presented and a blank square is left within the dot-plots. It seems that
the model becomes unstable under large learning rates with a low latent space. Further
investigation needs to be done to understand why the model fails at these configurations.

This models performs overall the best with Adam and RMSprop as its optimizer. Also
the best performance seems to come from a learning rate of 0.001 for models that use Adam
and RMSprop as their optimizer.

7



Figure 1: Results of the benchmark of the VAE with the optimizers: "Adam", "RMSprop"
and "SGD". The x-axis represents the latent dimensions of the model and the y-axis rep-
resents the learning rate. The colour of the circles represent the reconstruction loss of the
models and the size of the circles represents the amount of epochs until the model has con-
verged. The largest circles denotes 28 epochs and the smallest circles represents 12 epochs.

8



5.2 IWAE
A similair phenomena arises for the IWAE model. For low learning rates, the model outputs
NaN values for the optimizers Adam & RMSprop, which is represented as blank squares
values within the dot-plot. It is assumed that the model performs instable for those values.

Similar observations could be made for this model compared to the previous model. It
performs overall the best with Adam & RMSprop as its optimizer. Also the best performance
seems to come from a learning rate of 0.001.

Figure 2: Results of the benchmark of the VAE with the optimizers: "Adam", "RMSprop"
and "SGD". The x-axis represents the latent dimensions of the model and the y-axis rep-
resents the learning rate. The colour of the circles represent the reconstruction loss of the
models and the size of the circles represents the amount of epochs until the model has con-
verged. The largest circles denotes 24 epochs and the smallest circles represents 12 epochs.

9



5.3 Info VAE
Just as the Vanilla VAE and the IWAE, for some configurations of the Info VAE it returns
NaN values. This happens for similar configurations just as with the Vanilla VAE and the
IWAE. However there are also blank squares for the Info VAE configurations with a latent
space of 200. These blank squares are there because of run time errors of the models. The
model uses more RAM then the other models, so much RAM is needed that the GPU on
which the experiment was run couldn’t provide it. This only occurred on this model with a
latent space of 200.

As with the previous model. It performs overall the best with Adam and RMSprop as
its optimizer and a learning of 0.001.

Figure 3: Results of the benchmark of the VAE with the optimizers: "Adam", "RMSprop"
and "SGD". The x-axis represents the latent dimensions of the model and the y-axis rep-
resents the learning rate. The colour of the circles represent the reconstruction loss of the
models and the size of the circles represents the amount of epochs until the model has con-
verged. The largest circles denotes 28 epochs and the smallest circles represents 12 epochs.

10



5.4 LogCosh VAE
For the LogCosh VAE, similar things occurred as for the other models. For a low learn-
ing rate and for a low latent dimension the model returns NaN values with the optimizer
RMSprop.

This model performs the best with RMSprop and Adam as optimizer. Also the best
learning rate for these models is 0.001.

Figure 4: Results of the benchmark of the VAE with the optimizers: "Adam", "RMSprop"
and "SGD". The x-axis represents the latent dimensions of the model and the y-axis rep-
resents the learning rate. The colour of the circles represent the reconstruction loss of the
models and the size of the circles represents the amount of epochs until the model has con-
verged. The largest circles denotes 25 epochs and the smallest circles represents 12 epochs.

11



6 Responsible Research
There are two important ethical aspects that need to be mentioned for this research. Firstly
the medical data that has been used for the benchmark and secondly the reproducibility of
the results and the experiments conducted within this research. The upcoming sections will
firstly discuss the ethical aspects surrounding the data, such as the privacy of subjects from
which the data has been retrieved and the availability of the data for the reproducibility of
the experiments. Afterwards the reproducibility aspects of the experiments will be discussed
and how the reproducibility of the experiments can be maintained.

As mentioned in previous sections the data that has been used for the benchmark derives
from the The Cancer Genome Atlas (TCGA) [6]. It is important to note that this data
has been retrieved while considering the protection of the participants, this includes their
consent of the use of data and the privacy of the participants. The TCGA has an ethics
policy that considers the protection of their participants [14]. It can therefore be concluded
that the data that has been used during this experiment is retrieved in an ethical manner.
Also the data has been sufficiently anonymized and is publicly accessible. Therefore the
dataset protects the identity of the individuals while also maintaining the highest degree of
reproducibility.

Following in the heart of critical and public science it is important that researchers de-
scribe their experiments as sufficiently as possible, write down all methods that have been
used and make a vivid description of the experimental set-up, so that the experiments are
better reproducible. This is most definitely the case for the benchmarking of machine learn-
ing algorithms, since these algorithms are by nature non-deterministic and therefore results
are much harder to reproduce. For every detail that is not mentioned within this report,
makes reproducing the experiments only much harder. That is why in this report the reader
is not only provided with a high-level overview of the experiments, but also descriptions
of all configurations of the models, the language in which the models are programmed, the
packages used for the models, on which machines the models were trained, the code base used
for the models, etc. All of these details are found within section 4 Experimental Setup. By
providing the reader as much information about the experiment, the reader could hopefully
reproduce the experiments and come to the same or similar results.

7 Results and Discussion
All results have been presented in the previous section and in this section the results of the
benchmark are discussed and a conclusions is drawn out of the results that considers the
sensitivity of the models towards different hyper parameters. The results are discussed per
hyper-parameter, so firstly the learning rate will be discussed, then the latent dimension and
finally the optimizers. At the end a conclusion is drawn about the different hyper-parameters
and how well each model has performed.

7.1 Learning Rate
For this experiment the models have been bench marked for a huge learning rate range, with
the lowest learning rate being 1e-05 and the highest being 0.1. It can be observed from the
dot-plots that the right learning rate plays an important role in the performance of the VAE
models. Most models perform the best with a learning rate of 0.01.

12



7.2 Latent Dimension
Looking at the values of the dot-plots it seems that the Latent Dimension also has some
impact on the performance of the models. The overall reconstruction loss tend to be very
similar when the latent space is the only varying hyper-parameter. But it seems that some-
times a higher latent dimension results in more epochs until convergences. Which is to be
expected from a higher latent dimension.

When readers want to extend this research it would be interesting to see how a lower
latent dimension would affect performance. Currently the lowest latent dimension is 10, a
benchmark could be extended that includes a latent dimension of 5 or 3.

7.3 Optimizer
It is clear from the dot-plots and their figures that some optimizers tend to perform better
then other and require less specific configurations to perform decent. For example, the IWAE
model when used with Adam and RMSprop performs decently well with most configurations,
while the same model with SGD performs decently much worse. Similar observations can
be made when looking at the dot-plots of the other models.

It can be concluded that when using Adam and RMSprop as optimizers, the models
are less sensitive to hyper-parameter changes within the learning rate and latent dimension.
For future research the grid search could be extended with other optimizers and see how
sensitive they are to hyper-parameter changes.

7.4 Conclusion
A few important aspects can be noted down about these models and how they configure
their hyper-parameter. Firstly, it was stated before that the learning rate needs to be not
too high or not too low, however it seems that all models perform the best with a learning
rate of 0.01. However for the latent space most models favour a lower latent space. This is
probably due to the data not being very complex and therefore a higher latent space would
result in more time needed to train the models.

But the most important hyper-parameter that effects the sensitivity of the models is
the optimizer. If the correct optimizer is configured for the models, then the models tends
to perform more consistent. The best performance and the least sensitivity comes from
the optimizers Adam and RMSprop. In most configuration they tend to perform overall
consistent and deliver decent results.

Hereby it can concluded while the correct learning rate and latent dimension can have
much effect on the performance of these models, but the most important hyper-parameter
sensitivity wise is the optimizer. Configuring the better optimizer for the model results
more often in better results then the "correct" learning rate or latent dimension. In this
case Adam and RMSprop, outperform and are more consistent then SGD, it can evenly be
noted down that RMSprop tends to perform slightly better then Adam.

8 Reflection and Future Work
This section of this report is dedicated as a reflection of the experiment and how future
researchers could extend and or build upon this research.

13



The most obvious manner to extend the current experiment is by extending the set of
hyper-parameters for the grid search and or increasing the amount of elements per hyper
parameter set. However this manner of extending the experiment would quickly increase the
amount of configurations and therefore also increase the amount of time needed for training
all the models. Therefore a careful selection should be made of important hyper parameters
and set of elements per hyper parameter. An interesting hyper-parameter to add to this grid
search is the amount of hidden layers within the network. Intuitively this would increase
the amount of training needed for this model, but due to the extra layer the model could
learn much more complex patterns within the data and could generate much more realistic
and accurate samples of the original data.

Since these models are non-deterministic, it would also be important and interesting
to rerun the algorithms and to also use different initialization function to measure their
performance. It could be that some models are very much dependent on how their weights
initialized while other models might perform much consistent no matter on how they are
initialized.

Currently the experiment has been done on 4 different types of auto-encoders: the VAE,
IWAE, Info VAE and LogCosh VAE. However there are more types of auto-encoders such as,
Beta-VAE, MIWAE, SWAE etc. But experiments could also be extended to differents types
of neural network models or even different types of machine learning models. Comparisons
made between different types of auto-encoders would be easier to do, but it could be possible
that some fruitfull results could be gained by benchmarking the different machine learning
models.

Another way to extend the research is by including a different type of dataset. Currently
the models are stuck on the TCGA cancer gene expression dataset. But it would be inter-
esting to see how the models would perform on different types of datasets. These datasets
could be similar to the current dataset in which the data represent some data about some
biological phenomenon. By extending research to different data-sets, conclusions could be
made of how different data-sets have what kind of impact on the models

14



References
[1] Volks Gezondheids Zorg (2019), Ranglijst doodsoorzaken op basis van sterfte,

https://www.volksgezondheidenzorg.info/ranglijst/ranglijst-doodsoorzaken-op-basis-
van-sterfte

[2] Chu, CS, Lee, NP, Adeoye, J, Thomson, P, Choi, S-W. Machine learning and treat-
ment outcome prediction for oral cancer. J Oral Pathol Med. 2020; 49: 977â 985.
https://doi.org/10.1111/jop.13089

[3] Kingma, Diederik & Welling, Max. (2014). Auto-Encoding Variational Bayes.

[4] Ladislav RampÃ¡Å¡ek, Daniel Hidru, Petr Smirnov, Benjamin Haibe-Kains, Anna Gold-
enberg, Dr.VAE: improving drug response prediction via modeling of drug perturba-
tion effects, Bioinformatics, Volume 35, Issue 19, 1 October 2019, Pages 3743â3751,
https://doi.org/10.1093/bioinformatics/btz158

[5] Way, G. P., & Greene, C. S. (2018). Extracting a biologically relevant latent space from
cancer transcriptomes with variational autoencoders. Pacific Symposium on Biocom-
puting. Pacific Symposium on Biocomputing, 23, 80-91.

[6] UCSC Xena. (2016, December 29). Gene Expression RNA
seq. https://xenabrowser.net/datapages/?cohort=TCGA%20Pan-
Cancer%20(PANCAN)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443

[7] Burda, Yuri & Grosse, Roger & Salakhutdinov, Ruslan. (2015). Importance Weighted
Autoencoders.

[8] Zhao, Shengjia Song, Jiaming Ermon, Stefano. (2017). InfoVAE: Information Maxi-
mizing Variational Autoencoders.

[9] Chen, Pengfei Chen, Guangyong Zhang, Shengyu. (2018). Log Hyperbolic Cosine Loss
Improves Variational Auto-Encoder

[10] Zhao, Shengjia, A Tutorial on Information Maximizing Variational Autoen-
coders (InfoVAE). https://ermongroup.github.io/blog/a-tutorial-on-mmd-variational-
autoencoders/

[11] A Variational Autoencoder trained on Pan-Cancer Gene Expression,
https://github.com/greenelab/tybalt/blob/master/processdata.ipynb

[12] PyTorch VAE, https://github.com/AntixK/PyTorch-VAE

[13] CelebA, Large-scale CelebFaces Attributes (CelebA) Dataset,
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

[14] TCGA Ethics & Policies, https://www.cancer.gov/about-
nci/organization/ccg/research/structural-genomics/tcga/history/policies

15


