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ABSTRACT

The TSO of a power system is mainly responsible for ensuring the stability of the grid.
Through continuous monitoring and control of the power system, the TSO maintains
stability through emergency actions. Until now, the conventional Static State Estima-
tion has been the Energy Management System (EMS) tool for estimating and monitor-
ing the grid state - bus voltages, currents, and powers. However, energy transition, which
involves the decommissioning of conventional generation and their replacement by re-
newables, leads to a more dynamic grid. In such a case, the information provided by the
static state estimator is insufficient. This has, hence, led to the development of the Dy-
namic State Estimator (DSE), to provide insight into the dynamic properties of a power
system, such as rotor angle and rotor speed. The DSE typically uses a Wide-Area Moni-
toring (WAMS) architecture consisting of Phasor Measurement Units (PMU), to dynam-
ically estimate the internal states of the generators under observation. Hence, the DSE
provides improved situational awareness to the TSO. However, the existing literature do
not elaborate on how their proposed DSE can be implemented in an online fashion to
estimate the dynamic states in near real-time. Such an online implementation is of ut-
most importance as it showcases how a TSO can deploy the DSE in a real world scenario.
Hence, this thesis proposes an online DSE algorithm that performs batch-wise estima-
tion of dynamic states in a near real-time setting. By collecting measurements in batches
and introducing the pre-processing steps necessary for these PMU measurements, the
algorithm forms the premise for the real-world application of DSE. This algorithm is val-
idated using a cyber-physical testbed comprising a Real Time Digital Simulator and a
Synchrophasor Application Development Framework. Additionally, its performance is
evaluated and a sensitivity study is conducted to find deterministic relationships be-
tween the input error introduced and the estimation error. Finally, future improvements
are proposed to make the implementation more suitable to real-world application.
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1
INTRODUCTION

In this chapter, the thesis work is introduced by familiarizing the current research theme
in Dynamic State Estimation. Also, the literature study is presented and the corresponding
scientific gap is identified. This scientific gap is then addressed by formulating the problem
into research questions. Finally, the structure of this thesis report is outlined.
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2 1. INTRODUCTION

1.1. RESEARCH THEME

F OR every critical disturbance that affects the power system, appropriate corrective
measures are undertaken to return to the system’s normalcy. Some of these actions

are introduced at the control centre of the Transmission System Operator (TSO). How-
ever, appropriate remedial actions can only be taken with the help of continuous and
efficient monitoring of the power system. Currently, the conventional Static State Esti-
mation (SSE) is used to operate and monitor the power system [1]. It is one of the pri-
mary functions of the Energy Management System (EMS). The SSE employs the concept
of weighted least squares to estimate the bus voltages, powers, and currents in the grid.
It uses the Supervisory Control And Data Acquisition (SCADA) architecture, which com-
prises sensors in the grid which send measurements at a sample rate of several seconds
[2]. However, the recent increase in decommissioning of conventional generation to be
replaced by renewables tends to push the system to volatility. In such a case, the SSE
can only capture the quasi-steady-state estimates of the grid and neglects any dynamic
information such as rotor angle and rotor speed. Consequently, SSE leads to limited sit-
uational awareness [3].

To elaborate on renewable integration, The World Energy Outlook 2020 in [4] reports
that renewables shall replace thermal generation as the primary form of electricity gen-
eration by 2025, as depicted in Fig. 1.1. In particular, wind and solar are expected to
have increased energy generation during the period of 2020-2040, with wind being the
dominant technology. However, the benefits of renewables are severely countered by the
various challenges they bring to the power system stability. These challenges are caused
by the instability in the power system due to the introduction of inertia-less and variable
generation of the renewables. With the current global energy targets pushing for faster
energy transition, there is an increased concern now towards addressing the renewable
challenges.

To address the renewable challenges, several studies are made to explain and under-
stand their consequences to the Power System Stability [5]. Power System Stability can
be defined as the ability of the system to maintain a state of equilibrium, even after a
disturbance occurs [6]. The literature in [7] finds that high solar PV generation with zero
inertia can worsen the transient stability especially when faults happen at critical junc-
tures of the grid. This was observed through the instability in the rotor angle. Further-
more, the power-electronic interface of the Doubly-Fed Induction Generators (DFIG)
wind turbines affects synchronism and in turn transient rotor stability [8]. Although, it
was observed that small signal stability is less affected for both solar and wind depending
on fault location and type of controller used respectively.

With such implications on the grid, the TSO is largely responsible for ensuring power
system stability through real-time monitoring and control. However, the system stabil-
ity is put under threat due to the continuously increasing complexity of the grid, which
cannot be captured by the current monitoring methods such as SSE. Also, in cases when
the dynamic states of a machine, such as the rotor angle, are to be observed, the SSE is
unsuitable as it uses a steady-state linear model and not a non-linear dynamic model
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Figure 1.1: A visualization chart depicting the total energy produced per different forms of energy generation
[4]

[3]. Nevertheless, the development of the Phasor Measurement Unit (PMU) has made
feasible a Wide Area Monitoring System (WAMS) with geographically distributed PMUs
sending time-synchronized phasor measurements to the central location. Utilizing such
a WAMS architecture, a Dynamic State Estimation (DSE) method can be employed to
estimate any dynamic changes in the system state. The DSE can provide improved sit-
uational awareness to the TSO by facilitating dynamic estimation and monitoring of all
the machines in a wide area of the grid. Consequently, this improved observability will
help the TSO in ensuring power system stability.

1.2. LITERATURE REVIEW AND SCIENTIFIC GAP

The Concept of DSE...
The very first occurence of DSE was by Miller et al in [9]. It was developed to estimate the
internal flux linkages of the machines in the power system. Since then, DSE has come a
long way in terms of applicability with applications ranging from parameter estimation,
model callibration, to direct oscillation monitoring [10]. The Kalman Filter (KF) can be
referred to as the heart of the DSE due to the central role it plays in the estimation. This
Kalman Filter operates with two stages - a prediction stage and a filtering stage. The
first stage involves the determination of the kth estimate using the previous estimate
and previous covariance matrix at k-1. Whereas, the subsequent stage constitutes the
calculation of the new covariance matrix from the new estimates and the corresponding
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correction to the estimate.

There are several variants of Kalman Filters that are used for filtering. The research
work in [10], studies and identifies the major filters used in DSE. These are – Extended
Kalman Filter, Unscented Kalman Filter, Ensemble Kalman Filter, and Particle Filter. The
performance of these Kalman Filters is explicitly studied and can be referred in [11]. Ac-
cordingly, an Extended Kalman Filter (EKF) focuses mainly on approximate linearization
of a non-linear system model but tends to be computationally intense and can give er-
roneous results with highly non-linear models. Unlike EKF, the Unscented Kalman Filter
(UKF), eliminates the linearization process used in EKF through a point-by-point un-
scented transformation. On the other hand, the Particle Filter estimates by comput-
ing the relative likelihood of N particles, again without the linearization assumption.
However, this filter is computationally more intense than UKF. Similarly, the Ensemble
Kalman Filter predicts and filters by using a Monte Carlo process [12]. The most suitable
KF algorithm for DSE is still arguable. It can be observed that the best KF technique de-
pends on the tradeoff between accuracy and computational power. The Particle Filter
tends to give a better accuracy while EKF and UKF seem to be the least computationally
intense. The literature in [13] further supports UKF as a better algorithm compared to
EKF, for being more accurate, easy execution, and computationally less demanding.

In order to predict the state estimates in the prediction stage, the Kalman Filter re-
quires a model. This model is simply the state-space representation of the dynamic be-
haviour of the machine to be estimated. There are several literature works as in [2], [14],
[15] and [16], which showcase a variety of system models for a synchronous generator.
However, the looming challenges from fast-paced energy transition has recently brought
out research work related to modelling of DFIG wind turbines. In [12], an ensemble form
of the Kalman filter is used to estimate callibrate a DFIG. A discretized system model con-
structed using the rotor and stator voltages as inputs, and the active power and reactive
power of the DFIG, as measurements. This DSE is shown to help in estimating the stator
and rotor currents, rotor speed, and the parameter – inertia, and hence, provides a base
case for a DFIG implementation. However, in [12], converter dynamics are not included.
In [17], a similar decoupled approach for the DSE of a DFIG wind turbine is researched.
Although similar in state variables, this particular DSE achieves estimation through a
simple 3rd order DFIG model with less known parameters. Moreover, the implementa-
tion eliminates the requirement to model the converter dynamics, hence reducing the
complexity. Authors in [18] develop a UKF-based DSE with a system model including
the rotor and grid control dynamics. Further improvement of [18] is considered in [19],
where the UKF is replaced by a Particle Filter of the unscented form to improve accuracy,
albeit at the cost of computational time. In [20], a wind model was developed to consider
the stochastic nature of the wind input. The wind model statistically predicts the wind
speed using historical data.



1.2. LITERATURE REVIEW AND SCIENTIFIC GAP

1

5

DSE Implementations...
There exist several literature works which explain DSE that help in achieving efficient
power system monitoring. The literature in [1] uses an EKF to estimate the state vari-
ables of a synchronous machine in SMIB configuration. It also takes into account the
unavailability of a field voltage measurement and proposes to solve it through an on-
line model. Similarly, the research work in [2] explores a similar DSE implementation for
three generators in an IEEE 9-bus system using UKF. However, the on-line aspect of the
WAMS is not explained in this work. In [21], a comparison between Least Squares Esti-
mation and UKF when applied to an application of multi-machine parameter estimation
is shown. Also, the research in [22] discusses an improved estimator for a WAMS appli-
cation which is less impacted by bad data and measurement noise. Similarly, the thesis
work in [23] helps in improving the performance of the WAMS. It does so by developing
a new PMU algorithm that improves accuracy at faster PMU sample rates.

Few literatures also explore online monitoring schemes, which do not use a DSE. For
example, the research work in [24] proposes a WAMS application for dynamic voltage
stability assessment by computing stability indices and power-voltage curves. Despite
being limited to only voltage stability, this work is a clear example of how a monitor-
ing scheme in an online fashion can improve observability to gauge how stable the sys-
tem is. However in this work, online computation of these indices is straightforward
and there are no challenges to overcome for the online implementation. The work in
[25] is by far the closest WAMS research to real-time deployment for a TSO. The project
presents a real-time WAMS monitoring the Great Britain power system and reviews the
challenges encountered. However, during the validation of the PMUs using their test
setup, the methodology to implement their monitoring scheme in an online fashion is
not discussed.

Scientific Gap 1...
All the above literatures are a good reference to understand what DSE is, what its compo-
nents are, and how to evaluate and improve its performance. However, these literatures
do not speak of how their proposed DSE can be implemented in an online fashion to
estimate the dynamic states in near real-time. Here, the phrase "near real-time" implies
close to real-time, as any real world application has delay. Such an online implemen-
tation is of utmost importance as it showcases how a TSO can deploy the DSE in a real
world scenario. Although, this online implementation can seem to be only an imple-
mentational challenge, there are many scientific challenges to be overcome. Some of
these challenges are explained below:

• "To estimate the dynamic states in an online fashion, should the DSE use sample-wise
or batch-wise PMU measurements?"
When estimating in an offline setting, the required measurement samples are fed as
a whole to the state estimator to iteratively compute all the corresponding state esti-
mates. However, this cannot be the case in an online setting when there is new data
arriving at the PMU’s sample rate. Hence, with real-time streaming of PMU data, the
estimation can mainly be performed in two ways - per sample or in batches of samples.
It is therefore necessary to know which method is more preferred for online estimation
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and under what circumstances.

• "If batch-wise estimation is chosen above, what is the ideal size of the batch of measure-
ments for estimation?"
In the batch-wise method, the incoming measurements are grouped together in batches
of defined size B and then put for estimation. This means that the algorithm should
wait for B measurements before estimating. If a large value is chosen for B, there is
a consequent delay introduced. This can affect the presentation of the estimates on
time. Hence, it is necessary to understand what values for B are acceptable for estima-
tion without introducing considerable delay.

• "How should the PMU measurements be pre-processed to make it suitable for estima-
tion?"
The PMU measurements that arrive can be of the polar form or the rectangular form.
The polar form of the PMU measurements, which is used in this thesis, consists of
phasor magnitudes and phasor angles. However, these phasor magnitudes are not
represented in the per unit form and these phasor angles are referenced with respect
to the GPS clock signal. Also, there is a possibility of missing values in the incoming
PMU measurements. Hence, the PMU measurements cannot be put for estimation
directly and hence, have to be pre-processed. Thus, it is necessary to know what pre-
processing steps have to be undertaken to make the phasor measurements suitable
for estimation.

Hence, this thesis contributes by addressing these challenges and in turn developing an
algorithm to perform DSE in an online fashion, to estimate dynamic states in near real-
time.

Scientific Gap 2...
Apart from the absence of a DSE in an online fashion, the literatures do not explain
clearly the DQ transformation methodology necessary for the DFIG model. To elabo-
rate, the DFIG state-space model that is used in the DSE requires state inputs i.e. DQ
rotor and DQ stator voltages. However, these state inputs are accessible by measuring
devices only in the ABC domain, and hence, require to be transformed to the DQ one.
This transformation of the state inputs from ABC domain to DQ domain can be a chal-
lenge depending on the platform the DSE is being implemented on. Hence, this thesis
also contributes by identifying and presenting these transformations, which can serve as
a guide to other monitoring and control implementations involving a DFIG.

Scientific Gap 3...
One of the final steps to validate an estimator is to perform a sensitivity analysis. It helps
in observing how the error in the estimated state is influenced by the input errors intro-
duced in DSE parameters, measurements, etc. The sensitivity analyses presented in the
DSE literatures such as [12] and [15], are explained qualitatively. However, such sensi-
tivity analyses for the DSE have not been quantified. To be specific, the literatures have
not developed mathematical relationships between the various errors introduced and
the estimation error. Such relationships help in predicting the state error for any given
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value of error introduced. Hence, this thesis also contributes by determining such rela-
tionships.

1.3. RESEARCH QUESTIONS

To address and fill the above presented scientific gaps, this thesis answers the following
research questions:

• What are the transformations, for the DFIG, that need to be performed to bring mea-
surements from the ABC domain to the DQ domain?

• How to develop an online dynamic state estimator for power systems with a central-
ized control architecture?

• What is the sensitivity relationship between the input error introduced and the esti-
mation error for synchronous generator model and DFIG model?

1.4. STRUCTURE OF THE THESIS

• Chapter 1: Introduction

The thesis project is introduced by familiarizing the current research theme in Dy-
namic State Estimation. From the literature study presented in the research theme
scientific gaps are identified and presented. This scientific gap is addressed by formu-
lating the problem into research questions.

• Chapter 2: Machine Modelling

The electrical and mechanical equations that govern the dynamic behaviour of the
synchronous generator and the DFIG wind turbine are explained in this chapter. These
equations help us in understanding how a mathematical state-space model can be
constructed to best represent the machine dynamics.

• Chapter 3: The Kalman Filter

This section lays down a detailed explanation of the discretization techniques of the
process models. This is followed by a subsequent introduction to a linear kalman fil-
ter. Finally, the modifications to this kalman filter to accomodate non-linear process
models are discussed.

• Chapter 4: Online Estimator

This chapter explains the major contributions of this thesis. In particular, the DQ
transformations that are necessary for the DFIG are identified and the online-DSE al-
gorithm used to perform online estimation in a near real-time is presented.

• Chapter 5: Case Study: Simulation and Results
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This part of the report explains how the simulation platform was integrated and the
case study used in this thesis to validate the simulation. The final results of the on-
line DSE is interpreted and the sensitivity study is layed out to show the relationship
between input errors and the state output.

• Chapter 6: Conclusion

This final chapter concludes the thesis by revisiting the contributions of this thesis
work. The future improvements to the thesis are also discussed in this section.



2
MACHINE MODELLING

Chapter 2 explains the electrical and mechanical equations that govern the dynamic be-
haviour of the synchronous generator and the DFIG. These equations help in better under-
standing the dynamic state-space models of each machine.

9
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Over the past century, electricity has found its way well into our lives, to an extent
where it is a deep-rooted necessity. From the power system’s perspective, this can be
credited to the continuous developments in the generation, transmission and deliver-
ance of electrical power to the consumers; leading to a sophisticated electrical power
system. However, despite any such improvements to grid technologies, the primary form
of power generation remains to be conventional - employing a three phase synchronous
generator. These machines generate power at the same electrical frequency of the sys-
tem, maintain synchronism, and eventually contribute to the system stability of the grid.

On the contrary, there is a push to move towards renewable energy sources. In par-
ticular, wind can be regarded as one of the most important renewable energy sources for
mankind. From transportation through sailboats to grinding grain in wind-mills, wind
energy has proven itself to be a catalyst in human development. The recent advance-
ments in wind turbine technology tell us the same story. Despite the variable nature of
wind, a wind turbine is capable of harnessing wind energy through its aerodynamically
designed blades. In particular, variable speed wind turbines such as the Doubly-Fed In-
duction Generator (DFIG) are capable of harnessing wind energy at rotor speeds above
and below the synchronous speed. The DFIG, hence, has gained immense popularity as
the primary choice in wind generation.

Since, the grid in the future will contain generation from conventional synchronous
generators, as well as from DFIG wind farms, it is important for the TSO to monitor their
dynamics through DSE to ensure stability. To build such a DSE, we need to understand
better the mathematical models that best represent these machines. Hence, in this chap-
ter, the equations involved in the modelling of the synchronous generator and DFIG are
discussed. Finally, the subsequent models used in this thesis are given.

2.1. SYNCHRONOUS MACHINE: AN ELECTRICAL PERSPECTIVE

With three windings, spaced 120◦ apart, the armature of a 3−Φ synchronous machine
has 3 phase voltages induced which produce a time-varying 3-phase flux. This time-
varying flux has three components which are 120◦ apart in time, and interacts with the
rotor flux produced in the rotor circuit. The two interacting circuits is explained as de-
picted in the Fig. 2.1. At steady state, the rotor runs at the same synchronous speed ns

governed by the equation 2.1 [6], where p depicts how many poles are on the rotor, and
f depicts the electrical frequency.

ns = 120 f

p
(2.1)

Every synchronous machine contains damper windings whose main function is to re-
duce any dynamic oscillations. The type and construction of these windings depend on
the type of rotor used - salient or non-salient type. The effect of these two rotor designs
can be extensively studied in [6]. Depending on the rotor pole pairs

p f

2 , the electrical



2.1. SYNCHRONOUS MACHINE: AN ELECTRICAL PERSPECTIVE

2

11

Figure 2.1: The 3φ Stator and Rotor winding circuits - adapted from [6]

angle in elec.rad/s is related to the mechanical angle in rad/s by equation 2.2 [6].

θ = p f

2
θm (2.2)

Similarly, one can determine the Magneto-Motive Force (F) for the three phases as the
set of equations in 2.3 [6] with γ being the angle along the stator for phase a and K being
a constant,

Fa = K ia cosγ
Fb = K ib cos

(
γ− 2π

3

)
Fc = K ic cos

(
γ+ 2π

3

) (2.3)

with the instantaneous three phase stator currents represented as in equations 2.4 [6],
with ωs = 2π f as the synchronous electrical frequency in elec.rad/s.

ia = Im cos(ωs t )
ib = Im cos

(
ωs t − 2π

3

)
ic = Im cos

(
ωs t + 2π

3

) (2.4)

Substituting equations 2.4 in equations 2.3, we can obtain the total Magnetomotive force
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Notations Parameters
ea ,eb ,ec Stator instantaneous voltages
ia , ib , ic Stator instantaneous currents
E f d Excitation voltage of the Rotor
i f Field current
R f d ,Rkd ,Rkq Rotor resistances
Lxx Self-inductances of the Stator and Rotor the
Lx y Magnetizing inductances of the stator and rotor
Ra Resistance of the Stator
xd and xq Reactances in the dq realm
x ′

d and x ′
q Transient Reactances in the dq realm

Table 2.1: The notations and subsequent parameters of synchronous generators.

of the stator as travelling wave equation given in equation 2.5 [6].

Ftotal =Fa +Fb +Fc

=3

2
K Im cos

(
γ−ωs t

) (2.5)

This equation re-establishes the fact that the rotating magnetic field is sinusoidal spaced-
out with a constant frequency ωs .

Electrical Model of a Synchronous Machine

The formulation of the electrical equations of a synchronous machine requires a set of
assumptions to be considered, as a dynamically-complete representation of the syn-
chronous machine is mathematically complex. These assumptions is explained in page
54 of [6]. But before, diving into the model equations, let’s define all the variables which
shall help in the construction of this model as in Table 2.1.

Stator equations

The behaviour of the stator can be represented through the following phase voltage and
flux linkage equations. The 3φ armature-voltage equations can be represented as in
equations 2.6 [6]. Here, p indicates differential operation.

ea = dψa
d t −Ra ia = pΨa −Ra ia

eb = pΨb −Ra ib

ec = pψc −Ra ic

(2.6)

The stator and rotor self-inductances vary sinusoidally based on θ, where θ is the an-
gular difference between the stator and rotor. Hence, by reducing F in equations 2.3
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into its components, the self inductances of stator windings are better represented as
equations 2.7 [6], where the laa0 and laa2 are the parameters of the sinusoidally varying
self-inductance as shown in figure 2.2.

Figure 2.2: Variation of Self-Inductance of Stator - adapted from [6]

laa = Laa0 +Laa2 cos2θ
lbb = Laa0 +Laa2 cos2

(
θ− 2π

3

)
lcc = Laa0 +Laa2 cos2

(
θ+ 2π

3

) (2.7)

Similarly the stator mutual inductances lab , lbc , and lca , can be better represented as
equations 2.8 [6], where lab0 and lab2 are the parameters of the sinusoidally varying
mutual-inductance as shown in figure 2.3.

Figure 2.3: Variation of Mutual-Inductance - adapted from [6]

lab =−Lab2 cos
(
2θ+ π

3

)−Lab0

lbc =−Lab2 cos(2θ−π)−Lab0

lca =−Lab2 cos
(
2θ− π

3

)−Lab0

(2.8)

Using equations in 2.7 and equations in 2.8, the flux linkages of the three phases of the
stator winding can be expressed in the form of self and mutual inductance parameters
as shown in page 66 of [6].

These equations are, however, very complex due to parameters such as the self- and
mutual- inductances sinusoidally fluctuating with the angle θ. Hence, it would be bene-
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ficial to consider a new frame of reference such as the dq0 frame, which eliminates any
variation in the parameters due to θ. Accordingly, the stator currents represented with
equations in 2.4, can be determined in the dq0 frame through the transformation in 2.9
[6].

 id

iq

i0

= 2

3

 cosθ cos
(
θ− 2π

3

)
cos

(
θ+ 2π

3

)
−sinθ −sin

(
θ− 2π

3

) −sin
(
θ+ 2π

3

)
1
2

1
2

1
2

 ia

ib

ic

 (2.9)

Similarly, the stator voltages can also be transformed to the dq0 frame with the help of
this matrix as in equations 2.10 [6].

ed = pψd −ψq pθ−Ra id

eq = pΨq +ψd pθ−Ra iq

e0 = pΨ0 −Ra i0

(2.10)

The varying inductances are also represented in the dq realm as in equation 2.11 [6].

Ld = 3
2 Laa2 +Lab0 +Laa0

Lq =− 3
2 Laa2 +Lab0 +Laa0

L0 =−2Lab0 +Laao

(2.11)

These inductances help in transforming the flux linkages as shown in the equations 2.12
[6].

Ψd =−Ld id +La f d i f d +Lakd ikd

Ψq =−Lq iq +Lakq ikq

Ψ0 =−L0i0

(2.12)

Rotor equations

The behaviour of the rotor can also be represented through the following set of equa-
tions. In particular, the equations in 2.13 depict the rotor voltage dynamics [6]. Unlike
the stator, the self- and mutual inductances of the rotor are constant irrespective of the
angle θ.

E f d = pΨ f d +R f d i f d

0 = pψkd +Rkd ikd

0 = pΨkq +Rkq ikq

(2.13)

Similar to the dq0 transformation of the stator currents, voltages and flux linkages, the
rotor flux linkages can also be moulded into the dq0 reference frame as in equations 2.14,
where the field inductances are as given in [6].
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Ψ f d =− 3
2 La f d id +L f kd ikd +L f d i f d

ψkd =− 3
2 Lakd id +Lkkd ikd +L f kd i f d

Ψkq = Lkkq ikq − 3
2 Lakq iq

(2.14)

Electric Power equations

Based on the above d q0 frame equations of currents, voltages and flux linkages, the elec-
tromagnetic output power of the synchronous machine can be represented through the
equation of 2.15 [6].

Pt =
(
Ψd iq −Ψq id

)
ωr + 3

2

[(
id pΨ̇d + iqΨ̇q +2iαΨ̇0

) − (
i 2

d + i 2
q +2i 2

0

)
Ra

]
(2.15)

The part of the electromagnetic power of the synchronous machine that is transferred to
the air gap at per unit rotor speed is nothing but the electrical torque as in equation 2.16
[6].

Te = 3

2

(
Ψd iq −Ψq id

) p f

2
(2.16)

All these aforementioned equations are converted to the per unit domain and the re-
spective methodology for this process can be understood from [6].

2.2. SYNCHRONOUS MACHINE: A MECHANICAL PERSPECTIVE

Apart from the electrical mechanism, the understanding of mechanical behaviour of the
synchronous machine during a disturbance is necessary for power system stability stud-
ies. To be more specific, the net effect between the electrical Te and mechanical Tm

torques and its effect on the rotor speed and angle, has to be well represented in its
mathematical model. Similar to the previous section, all the equations are converted
to the per unit domain.

During any disturbance such as a three phase symmetrical fault, the net effect between
the electrical torque Te and mechanical torque Tm can be captured through the àcceler-
ating torque Ta , which is given by equation 2.17 [6].

Ta = Tm −Te (2.17)

Since, the Ta is directly influenced by the time differential of the mechanical rotor speed
ωm , the complete equation of motion can be written as equation 2.18 [6], where J is the
proportionality constant which represents moment of inertia of the rotor.

J
dωm

d t
= Ta = Tm −Te (2.18)
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This moment of inertia J can be modelled in two forms - the inertia constant H and the
mechanical starting time TM (not to be confused with mechanical torque Tm). In this
implementation, we choose the former. Hence, the above equation is represented with
inertia constant H as in equation 2.19 [6], with ω0m as the rated angular speed of the
rotor, and VAbase as the rated base apparent power.

H = 1

2

Jω2
0m

VAbase
(2.19)

Furthermore, since the mechanical rotor speed ωm is the time differential of the rotor
angle δ, the above mechanical equations is better represented as follows in equation 2.20
[6], with KD being the per unit damping factor and ω0 being the rated angular speed.

2H

ω0

d 2δ

d t 2 = T̄m − T̄e − KD

ω0

dδ

d t
(2.20)

Thus, equation 2.20, also known as the swing equation, is used as a good approximate to
the mechanical behaviour of the synchronous machine.

2.3. SYNCHRONOUS MACHINE: A MATHEMATICAL MODEL

Using the aforementioned equations to represent the electrical and mechanical behaviour
of the machine, a mathematical state space model can be derived for dynamic state es-
timation and monitoring as shown in literatures [1],[15], [16], [26], and [27].

Accordingly, the state space vector x contains the same state variables as in [1]. To be
specific, these are transient voltages in the dq realm - e ′q and e ′d respectively, the rotor
speed deviation ∆ω, and the rotor angle δ.

x = [
δ ∆ω e ′q e ′d

]T
(2.21)

and a state input vector u with state inputs as mechanical torque Tm , field excitation
voltage E f d , and terminal voltage Vt [1],

u = [
Tm E f d Vt

]T
(2.22)

the state transition equation can be deduced as, with T ′
do and T ′

qo being the the dq trans-
formed time constants [1].
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δ̇=ωo∆ω

∆̇ω= 1
2H (Tm −Te −D∆ω)

ė ′q = 1
T ′

do

(
E f d −e ′q − (

xd −x ′
d

)
id

)
ė ′d = 1

T ′
qo

(
−e ′d +

(
xq −x ′

q

)
iq

)
(2.23)

In order to have the state differentials ẋ purely as in the form of states x and inputs u,
the stator currents id and iq are given similar to [1],

id = e ′q−Vt cosδ

x′
d

iq = Vt sinδ
xq

(2.24)

Moreover, the electromagnetic torque can be approximated to be the electromagnetic
power Pe in the per unit domain and is given as a function of the states as [1],

Te
∼= Pt = Vt

x ′
d

x3 sin x1 +
V 2

t

2

(
1

xq
− 1

x ′
d

)
sin2x1 (2.25)

Hence, the final state transition equations are given by [28],

ẋ1 =ωo x2

ẋ2 = 1

2H

[
Tm −

(
Vt

x ′
d

x3 sin(x1)+ V 2
t

2

(
1

xq
− 1

x ′
d

)
sin(2x1)

)
−Dx2

]

ẋ3 = 1

T ′
do

[
E f d −x3 −

(
xd −x ′

d

)( x3 −Vt cos x1

x ′
d

)]

ẋ4 = 1

T ′
qo

[
−x4 +

(
xq −x ′

q

)(
Vt sin x1

xq

)]
(2.26)

Similarly, the measurement equation can be devised as follows with the measurements
being the active power P and reactive power Q injected into the grid by the machine. A
third measurement is added as the terminal frequency fr , with f0 being the rated fre-
quency [28].
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y1 = P = Vt
x′

d
x3 sin x1 + V 2

t
2

(
1

xq
− 1

x′
d

)
sin2x1

y2 =Q = Vt
x′

d
x3 cos x1 −V 2

t

(
cos2 x1

x′
d

+ sin2 x1
xq

)
y3 = fr = fo (x2 +1)

(2.27)

Thus, the final mathematical model for the synchronous machine, comprising of state
transition equations as in equations 2.26 and the output measurement equations as in
equations 2.27, is obtained. This mathematical model is a good approximation of the
dynamic behaviour of the synchronous generator and can be directly deployed in our
state estimator.

2.4. DFIG: THE INDUCTION MACHINE

A DFIG, by principle of working, is similar to an induction machine but differs in the
connection of the rotor. All slip-ring induction machines have their wound rotor con-
nected to a 3-Φ starter through a slip-ring and brush arrangement. However, a doubly-
fed induction machine has its wound rotor energized by grid power via a back-to-back
converter. This construction can be better understood from the block diagram of a DFIG
in Fig.2.4.

Figure 2.4: Construction of a Doubly-Fed Induction Generator - adapted from [29]

The mechanical power Pm is transferred from the rotating turbine blades to the ro-
tor of the induction machine through a gear box as shown. The rotor currents, fed
through the above converter configuration, help in managing the rotor flux at the desired
value. By drawing reactive power from the connected grid, the stator is also energized to
produce a 3-phase rotating magnetic field. Ultimately, three phase power is generated
through the coupling of these rotor and stator magnetic fields at a torque determined by
their cross product [29]. Since, the rotor speed nr is not the same as the synchronous
stator speed ns , its slip can be defined as in [29],
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Slip Mode of Operation
0 No EMF generated
1 Rotor at standstill

0 < slip < 1 Motoring
slip > 1 Braking
slip < 0 Generating

Table 2.2: Mode of operation of an induction machine based on slip

s = ns −nr

ns
(2.28)

where, the stator synchronous speed can be represented as [29],

ns = 120 f

p
(2.29)

Based on the slip of the induction machine the mode it operates on varies. This can be
best explained by Table 2.2.

Induction Machine: An equivalent representation

Since, the principle of working of an induction machine resembles to that of a trans-

Figure 2.5: Representation of an Induction Machine - 1 - adapted from [29]

former, it is generally accepted to use a similar equivalent ciruit as shown in Fig. 2.5.
This representation comprises stator parameters RS and XS and rotor parameters RR

and XR . In this circuit, the parameters of the rotor are transformed to the stator. The sta-
tor and rotor reactances XS and XR respectively are used to represent the leakage fluxes
that are lost and not useful [29]. The magnetising/mutual inductance XM is however
used to represent the flux that is useful in producing electrical power.

To better represent the generated power delivered, the equivalent circuit can be modified
as in Fig.2.6. Here, the rotor reactance referred from the stator side R ′

R /s is split into two
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Figure 2.6: Equivalent Circuit of an Induction Machine - 2 - adapted from [29]

terms - R ′
R and R ′

R (1− s)/s. The R ′
R term now signifies copper losses and the R ′

R (1− s)/s
term signifies the rotor power generated. This is given as in [29],

Pmech = 3 |ir |2
(

1− s

s

)
R ′

r (2.30)

The subsequent torque produced is given as in [29],

Tmech = 3
∣∣i ′r ∣∣2

(
1− s

s

)
R ′

r

ωm
(2.31)

Further analysis in [29] shows that the required torque can be obtained through the con-
trol of the rotor currents. Hence, a DFIG relies on the control scheme to maintain the
rotor currents and in turn helps in producing optimal power at variable wind speeds.

2.5. DFIG: THE BACK-TO-BACK CONVERTER

This converter configuration, which can be divided into two stages - Rotor Side Con-
verter (RSC) and Grid Side Converter (GSC), couples the rotor of the machine to the
grid. Connecting the two converters is a dc storage capacitor. The GSC operates at syn-
chronous system frequency and helps in keeping the capacitor at a constant, desired
voltage [29]. Similarly, the RSC helps in managing the rotor currents at different turbine
speeds. Hence, this converter is designed to operate at variable rotor frequencies [29].

As shown in Fig. 2.7, the configuration comprises two voltage source converters sep-
arated by a storage capacitor. Each voltage source converter is of two-level, three-leg,
six switch type, with Insulated-gate Bipolar Transistors or IGBTs. The control of these
switches are achieved by generation of firing pulses through the Pulse Width Modulation
(PWM) technique. This is done in particular by comparing a carrier signal at a switch-
ing frequency fswi tch with a modulating or reference signal to obtain a pulses of varied
width. This variation of pulse width is generally controlled using the modulation index
m and is given by the following equation [29] where ton is the "ON" period for a switch
in each leg of the bridge, and Tsw is the switching time period.



2.5. DFIG: THE BACK-TO-BACK CONVERTER

2

21

Figure 2.7: The converter configuration in a DFIG - adapted from [30]

m = ton

Tsw
(2.32)

By defining modulation indices for each leg of the converter bridge as ma , mb , and mc ,
the relationship [29] between capacitor voltage Vdc and phase voltage can be given as
shown below.

Va = maVdc

Vb = mbVdc

Vc = mcVdc

(2.33)

The two converters in the configuration influence the behaviour of the DFIG wind gen-
erator. Hence, it is imperative to understand their dynamic control equations. The re-
search in [20] explains the dynamics of the rotor side converter concisely. Accordingly,
the control dynamics of this converter can be better represented without the fast current
regulator.

Rotor Control
The reactive power Q is maintained by finding a reference rotor current in the q-axis as
shown below [20].

ẋ1 =Qr e f −Q

iqrr e f = kp1ẋ1 +ki 1x1
(2.34)

Similarly, a reference rotor current in the d-axis can be found using power loss Pl oss as
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shown below [20].

idrr e f
=

(
Pr e f −Ploss

)
Ls

ωrΦs Lm

Φs =
√
Φ2

d s +Φ2
qs

(2.35)

In the same fashion, the rotor voltages are referenced as below [20].

vdrr e f
= Rr idr − (ωs −ωr )

(
Lr iqr +Lm iqs

)
vqrr e f = Rr iqr + (ωs −ωr ) (Lr idr +Lm id s )

(2.36)

Grid Control
In this control scheme, a d-axis reference grid current is formulated as shown below [20].
A q-axis reference grid current is taken to be zero.

ẋ2 = vdcr e f
− vdc

id gr e f
= kp2ẋ2 +ki 2x2

(2.37)

In the same fashion, the grid voltages are referenced as below [20].

vd gr e f
= vd s +ωs Lr iqgr e f −Rr id gr e f

,

vqgr e f = vqs −ωs Lr id gr e f
−Rr iqgr e f

(2.38)

All notations can be interpreted from Table 2.4.

2.6. DFIG: THE WIND TURBINE

As mentioned before, the mechanical power Pm is transferred from the rotating turbine
blades to the machine through a gearbox-coupling system. The rotor power can be de-
rived from that of the stator using the equation shown below [29]. This means that the
RSC is designed with a power rating defined by the slip s. Hence, the RSC has a power
rating lower to that of the stator power, proving an economical design.

Pr =−sPs (2.39)

The amount of power that is drawn from the incident wind is dependent on the perfor-
mance or power coefficient Cp . The performance coefficient is a measure of the efficient
conversion of the wind energy to useful mechanical energy for power generation. This
value is usually less than 50 percent for wind turbines and is usually given by the follow-
ing equation [31], Here, β is the pitch angle, and the λ is the tip-speed ratio.
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Coefficients Values
W1 0.47
W2 0.0167
W3 7.5
W4 0.15
W5 0.00184
W6 0.01

Table 2.3: The coefficients used in the power coefficient equation

Cp =
[(

W1 −W2β
)

sin

[
1.5707

(λ−3y(λ)(
W3 −W4β

)]
− (λ−3y(λ))W5β

]
+ W6

(1+λ)
(2.40)

The variables W1,W2,W3,W4,W5, and W6 are coefficient values. The table 2.3 shows the
coefficient values used in the turbine design used in this thesis. With the power coeffi-
cient established, the turbine power output is represented as shown below [31].

Pm =Cp
dSa

2
u3 (2.41)

Here, the power is represented through the air density d , wind speed u, and blade area
Sa covered. The air density d is modelled as shown below [31], with T as the temperature,
and A as the height.

d = 1.0

(1.0+0.00367T )
e(−0.000125A) (2.42)

Now, with the obtained mechanical power Pm , the torque can be obtained using the
following relation as in [18], with wr as the rotor speed.

Tm = −Pm

wr
(2.43)

2.7. DFIG: THE DQ TRANSFORMATION

All control methodologies of the voltage source converters of a DFIG are mainly imple-
mented in the DQ domain. Hence, in our case, the control variables such as rotor volt-
age, rotor current, stator voltage, and stator current have to be transformed to the d-q
realm for feasibility of implementation. According to [32], three-phase variables such as
voltages and currents can be brought into the d-q realm by using the concept of Park’s
transformation given by the following equation [32].
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P =
√

2

3


1p
2

1p
2

1p
2

cosθ cos(θ−120) cos(θ+120)
sinθ sin(θ−120) sin(θ+120)

 (2.44)

Figure 2.8: The DQ axes containing stator and rotor variables - adapted from [32]

Here, θ is the angle between the rotating DQ reference frame and the stator A-axis. It is
represented by the formulation below [32]. A Phase Locked Loop (PLL) is used to derive
this θ from the ABC instantaneous values.

θ =
∫ t

0
ω(γ)dγ+θ(0) (2.45)

By principle of d-q transformation, it is desired to transform to a d-q axis compared to a
common frame. In most cases, the common frame is the synchronous frame. However,
the rotor variables and the stator variables themselves exist in different frames, as the
former is stationary and the latter rotates. Hence, the angle of transformation differs for
both the stator and rotor variables [32]. This can be better explained with the Fig. 2.8.
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Notations Parameters
Rs ,Ls Stator Resistance and Inductance
Rr ,Lr Rotor Resistance and Inductance

Lm Magnetizing Inductance
ωr Rotor Speed
ωs Synchronous Speed
Tm Mechanical Torque
Te Electromagnetic Torque
H Inertia Constant
D Damping Coefficient

Table 2.4: Notations and their corresponding meanings for the DFIG model

To reiterate, the angle θ in Fig. 2.8 refers to the angle dividing the stator A-axis and the
DQ frame. Furthermore, the angle θm is the angle dividing the current vector ia and
rotor current vector (in green). The same θ cannot be used for both the stator and rotor
as the angle between the rotor current vector (in green) and the DQ frame is β= θ−θm

[32]. Hence, this new β is used for the dq-transformation of rotor variables and is given
by the following equation [32].

β=
∫ t

0
ωr (γ)dγ+β(0) (2.46)

By this method, both the rotor and stator variables are brought into the d-q axis in this
thesis.

2.8. DFIG: THE MODEL

With the background on the induction machine, the converter, and the wind turbine we
can now lay out and assemble the mathematical state space model to be used in this
thesis.

As explained in [17], the dynamics of the slip-ring induction machine used can be best
explained using the following state space equations. The notations used are tabulated in
Table 2.4.

ψ̇qs = vqs −Rs iqs −ωsψd s

ψ̇d s = vd s −Rs id s +ωsψqs

ψ̇qr = vqr −Rr iqr − (ωs −ωr )ψdr

ψ̇dr = vdr +Rr idr + (ωs −ωr )ψqr

(2.47)

Here, the fluxes can be represented using the stator, rotor inductances and currents as
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shown below [17],[12].

ψd s = Ls id s +Lm idr

ψdr = Lr idr +Lm id s

ψqs = Ls iqs +Lm iqr

ψqr = Lr iqr +Lm iqs

(2.48)

Since, the dynamics of the DFIG mainly revolve around the stator and rotor currents,
state space equations can be formulated from the above flux and voltage equations, as
shown below [12]. Here, the state variables are the dq axes currents of both the stator
and rotor. Here, Leq = Ls Lr −L2

m .

i̇d s =
1

Leq

{−Rs Lr id s +
[
ωr L2

m +ωs
(
Leq

)]
ig s +Rr Lm idr +ωr Lr Lm iqr +Lr vd s −Lm vdr

}
˙iqs = 1

Leq

{−[
ωr L2

m +ωs
(
Leq

)]
id s −Rs Lr iqs −ωr Lr Lm idr +Rr Lm iqr +Lr vqs −Lm vqr

}
i̇dr =

1

Leq

{
Rs Lm id s −ωr Ls Lm iqs −Rr Ls idr +

[
ωs

(
Leq

)−ωr Ls Lr
]

iqr −Lm vd s +Ls vdr
}

˙iqr = 1

Leq

{
ωr Ls Lm id s +Rs Lm iqs −

[
ωs

(
Leq

)−ωr Ls Lr
]

idr −Rr Ls iqr −Lm vqs +Ls vqr
}

(2.49)

Furthermore, the stator and rotor power can be compiled together to get the total power
being injected by the DFIG into the grid by the following measurement equations [12].
However, unlike [12], the powers do not need to be multiplied by the a factor of 3/2.

P = (
vd s id s + vqs iqs + vdr idr + vqr iqr

)
Q = (

vqs id s − vd s iqs + vqr idr − vdr iqr
) (2.50)

Also, based on the discussion on the wind turbine in section 2.6, the mechanical dynam-
ics of the wind turbine can be better explained using the following state space equations
[12].

Te = Lm
(
iqs idr − id s iqr

)
ω̇r = 1

2H
(Tm −Te −Dωr )

(2.51)

Finally, the set of equations 2.49 and 2.50 together constitute the process model of the
DFIG used in this thesis with equations in 2.49 as the state transition function and the
equations in 2.50 as the measurement function.



3
THE KALMAN FILTER

Chapter 3 lays down a detailed explanation of the discretization techniques of the process
models. This is followed by a subsequent introduction to a linear kalman filter. Finally,
the modifications to this kalman filter to accomodate non-linear process models are dis-
cussed.
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B Y statistical definition, estimation can be called an approximation of any informa-
tion pertaining to a particular population, especially when uncertainties are involved.

However, if estimation could be interpreted in a more familiar way, it is a way of life.
From judging the right proportion of ingredients while baking a cake, to budgeting the
monthly expenses, estimation is an integral part of our lives used to achieve a specific,
successful result - here, a delicious cake or to not overspend. In statistics, an estimate is
obtained by approximating the properties of sampled cases to the whole population as
in [33].

In the realm of signal processing and engineering, simple mathematical functions
can be used as approximations to estimate real-world phenomenon. These estimates
are then updated by comparing with real-world measurements, which may or may not
contain noise. Power systems, in particular, have used approximate, linear power equa-
tions as a static state estimation model to estimate voltages and angles of buses which do
not have measuring devices. Generally, such a state estimator employs a weighted-least-
squares method which minimizes an error function with weights based on the accuracy
of each measurement.

Although, this procedure provides a static estimate as discussed in chapter 1, we re-
quire a dynamic state estimator which can estimate the dynamic behaviour of the inter-
nal parameters of the generators in the power grid. Such an estimator is made feasible
through the use of a Kalman Filter, which predicts the current state estimate by using
the previous state estimate, and subsequently updates the current estimate based on
the measurements. Hence, this chapter is particularly important for this thesis, in order
to have an understanding of the working of a Kalman Filter.

3.1. ESTIMATION: MODEL DISCRETIZATION

Before moving on to the estimation and filtering process, it is important to point out that
the kalman filter operates with measurements which are in discrete time-steps. Hence,
any system model used in the prediction process of the filter needs to be of the discrete
form. This brings out the necessity to convert the models discussed in the previous chap-
ters from the continuous domain to the discrete domain.

Let the state-transition equation of a continuous process be given by equation 3.1, where
wc is the process noise,

ẋ = fc (x,u)+wc (3.1)

and its output measurement equation given by equation 3.2, where vc is the measure-
ment noise. Process noise wc and measurement noise vc shall be discussed in detail in
the Kalman Filter section.

y = hc (x,u)+ vc (3.2)

When these equations are discretized as in equation 3.3 [15], the state transition equa-
tion is a function of the states, inputs, and process noise of the previous time-step. Simi-
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larly, the output measurement equation is a function of the states, inputs, and measure-
ment noise of the current time-step.

xk = f (xk−1,uk−1)+wk−1

yk = h (xk ,uk )+ vk

(3.3)

In order to discretize, various numerical integration techniques are employed. Generally,
these techniques are of two types - Euler-based and Runge-Kutta-based methods. These
two methods are explained below as discussed in [6].

Euler Method

For a continuous function given by the equation 3.4 and graphically represented by
Fig.3.1 [6],

d v

d t
= f (v, t ) (3.4)

Figure 3.1: A continuous function of the first order - adapted from [6]

At v = v0 and t = t0, the tangent is used as an approximation, where it is represented
by equation 3.5 [6],

d v

d t

∣∣∣∣
v=v0

= f (v0, t0) (3.5)

With this equation 3.5, any change in v i.e. ∆v after a time step∆t , is given by 3.6 [6].

∆v = d v

d t

∣∣∣∣
v=v0

·∆t (3.6)



3

30 3. THE KALMAN FILTER

By this principle, v1 at t = t1 is given by 3.7 [6].

v1 = v0 + d v

d t

∣∣∣∣
v=v0

·∆t (3.7)

Similarly, a v2 at t = t2 = t1 +∆t can be given by 3.8 [6].

v2 = v1 + d v

d t

∣∣∣∣
v=v1

·∆t (3.8)

This simple, first-order method of Euler’s is successively applied to generate estimates
at later time-steps. However, this method works only at smaller values of time-step to
remain numerically stable. Modified versions of Euler’s method involve predictor and
corrector steps where average of derivatives is used to improve the accuracy. Although,
this modification still requires time-steps of very low value.

Runge-Kutta Method

The Runge-Kutta methods are used as an approximation of Taylor Series. These methods
are of two forms - Second order and Fourth order. Let us consider only the Fourth order
method as it provides better accuracy. Accordingly, for determining vk+1 at t = tk+1 from
vk at t = tk we use equation 3.9 [6].

vk+1 = vk +
1

6

(
j1 +2 j2 +2 j3 + j4

)
(3.9)

with [6],

j1 = f (vk , tk )∆t

j2 = f
(
vk + j1

2 , tk + ∆t
2

)
∆t

j3 = f
(
vk + j2

2 , tk + ∆t
2

)
∆t

j4 = f
(
vk + j3, tk +∆t

)
∆t

(3.10)

The interpretation of each j parameter can be understood from [6].

3.2. ESTIMATION: THE LINEAR KALMAN FILTER

The Kalman Filter is a technique to optimally approximate internal parameters of a sys-
tem that cannot be directly measured. It is optimal because it finds the most optimal
estimate based on information provided from several measurements, with or without
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noise. In this section, the principle behind a Kalman Filter is explained based on the
MathWorks series on Kalman Filters in [34].

State Observers

The concept of observing certain internal and immeasurable parameters of the system
is called state observation and this function is performed by a state observer. Fig. 3.2
shows a general state observer.

Figure 3.2: A State Observer - adapted from [34]

Any real-world system can be represented as a model which takes an input to produce
an output. The model alone is nothing but a set of functions dependent on state vari-
ables. State variables help establish the link between the input state and the output state,
so as to represent the true behaviour of the system. These variables usually cannot be
measured and are of major interest to study and/or operate the system. Hence, state
observers are an observation scheme that help in estimating the system’s internal states.

They do so when the original system inputs are fed to a mathematical process model
which approximates the behaviour of the true system. For a given input, the mathemat-
ical process model computes the estimated state variables and produces the estimated
output. This estimated output, however, may differ from the true output due to uncer-
tainties. These uncertainties are due to presence of the process and the measurement
noise given by wk and vk respectively as shown in the discrete, true system model of
3.11 [34].
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xk = Axk−1 +Buk +wk

yk =C xk + vk
(3.11)

In order to eliminate this difference, this estimated output is compared with the mea-
sured output of the true system, to produce an error. This error is then used to update
the mathematical model and its state variables through a feedback loop gain as shown
in figure 3.2. This computed error dynamic can be given through the equation 3.12 [34].
Here, the term (A−KC ), and in turn K , helps in controlling the rate of decay of the error.

ėobs = (A−KC )eobs (3.12)

Kalman Filter

Kalman filter is a well known stochastic state observer which observes the state of the
system through the Kalman gain K . With the provision of measurements at discrete time
steps, the kalman filter calculates the kalman gain based on these noises present in the
system. Normal distributions with a mean of zero and covariances of Q and R can be
used to depict w and v respectively [34].

Figure 3.3: Kalman filter principle through probability distributions - adapted [34]

The algorithm of the Kalman filter can be explained as follows with the help of the
probability distribution in Fig. 3.3. The process is split into two stages - the prediction
stage and the update stage.

• Prediction stage: In this step, the Kalman Filter has access to the previous state esti-
mate x̂k−1 along with the previous state covariance matrix Pk−1 (shown in blue). With
these values, current predicted state estimate x̂−

k (shown in red) also know as a priori
state estimate is computed along with the a priori covariance matrix P−

k , as shown in
3.13 [34].

x̂−
k = Ax̂k−1 +Buk

P−
k = APk−1 AT +Q

(3.13)

• Update stage: Now, the Kalman Filter has to update the a priori state estimate based
on the measurements yk available (shown in green). This update is made possible
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through the computation of the Kalman gain K given by 3.14 [34].

Kk = P−
k C T

C P−
k C T +R

(3.14)

With the help of this gain calculation, a posteriori state estimate x̂k and a posteriori
covariance matrix Pk is calculated (shown in blue) as in 3.15 [34] to obtain the optimal
state estimate.

x̂k = x̂−
k +Kk

(
yk −C x̂−

k

)
Pk = (I −KkC )P−

k

(3.15)

These two steps are performed at every time-step k based on the values obtained in the
time step k −1. However, the major drawback of the kalman filter is that it is limited to
only linear systems.

3.3. ESTIMATION: NON-LINEAR SYSTEMS

Since, many real-world problems are non-linear and the Kalman Filter does not work
on non-linear processes, modifications are made to the kalman filter to adapt to a non-
linear process model. One famous modification is the EKF. By linearizing the non-linear
model through the use of jacobians, EKF enables estimation of non-linear phenomenon.
However, this method tends to produce erroneous estimations when the non-linearity
in the process is high. Similarly, there are many versions of the kalman filter such as
the UKF, Particle Filter, and so on. In this thesis, the UKF algorithm is employed as it is
computationally less demanding.

Unscented Kalman Filter

The UKF explained below is inspired from [35]. The idea of the unscented transforma-
tion is to approximate the probability distributions of the state rather than the non-linear
model itself. It does so by generating 2n+1 sigma points which statistically represent the
state distributions of the previous state estimate [35]. The generated sigma points x̂(i )

k−1

are transformed through the state transition equation to obtain x̂(i )
k as in equation 3.16

[35].

x̂(i )
k = f

(
x̂(i )

k−1,uk−1

)
(3.16)

The transformed sigma points help in computing the a priori state estimate which is
given by the mean of all these points, as shown in equation 3.17 [35].

x̂−
k = 1

2n

2n∑
i=1

x̂(i )
k (3.17)
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Similarly, the a priori covariance state matrix is given by equation 3.18 [35].

P−
k = 1

2n

2n∑
i=1

(
x̂(i )

k − x̂−
k

)(
x̂(i )

k − x̂−
k

)T +Qk−1 (3.18)

The x̂(i )
k as in equation 3.16 is now transformed through the output equation to give ŷ (i )

k
and estimated output ŷk as in equation 3.19 [35].

ŷ (i )
k = h

(
x̂(i )

k ,uk

)
; ŷk = 1

2n

2n∑
i=1

ŷ (i )
k (3.19)

The covariance matrices of the estimated output and cross-covariance matrix between
x̂(i )

k and ŷ (i )
k are computed as in equation 3.20 [35].

P−
y = 1

2n

∑2n
i=1

(
ŷ (i )

k − ŷk

)(
ŷ (i )

k − ŷk

)T +Rk

P−
x y = 1

2n

∑2n
i=1

(
x̂(i )

k − x̂−
k

)(
ŷ (i )

k − ŷk

)T
(3.20)

Now, with the available covariance matrices, the kalman gain Kk and subsequent state
posteriori update x̂k and covariance Pk is calculated as in equation 3.21 [35].

Kk = Px y P−1
y

x̂k = x̂−
k +Kk

(
yk − ŷk

)
Pk = P−

k − (
Kk Py K T

k

) (3.21)

Thus, the UKF described above uses the machine models discussed in the previous chap-
ters as process models to perform dynamic state estimation in this thesis. One specific
disadvantage of the UKF is of numerical instability. Numerical stability can be described
as a property which explains the propagation of error, and can be seen in high dimen-
sional state space models [36]. However, the problem of numerical instability is not a
hindrance here, and hence, is not addressed in this thesis.
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ONLINE ESTIMATOR

Chapter 4 explains the major contributions of this thesis. To be specific, the DQ transfor-
mations that are necessary for the DFIG, the online-DSE algorithm, and the procedure for
determining sensitivity relationships are explained in this chapter.
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The dynamic modelling of the synchronous generator and the DFIG as state space
equations are discussed in Chapter 2. Also, the formulation of a Kalman Filter, for the
purpose of DSE is discussed in Chapter 3. Following, it is necessary to realize how these
components can be put together to estimate in a near real-time setting. Hence, in this
chapter, the major contribution of this thesis, i.e. online DSE algorithm featuring near
real-time estimation is explained.

4.1. DQ TRANSFORMATIONS FOR A DFIG

Before we dive into the near real-time algorithm, we need to discuss the transformations
necessary to bring the DFIG variables into the DQ axes. This is because, the DFIG vari-
ables being measured exist in the ABC domain, however, the DSE requires them to be
in the DQ domain. Hence, before being sent to be estimated, these variables need to
be transformed as explained in the theory of Section 2.7. Furthermore, the converter
switches of the DFIG induce harmonics, which can affect the state estimator’s perfor-
mance. This has to be resolved using a low-pass filter.

Figure 4.1: The Transformation of the Stator and Rotor variables into the DQ axes

The block diagram showing the DQ transformations that need to be done are shown
in Fig. 4.1. The stator voltages and currents in the ABC domain, i.e. VS A , VSB , VSC , IS A ,
ISB , and ISC respectively, are fed to a Phase-Locked Loop (PLL). A PLL is a control tech-
nique which is used to extract the reference phase of the inputted signals. The reference
phase for the stator signals is denoted by φ. This reference φ, along with the the sta-
tor ABC voltage and current signals are passed to the DQ Block to obtain the DQ stator
voltages and currents i.e. VDS , VQS , IDS , and IQS respectively. The DQ block is used to
convert a signal from the ABC domain to the DQ one. It is the exact equivalent of the
Park’s transformation which is shown in equation 2.44.

As explained in Section 2.7, the reference φ is the angle between the stator and the
DQ-axis. Similarly, the angle between the rotor and the stator is the rotor angle θ. There-
fore, to determine the angle between the rotor, i.e. β and the DQ-axis, the difference
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between the reference φ and the rotor angle θ is calculated. The Rotor current signals,
i.e. IR A , IRB , IRC , along with the angle β, are fed to another DQ block to obtain the rotor
currents IDR and IQR . Finally, all the transformed DQ signals are passed through a low-
pass butterworth filter, with an optimal cut-off frequency of 5 Hz, to block the inherent
harmonics. The cut-off frequency is called optimal because at 5 Hz, all high frequency
harmonics were eliminated as well as no considerable dynamic information was lost in
the process of filtering.

However, unlike the stator voltage, the ABC rotor voltages VR A , VRB , and VRC , cannot
be passed to a DQ block to obtain the DQ rotor voltages, i.e. VDR and VQR . This is because
the reference angle of the rotor voltages is dependant on the rotor frequency, and in turn
the wind speed. Hence, the rotor voltages are analytically determined using the following
equations. Here, RR is the rotor resistance, s is the per unit slip, λDR and λQR are the DQ
rotor fluxes.

VDR = RR IDR − sλQR

VQR = RR IQR + sλDR
(4.1)

4.2. ASPECTS OF ONLINE DSE

Several aspects need to be considered before setting up the online algorithm. These are
discussed below.

• Delay definitions
When system states are to be estimated in real-time, there is delay d involved. To better
understand this delay d , it can be broken down into two components, i.e. telecommu-
nication delay dc and estimation delay de .

d = dc +de (4.2)

This telecommunication delay dc can be defined as the total time taken to transfer a
bit of information from the PMU point to the online estimator point. Whereas, the es-
timation delay de can be defined as the total time taken to simply estimate the system
state. During this thesis work, it was observed that the telecommunication delay is
of the order of milliseconds and the estimation delay is of the order of microseconds.
Hence, the total delay is dominantly equal to the telecommunication delay. However,
the test to measure the delays was conducted in a lab environment, leading to smaller
delay values. The delays can be larger in a real-world application.

dc >>> de

d ≈ dc
(4.3)

• Sample-wise or Batch-wise computation?
For online estimation, the estimation can be performed in two ways - sample-wise or
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batch-wise. In the sample-wise approach, the system states are estimated for each sin-
gle time-step using the corresponding measurement at that time step. Whereas in the
batch-wise approach, the estimation is performed by collecting measurements for B
time-steps and then estimating the corresponding system states for those time-steps.
In a real-world application of the DSE, the grid being observed is of large-scale, with
large number of rotating generators, and larger number of observed states. Hence,
the amount of data being measured by the PMUs in the entire grid is vast. In such
a case, the choice between the sample-wise and batch-wise approaches is based on
the processing power of the available resources and other computational tasks to be
run. The advantage of using the sample-wise approach is that every estimation run
involves computation of only one sample and not for a collection of samples. This sig-
nificantly reduces the processing power required in every estimation run. Moreover,
if there are no other computational tasks to be computed apart from estimation, the
available computational resources required is significantly less and sample-wise ap-
proach is, therefore, economical. However, it is common to have many other tasks that
need computation along with estimation. In such a case, a sample-wise approach con-
tinuously occupies the computational resources and makes running other processes
infeasible. In such a case, a batch-wise approach is more favourable. While collecting
the measurements over a series of time-steps, the batch-wise approach can provide
adequate computational time to other processes that need to be run. Once, enough
measurements have been collected, the batch of measurements are processed all at
once. However, a clear disadvantage of the batch-wise approach is that estimation is
delayed due to the collection of measurements and is comparatively away from real-
time. Hence, when it is more important to have the least amount of estimation delay
or when the available resources are limited, the sample-wise approach is preferred.
If there are other tasks that need to be run along with estimation, the batch-wise ap-
proach is preferred.

• Preprocessing of PMU measurements
The PMU phasor measurements that arrive at the estimator can be set to be of the rect-
angular form or of the polar form depending on the PMU/PDC configuration. In our
case, it was set to the polar form, which comprises of phasor magnitude and phasor
angle. However, in order to make these magnitudes and angles suitable for estimation,
certain preprocessing steps need to be undertaken. These are given below:

– The PMU phasor angles are given with respect to the GPS clock signal. However, for
estimation, the phasors need to be referenced with respect to a slack or reference
bus phasor. Hence, every phasor angle θi needs to be subtracted from the slack
phasor angle θs as shown below.

θi = θi −θs (4.4)

– The PMU magnitudes need to be converted to the per unit form. The voltage mag-
nitudes are transformed into per unit form as shown below.

Vpu = Vmag ∗
p

3

Vbase ∗1000
(4.5)
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Similarly, the current magnitudes are transformed into per unit form as shown be-
low.

Ipu = Imag ∗Vbase

Sbase ∗1000
(4.6)

Here, Vbase and Sbase are the chosen base voltages in kV and the chosen base ap-
parent power in MVA. Consequently, the processed voltage and current phasors are
multiplied together to obtain active and reactive powers in per unit.

– If the incoming phasor data contains NaNs or Not a Number, these missing values
have to be treated. This is done by replacing the NaNs with the last known value in
the previous time steps.

4.3. ONLINE DSE ALGORITHM

There are two types of power system control architectures that are used in a typical DSE.
These are the centralized and the de-centralized control architectures respectively. In
the centralized control architecture, all the geographically located PMUs send their mea-
surements to a central location. The dynamic estimation of the entire grid is performed
here. However, in the decentralized one, the grid is divided into many regions, which
can include even substations. The states in each region are estimated by their own DSE
which uses the locally available PMU measurements. Finally, all the regional DSEs send
their local estimates to a central location, where the state of the entire grid is formed. In
this thesis, the centralized control is followed, i.e. all the measurements are collected at
a central point and the estimation of the entire system is computed as a whole. There-
fore, the algorithm for estimation using the batch-wise approach for a power system with
centralized control is explained below. The algorithm can also be easily toggled between
the sample and batch approaches by setting B = 1 and B > 1 respectively.

• Step 1: This step indicates the beginning of the algorithm and contains the initial-
ization of the parameters. These are the initial error covariance state matrix P , the
process noise covariance Q, and measurement noise covariance R. Along with these
parameters, the initial state matrix is provided for the UKF. The initial state matrix is
populated with steady state values from a power flow calculation.

• Step 2: In this step, the algorithm waits and checks if ’B’ amount of PMU data samples
have arrived. Here, B is the size of the batch to be estimated. For large values of B, the
algorithm waits for long time durations to collect this ’B’ amount of data, leading to
delayed estimation. Hence to avoid a very large delay, the batch size B is set at values
which are a fraction of the chosen PMU sample rate FR .

• Step 3: Once the batch of PMU measurements are collected, these measurements are
pre-processed to make them suitable for estimation. As explained before in Section
4.2, the pre-processing steps include referencing of phasor angles with respect to a
slack reference, per unit conversion of phasor magnitudes, and treatment of NaNs.
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• Step 4: In this step, the processed batch of PMU measurements are used to estimate
the system states using the UKF explained in Section 3.3. In an iterative manner for
each timestep in the batch, the state-space models discussed in Section 2.3 and Sec-
tion 2.8 are used to compute the a-priori estimates for all the synchronous generators
and DFIG wind farms in the grid respectively. Subsequently, the processed PMU batch
measurements are used to update the a-priori estimates to obtain the a-posteriori es-
timates and the new error covariance state matrix P. These a-posteriori estimates are
stored or visually displayed to the TSO.

• Step 5: Finally, the state estimate of the last time-step of the batch is set as the new
initial state. Similarly, the latest error covariance array P is updated as the new P. The
algorithm, now, returns to Step 2 to wait for the next batch of PMU data.

4.4. SENSITIVITY RELATIONSHIPS

A sensitivity analysis helps in understanding how the estimation of the dynamic states
is influenced by various input errors introduced. Hence, a sensitivity analysis was con-
ducted as a part of the assessment of the online DSE, and the sensitivity relationships
between the estimation error and the various input errors were determined. Such rela-
tionships help in understanding how resilient the estimation is against presence of any
particular type of error. Also for any given input error, such relationships can help inter-
polate or extrapolate the estimation error. The procedure for determining the sensitivity
relationship is given below, for when errors are introduced in a particular input.

• A particular state is chosen to be observed. Various errors are introduced in the input
and the corresponding errors in the estimation of the chosen state is recorded.

• The errors introduced and the recorded estimation error are tabulated and plotted to
reveal the nature of the relationship between the input error and the state error.

• Through the use of a curve fitting functionality, a trend line is fitted on the above plot-
ted line. The equation of the trend line provides us the sensitivity relationship between
the estimation error and the input error introduced.
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Figure 4.2: The flow-chart of the Online DSE algorithm





5
A CASE STUDY: SIMULATION AND

RESULTS

Chapter 5 explains the simulation platform, the case study used in this thesis, the results
of the online estimator, and the final sensitivity analysis.
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O NCE, the online DSE is built, it is necessary to validate its results and to comment on
its performance. In this chapter, the cyber-physical setup which is used to validate

the online DSE is explained. This is followed by an insight into the case study used -
IEEE 14-bus system. The results obtained from this case study simulation are given and
interpreted. Finally, a sensitivity study is conducted and its results are used to develop
relationships between inputted error and estimation error.

5.1. SIMULATION PLATFORM

The cyber-physical platform used in the simulation is developed mainly using the Real
Time Digital Simulator (RTDS) and the Synchrophasor Application Development Frame-
work (SADF), as in [37]. This is better explained using the block diagram shown in Fig.5.1.

Figure 5.1: The cyber physical platform used to simulate the real-time DSE - adapted from [37]

The RTDS is a tool to simulate real-time, transient and dynamic power system phenom-
ena. It is mainly used for In-the-loop testing of protection and control mechanisms [38].
It provides flexibility through adjustable grid settings and a variety of disturbances to
choose from. The RSCAD software acts as the interface between the user and the RTDS
system by providing a graphical environment to simulate grid phenomena [37]. The soft-
ware comprises mainly a DRAFT tool and RUNTIME tool. The DRAFT tool contains a
drawing layout to draft the test system to be simulated. This is facilitated through the
provision of several libraries (eg.Power System library, Controls library, etc.) which allow
the user to drag and drop system components (e.g. Buses, Lines, PMUs, etc.) onto the
layout. The RUNTIME tool, on the other hand, provides an environment for real time
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simulation of the compiled DRAFT case. It includes plots, meters, etc. to visualize the
real-time response of the system and also includes sliders, buttons, etc. for real-time
control. The RSCAD software also provides a scripting functionality for automating the
whole runtime process.

Figure 5.2: The IEEE 14-bus test system used in RSCAD - adapted from [39]

The GTNETx2 cards of the RTDS are mainly deployed when it is necessary to exchange
data between RTDS and external system [40]. As in our case, the GTNETx2 cards are
used to stream PMU data to an external device using the IEEE C37.118.2 protocol [40].
Generally, the GTNETx2 card can accomodate up to 8 PMUs with sampling rates ranging
from 1 to 250 samples per second depending on the nominal system frequency. The GT-
SYNC card is used to synchronize the RTDS simulation and other external devices with
an external time reference, possibly from a GNSS Master clock as displayed in Fig.5.1
[41]. Hence, the PMU data streams leaving the RTDS, through the GTNETx2, are times-
tamped with respect to this clock.

A Phasor Data Concentrator (PDC) such as SEL-5073 PDC developed by Schweitzer En-
gineering Laboratories is used to collect and align various PMU data streams according
to the measurement time, and forward this as a combined data stream to hierarchical
higher level PDCs or applications such as the SADF [37]. The communication network
between the GTNETx2 PMUs and the SEL-5073 PDC can be simulated using a Wide-Area
Network (WAN) Simulator; This is explained in detail in [37]. The Synchrophasor Appli-
cation Development Framework or SADF, developed by Naglic et al in [42] enables sim-
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Parameter Value
System Frequency f 60 Hz

Base MVA for G1 615 MVA
Base MVA for G2 60 MVA
Base MVA for G3 60 MVA
Base MVA for G4 25 MVA
Base MVA for G5 25 MVA

Base MVA for DFIG 22 MVA
System Base Voltage 18 kV

Table 5.1: Grid parameters necessary for pre-processing of PMU phasor data

Parameter Value
Inertia Constant H 3.41

Synchronous Reactance: d-axis Xd 1.7241
Synchronous Reactance: q-axis Xq 1.6587

Transient Reactance: d-axis Xd t 0.2586
Transient Reactance: q-axis Xqt 0.4524

Open circuit time-constants: d-axis Tdo 3.826
Open circuit time-constants: q-axis Tqo 0.5084

Damping Factor Kd 0

Table 5.2: Model parameters for synchronous generator model in the DSE

plified design of user-defined Wide-Area Monitoring, Protection and Control schemes,
such as the DSE, by interfacing real-time PMU data from a PDC to the MATLAB pro-
gramming environment. Thus, the RTDS, GTNETx2, GTSYNC, PDC, and SADF, together
constitute the cyber-physical testbed to validate the online-DSE algorithm given in Sec-
tion 4.3.

5.2. CASE STUDY

Real Time Digital Simulator
The power system used to test the developed online DSE is the IEEE 14-bus modified
benchmark system as shown in Fig.5.2. The modification is the addition of a Wind Farm,
comprising 10 DFIG Wind Turbines with a terminal bus W, to bus 14 of the IEEE 14-Bus.
The single line diagram was drafted in RSCAD and was compiled to run an initial load-
flow. This loadflow provides the initial conditions for the RUNTIME simulation. How-
ever, the DFIG Wind Farm model provided in RSCAD is built using the small timestep
functionality and does not participate in this initial loadflow. In order to solve this, a
"Loadflow-Source" block was added parallel to the DFIG, at bus 14. By doing so, the
Loadflow-Source block emulates the DFIG in the initial loadflow calculation but does
not participate in the RUNTIME simulation.
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Parameter Value
Synchronous Speed ws 1

Stator Inductance Ls 4.45
Rotor Inductance Lr 4.459

Magnetizing Inductance Lm 4.358
Stator Resistance Rs 0.00462
Rotor Resistance Rr 0.006
Inertia Constant Hw 1.5
Damping Factor D 0

Table 5.3: Model parameters for DFIG model in the DSE

Phasor Measurement Units and Phasor Data Concentrator
The PMUs of P class were placed on bus terminals of 1, 2, 3, 6, 8, and 14 respectively. The
sample rate for all the PMUs were set to the highest possible rate, i.e. 240 samples per
second. This enables more samples provided to the DSE, leading to more accurate esti-
mation. The PMUs are configured to send the terminal bus measurements, i.e. positive
sequence voltage phasor and positive sequence current phasor. Along with the mea-
surements, the DSE requires inputs for estimation. To be particular, the synchronous
machine model requires the input data of the mechanical torque and the field voltage
for estimation. Hence, the PMUs are also configured to carry these analog input signals.
The inputs to the SEL-5073 PDC were configured to receive the incoming PMU streams
from GTNETx2. Similarly, the output of SEL-5073 PDC was also configured to send the
desired streams to SADF.

Online DSE
The batch-wise online DSE was implemented in the MATLAB programming environ-
ment.

• For the initialization process, the initial error covariance array P was set to a variance
of 10−4. Similarly, the process noise array Q and the measurement noise array R were
both set to a variance of 10−6.

• As discussed in Section 4.3, the batch size B was chosen to be a fraction of the PMU
sample rate. Since, the chosen sample rate is 240 samples per second, the batch size
was selected to be 60 samples, i.e. one-fourth the sample rate.

• In the online DSE algorithm, one of the crucial steps is the pre-processing of the PMU
phasor magnitudes and angles. To do so, certain grid parameters have to be defined.
These are given in Table 5.1.

• The state-space models of both the synchronous generator and the DFIG require the
model parameters to be initialised. These are given in Table 5.2 and Table 5.3 for the
synchronous generator model and the DFIG model respectively.

• The IEEE 14-bus grid under study consisted of 5 synchronous generators and 1 DFIG
wind farm. The number states being observed for each synchronous generator and
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each DFIG were 4 and 5 respectively. Also, the number of measurements used to ob-
serve each synchronous generator and each DFIG were 3 and 2 respectively. Hence,
the complete discrete state-space model of the grid, constructed in a decentralized
manner, consisted of 25 states and 17 measurements, in total.

5.3. RESULTS

Once the simulation platform and the settings were set-up as in Section 5.1 and 5.2 re-
spectively, the online DSE was validated using a three-phase short circuit fault. The fault
was introduced at t = 8.3s and was subsequently cleared after 100 milliseconds. During
the period of this disturbance, the estimated waveforms of the state variables were com-
pared with the true waveforms to gauge how well the DSE performs, qualitatively as well
as quantitatively.

Synchronous Generators
The estimated waveforms are plotted over the true waveforms for the rotor angle and

(a)

(b)

Figure 5.3: Estimation waveform against the true waveform for rotor angle (a) and rotor speed (b) of generator
1

rotor speed of the synchronous generator 1 as shown in Fig. 5.3. For the pre-fault and
post-fault periods, the estimated steady state values match very well with the true ones
for both rotor angle and rotor speed. During the fault period i.e. t = 8.3s to t = 16s, the
estimated signals are almost dynamically identical with the true signals. However, un-
like the true signal, there are a few overshoots and undershoots in the estimated signal
at a few points. This is due to the introduction of the terminal frequency measurement
which also contains these anomalies. However, the overall estimation of the dynamic
behaviour of rotor angle and rotor speed of generator 1 is more than sufficient and these
few anomalies can be overlooked if necessary. However, for certain control implemen-
tations it becomes necessary to mitigate such anomalies. In such cases, filtering tech-
niques can be employed to remove these sharp overshoots and undershoots.
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(a)

(b)

Figure 5.4: Estimation waveform against the true waveform for rotor angle (a) and rotor speed (b) of generator
4

The estimated waveforms against the true waveforms for the rotor angle and rotor
speed of the synchronous generator 4 as shown in Fig. 5.4. Similar to the estimation re-
sults of generator 1 as in Fig. 5.3, the estimation of both the rotor angle and rotor speed
of the generator 4 is a good representation of the true dynamics. Similar to generator 1,
the estimation of generator 4 also suffers from the presence overshoots and undershoots
due to the frequency measurement. This can be again overlooked. However for genera-
tor 4, it can be seen that there is a small error between the estimation and truth in both
the steady-state and fault periods. This can be because the generator 1 is the slack gen-
erator, i.e. of the largest capacity, and the remaining generators are of smaller capacity.
Consequently, there might be a slight difference in the dynamic behaviour between the
slack generator and the other smaller generators. The estimation plots of the remaining
generators tell the same story and are given in the Appendix.

Doubly-Fed Induction Generator Wind Farm

The estimated waveforms are plotted over the true waveforms for the d-axis stator
current and d-axis rotor current of the DFIG as shown in Fig. 5.5. It can be observed
that the estimator captures the dynamic behaviour of the DFIG very well, during all the
periods. Unlike the synchronous generator, there are no overshoots and undershoots as
there is no frequency measurement used in the state-space model. At the positive and
negative peaks, there is an observable mismatch. This can be attributed to a model being
only an approximation of the true dynamic phenomena. However, this mismatch is not
significant, and hence can be overlooked. The plots of the remaining states are provided
in the Appendix.

To summarize, the results provide sufficient evidence that the online DSE is ade-
quately capable of estimating the general dynamic behaviour of all the synchronous
generators and DFIG wind farms in the grid.
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(a)

(b)

Figure 5.5: Estimation waveform against the true waveform for d-axis stator current (a) and d-axis rotor
current (b) of the DFIG wind farm

Performance Evaluation
In order to quantify the performance of the online DSE, the total error in estimation is
given using the following equation [13].

E = 1

n

n∑
j=1

∣∣∣x j
e −x j

t

∣∣∣ (5.1)

Here, n is the total number of states being observed, xe is the estimated state vector,
and xt is the true state vector. The simulation was run for 10 seconds with a three-phase
short circuit fault at t = 3s, which is cleared after 100 milliseconds. The total error in
estimation was found to be E = 0.003. This order of error is very well acceptable, as the
estimation is still an adequate representation of the overall dynamics.

The telecommunication delay dc and the estimation delay de of the online-DSE when
it runs in a near-real time can also be measured. The telecommunication delay dc is as
defined in section 4.2 and, in our case, also includes the delay from SADF. The delay-
measurement procedure was as follows. The host computer of the online DSE was con-
nected to the RTDS via a LAN connection. A LAN connection helps in minimizing the de-
lay in the telecommunication network. Subsequently, a data bit was sent from the RTDS
to the estimator and the time instances at the sending endpoint and the receiving end-
point were recorded. Also, the time difference between these two points are computed.
In total 7 trials were conducted to obtain 7 time differences. The median of these 7 time
differences provided the telecommunication delay dc as shown in Table 5.4. Similarly,
predefined functions in the MATLAB programming environment were used to compute
the time taken to estimate a batch of PMU measurements. Like in the previous proce-
dure, 7 batches were estimated to obtain 7 delays. The median of these 7 values provided
the estimation delay as shown in Table 5.4. The median was preferred over the mean as
the latter gets biased due to outliers.
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Trial Telecommunication Delay Estimation Delay
1 0.003 0.000025
2 0.005 0.000023
3 0.008 0.000024
4 0.0045 0.000025
5 0.002 0.000027
6 0.003 0.000025
7 0.004 0.000023

Median 4 ms 25 µs

Table 5.4: The 7 trials conducted to measure the telecommunication delay dc and the estimation delay de

5.4. SENSITIVITY ANALYSIS

A sensitivity analysis was conducted to quantify the variation in the state estimates when
variable input errors are introduced. The relationships were found for sensitivities to
different types of errors in measurements, parameters, wind speed, and initial state.

Measurement Errors

(a) (b)

Figure 5.6: Variation of state error against measurement errors for synchronous generator (a) and DFIG
respectively (b)

To gauge the sensitivity against measurement errors, a particular state of the synchronous
generator and the DFIG model was chosen. This was the rotor angle of generator 1 and
the d-axis stator current of the DFIG respectively. Errors in terms of standard deviation
SD were introduced in the measurements, and the corresponding mean squared errors
in the chosen states were recorded. These Mean squared errors for the synchronous
generator and the DFIG were plotted against corresponding logarithmic measurement
errors as shown in Fig. 5.6. For both the machine models, it can be observed that the re-
lationship between the state error and measurement error is linear in nature. This means
that for large measurement errors, the state error is linearly larger. Hence, it becomes sig-
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nificantly important to have fairly accurate PMU measurements to have good estimates.
A mathematical relationship for the synchronous generator and the DFIG measurement
sensitivities can be determined by performing a linear fit on the curves shown in Fig. 5.6.
These equations are shown below, where y is the mean squared estimation error and x
is the measurement error in terms of standard deviation.

Synchronous generator:
y = 0.1679x −0.0037 (5.2)

DFIG:
y = 0.1191x −0.0032 (5.3)

Parametric Errors

(a) (b)

Figure 5.7: Variation of state error against parametric errors for synchronous generator (a) and DFIG
respectively (b)

Similar to sensitivity analysis of measurement errors, a particular state of the synchronous
generator and the DFIG was chosen. Positive and negative percentage errors were intro-
duced and the corresponding variation in the steady-state errors of the observed state
was recorded and plotted as in Fig. 5.7. For both the machine models, it can be observed
that the relationship between the state error and parametric error is linear in nature. For
the introduction of the largest parametric error of 5 percent, the state error is still signif-
icantly small. However, beyond this point errors in the state can become unacceptable.
The state errors for larger parametric errors can be determined from the mathematical
relationship derived between the input parametric errors x and the state errors y . This
was done by performing a linear fit on the variation of state errors as shown in Fig. 5.7.
The linear relationship equations are as given below.

Synchronous generator:
y = 0.0046x −0.00331 (5.4)

DFIG:
y = 0.0004x −0.002902 (5.5)
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Wind Speed Errors

Figure 5.8: The variation of state error of the DFIG for different wind speed errors

A sensitivity analysis of the DFIG against errors in wind speed was also conducted. The
steady state errors in the d-axis stator current was observed for different percentage er-
rors in the wind speed. It can be observed that this relationship is again linear in nature
as in 5.8. As the absolute percentage of error increases, there is an increase in the abso-
lute state error recorded. Until 5 percent of wind speed errors, the recorded state errors
are small and, hence, acceptable. Beyond this point, the state errors can be determined
through the mathematical relationship between the input error and state error. This is
determined by performing a linear fit on the variation in 5.8 and is shown below, with y
being the steady state estimation error and x being the wind speed error introduced in
the form of percentages.

y = 0.0007x −0.0037 (5.6)

Initial State Errors

The chosen state of the synchronous generator and the DFIG were tested against various
initial state errors as in Fig. 5.9 and Fig. 5.10 respectively. it can be seen that the state
estimator is robust against any given initial state error. However, the larger the initial
state error is, the longer it takes to settle at the steady state value.
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Figure 5.9: Variation of state error against initial state errors for synchronous generator

Figure 5.10: Variation of state error against initial state errors for DFIG



6
CONCLUSION

Chapter 6 concludes the thesis by explaining the scientific contributions of the research
findings. Also, the future scope in this line of research is discussed.
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This thesis work was performed with the objective to build an online DSE which can
estimate states in a near real-time manner. To do so, this thesis was structured in the fol-
lowing manner. In Chapter 1, the research setting and goals were addressed. In chapter
2, the models of the synchronous generator and the DFIG were understood. In Chapter
3, the principle of the estimation process was explained using the kalman filter. In Chap-
ter 4, the machine models and the kalman filter were combined to enable an online DSE
algorithm, which can estimate in near-real time. In chapter 5, the simulation setting
was explained and the subsequent results of the online DSE were explained. Now, the
thesis is concluded by reflecting on the implications of the research work done by also
providing any possible future improvements in this line of work.

"What are the transformations, for the DFIG, that need to be performed to bring measure-
ments from the ABC domain to the DQ domain?"

In order to enable online DSE, the DFIG state inputs, i.e. stator and rotor voltages and
currents, were needed to be transformed from the ABC domain to the DQ domain. Fur-
thermore, a low-pass filter was required to remove any harmonic components that could
travel to the SADF platform and interfere with the estimation. This thesis work provides
the procedure for these necessary transformations, which serves as a guide for not only
DSE, but other monitoring and control applications which require DFIG quantities in
the DQ realm.

"How to develop an online dynamic state estimator for power systems with a centralized
control architecture?"

In order to perform dynamic state estimation in an online fashion, this thesis provides
the online DSE algorithm which estimates the states, of a power system with centralized
control, in near real-time. The developed online DSE was found to be adequate in terms
of capturing the dynamics of all the rotating machines in the grid. The online DSE pro-
duced estimates with an acceptable accuracy, and with an estimation delay in the order
of a few microseconds and a telecommunication delay in the order of a few milliseconds.
This work comes closest to being a good example of how a dynamic state estimator can
estimate in the real world scenario. This is of keen interest to TSOs in the aspect of power
system monitoring.

"What is the sensitivity relationship between the input error introduced and the estima-
tion error for synchronous generator model and DFIG model?"

Another contribution to this thesis is towards the sensitivities of DSE. The sensitivity
relationships between the inputted error and the estimation error for the synchronous
generator and DFIG models of the DSE were derived. The measurement errors, paramet-
ric errors and wind speed errors were found to have a linear relation with the state error.
From the slopes of the sensitivity relationship equations, we can understand that both
the synchronous and DFIG models are most sensitive to measurement errors. Further-
more, such relationships help in interpolating and extrapolating the estimation error for
any given input error. By also deriving such sensitivity relations for other Kalman fil-
ter variants, comparative analyses on the slopes, Area-Under-the-Curve (AUC), etc. can
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help better understand which kalman filter is more suitable.

"Future Improvements?"

Some important future improvements to the thesis are explained below.

Large Volumes of Data: As we move towards large-scale system with numerous measur-
ing devices, the volume of data that needs to be processed by the online DSE increases
dramatically. This can have drastic consequences on the computational power and time
of the DSE. One solution could be to use the estimate only when a dynamic event occurs.
This indeed saves computational energy, but limits certain functionalities. For example,
the estimates provided by the DSE supports many EMS functions. One such function is
anomaly detection, where anomalies such as dynamic events are detected from a con-
tinuous stream of data. In such a case, where the DSE is required to provide continuous
estimates, this solution does not seem appealing. Therefore, the next step for large-scale
implementations is through parallel and distributed computational techniques. By em-
ploying multiple processors and dividing the computation task amongst them, parallel
computation seems to be a viable solution. However, a distributed form of computa-
tion, where the estimation is performed locally and in a distributed manner, and then
collected together at a central point, seems to be most appealing.

Unknown Inputs: In this thesis implementation, the state estimator requires inputs to
be fed in along with the measurements. For example, the dynamic estimation of the
synchronous generator requires real time data of mechanical torque and field voltage.
However, implementations such as in [16] have shown that dynamic estimation, using
EKF, without the knowledge of the inputs is possible. This is of high importance to a
TSO, as some of the inputs such as mechanical torque, in reality, that are required by the
model are difficult to access through measuring devices. Hence, estimation methods
which encourage no knowledge of these inputs are more desirable and becomes a future
extension of this thesis.

Dynamic Security Assessment: As a part of the EMS, the online DSE becomes a support-
ing tool to other EMS functionalities. Mainly, the online DSE can provide near real-time,
dynamic estimates as initial conditions to the Dynamic Security Assessment (DSA) algo-
rithm [10]. This can greatly improve the DSA which currently uses only static estimates
as initial conditions. Similarly, by extending the online DSE to incorporate parameter
estimation algorithms, online parameter calibration of grid-connected machines can be
easily performed.
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A.1. ONLINE DSE CODE

%% Online Plotter
function Online_Plotter()

% Initialize Global variables
global DATA demo
global init_state P Q R x_estimate
if ~isfield(demo,’window’)

figure(’units’, ’normalized’, ’outerposition’, [0 0 1 1],
’name’,’Dynamic State Estimator for the Control Room of the
Future’,’NumberTitle’,’off’);

demo.window = 60;
demo.phasor = 2;
demo.voltage = 1;
demo.current = 2;
demo.torque = 1;
demo.field = 2;
demo.processed = 0;

end
% Initial state for the first run
if DATA.index_max < 2

init_state = [0.57;0;1.0189;0.2396;
0.333;0;1.0189;0.2396;
0;0;1.0189;0.2396;
0;0;1.0189;0.2396;
0;0;1.0189;0.2396;
0;0;0;0;1.2;0];

end
% Has new PMU data arrived?

59
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if DATA.index_max > demo.processed
demo.processed = DATA.index_max;
clf;
hold on;
% Extract the PMU data from DATA struct
if DATA.index_max <= demo.window

demo.dataset = [DATA.TimeStamp(1:DATA.index_max,1)
DATA.Magnitude(1:DATA.index_max,demo.phasor,1)];

demo.timestamp = DATA.TimeStamp(1:DATA.index_max,1);
demo.voltage_data =

DATA.Magnitude(1:DATA.index_max,demo.voltage,:);
demo.vang_data = DATA.Angle(1:DATA.index_max,demo.voltage,:);
demo.current_data =

DATA.Magnitude(1:DATA.index_max,demo.current,:);
demo.cang_data = DATA.Angle(1:DATA.index_max,demo.current,:);
demo.torque_data =

DATA.Analog(1:DATA.index_max,demo.torque,:);
demo.field_data = DATA.Analog(1:DATA.index_max,demo.field,:);
demo.freq = DATA.Freq(1:DATA.index_max,1,:);
demo.dfig = DATA.Analog(1:DATA.index_max,:,6:8);

else
demo.dataset = [DATA.TimeStamp(DATA.index_max-
demo.window:DATA.index_max,1)
DATA.Magnitude(DATA.index_max-
demo.window:DATA.index_max,demo.phasor,1)];
demo.timestamp = DATA.TimeStamp(DATA.index_max-
demo.window:DATA.index_max,1,:);
demo.voltage_data = DATA.Magnitude(DATA.index_max-
demo.window:DATA.index_max,demo.voltage,:);
demo.vang_data = DATA.Angle(DATA.index_max-
demo.window:DATA.index_max,demo.voltage,:);
demo.current_data = DATA.Magnitude(DATA.index_max-
demo.window:DATA.index_max,demo.current,:);
demo.cang_data = DATA.Angle(DATA.index_max-
demo.window:DATA.index_max,demo.current,:);
demo.torque_data = DATA.Analog(DATA.index_max-
demo.window:DATA.index_max,demo.torque,:);
demo.field_data = DATA.Analog(DATA.index_max-
demo.window:DATA.index_max,demo.field,:);
demo.freq = DATA.Freq(DATA.index_max-
demo.window:DATA.index_max,1,:);
demo.dfig = DATA.Analog(DATA.index_max-
demo.window:DATA.index_max,:,6:8);

end
% Send the data to the estimator to receive estimates
[x_estimate,P_final] = DSE_online(demo,init_state,P,Q,R);
% Update the initial state and the error covariance matrix P
init_state = x_estimate(:,end);
P = P_final;
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% Extracting each state
ra1 = x_estimate(1,:);
ra2 = x_estimate(5,:);
ra3 = x_estimate(9,:);
ra4 = x_estimate(13,:);
ra5 = x_estimate(17,:);
rs1 = 1+x_estimate(2,:);
rs2 = 1+x_estimate(6,:);
rs3 = 1+x_estimate(10,:);
rs4 = 1+x_estimate(14,:);
rs5 = 1+x_estimate(18,:);
ids = x_estimate(21,:);
iqs = x_estimate(22,:);
idr = x_estimate(23,:);
iqr = x_estimate(24,:);
wr = x_estimate(25,:);

% plot the estimates
title_plot = "IEEE-14 Bus System";
subplot(1,2,1)
plot(demo.timestamp, ra1);hold on;
xlabel(’Timestamp (UTC)’); ylabel(’Rotor Angle|G1|pu’);
title(’Generator Monitoring’);
legend(’G1’,’G2’,’G3’,’G4’,’G5’);
ax = gca;
ax.XTick = demo.timestamp;
grid on
datetick(’x’, ’dd-mm-yyyy HH:MM:SS.FFF’, ’keeplimits’,

’keepticks’)
set(gca, ’XMinorTick’, ’on’, ’YMinorTick’, ’on’,

’XTickLabelRotation’, 45)
set(findall(gca, ’Type’, ’Line’),’LineWidth’,3);

subplot(1,2,2)
plot(demo.timestamp, ids);hold on;
xlabel(’Timestamp (UTC)’); ylabel(’D-axis Stator

Current|DFIG|pu’);
title(’DFIG Monitoring’);
legend(’G1’,’G2’,’G3’,’G4’,’G5’);
ax = gca;
ax.XTick = demo.timestamp;
sgtitle([’Online Monitoring: ’ title_plot ])
grid on
datetick(’x’, ’dd-mm-yyyy HH:MM:SS.FFF’, ’keeplimits’,

’keepticks’)
set(gca, ’XMinorTick’, ’on’, ’YMinorTick’, ’on’,

’XTickLabelRotation’, 45)
set(findall(gca, ’Type’, ’Line’),’LineWidth’,3);
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drawnow limitrate
disp([datestr(now, ’yyyy-mm-dd HH:MM:SS.FFF’) ’ PLOT ’]);

end
end
%% Retrieving Measurements
function [Tm,Tm2,Tm3,Tm4,Tm5,Ef,Ef2,Ef3,Ef4,Ef5,F_G1,F_G2,F_G3,
F_G4,F_G5,F_G6,Vmag_pu,Vmag_pu2,Vmag_pu3,Vmag_pu4,Vmag_pu5,P_m,
Q_m,P_m2,Q_m2,P_m3,Q_m3,P_m4,Q_m4,P_m5,Q_m5,vds,vqs,vdr,vqr,
P_DFIG,Q_DFIG] = measurements_online(demo)

global Sbase Sbase2 Sbase3 Sbase4 Sbase5 Vbase

%Inputs to G1
Tm = demo.torque_data(:,1,1); % Mechanical Torque
Tm = Tm(~isnan(Tm));
Ef = demo.field_data(:,1,1); % Internal Field Voltage
Ef = Ef(~isnan(Ef));

%Inputs to G2
Tm2 = demo.torque_data(:,1,2); % Mechanical Torque
Tm2 = Tm2(~isnan(Tm2));
Ef2 = demo.field_data(:,1,2); % Internal Field Voltage
Ef2 = Ef2(~isnan(Ef2));

%Inputs to G3
Tm3 = demo.torque_data(:,1,3); % Mechanical Torque
Tm3 = Tm3(~isnan(Tm3));
Ef3 = demo.field_data(:,1,3); % Internal Field Voltage
Ef3 = Ef3(~isnan(Ef3));

%Inputs to G4
Tm4 = demo.torque_data(:,1,4); % Mechanical Torque
Tm4 = Tm4(~isnan(Tm4));
Ef4 = demo.field_data(:,1,4); % Internal Field Voltage
Ef4 = Ef4(~isnan(Ef4));

%Inputs to G5
Tm5 = demo.torque_data(:,1,5); % Mechanical Torque
Tm5 = Tm5(~isnan(Tm5));
Ef5 = demo.field_data(:,1,5); % Internal Field Voltage
Ef5 = Ef5(~isnan(Ef5));

%Inputs to DFIG
vds = demo.dfig(:,1,1); % Stator Voltage d-axis
vds = vds(~isnan(vds));
vqs = demo.dfig(:,2,1); % Stator Voltage q-axis
vqs = vqs(~isnan(vqs));
vdr = demo.dfig(:,3,1); % Rotor Voltage d-axis
vdr = vdr(~isnan(vdr));
vqr = demo.dfig(:,4,1); % Rotor Voltage q-axis
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vqr = vqr(~isnan(vqr));
P_DFIG = demo.dfig(:,3,2); % DFIG active power injected
P_DFIG = P_DFIG(~isnan(P_DFIG))./2.2;
Q_DFIG = demo.dfig(:,4,2); % DFIG reactive power injected
Q_DFIG = Q_DFIG(~isnan(Q_DFIG))./2.2;
%%

% System Frequency
F = demo.freq;
F_G1 = F(:,:,1);
F_G1 = F_G1(~isnan(F_G1));
F_G2 = F(:,:,2);
F_G2 = F_G2(~isnan(F_G2));
F_G3 = F(:,:,3);
F_G3 = F_G3(~isnan(F_G3));
F_G4 = F(:,:,4);
F_G4 = F_G4(~isnan(F_G4));
F_G5 = F(:,:,5);
F_G5 = F_G5(~isnan(F_G5));
F_G6 = F(:,:,6);
F_G6 = F_G6(~isnan(F_G6));
%%

%Measurements of G1
Vmag = demo.voltage_data(:,1,1);
Vmag = Vmag(~isnan(Vmag));
Vang = demo.vang_data(:,1,1);
Vang = Vang(~isnan(Vang));
Imag = demo.current_data(:,1,1);
Imag = Imag(~isnan(Imag));
Iang = demo.cang_data(:,1,1);
Iang = Iang(~isnan(Iang));

%Measurements of G2
Vmag2 = demo.voltage_data(:,1,2);
Vmag2 = Vmag2(~isnan(Vmag2));
Vang2 = demo.vang_data(:,1,2);
Vang2 = Vang2(~isnan(Vang2));
Imag2 = demo.current_data(:,1,2);
Imag2 = Imag2(~isnan(Imag2));
Iang2 = demo.cang_data(:,1,2);
Iang2 = Iang2(~isnan(Iang2));

%Measurements of G3
Vmag3 = demo.voltage_data(:,1,3);
Vmag3 = Vmag3(~isnan(Vmag3));
Vang3 = demo.vang_data(:,1,3);
Vang3 = Vang3(~isnan(Vang3));
Imag3 = demo.current_data(:,1,3);
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Imag3 = Imag3(~isnan(Imag3));
Iang3 = demo.cang_data(:,1,3);
Iang3 = Iang3(~isnan(Iang3));

%Measurements of G4
Vmag4 = demo.voltage_data(:,1,4);
Vmag4 = Vmag4(~isnan(Vmag4));
Vang4 = demo.vang_data(:,1,4);
Vang4 = Vang4(~isnan(Vang4));
Imag4 = demo.current_data(:,1,4);
Imag4 = Imag4(~isnan(Imag4));
Iang4 = demo.cang_data(:,1,4);
Iang4 = Iang4(~isnan(Iang4));

%Measurements of G5
Vmag5 = demo.voltage_data(:,1,5);
Vmag5 = Vmag5(~isnan(Vmag5));
Vang5 = demo.vang_data(:,1,5);
Vang5 = Vang5(~isnan(Vang5));
Imag5 = demo.current_data(:,1,5);
Imag5 = Imag5(~isnan(Imag5));
Iang5 = demo.cang_data(:,1,5);
Iang5 = Iang5(~isnan(Iang5));

%% Treatment of the Measurement Data

% Generator 1
% Conversion to pu
Vmag_pu = (Vmag*sqrt(3))/(Vbase*1000);
Imag_pu = (Imag*Vbase)/(Sbase*1000);
% Changing phasor angle reference
Ref_ang = Vang;
Iang = -(Ref_ang - Iang);
Vang = Vang.*0;
% Deriving P and Q
V_m = Vmag_pu.*cos(Vang*pi/180)+Vmag_pu.*sin(Vang*pi/180)*1i;
I_m = Imag_pu.*cos(Iang*pi/180)+Imag_pu.*sin(Iang*pi/180)*1i;
S = V_m.*conj(I_m)*sqrt(3);
P_m = real(S);
Q_m = imag(S);

% Generator 2
% Conversion to pu
Vmag_pu2 = (Vmag2*sqrt(3))/(Vbase*1000);
Imag_pu2 = (Imag2*Vbase)/(Sbase2*1000);
% Changing phasor angle reference
Vang2 = -(Ref_ang - Vang2);
Iang2 = -(Ref_ang - Iang2);
% Deriving P and Q
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V_m2 = Vmag_pu2.*cos(Vang2*pi/180)+Vmag_pu2.*sin(Vang2*pi/180)*1i;
I_m2 = Imag_pu2.*cos(Iang2*pi/180)+Imag_pu2.*sin(Iang2*pi/180)*1i;
S2 = V_m2.*conj(I_m2)*sqrt(3);
P_m2 = real(S2);
Q_m2 = imag(S2);

% Generator 3
% Conversion to pu
Vmag_pu3 = (Vmag3*sqrt(3))/(Vbase*1000);
Imag_pu3 = (Imag3*Vbase)/(Sbase3*1000);
% Changing phasor angle reference
Vang3 = -(Ref_ang - Vang3);
Iang3 = -(Ref_ang - Iang3);
% Deriving P and Q
V_m3 = Vmag_pu3.*cos(Vang3*pi/180)+Vmag_pu3.*sin(Vang3*pi/180)*1i;
I_m3 = Imag_pu3.*cos(Iang3*pi/180)+Imag_pu3.*sin(Iang3*pi/180)*1i;
S3 = V_m3.*conj(I_m3)*sqrt(3);
P_m3 = real(S3);
Q_m3 = imag(S3);

% Generator 4
% Conversion to pu
Vmag_pu4 = (Vmag4*sqrt(3))/(Vbase*1000);
Imag_pu4 = (Imag4*Vbase)/(Sbase4*1000);
% Changing phasor angle reference
Vang4 = -(Ref_ang - Vang4);
Iang4 = -(Ref_ang - Iang4);
% Deriving P and Q
V_m4 = Vmag_pu4.*cos(Vang4*pi/180)+Vmag_pu4.*sin(Vang4*pi/180)*1i;
I_m4 = Imag_pu4.*cos(Iang4*pi/180)+Imag_pu4.*sin(Iang4*pi/180)*1i;
S4 = V_m4.*conj(I_m4)*sqrt(3);
P_m4 = real(S4);
Q_m4 = imag(S4);

% Generator 5
% Conversion to pu
Vmag_pu5 = (Vmag5*sqrt(3))/(Vbase*1000);
Imag_pu5 = (Imag5*Vbase)/(Sbase5*1000);
% Changing phasor angle reference
Vang5 = -(Ref_ang - Vang5);
Iang5 = -(Ref_ang - Iang5);
% Deriving P and Q
V_m5 = Vmag_pu5.*cos(Vang5*pi/180)+Vmag_pu5.*sin(Vang5*pi/180)*1i;
I_m5 = Imag_pu5.*cos(Iang5*pi/180)+Imag_pu5.*sin(Iang5*pi/180)*1i;
S5 = V_m5.*conj(I_m5)*sqrt(3);
P_m5 = real(S5);
Q_m5 = imag(S5);

function [x_estimate,P_final] = DSE_online(demo,init_state,init_P,Q,R)
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global w_syn n H Xd Xq Xdt Xqt Td0 Tq0 Kd w ws_w Ls_w Lr_w Lm_w Rs_w
Rr_w H_w

%% Retrieving and synthesizing measurements
[Tm,Tm2,Tm3,Tm4,Tm5,Ef,Ef2,Ef3,Ef4,Ef5,F_G1,F_G2,F_G3,F_G4,F_G5,
F_G6,Vmag_pu,Vmag_pu2,Vmag_pu3,Vmag_pu4,Vmag_pu5,P_m,Q_m,P_m2,
Q_m2,P_m3,Q_m3,P_m4,Q_m4,P_m5,Q_m5,vds,vqs,vdr,vqr,P_DFIG,Q_DFIG]
= measurements_online(demo);

%Estimated state:
ns=4*n+6*w; % Number of states

%Sigma points
Td0k = repmat(Td0,1,2*ns);
Tq0k = repmat(Tq0,1,2*ns);
H_rep=repmat(H,1,2*ns);
Kd_rep=repmat(Kd,1,2*ns);

%Simulation variables
t_step=1/240;
k_end=length(Vmag_pu);
x_hat=zeros(4*n+6*w,k_end);
x_hat(:,1) = init_state;
P = init_P;
%% The Unscented Kalman Filter Algorithm
for k=2:k_end

%Generate Sigma Points from the previous state
A=chol(ns*P);
x_tilda=[A, -A];
x_sigma=repmat(x_hat(:,k-1),1,2*ns)+x_tilda;

%G1
del_sigma=x_sigma(1,:);
w_sigma=x_sigma(2,:);
eq_sigma=x_sigma(3,:);
ed_sigma=x_sigma(4,:);
Tmk = repmat(Tm(k-1,:),1,2*ns);
Efk = repmat(Ef(k-1,:),1,2*ns);
Vtk = repmat(Vmag_pu(k-1,:),1,2*ns);

%G2
del_sigma2=x_sigma(5,:);
w_sigma2=x_sigma(6,:);
eq_sigma2=x_sigma(7,:);
ed_sigma2=x_sigma(8,:);
Tmk2 = repmat(Tm2(k-1,:),1,2*ns);
Efk2 = repmat(Ef2(k-1,:),1,2*ns);
Vtk2 = repmat(Vmag_pu2(k-1,:),1,2*ns);
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%G3
del_sigma3=x_sigma(9,:);
w_sigma3=x_sigma(10,:);
eq_sigma3=x_sigma(11,:);
ed_sigma3=x_sigma(12,:);
Tmk3 = repmat(Tm3(k-1,:),1,2*ns);
Efk3 = repmat(Ef3(k-1,:),1,2*ns);
Vtk3 = repmat(Vmag_pu3(k-1,:),1,2*ns);

%G4
del_sigma4=x_sigma(13,:);
w_sigma4=x_sigma(14,:);
eq_sigma4=x_sigma(15,:);
ed_sigma4=x_sigma(16,:);
Tmk4 = repmat(Tm4(k-1,:),1,2*ns);
Efk4 = repmat(Ef4(k-1,:),1,2*ns);
Vtk4 = repmat(Vmag_pu4(k-1,:),1,2*ns);

%G5
del_sigma5=x_sigma(17,:);
w_sigma5=x_sigma(18,:);
eq_sigma5=x_sigma(19,:);
ed_sigma5=x_sigma(20,:);
Tmk5 = repmat(Tm5(k-1,:),1,2*ns);
Efk5 = repmat(Ef5(k-1,:),1,2*ns);
Vtk5 = repmat(Vmag_pu5(k-1,:),1,2*ns);

%DFIG1
ids_sigma=x_sigma(21,:);
iqs_sigma=x_sigma(22,:);
idr_sigma=x_sigma(23,:);
iqr_sigma=x_sigma(24,:);
ww_sigma=x_sigma(25,:);
delw_sigma=x_sigma(26,:);
Tmw = repmat(-0.7552,1,2*ns);
vdsk = repmat(vds(k-1,:),1,2*ns);
vqsk = repmat(vqs(k-1,:),1,2*ns);
vdrk = repmat(vdr(k-1,:),1,2*ns);
vqrk = repmat(vqr(k-1,:),1,2*ns);

% SG: Discretized Model through the Fourth Order
% Runge-Kutta Numerical Integration Method

[del_sigma,w_sigma,eq_sigma,ed_sigma] = gen_model(del_sigma,
w_sigma,eq_sigma,ed_sigma,Tmk,Efk,Vtk,t_step,w_syn,H_rep,
Xd,Xdt,Xq,Xqt,Kd_rep,Td0k,Tq0k);
[del_sigma2,w_sigma2,eq_sigma2,ed_sigma2] = gen_model(
del_sigma2,w_sigma2,eq_sigma2,ed_sigma2,Tmk2,Efk2,Vtk2,
t_step,w_syn,H_rep,Xd,Xdt,Xq,Xqt,Kd_rep,Td0k,Tq0k);
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[del_sigma3,w_sigma3,eq_sigma3,ed_sigma3] = gen_model(
del_sigma3,w_sigma3,eq_sigma3,ed_sigma3,Tmk3,Efk3,Vtk3,
t_step,w_syn,H_rep,Xd,Xdt,Xq,Xqt,Kd_rep,Td0k,Tq0k);
[del_sigma4,w_sigma4,eq_sigma4,ed_sigma4] = gen_model(
del_sigma4,w_sigma4,eq_sigma4,ed_sigma4,Tmk4,Efk4,Vtk4,
t_step,w_syn,H_rep,Xd,Xdt,Xq,Xqt,Kd_rep,Td0k,Tq0k);
[del_sigma5,w_sigma5,eq_sigma5,ed_sigma5] = gen_model(
del_sigma5,w_sigma5,eq_sigma5,ed_sigma5,Tmk5,Efk5,Vtk5,
t_step,w_syn,H_rep,Xd,Xdt,Xq,Xqt,Kd_rep,Td0k,Tq0k);

% DFIG: Discretized Model through the Fourth Order
% Runge-Kutta Numerical Integration Method
[ids_sigma,iqs_sigma,idr_sigma,iqr_sigma,ww_sigma,
delw_sigma] = DFIG_model(ids_sigma,iqs_sigma,idr_sigma,
iqr_sigma,ww_sigma,delw_sigma,Tmw,Ls_w,Lr_w,Lm_w,ws_w,
H_w,vdsk,vqsk,vdrk,vqrk,Rs_w,Rr_w,t_step,w_syn);

x_sigma=[del_sigma;w_sigma;eq_sigma;ed_sigma;del_sigma2;
w_sigma2;eq_sigma2;ed_sigma2;del_sigma3;w_sigma3;eq_sigma3;
ed_sigma3;del_sigma4;w_sigma4;eq_sigma4;ed_sigma4;del_sigma5;
w_sigma5;eq_sigma5;ed_sigma5;ids_sigma;iqs_sigma;idr_sigma;
iqr_sigma;ww_sigma;delw_sigma];

%%
%Prioiri State Estimate
x_minus=(1/(2*ns))*(sum(x_sigma’))’;
%Priori Covariance Matrix
x_minus_rep=repmat(x_minus,1,2*ns);
P_minus=(1/(2*ns))*(x_sigma-x_minus_rep)*
(x_sigma-x_minus_rep)’+Q;

%% Measurement Sigma Points

%G1
Vtkp = repmat(Vmag_pu(k,:),1,2*ns);
[y1_g1,y2_g1,y3_g1] =

sgm(del_sigma,w_sigma,eq_sigma,Vtkp,Xdt,Xq);

%G2
Vtkp2 = repmat(Vmag_pu2(k,:),1,2*ns);
[y1_g2,y2_g2,y3_g2] =

sgm(del_sigma2,w_sigma2,eq_sigma2,Vtkp2,Xdt,Xq);

%G3
Vtkp3 = repmat(Vmag_pu3(k,:),1,2*ns);
[y1_g3,y2_g3,y3_g3] =

sgm(del_sigma3,w_sigma3,eq_sigma3,Vtkp3,Xdt,Xq);

%G4
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Vtkp4 = repmat(Vmag_pu4(k,:),1,2*ns);
[y1_g4,y2_g4,y3_g4] =

sgm(del_sigma4,w_sigma4,eq_sigma4,Vtkp4,Xdt,Xq);

%G5
Vtkp5 = repmat(Vmag_pu5(k,:),1,2*ns);
[y1_g5,y2_g5,y3_g5] =

sgm(del_sigma5,w_sigma5,eq_sigma5,Vtkp5,Xdt,Xq);

%DFIG
vdsk = repmat(vds(k,:),1,2*ns);
vqsk = repmat(vqs(k,:),1,2*ns);
vdrk = repmat(vdr(k,:),1,2*ns);
vqrk = repmat(vqr(k,:),1,2*ns);

y_Pw = (vdsk.*ids_sigma+vqsk.*iqs_sigma+vdrk.*idr_sigma+
vqrk.*iqr_sigma);
y_Qw = (vqsk.*ids_sigma-vdsk.*iqs_sigma+vqrk.*idr_sigma-
vdrk.*iqr_sigma);
y_Fw = 60.*(ww_sigma)/(1+0.20375);

y_sigma=[y1_g1;y2_g1;y3_g1;y1_g2;y2_g2;y3_g2;y1_g3;
y2_g3;y3_g3;y1_g4;
y2_g4;y3_g4;y1_g5;y2_g5;y3_g5;y_Pw;y_Qw;y_Fw];

%y Predict
y_predict=(1/(2*ns))*(sum(y_sigma’))’;
%%
%Covariance of predicted measurements Py
y_predict_rep=repmat(y_predict,1,2*ns);
P_y=(2*ns)^-1*(y_sigma-y_predict_rep)*(y_sigma-y_predict_rep)’+R;

%Cross covariance Pxy
P_xy=(2*ns)^-1*(x_sigma-x_minus_rep)*(y_sigma-y_predict_rep)’;
%% Measurement update of state estimate

% Kalman Gain
K=P_xy*P_y^-1;

%G1
y_PG1=P_m(k,:);
y_QG1=Q_m(k,:);
y_FG1=F_G1(k,:);

%G2
y_PG2=P_m2(k,:);
y_QG2=Q_m2(k,:);
y_FG2=F_G2(k,:);
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%G3
y_PG3=P_m3(k,:);
y_QG3=Q_m3(k,:);
y_FG3=F_G3(k,:);

%G4
y_PG4=P_m4(k,:);
y_QG4=Q_m4(k,:);
y_FG4=F_G4(k,:);

%G5
y_PG5=P_m5(k,:);
y_QG5=Q_m5(k,:);
y_FG5=F_G5(k,:);

%DFIG1
y_PW=P_DFIG(k,:);
y_QW=Q_DFIG(k,:);
y_FG6=F_G6(k,:);

%v=sig^3*randn(nm,1); %Measurement Noise
y=[y_PG1;y_QG1;y_FG1;y_PG2;y_QG2;y_FG2;y_PG3;y_QG3;y_FG3;
y_PG4;y_QG4;y_FG4;y_PG5;y_QG5;y_FG5;y_PW;y_QW;y_FG6];%+v;
x_hat(:,k)=x_minus+K*(y-y_predict);
P=P_minus-K*P_y*K’;

end
x_estimate = x_hat;
P_final=P;

end
%% Discretized Model through the Fourth Order
%% Runge-Kutta Numerical Integration Method

function [del_sigma_up,w_sigma_up,eq_sigma_up,ed_sigma_up] =
gen_model(del_sigma,w_sigma,eq_sigma,ed_sigma,Tmk,Efk,Vtk,t_step,
w_syn,H,Xd,Xdt,Xq,Xqt,Kd_rep,Td0k,Tq0k)

%k1
k1_del = t_step.*(w_syn*w_sigma);
k1_w = t_step.*((((2.*H).^-1)).*((Tmk)-((Vtk./Xdt).
*eq_sigma.*sin(del_sigma))-(((Vtk.^2)./2).*((1/Xq)-(1/Xdt))
.*sin(2.*del_sigma))-(Kd_rep.*w_sigma)));
k1_eq = t_step.*(((Td0k.^-1)).*((Efk)-(eq_sigma)-((Xd-Xdt).*
(eq_sigma-Vtk.*cos(del_sigma))./Xdt)));
k1_ed = t_step.*((Tq0k.^-1).*(-(ed_sigma)+((Xq-Xqt).*
((Vtk.*sin(del_sigma))./Xq))));

%k2
k2_del = t_step.*(w_syn*(w_sigma+k1_w/2));
k2_w = t_step.*((((2.*H).^-1)).*((Tmk)-((Vtk./Xdt).*
(eq_sigma+k1_eq/2).*sin((del_sigma+k1_del/2).*1))-



A.1. ONLINE DSE CODE

A

71

(((Vtk.^2)./2).*((1/Xq)-(1/Xdt))
.*sin(2.*(del_sigma+k1_del/2).*1))-(Kd_rep.*(w_sigma+k1_w/2))));
k2_eq = t_step.*(((Td0k.^-1)).*((Efk)-
((eq_sigma+k1_eq/2))-((Xd-Xdt).*
((eq_sigma+k1_eq/2)-Vtk.*cos((del_sigma+k1_del/2).*1))./Xdt)));
k2_ed = t_step.*(((Tq0k.^-1)).*(-((ed_sigma+k1_ed/2))+
((Xq-Xqt).*((Vtk.*sin((del_sigma+k1_del/2).*1))./Xq))));

%k3
k3_del = t_step.*(w_syn*(w_sigma+k2_w/2));
k3_w = t_step.*((((2.*H).^-1)).*((Tmk)-((Vtk./Xdt)
.*(eq_sigma+k2_eq/2).*sin((del_sigma+k2_del/2).*1))
-(((Vtk.^2)./2).*((1/Xq)-(1/Xdt)).*sin(2.*(del_sigma+k2_del/2).*1))
-(Kd_rep.*(w_sigma+k2_w/2))));
k3_eq = t_step.*(((Td0k.^-1)).*((Efk)-((eq_sigma+k2_eq/2))
-((Xd-Xdt).*((eq_sigma+k2_eq/2)-
Vtk.*cos((del_sigma+k2_del/2).*1))./Xdt)));
k3_ed = t_step.*(((Tq0k.^-1)).*(-((ed_sigma+k2_ed/2))
+((Xq-Xqt).*((Vtk.*sin((del_sigma+k2_del/2).*1))./Xq))));

%k4
k4_del = t_step.*(w_syn*(w_sigma+k3_w));
k4_w = t_step.*((((2.*H).^-1)).*((Tmk)-((Vtk./Xdt).*
(eq_sigma+k3_eq).*sin((del_sigma+k3_del).*1))-(((Vtk.^2)./2).*
((1/Xq)-(1/Xdt)).*sin(2.*(del_sigma+k3_del).*1))-
(Kd_rep.*(w_sigma+k3_w))));
k4_eq = t_step.*(((Td0k.^-1)).*((Efk)-((eq_sigma+k3_eq))
-((Xd-Xdt).*((eq_sigma+k3_eq)-Vtk.*cos((del_sigma+k3_del).*1))./Xdt)));
k4_ed = t_step.*(((Tq0k.^-1)).*(-((ed_sigma+k3_ed))
+((Xq-Xqt).*((Vtk.*sin((del_sigma+k3_del).*1))./Xq))));

del_sigma_up = del_sigma + (1/6)*(k1_del+2*k2_del+2*k3_del+k4_del);
w_sigma_up = w_sigma + (1/6)*(k1_w+2*k2_w+2*k3_w+k4_w);
eq_sigma_up = eq_sigma + (1/6)*(k1_eq+2*k2_eq+2*k3_eq+k4_eq);
ed_sigma_up = ed_sigma + (1/6)*(k1_ed+2*k2_ed+2*k3_ed+k4_ed);

end
%%
%% Discretized Model through the Fourth Order
%% Runge-Kutta Numerical Integration Method

function [ids_sigma_up,iqs_sigma_up,idr_sigma_up,iqr_sigma_up,
ww_sigma_up,delw_sigma_up] = DFIG_model(ids_sigma,iqs_sigma,
idr_sigma,iqr_sigma,ww_sigma,delw_sigma,Tmw,Ls_w,Lr_w,Lm_w,
ws_w,H_w,vdsk,vqsk,vdrk,vqrk,Rs_w,Rr_w,t_step,w_syn)

%k1
Te_w = Lm_w*(iqs_sigma.*idr_sigma-ids_sigma.*iqr_sigma);
k1_ids = t_step.*((1/(Ls_w.*Lr_w-Lm_w^2)).*(-Rs_w.*Lr_w.*
ids_sigma+(ww_sigma.*(Lm_w^2)+ws_w.*(Ls_w.*Lr_w-Lm_w^2)).*
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iqs_sigma+Rr_w.*Lm_w.*idr_sigma+ww_sigma.*Lr_w.*Lm_w.*
iqr_sigma+Lr_w.*vdsk-Lm_w.*vdrk));
k1_iqs = t_step.*((1/(Ls_w.*Lr_w-Lm_w^2)).*(-(ww_sigma.*
(Lm_w^2)+ws_w.*(Ls_w.*Lr_w-Lm_w^2)).*ids_sigma-Rs_w.*Lr_w.*
iqs_sigma+Rr_w.*Lm_w.*iqr_sigma-ww_sigma.*Lr_w.*Lm_w.*
idr_sigma+Lr_w.*vqsk-Lm_w.*vqrk));
k1_idr = t_step.*((1/(Ls_w.*Lr_w-Lm_w^2)).*(Rs_w.*Lm_w.*
ids_sigma-ww_sigma.*Ls_w.*Lm_w.*iqs_sigma-Rr_w.*Ls_w.*
idr_sigma+(-ww_sigma.*Lr_w.*Ls_w+ws_w.*(Ls_w.*Lr_w-Lm_w^2))
.*iqr_sigma-Lm_w.*vdsk+Ls_w.*vdrk));
k1_iqr = t_step.*((1/(Ls_w.*Lr_w-Lm_w^2)).*(Rs_w.*Lm_w.*
iqs_sigma+ww_sigma.*Ls_w.*Lm_w.*ids_sigma-Rr_w.*Ls_w.*
iqr_sigma-(-ww_sigma.*Lr_w.*Ls_w+ws_w.*(Ls_w.*Lr_w-Lm_w^2))
.*idr_sigma-Lm_w.*vqsk+Ls_w.*vqrk));
k1_ww = t_step.*((1/2.*H_w).*(Tmw-Te_w));
k1_delw = t_step.*(w_syn.*ww_sigma);

%k2
Te_w = Lm_w*((iqs_sigma+k1_iqs/2).*(idr_sigma+k1_idr/2)-
(ids_sigma+k1_ids/2).*(iqr_sigma+k1_iqr/2));
k2_ids = t_step.*((1/(Ls_w.*Lr_w-Lm_w^2)).*(-Rs_w.*Lr_w.*
(ids_sigma+k1_ids/2)+((ww_sigma+k1_ww/2).*(Lm_w^2)+ws_w.*
(Ls_w.*Lr_w-Lm_w^2)).*(iqs_sigma+k1_iqs/2)+Rr_w.*Lm_w.*
(idr_sigma+k1_idr/2)+(ww_sigma+k1_ww/2).*Lr_w.*Lm_w.*
(iqr_sigma+k1_iqr/2)+Lr_w.*vdsk-Lm_w.*vdrk));
k2_iqs = t_step.*((1/(Ls_w.*Lr_w-Lm_w^2)).*(-((ww_sigma+k1_ww/2)
.*(Lm_w^2)+ws_w.*(Ls_w.*Lr_w-Lm_w^2)).*(ids_sigma+k1_ids/2)-
Rs_w.*Lr_w.*(iqs_sigma+k1_iqs/2)+Rr_w.*Lm_w.*(iqr_sigma+k1_iqr/2)
-(ww_sigma+k1_ww/2).*Lr_w.*Lm_w.*(idr_sigma+k1_idr/2)+
Lr_w.*vqsk-Lm_w.*vqrk));
k2_idr = t_step.*((1/(Ls_w.*Lr_w-Lm_w^2)).*(Rs_w.*Lm_w.*
(ids_sigma+k1_ids/2)-(ww_sigma+k1_ww/2).*Ls_w.*Lm_w.*
(iqs_sigma+k1_iqs/2)-Rr_w.*Ls_w.*(idr_sigma+k1_idr/2)+
(-(ww_sigma+k1_ww/2).*Lr_w.*Ls_w+ws_w.*(Ls_w.*Lr_w-Lm_w^2))
.*(iqr_sigma+k1_iqr/2)-Lm_w.*vdsk+Ls_w.*vdrk));
k2_iqr = t_step.*((1/(Ls_w.*Lr_w-Lm_w^2)).*(Rs_w.*Lm_w.*
(iqs_sigma+k1_iqs/2)+(ww_sigma+k1_ww/2).*Ls_w.*Lm_w.*
(ids_sigma+k1_ids/2)-Rr_w.*Ls_w.*(iqr_sigma+k1_iqr/2)-
(-(ww_sigma+k1_ww/2).*Lr_w.*Ls_w+ws_w.*(Ls_w.*Lr_w-Lm_w^2))
.*(idr_sigma+k1_idr/2)-Lm_w.*vqsk+Ls_w.*vqrk));
k2_ww = t_step.*((1/2.*H_w).*(Tmw-Te_w));
k2_delw = t_step.*(w_syn.*(ww_sigma+k1_ww/2));

%k3
Te_w = Lm_w*((iqs_sigma+k2_iqs/2).*(idr_sigma+k2_idr/2)-
(ids_sigma+k2_ids/2).*(iqr_sigma+k2_iqr/2));
k3_ids = t_step.*((1/(Ls_w.*Lr_w-Lm_w^2)).*(-Rs_w.*Lr_w.*
(ids_sigma+k2_ids/2)+((ww_sigma+k2_ww/2).*(Lm_w^2)+ws_w.*
(Ls_w.*Lr_w-Lm_w^2)).*(iqs_sigma+k2_iqs/2)+Rr_w.*Lm_w.*
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(idr_sigma+k2_idr/2)+(ww_sigma+k2_ww/2).*Lr_w.*Lm_w.*
(iqr_sigma+k2_iqr/2)+Lr_w.*vdsk-Lm_w.*vdrk));
k3_iqs = t_step.*((1/(Ls_w.*Lr_w-Lm_w^2)).*
(-((ww_sigma+k2_ww/2).*(Lm_w^2)+ws_w.*(Ls_w.*Lr_w-Lm_w^2))
.*(ids_sigma+k2_ids/2)-Rs_w.*Lr_w.*(iqs_sigma+k2_iqs/2)
+Rr_w.*Lm_w.*(iqr_sigma+k2_iqr/2)-(ww_sigma+k2_ww/2)
.*Lr_w.*Lm_w.*(idr_sigma+k2_idr/2)+Lr_w.*vqsk-Lm_w.*vqrk));
k3_idr = t_step.*((1/(Ls_w.*Lr_w-Lm_w^2))
.*(Rs_w.*Lm_w.*(ids_sigma+k2_ids/2)-(ww_sigma+k2_ww/2)
.*Ls_w.*Lm_w.*(iqs_sigma+k2_iqs/2)-Rr_w.*Ls_w.*(idr_sigma+k2_idr/2)
+(-(ww_sigma+k2_ww/2).*Lr_w.*Ls_w+ws_w.*(Ls_w.*Lr_w-Lm_w^2))
.*(iqr_sigma+k2_iqr/2)-Lm_w.*vdsk+Ls_w.*vdrk));
k3_iqr = t_step.*((1/(Ls_w.*Lr_w-Lm_w^2)).*(Rs_w.*Lm_w.*
(iqs_sigma+k2_iqs/2)+(ww_sigma+k2_ww/2).*Ls_w.*Lm_w.*
(ids_sigma+k2_ids/2)-Rr_w.*Ls_w.*(iqr_sigma+k2_iqr/2)-
(-(ww_sigma+k2_ww/2).*Lr_w.*Ls_w+ws_w.*(Ls_w.*Lr_w-Lm_w^2)).*
(idr_sigma+k2_idr/2)-Lm_w.*vqsk+Ls_w.*vqrk));
k3_ww = t_step.*((1/2.*H_w).*(Tmw-Te_w));
k3_delw = t_step.*(w_syn.*(ww_sigma+k2_ww/2));

%k4
Te_w =

Lm_w*((iqs_sigma+k3_iqs).*(idr_sigma+k3_idr)-(ids_sigma+k3_ids)
.*(iqr_sigma+k3_iqr));
k4_ids = t_step.*((1/(Ls_w.*Lr_w-Lm_w^2)).*(-Rs_w.*Lr_w.*
(ids_sigma+k3_ids)+((ww_sigma+k3_ww).*(Lm_w^2)+ws_w.*
(Ls_w.*Lr_w-Lm_w^2)).*(iqs_sigma+k3_iqs)+Rr_w.*Lm_w.*
(idr_sigma+k3_idr)+(ww_sigma+k3_ww/2).*Lr_w.*Lm_w.*
(iqr_sigma+k3_iqr)+Lr_w.*vdsk-Lm_w.*vdrk));
k4_iqs = t_step.*((1/(Ls_w.*Lr_w-Lm_w^2)).*(-((ww_sigma+k3_ww)
.*(Lm_w^2)+ws_w.*(Ls_w.*Lr_w-Lm_w^2)).*(ids_sigma+k3_ids)
-Rs_w.*Lr_w.*(iqs_sigma+k3_iqs)+Rr_w.*Lm_w.*
(iqr_sigma+k3_iqr)-(ww_sigma+k3_ww).*Lr_w.*Lm_w.*
(idr_sigma+k3_idr)+Lr_w.*vqsk-Lm_w.*vqrk));
k4_idr = t_step.*((1/(Ls_w.*Lr_w-Lm_w^2)).*(Rs_w.*Lm_w
.*(ids_sigma+k3_ids)-(ww_sigma+k3_ww).*Ls_w.*Lm_w.*
(iqs_sigma+k3_iqs)-Rr_w.*Ls_w.*(idr_sigma+k3_idr)+
(-(ww_sigma+k3_ww).*Lr_w.*Ls_w+ws_w.*(Ls_w.*Lr_w-Lm_w^2)).*
(iqr_sigma+k3_iqr)-Lm_w.*vdsk+Ls_w.*vdrk));
k4_iqr = t_step.*((1/(Ls_w.*Lr_w-Lm_w^2)).*(Rs_w.*Lm_w.*
(iqs_sigma+k3_iqs)+(ww_sigma+k3_ww).*Ls_w.*Lm_w.*
(ids_sigma+k3_ids)-Rr_w.*Ls_w.*(iqr_sigma+k3_iqr)-
(-(ww_sigma+k3_ww).*Lr_w.*Ls_w+ws_w.*(Ls_w.*Lr_w-Lm_w^2))
.*(idr_sigma+k3_idr)-Lm_w.*vqsk+Ls_w.*vqrk));
k4_ww = t_step.*((1/2.*H_w).*(Tmw-Te_w));
k4_delw = t_step.*(w_syn.*(ww_sigma+k3_ww));

ids_sigma_up = ids_sigma +
(1/6).*(k1_ids+2.*k2_ids+2.*k3_ids+k4_ids);
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iqs_sigma_up = iqs_sigma +
(1/6).*(k1_iqs+2.*k2_iqs+2.*k3_iqs+k4_iqs);

idr_sigma_up = idr_sigma +
(1/6).*(k1_idr+2.*k2_idr+2.*k3_idr+k4_idr);

iqr_sigma_up = iqr_sigma +
(1/6).*(k1_iqr+2.*k2_iqr+2.*k3_iqr+k4_iqr);

ww_sigma_up = ww_sigma + (1/6).*(k1_ww+2.*k2_ww+2.*k3_ww+k4_ww);
delw_sigma_up = delw_sigma +

(1/6).*(k1_delw+2.*k2_delw+2.*k3_delw+k4_delw);

end
%%
%% Measurement Equation for the Fourth Order Synchronous Generator Model

function [y1,y2,y3] = sgm(del_sigma,w_sigma,eq_sigma,Vtkp,Xdt,Xq)
y1 = (((Vtkp./Xdt).*eq_sigma.*sin(del_sigma))+((Vtkp.^2)/2)
.*((1/Xq)-(1/Xdt)).*sin(2*del_sigma));
y2 = (((Vtkp./Xdt).*eq_sigma.*cos(del_sigma))-(Vtkp.^2)
.*((((cos(del_sigma)).^2)/Xdt)+(((sin(del_sigma)).^2)/Xq)));
y3 = 60.*(w_sigma+1);

end

A.2. DSE PLOTS

Figure A.1: Generator 2: True and Estimated Rotor angles
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Figure A.2: Generator 2: True and Estimated Rotor Speeds

Figure A.3: Generator 3: True and Estimated Rotor angles
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Figure A.4: Generator 3: True and Estimated Rotor Speeds

Figure A.5: Generator 5: True and Estimated Rotor angles
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Figure A.6: Generator 5: True and Estimated Rotor Speeds

Figure A.7: DFIG Wind Farm: True and Estimated Stator q-axis current
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Figure A.8: DFIG Wind Farm: True and Estimated Rotor q-axis current

Figure A.9: DFIG Wind Farm: True and Estimated Rotor Speed
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