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We evaluate the microscopically relevant parameters for electrical transport of hybrid superconductor-
semiconductor interfaces. In contrast to the commonly used geometrically constricted metallic systems, we
focus on materials with dissimilar electronic properties like low-carrier density semiconductors combined with
superconductors, without imposing geometric confinement. We find an intrinsic mode-selectivity, a directional
momentum-filter, due to the differences in electronic band structure, which creates a separation of electron
reservoirs each at the opposite sides of the semiconductor, while at the same time selecting modes propagating
almost perpendicular to the interface. The electronic separation coexists with a transport current dominated by
Andreev reflection and low elastic backscattering, both dependent on the gate-controllable electronic properties
of the semiconductor.

DOI: 10.1103/PhysRevB.103.165414

I. INTRODUCTION

The recent interest in the interaction of topological mate-
rials and conventional superconductors raises questions about
the electronic properties of their interfaces. In general, in the
analysis of quantum transport properties of one-dimensional
edge channels, a distinction is made between two-point and
four-point measurements [1–3]. A Josephson junction is in-
trinsically a two-terminal device in which the same contact
is used for source or drain, as well as for the voltage termi-
nals. Although quantum-transport analysis works very well
for constriction-type metallic Josephson junctions consist-
ing of one and the same material [4,5], an application to
Josephson junctions consisting of dissimilar materials with
wide planar interfaces (Fig. 1) is often implicitly assumed,
but not obviously justified. We will demonstrate that hy-
brid Josephson junctions deserve an explicit analysis, based
on the different electronic properties [6–9]. The useful fea-
ture of semiconductors, that the electronic properties can
be changed by changing the Fermi level with a gate, also
affects the electronic-transport properties of the interface.
These interface properties play a crucial role in mediating
the macroscopic phase coherence between the two supercon-
ductors across the semiconductor, not only quantitatively, but
also conceptually. This aspect becomes particularly urgent
when studying the voltage-carrying state of a ballistic hybrid
Josephson junction, but it is also important for the zero-
voltage state because of its effect on the boundary conditions
for the Andreev bound states [10].

Our analysis starts with the experimental observation of a
so-called excess current in Josephson junctions (like Fig. 1)
based on HgTe-heterostructures using superconductors like
Al, Nb, and MoRe [11–13]. The devices consist of large

cross-sectional areas of a few micron by 10 to 80 nanometer.
Different arrangements are possible such as planar electrodes
on the active surface of the HgTe layer, in which it is assumed
that superconductivity is induced by the proximity effect. More
recently, mesa structures are used with superconducting con-
tacts made on the sides of the thin HgTe layer [14] (like also
used for graphene [15] and, very recently, for InSb quantum
wells [16]). In all cases, a characteristic excess current is
observed for applied voltages higher than the superconduct-
ing energy gap. This feature is, since Blonder et al. [17],
understood as due to enhanced charge transport by Andreev
reflection for a range of electron energies, which match the
energy gap. The principle can be understood by studying
the quantum mechanics of a single interface between a su-
perconductor and a normal material. In order to make these
interface properties observable in a conductance experiment,
Blonder et al. have chosen a suitable geometry, compatible
with the experiments. It positions this transmissive interface
in an orifice in an otherwise opaque screen, which separates
the electron systems of the two materials. This separation
allows the assignment of different chemical potentials to the
two reservoirs [18] with the occupation in one reservoir char-
acterized by f0(E ) and the other one by f0(E + eV ) with f0

the Fermi-Dirac distribution. For a given applied voltage, the
conductance through the orifice is calculated as the difference
between the flux of right-movers and left-movers, like it has
become customary in studying quantum point contacts. In this
framework, an orifice has resistance, even in the absence of
backscattering, known as the Sharvin resistance. It is assumed
that the diameter of the orifice is smaller than the elastic mean
free path, which is feasible for metallic point contacts and
also for tunnel junctions with a pinhole, but it is definitely not
in agreement with the dimensions used in the HgTe samples
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FIG. 1. Sketch of a two-dimensional interface junction consid-
ered in this work. A semiconductor (SM, blue) is brought in contact
to a normal metal (N, gray) or an s-wave superconductor (S, gray).
We assume two interfaces in x direction, while the y direction re-
mains translational invariant.

[11–14]. In these electronic transport experiments an excess
current is found, which indicates very weak elastic backscat-
tering, i.e., a high transmission coefficient, which scales with
the area. The conceptual problem is therefore to understand
the experimental observation of a conductance of a geometri-
cally large planar interface with excellent Andreev-reflection
properties, including a low value of elastic backscattering,
while missing in the experimental setup an obvious mecha-
nism through which the highly transmissive interface could
also provide a separation of the two electronic reservoirs, each
at a different chemical potential determined by the applied
voltage.

II. FERMI-SURFACE MISMATCH

The key concept in this work is Fermi-surface mismatch
(FSM), which we illustrate for an NN’ junction in Fig. 2.
Assuming different Fermi momenta, for instance, due to dif-
ferent effective masses at the left (L) and right (R) part of
the interfaces, the available electron states lie on circles in
momentum space with generally different radii. For clarity,
we focus here on the two-dimensional (2D) case and isotropic
Fermi surfaces. Because of the different size of the Fermi
surfaces, there are modes in L with no corresponding modes
in R, i.e., electrons with an angle of incidence larger than a
critical angle θc cannot be transmitted across the interface,
but are reflected back. Consequently, they do not contribute to
the conductance across the junction, in contrast to the modes
with an angle of incidence |θ | < θc (while possibly being
limited by an additional scattering potential). In many real
systems, a quasi-2D semiconductor is coupled to 3D metallic
reservoirs. This implies that many modes of the 3D metals

FIG. 2. (a) 3D and (b) top view illustration of the FSM. At any
energy, electron states lie on circles with different radii κl and κr in
k space. Only a fraction of the states (blue sectors) can contribute
to transmission, the rest (red sectors) is reflected. θc represents the
critical angle of incidence.

(corresponding to a mode index that parameterizes the direc-
tion perpendicular to the quasi-2D system) are not transmitted
into the semiconductor. If two regions are weakly coupled in
space, it is possible to define separate thermal equilibria for
each of them. We argue here that FSM is a feasible mechanism
to decouple (and therefore only weakly couple) two regions in
space with a larger Fermi surface by one region in space with
a smaller Fermi surface, cf. Fig. 1.

FSM is not a new concept [19–22]. Our main message,
however, is its effect on the observable conductance and, more
importantly, its meaning for the proper definition of local
thermal equilibria and thus the applicability of contemporary
transport theories. We demonstrate below that in analogy
to the well-known Landauer conductance in a geometrically
confined geometry of G = 2e2/h

∑ |tn,m|2, the system has a
conductance per unit length given by

G0e = 2e2

h
κl

∫ θc

−θc

dθl cos θl T (θl ), (1)

with θ the angle of incidence of electrons approaching the
interface, θc a critical angle determined by the electronic
mismatch between the reservoirs and the semiconductor, and
T (θl ) the transmission coefficient for the incident wave [23].
The conductance is tunable by changing the Fermi level of the
semiconductor, which changes θc and T (θl ). The system can
be viewed as providing a confinement in momentum space
rather than in real space as anticipated by Büttiker [7] and
Landauer [8], assuming the absence of any limiting contribu-
tion to the conductance by elastic or inelastic scattering. It is
analogous to the geometric Sharvin resistance. In Eq. (1), it is
labeled G0e to indicate its source in the electronic mismatch
between the two material systems, and could be called an
electronic Sharvin resistance.

We analyze the quantum-mechanical properties of a single
interface from the metallic superconductor into the semicon-
ductor. Based on this analysis we will argue that, to make the
interface properties observable in a conductance experiment
[11–13], one needs two interfaces. Since the excess current
is a property observable at voltages higher than the supercon-
ducting energy gap, the crucially relevant energy conditions
are then equivalent to those of one interface, the semiconduc-
tor and the superconductor. The experimental data at lower
voltages will require, in addition to the quantum-mechanical
interface properties, the determination of a nonequilibrium
distribution function for the occupation of the states in the
semiconductor in the spirit of the SINIS model discussed by
Octavio et al. [24,25], but including the directionality.

III. MODEL

For the S contact, we assume intrinsic s-wave pairing and
use the Bogoliubov-de Gennes (BdG) formalism [26]. Intro-
ducing the Nambu spinor (ĉ, ĉ†)T , where ĉ† is the electron
creation operator, we define the BdG Hamiltonian as

HBdG(x) = [H0(x) + Hδ(x)]τz + �(x)τx, (2)
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where τx,z are Pauli matrices and H0 the normal-state Hamil-
tonian

H0(x) = k̂x
h̄2

2m(x)
k̂x + h̄2k2

y

2m(x)
− μ(x) (3)

with �(x) the position-dependent order parameter in the S
region and H a localized repulsive potential to model an
interface with a conventional elastic scattering potential. The
form of Eq. (3) guarantees that the Hamiltonian is hermitian
and well defined [27,28], since the momentum operator in x
direction, h̄k̂x = −ih̄∂x, does not commute with a position-
dependent effective mass m(x). Here, h̄ is the reduced Planck
constant, μ(x) the electrochemical potential related to the
carrier density, and ky is the y component of the wave vector,
which parameterizes the transverse modes [29]. For simplic-
ity, we assume quadratic dispersion relations in all parts.
However, all our findings only depend quantitatively but not
qualitatively on this choice.

The left and right domain, which are N and S, respectively,
are described by �(x) = �0�(x), with �(·) the Heaviside
function. The effective masses are assumed to be constant
in each part, but not equal, m(x) = ml�(−x) + mr�(x).
Furthermore, we assume a global electrochemical potential,
μ(x) = μ, which is significantly larger than the excitation
energy E and the order parameter �0, i.e., μ � E ,�0 [30].
Under these assumptions (for detailed derivations, see Appen-
dices A and B), the eigenstates can be written as

ψ±
e (x) =

(
1
0

)
e±ikl x, ψ±

h (x) =
(

0
1

)
e∓ikl x, (4)

in L and

ψ±
eq(x) =

(
u
v

)
e±ikr x, ψ±

hq(x) =
(

v

u

)
e∓ikr x, (5)

in R, where the superscript (±) indicates the group veloc-
ity with respect to the x axis. The subscript distinguishes
electrons (e), holes (h), electron-like (eq), and hole-like (hq)
quasiparticles. Defining θl/r = arcsin (ky/κl/r ), the wave num-
bers and the associated group velocities are given by kl/r =
κl/r cos θl/r and

vl = h̄kl

ml
, vr = h̄kr

mr
(|u|2 − |v|2), (6)

respectively. Here, κl/r = √
2ml/rμ/h̄ are the Fermi wave

numbers (cf. Fig. 2) and u2 = 1 − v2 = (1 + 
/E )/2 with


 =
√

E2 − �2
0 the superconducting coherence factors. Us-

ing scattering theory, we calculate the probabilities for
Andreev [31] (A) and normal (B) reflection and thus the trans-
mission coefficient for each incident electron as

T (E , θl ) = 1 + A(E , θl ) − B(E , θl ), (7)

which is energy and mode dependent.

IV. ANGLE-DEPENDENT TRANSMISSION

We start our analysis with an NN’ junction, by setting
�0 = 0 everywhere, while maintaining FSM. Several results
and conclusions found in NS systems can be inferred from the
normal state transmission, providing a convenient theoretical

propagating modes 

reflected modes

reflected modes

pr
op

ag
at

in
g 

m
od

es

FIG. 3. Fraction of the propagating modes, available for trans-
mission, as a function of FSM. The inset is drawn for a relatively
small mismatch of r = 0.5 for illustrative reasons.

foundation for the subsequent analysis. To quantify FSM, we
define the ratio of the Fermi wave numbers as r ≡ κr/κl =
sin θc, with 0 < r � 1. The results for the complementary
regime, r > 1, are essentially the same, corresponding to the
mirror image of Fig. 2(b).

Figure 3 illustrates the propagating modes as a function of
r, which we define as the fraction of incident electrons from L
that have an angle of incidence smaller than the critical angle
θc. This fraction is given by θc/π = arcsin(r)/π . The other
modes are reflected with unit probability due to the absence of
corresponding modes in R. In a homogeneous setup (r = 1),
all modes can pass through the interface, but this fraction
decreases gradually if r is reduced from unity. After r ≈ 0.5,
the number of available modes decays nearly linearly and van-
ishes as r → 0. For a practical superconductor-semiconductor
system, r easily reaches a value in the order of 0.01, rendering
the critical angle to a small cone.

If we rescale H → Z
√

κl κr
ml mr

h̄2 and define ṽ = vr/vl , we

obtain the transmission coefficient for E � μ as

T (E , θl ) ≈ T (θl ) = 4ṽ �(θc − |θl |)
4Z2 ṽ

cos θl cos θr
+ (1 + ṽ)2

. (8)

The step function expresses the mode selectivity, which is
essentially determined by the FSM ratio r, and suppresses any
transport across the junction for |θl | > θc.

For perpendicular incidence, Eq. (8) reduces to

T0 = T (θl = 0) = 4r

4Z2r + (1 + r)2 , (9)

and we have T0 < 1 for all 0 < r < 1, even in the absence of
an elastic-scattering potential (Z = 0). Equation (9) describes
the 1D limit, where FSM leads to nonperfect transmission
due to the mismatch of the group velocities. Since it reduces
the conductance in 1D junctions, FSM was earlier interpreted
as an effective barrier, which further increased the repulsive
potential at the interface [6]. The implications of FSM are,
however, richer in higher dimensions, allowing electrons with
|θl | < θc = arcsin (κr/κl ) to contribute strongly to the trans-
mission, as illustrated in Fig. 4.

For the homogeneous case (r = 1) and a finite Z (red
curve), the zero-mode conductance deviates from unity since
the interface causes electron reflection. It decreases further for
finite angles of incidence until it vanishes at θl = ±π/2.
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//

FIG. 4. Transmission as a function of θl for different values of
Z and r. The homogenous system with an elastic scattering poten-
tial (red) is compared to those with different degrees of electronic
mismatch and Z = 0 (blue, black). We choose μ = 106 �0.

This behavior is distinctively different in a system featuring
FSM for a clean interface (blue and black curves). First of all,
we observe a sharp cutoff at θl = ±θc, which is due to the
absence of states in R at larger angles of incidence. More-
over, the transmission coefficient increases from the value for
perpendicular incidence, T0, when θl increases, and becomes
unity at

|θl | = θm ≡ arcsin

(
r√

1 + r2

)
< θc. (10)

This behavior can be attributed to the group velocities vl and
vr , which are, in general, different from each other if r 	= 1.
At θl = ±θm, however, they coincide, allowing for perfect
electron transmission across the interface. For larger angles of
incidence, the transmission coefficient quickly decreases and
vanishes for |θl | � θc. Note that, for large FSM, θc approaches
zero and nearly coincides with θm, which yields sharp peaks
at θl = ±θm ≈ ±θc (black dashed line).

In a case in which both FSM and an interface barrier are
present, a competition between the effects of the two quanti-
ties r and Z occurs. The dominant parameter can be identified
by comparing Z to a critical barrier strength defined by

Zcrit ≡ |1 − r2|
2
√

r(1 + r2)
. (11)

For Z < Zcrit , we observe the same pattern as in a system with
only FSM, while the transmission T decreases monotonously
from its zero-mode value if the elastic-scattering potential at
the interface dominates, Z > Zcrit (see Fig. 5). Note that, even
though FSM dominates for Z < Zcrit , the maximum at θl =
±θm is no longer at unity. A finite Z promotes reflection at
the interface, even if vl = vr . The barrier-dominated transport,
Z > Zcrit , is affected in a similar manner by r, as the latter
restricts the conductance to be finite only for |θl | < θc, con-
trary to the homogeneous system where all incident modes,
|θl | < π/2, have a certain probability to be transferred across
the junction. Notably, FSM and interface barrier affect the
transport rather differently.

As shown in Fig. 5, in which the metal is in the supercon-
ducting state, the angle-dependent features are also present,

/ /

FIG. 5. Transmission as a function of θl for the NS case (solid)
and compared to the NN’ case (dashed). We compare systems that
are dominated (i) by FSM (blue), (ii) by the barrier (red), and (iii)
those in the intermediate regime (gray). We choose μ = 106 �0 and
r = 0.6.

but the transmission is enhanced due to Andreev reflection. If
�0 is finite, the transmission coefficient at the Fermi energy
becomes

T (E = 0, θl ) = 8ṽ2 �(θc − |θl |)(
4Z2 ṽ

cos θl cos θr
+ 1 + ṽ2

)2 . (12)

In comparing this expression to Eq. (8), we find two essential
differences: First, the maximum value of the conductance is
twice that of the NN’ setup, which is due to the additional hole
channel in NS systems. Secondly, the barrier strength Z enters
the denominator in fourth order, while it is only second order
in Eq. (8), which is a well-known characteristic of Andreev re-
flection [17,32]. Therefore, the conductance is more sensitive
to a scattering potential at the interface. Transmission across
the junction in the normal state becomes thus more likely
than Andreev reflection for �0 	= 0 and finite Z . We illustrate
this behavior in Fig. 5 for Z = 2. All this is a well-known
subgap feature. For E � �0, however, the Z sensitivity of the
conductance is comparable in NN’ and NS junctions.

V. CONDUCTANCE

The given analysis of the selectivity of the interface is
applicable from a metal into the semiconductor. A similar
selectivity does not occur in the opposite direction, from a
semiconductor to a metal. Therefore it is not possible to
use the semiconductor and the metal as two separate equi-
librium reservoirs to calculate the conductance. Instead, we
can consider a low carrier-density semiconductor sandwiched
between two metal reservoirs, of which one can be super-
conducting. In analogy to the analysis of Octavio et al.
[24,25], we distinguish inside the semiconductor, where we
assume no energy-relaxation, right-moving, and left-moving
populations, f→ and f← (see Appendix C). The equilibrium
reservoirs are the two metallic electrodes attached to the
semiconductor, which in the usual way take care of energy
relaxation [5]. In the commonly used geometric confinement,
there are, for electrons in the reservoirs, closed channels with
T = 0 and open channels with T ≈ 1. These open channels
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are characterized by the filling factors according to the Fermi-
Dirac distribution of the reservoirs and by their directionality.

We proceed by calculating the current-voltage character-
istic of the device shown in Fig. 1. However, since we are
interested in the energy-dependent properties of the conduc-
tance we take one of the electrodes as a normal metal, to avoid

the complex dynamics of the Josephson effect. This normal
metal and the superconductor serve as equilibrium reservoirs
in the spirit of Landauer-Büttiker-theory, whereas the semi-
conductor serves as the conductor in the central region. With
this point of view, the metal-semiconductor-superconductor
device will carry a current given by

I (V ) = 1

e RN

∫ θc

−θc

dθl cos θl

∫ ∞

−∞
dE [ f0(E − eV ) − f0(E )]T (E , θl ), (13)

where RN is the normal-state resistance and T (E , θl ) is
defined by Eq. (7). For a symmetric arrangement like a
superconductor-semiconductor-superconductor device, above
the low-voltage range, the excess current-voltage characteris-
tic will be given by Eq. (13) multiplied by 2. For illustrative
purposes, we provide explicit figures of ∂I/∂V and I (V ) in
Appendix C.

VI. CONCLUSION

We have shown that in the absence of other scattering
processes, the conductance of a metal-semiconductor-metal
device is limited by Fermi-surface mismatch, leading to a
directional selection of propagating modes in momentum
space. We have applied this understanding to the electronic
transport of superconductor-semiconductor-superconductor
samples and argued that the observed excess current at applied
voltages above the energy gap can be understood based on
this point of view. In addition, it has implications for our
understanding of the proximity effect under driven condi-
tions [33]. The tunability of the Fermi-surface mismatch by
a gate-voltage attached to the semiconductor provides a rich
opportunity for further experimental and theoretical work.
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APPENDIX A: MODEL

The eigensystem of the full kernel Hamiltonian, written in
the basis (ĉ, ĉ†)T ,

HBdG(x) = H0τz + �(x)τx (A1)

with

H0 = k̂x
h̄2

2m(x)
k̂x + h̄2k2

y

2m(x)
− μ(x) + Hδ(x), (A2)

can be obtained by solving the Bogoliubov-de Gennes equa-
tion,

HBdG(x)ψ (x) = Eψ (x). (A3)

As introduced in the main text, the position dependence of
the effective masses as well as the superconducting order
parameter and the electrochemical potential are given by

m(x) = ml�(−x) + mr�(x), (A4a)

�(x) = �0�(x), (A4b)

μ(x) = μ, (A4c)

which yields an interface at x = 0 separating the left (L) from
the right (R) domain. In the bulk regions, the eigenenergies
are given by

E
∣∣
x�0 = h̄2k2

2ml
− μ, (A5a)

E
∣∣
x�0 =

√(
h̄2k2

2mr
− μ

)2

+ �2
0, (A5b)

with k2 = k2
x + k2

y . Furthermore, the eigenstates read

ψ±
e (x) =

(
1
0

)
e±ikex, ψ±

h (x) =
(

0
1

)
e∓ikhx, (A6a)

ψ±
eq(x) =

(
u
v

)
e±ikeqx, ψ±

hq(x) =
(

v

u

)
e∓ikhqx, (A6b)

where the subscripts and superscripts are explained in
the main text and u2 = 1 − v2 = (1 + 
/E )/2 with 
 =√

E2 − �2
0 are the superconducting coherence factors. The

wave numbers read

ke/h = κl

√
1 ± E

μ
−

(
ky

κl

)2

, (A7a)

keq/hq = κr

√
1 ± 


μ
−

(
ky

κr

)2

, (A7b)

with κl/r = √
2ml/rμ/h̄, and we obtain the group velocities

according to the relation vg = (∂k/∂E )−1/h̄ as

ve/h = h̄ke/h

ml
, veq/hq = h̄keq/hq

mr
(|u|2 − |v|2). (A8)

The simplified relations in the main text are derived under the
assumption μ � E ,�0. Then, we can drop the terms E/μ

and 
/μ in Eqs. (A7a) and (A7b) and obtain ke = kh ≡ kl and
keq = khq ≡ kr as well as ve = vh ≡ vl and veq = vhq ≡ vr .

To determine the transport properties, we introduce the
scattering state for an electron approaching the interface from
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the left asymptotic domain as

φ(x) =
{
ψ+

e (x) + a ψ−
h (x) + bψ−

e (x), x < 0

c ψ+
eq(x) + d ψ+

hq(x), x > 0
. (A9)

The coefficients are related to Andreev (a) and normal (b)
reflection as well as transmission without (c) and with (d)
branch crossing. The corresponding probability amplitudes
read

A(E , ky) = vh

ve
|a1|2, B(E , ky) = |b1|2, (A10a)

C(E , ky ) = veq

ve
|c1|2, D(E , ky) = vhq

ve
|d1|2, (A10b)

and we obtain the transmission coefficient for electrical cur-
rent by means of the relation

T (E , ky) = 1 + A(E , ky) − B(E , ky). (A11)

The scattering coefficients a, b, c, d are determined by match-
ing the waves appropriately at the interface, x = 0, according
to the conditions

lim
ε→0

(φ1(0 + ε) − φ1(0 − ε)) = 0, (A12a)

lim
ε→0

(
φ′

1(0 + ε)

mr
− φ′

1(0 − ε)

ml

)
= 2H

h̄2 φ1(0). (A12b)

APPENDIX B: TRANSPORT PROPERTIES

Starting with the NN’ setup (�0 = 0 ⇒ A = D = 0), con-
vincing ourselves that the wave numbers in L can either be real

or purely imaginary, and evaluating Eqs. (A12), this yields

T (E , ky) = 1 − B(E , ky) = C(E , ky)

= 4ml mr h̄4Re(ke)Re(keq)

4H2m2
l m2

r + h̄4(mrke + mlkeq)2 . (B1)

Note that for �0 = 0, keq describes an electron, not a quasi-
particle. In order to obtain a finite conductance, both wave
numbers (on the left- and the right-hand side of the junc-
tion) need to be real, imposing the condition (|ky| � κl ) ∧
(|ky| � κr ), and we can simplify the transmission coefficient
to

T (E , ky) = 4h̄2veveq�(κl − |ky|)�(κr − |ky|)
4H2 + h̄2(ve + veq)2 . (B2)

Assuming ml > mr , a large electrochemical potential, μ � E ,
and rescaling H → Z

√
(κlκr )/(mlmr )h̄2, we obtain the NN’

transmission coefficient T (E , ky) ≈ T (ky) as stated in Eq. (8)
of the main text,

T (ky) = T (θl ) = 4ṽ �(θc − |θl |)
4Z2 ṽ

cos θl cos θr
+ (1 + ṽ)2

. (B3)

The NS setup is generally more complicated, in particular
due to the additional hole channels. However, under the as-
sumption μ � E ,�0, we obtain the analytic expression

T (E , ky) =

⎧⎪⎨
⎪⎩

8ṽ2 �(κl −|ky|)�(κr−|ky|)
( 4Z2 ṽ

cos θl cos θr
+1+ṽ2 )

2−( E
�0

)2
(

16Z4 ṽ2

cos2 θl cos2 θr
+ 8Z2 ṽ(1+ṽ2 )

cos θl cos θr
+(1−ṽ2 )2

) , E < �

4ṽ �(κl −|ky|)�(κr−|ky|)
( 4Z2 ṽ

cos θl cos θr
+1+ṽ2 )(u2−v2 )+2ṽ

, E > �
. (B4)

This reduces to Eq. (12) in the main text for E = 0 and to the
normal-state transmission, Eq. (8), for E � �0.

The competition between FSM and interface barrier is
moderated by the quantity Zcrit , as we introduce it in the main
text. For a strong repulsive barrier, Z > Zcrit , the conductance
decreases monotonously from its zero-mode value, while it
increases from T0 and reaches a maximum at |θl | = θm if
Z < Zcrit . A rigorous, but tedious method, to obtain an explicit
expression for this critical barrier strength is to demand θm

to be real. While this is always true for Z = 0, a finite in-
terface potential Z > Zcrit shifts the position of the maxima
into the complex domain. Conveniently, a second order Taylor
expansion of Eq. (B2), for μ � E ,�0 and mr = r2ml , around
ky = 0,

T (ky ≈ 0) = T0 + T2
k2

y

κ2
l

+ O
(
k4

y

)
, (B5)

with

T0 = 4r

4rZ2 + (1 + r)2 , (B6a)

T2 = 2(1 − r2)2 − 8rZ2(1 + r2)

r(4rZ2 + (1 + r)2)
, (B6b)

yields exactly the same result as the more complicated method
mentioned above. By demanding T2 to be positive, such that
T increases from its zero-mode value T0, we find

Z < Zcrit = |1 − r2|
2
√

r(1 + r2)
. (B7)

This allows us to identify whether FSM or Z dictates the
mode–dependence of the conductance.

APPENDIX C: DERIVATION OF THE CURRENT

From the transmission, we directly obtain the currents in
NN’ and NS systems, and thus the excess current. To motivate
Eq. (13) in the main text, we start from the single-mode
expression for the current density

J (ky) = 2e
∫ ∞

−∞
Nky (E )vky (E )[ fky,→(E ) − fky,←(E )]dE

(C1)

with Nky (E ) and vky (E ) the density of states and group ve-
locity for each 1D mode ky at energy E , respectively. We
can further simplify this equation by means of the relation
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FIG. 6. (a) ∂I/∂V as a function of the energy E and (b) current as
a function of the bias eV for r = 0.2 and Z = Zcrit/4, summed over
all modes. The offset between I (V )|�0>0 and I (V )|�0=0 is denoted the
excess current Iexc(V ) and reaches its asymptotic value for eV � �0.

Nky (E ) = 1/[2π h̄vky (E )] and obtain

J (ky) = 2e

h

∫ ∞

−∞
[ fky,→(E ) − fky,←(E )]dE . (C2)

Assuming equilibrium reservoirs connected to L and R, the
distribution functions are given by

fky,→(E ) = f0(E − eV ), (C3a)

fky,←(E ) = A(E , ky)[1 − fky,→(−E )] + B(E , ky) fky,→(E )

+ [C(E , ky ) + D(E , ky)] f0(E ) (C3b)

and we obtain

J (ky) = 2e

h

∫ ∞

−∞
[ f0(E − eV ) − f0(E )]T (E , ky) dE . (C4)

Considering FSM and the contributions from all modes, we
obtain the current for μ � E ,�0 according to Eq. (13) in the
main text.

To conclude, we plot the differential conductance as well
as the current according to Eq. (13) for a particular FSM
r = 0.2 and a weak barrier Z = Zcrit/4 in Fig. 6. While the
normal-state transmission is constant, ∂I

∂V |�0>0 features a res-
onance at E = �0 before it converges to ∂I

∂V |�0=0 for E > �0.
This results in an offset between the currents I (V )|�0>0 and
I (V )|�0=0 at large biases, while their slope is equal. This offset
defines the excess current, which is, more generally, given by

Iexc(V ) = I (V )
∣∣
�0>0 − I (V )

∣∣
�0=0. (C5)

As we can see, this excess current is finite even for a notable
FSM, as long as the interface barrier remains small, i.e., Z <

Zcrit .
These results have been obtained under the assumption of

equilibrium reservoirs on each side of the semiconductor–
superconductor interface. In practice, in the application to the
experimental results such as for example to the S-HgTe-S
system,under bias conditions thermalisation in HgTe is neg-
ligible. Therefore, a more detailed description, in the spirit
of the Octavio-Tinkham–Blonder-Klapwijk theory [24], is
needed.
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