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Preface

Photoconductive antennas (PCAs) have been extensively utilized for the generation of

broadband pulses over very large bandwidths. PCAs rely on a semiconductor (e.g. LT-

GaAs) gap pumped by a laser and coupled to a passive structure biased at a certain voltage

level. When the laser impinges on the semiconductor gap with an appropriate carrier fre-

quency, enough energy is provided such that free electron-hole pairs are generated from the

electrons that move from the valence band to the conduction band. As a result, the resis-

tivity of the material decreases to a few ohms which in turns allows a time-varying current

to flow across the gap. In recent year different hybrid equivalent circuits [1], [2], [3] have

been developed in order to take into account all these complex phenomena although none of

these models account for the frequency dependence of the impedance of the antenna, being

formulated in the time domain. This approximation works for non-dispersive antennas such

as the bow-tie, but fails in the characterization of more diverse and complex structures.

The Norton equivalent circuit’s aim proposed in [4] was to fill the aforementioned gap by

introducing an analytical model completely in frequency domain, although the difficulty in

the characterization of the generator impedance obstructed the way for a wide acceptance

in the community. In this thesis a novel approach based on a commercially available elec-

tromagnetic simulator [5] to characterize the biasing of the passive structure, the optical

laser excitation and the impulse response of the photoconductor is proposed. The accuracy

of the model is verified by calculating the average power radiated by a bow-tie and the

results are compared to the measurements in [6]. Moreover, a revised version of the Norton

equivalent circuit [4] which describes more accurately the effective generator impedance is

presented. While the computer-aided model offers great introspection in the characteri-

zation of voltages and currents and thus in the maximization of the power radiated, the

revised Norton equivalent circuit offers an even better accuracy and reduces significantly

the computational time.

This thesis is submitted in partial fulfillment of the requirements for the degree of Master

of Science in Electrical Engineering at Delft University of Technology.

Andrea Degasperi

Delft, August 2019
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Chapter 1

Introduction

1.1 Background

Photoconductive antennas (PCAs) have attracted the interest of many researcher since the

demonstration of the generation and detection of pulsed broadband THz signals in 1984

by the group lead by David Auston [7, 8]. A number of breakthroughs in photonics in the

late 1990s and at the beginning of the 2000s [9, 10] led the way for the development of new

applications such as spectroscopy and THz imaging. A complete PCA setup is shown as an

example in Figure 1.1.

Figure 1.1: Complete PCA setup.

PCAs rely on a semiconductor (e.g. LT-GaAs) gap pumped by a laser and coupled to a

passive structure biased at a certain voltage level. When the laser impinges on the semi-

conductor gap with an appropriate carrier frequency, enough energy is provided such that

free electron-hole pairs are generated from the electrons that move from the valence band

to the conduction band. As a result, the resistivity of the material decreases to a few ohms

which in turns allows a time-varying current to flow across the gap.

In recent year different hybrid equivalent circuits [1, 2, 3] have been developed in order to

take into account all these complex phenomena although none of these models account for

the frequency dependence of the impedance of the antenna, being formulated in time do-

main. This approximation works for non-dispersive antennas such as the bow-tie antenna,

but fails in the characterization of highly frequency-dependent structures. The Norton

equivalent circuit’s aim proposed in [4] was to fill the aforementioned gap by introducing

an analytical model completely in frequency domain, although the difficulty in the char-

acterization of the generator impedance obstructed the way for a wide acceptance in the

1
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community.

A connected array (see [11] and Figure 1.2) of pulsed photoconductive terahertz sources

capable to radiate mW level average power has been presented in [6].

Figure 1.2: Current distribution on a connected array [6].

The measured values of a connected array of dipoles and slots, as shown in Figure 1.3, were

compared with the ones predicted by the Norton Equivalent Circuit Model developed in [4].

(a) (b)

Figure 1.3: Connected array of dipoles and slots [6].

Although the purpose of the Norton Model was specifically to be able to characterize and

predict the power radiated by these structures, it was also extensively utilized with single

element antennas such as the bow-tie antenna, the H-dipole antenna and the logarithmic

spiral antenna [12] (see Figure 1.4).
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(a)

𝐼"(𝜔) 𝑍"(𝜔) 𝑍'(𝜔)

Equivalent Circuit Generator Antenna

(b)

Figure 1.4: Norton Equivalent Circuit Model of the laser excitation on a photoconductive
gap with a biased bow-tie antenna [4].

Currently, the Norton Equivalent Circuit model describes well the average power radiated

as function of the bias voltage, although presents a high degree of inaccuracy when the

laser power is varied. Furthermore, the current unavailability of a single computer aided

package that is able to characterize PCAs hinders the development of better designs and

the optimization of current ones.

1.2 Solution proposed in this thesis

In this thesis a novel approach based on a commercially available electromagnetic simulator

[5] to characterize PCAs which includes the biasing of the passive structure, the optical

laser excitation and the impulse response of the photoconductor is proposed. The accuracy

of the model is verified by calculating the average power radiated by a bow-tie antenna

and the results are compared to the measurements in [6]. Moreover, a revised version

of the Norton equivalent circuit [4] which describes more accurately the effective gener-

ator impedance is presented. While the computer-aided model offers great introspection

in the characterization of voltages and currents and therefore in the transient fields, the

revised Norton equivalent circuit offers an even better accuracy when compared with the

available measurements of the bow-tie antenna and reduces significantly the computational

time.

1.3 Outline of the thesis

This thesis is organized in 4 more chapters. Since this thesis serves as a preparatory work

for designing a connected array in which the geometry and the periodicity of the structure

account for the pulsed nature of the sources, in chapter 2 and chapter 3 analytical and

numerical models are presented in order to describe the fields on various configurations of

slots. In particular, in chapter 2 is proposed a transmission-line model of an infinite slot

printed on an infinite ground plane between two homogeneous dielectric half-spaces. The

model is used to derive the voltage along the slot assuming two active feeds are present. In

chapter 3 three different configurations of slots printed on an infinite ground plane between

two homogeneous half-spaces are analyzed. The slot has been chosen in this chapter because

of the analyticity of the longitudinal Green’s function which allows for generally compact

notations and much faster computations.

In chapter 4 a novel procedure to analyze pulsed PCAs using an electromagnetic simulator
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[5] is described. In particular, a new way to simulate the behavior of PCAs is proposed.

Moreover, a revised version of the Norton equivalent circuit [4] which describes more accu-

rately the effective generator impedance is presented.

In chapter 5 the conclusions are presented.



Chapter 2

Transmission-Line Equivalent

Circuit of an Infinite Slot

In this section it is proposed the derivation for the voltage using a transmission-line model

approach along an infinite slot printed on an infinite ground plane between two homogeneous

dielectric half-spaces of permittivity εr,1 (half-space above) and εr,2 (half-space below),

where it is assumed that εr,2 > εr,1. The structure is fed by two electric dipoles at a certain

distance 2dx and has a width w which is small in terms of the wavelength. The current

distribution is given by two magnetic current with equal amplitudes and opposite signs

which are perfectly polarized along x.

2.1 Voltage Derivation

Referring to Figure 2.1, the voltage is derived by applying the superposition principle in

three different regions

• Region 1: dx ≤ dx1

• Region 2: dx1 < x < dx2w

• Region 3: x ≥ dx2

Although the feeds are assumed to be identical, the steps are shown for both ports.

5
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Figure 2.1: Transmission-line equivalent circuit of an infinite slot fed by two feeds posi-
tioned at dx1 and dx2 with a distance of 2dx.

2.1.1 Feed 1

Region 1 The general expression for the voltage of the transmission line can be written

as

V1(x) = V +
1 e−jkxpx + V −1 ejkxpx (2.1)

where kxp is the propagation constant associated with the leaky-wave pole. In this case we

are considering an infinite line with a regressive voltage wave (i.e., traveling in the negative

x direction), therefore the reflection coefficient Γ = 0 and (2.1) becomes

V1(x) = V −1 ejkxpx (2.2)

where V −1 is unknown and is derived in the next steps. Figure 2.2 shows the equivalent

circuit on the feeding side of the transformer.

𝐼" 𝑍" 𝑍$%,'

𝑍()*
+,+,

Figure 2.2: Final equivalent circuit showing both the remaining impedance Zδ1δ1rem and the
transmission line equivalent impedance Ztl,2, and considering the excitation of feed 1 on the
transformer side.

The Norton equivalent frequency-domain circuit, which comprises the current Ig(ω) and the

impedance Zg(ω), provides a way to decouple the source from the load, i.e., the antenna

under analysis. Without loss of generality, we can therefore assume an arbitrary current

Ig(ω) and an impedance Zg(ω) = Z0,s/2, where Z0,s is the characteristic impedance of the
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transmission line computed as the ratio of voltage and current traveling along the slot (see

[13] for the derivation)

Z0,s = − 2j

D′(kxp)

where D′(kxp) is the derivative of the longitudinal Green’s function D(kxp) (see Appen-

dix A). The remaining impedance, Zδnδnrem , has an imaginary part related to the reactance of

the basis function and a real part related to the radiation of the feed, and can be computed

as in [14]

Zδnδnrem = Zδnδn − Zδnδntl

where Zδnδntl is the impedance related to an infinite transmission line with characteristic

impedance Z0,s and Zδnδn is the self-impedance of the δn feed:

Zδnδn =
1

2π

∫ ∞
−∞

Fδn(kx)Fδn(−kx)

D(kx)
dkx

where Fδn(kx) is the spectral basis function representing the difference between the im-

pressed tangent magnetic fields above and below the slot’s ground plane the excites the

feed

Fδ(kx) = F [fδ(x)] = sinc

(
kx∆

2

)
(2.3)

fδ(x) = rect(x) (2.4)

where F [·] is the Fourier-transform (see Appendix B). The end-point impedance of feed 2

can be computed as

Zend =

[(
Zδ2δ2rem + Zg

)
/n2

δ2

]
Z0,s[(

Zδ2δ2rem + Zg

)
/n2

δ2

]
+ Z0,s

(2.5)

where nδ2 = Fδ(−kxp) is the transformer’s turn ratio. The impedance seen from the first

feed, Zin, can be written as

Zin = Z0,s
Zend + jZ0,s tan (kxp |dx1|)
Z0,s + jZend tan (kxp |dx1|)

or, alternatively, as

Zin = Z0,s
e−jkxpdx1 + Γ0e

jkxpdx1

e−jkxpdx1 − Γ0ejkxpdx1

where

Γ0 =
Zend − Z0,s

Zend + Z0,s

The final load of Figure 2.3, Zfin, can be computed as

Zfin = Zδ1δ1rem + Ztl,2

where

Ztl,2 = nδ1

(
ZinZ0,s

Zin + Z0,s

)
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𝐼" 𝑍" 𝑍$%&

Figure 2.3: Final equivalent circuit showing the final equivalent impedance Zfin and
considering the excitation of feed 1 on the transformer side.

The current that enters the impedance Zfin can be calculated as

Iin =
Yfin

Yg + Yfin
Ig

And therefore the voltage drop Vin on the impedance Zfin becomes

Vin = IinZtl,2

The voltage on the other side of the transformer, V (x = dx1), can be found by simply

dividing Vin with the transformer turn ratio:

V (x = dx1) =
Vin
n2
δ1

Therefore (2.2) becomes
Vin
n2
δ1

= V −1 ejkxpdx1

and V −1 can be found as

V −1 =
Vin
n2
δ1

e−jkxpdx1 (2.6)

Finally, the voltage in Region 1 can be written as

V (x ≤ dx1) = V −1 ejkxpx

=
Vin
n2
δ1

e−jkxpdx1ejkxpx
(2.7)

Region 2 The general expression for the voltage of the transmission line can be written

as

V2(x) = V +
2 e−jkxpx + V −2 ejkxpx (2.8)

Imposing the continuity at the interface in x = dx1 as

V1(x = dx1) = V2(x = dx1) (2.9)

one obtains

V −1 ejkxpdx1 = V +
2 e−jkxpdx1 + V −2 ejkxpdx1

Therefore the forward voltage coefficient is obtained as

V +
2 =

V −1 ejkxpdx1 − V −2 ejkxpdx1

e−jkxpdx1
(2.10)
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where V −1 is known from (2.6). The impedance (2.5) can be also computed as the ratio of

voltage and current in dx2

Zend =
V2(x = dx2)

I2(x = dx2)

=
V +

2 e−jkxpdx2 + V −2 ejkxpdx2

V +
2

Z0,s
e−jkxpdx2 − V −2

Z0,s
ejkxpdx2

By substituting V +
2 from (2.10) it is possible to derive V −2 , alternatively one can write the

initial equation as

V2(x) = V +
2

(
e−jkxpx + Γdx2e

jkxpx
)

where

Γdx2 = Γ0e
−2jkxpdx2

Γ0 =
Zend − Z0,s

Zend + Z0,s

and derive V +
2 by imposing the boundary conditions at the interface in dx1 as in (2.9)

V −1 ejkxpdx1 = V +
2

(
e−jkxpdx1 + Γdx2e

jkxpdx1
)

V +
2 =

V −1 ejkxpdx1(
e−jkxpdx1 + Γdx2e

jkxpdx1
)

=
Vin/n

2
δ1(

e−jkxpdx1 + Γdx2e
jkxpdx1

)
Finally, the voltage in Region 2 can be written as

V2(dx1 < x < dx2) = V +
2

(
e−jkxpx + Γdx2e

jkxpx
)

=
Vin/n

2
δ1(

e−jkxpdx1 + Γdx2e
jkxpdx1

) (e−jkxpx + Γdx2e
jkxpx

) (2.11)

Region 3 The general expression for the voltage of the transmission line can be written

as

V3(x) = V +
3 e−jkxpx + V −3 ejkxpx (2.12)

Considering an infinite line with a progressive voltage wave (traveling in the positive x

direction), the reflection coefficient is Γ = 0 and (2.12) becomes

V3(x) = V +
3 e−jkxpx

where V +
3 is unknown and is derived in the following steps. By imposing the continuity at

the interface in x = dx2 one obtains

V2(x = dx2) = V3(x = dx2)

V +
2

(
e−jkxpdx2 + Γdx2e

jkxpdx2
)

= V +
3 e−jkxpdx2
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And therefore V +
3 is recovered as

V +
3 =

V +
2

(
e−jkxpdx2 + Γdx2e

jkxpdx2
)

e−jkxpdx2

=

Vin/n
2
δ1

(e−jkxpdx1+Γdx2e
jkxpdx1)

(
e−jkxpdx2 + Γdx2e

jkxpdx2
)

e−jkxpdx2

Finally, the voltage in Region 3 can be written as

V (x ≥ dx2) = V +
3 e−jkxpx

=

Vin/n
2
δ1

(e−jkxpdx1+Γdx2e
jkxpdx1)

(
e−jkxpdx2 + Γdx2e

jkxpdx2
)

e−jkxpdx2
e−jkxpx

(2.13)

2.1.2 Feed 2

Region 3 The general expression for the voltage of the transmission line can be written

as

V3(x) = V +
3 e−jkxpx + V −3 ejkxpx (2.14)

Considering an infinite line with a progressive voltage wave (traveling in the positive x

direction), the reflection coefficient is Γ = 0 and (2.14) becomes

V3(x) = V +
3 e−jkxpx

where V +
3 is unknown and is derived in the following steps. Computing the voltage at

x = dx2 as done for Region 1 in subsection 2.1.1, one finds that

V (x = dx2) =
Vin
n2
δ2

By imposing the continuity at the interface in x = dx2 one obtains

V3(x = dx2) = V +
3 e−jkxpdx2

Vin
n2
δ2

= V +
3 e−jkxpdx2

Therefore the forward voltage coefficient V +
3 is obtained as

V +
3 =

Vin
n2
δ2

ejkxpdx2 (2.15)

Finally, the voltage in Region 3 can be written as

V (x ≥ dx2) = V +
3 e−jkxpx

=
Vin
n2
δ2

ejkxpdx2e−jkxpx
(2.16)

Region 2 The general expression for the voltage of the transmission line can be written

as

V2(x) = V +
2 e−jkxpx + V −2 ejkxpx (2.17)
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The voltage expression in (2.17) can be written as

V2(x) = V +
2

(
e−jkxpx + Γdx1e

jkxpx
)

where the reflection coefficient at x = dx1, Γdx1 , differs from the canonical representation

since the opposite x direction in considered and therefore

Γdx1 =
V +

2

V −2

Imposing the continuity at the interface in x = dx2, i.e., V3(x = dx2) = V2(x = dx2), one

obtains

V +
3 e−jkxpdx2 = V −2

(
ejkxpdx2 + Γdx1e

−jkxpdx2
)

Therefore V −2 is obtained as

V −2 =
V +

3 e−jkxpdx2

ejkxpdx2 + Γdx1e
−jkxpdx2

=
Vin/n

2
δ2

ejkxpdx2 + Γdx1e
−jkxpdx2

where V +
3 is known from (2.15) and the reflection coefficient at x = dx1, Γdx1 , can be written

as

Γdx1 = Γ0e
2jkxpdx1

Γ0 =
Zend − Z0,s

Zend + Z0,s

Finally, the voltage in Region 2 can be written as

V2(dx1 < x < dx2) = V −2

(
ejkxpx + Γdx1e

−jkxpx
)

=
Vin/n

2
δ2

ejkxpdx2 + Γdx1e
−jkxpdx2

(
ejkxpx + Γdx1e

−jkxpx
) (2.18)

Region 1 The general expression for the voltage of the transmission line can be written

as

V1(x) = V +
1 e−jkxpx + V −1 ejkxpx (2.19)

In this case we are considering an infinite line with a regressive voltage wave (traveling in the

negative x direction) with a the reflection coefficient Γ = 0, therefore (2.19) becomes

V1(x) = V −1 ejkxpx

where V −1 is unknown and is derived in the following steps. By imposing the continuity at

the interface in x = dx1 one obtains

V2(x = dx1) = V1(x = dx1)

V −2

(
ejkxpdx1 + Γdx1e

−jkxpdx1
)

= V −1 ejkxpdx1
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Therefore V −1 becomes

V −1 =
V −2

(
ejkxpdx1 + Γdx1e

−jkxpdx1
)

ejkxpdx1

=

Vin/n
2
δ2

ejkxpdx2+Γdx1e
−jkxpdx2

(
ejkxpdx1 + Γdx1e

−jkxpdx1
)

ejkxpdx1

Finally, the voltage in Region 1 can be written as

V (x ≥ dx1) = V −1 ejkxpx

=

Vin/n
2
δ2

ejkxpdx2+Γdx1e
−jkxpdx2

(
ejkxpdx1 + Γdx1e

−jkxpdx1
)

ejkxpdx1
ejkxpx

(2.20)

2.2 Results

In order to verify the results obtained with the transmission-line model of the infinite slot

between two infinite dielectrics, it is possible to solve a spectral integral for the voltage

as

v(x, ω) =
1

2π

∫ ∞
−∞

i1Fδ1(kx) + i2Fδ2(kx)

D(kx)
e−jkxxdkx (2.21)

where in is a unitary current amplitude and Fδn(kx) is the spectral basis function defined

in (2.3). The results of the voltage along the slot for the highest and lowest frequencies

considered of the spectral integral (2.21) and the voltages obtained in section 2.1 are shown

in Figure 2.4.

(a) Integral - 100 GHz (b) Transmission-line - 100 GHz

(c) Integral - 400 GHz (d) Transmission-line - 400 GHz

Figure 2.4: Comparison of the voltage computed along the slot with a transmission-line
approach and the full spectral integral. The slot considered has a width w = 2 µm and a
delta gap ∆ = 2 µm and the frequency range is [0.1-0.4] THz. The two feeds considered are
positioned in dx1 = −100 µm and dx2 = 100 µm.
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Although the results are similar, one can notice a certain discrepancy in both the amplitude

and the shape of the voltage. In order to explain this behavior Figure 2.5 shows the

leaky-wave pole and the branch points of the structure as function of the frequency. The

transmission line considers the leaky-wave pole as its propagation constant and therefore

a certain (non-negligible) contribution of the space wave (spherical wave radiated from the

origin of the structure from the branch points) is lost. Indeed, in different stratifications

where the pole is positioned on the real axis (as for example the stratification proposed in

[14]), the transmission-line approach yields an accurate result.

Figure 2.5: Leaky-wave pole kLWx and branch points k1 and k2 normalized to the free
space wavenumber k0.
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Chapter 3

Electric field of Various

Configurations of Slots

In this chapter three different configurations of slots printed on an infinite ground plane

between two homogeneous half-spaces are analyzed. The slot has been chosen in this chapter

because of the analyticity of the longitudinal Green’s function which allows for generally

compact notations and much faster computations. Since this thesis’ goal is the introduction

of a new computer aided model for Photoconductive Antennas (PCAs), in section 3.1 the

time-varying electric field that propagates along an infinite slot and radiated by it is derived,

using a simplified current derived in [4] and described in section 4.2. In section 3.2 an

infinite array of slots is introduced and the asymptotic electric field is derived. Although

this configuration has already been studied previously in [15], in this thesis it has been

recognized that the choice of a dielectric with a high enough permittivity in conjunction

with an infinite array of slots allows for a leaky-wave antenna with an angle of radiation much

higher than it is possible to obtain with a single slot [16], without the need of introducing an

air gap between the structure and the dielectric [17]. Finally, for completeness, in section 3.3

it is proposed the extension of section 3.2 for an infinite array of slots with N feeds.

3.1 Infinite Slot Singly Fed

Let us consider a slot printed on an infinite ground plane between two homogeneous half-

spaces with permittivity εr2 = 11.9 (silicon) and εr1 = 1 (air), with cross section w = 2 µm

and delta gap ∆ = 2 µm as shown in Figure 3.1.

15
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𝑥
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(a)

𝜖"#

𝜖$#%

(b)

Figure 3.1: Slot printed on an infinite ground plane between two homogeneous half-spaces
with permittivities εr2 and εr1, where εr2 > εr1, with cross section w and delta gap ∆.

3.1.1 Electric field along the slot

The integral equation (as in [18]) which ensures the continuity of the magnetic field on the

slot surface is ∫∫
S

g(x− x′,−y′; t)m(x′, y′; t)dx′dy′ = i(t) rect(x) (3.1)

where g(x − x′,−y′; t) is the time-domain Green’s function, m(x′, y′; t) is the magnetic

current distribution, i(t) is the current exciting the slot and rect(x) is the rectangular

function defined as

rect(x) =

{
0, |t| > 1/2

1, |t| ≤ 1/2

The spatial distribution of the impulse which excites the feed is therefore a rectangle and the

temporal distribution depends from a time-varying current as shown in [4]. The derivation

is proposed again herein for completeness.

The examples proposed are pertinent to a photoconductor gap with an area of 2 µm × 2

µm and thickness of 2 µm, an absorption coefficient α = 106 m−1, a charge carrier lifetime

τr = 0.3 ps and a free carriers’ transient mobility µ = 400 cm2V−1s−1. The laser beam with

an average power P laser = 10 mW and a Gaussian profile with diameter at −3 dB of the

gap surface impinges on it. The laser has an half-power pulse-width τp = 100 fs, a carrier

frequency flaser = 375 THz (central wavelength λlaser = 800 nm) and a period of repetition

of Tp = 12.5 ns (pulse repetition rate fp = 80 MHz).

The time-varying conductance shown as an example in Figure 3.2 can be written as

g(t) = η(Wx,Wy,Wz, Alaser)
Alaser
W 2
y

eµh(t) ∗ s(t) (3.2)
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where η(Wx,Wy,Wz, Alaser) is the laser power absorption efficiency

η(Wx,Wy,Wz, Alaser) = (1−|Γ|2)
1− e−αWz

Wz

1

Alaser

∫ Wx/2

−Wx/2

∫ Wy/2

−Wy/2

∫ 0

−Wz

|s(ρ, z = 0)|dxdydz

(3.3)

h(t) is the impulse response of the material with respect to the laser excitation

h(t) = F−1[H(ω)] = F−1

[
1

hfg

τR
1 + jτRω

]
=

1

hfg
e−

t
τr u(t) (3.4)

where F−1[·] is the anti Fourier-transform (see Appendix B), u(t) is the Heaviside step

function and s(t) is the Gaussian modulating signal

s(t) = P0e
−4 ln 2 t

2

τ2p (3.5)

Figure 3.2: Conductance g(t) and laser power envelope s(t).

Through the conductance g(t), one can derive the conductivity σ(t) as

g(t) =
1

W 2
y

∫ Wx/2

−Wx/2

∫ Wy/2

−Wy/2

∫ 0

−Wz

σ(r; t)dxdydz (3.6)

Thereby obtaining the conductivity as shown in Figure 3.3.

Figure 3.3: Electrical conductivity σ(t) of the photoconductor gap.
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By applying Ohm’s law and assuming a constant electric field e(r; t) = Ebias, the current

density j(r; t) can be found as

j(r; t) = σ(r; t)Ebias (3.7)

The resulting time-varying current generated on the gap and emitted is shown in Figure 3.4.

It is obtained by integrating the current density j(r; t) as

i(t) =
1

Wx

∫ Wx/2

−Wx/2

(∫ Wy/2

−Wy/2

∫ 0

−Wz

j(r; t)dydz

)
dx (3.8)

Figure 3.4: Time-varying current generated on the gap that propagates along the passive
structure.

The expression for the current in Time Domain (TD) i(t) is then Fourier-transformed in

Frequency Domain (FD) as

I(ω) =

∫ +∞

−∞
i(t)e−jωtdt (3.9)

The resulting FD current I(ω) is shown in Figure 3.5.

Figure 3.5: Fourier transform of the time-domain current in Figure 3.4.

The normalized magnetic current (i.e., the voltage) is found by spectral synthesis of the
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2D-Green’s function

v(ω, x) =
1

2π

∫ +∞

−∞

I(ω)

D(kx)
sinc

(
kx∆

2

)
e−jkxxdkx (3.10)

where D(kx) is the longitudinal Green’s function as defined in Appendix A. The electric

field in FD is then found by dividing the voltage with the width w of the infinite slot and

it is shown at the highest and lowest frequency in Figure 3.6.

(a) 0.1 THz

(b) 2 THz

Figure 3.6: Electric field in FD for the highest and lowest frequency considered.

In order to go to the TD from the FD it is possible to apply the canonical inverse-Fourier

transform. However, as mentioned in [19], one has to pay attention to the passage from

ω < 0 to ω > 0. The complex plane kx for the spectrum V (kx) = 1/D(kx) exhibits

branch cuts for kz = ±
√
k2
i − k2

x. Considering a time dependence ejωt, in order to assure

that the integrands remain bounded as the limit of |kz||z − z′| → ∞ it is necessary to

impose restrictions on the imaginary part of kz, therefore we deliberately assume that

Im
√
k2
i − k2

x < 0. In other words, by imposing Im
√
k2
i − k2

x < 0 one makes sure that for

|kx| > k the non-propagating modes are damped away from the source. One then has to

select branch cuts in the complex kx plane which allow passing from the Top Riemann

Sheet (TRS) (Im kz < 0), to the Bottom Riemann Sheet (BRS) (Im kz > 0), in such a way

that the sign of Im kz remains constant. Thus, for a time dependence ejωt, by choosing the

branch cuts as in Figure 3.7, it is verified that Im kz < 0 on the entire TRS.
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𝒌𝒊

Re {𝑘'}

Im{𝑘' }

−𝒌𝒊

Figure 3.7: Sommerfeld type of branch cuts such that Im
√
k2
i − k2

x < 0 (i.e., kzi = −j|kzi|)
on the entire TRS. Re kz > 0 in the first and third quadrants and Re kz < 0 in the second
and fourth quadrants.

As a consequence, when integrating with positive frequencies the function remains analytic.

However, if the sign of ω is changed to a negative one, the assumption regarding the sign

of the square root does not hold anymore. It is as if we are assuming a time dependence

e−jωt and therefore it is required that Im kz > 0. Therefore the branch cuts change and

the integration should be involving unusual choices of the branch cuts with respect to

established behaviors. In order to avoid unnecessary complications, it is possible to redefine

the relations for a real space-time function X̌(r, t)

X(r, ω) =

∫ +∞

−∞
X̌(r, t)e−jωtdt (3.11)

¯̄X(r, t) =
1

π

∫ +∞

0
X(r, ω)ejωtdω (3.12)

where the ¯̄ symbol indicates the analytic continuation to complex time. The real field

X̌(r, t) is obtained by taking

X̌(r, t) = Re ¯̄X(r, t) (3.13)

The voltage in TD v(t, x) can be therefore obtained by applying the upon mentioned prop-

erties of the inverse Fourier-transform, accordingly

v(t, x) = Re

[
1

π

∫ +∞

0
v(ω, x)ejωtdω

]
(3.14)

The electric field is obtained by dividing the voltage with the width of the slot as e(t, x) =

v(t, x)/w. An example of the propagation of the signal is shown in Figure 3.8.
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(a) Numerical

(b) CST

Figure 3.8: Propagation of the electric field in TD computed numerically (Fig. 3.8a) and
verified with CST MWS (Fig. 3.8b). The signal at the initial time is represented with a
dashed line. The signal propagates (symmetrically) with the speed of light in the denser
dielectric (silicon) along the slot (x direction), the various curves represent linearly spaced
successive time steps.

3.1.2 Electric field in Fraunhofer region

Considering the same slot that we investigated in subsection 3.1.1, we are now interested

in the behavior of the electric field in Fraunhofer region (far field). The distribution along

x of the potential is given by the direction of the current, indeed we know that

F =
ε

4π

∫∫∫
V

M
e−jkR

R
dv′

The electric potential can be written as in [16]

F(r) = − 1

4π

∫ +∞

−∞

H
(2)
0

(√
k2

2 − k2
xρt

)
jD(kx)

sinc

(
kx∆

2

)
I(ω)e−jkxxdkxx̂

The electric field can be computed as

E(r) = −1

ε
∇× F(r)
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In order to avoid doing the curl in spatial domain, we can instead go to the spectral do-

main

E(r) = −1

ε
jk× F(r)x̂ = j

F (r)

ε
(kyẑ− kzŷ)

The resulting electric field is

E(r) =
j

ε

1

4π

∫ +∞

−∞

H
(2)
0

(√
k2

2 − k2
xρt

)
jD(kx)

sinc

(
kx∆

2

)
I(ω)

√
k2

2 − k2
xe
−jkxxdkxŷ (3.15)

The electric field in TD is recovered via the anti Fourier-transform as explained in subsec-

tion 3.1.1:

e(t, r) = Re

{[
1

π

∫ +∞

0
E(ω, r)ejωtdω

]}
An example of the resulting electric field in TD is shown in Figure 3.9.

Figure 3.9: Radiation of the electric field in TD at a fixed angle θ = 48◦ (w.r.t. a spherical
coordinates system where z is orthogonal to the slot plane) away from the slot (r direction).
The signal at the initial time considered (≈ 11.5 ps) is represented with a dashed line. The
signal propagates with the speed of light in the denser dielectric (silicon), the various curves
represent linearly spaced successive time steps.

3.2 Infinite Array of Slots Singly Fed

Let us consider an infinite array of slots printed on an infinite ground plane between two

homogeneous half-spaces with permittivity εr2 and εr1, where εr2 > εr1, with cross section

w, delta gap ∆ and periodicity dy as shown in Figure 3.10. The slots are excited at their

centers with constant amplitude and linear phase.
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Figure 3.10: Infinite array of slots printed on an infinite ground plane between two ho-
mogeneous half-spaces with permittivities εr2 and εr1, where εr2 > εr1, with cross section
w, delta gap ∆ and periodicity dy.

3.2.1 Electric Field - Derivation of the Spectral Integral

The electric potential radiated by the central slot of an infinite array of slots can be written

as

F(r) = − 1

4π

∫ ∞
−∞

H
(2)
0

(√
k2

2 − k2
xρ
)

jD∞(kx)
sinc

(
kx∆

2

)
I0e
−jkxxdkxx̂

where ρ =
√
y2 + z2 = r0 sin γ, D∞(kx) is the infinite longitudinal Green’s function that

can be written as

D∞(kx) =
1

dy

∞∑
my=−∞

J0

(
wkym

2

)
k0ζ0

2∑
i=1

k2
i − k2

x√
k2
i − k2

x − k2
ym

(3.16)

where kym are the Floquet wavenumbers kym = ky0 − 2πm
dy

and I0 is the (assumed) unitary

amplitude current exciting the feed. The field radiated by the nth slot can be expressed

as

Fny(r) = − 1

4π

∫ ∞
−∞

H
(2)
0

(√
k2

2 − k2
xρ
)

jD∞(kx)
sinc

(
kx∆

2

)
Inye

−jkxxdkxx̂

where ρny =
√

(y − yny)2 + z2. Here it is assumed that the array is excited by all elements

in phase so that Iny = Iny=0 = I0. Accordingly, the field radiated by a infinite array of slots

excited at their center can be expressed as

F(r) =

N/2∑
ny=−N/2

Fny(r) =

N/2∑
ny=−N/2

− 1

4π

∫ ∞
−∞

H
(2)
0

(√
k2

2 − k2
xρ
)

jD∞(kx)
sinc

(
kx∆

2

)
I0e
−jkxxdkx

 x̂
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In general, the electric field can be computed as

E(r) = −1

ε
∇× F(r)

In order to avoid doing the curl in spatial domain, we can go to the spectral domain

E(k) = −1

ε
jk× [F (k)x̂] (3.17)

Recalling that

k = kxx̂ + kyŷ + kzẑ (3.18)

Substituting (3.18) in (3.17) one obtains

E(k) =
1

ε
jF [kyẑ− kzŷ] (3.19)

The resulting electric field is

E(r) =
j

ε

N/2∑
ny=−N/2

− 1

4π

∫ ∞
−∞

H
(2)
0

(√
k2

2 − k2
xρny

)
jD∞(kx)

sinc

(
kx∆

2

)
(kyẑ− kzŷ) I0e

−jkxxdkx


Considering φ = 0◦ and ky = 0, the component of the electric field along ẑ is 0, there-

fore

E(r) =
jI0

ε4π

N/2∑
ny=−N/2

∫ ∞
−∞

H
(2)
0

(√
k2

2 − k2
xρny

)
jD∞(kx)

sinc

(
kx∆

2

)√
k2

2 − k2
xe
−jkxxdkx

 ŷ

(3.20)

3.2.2 Electric Field - Asymptotic Ray Approximation

In this section an asymptotic approximation useful for the evaluation of the electric in far

field is described. This section is based on [16] and [20].

In subsection 3.2.1 the electric field was derived from the potential in spectral domain.

For the purpose of the asymptotic ray approximation, the electric vector potential in spa-

tial form is used instead (in particular its approximation for w small with respect to the

wavelength):

F(r) ≈ −
∫ ∞
−∞

e−jk2R(x−x′)

4πR(x− x′)
2v(x′) rect(x′)I(x′)dx′x̂ (3.21)

where R(x − x′) =
√

(x− x′)2 + y2 + z2 =
√

(x− x′)2 + ρ2
t . Because the intent of this

section is to derive the field in far field, only the space wave contribution is significant to

the analysis. In particular, the space wave is a spherical wave with attenuation (k2r)
−1, the

leaky-wave ray attenuates as (k2r)
−1/2 and the later-wave ray attenuates as (k1r)

−2(k2r)
−1/2.

Hence, the latter has the higher asymptotic order of the three, the leaky-wave has a re-

stricted domain of existence (shadow boundary cone) and the space wave contributes the

most along γLW,∞ = cos−1
(
Re kLWx,∞/k2

)
(due to the phase matching of the space- and

leaky-waves at that angle). The space wave is originated in the origin of the reference

system (centered on the electric dipole feeding the slot) and is associated with the field

radiated by the dipole source itself modulated by the boundary conditions imposed by the
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slot. Therefore, the integral in (3.21) becomes

Fspace(r) ∼ −
∫

Origin

e−jk2R(x−x′)

4πR(x− x′)
2v(x′) rect(x′)I(x′)dx′x̂

The phase around the origin (where the space wave is emanated) can be approximated

as k2R(x − x′) ≈ k2r(1 − cos γ) in order to recover the Fourier-transform of v(x′), thus

obtaining (note that k2 cos γ is the saddle point in the kx plane):

Fspace(r) ∼ −2e−jk2r

4πr

∫
Origin

ejk2 cos γx′v(x′) rect(x′)I(x′)dx′x̂

And finally the potential becomes

Fspace(r) ∼ − 1

D∞(k2 cos γ)
sinc

(
k2 cos γ∆

2

)
I (k2 cos γ)

e−jk2r

2πr
x̂ (3.22)

where D∞(kx) is the infinite longitudinal Green’s function (see Appendix A) and I(kx) is

spectral current that can be generalized as

I(kx) = Ine
jkxndx

The distribution along x̂ of the potential is given by the direction of the current, indeed we

know that

F =
ε

4π

∫∫∫
V

M
e−jkR

R
dv′

where M is the magnetic current assumed to be perfectly distributed along the x-axis

(considered true for w small in terms of the wavelength). The electric field can be obtained

from the potential as in (3.19). It is known that

e−jk2r

4πr
= −j 1

8π2

∫ ∞
−∞

∫ ∞
−∞

e−jkxxe−jkyye−j
√
k22−k2x−k2yz√

k2
2 − k2

x − k2
y

dkxdky

= −j 1

8π2

∫ ∞
−∞

∫ ∞
−∞

e−jkxxe−jkyye−jkzz

kz
dkxdky

(3.23)

And substituting (3.23) in (3.22), the electric field becomes

E(r) =
2

ε

 j

8π2

∫ ∞
−∞

∫ ∞
−∞

sinc
(
kx∆

2

)
I(kx)

D∞(kx)

e−jkxxe−jkyye−jkzz√
k2

2 − k2
x − k2

y

(kyẑ− kzŷ) dkxdky

 (3.24)

Applying the stationary phase method, one obtains

E(r) =
2

ε

sinc
(
kxs∆

2

)
I(kxs)

D∞(kxs)

[
−jkys

e−jk2r

4πr
ẑ + jkzs

e−jk2r

4πr
ŷ

]
=
j

ε

e−jk2r

4πr

sinc
(
kxs∆

2

)
I(kxs)

D∞(kxs)
[−jkysẑ + jkzsŷ]

(3.25)
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where 
kxs = k2 sin θ cosφ

kys = k2 sin θ sinφ

kzs = k2 cos θ

Considering φ = 0◦, (3.25) becomes

E(r) ∼ jk2 cos θ

ε

e−jk2r

2πr

sinc
(
kxs∆

2

)
I(kxs)

D∞(kxs)
ŷ (3.26)

It is important to notice that this result derived from the electric vector potential in spatial

domain form corresponds to the non-uniform asymptotic evaluation of the electric field in

spectral domain.

3.2.3 Electric Field - Asymptotic Evaluation

The Steepest Descent Path (SDP) In subsection 3.2.1 the spectral integral of the

electric field was found to be

E(r) =
jI0

4πε0εr

N/2∑
ny=−N/2

∫ ∞
−∞

H
(2)
0

(√
k2

2 − k2
xρny

)
jD∞(kx)

sinc

(
kx∆

2

)√
k2

2 − k2
xe
−jkxxdkx

 ŷ

(3.27)

The spectral kx-plane (shown in Figure 3.11), in which (3.27) is defined, exhibits a saddle

point at kx = k2 cos γ introduced by the Hankel function e−j
√
k22−k2xρt since the asymptotic

expansion for large argument (ρt) is

H(2)
υ (z) ∼

√
2

πz
e−j(z−υ

π
2
−π

4 )
∞∑
n=0

(υ, n)

(−2jz)n
(3.28)

where υ = 0. Two branch point are associated to the square roots of the integrand

at kx = ±k1,±k2 with Sommerfeld type of branch cuts such as Im
√
k2
i − k2

x < 0 (i.e.,

kzi = −j|kzi|) on the entire top Riemann sheet. A leaky-wave pole kLWx,∞ is located on the

top Riemann sheet associated with
√
k2

1 − k2
x (i.e., Im

√
k2

1 − k2
x < 0) and on the bottom

Riemann sheet associated with
√
k2

2 − k2
x (i.e., Im

√
k2

2 − k2
x > 0) [note that the propaga-

tion on the improper sheet (for a ejωt type of dependence the top sheet is proper and the

bottom sheet is improper, since only the former verifies the radiation condition, i.e., the

energy radiated by the source to distant observation points is bounded and out-going) is

verified only for the fundamental Floquet mode my = 0].
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Figure 3.11: L-type branch cuts are associated to the square roots of the infinite longi-
tudinal Green’s function. The leaky-wave pole kLWx,∞ is captured on the Bottom Riemann

Sheet associated with Im
√
k2

2 − k2
x > 0.

In order to facilitate the manipulation of (3.27), it is convenient to introduce a new complex

variable α via the transformation

kx = k2 cosα (3.29)

which identifies α as a complex angle variable and makes kzi =
√
k2
i − k2

x = 0 a regular

point in the α plane [the choice of the cosine in (3.29) instead of the sine as in [21] is related

to the choice of the angle γ (as in Figure 3.10) which is complementary to the canonical

θ]. The transcendental function cosα is periodic [cos(α+ 2nπ) = cosα ∀n] and therefore a

multiplicity of α values correspond to the same value of kx. This means that the entire kx
plane can be mapped into various adjacent sections of width 2π in the α plane. Moreover,

the inverse function cos−1(kx/k2) in the kx plane is multiple valued, implying the existence

of branch points in that plane. The branch points occur at those points in the kx plane for

which the mapping derivative dkx/dα vanishes in the α plane, since dkx/dα = −k2 sinα,

the branch points are situated at kx = ±k2. One can notice that the repetitions with which

the kx-plane is mapped in the α-plane. For example, the Top Riemann sheet of the kx-plane

is mapped into the strip 0 < Reα < π and the Bottom Riemann is mapped into the strip

π < Reα < 2π (thus the Riemann sheets with width π appear as adjacent regions in the

new mapping). By defining

kz2 =
√
k2

2 − k2
x = k2 sinα (3.30)

one is allowed to map kz2(α = 0, π) = 0 (solving the ambiguity in the kx-plane) and

kx(α = 0, π) = k2. The integral of the electric field in (3.27) can now be mapped in the

newly defined α-plane. By employing the asymptotic approximation for large arguments of

the Hankel function as in (3.28), changing integration variable as

dkx = −k2 sinαdα

and substituting (recalling the trigonometric identity cos(x− y) = cosx cos y+sinx sin y)
x = xnew
(y − yny) = ynew
z = znew
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x = rny cos γny
ρny =

√
(y − yny)2 + z2 =

√
y2
new + z2 = rny sin γny{√

k2
2 − k2

x = k2 sinα

kx = k2 cosα

The integral in (3.27) becomes

E(r) = Ω

N/2∑
ny=−N/2

√ 1

rny sin γny

∫
C

e−jk2rny cos(α−γny)f(α)dα

 ŷ (3.31)

where

f(α) =
sinc

(
k2 cosα∆

2

)
(sinα)3/2

D∞(k2 cosα)

Ω = −I0e
jπ/4(k2)3/2

√
2

4πε
√
π

The newly defined path C in (3.31) indicates the path (−j∞, 0, π, π + j∞) in the complex

α-plane. Note that this is most certainly not the most convenient path of integration,

although (3.31) is already in a form suitable to employ the steepest descent method since

in far field the large parameter k2rny dominates over the others. This will be apparent

later.

Let’s now define the convergence zones. In order to investigate in details the properties of

the α-plane, we can separate α in its real and imaginary part:

α = αr + jαi (3.32)

Using Euler’s formula and (3.32), we may now write

cos(α− γ) =
ej(α−γ) + e−j(α−γ)

2
=
ej(αr+jαi−γ) + e−j(αr+jαi−γ)

2
=
ej(αr−γ)e−αi + e−j(αr−γ)eαi

2

=
cos(αr − γ)e−αi + j sin(αr − γ)e−αi + cos(αr − γ)eαi − j sin(αr − γ)eαi

2

= cos(αr − γ)
eαi + e−αi

2
− j sin(αr − γ)

eαi − e−αi
2

Substituting in the exponential in (3.31) one obtains

e
−jk2r

[
cos(αr−γ) e

αi+e−αi
2

−j sin(αr−γ) e
αi−e−αi

2

]
= e−jk2r cos(αr−γ) e

αi+e−αi
2 e−k2r sin(αr−γ) e

αi−e−αi
2

(3.33)

In order to ensure the convergence of the integral in (3.31), we need to make sure that when

αi (see path C ) tends to ±∞, e−k2r sin(αr−γ) e
αi−e−αi

2 does not vanish, i.e., eαi−e−αi
2 > 0.

This defines the zones of convergence of (3.31):

1. αi > 0 implies eαi−e−αi
2 > 0, implies sin(αr − γ) > 0 ⇒ 0 < αr − γ < π

2. αi < 0 implies eαi−e−αi
2 < 0, implies sin(αr − γ) < 0 ⇒ −π < αr − γ < 0

Knowing the convergence requirements, we can now define the most convenient numerical
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path as the one along which the exponential is always decaying and non-oscillating, in par-

ticular expressing the exponential as in (3.33), the path that guarantees the upon mentioned

properties is the one in which

cos(αr − γ)
eαi + e−αi

2
= 1

verified for the saddle point, i.e., the point defined by the vanishing of the first derivative

of the argument of the exponential:

d

dα
[−jk2r cos(α− γ)] = jk2r sin(α− γ) = 0⇒ α = γ

This deformed path that passes through the saddle point is called Steepest Descent Path

(SDP), therefore we can write

E(r) = Ω

N/2∑
ny=−N/2

√ 1

rny sin γny

∫
SDP

e−jk2rny cos(α−γny)f(α)dα

 ŷ (3.34)

Considering the system of equations valid for the SDP{
e−jk2rny cos(α−γny) = e−jk2rny cos(αr−γny) e

αi+e−αi
2 e−k2rny sin(αr−γny) e

αi−e−αi
2

cos
(
αr − γny

)
eαi+e−αi

2 = 1

We know that

e−jk2r cos(α−γny) = e−jk2re−k2r sin(αr−γny) e
αi−e−αi

2

and that the real part of the argument of the exponential is always decreasing. Let’s now

introduce an appropriate change of variables which simplifies the evaluation the saddle point

in the α-plane (the choice for the transformations is treated in [21]):

cos
(
α− γny

)
= 1− js2

with s defined within the interval (−∞,∞) on the real axis. The integral in (3.34) be-

comes

E(r) ∼ Ω

N/2∑
ny=−N/2

√ 1

rny sin γny

∫
SDP

e−jk2rny e−k2rny s
2
f(α)dα

 ŷ

= Ω

N/2∑
ny=−N/2

[√
1

rny sin γny
e−jk2rny

∫ ∞
−∞

e−k2rny s
2
G(s)ds

]
ŷ

= Ω

N/2∑
ny=−N/2

[√
1

rny sin γny
e−jk2rny

∫ ∞
−∞

eξ(s)ΨG(s)ds

]
ŷ

(3.35)

where Ψ = −k2rny , ξ(s) = s2 and G(s) = f(α)dαds . Note that the newly defined contour

passing by s = 0 (the saddle point) is the one along which the magnitude of eξ(s)Ψ decreases

more rapidly with Im ξ(s) constant and Re ξ(0) > Re ξ(s), meaning that the contribution

to the integral away form the saddle point decreases exponentially and therefore can be

neglected, thereby justifying the subsequent evaluation of the slowly varying function G(s)

in s = 0.
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Let’s now compute the derivative dα/ds

− jk2r cos(α− γ) = −jk2r − k2rs
2 (3.36)

Recalling the trigonometric identity cos(x) = 1− 2 sin2(x/2), (3.36) becomes

−jk2r

[
1− 2 sin2

(
α− γ

2

)]
= −jk2r − k2rs

2

→ s2 = −j2 sin2

(
α− γ

2

)
Isolating s:

s = ±
√

2j
√
j sin

(
α− γ

2

)
= ±
√

2ej3π/4 sin

(
α− γ

2

)
Therefore the derivative dα/ds can be computed as

dα

ds
= ± e−j3π/4

√
2

±
√

1− sin2
(α−γ

2

) =
e−j3π/4

√
2√

1− j s22

Thus, (3.35) becomes

E(r) ∼ Ω

N/2∑
ny=−N/2

[√
1

rny sin γny
e−jk2rny

∫ ∞
−∞

e−k2rny s
2
G(s)ds

]
ŷ (3.37)

where

G(s) = f(α)
dα

ds
= f(α)

e−j3π/4√2√
1− j s22


The new integration interval (and the SDP) is on the real axis of the s-plane and the saddle

point is mapped on s = 0.

Non-Uniform Asymptotic Evaluation Now we can proceed with the non-uniform

asymptotic evaluation, meaning that we aim to expand the slowly varying portion of the

integrand in a power series and then we integrate each term. The slowly varying function

f(α) can be extracted from the integral and evaluated at the saddle point (α = γ):

E(r) ∼ Ω

N/2∑
ny=−N/2

√ 1

rny sin γny
e−jk2rny f

(
γny
) ∫ ∞
−∞

e−k2rny s
2√

1− j s22
ds

 ŷ (3.38)
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where

f
(
γny
)

=
sinc

(
k2 cos γny∆

2

) (
sin γny

)3/2
D∞(k2 cos γny)

Ω = −j I0(k2)3/2

2πε
√
π

The denominator of the integrand in (3.38) can be expanded using the Taylor expansion of

the canonical form
1√

1 + x
= 1− x

2
+

3x2

8
+ . . .

Therefore one obtains that

1√
1− j s22

= 1 +
j

4
s2 − 3

32
s4 + . . .

Thus, (3.38) becomes

E(r) ∼ Ω

N/2∑
ny=−N/2

[√
1

rny sin γny
e−jk2rny f

(
γny
) ∫ ∞
−∞

e−k2rny s
2

(
1 +

j

4
s2 − 3

32
s4 + . . .

)
ds

]
ŷ

(3.39)

Let’s solve the integrals in (3.39) piece-by-piece. The first one is the well-known Gaussian

integral (see Appendix B): ∫ ∞
−∞

e−k2rny s
2
ds =

√
π

1

(k2rny)
1/2

The second and the third integrals can be solved in a similar manner:

j

4

∫ ∞
−∞

e−k2rny s
2
s2ds =

j

4

d

dx

[∫ ∞
−∞

e−k2rny s
2
s2−2ds

]
=
j

4

d

dx

[√
π

x

]
= −j

√
π

8

1

(k2rny)
3/2

− 3

32

∫ ∞
−∞

e−k2rny s
2
s4ds = −9

√
π

128

1

(k2rny)
5/2

Considering only the first term of the Taylor expansion, we finally get:

E(r) ∼ −j I0k2

2(π)3/2ε0εr2

N/2∑
ny=−N/2

sin γny

sinc
(
k2 cos γny∆

2

)
D∞

(
k2 cos γny

) e−jk2rny
rny

 ŷ (3.40)

Example In order to show the advantage of employing an infinite array of slots with

leaky-wave pole kLWx,∞ over the single slot pole kLWx , an example is shown.

Let us consider a single infinite slot and an infinite array of slots, both with silicon εr2 = 11.9

and air εr1 = 1 as dielectrics; a width w = λd/10 and delta gap λd/10; the array has a

periodicity dy = 0.42λd where λd is the wavelength in the denser dielectric at the highest

frequency. The bandwidth considered varies from 10 to 100 GHz. The leaky-wave poles are

shown in Figure 3.12. For an infinite number of slot the leaky-wave poles from each slot

coalesce into a single infinite pole which can be tracked by simply solving the dispersion
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equation D∞(kx) = 0 (note that a distinct leaky-wave pole would arise for each slot in a

finite array configuration as shown in [15]). The advantage of having an infinite number

of slots, as mentioned previously, is a higher angle of radiation. The difference of the

resulting pole, kLWx,∞, from the one considering only one slot, kLWx , is the higher imaginary

part especially at low frequencies.

Figure 3.12: Normalized leaky-wave poles kLWx,∞ and kLWx to the free space wavenumber
k0 related to the infinite array of slots and the single slot, respectively.

The resulting electric field is shown in Figure 3.13. The angle of maximum radiation γ in

the example is 72.8◦. The results have only a demonstrative purpose in terms of the angle

of radiation, in the sense the latter could be increased by, for instance, including a denser

dielectric and/or changing the geometric parameters of the slot.

(a) (b)

Figure 3.13: Normalized electric field as function of the angle γ. The electric field for an
infinite array of slots computed as in (3.40) is compared to the one obtained for a single
slot. The former has a maximum of radiation at ≈ 72.5◦ whereas the latter at ≈ 42.1◦ at
the lower frequency.

The electric field in TD is recovered via the anti Fourier-transform as explained in subsec-

tion 3.1.1:

e(t, r) = Re

{[
1

π

∫ +∞

0
E(ω, r)ejωtdω

]}
An example of the resulting electric field in TD is shown in Figure 3.14.
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Figure 3.14: Radiation of the normalized electric field in TD at a fixed angle ≈ 72.5◦

away from the slot (r direction). The signal at the initial time considered (≈ 11.5 ps) is
represented with a dashed line. The signal propagates with the speed of light in the denser
dielectric (silicon), the various curves represent successive time steps.

3.3 Infinite Array of Slots Fed by N feeds

Let us consider an infinite array of slots fed by N feeds printed on an infinite ground plane

between two homogeneous half-spaces with permittivity εr2 and εr1, where εr2 > εr1, with

cross section w, delta gap ∆ and periodicity dx = dy as shown in Figure 3.15.

…
…

𝑥

𝑦

… …𝑤
Δ

𝑑& 𝑑'

Figure 3.15: Infinite array of slots fed by N feeds printed on an infinite ground plane
between two homogeneous half-spaces with permittivities εr2 and εr1, where εr2 > εr1, with
cross section w and delta gap ∆.

The procedure employed for the derivation of the electric field of an infinite array of slots
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fed by N feeds is identical to the one described in section 3.2 and therefore only the result

are shown.

The full integral of the electric field considering φ = 0◦ and ky = 0 is

E(r) =
j

4πε0εr

N∑
n=1

∫ ∞
−∞

H
(2)
0

(√
k2

2 − k2
xρt

)
jD∞(kx)

sinc

(
kx∆

2

)
In(kx)

√
k2

2 − k2
xe
−jkxxdkx

 ŷ

(3.41)

where ρt = r sin γ, x = r cos γ and In(kx) = Ine
jkxndx is the current feeding the N ports.

The non-uniform asymptotic evaluation of the integral in (3.41) yields

E(r) ∼ e−jk2r
√
rk2k2 sin γ

2πrε

∑N−1
n=0 In(k2 cos γ) sinc

(
k2 cos γ∆

2

)
D∞(k2 cos γ)

[
1

(k2r)1/2
− j

8

1

(k2r)3/2
− 9

128

1

(k2r)5/2

]
ŷ

(3.42)



Chapter 4

PCAs Modeling in CST

In this chapter a novel procedure to analyze pulsed photoconductive antennas (PCAs)

using an EM simulator [5] is described. In particular, we propose a new way to simulate

the behavior of PCAs. The average power radiated of the new model is compared with the

measurements obtained in [6]. Moreover, a revised version of the Norton equivalent circuit

[4] is presented which improves on the accuracy of the CST model and reduces significantly

the computational time.

4.1 Bow-tie Geometry and Measurements

In this thesis the reference antenna considered for the analysis is the bow-tie. Measurements

of the average power radiated due to a pulsed PCA source for a bow-tie are available in [6].

Although in [6] the quasi-optical channel efficiency ηqo for the bow-tie was relatively low

due to a non-directive radiated pattern from the former, the geometrical properties of the

bow-tie allow for a low reactive part of the impedance which is shown in Figure 4.1. This is

beneficial to the following analysis to avoid losses of efficiency due to mismatching.

Figure 4.1: Simulated input impedance of the bow-tie antenna.

The dimensions and geometry of the simulated bow-tie refer to the one reported in [12] and

are shown in Figure 4.2.

35
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Figure 4.2: Bow-tie geometrical features. The antenna under investigation is printed
on a ground plane between two homogeneous dielectric half-spaces of permittivity εr,air
(half-space above) and εr,silicon (half-space below), which represents the silicon lens. The
gap is modeled with a thin slab of photoconductive material made of low-temperature-
grown gallium arsenide (LT-GaAs) with height Wz = 2 µm and transversal dimensions
Wx = Wy = 10 µm. The length of the measured bow-tie is L = 2 mm and the tapering of
90◦.

4.2 Norton Equivalent Circuit Model

This section introduces the model proposed in [4] and highlights its limits in order to

delineate more clearly the improvements of the new CST model proposed in this thesis

(section 4.3). Moreover, it serves as a comparison for the revised version of the Norton

equivalent model in section 4.4.

The antenna is assumed to be biased by a DC voltage source, and the semiconductor gap is

excited by a laser pulse whose properties are summarized in Table 4.1. The two sources, DC

bias and laser pulse, are assumed to be represented by an equivalent circuit that provides

an adequate linearized description for the time varying response of the circuit.

4.2.1 Norton - Model Description

The Norton Equivalent Circuit Model simplifies the analysis of the antenna coupling with

the photoconductor gap by describing a complex circuit in which the former is decoupled

from the latter. The circuit is shown in Figure 4.3.

𝐼"(𝜔) 𝑍"(𝜔) 𝑍'(𝜔)

Equivalent Circuit Generator Antenna

Figure 4.3: Norton equivalent circuit. The current generator Ig(ω) and the generator
impedance Zg(ω) are evaluated when the antenna impedance Za(ω) is short-circuited.
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In order to compute the short-circuit current flowing across the gap it is assumed that the

electric field is approximately constant with respect to time during the laser excitation,

therefore

ig(t) ≈ g(t)Vbias (4.1)

It must be noted that this approximation is very accurate if one considers the antenna being

short-circuited, this will be apparent in section 4.4. In (4.1) Vbias is the bias level of the

battery and g(t) is the conductance, computed as:

g(t) = η (Wx,Wy,Wz, Alaser)
Alaser
W 2
y

e µh(t) ∗ s̃(t) (4.2)

where η is the laser absorption efficiency computed as

η (Wx,Wy,Wz, Alaser) =
(
1− |Γ|2

) 1− e−αWz

Wz

1

Alaser

∫ Wy/2

−Wy/2

∫ Wx/2

−Wx/2

∫ 0

−Wz

|̃sn (ρ; z = 0) |dz dx dy

(4.3)

where s̃n (ρ; z = 0) is the normalized spatial distribution of the Poynting vector, Γ is the

optical Fresnel reflection coefficient at the air-semiconductor interface, α is the laser ab-

sorption coefficient at the semiconductor material, Alaser is the area of the laser beam on

the semiconductor with unitary amplitude defined as

Alaser(z) =

∫ ∞
−∞

∫ ∞
−∞

s̃n (ρ, z) · ẑ dx dy (4.4)

e is the elementary charge, µ is the free carriers’ transient mobility, h(t) is the impulsive

response of the semiconductor expressed as

h(t) =
1

hfg
e−

t
τr u(t) (4.5)

where h = 6.626070040 · 10−34 (Js) is the Planck’s constant, fg is the frequency associated

to the energy band-gap Eg = hfg of the semiconductor material, τr is the charge carrier

lifetime and u(t) is the Heaviside step function defined as

u(t) =

{
0, t < 0

1, t ≥ 0

s̃(t) is the laser power envelope which is assumed to have a Gaussian shape that can be

written as

s̃(t) = P0e
−4 ln 2 t

2

τ2p (4.6)

where P0 is the peak power of the pulse which is related to the area of the spatial distribution

of the laser beam and the peak amplitude of the pulse envelope as P0 = Alaser(z)S0(z) and

τp is the half-power pulse-width. The spectrum of the current-generator Ig(ω) is obtained

by Fourier-transforming (see Appendix B) the time-varying current ig(t) as

Ig(ω) = F [ig(t)]

The generator impedance Zg(ω) is the ratio of the voltage and current spectra. However,

since the evaluation of these two quantities is not trivial, the generator impedance is com-
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puted with a zeroth order approximation:

Zg(ω) ≈ 1

g0
= r0 (4.7)

where g0 is the average of the conductance in an arbitrary time interval τσ, defined where

g(t) is above 1/100 of its peak:

g0 = η (Wx,Wy,Wz, Alaser)
Alaser
W 2
y

e µ
1

τσ
H(ω = 0)S̃(ω = 0) (4.8)

An example of the impedance of the generator is shown in Figure 4.4. The impedance

of the antenna Za(ω) can be computed with an electromagnetic simulator or analytically,

depending on the structure considered.

Figure 4.4: Norton Generator impedance in function of the laser power. The mobility is
measured in cm2V−1s−1.

The generalized Parseval’s theorem states that

E =

∫ ∞
−∞

va(t)ia(t)dt =
1

2π

∫ ∞
−∞

Va(ω)I∗a(ω)dω (4.9)

where Va(ω) = F [va(t)] and Ia(ω) = F [ia(t)] are the spectra of the voltage and current;

va(t) and ia(t) are the time-varying voltage and current, respectively, observed on the

photoconductor gap. The gap current ig(t) for a short-circuited antenna computed as in

(4.1) is shown as an example in Figure 4.5 for different laser powers, a bias voltage Vbias = 40

V and a mobility µ = 100 cm2V−1s−1. Since the voltage is assumed to be always constant

and the conductance varies linearly for different laser powers, according to (4.1) also the

current presents the same behavior.
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Figure 4.5: Current on the photoconductor gap as function of time for various laser
powers. The antenna is biased at Vbias = 40 V and the semiconductor has a mobility
µ = 100 cm2V−1s−1.

The current and voltage in frequency domain on the antenna are calculated as

Ia(ω) = Ig(ω)
Zg(ω)

Zg(ω) + Za(ω)
(4.10)

Va(ω) = Ia(ω)Za(ω) (4.11)

The energy spectral density Es(ω) associated with the antenna radiation is a real quantity

for the Hermitian symmetry of the spectra and can be written as

Es(ω) = Va(ω)I∗a(ω) = Za(ω)

∣∣∣∣ Zg
Zg + Za(ω)

∣∣∣∣2 |Ig(ω)|2 (4.12)

One can compute the average power radiated by the antenna as

P rad =
1

Tp

1

2π

∫ ∞
−∞

Es(ω) ηop(ω) dω (4.13)

where ηop is the quasi-optical system efficiency that includes the radiation efficiency of the

lens, the reflector system efficiency and the detector efficiency, and Tp is period of repetition

of the laser excitation.

4.2.2 Norton - Model Results

The average power radiated estimated with the Norton Equivalent Circuit Model as function

of the bias voltage with a free carriers’ transient mobility of µ = 220 cm2V−1s−1 and for an

average laser power of P laser = 30 mW is shown in Figure 4.7. Table 4.1 summarizes the

parameters used in the model.
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Table 4.1: Norton Equivalent circuit parameters of laser and semiconductor material. The
parameters refer to the setup described in [6]. In particular, τp is the half-power pulsewidth,
flaser is the frequency associated with the energy band-gap, fp is pulse repetition rate
of the laser, Dlaser is the focused laser beam diameter and ηso is the spillover efficiency
(the laser beam profile is Gaussian); Wx,y and Wz are the transversal and longitudinal
dimensions of the photoconductor gap, respectively, α is the laser absorption coefficient at
the semiconductor material, τr is the charge carrier lifetime, µ is the free carriers’ transient
mobility and Γ is the optical Fresnel reflection coefficient at the air-semiconductor interface.

Laser Semiconductor

τp = 0.1 ps Wx = Wy = 10 µm

flaser = 375 THz Wz = 2 µm

fp = 80 MHz α = 106 m−1

Dlaser = 14.5 µm τr = 0.3 ps

ηso = 0.34 µ = 220 cm2V−1s−1

Γ =
√

0.3

The model shows good agreements with the results, although, as depicted in Figure 4.8, for

different laser power levels at a fixed voltage Vbias = 40 V it is not accurate. In particular,

it is apparent that the choice of the generator impedance Zg is such that it dominates over

the antenna impedance Za(ω) and therefore the prediction of the model does not account

for saturation at higher laser power levels. This behavior becomes apparent when analyzing

the voltages and currents on the antenna load. In order to recover the time-varying current

ia(t) and voltage va(t) the inverse Fourier-transform (see Appendix B for the definition

used) is applied on (4.10) and (4.11), respectively. It is possible to observe that the voltages

and currents exhibit almost no saturation when the laser power level is increased.
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(a) Voltages on the gap

(b) Currents on the gap

(c) Conductance of the gap

Figure 4.6: Voltages and currents with the relative conductances on the photoconductor
gap as function of time for various laser power levels.

In order for the model to predict more accurately the power radiated, one could vary the

mobility as function of the different laser power levels as shown in Figure 4.9, although this

procedure results in an unrealistic characterization of the same.
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Figure 4.7: Average power radiated estimated by using the Norton equivalent circuit model
and measurements as function of the bias voltage applied on the passive structure. The
average laser power considered is P laser = 30 mW. The mobility is measured in cm2V−1s−1.

Figure 4.8: Average power radiated as a function of the laser power. The Norton model
is compared with the measured power (dashed lines) for a bias voltage Vbias = 40 V. The
mobility is measured in cm2V−1s−1.

Figure 4.9: Average power radiated as a function of the laser power. The Norton model
uses a fitted free carriers’ transient mobility (µ line).
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4.2.3 Norton - Limits of the Model

The fact that one would have to fine tune the value of the mobility to obtain a good

match between the measured power and the model implicitly means that the model is of

limited applicability. The other criticality, addressed in section 4.4, is the calculation of the

generator impedance Zg. Since there is no easy way to compute it, (4.7) was used to derived

a zeroth order approximation. As it will be apparent later in section 4.4, a proper choice of

this impedance makes the model very accurate for various laser power levels.

4.3 Time Domain Model in CST

In this section a new and improved description of the radiation mechanisms of the PCA in

transmission is proposed. It is based on the time domain solver of CST MWS [5]. Numerical

simulations are performed to model the PCA as a passive component and introducing the

semi-conducting gap conductivity temporal and spatial distribution as a separate material

impulse response. As such, the model accounts for the interaction between the photocon-

ductor gap and the hosting passive structures only via Maxwell’s equations. The model’s

results are presented and analyzed, and compared to what was obtained in subsection 4.2.2

for the Norton Equivalent Circuit Model [4]. The time domain procedure allows for a better

understanding of the phenomena that occur subsequently to a laser beam excitation on a

semiconductor and can be particularly useful in view of a design in which the optimization

and maximization of the power radiated is prioritized. To the author’s knowledge, it has

not been published a guide on how to simulate PCAs in CST, therefore subsection 4.3.1 is

dedicated to this topic.

4.3.1 CST - Bias Sources

In the PCA problem at hand there are two electromagnetic sources to be considered. The

bias at very low frequencies, in the order of the MHz, and the laser source. The latter is not

viewed in our CST simulations as a source but can be more appropriately described as a

variation of the properties of the gap medium, while the former is truly introduced in CST

as an electromagnetic source. Since the time scales involved in the biasing and the pulsed

variation of conductivity differ substantially, its purpose consists only in guaranteeing that

a certain number of charges are available at the antenna terminals when the conductivity

transient occurs. In a realistic model of the biasing, one would have to describe the complex

circuitry used to isolate the high frequencies from the low frequencies (e.g. bulky inductors).

Their simulations, together with the time scales required by the PCA transients, would

render the geometry to be analyzed impossibly large to be solved numerically in reasonable

times. Accordingly, rather than simulating the actual biasing of the circuit, we have decided

to represent a simplified biasing phenomena that is analogous to the charging of a capacitor

with which one can approximate the PCA before the optical excitation becomes active.

Since CST does not allow to include charges as sources, we found that in order to induce a

certain biasing in a passive structure one needs to slowly increase the impressed voltage. The

time scales in which the charging needs to be performed require waiting until the current

and the corresponding electric field associated to the moving charges in the conductors are

stabilized. An example of the biasing signal is shown in Figure 4.10.
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(a) Small structure (b) Bigger structure

Figure 4.10: Biasing signal for Vbias = 40 V. The biasing is shown for two structure, Small
structure and Bigger structure, where the latter has the same geometry of the former except
it is 6 times longer. In both cases the full black and red lines refer to a slow and a fast
biasing signal, respectively, whereas the dashed lines refer to the voltage seen on the gap as
a result of the biasing. The blue line, σ(t), indicates the time-varying conductivity of the
strip connecting the passive structure with the metallic zones where the impressed voltage
is applied. It can be observed that for a longer biasing time the gap voltage presents less
oscillations and, therefore, it allows for a better description of a stable bias signal once the
open circuit is induced between the ports and the passive structure.

Once a stable electric field configuration is achieved, rather than removing the impressed

voltage, we found it convenient to assume that the overall metallic passive structure is

composed of three components. The metallic zones where the impressed voltage is applied

(electrodes), the passive structure, and a strip connecting the two as shown in Figure 4.11.

Figure 4.11: Overview of the PCA. The CST modeling comprises three main components
needed for the simulation: the electrodes, the passive structure and a strip connecting the
two.

The strip is assumed to be artificially characterized by a time-varying electrical conductivity

(which varies from σ1 = 108 (S/m) to σ2 = 0), such that the impressed voltage is entirely

disconnected from the charged antenna gaps at a defined time T1. At a time t = T1 the CST

configuration is equivalent to the one of a charged capacitor with a predefined voltage at

the PCA terminals. At a later time T2 > T1 the photoconductor gap becomes excited and
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thus a transient rearrangement of the charges, voltages and current occurs in the structure.

An example of the electrical conductivity induced by the excitation on the gap is shown in

Figure 4.12.

Figure 4.12: Time-varying electrical conductivity of the gap. The time scale refers to the
structure biased as in Figure 4.10a.

The transient duration depends mainly from the assumed properties of the material and

laser. Moreover, a non-negligible contribution is given by the impulse response of the

antenna which modulates the signal by imposing its boundary conditions. The impulse

response can be simply demonstrated, as discussed in Appendix C, to be the anti Fourier-

transform of the input impedance of the antenna. CST takes into account all these infor-

mation in providing the time evolution of the electromagnetic fields in the structure that

are simulated.

4.3.2 CST - Simulation of the Power Radiated

The aim of these simulations is the quantification of the average power radiated which

typically depends from various factors such as the geometry and dimension of the structure,

the properties of the laser and photoconductive gap, and the overall efficiency of the quasi-

optical system. Since it is known that these simulations can be quite cumbersome to

perform, and the extraction of the power radiated by setting far-field monitors on the

bandwidth considered can consistently degrade the speed and accuracy of the results, hereby

it is reported an alternative procedure which improves greatly both the former and the

latter. In particular, this procedure is intended to be used in a preliminary stage of the

design where the evaluation of the directivity of the patters radiated by the structure is

not prioritized, i.e., the problem of describing the power generated and radiated by the

structure is decoupled in two sub-problems and only the former is effectively quantified.

Furthermore, it is important to notice that these simulations describe accurately the power

in proximity of the photoconductor gap, although fail to account for a full propagation and

leakage (in the case of a leaky structure) of the pulse along the antenna.

The energy spectral density Es associated with the antenna radiation is a real quantity for

the Hermitian symmetry of the spectra and can be written as

Es =
1

2π

∫ ∞
−∞
|Ia(ω)|2 Za(ω)dω (4.14)
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Moreover, the laser feeds periodically the photoconductor gap with a period Tp = 1/fp,

thus the average power radiated can be computed with the available energy spectral den-

sity Ea which accounts for the efficiency of the quasi-optical system ηop as Ea = Esηop,

therefore

P rad =
Ea
Tp

(4.15)

The simulator yields the quantity integrated in (4.14), i.e., the power radiated in function

of the frequency which can be obtained by setting the far-field monitors in the bandwidth

of interest. Since the impedance of the structure can be evaluated separately, one could just

extract the time-varying current on the gap from the simulator and perform the remaining

computations on a separate programming tool. This solution is advantageous because it

essentially eliminates the problem of simulating at lower frequencies, since the transient

simulation works regardless of the bandwidth and frequency range considered. As a result,

bigger structures that would be required in order for the current to leak in the propagation

can be reduced in size by considering higher frequencies. In such a way the mesh cells count

can be greatly reduced without impacting on the accuracy of the simulation. The procedure

is exemplified for a dipole in Figure 4.13.

Figure 4.13: Energy spectral densities Es(ω) as function of the frequency of a dipole
with width w = 10 µm, gap dimensions Wx = Wy = 10 µm and length Ld = 2 mm. The
quantities shown are equivalent to the integrand described in (4.14). The full lines depict the
energy computed via the faster procedure, i.e., the frequency considered for the simulation
is arbitrarily chosen to be [1 − 1.5] THz and only the time-varying current is extracted
from the simulator, whereas the impedance, Za(ω), is computed in a separate simulation.
The dashed lines represent the radiated power computed via CST MWS by setting multiple
far-field monitors in the bandwidth considered. In particular, three simulations have been
performed, each for a different bandwidth: [0.3− 0.5] THz, [0.5− 1.0] THz and [1.0− 2.0]
THz.

4.3.3 CST - Model Validation

Referring to the generalized Parseval’s theorem in (4.9), va(t) and ia(t) are the time-varying

voltage and current, respectively, observed on the photoconductor gap. The voltage and the

currents are assumed to be well described via CST simulations. In particular, the currents

and voltages are recovered by defining, respectively, a current and voltage monitor on the

gap as in Figure 4.14.
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Figure 4.14: The voltages and currents are derived in CST by defining a voltage monitor
on the gap in the direction of the ports (green arrow) and a current monitor around the
gap (red arrow).

It must be noted that the quantity obtained via the voltage monitor corresponds to the

voltage drop on the gap, which does not satisfy the Parseval’s theorem in (4.9). Thus, the

voltage on the gap is shown as in Figure 4.6 by considering va(t) = Vbias − vcst(t) where

vcst(t) is the voltage obtained by defining the voltage monitor in CST (see Figure 4.15).
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(a) vcst(t)

(b) va(t)

Figure 4.15: Time-varying voltage vcst(t) obtained from CST and gap voltage va(t) com-
puted as Vbias − vcst(t).

The results in Figure 4.17 are pertinent to the quantities reported in Table 4.2.

Table 4.2: CST model parameters of laser and semiconductor material. The parameters
refer to the setup described in [6]. In particular, τp is the half-power pulsewidth, flaser is
the frequency associated with the energy band-gap, fp is pulse repetition rate of the laser,
Dlaser is the focused laser beam diameter and ηso is the spillover efficiency (the laser beam
profile is Gaussian); Wx,y and Wz are the transversal and longitudinal dimensions of the
photoconductor gap, respectively, α is the laser absorption coefficient at the semiconductor
material, τr is the charge carrier lifetime, µ is the free carriers’ transient mobility and Γ is
the optical Fresnel reflection coefficient at the air-semiconductor interface.

Laser Semiconductor

τp = 0.1 ps Wx = Wy = 10 µm

flaser = 375 THz Wz = 2 µm

fp = 80 MHz α = 106 m−1

Dlaser = 14.5 µm τr = 0.3 ps

ηso = 0.34 µ = 420 cm2V−1s−1

Γ =
√

0.3

The geometry of the structure simulated refers to Figure 4.2. The biasing signal (as ex-
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plained in subsection 4.3.1) is shown in Figure 4.16.

Figure 4.16: Biasing signal for Vbias = 40 V of the bow-tie.

In Figure 4.17 is possible to notice that for increasingly higher laser powers, an increment

of the conductance, and therefore a decrease in resistivity, does not translate into a linear

variation of the current and voltage. This behavior can be attributed to a phenomenon of

saturation, i.e., one can consider the system semiconductor-antenna as a non-linear device

which exhibits a compression point for high enough input power. Since the saturation

is critical for a complete analysis and for an accurate radiated power estimation of these

devices, it is discussed thoroughly and explained in section 4.5.
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(a) Voltages on the gap

(b) Currents on the gap

(c) Conductance of the gap

Figure 4.17: Voltages and currents with the relative conductances on the photoconductor
gap as function of time for various laser power levels.

The energy spectrum densities predicted by the CST model for a mobility µ = 420 cm2V−1s−1

are shown in Figure 4.18.
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Figure 4.18: Energy spectrum densities as function of the frequency for various laser
power levels.

The average power radiated estimated with the CST Model as function of the bias voltage

for an average laser power of P laser = 30 mW is shown in Figure 4.19.

Figure 4.19: Average power radiated estimated by using the CST model and measure-
ments as function of the bias voltage applied on the passive structure. The average laser
power considered is P laser = 30 mW. The mobility is measured in cm2V−1s−1.

The related average power is shown in Figure 4.20 and compared with the measurements. It

is possible to see that the CST model, even by maintaining a constant mobility for different

laser power levels, achieves a very high accuracy especially at laser power levels higher than

20 mW.
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Figure 4.20: Average power radiated and measurements as a function of the average laser
power. The bias voltage considered is Vbias = 40 V. The mobility is measured in cm2V−1s−1.

For completeness, Figure 4.21 shows the CST model results for different bias voltages.

Figure 4.21: Average power radiated as a function of the laser power for different bias
voltages. The full lines represent the CST model and the dashed lines represent the mea-
surements of the bolometer and power meter.

4.4 Revised Norton Equivalent Circuit

It this section it is proposed a revised version of the Norton Equivalent Circuit. In (4.7)

the generator impedance has been defined as 1/g0, with g0 defined in (4.8) as the average

of the conductance in an arbitrarily time interval τσ, taken where g(t) is above 1/100 of its

peak. A more appropriate choice of g0 involves considering the time interval τσ comparable

to the charge carrier lifetime τr, which approximately corresponds to average the g(t) when

it is above 1/3 of its peak (see Figure 4.22). The newly defined impedance generator Zg is

exemplified in Figure 4.23 for various mobilities. It is possible to observe that the impedance

is much lower than the one shown in Figure 4.4 and therefore it becomes comparable and

even lower than the antenna impedance (see Figure 4.1).
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Figure 4.22: Resistance of the photoconductor material for an average laser power of
P laser = 100 mW and a mobility of 420 cm2V−1s−1. The straight line refers to the newly
defined time interval τσ taken approximately where g(t) is above 1/3 of its peak.

Figure 4.23: Revised Norton generator impedance in function of the laser power. The
mobility is measured in cm2V−1s−1.

The lower value of generator impedance compared to the antenna impedance is critical to

observe the saturation behavior at higher laser power levels. The voltages and currents

computed as in Figure 4.6 are shown in Figure 4.24. As expected, the voltages and currents

exhibit saturation for an increase in the laser power level.
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(a) Voltages on the gap

(b) Currents on the gap

(c) Conductance of the gap

Figure 4.24: Voltages and currents with the relative conductances on the photoconductor
gap as function of time for various laser power levels.

Figure 4.25 shows the available energy spectral density Ea(ω) = Es(ω)ηqo(ω) of the revised

Norton equivalent circuit model together with the original one, the CST model and the

measurements (see [12, p.1656] for the measured spectrum).
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Figure 4.25: Energy spectral density Ea(ω) of the presented models and measurements as
function of the frequency. The laser power considered is 30 mW and the bow-tie is biased
at Vbias = 40 V.

Figure 4.26 shows the resulting average radiated power together with the result obtained for

the CST model (using the same mobility) and the measurements. It is possible to observe

that the Norton revised model is more accurate than the CST model at both lower and

higher laser power levels.

Figure 4.26: Average radiated power as function of the laser power level. The mobility is
measured in cm2V−1s−1.

The revised Norton equivalent circuit model constitutes an improvement on the state-of-the-

art. In particular, the model predicts very accurately the average power radiated regardless

of the laser power level considered and it offers a standardized way (frequency domain) to

analyze any kind of antenna compared to other hybrid models ([1], [2]) which, although

very precise, lose validity for dispersive and resonant antennas, i.e., being formulated in

the time-domain, they only allow an average resistance of the antenna considered which

works well for antennas such as the bow-tie, but fail to characterize other structures with a

significant variation of the impedance in frequency. Furthermore, an accurate modeling of

the generator impedance Zg paves the way for better designs of complex structures such as

connected arrays.
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4.5 Parametric Analysis of the CST model

A thorough understanding of the spectral components of the signals propagating on the

structure plays an important role in the maximization of the power radiated. Although the

measurements are available only for limited sets parameters of laser and semiconductor, once

the model is verified on one set, one can confidently vary these values for optimization pur-

poses. As an example, one can refer to Figure 4.27 to visualize these spectral components.

The figures show the gap currents in time domain with their relative Fourier-transform for

different charge carrier lifetimes τr and half-power pulse-widths τp. In particular, α and β

are multiplicative factors of τp and τr, respectively, with initial values which are referred

to τr = 0.3 ps and τp = 100 fs, as done in the measurements. The spectral components

of the current depend from the conductance (see Figure 4.17c for an example of the con-

ductance) which is related to the envelope of the average laser power density s̃(t) and the

impulsive response of the material h(t) by a convolution, as shown in (4.2). It is possible

to see that the low frequency components of the current are dominated by τr, i.e., a longer

charge carrier lifetime corresponds to a higher magnitude at lower frequencies. The high

frequency components are instead dominated by τp, i.e., a shorter half-power pulse-width

corresponds to a higher magnitude at higher frequencies. It is therefore apparent that these

two parameters play a central role in the maximization of the power radiated in certain

bandwidths.

(a) Time domain (α = 1) (b) Time domain (β = 1)

(c) Frequency domain (α = 1) (d) Frequency domain (β = 1)

Figure 4.27: Current on the gap as function of time and frequency. The current is derived
from CST, using a laser power P laser = 30 mW and the parameters in Table 4.2. The
antenna is biased at Vbias = 40 V. The parametric curves are in function of α and β which
are multiplicative factors of τp and τr, respectively, with initial values (α = 1 and β = 1)
referred to τp = 100 fs and τr = 0.3 ps which correspond to the measurements. As an
example, α = 1 and β = 2 indicate τp = 100 fs and τr = 0.6 ps. In Figures 4.27b and 4.27d
it is assumed β = 1 and in Figures 4.27a and 4.27c it is assumed α = 1.
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Figure 4.28 shows the corresponding average power radiated as function of the laser power.

(a) α = 1 (b) β = 1

Figure 4.28: Average power radiated as a function of the laser power. The current is
derived from CST, using a laser power P laser = 30 mW and the parameters in Table 4.2.
The antenna is biased at Vbias = 40 V. The parametric curves are in function of α and
β which are multiplicative factors of τp and τr, respectively, with initial values referred to
τp = 100 fs and τr = 0.3 ps, as done in the measurements. As an example, α = 1 and β = 2
indicate τp = 100 fs and τr = 0.6 ps. In Figures 4.28a and 4.28b it is assumed α = 1 and
β = 1, respectively.

Having analyzed the signals involved in the laser excitation of the photoconductor gap, we

can now focus on the saturation phenomena seen previously in Figure 4.17. Since CST is

not able to model the properties of the semiconductor, we can confidently attribute the

saturation as function of the laser power level seen by the simulator to the availability of

charges on the metal of the antenna coupled to the photoconductor gap. When the laser

impinges on the semiconductor gap, only the charges in proximity of the gap itself are

able to react. Since the laser impulse lasts for 100 fs, the other charges deposited on the

metal of the antenna propagate a signal limited by the velocity of light in a dielectric with

an effective permittivity of approximately
√

(εr + 1)/2 where εr is the permittivity of the

denser dielectric (silicon). The effect can be clearly seen in Figure 4.17a where, after the

initial voltage drop due to the excitation of the laser, the voltage returns to (almost) the

previous level of bias. This situation occurs when the antenna has dimensions that are big

enough such that only a small percentage of the charges are interested by the discharge,

and thus only a limited portion of the total current gets radiated.

We now we pose ourself in a situation where the dimensions of the antenna, and therefore

the area of metal present, are so small that the current induced by the laser excitation

depletes immediately almost all the charges deposited on the metal. The amount of metal

is then parametrically increased, as shown in Figure 4.29, in order to be able to observe

what was previously described.
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(a) Currents on the gap

(b) Voltages on the gap

Figure 4.29: Voltage and current on the photoconductor gap as function of time. The
parameter ξ indicates a small and linear increase in the longitudinal dimension of the
antenna. In particular, ξ = 1 a situation where the antenna dimensions considered are such
that the current induced by the laser excitation depletes almost all the charges deposited
on the metal. The labels reference indicate the voltages and currents on the gap obtained
with a much bigger structure.

It is possible to see that the currents converge to the reference value after a few iterations

whereas it is not the case for the voltages. In the first iteration the antenna is completely

depleted of the charges, and therefore this behavior can be seen in analogy with a capacitor

which discharges itself with a certain time constant τ = RC. In the following iterations the

voltage tends to the reference line, but it is evident that the structure is not big enough to

regain the same level of bias after the first discharge. It is therefore apparent that for higher

laser powers more current is allowed to flow across the gap due to the lower resistivity, but

the amount that can actually go through is limited by the velocity at which the charges

on the metal of the antenna can react. This conclusion has great relevance for PCAs

design since it implicates that the only significant part of the passive structure (the active

area) is the one immediately in proximity of the photoconductor gap. This is exemplified

in Figure 4.30 which shows the currents and voltages of the bow-tie as in Figure 4.17

compared with two dipoles with the same length of the latter and different widths (see

Figure 4.32) computed with the CST model. Moreover, Figure 4.31 shows the voltages and

currents derived from the Norton revised model by anti Fourier-transforming (4.10) and
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(4.11), which essentially highlights the importance of employing the EM simulator for the

analysis of the transients. The laser and semiconductor parameters of the dipoles are kept

the same as in Figure 4.17 and are summarized in Table 4.2.

(a) Bow-tie (b) Bow-tie

(c) Dipole, w = 30 µm (d) Dipole, w = 30 µm

(e) Dipole, w = 10 µm (f) Dipole, w = 10 µm

Figure 4.30: Voltages and currents derived from the CST model as function of time for
the reference structure (bow-tie) and two dipoles with the same length Ld = 2 mm which
differ only in width w as shown in Figure 4.32.
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(a) Bow-tie (b) Bow-tie

(c) Dipole, w = 30 µm (d) Dipole, w = 30 µm

(e) Dipole, w = 10 µm (f) Dipole, w = 10 µm

Figure 4.31: Voltages and currents as function of time derived from the Norton revised
model by anti Fourier-transforming (4.10) and (4.11) for the reference structure (bow-tie)
and two dipoles with the same length Ld = 2 mm which differ only in width w as shown in
Figure 4.32.
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𝑥

𝑦
𝐿$

𝑤

Figure 4.32: Dipole with cross section w, gap dimensions Wx = Wy and length Ld. In
Figure 4.30 the two dipoles have a width w = 10 µm and w = 30 µm, a gap dimension
Wx = Wy = 10 µm and a length Ld = 2 mm.
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The energy spectral densities Es(ω) derived via the CST and Revised Norton equivalent

circuit model for a laser power P laser = 30 mW and a bias voltage Vbias = 40 V are shown

in Figure 4.33.

Figure 4.33: Energy spectral densities as a function of frequency computed via the CST
method and the revised Norton equivalent circuit method. The laser power and bias voltage
considered are P laser = 30 mW and Vbias = 40 V, respectively.

The average radiated powers computed with the revised Norton equivalent circuit and the

CST model for the bow-tie and the two dipoles in Figure 4.32 are shown in Figure 4.35. The

average radiated power by the bow-tie shown does not take into account the quasi-optical

efficiency ηqo in order to be comparable to the ones of the dipoles. In particular, the power

radiated is calculated by multiplying the energy spectral density Es, computed as in (4.14),

with the pulse repetition rate fp. The simulated impedances of the two dipoles and bow-tie,

together with the generator impedance for µ = 420 cm2V−1s−1 are shown in Figure 4.34.

(a) Antennae Impedance (b) Generator Impedance

Figure 4.34: Simulated input impedance of the dipoles (shown in Figure 4.32) and bow-tie
as function of the frequency, and generator impedance Zg as function of the laser power
level for a mobility µ = 420 cm2V−1s−1.

Although measurements for the dipoles are not available, Figure 4.35 serves as an example

of the versatility of the tools presented in this thesis. In particular, it is possible to notice

that at low laser power levels the geometry of the structure does not impact on the amount

of radiated power since the impedance of the antennas is negligible compared to the one

of the generator. By increasing the laser power level, the generator impedance decreases

and thus the geometry of the structure becomes crucial to achieve good matching with
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Zg and therefore in the maximization of the power radiated. Since most of the energy is

concentrated at low frequencies (see for instance Figure 4.18), it is important to notice that

the matching of the antenna impedance with the one of the generator is particularly of

interest in that bandwidth.

Figure 4.35: Average power radiated as a function of the laser power. The average
radiated power computed with the CST method and the revised Norton equivalent circuit
method are compared for various structures. Although no measurements are available for
the dipoles considered, based on the results verified with the bow-tie (see Figure 4.26) we
expect the Revised Norton line (dashed lines) to be slightly more accurate than the CST
one (full lines).
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Chapter 5

Conclusion

5.1 Summary and conclusions

In this thesis a preparatory work in view of an improved design of connected arrays of

pulsed sources is presented.

In chapter 2 a transmission-line approach to approximate the voltage that propagates along

an infinite slot printed on an infinite ground plane between two homogeneous dielectric is

proposed. In particular, since this thesis has also the goal to serve as a starting ground for

the optimization of the power radiated in Photoconductive Antennas (PCA) in a connected

array configuration, the voltage is derived in the case where two feeds at an arbitrary small

distance are present. Unfortunately, it is demonstrated that the final voltage derived with

this approach differs slightly in amplitude and shape from the one recovered with the full

spectral integral because of the choice of a leaky-wave structure.

In chapter 3, in order to visualize and characterize the signal generated by the PCA once

excited, the time-varying electric field that propagates along an infinite slot and radiated by

it is derived. The simplified current derived in [4] and described in section 4.2 is used. This

derivation is intended especially for a better understanding of a connected array design in

which one has to deal with multiple feeds excited in the same instant which after a brief

interval return to the state of very high resistivity. Moreover, a novel way to improve the

angle of radiation of leaky-wave antennas is proposed.

In chapter 4 a novel approach based on a commercially available electromagnetic simulator

[5] to characterize the biasing of the passive structure, the optical laser excitation and the

impulse response of the photoconductor is proposed. The accuracy of the model is verified

by calculating the average power radiated by a bow-tie and the results are compared to the

measurements in [6]. The model offers an accurate and generalized approach to model any

kind of antenna by introducing a simple and effective way to optimize the geometry of an

arbitrary passive structure and to maximize the power radiated by it. The characterization

of the antenna in frequency domain essentially improves on previously proposed hybrid

equivalent circuits [1, 2, 3] since it allows for a wide applicability of the model. Moreover,

a revised version of the Norton equivalent circuit [4] is proposed which offers even more

accuracy of the CST model and faster computational time. This revised version of the

model will offer an invaluable tool to confidently characterize more complex structures such

as connected arrays. Although the revised Norton model is very usable to compute the

average radiated power being very accurate and computationally non-intensive, it lacks
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accuracy in describing the transient fields being formulated in frequency domain. This

shortcoming can be compensated by using the CST model which, although computationally

more intensive and less accurate in the description of the saturation phenomenon, is able to

predict more realistically the transient fields. This combination of tools can be advantageous

in the quantification of the power radiated and the description of the transient fields of more

complex structures such as connected arrays in which the level of complexity is higher since

these antennas are inherently characterized by a strong mutual coupling among the various

elements.

5.2 Publications

1. To be submitted : A journal article will be submitted based on the results obtained in

chapter 4 on the IEEE Transactions on Antennas and Propagation.



Appendix A

Impedance of various

configurations of Slots and

Dipoles

In this appendix the impedance of various configurations of Slots (section A.1) and Dipoles

(section A.2) are presented.

A.1 Impedance of Various Configurations of Slots

In this section various configurations of slots are discussed. In particular, the voltage along

the slot and the impedance are derived with the assumption of a width w small in terms

of the wavelength. The current distribution is given by two magnetic current with equal

amplitudes and opposite signs which are perfectly polarized along x. Unless otherwise

stated, the reference structure is the one shown in Figure A.1.

𝑥

𝑦

𝑤

Δ

Figure A.1: Slot printed on an infinite ground plane with cross section w with dimensions
small in terms of the wavelength and delta gap ∆.

67



68APPENDIX A. IMPEDANCEOF VARIOUS CONFIGURATIONS OF SLOTS ANDDIPOLES

A.1.1 Infinite Slot in Free Space - Singly Fed

Let us consider a slot printed on an infinite ground plane in free space with cross section w

and delta gap ∆ as shown in Figure A.1. The voltage can be computed as

v(x, ω) =
1

2π

∫ ∞
−∞

sinc
(
kx∆

2

)
I(ω)

D(kx)
e−jkxxdkx

where D(kx) is the longitudinal Green’s function in free space (for the derivation see [22],

[18])

D(kx) =
(k2

0 − k2
x)

k0ζ0
J0

(
w

4

√
k2

0 − k2
x

)
H

(2)
0

(
w

4

√
k2

0 − k2
x

)
(A.1)

where J0 is the zeroth order Bessel function, H
(2)
0 is the Hankel function of the second kind

and zeroth order, k0 is the free space wavenumber and ζ0 is the free space characteristic

impedance. The input impedance can be calculated as

Zin(ω) =
1

I(ω)

1

∆

∫ ∆/2

−∆/2
v(x, ω)dx =

1

2π

∫ ∞
−∞

sinc2
(
kx∆

2

)
D(kx)

dkx (A.2)

The convergence of the integral in (A.2) constitutes a problem when considering ∆ � λ.

Thus, one can write the impedance as [23]

Zin = Zqs + Zdyn (A.3)

where

Zqs =
1

2π

∫ ∞
−∞

1

D1(kx)
sinc2

(
kx∆

2

)
dkx (A.4)

Zdyn =
1

2π

∫ ∞
−∞

(
1

D(kx)
− 1

D1(kx)

)
sinc2

(
kx∆

2

)
dkx (A.5)

where D1(kx) is the longitudinal Green’s function for large spectral components kx

D1(kx) = lim
kx→∞

D(kx) =
4

k0ζ0πw

√
k2

0 − k2
x

[
1 + je−jw/2

√
k20−k2x

]
(A.6)

An example of the impedance is shown in Figure A.2.
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Figure A.2: Input impedance as function of the frequency of an infinite slot in free space.
The parameters considered are a width w = λ0/10 and a delta gap ∆ = λ0/10 where λ0 is
the free space wavelength at the higher frequency.

A.1.2 Infinite Slot between two Infinite dielectrics - Singly Fed

Let us consider a slot printed on an infinite ground plane between two homogeneous half-

spaces with permittivities εr2 and εr1, where εr2 > εr1, with cross section w and delta gap

∆ as shown in Figure A.1. The slot is fed centrally by an electric dipole. The voltage can

be computed as

v(x, ω) =
1

2π

∫ ∞
−∞

sinc
(
kx∆

2

)
I(ω)

D(kx)
e−jkxxdkx

where D(kx) is the longitudinal Green’s function between two infinite dielectrics (derivation

in [22], [18])

D(kx) =
1

2k0ζ0

2∑
i=1

(k2
i − k2

x)J0

(
w

4

√
k2
i − k2

x

)
H

(2)
0

(
w

4

√
k2
i − k2

x

)

where J0 is the zeroth order Bessel function, H
(2)
0 is the Hankel function of the second kind

and zeroth order, k0 is the free space wavenumber and ζ0 is the free space characteristic

impedance. The input impedance can be calculated as

Zin(ω) =
1

I(ω)

1

∆

∫ ∆/2

−∆/2
v(x, ω)dx =

1

2π

∫ ∞
−∞

sinc2
(
kx∆

2

)
D(kx)

dkx (A.7)

The convergence of (A.7) constitutes a problem when considering ∆ � λ. Thus, one can

write the impedance as [23]

Zin = Zqs + Zdyn (A.8)

where

Zqs =
1

2π

∫ ∞
−∞

1

D1(kx)
sinc2

(
kx∆

2

)
dkx (A.9)

Zdyn =
1

2π

∫ ∞
−∞

(
1

D(kx)
− 1

D1(kx)

)
sinc2

(
kx∆

2

)
dkx (A.10)
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where D1(kx) is the longitudinal Green’s function for large kx

1

D1(kx)
= lim

kx→∞

1

D(kx)
=
k0ζ0πw

2

1(
k2

1 − k2
2

) (√k2
1 − k2

x −
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k2

2 − k2
x

)
(A.11)

An example of the impedance is shown in Figure A.3.

Figure A.3: Input impedance as function of the frequency of an infinite slot printed
between air (εr = 1) and silicon (εr = 11.9). The parameters considered are a width
w = λd/10 and a delta gap ∆ = λd/10 where λd is the wavelength in the denser medium at
the higher frequency.

A.1.3 Infinite Slot between two Infinite dielectrics - Fed by a Dipole

Let us consider a slot printed on an infinite ground plane between two homogeneous half-

spaces with permittivities εr2 and εr1, where εr2 > εr1, with cross section w and delta gap

∆ as shown in Figure A.1. The slot is fed centrally by an electric dipole. The voltage can

be computed as

v(x, ω) =
1

2π

∫ ∞
−∞

sinc
(
kx∆

2

)
I(ω)

D(kx)
e−jkxxdkx

where D(kx) is the longitudinal Green’s function between two infinite dielectrics (derivation

in [22], [18])

D(kx) =
1

2k0ζ0

2∑
i=1

(k2
i − k2

x)J0

(
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4

√
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x

)
H

(2)
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x

)
(A.12)

where J0 is the zeroth order Bessel function, H
(2)
0 is the Hankel function of the second kind

and zeroth order, k0 is the free space wavenumber and ζ0 is the free space characteristic

impedance. The input impedance can be calculated as

Zslotin (w,∆, w) =
1

I(ω)

1

∆

∫ ∆/2

−∆/2
v(x, ω)dx =

1

2π

∫ ∞
−∞

sinc2
(
kx∆

2

)
D(kx, w)

dkx (A.13)

The convergence of (A.13) constitutes a problem when considering ∆� λ. Thus, one can

write the impedance as [23]

Zslotin (w,∆, w) = Zslotqs (w,∆, w) + Zslotdyn(w,∆, w) (A.14)
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The integral in (A.13) yields an impedance with a reactive part which is exclusively induc-

tive. A more realistic modeling of a slot includes a capacitive contribution of the gap. Since

this thesis is concerned with the modeling of PCAs, this analytical approach of describing

the impedance of structures with known Green’s functions such as dipoles and slots facili-

tates the understanding of the radiation mechanism. In order to introduce this capacitive

contribution, one can essentially add the quasi-static admittance of a small dipole which

acts as a connector between the slot and the feeding gap.

The following procedure describes more rigorously what stated above. The admittance of

the slot can be computed as Y slot
in (w,∆, w) = Zslotin (w,∆, w)−1; separating the dynamic

quasi-static contributions as in (A.14) ones gets

Y slot
in (w,∆, w) = Y slot

qs (w,∆, w) + Y slot
dyn (w,∆, w) (A.15)

The modeling of the structure is shown in Figure A.4. The two infinite dipoles have the

same width ∆, but different gap dimensions (t and w). Accordingly, the admittances can

be written as

Y dip
in (∆, w) = Y dip

qs (∆, w) + Y dip
dyn(∆, w) (A.16)

Y dip
in (∆, t) = Y dip

qs (∆, t) + Y dip
dyn(∆, t) (A.17)

The quasi-static admittances in (A.16) and (A.17) can be computed as in [24]

Y dip
qs (∆, w) =

2∑
n=1

Yn(w)

Y dip
qs (∆, t) =

2∑
n=1

Yn(t)

Yn(ξ) = −j∆k0εr,n
πζ0

[
ln

(
eγ
kn
2
ξ

)
− 3

2

]
where γ = 0.5772156649 . . . is the Euler constant.

𝑤
Δ

𝑡

(a) (t,∆)

𝑤 Δ

(b) (w,∆)

Figure A.4: Infinite slot of width w, and gap dimensions (t,∆) and (w,∆) in Figure A.4a
and in Figure A.4b, respectively.

Since the dynamic part of the admittance does not depend from the gap dimensions, one

can safely assume that

Y dip
dyn(∆, w) ≈ Y dip

dyn(∆, t) (A.18)
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And therefore substituting (A.18) in (A.17) one obtains that

Y dip
in (∆, t) = Y dip

qs (∆, t) + Y dip
dyn(∆, w)

Since the quasi-static part of the admittance mostly depends on the geometry of the gap,

one can notice that

Y slot
qs (w,∆, w) ≈ Y dip

qs (∆, w) (A.19)

And therefore substituting (A.19) in (A.15) one obtains that

Y slot
in (w,∆, w) = Y dip

qs (∆, w) + Y slot
dyn (w,∆, w) (A.20)

By extracting the dynamic part of the admittance from (A.20) and repeating the steps

described above for Y slot
in (w,∆, t), one can find that

Y slot
in (w,∆, t) = Y dip

qs (∆, t) + Y slot
dyn (w,∆, t)

= Y dip
qs (∆, t) +

[
Y slot
in (w,∆, w)− Y dip

qs (∆, w)
]

More clearly:

Y slot
in (w,∆, t) = Y slot

in (w,∆, w) +
[
Y dip
qs (∆, t)− Y dip

qs (∆, w)
]

(A.21)

The final slot impedance can be recovered simply as Zslotin (w,∆, t) = Y slot
in (w,∆, t)−1.

An example of the impedance is shown in Figure A.5.

Figure A.5: Input impedance as function of the frequency of an infinite slot printed
between air (εr = 1) and silicon (εr = 11.9) fed by a small dipole. The parameters considered
are a width w = λd/10 and a delta gap ∆ = λd/10 where λd is the wavelength in the denser
medium at the higher frequency.

A.1.4 Infinite Slot between two Infinite dielectrics - Infinitely Fed

Let us consider a slot printed on an infinite ground plane between two homogeneous half-

spaces with permittivities εr2 and εr1, where εr2 > εr1, with cross section w and delta gap

∆ as shown in Figure A.1. The slot is periodically fed at a distance dx by an electric dipole.
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The voltage can be computed as

v(x, ω) =
1

2π

∫ ∞
−∞

Ie(kx)

D(kx)
e−jkxxdkx (A.22)

where D(kx) is the longitudinal Green’s function between two infinite dielectrics (derivation

in [22], [18])

D(kx) =
1

2k0ζ0
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(A.23)

where J0 is the zeroth order Bessel function, H
(2)
0 is the Hankel function of the second

kind and zeroth order, k0 is the free space wavenumber and ζ0 is the free space character-

istic impedance. Assuming every source to be uniformly distributed along a gap of length

∆, constant in amplitude and linearly progressive in phase, the spectral transform of the

excitation can be expressed as

Ie(kx) = I(ω) sinc

(
kx∆

2

) N/2∑
nx=−N/2

i(nx)ejkxnxdx

= I(ω) sinc

(
kx∆

2

) N/2∑
nx=−N/2

ej(kx−kx0)nxdx

(A.24)

Applying the Poisson infinite formula, (A.24) becomes

Ie(kx) = I(ω)
2π

dx

∞∑
mx=−∞

δ(kx − kxm)

where kxm = kx0 − 2πmx/dx. The voltage in (A.22) can now be written as

v0(x, ω) =
I(ω)

dx

∞∑
mx=−∞

sinc
(
kxm∆

2

)
D(kxm)

e−jkxmx

The input impedance can be calculated as

Zin(ω) =
1

dx

∞∑
mx=−∞

sinc2
(
kxm∆

2

)
D(kxm)

An example of the impedance is shown in Figure A.6.
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Figure A.6: Input impedance as function of the frequency of an infinite slot printed
between air (εr = 1) and silicon (εr = 11.9) fed by an infinite number of feeds periodically
positioned at a distance of dx = 0.42λd. The parameters considered are a width w = λd/10
and a delta gap ∆ = λd/10 where λd is the wavelength in the denser medium at the higher
frequency.

A.1.5 Infinite Array of Slots between two Infinite dielectrics - Singly

Fed

Let us consider an array of slots printed on an infinite ground plane between two homo-

geneous half-spaces with permittivities εr2 and εr1, where εr2 > εr1, with cross section w

and delta gap ∆ as shown in Figure A.7. The slots are fed centrally by an electric dipole.

…
…

𝑥
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Δ

𝑑&

Figure A.7: Infinite array of slots printed on an infinite ground plane between two homo-
geneous half-spaces with permittivities εr2 and εr1, where εr2 > εr1, with cross section w
and delta gap ∆.
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The voltage can be computed as

v∞(x, ω) =
1

2π

∫ ∞
−∞

sinc
(
kx∆

2

)
I(ω)

D∞(kx)
e−jkxxdkx

where D∞(kx) is the infinite longitudinal Green’s function between two infinite dielectrics

(derivation in [22])

D∞(kx) =
1
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(
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k0ζ0

2∑
i=1

k2
i − k2

x√
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x − k2
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(A.25)

where J0 is the zeroth order Bessel function and ζ0 is the free space characteristic impedance.

The input impedance can be calculated as

Zin,∞(ω) =
1

I(ω)

1

∆

∫ ∆/2

−∆/2
v∞(x, ω)dx =

1

2π

∫ ∞
−∞

sinc2
(
kx∆

2

)
D∞(kx)

dkx

An example of the impedance is shown in Figure A.8.

Figure A.8: Input impedance as function of the frequency of an infinite array of slots with
periodicity dy = 0.42λd, printed between air (εr = 1) and silicon (εr = 11.9) and fed singly
in its origin. The parameters considered are a width w = λd/10 and a delta gap ∆ = λd/10
where λd is the wavelength in the denser medium at the higher frequency.

A.1.6 Infinite Array of Slots between two Infinite dielectrics - Infinitely

Fed

Let us consider an array of slots printed on an infinite ground plane between two homoge-

neous half-spaces with permittivities εr2 and εr1, where εr2 > εr1, with cross section w and

delta gap ∆ as shown in Figure A.9. The slots are fed periodically at a distance dx by an

electric dipole.
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Figure A.9: Infinite array of slots fed by N feeds printed on an infinite ground plane
between two homogeneous half-spaces with permittivities εr2 and εr1, where εr2 > εr1, with
cross section w and delta gap ∆.

The voltage can be computed as

v∞(x, ω) =
1

2π

∫ ∞
−∞

Ie(kx)

D∞(kx)
e−jkxxdkx (A.26)

where D∞(kx) is the infinite longitudinal Green’s function between two infinite dielectrics

(derivation in [22])

D∞(kx) =
1

dy
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(
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2

)
k0ζ0

2∑
i=1
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(A.27)

where J0 is the zeroth order Bessel function and ζ0 is the free space characteristic impedance.

Assuming every source to be uniformly distributed along a gap of length ∆, constant in

amplitude and linearly progressive in phase, the spectral transform of the excitation can be

expressed as

Ie(kx) = I(ω) sinc

(
kx∆

2

) N/2∑
nx=−N/2

i(nx)ejkxnxdx = I(ω) sinc

(
kx∆

2

) N/2∑
nx=−N/2

ej(kx−kx0)nxdx

(A.28)

Applying the Poisson infinite formula, (A.28) becomes

Ie(kx) = I(ω)
2π

dx

∞∑
mx=−∞

δ(kx − kxm)



A.2. IMPEDANCE OF VARIOUS CONFIGURATIONS OF DIPOLES 77

where kxm = kx0 − 2πmx/dx. The voltage in (A.26) can now be written as

v∞(x, ω) =
I(ω)

dx

∞∑
mx=−∞

sinc
(
kxm∆

2

)
D∞(kxm)

e−jkxmx

The input impedance can be calculated as

Zin,∞(ω) =
1

dx

∞∑
mx=−∞

sinc2
(
kxm∆

2

)
D∞(kxm)

An example of the impedance is shown in Figure A.10.

Figure A.10: Input impedance as function of the frequency of an infinite array of slots
with periodicity dy, printed between air (εr = 1) and silicon (εr = 11.9) and periodically
fed with a distance dx. The parameters considered are a width w = λd/10 and a delta gap
∆ = λd/10 where λd is the wavelength in the denser medium at the higher frequency.

A.2 Impedance of Various Configurations of Dipoles

In this section various configurations of dipoles are discussed. In particular, the current

along the dipole and the admittance are derived with the assumption of a width w small

in terms of the wavelength. The current distribution is given by two magnetic current with

equal amplitudes and opposite signs which are perfectly polarized along x.

A.2.1 Infinite Dipole in Free Space - Singly fed

Let us consider a dipole in free space with cross section w and delta gap ∆ as shown in

Figure A.11.
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𝑥

𝑦
𝑤

Δ

Figure A.11: Infinite dipole in free space with cross section w with dimensions small in
terms of the wavelength and delta gap ∆.

The current can be computed as

i(x, ω) = − 1

2π

∫ ∞
−∞

sinc
(
kx∆

2

)
V (ω)

D(kx)
e−jkxxdkx

where D(kx) is the longitudinal Green’s function in free space (for the derivation see [22],

[18])

D(kx) = − ζ0

4k0
(k2

0 − k2
x)J0

(
w

4

√
k2

0 − k2
x

)
H

(2)
0

(
w

4

√
k2

0 − k2
x

)
(A.29)

where J0 is the zeroth order Bessel function, H
(2)
0 is the Hankel function of the second kind

and zeroth order, k0 is the free space wavenumber and ζ0 is the free space characteristic

impedance. The input admittance can be calculated as

Yin(ω) =
1

V (ω)

1

∆

∫ ∆/2

−∆/2
i(x, ω)dx = − 1

2π

∫ ∞
−∞

sinc2
(
kx∆

2

)
D(kx)

dkx (A.30)

The convergence of the integral in (A.30) constitutes a problem when considering ∆ � λ.

Thus, one can write the admittance as [23]

Yin = Yqs + Ydyn (A.31)

where

Yqs = − 1

2π

∫ ∞
−∞

1

D1(kx)
sinc2

(
kx∆

2

)
dkx (A.32)

Ydyn = − 1

2π

∫ ∞
−∞

(
1

D(kx)
− 1

D1(kx)

)
sinc2

(
kx∆

2

)
dkx (A.33)

where D1(kx) is the longitudinal Green’s function for large spectral components kx
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D1(kx) = lim
kx→∞

D(kx) =
ζ0

k0πw

√
k2

0 − k2
x

[
1 + e

−j/2
(
w
√
k20−k2x−π

)]
(A.34)

An example of the impedance is shown in Figure A.12.

Figure A.12: Input impedance as function of the frequency of an infinite dipole in free
space. The parameters considered are a cross section w = λ0/10 and a delta gap ∆ = λ0/10
where λ0 is the free space wavelength at the higher frequency.

A.2.2 Infinite Dipole in Free Space with Surface Resistance - Singly

fed

Let us consider a dipole in free space with cross section w and delta gap ∆ as shown in

Figure A.11. The current can be computed as in [13]

i(x, ω) = − 1

2π

∫ ∞
−∞

sinc
(
kx∆

2

)
V (ω)

D(kx)− Rd
w

e−jkxxdkx

where Rd is the surface resistance associated with the ohmic losses of the metal. Note

that for lossless dipoles (i.e., Rd = 0 Ω) the poles kxp coincides with the branch points

in kx = ±k0, whereas with the assumption of a lossy metal the poles move away from

the branch points and therefore it is possible to evaluate them separately. D(kx) is the

longitudinal Green’s function in free space (for the derivation see [22])

D(kx) = − ζ0

4k0
(k2

0 − k2
x)J0

(
w

4

√
k2

0 − k2
x

)
H

(2)
0

(
w

4

√
k2

0 − k2
x

)
(A.35)

where J0 is the zeroth order Bessel function, H
(2)
0 is the Hankel function of the second kind

and zeroth order, k0 is the free space wavenumber and ζ0 is the free space characteristic

impedance. The input admittance can be calculated as

Yin(ω) =
1

V (ω)

1

∆

∫ ∆/2

−∆/2
i(x, ω)dx = − 1

2π

∫ ∞
−∞

sinc2
(
kx∆

2

)
D(kx)− Rd

w

dkx

An example of the impedance is shown in Figure A.13.
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Figure A.13: Input impedance as function of the frequency of an infinite dipole in free
space characterized by a metal with a finite resistance Rd. The parameters considered are
a cross section w = λ0/10 and a delta gap ∆ = λ0/10 where λ0 is the free space wavelength
at the higher frequency.

A.2.3 Infinite Dipole between two Infinite Dielectrics - Singly fed

Let us consider an infinite dipole printed between two homogeneous half-spaces with per-

mittivities εr2 and εr1, where εr2 > εr1, with cross section w and delta gap ∆ as shown in

Figure A.11. For the sake of simplicity, it is assumed that εr1 = 1 and therefore the pedix

for medium 1 is substituted always with 0, i.e., the canonical subscript for free-space.

Derivation of the longitudinal Green’s function The canonical Green’s function for

an electric field and an electric current polarized along x can be expressed as

GEJxx (kx, ky) = −
vTM (z = 0)k2

x + vTE(z = 0)k2
y

k2
ρ

(A.36)

The voltage at z = 0 due to an electric source at z′ = 0 can be expressed in terms of the

input impedance and thus considering the TE and TM polarizations separately the voltages

and currents become:

vTM (z = 0) =
ZTM0 ZTM2

ZTM0 + ZTM2

(A.37)

iTM (z = 0) = 0 (A.38)

vTE(z = 0) =
ZTE0 ZTE2

ZTE0 + ZTE2

(A.39)

iTE(z = 0) = 0 (A.40)

where

kzi =
√
k2
i − k2

x − k2
y (A.41)

ZTMi (z = 0) =
ζikzi
ki

(A.42)

ZTEi (z = 0) =
ζiki
kzi

(A.43)
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Substituting (A.41)-(A.43) in (A.37) and (A.39) one obtains

vTM (z = 0) =

ζ0kz0
k0

ζ1kz2
k2

ζ0kz0
k0

+ ζ1kz2
k2

=
ζ0

k0

kz0kz2
εkz0 + kz2

vTE(z = 0) =

ζ0k0
kz0

ζ1k2
kz2

ζ0k0
kz0

+ ζ1k2
kz2

=
ζ0k0

kz2 + kz0

Therefore the Green’s function in (A.36) becomes

GEJxx (kx, ky) = −
ζ0
k0

kz0kz2
εkz0+kz2

k2
x + ζ0k0

kz2+kz0
k2
y

k2
x + k2

y

= −ζ0k0
1

k2
x + k2

y

[
1

k2
0

kz0kz2
εr,2kz0 + kz2

k2
x +

1

kz2 + kz0
k2
y

]
The longitudinal Green’s function D(kx) becomes (assuming a uniform distribution of the

current instead of an edge singular behavior J0 (kyw/2) as in [25])

D(kx, w) =
1

2π

∫ ∞
−∞

Gxx(kx, ky) sinc2

(
kyw

2

)
dky

= −ζ0k0

2π

∫ ∞
−∞

1

k2
x + k2

y

[
1

k2
0

kz0kz2
εr,2kz0 + kz2

k2
x +

1

kz2 + kz0
k2
y

]
sinc2

(
kyw

2

)
dky

(A.44)

The integration path of (A.44) is given by∫
[. . .]dky =

∫ ∞, on TRS

−∞, on TRS
[. . .]dky +

∫ ∞,−k2 on TRS

−∞,k2 on TRS
[. . .]dky +

∫ ∞,k2 on BRS

−∞,−k2 on BRS
[. . .]dky

where TRS and BRS are the Top Riemann sheet and the Bottom Riemann sheet, respec-

tively. Since the integral cannot be solved analytically, we can help the convergence rate by

extracting the high spectral components from D(kx) ([25]) as

D∞(kx) = lim
kx→∞

D(kx) =
1

w
Gxx(kx, ky = 0) = −ζ0k0

w

1

k2
x

[
1

k2
0

√
k2

0 − k2
x

√
k2

2 − k2
x

εr,2
√
k2

0 − k2
x +

√
k2

2 − k2
x

k2
x

]

= − ζ0

wk0

[ √
k2

0 − k2
x

√
k2

2 − k2
x

εr,2
√
k2

0 − k2
x +

√
k2

2 − k2
x

]

Derivation of the Admittance The admittance can be therefore separated in two con-

tributions, a dynamic one an an infinite one (with reference to the infinitely big spectral

components), as

Y (ω) = Ydyn(ω) + Y∞(ω) (A.45)

where

Ydyn(ω) =
1

2π

∫ ∞
−∞

(
− 1

D(kx)
+

1

D∞(kx)

)
sinc2

(
kx∆

2

)
dkx

Y∞(ω) = − 1

2π

∫ ∞
−∞

1

D∞(kx)
sinc2

(
kx∆

2

)
dkx
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One can decompose Y∞ in two separate components Y∞ = Y 0
∞ + Y 2

∞ where

Y i
∞(ω) =

k0w

ζ0

1

2π

∫ ∞
−∞

sinc2

(
kx∆

2

) εr,i

√
k2
i − k2

x√
k2

0 − k2
x

√
k2

2 − k2
x

dkx

=
k0wεr,i
ζ0

1

2π

∫ ∞
−∞

sinc2

(
kx∆

2

)
1√

k2
i − k2

x

dkx

(A.46)

It is possible to solve (A.46) analytically when the argument of the sinc function is small

compared to the wavelength, i.e., δ � λd ⇒ sinc2(kx∆/2) ≈ 1. By doing so and recalling

the Fourier-transform of the Hankel function

H
(2)
0 (ki|x|) =

1

π

∫ ∞
−∞

1√
k2
i − k2

x

e−jkxxdkx (A.47)

one can write (A.46) as

Y i
∞(ω) =

k0wεr,i
ζ0

1

2π

∫ ∞
−∞

1√
k2
i − k2

x

dkx =
k0wεr,i

2ζ0
H

(2)
0 (0)

Invoking the small argument approximation of the Hankel function, one finally obtains

that

Y i
∞(ω) =

k0wεr,i
2ζ0

[
1

2
− j

π
ln

(
eγki

2

)
− j

π

(
ln δ − 3

2

)]
where γ = 0.5772156649 . . . is the Euler constant. Note that this solution holds only for low

frequencies, whereas for higher frequencies the numerical integration is required, although

the convergence is much faster.

An example of the impedance is shown in Figure A.14.

Figure A.14: Input impedance as function of the frequency of an infinite dipole printed
between air (εr = 1) and silicon (εr = 11.9). The parameters considered are a cross section
w = λd/10 and a delta gap ∆ = λd/10 where λd is the wavelength in the denser medium at
the higher frequency.
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A.2.4 Infinite Dipole between two Infinite Dielectrics - Fed by a small

Gap

Let us consider an infinite dipole printed between two homogeneous half-spaces with per-

mittivities εr2 and εr1, where εr2 > εr1, with cross section w and delta gap ∆ as shown in

Figure A.11.

The reciprocal of the sum of integrals in (A.45) yields an impedance with a reactive part

which is exclusively capacitive. A more realistic modeling of a dipole includes an inductive

contribution of the gap (due to the bending of the current which is forced to flow across the

gap). Since this thesis is concerned with the modeling of PCAs, this analytical approach of

describing the impedance of structures with known Green’s functions such as dipoles and

slots facilitates the understanding of the radiation mechanism. In order to introduce this

inductive contribution, one can essentially add the quasi-static impedance of the difference

of two infinite slots with different gap dimensions. The following procedure describes more

rigorously what stated above. The modeling of the structure is shown in Figure A.15.

The two infinite dipoles have the same width ∆, but different gap dimensions (t and w).

Accordingly, the impedances of two infinite slots with similar gap dimensions can be written

as

Zslotin (w,∆) = Zslotqs (w,∆) + Zslotdyn(w,∆) (A.48)

Zslotin (w, t) = Zslotqs (w, t) + Zslotdyn(w, t) (A.49)

𝑥

𝑦
𝑤

Δ

𝑡

(a)

1

𝑤

Δ 𝑡

(b)

Figure A.15: Infinite dipole printed between two homogeneous half-spaces with permittiv-
ities εr2 and εr1, where εr2 > εr1, with cross section w and delta gap ∆. The inductance of
the gap is introduced by decreasing the delta gap dimension ∆ to a value t (Figure A.15a).
The rigorous procedure involves considering two infinite slots with the same width w and
different delta gap dimensions ∆ and t (Figure A.15b).
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Since the dynamic part of the impedance does not depend from the gap dimensions, one

can safely assume that

Zslotdyn(w, t) ≈ Zslotdyn(w,∆) (A.50)

And therefore substituting (A.50) in (A.49) one obtains that

Zslotin (w, t) = Zslotqs (w, t) + Zslotdyn(w,∆)

The difference of the impedances of the two slots yields:

Zslotin (w, t)− Zslotin (w,∆) = Zslotqs (w, t) + Zslotdyn(w,∆)− Zslotqs (w,∆)− Zslotdyn(w,∆)

= Zslotqs (w, t)− Zslotqs (w,∆)

= Zslotqs

where Zslotqs represents the inductive part of the gap. Alternatively, one could approximate

Zslotqs as in [24] where the quasi-static impedance associated with the reduction of the inner

conductor is computed as

Zslotqs = Z(t)− Z(δ)

where

Z(ξ) = k0w [Za(ξ) + Zb(ξ)]

Za(ξ) =
jπζ0

2ξ2(k2
1 − k2

2)

[
H

(2)
0 (k2ξ)− J0(k2ξ)

−j
− H

(2)
0 (k1ξ)− J0(k1ξ)

−j
+

2

π
ln

(
k1

k2

)]

Zb(ξ) =
πζ0

2

 j

2

[
− 2

π
ln(eγξ) +

3

π

]
−
j
[
k2

1 ln
(
k1
2

)
− k2

2 ln
(
k2
2

)]
π(k2

1 − k2
2)



where γ = 0.5772156649 . . . is the Euler constant. The dipole impedance with a smaller gap

t can now be written as

Zdipin (w,∆, t) = Zdipqs (w,∆, t) + Zdipdyn(w,∆, t) + Zslotqs

The final dipole admittance can be recovered simply as Y dip
in (w,∆, t) = Zdipin (w,∆, t)−1.

An example of the impedance is shown in Figure A.16.
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Figure A.16: Input impedance as function of the frequency of an infinite slot printed
between air (εr = 1) and silicon (εr = 11.9) with cross section w = λd/10 and delta gap
∆ = λd/10 where λd is the wavelength in the denser medium at the higher frequency. The
inductance of the gap is introduced by decreasing the delta gap dimension ∆ to a value t.



Appendix B

Useful integrals

B.1 Convolution

The convolution integral in time domain is defined as

a(t) ∗ b(t) =

∫ ∞
−∞

a(t− ξ)b(ξ)dξ

B.2 Fourier Transform

The definitions of Fourier-transform and anti Fourier-transform used in this thesis are,

respectively:

A(ω) = F [a(t)] =

∫ ∞
−∞

a(t)e−jωtdt

a(t) = F−1 [A(ω)] =
1

2π

∫ ∞
−∞

A(ω)ejωtdω

B.3 Gaussian Integral

The simplest Gaussian integral is

I =

∫ ∞
−∞

e−x
2
dx

which can be solved quite easily. Squaring the quantity I, we get

I2 =

∫ ∞
−∞

e−x
2
dx

∫ ∞
−∞

e−y
2
dy =

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2)dxdy

Going over to polar coordinates, we have r2 = x2 + y2, dxdy = rdrdϑ, and

I2 =

∫ ∞
0

∫ 2π

0
e−r

2
rdrdϑ

Integration of this double integral is now straightforward, and we have

I =

∫ ∞
−∞

e−x
2
dx =

√
π
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For example

I =

∫ ∞
−∞

e−
a
n
x2dx =

√
n

a

√
π



Appendix C

Impulse Response of an Antenna

The voltage and current relation can be expressed via the product in frequency domain

with the input impedance:

Zin(ω)I(ω) = V (ω) (C.1)

In time domain the voltage v(t) can be expressed as a convolution of a certain transfer

function himp(t) and the current i(t) (i(t) = 0 for t < 0):

v(t) = himp(t) ∗ i(t) =

∫ ∞
−∞

himp(t− ξ)i(ξ)dξ

which in frequency domain becomes

V (ω) = F [v(t)] =

∫ ∞
−∞

[∫ ∞
−∞

himp(t− ξ)i(ξ)dξ
]
e−jωtdt (C.2)

By rewriting the convolution integral in (C.2), one can notice that∫ ∞
−∞

himp(t− ξ)e−jωtdt = Himp(ω)e−jωξ (C.3)

Substituting (C.2) in (C.1) one obtains

Zin(ω)I(ω) =

∫ ∞
−∞

[∫ ∞
−∞

himp(t− ξ)i(ξ)dξ
]
e−jωtdt

=

∫ ∞
−∞

[∫ ∞
−∞

himp(t− ξ)e−jωtdt
]
i(ξ)dξ

=

∫ ∞
−∞

[
Himp(ω)e−jωξ

]
i(ξ)dξ

= Himp(ω)I(ω)

(C.4)

Finally the impulse response is recovered as

himp(t) = F−1 [Zin(ω)] (C.5)
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