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Abstract. QoS routing is expected to be an essential building block
of a future, efficient and scalable QoS-aware network architecture. We
present SAMCRA, an exact QoS routing algorithm that guarantees to
find a feasible path if such a path exists. The complexity of SAMCRA
is analyzed. Because SAMCRA is an exact algorithm, most findings can
be applied to QoS routing in general.
The second part of this paper discusses how routing with multiple inde-
pendent constraints affects the hopcount distribution. Both the complex-
ity as the hopcount analysis indicate that for a special class of networks,
QoS routing exhibits features similar to single-parameter routing.

1 Introduction: Constrained-Based Routing

Delivering end-to-end Quality of Service (QoS) is widely believed to become
an essential asset for the future Internet. Much research has been done (and is
continuing) on this topic, which resulted in the proposal of several QoS archi-
tectural frameworks including IntServ/RSVP, DiffServ, MPLS and traffic engi-
neering through constrained-based routing. Each of these proposals has some
advantages over the others. A future QoS-aware network architecture for the
Internet will therefore likely comprise of a combination of several architectural
frameworks in order to provide end-to-end QoS in an efficient, stable and scalable
manner. In this paper we argue that constrained-based routing is an essential
QoS building block for providing efficient QoS solutions. Some examples moti-
vate this statement. In the IntServ/RSVP framework, RSVP tries to reserve a
(best-effort) path and then provides QoS through appropriate scheduling, queue-
ing, dropping, etc.. However, because the constraints are ignored while setting
up/reserving the path, the reserved path is possibly not the best choice, or even
worse, a path may not be found at all (flow blocked), while there is a feasible path
available. The same phenomenon can be observed in DiffServ. In DiffServ the
local packet handling mechanisms (scheduling, etc.) provide the differentiated
service, after which the packets are forwarded along a best-effort path. MPLS
is a forwarding scheme where packets are given a label corresponding to a cer-
tain MPLS path over which they are forwarded. The combination of MPLS with
constrained-based routing to set up a MPLS path seems an intuitively straight-
forward solution. In conclusion, a future QoS-aware network architecture will
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benefit from combining constrained-based routing with appropriate packet han-
dling in order to provide efficient QoS solutions.

In section 2 we will present SAMCRA [17], a Self-Adaptive Multiple Con-
straints Routing Algorithm and analyze its complexity, which is verified through
simulations. The second part (section 3) of this paper analyses the hopcount of
the shortest path in multiple dimensions. This section is an extension to pre-
vious work on the hopcount in the Internet [16]. We conclude this paper with
conclusions and speculations in section 4.

2 SAMCRA: A Self-Adaptive Multiple Constraints
Routing Algorithm

SAMCRA is the successor of TAMCRA, a Tunable Accuracy Multiple Con-
straints Routing Algorithm [8], [7]. As opposed to TAMCRA, SAMCRA guar-
antees to find a path within the constraints, provided such a path exists. Fur-
thermore, SAMCRA only allocates queue-space (= memory) when truly needed,
whereas in TAMCRA the allocated queue-space is predefined. The major per-
formance criterion for SAMCRA, namely the running-time/complexity, will be
discussed in paragraph 2.2. Similar to TAMCRA, SAMCRA is based on three
fundamental concepts: (1) a non-linear measure for the path length, (2) the k-
shortest path approach [5] and (3) the principle of non-dominated paths [12].
Before we clarify these three concepts we will first introduce the notations used
throughout this paper.

A network topology is denoted by G(N,E), where N is the set of nodes and
E is the set of links. With a slight abuse of notation we will also denote by N
and E respectively the number of nodes and the number of links. A network
supporting QoS consists of link weight vectors with m non-negative QoS mea-
sures (wi(e), i = 1, ...,m, e ∈ E) as components. The QoS measure of a path
can either be additive in which case it is the sum of the QoS measures along the
path (such as delay, jitter, the logarithm of packet loss, cost of a link, etc.) or it
can be the minimum(maximum) of the QoS measures along the path (typically,
available bandwidth and policy flags). Min(max) QoS measures are treated by
omitting all links (and possibly disconnected nodes) which do not satisfy the re-
quested min(max) QoS constraints. We call this topology filtering. Additive QoS
measures cause more difficulties: the multiple constrained path (MCP) problem,
defined as finding a path subject to more than one additive constraint (Li), is
known to be NP-complete [10], [20] and hence considered as intractable for large
networks.

We continue by explaining SAMCRA’s three basic concepts:

1. Motivated by the geometry of the constraints surface in m-dimensional space,
we defined the length of a path P as follows [8]:

l(P ) = max
1≤i≤m

(
wi(P )
Li

)
(1)

where wi(P ) =
∑

e∈P

wi(e).
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The definition of the path length has to be non-linear in order to guarantee
that a retrieved path is within the constraints, i.e. l(P ) ≤ 1. A solution to the
MCP problem is a path whose weights are all within the constraints. SAM-
CRA can also be applied to solve multiple constrained optimization prob-
lems, e.g. delay-constrained least-cost routing. Depending on the specifics of
a constrained optimization problem, SAMCRA can be used with different
length functions, provided they obey the criteria for length in vector algebra.
Example length functions are given in [17]. In [11] and [13] TAMCRA-based
algorithms with specific length functions are proposed and evaluated. By
using length function (1), all QoS measures are considered as equally im-
portant. An important corollary of a non-linear path length as (1) is that
the subsections of shortest paths in multiple dimensions are not necessarily
shortest paths. This suggests to consider in the computation more paths than
only the shortest one, leading us naturally to the k-shortest path approach.

2. The k-shortest path algorithm [5] is essentially Dijkstra’s algorithm that
does not stop when the destination is reached, but continues until the desti-
nation has been reached k times. This concept is applied to the intermediate
nodes i on the path from source node s to destination node d, where we keep
track of multiple sub-paths from s to i. Not all sub-paths are stored, but an
efficient distinction based on non-dominance is made.

3. The third concept in SAMCRA is that of dominance. A (sub)-path Q is
dominated by a (sub)-path P if wi(P ) ≤ wi(Q) for i = 1, ..,m, with an
inequality for at least one i. SAMCRA only considers non-dominated (sub)-
paths. This property allows us to efficiently reduce our search-space (all paths
between the source and destination) without compromising the solution.

2.1 SAMCRA Meta-code

SAMCRA(G, s, d, L)
G: graph, s: source node, d: destination node, L: constraints
1. counter = 0 for all nodes
2. endvalue = 1.0
3. path(s[1]) = NULL and length(s[1]) = 0
4. put s[1] in queue
5. while(queue �= empty)
6. extract min(queue) -> u[i]
7. u[i] = marked grey
8. if(u = d)
9. stop
10. else
11. for each v ∈ adjacency list(u)
12. if(v �= previous node of u[i])
13. PATH = path(u[i]) + (u,v)
14. LENGTH = length(PATH)
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15. check all non-black paths at v and PATH
for dominancy & endvalue → mark obsolete paths black

16. if(LENGTH ≤ endvalue and PATH non-dominated)
17. if(no black paths)
18. counter(v) = counter(v)+1
19. j = counter(v)
20. path(v[j]) = PATH
21. length(v[j]) = LENGTH
22. put v[j] in queue
23. else
24. replace a black path with PATH
25. if(v = d and LENGTH < endvalue)
26. endvalue = LENGTH

For a detailed explanation of this meta-code, we refer to [17].

2.2 Complexity of SAMCRA

If N and E are the number of nodes and of links respectively in the graph
G(N,E), the queue in SAMCRA can never contain more than kN path lengths,
where k denotes the number of feasible (i.e. within the constraints) non-dominated
paths that are stored in the queue of a node. Because SAMCRA self-adaptively
allocates the queue-size at each node, k may differ per node. When using a Fi-
bonacci (or relaxed) heap to structure the queues [6], selecting the minimum
path length among kN different path lengths takes at most a calculation time
of the order of log(kN). As each node can at most be selected k times from
the queue, the extract min function (explained in [6]) in line 6 of SAMCRA’s
meta-code takes O(kNlog(kN)) at most. The for-loop starting on line 11 is in-
voked at most k times from each side of each link in the graph. Calculating
the length takes O(m) when there are m metrics in the graph while verifying
path dominance takes O(km) at most. Adding or replacing a path length in the
queue takes O(1). Adding the contributions yields a worst-case complexity with
k = kmax of

O(kN log(kN) + k2mE) (2)

where kmax is an upper-bound on the number of non-dominated paths in G(N,E).
A precise expression for k is difficult to find. However knowledge about k is cru-
cial to the complexity of SAMCRA, because a large k could make the algorithm
useless. As an upper-bound for k, we will use kmax = �e(N − 2)!�, which is
an upper-bound on the total number of paths between a source and destina-
tion in G(N,E) [18]. If the constraints/metrics have a finite granularity, another
upper-bound applies [8]:

kmax =

m∏
i=1

Li

max
j

(Lj)
(3)
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where the constraints Li are expressed as an integer number of a basic metric
unit. For instance, if the finest granularity is 1 msec, then the constraint value
is expressed in an integer number times 1 msec.

Clearly, for a single constraint (m = 1 and k = 1), the complexity (2) reduces
to that of Dijkstra’s algorithm. For multiple metrics the worst-case complexity
of SAMCRA is NP-complete.

We will now discuss the complexity of SAMCRA/MCP in more depth. First
we will illustrate by an example that an exponential-time algorithm may be bet-
ter in practice than a polynomial time algorithm: exponential O(1, 001N ) versus
polynomial O(N1000). For any reasonable network size (up to N = 1, 6 · 107)
the exponential time algorithm outperforms the polynomial time algorithm. Al-
though this example is exaggerated, there exist some (pseudo)-polynomial ε-
approximation algorithms whose running-time is too large for practical purposes
and which are therefore only of theoretical interest. Secondly, although there ex-
ist many problems that are NP-complete, their average-case complexity might
not be intractable, meaning that such an algorithm could have a good perfor-
mance in practice. The average level of ”intractability” differs per NP-complete
problem. The theory of average-case complexity was first advocated by Levin
[14]. We will now give a calculation that suggests that the average and even
amortized1 complexity of SAMCRA is polynomial in time for fixed m and all
weights wi independent random variables.

Lemma 1: The expected number of non-dominated vectors in a set of T
i.i.d. vectors in m dimensions is upper bounded by (lnT )m−1.

A proof of Lemma 1 can be found by adopting a similar approach as presented
in [3] or [2]. Moreover, the results are the same. To gain some insight into the
number of non-dominated paths in a graph, we will assume that the path-vectors
are i.i.d. vectors2. When we apply lemma 1 to the complexity of SAMCRA, we see
that in the worst-case SAMCRA examines T = �e(N − 2)!� paths, leading us to
an expected number of non-dominated paths between the source and destination
in the worst-case of

(lnT )m−1 = (ln(�e(N − 2)!�))m−1 ≤ (1 + (N − 2) ln(N − 2))m−1

which is polynomial in N . Hence, the amortized complexity of SAMCRA is (2)
with k = (lnT )m−1 = (ln(�e(N − 2)!�))m−1, which is polynomial in time for
fixed m.

In the limit m → ∞ and for wj independent random variables, all paths
in G(N,E) are non-dominated, which leads to the following lemma (proved in
[17]).

1 Amortized analysis differs from average-case analysis in that probability is not in-
volved; an amortized analysis guarantees the average performance of each operation
in the worst-case [6].

2 In reality the m weights of the path-vectors will not be i.i.d..
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Lemma 2: If the m components of the link weight vectors are independent
random variables and the constraints Lj are such that 0 ≤ wj

Lj
≤ 1, then any

path with K hops has precisely a length (as defined by (1)) equal to K in the
limit m → ∞.

This means that for m → ∞ it suffices to calculate the minimum hop path,
irrespective of the weight structure of the m independent components. Since the
minimum hop problem is an instance of a single metric shortest path problem,
it has polynomial complexity.

Summarizing we can say that if the link weights are independent random
variables, there are two properties reducing the search-space (the number of
paths to be examined) of SAMCRA. For m small the concept of non-dominance is
very powerful, resulting in the presence of only a small number of non-dominated
paths between two points in a graph. At the other extreme, for m large, the
values Lj of the constraints cause the largest search-space reduction, because
only a few paths between the source and destination lie within the constraints.
Even if the constraints are chosen infinitely large, SAMCRA may lower them in
the course of the computation (by means of endvalue, line 25/26 meta-code)
without affecting the solution.

The two properties complement each other, resulting in an overall good av-
erage performance of SAMCRA. The simulation results of the next paragraph
indicate that the average complexity of SAMCRA is O(N logN + mE), i.e. (2)
with E[k] ≈ 1, for the class Gp(N) of random graphs [4], with independent
uniformly distributed link weights.

2.3 Simulation Results on Complexity

The simulations were performed on a large number (minimum of 105) of random
graphs of the type Gp(N) [4], where p is the expected link-density (p = 0.2)
and N the number of nodes. The m link weights are independent uniformly
distributed random variables.

We will start by presenting the simulation results for m = 2. Figure 1 gives
the minimum queue-size (kmin) needed to find a feasible path. If TAMCRA had
used that particular kmin under the same conditions, it would have found the
same shortest feasible path as SAMCRA did, but if a smaller value had been used
TAMCRA would not have found the shortest path. Figure 2 gives the statistics
corresponding to the data in Figure 1.

Figures 1 and 2 show that an (exponential) increase of N does not result in a
significant increase in kmin. The expectation E[k] remains close to 1 and hardly
increases with N . If we extrapolate these results to N → ∞, figures 1 and 2
suggest that for the class of random graphs Gp(N) with 2 independent uniformly
distributed link weights, the average complexity of SAMCRA is approximately
O(N logN + 2E).

Figures 3-6 show a similar behavior (E[k] ≈ 1). The only difference is that
the worst-case values (max[k]) have slightly increased with m, as a result of the
increased expected number of non-dominated paths. However, since E[k] stays
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Fig. 1. P.d.f. of kmin, m=2 Fig. 2. kmin-statistics, m=2

Fig. 3. P.d.f. of kmin, m=4 Fig. 4. kmin-statistics, m=4

Fig. 5. P.d.f. of kmin, m=8 Fig. 6. kmin-statistics, m=8

close to one, the simulation results suggest that the two search-space-reducing
concepts, dominance and constraint values, are so strong that the average com-
plexity of SAMCRA is not significantly influenced by the number of metrics m.
The behavior of kmin as a function of the number of constraints m is illustrated
in Figure 7.

In the previous paragraph we indicated that there are two concepts reducing
the search-space of SAMCRA. For small m the dominant factor is the non-
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Fig. 7. P.d.f. of kmin, N=20 Fig. 8. kmin for different granularity

dominance property, whereas for m → ∞ the constraint values are more dom-
inant. Because these properties are most effective in a certain range of m’s, we
expect the worst-case behavior to occur with an m that is neither small nor
large. Figure 7 shows the k-distribution for different values of m. The best per-
formance is achieved with m = 2 and the worst performance is for m around
8. However, as figures 5 and 6 illustrate, E[k] for m = 8 is still approximately
1, leading us to believe that for the class of random graphs Gp(N) with inde-
pendent uniformly distributed weights, the average complexity of SAMCRA is
approximately O(N logN + mE) for every m.

Our last simulation concerns the granularity of the constraints/metrics. When
the granularity is finite, an upper-bound, in terms of the constraints, on the num-
ber of non-dominated paths can be found (3). The finer the granularity, the larger
this upper-bound. Figure 8 confirms this behavior (for N = 20 and p = 0.2).
In practice the constraints/metrics have a finite granularity, which according to
Figure 8 will positively influence the running-time of SAMCRA.

Because SAMCRA solves the MCP problem exact, and since the simulations
suggest that SAMCRA’s average complexity is polynomial for Gp(N) with in-
dependent uniformly distributed link weights, the MCP problem for that class
of graphs seems, on average, solvable in polynomial time. We have seen that
E[k] ≈ 1, what indicates that routing, for the sizes N considered, in multiple
dimensions is analogous to routing in a single dimension (m = 1).

The effect that correlation between the link weights has on the complexity
of SAMCRA is topic of further study.

3 The Expected Hopcount E[hN ]
for the Random Graph Gp(N)

As above, we consider the random graph Gp(N) where each link is specified by a
weight vector with m independent components possessing the same distribution
function

Fw(x) = Pr[w ≤ x] = xα1[0,1](x) + 1(1,∞)(x), α > 0 (4)
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For this network topology, the expected hopcount E[hN ] or the average number
of traversed routers along a path between two arbitrarily chosen nodes in the
network will be computed. The behavior of the expected hopcount E[hN ] in
multiple dimension QoS routing will be related to the single metric case (m = 1).
That case m = 1 has been treated previously in [16], where it has been shown,
under quite general assumptions, that

E[hN ] ∼ lnN

α

var[hN ] ∼ lnN

α2

Lemma 2 shows that for m → ∞ in the class of Gp(N) with independent uni-
formly distributed link weight components, the shortest path is the one with
minimal hopcount. Thus the derivation for a single weight metric in [16] for
Gp(N) with all link weights 1 is also valid for m → ∞. The first order (asymp-
totic) calculus as presented in [16] will be extended to m ≥ 2 for large N . In
that paper, the estimate has been proved,

Pr[hN = k,wN ≤ z]  Nk−1pkF k∗
w (z),

where the distribution function F k∗
w (z) is the probability that a sum of k inde-

pendent random variables each with d.f. Fw is at most z and is given by the
k-fold convolution

F k∗
w (z) =

∫ z

0
F (k−1)∗

w (z − y)fw(y) dy, k ≥ 2,

and where F 1∗
w = Fw. By induction it follows from (4), that for z ↓ 0,

F k∗
w (z) ∼ zαk(αΓ (α))k

Γ (αk + 1)
.

In multiple (m) dimensions, SAMCRA’s definition of the path length (1) requires
the maximum link weight of the individual components wN (γ) = max

i=1,...,m
[wi(γ)]

along some path γ. Since we have assumed that the individual links weight
components are i.i.d random variables, and hence Pr [wN ≤ z] = (Pr [wi ≤ z])m,
this implies for m-dimensions that

F k∗
w (z) ∼

[
zαk(αΓ (α))k

Γ (αk + 1)

]m

such that

Pr [hN = k,wN ≤ z]  Nk−1pk

[
zαk (αΓ (α))k

Γ (αk + 1)

]m

We will further confine to the case α = 1, i.e. each link weight component is
uniformly distributed over [0, 1].

Pr [hN = k,wN ≤ z]  1
N

(Npzm)k

(k!)m
(5)
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For a typical value of z, the probabilities in (5) should sum to 1,

1 =
1
N

N−1∑
k=1

(Npzm)k

(k!)m

At last, for a typical value of z, Pr [wN ≤ z] is close to unity resulting in

Pr [hN = k,wN ≤ z]  Pr [hN = k]

Let us denote with y = Npzm,

Sm(y) =
N−1∑
k=0

yk

(k!)m
(6)

subjected to
N + 1 = Sm(y) (7)

Hence, the typical value y of the end-to-end link weight that obeys (7) is inde-
pendent on the link density p for large N . Also the average hopcount and the
variance can be written in function of Sm(y) as

E [hN ] =
y

N
S

′
m(y) (8)

var [hN ] =
1
N

[
y2S

”

m(y) + yS
′
m(y) − y2

N

(
S

′
m(y)

)2]
(9)

We will first compute good order approximations for E[hN ] in the general
case and only var [hN ] and the ratio α = E[hN ]

var[hN ] in case m = 2. Let us further
concentrate on

Vm(y) =
∞∑

k=0

yk

(k!)m
(10)

Clearly, Vm(y) = limN→∞ Sm(y). In the appendix A it is shown in (21) that

Vm(y) = Am(y) exp
[
my1/m

]
(11)

with

Am(y) =
(2π)

1−m
2

√
m

y− 1
2 (1− 1

m ) (12)

After taking the logarithmic derivative of relation (11), we obtain

V ′
m(y) = Vm(y)

[
A′

m(y)
Am(y)

+ y
1
m −1

]

In view of (7), y is a solution of Vm(y) ∼ N , such that the average (8) becomes

E [hN ] ∼ y

N
V

′
m(y) ∼ Vm(y)

N

[
y
A′

m(y)
Am(y)

+ y
1
m

]
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or

E [hN ] ∼ y
1
m + y

A′
m(y)

Am(y)
(13)

Using (12) in (13), we arrive at

E [hN ] ∼ y
1
m − 1

2

(
1 − 1

m

)
(14)

where y is a solution of Vm(y) ∼ N . Equivalently, y is a solution of

r(y) = ln

[
(2π)

1−m
2

√
m

]
− 1

2

(
1 − 1

m

)
ln y + my1/m − lnN = 0

As initial value in Newton-Raphson’s method, for large N , we start with y0 =( lnN
m

)m
. The next iteration is y = y0 + h, where h = − r(y0)

r′(y0)
. Since

r′(y) =
1
y

[
−1

2

(
1 − 1

m

)
+ y1/m

]

we have, with

Q =
1
2

lnm − 1
2

(m − 1) ln
( m

2π

)
,

that

h = −
(

lnN

m

)m −Q − 1
2 (m − 1) ln (lnN)[− 1

2

(
1 − 1

m

)
+ lnN

m

]
∼

(
lnN

m

)m−1 [
1
2

(m − 1) ln (lnN) + Q + O

(
ln(lnN)

lnN

)]

and

y ∼
(

lnN

m

)m

+
(

lnN

m

)m−1 [
1
2

(m − 1) ln (lnN) + Q

]
+O

(
ln (lnN) lnm−2N

)
From this asymptotic expression for y, we compute

y
1
m ∼ lnN

m
+

1
2

(
1 − 1

m

)
ln (lnN) +

Q

m
+ O

(
ln (lnN)

lnN

)

Finally, the average hopcount follows from (14) as

E [hN ] ∼ lnN

m
+

1
2

(
1 − 1

m

)
ln (lnN) +

lnm

2m
− 1

2

(
1 − 1

m

) (
ln

( m

2π

)
+ 1

)

+O

(
ln (lnN)

lnN

)
(15)
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This formula indicates that, to a first order, m = α. The simulations (Figures 9,
10, 11) show that, for higher values of m, the expectation of the hopcount tends
slower to the asymptotic E [hN ]-regime given by (15).

In order to compute the variance, higher order terms in (21) are needed.
Although higher order terms can be computed, we confine ourselves to the case
m = 2, for which V2(y) =

∑∞
k=0

yk

(k!)2 = I0(2
√
y) where I0(z) denotes the modi-

fied Bessel function of order zero [1, sec. 9.6]. The variance of the hopcount from
(9) with S

”

m(y) = d2I0(2
√

y)
dy2 = I0(2

√
y)

y − I1(2
√

y)
y
√

y

var [hN,2] ∼ y

N
I0(2

√
y) −

√
y

N
I1(2

√
y) + E [hN,2] − (E [hN,2])

2

∼ y − (E [hN,2])
2

At this point, we must take the difference between I0(x) and I1(x) into account
otherwise we end up with var [hN ] ∼ 0. For large x,

I0(x) ∼ ex

√
2πx

(
1 +

1
8x

+ O
(
x−2))

and

I1(x) ∼ ex

√
2πx

(
1 − 3

8x
+ O

(
x−2))

such that

I1(x) ∼ I0(x)
(
1 − 1

2x
+ O

(
x−2))

E [hN,2] ∼ y

N
I1(2

√
y)

1√
y

∼ I0(2
√
y)

N

(√
y − 1

4
+ O

(
y−1))

∼ ln(N)
2

+
ln (ln(N))

4
− 1

4
+ O

(
1

ln(N)

)
(16)

Thus,

var [hN,2] ∼ y −
(√

y − 1
4

)2

=
√
y

2
− 1

16
+ O

(
1√
y

)
(17)

and

α =
E [hN,2]
var [hN,2]

∼ 2 − 1
4
√
y

+ O
(
y−1) ∼ 2 −

√
2

4
√

lnN
+ O

(
1

ln(N)

)
(18)

This corresponds well with the simulations shown in Figure 9. In addition, the
average and variance of the hopcount for m = 2 dimensions scales with N in a
similar fashion as the same quantities in Gp(N) with a single link weight, but
polynomially distributed with Fw [w ≤ x] = x2.

In summary, the asymptotic analysis reveals that, for random graphs of the
class Gp(N) with uniformly (or equivalent exponentially) distributed, indepen-
dent link weight components, the hopcount in m dimensions behaves similarly as
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Fig. 9. The average E [hN,2], the variance var [hN,2] and the ratio α =
E[hN,2]

var[hN,2]
of the

shortest path found by SAMCRA, as a function of the size of the random graph N
with two link metrics (m = 2). The full lines are the theoretical asymptotics

Fig. 10. Hopcount statistics for m=4 Fig. 11. Hopcount statistics for m=8

in the random graph Gp(N) in m = 1 dimension with polynomially distributed
link weights specified via (4) where the polynomial degree α is precisely equal
to the multiple dimension m. This result, independent of the simulations of the
complexity of SAMCRA, suggests a transformation of shortest path properties
in multiple dimensions to the single parameter routing case, especially when the
link weight components are independent. As argued in [16], the dependence of
the hopcount on a particular topology is less sensitive than on the link weight
structure, which this analysis supports.

4 Conclusions

Since constrained-based routing is an essential building block for a future QoS-
aware network architecture, we have proposed a multiple constraints, exact
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routing algorithm called SAMCRA. Although the worst-case complexity is NP-
complete (which is inherent to the fact that the multiple constraints problem is
NP-complete), a large amount of simulations on random graphs with indepen-
dent link weight components seem to suggest that the average-case complexity
is polynomial. For that considered class, the MCP problem thus seems tractable.

The second part of this paper was devoted the study of the hopcount in
multiple dimensions as in QoS–aware networks. For random graphs of the class
Gp(N) with uniformly (or equivalent exponentially) distributed, independent
link weight components, a general formula for the expected hopcount in m di-
mensions has been derived and only extended to the variance var [hN ] as well
in m = 2 dimensions, in order to compute the variance and the ratio of the ex-
pected hopcount and its variance. To first order, with the network size N >> m
large enough, the expected hopcount behaves asymptotically similar as the ex-
pected hopcount in m = 1 dimension with a polynomial distribution function
(xα1[0,1](x) + 1(1,∞)(x)) and polynomial degree α = m.

Both the complexity analysis as the hopcount computation suggests that
for a special class of networks, namely random graphs of the class Gp(N) with
uniformly (or equivalent exponentially) distributed and independent link weight
components, the QoS routing problem exhibits features similar to the one dimen-
sional (single parameter) case. The complexity analysis suggested this correspon-
dence for small N , whereas the asymptotic analysis for the hopcount revealed
the connection for N → ∞. Hence, the question arises whether the QoS rout-
ing problem in particular classes of graphs may possess a polynomial, rather
than non-polynomial worst case complexity. And, further, what is the influence
of the correlation structure between the link weight components because sim-
ulations suggest that independence of these link weight components seems to
destroy NP-completeness. Moreover, we notice that the proof presented in [20]
strongly relies on the choice of the link weights. At last, if our claims about the
NP-completeness would be correct, how large is then the class of networks that
really lead to an NP-complete behavior of the MCP problem? In view of the
large amount of simulations performed over several years by now, it seems that
this last class fortunately must be small, which suggests that, in practice, the
QoS-routing problems may turn out to be feasible.
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A Asymptotic Formula for Vm(y)

We will apply the Euler-Maclaurin formula

b∑
n=a

f(n) =
1
2

(f(a) + f(b)) +
∫ b

a

f(t) dt

+
N∑

n=1

(−1)n−1 B2n

(2n)!

[
f (2n−1)(b) − f (2n−1)(a)

]
+ RN (19)

where Bn are the Bernoulli numbers [1, sec. 23] and

RN =
1

(2N + 1)!

∫ b

a

B2N+1(u) f (2N+1)(u) du



QoS Routing: Average Complexity and Hopcount in m Dimensions 125

Comparison with (10) indicates that a = 0, b = ∞ and f(x) = yx

(Γ (x+1))m . The
derivatives at b all vanish and the derivatives at a follow from the Taylor series
of f (x) around x = 0,

ex ln y

(Γ (x + 1))m
=

∞∑
k=0

fkx
k

Thus,

Vm(x) =
1
2

+
∫ ∞

0

yxdx

(Γ (x + 1))m
−

N∑
n=1

(−1)n−1 B2n

(2n)
f2n−1 + RN

Let us first concentrate on the integral

I(y) =
∫ ∞

0

yxdx

(Γ (x + 1))m

=
∫ ∞

0
exp [x ln y − m lnΓ (x + 1)] dx

We will approximate I(y) by the method of the steepest descent for which an
exact expansion was published earlier in [19]. Here, we confine ourselves to the
leading order term,∫ ∞

−∞
ex[f1(z0) z−f(z)] dz =

e−x[f0(z0)−z0f1(z0)]√
xf2(z0)

(√
π + O

(
x−1)) (20)

where fk(z0) are the Taylor coefficients of f(z) around z = z0. The fastest
convergence is expected if z0 is the maximum of f . Applied to I(y), the maximum
of f(x) is the same as the maximum of g(x) = −x ln y + m lnΓ (x + 1). Since
g′(x) = − ln y+mψ(x+1) where the digamma function equals ψ(x+1) = Γ ′(x+1)

Γ (x+1) ,
we find that the maximum x0 obeys

ψ(x0 + 1) =
ln y

m

or for large y using the asymptotic expansion for the digamma function [1,
6.3.18],

ln(x0 + 1) − 1
2(x0 + 1)

∼ ln y

m

from which x0 ∼ y1/m and

g(x0) ∼ −y1/m ln y + m lnΓ (y1/m + 1)

∼ −my1/m +
1
2

ln y +
m

2
ln 2π

The higher order derivatives at x0 of g(x) are polygamma functions ψ(n) [1, 6.4],

g(n)(x0) = mψ(n−1)(x0 + 1)
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The second derivative g
′′
(x0) = mψ′(x0 + 1) ∼ m

x0+1
+ O

(
x−2
0

)
. Application of

(20) yields

I(y) ∼ ex0 ln y−m lnΓ (x0+1)√
m
2 ψ

(1)(x0 + 1)

√
π

∼ emy1/m− 1
2 ln y− m

2 ln 2π√
m

2y1/m

√
π

or

Vm(y) ∼ (2π)
1−m

2

√
m

y− 1
2 (1− 1

m )emy1/m

(21)

It is well known [9] that in the n-sum in (19), the first neglected term is of the
same order as the remainder RN . It is readily verified by executing the Cauchy
product that fk ∼ O

(
lnk y

)
and, hence, negligible with respect to I(y) for large

y. Hence, for large y, we arrive at (21). This asymptotic expansion reduces for
m = 2 to that of the modified Bessel functions Iv(x) ∼ ex√

2πx
for x = 2

√
y.
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