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Summary

Coherent Structures in Taylor-Couette Flow:
Experimental Investigation – Sedat Tokgöz –

Taylor-Couette flow is defined as the flow confined between two coax-
ial cylinders which can rotate independently. Several different flow states
can be observed in the gap between the cylinders by changing the rota-
tion speeds and the rotating directions of the cylinders. As it is a closed
environment, the input and the output of the system can be monitored
easily, thus the Taylor-Couette flow becomes quite useful for turbulence
studies.

The aim of this thesis is to investigate the previously reported change
of torque values with the rotation speeds of the cylinders and to study
its relation to coherent turbulent flow structures. The flow structures
are investigated using tomographic PIV, which is a fully volumetric mea-
surement method that resolves all three velocity components. Different
flow states, and their contribution to the Reynolds stresses are revealed.
Initially the validation of the implementation of tomographic PIV was
done using the analytically well-defined laminar Taylor-Couette flow at
a shear Reynolds number ReS = 615. The results showed that the mea-
sured velocities deviate from the analytical solution by not more than
3.2%.

Measurements of turbulent flows should ideally have a resolution of
the order of the Kolmogorov microscale to resolve the smallest scales in
turbulence. However, as the number of reconstructed particle images is
typically less than the number of velocity vectors, the actual spatial reso-
lution of tomographic PIV is not well defined. Furthermore, the required
resolution to resolve smallest scales in turbulence is not known exactly.
Therefore, the Taylor-Couette setup was also used to investigate the spa-
tial resolution of tomographic PIV, by exploiting the fact that the power
input to the system, as determined from the torque measurements and
the cylinder rotation speed, is balanced by the viscous dissipation rate,

vii



viii Summary

which can be computed using the measured velocities. The comparison
reveals that the dissipation rate was underestimated by tomographic
PIV for all turbulent cases studied in this thesis (3800 ≤ ReS ≤ 47000).
Application of a large eddy turbulence model to the PIV data showed
that the error in the direct estimation of the dissipation rate by tomo-
graphic PIV can be ascribed to unresolved scales. It was found that the
actual spatial resolution of tomographic PIV is dependent on both the
interrogation volume overlap, and the interrogation volume size (DI).
Increasing the interrogation overlap at a constant DI decreases the er-
ror and results in better spatial resolution (although it might result in
higher data density that possibly exceeds the tracer particle density). On
the other hand it was found that the distance between two neighboring
vectors (i.e. vector spacing δx, which depends on both overlap and DI)
is a more suitable parameter to quantify the actual spatial resolution of
tomographic PIV (and PIV in general), rather than the interrogation
volume size. This seems to apply at least up to 75% overlap. The min-
imum required vector spacing to resolve small-scale motions in the flow
was found as 1.5−2.0 times the Kolmogorov length scale (corresponding
to interrogation volume size of 6.0− 8.0 times Kolmogorov length scale
at 75% overlap). Therefore interrogation volumes that are bigger than
the values suggested in the literature might be used instead, as these
were based on 50% overlap.

Next, time-resolved tomographic PIV measurements were performed
at fully turbulent flow to demonstrate the capability of the measurement
system and the flow geometry to study dynamic events in turbulence.
Turbulent flow with an approximately zero mean velocity was created
by rotating the cylinders in opposite directions with the same wall veloc-
ities. Using this idea, the observation times of the flow structures could
be increased by an order of magnitude as compared to similar studies
in turbulent boundary layers. Examples of observed events, such as
azimuthal velocity bursts, stretching and breaking-up of vortical struc-
tures, are presented.

In the literature it was reported that at a constant shear Reynolds
number (ReS), the measured torque values change depending on the
rotation number (RΩ). In Chapter 5 of this thesis, the connection be-
tween turbulent flow structures and the change of the torque was made
by using tomographic PIV. It was shown that the large-scale turbu-
lent flow structures change significantly with RΩ in both the mean and
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the instantaneous flows, which explains the change in the torque. In
order to compute the contribution of the large and the smaller-scale
structures to the torque, the instantaneous flow was decomposed into
the large and the smaller-scale motions by filtering. It was shown that
at a constant turbulent Reynolds number, the instantaneous large-scale
structures change their orientation from the azimuthal direction (at only
inner cylinder rotation), to blobs (at exact counter rotation), and finally
to Taylor-column-like structures elongated in the axial direction (at only
outer cylinder rotation). The Reynolds stresses associated with these
structures indicate that this orientational change may be the mecha-
nism responsible for the reported change of the torque scaling. Close to
only inner cylinder rotation the mean flow contribute significantly to the
angular momentum transport, and it is ineffective elsewhere. The large-
scale turbulent structures are not effective on the angular momentum
transport in cases close to only inner and only outer cylinder rotation.
However, close to exact counter rotation, inclined large-scale structures
induce azimuthal and radial velocities simultaneously, which results in
higher Reynolds shear stress, hence torque. The smaller-scales were
found only to be significant for the cases close to only outer cylinder
rotation.





Samenvatting

Coherente structuren in Taylor-Couette stroming:
Experimenteel Onderzoek – Sedat Tokgöz –

Taylor-Couette stroming kan omschreven worden als de stroming
tussen twee coaxiale cylinders die onafhankelijk van elkaar kunnen roteren.
Door de rotatiesnelheid en de draairichting van de cylinders te veran-
deren, worden verschillende stromingstoestanden waargenomen tussen
de twee cylinders. Aangezien dit een gesloten systeem betreft, kunnen
de input en output van het systeem gemakkelijk gemonitoord worden,
waardoor de Taylor-Couette zeer bruikbaar wordt voor turbulentie stud-
ies.

Het doel van dit proefschrift is het onderzoeken en bestuderen van
de relatie tussen eerder gerapporteerd verandering in koppel met de ro-
tatiesnelheden van de cylinders ende coherente turbulente stromingsstruc-
turen. De stromingsstructuren worden onderzocht door middel van to-
mografische PIV, wat een volledig volumetrische meetmethode is die de
drie snelheidscomponenten geeft. De verschillende stromingstoestanden
en hun bijdrage aan de Reynolds spanningen worden onthuld. De vali-
datie van het gebruik van tomografische PIV is gedaan met een goed an-
alytisch gedefinieerde laminaire stroming bij een afschuif Reynolds getal
van ReS = 615. De resultaten tonen aan dat de gemeten snelheden niet
meer dan 3.2% afwijken van de analytische oplossing.

Metingen van turbulente stromingen moeten idealiter een resolu-
tie hebben van de orde van de Kolmogorov microschaal, om de kle-
inste schaal van turbulentie te kunnen oplossen. Aangezien het aantal
gereconstrueerde deeltjes typisch minder is dan het aantal snelheids-
vectoren, is de ruimtelijke resolutie van tomografische PIV niet goed
gedefinieerd. Bovendien is de gewenste resolutie om de kleinste schalen
op te lossen niet exact bekend. De Taylor-Couette opstelling is daarom
gebruikt om de ruimtelijke resolutie van tomografische PIV te onder-
zoeken door gebruik te maken van het feit dat het vermogen van het sys-
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teem, dat is bepaald aan de hand van de koppel metingen en de rotaties-
nelheden, in balans is met het viskeuze disspatievermogen dat berekend
wordt uit de gemeten snelheden. Uit de vergelijking blijkt dat het dis-
sipatievermogen werd onderschat door tomografische PIV voor alle tur-
bulente gevallen bestudeerd in dit proefschrift (3800 ≤ ReS ≤ 47000).
Uit de toepassing van een LES model op de PIV data bleek dat de fout
in de directe schatting van het dissipatievermogen door tomografische
PIV, kan worden toegeschreven aan onopgeloste schalen. Gevonden werd
dat de werkelijke ruimtelijke resolutie van tomografische PIV afhanke-
lijk is van zowel de interrogatie volume overlap, als van de interrogatie
volumegrootte (DI). Het verhogen van interrogatie overlap met een
constante DI verkleint de fout en resulteert in een betere ruimtelijke
resolutie (hoewel het zou kunnen leiden tot een hogere data dichtheid
die mogelijk hoger is dan de tracer deeltje dichtheid). Daarentegen bleek
de afstand tussen twee naburige vectoren (oftewel vector afstand δx, die
afhangt van zowel overlap als DI) beter geschikt is als ruimtelijke pa-
rameter om de werkelijke ruimtelijke resolutie van tomografische PIV te
kwantificeren (en PIV in het algemeen), in plaats van de interrogatie
volumegrootte. Dit geldt in eider geval tot 75% overlap. De minimaal
vereiste vector afstand om de kleinschalige bewegingen in de stroming op
te lossen is 1.5− 2.0 keer de Kolmogorov lengte schaal (overeenkomend
met een volume grootte van 6.0− 8.0 keer de Kolmogorov lengte schaal
bij 75% overlap). Daarom kunnen interrogatie volumes die groter zijn
dan de waarden die worden aangegeven in literatuur worden gebruikt,
aangezien die gebaseerd zijn op 50% overlap.

Vervolgens zijn tijd opgeloste tomografische PIV metingen uitgevo-
erd van volledig turbulente stromingen om de mogelijkheden van het
meetsysteem en stromingsgeometrie te demonstreren voor de studie van
dynamische gebeurtenissen in turbulentie. Turbulente stroming met
een gemiddelde snelheid van nul zijn verkregen door de cylinders met
een gelijke snelheid in tegengestelde richting te laten draaien. Met dit
principe kan de waarnemingstijd van de stromingsstructuren verlengd
worden met een orde van grootte, vergeleken met soortgelijke turbu-
lente grenslaag studies. Voorbeelden van waargenomen gebeurtenissen,
zoals azimutale snelheid uitbarstingen, oprekken en opbreken van vortex
structuren worden beschreven.

In de literatuur wordt gemeld dat bij een constante afschuif Reynolds
getal (ReS) de gemeten koppel waarden veranderen, afhankelijk van het
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rotatie getal (RΩ). In hoofdstuk 5 van dit proefschrift wordt een ver-
band tussen de turbulente stromingsstructuren en de verandering van
het koppel gelegd met behulp van tomografische PIV. Er wordt bewezen
dat de grootschalige turbulente stromingsstructuren aanzienlijk veran-
deren met RΩ, zowel in de gemiddelde als in de momentane stromingen,
wat de verandering in koppel verklaart. Om de bijdrage van de groot- en
kleinschalige structuren op de koppel te berekenen, werd de momentane
stroming ontbonden in groot- en kleinschalige bewegingen. Er wordt bij
een constante turbulente Reynolds getal aangetoond dat de momentane
grootschalige structuren hun richting veranderen van de azimutale richt-
ing (bij binnen cylinder rotatie) naar blobs (bij exacte tegen-rotatie), en
Taylor-kolomvormige structuren in de axiale richting (bij buiten cylin-
der rotatie). De Reynolds spanningen die gekoppeld zijn aan deze struc-
turen, tonen aan dat de oriëntatie wijziging het mechanisme kan zijn die
verantwoordelijk is voor de gerapporteerde verandering van het koppel.
Rond het punt van alleen binnen cylinder rotatie draagt de gemiddelde
stroming significant bij aan het impulsmoment transport, en zij is elders
niet effectief. De grootschalige turbulente structuren zijn niet effectief
op het impulsmoment transport bij alleen binnen en alleen buiten cylin-
der rotatie. Echter, dichtbij exacte tegen-rotatie induceren de hellende
grootschalige structuren tegelijkertijd de azimutale en radiale snelheden,
wat resulteert in een hogere Reynolds schuifspanning, en dus koppel. De
kleinschalige structuren bleken alleen significant te zijn voor de gevallen
dichtbij alleen buiten cylinder rotatie.





1 Introduction

1.1 Taylor-Couette Flow as a Model for Rotating Flow

Rotating flows occur in many technical systems and in nature, such as
bearings, turbo machinery, and atmospheric flows [19, 47]. Examples of
idealized models of rotating flows are rotating disk flow and the flow
around rotating cylinders and spheres. A sub-class of rotating flows is
the flow between two infinitely long and independently rotating cylin-
ders, named as Taylor-Couette flow. In practice, the cylinders have a
finite length, and therefore Taylor-Couette facilities are approximations
of ideal Taylor-Couette flow. Isaac Newton is believed to be one of the
first scientists attracted to the flow between these rotating cylinders [34].
However, the detailed investigation of this flow has only increased after
the pioneering study of Taylor [101]. This is mostly due to the advantage
of the Taylor-Couette configuration, where it is possible to examine the
flow stability in a small closed environment that can be manipulated
simply by adjusting the rotation speeds of the cylinders. Nowadays
studies involving the flow between two cylinders extend to different ap-
plications like filtration [113], sports applications [48] and to accretion
disks around stars [77].

As it is known from turbulence theory, energy is initially transferred
from the mean flow into large-scale eddies with a typical size compara-
ble to the flow geometry, referred to as the integral length scale. Then,
the energy is transferred to smaller and smaller scales [79,103], until the
energy input is balanced by viscous dissipation [103]. The process of
energy transfer and energy loss by dissipation is supported by the flow
motions that make up the turbulent flow field. These fluid motions may
be characterised in terms of coherent structures, which are defined by
Robinson [83] as “a three-dimensional region of the flow over which at
least one fundamental flow variable (velocity component, density, tem-
perature, etc.) exhibits significant correlation with itself or with another
variable over a range of space and/or time that is significantly larger

1



2 Chapter 1. Introduction

than the smallest local scales of the flow”. Therefore, understanding
the structure and the dynamics of these coherent motions gives more in-
sight into the dynamics of turbulence [2,83]. In this thesis, the coherent
motions in Taylor-Couette flow are studied.

Taylor-Couette flow facilities are typically closed environments, where
the working fluid is confined radially between the cylinders, and axially
by endplates. Therefore under stationary conditions it is relatively easy
to monitor the energy balance. The input to the system is made via the
differential rotation of the cylinders. This energy input is balanced by
the viscous dissipation. Assuming that the temperature of the working
fluid, cylinders and the surrounding environment is in equilibrium and
constant, and if small losses such as mechanical friction of the bearings
and other mechanical components are neglected, the net energy flux
is zero. Therefore in Taylor-Couette flow, the energy loss due to the
viscous dissipation is equal to the measured torque [80]. This makes the
Taylor-Couette geometry almost ideal for controlled-turbulence studies.
Additionally, when the Taylor-Couette facility has a transparent outer
cylinder, it is possible to observe the elementary flow characteristics with
different visualization techniques, in parallel to torque measurements
[28].

1.2 Current Issues

An extensive characterization of flow regimes in Taylor-Couette flow,
based on flow visualization analysis, was reported by Andereck et al. [7],
which is regarded as a reference for defining the flow patterns in Taylor-
Couette flows. Apart from the famous Taylor vortices, they observed
many distinct regimes. Remarkably, recent studies [15, 16, 33, 36, 76, 77,
82,109,110] mostly focused on the part that Andereck et al. [7] initially
labeled as “featureless turbulence”. Actually, they named the fully tur-
bulent flow regime as featureless turbulence, simply because they could
not observe any large-scale organised motion due to limitations of the
qualitative visualisation technique they used. Later studies showed the
presence of coherent motions in this turbulent state, similar to those
found in other wall-bounded turbulent flows [33,111].

In recent years, the number of experimental studies on Taylor-Couette
flow increased in parallel to the research groups owning Taylor-Couette
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devices (Burin et al. [17], Ravelet et al. [82], Borrero-Echeverry and
Schatz [14], Paoletti and Lathrop [76], van Gils et al. [108], Avila and
Hof [9], Merbold et al. [69]) focusing on different aspects of the flow. Due
to the direct relation between the torque and turbulence as mentioned
above, the studies performing the torque measurements are mostly fo-
cused on the turbulent flow regime at relatively high Reynolds numbers
(Re = Ud/ν ∼ 105−106, where U is the velocity of the inner or the outer
cylinder that is rotating, d is the gap width between the cylinders, and ν
is the kinematic viscosity) [76,77,108,109]. Studies revealed the torque-
scaling as a function of Reynolds number [36]. Measurements at different
Reynolds numbers and different relative rotation speeds of the cylinders
revealed that, depending on the relative rotation speeds of the cylinders,
the torque changes for constant Reynolds number. Especially in the case
of counter rotation the change is most pronounced [76,82,109]. The re-
sults showed the presence of an optimum angular momentum transport
at counter rotation of the cylinders (at −Ωo/Ωi ≈ 0.4, where Ωi and
Ωo represent the angular velocity of the inner and the outer cylinders,
respectively) [109]. Ravelet et al. [82] speculated that the change of the
torque values and the presence of the optimum transport could be ex-
plained by the coherent turbulent flow structures in the flow. However,
this was not supported by the available measurement data.

Implementation of torque acquisition systems to Taylor-Couette de-
vices are generally done during the manufacturing phase of Taylor-
Couette apparatus, and require extensive engineering. On the contrary,
compared to optical measurement techniques, torque measurements are
relatively easier to perform. The implementation of optical measurement
techniques to a Taylor-Couette geometry are relatively harder for several
reasons. The curvature of the cylinder walls is one of the difficulties for
the optical measurement techniques. The optical distortion as a result
of refraction at the curved cylinder wall increases with the curvature
of the cylinder. This problem can be solved by implementing a water
filled optical box over the outer cylinder [114,115], although it limits the
rotation of the outer cylinder. The addition of refractive index changes
(caused by the use of water as a working fluid) in the optical path, il-
lumination difficulties, reflection issues and moving outer cylinder wall
increases the complexity of the optical arrangement. Hence, the appli-
cation of optical measurement techniques to the Taylor-Couette flow is
relatively limited. Initial optical experiments were mostly qualitative
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visualisations and based on simple arrangements [7, 21, 22, 101]. Still,
they were quite successful to identify different flow regimes, transitions
and stability issues. However, when it comes to turbulent flow, due to
the chaotic nature of the turbulence, the dynamics of the flow is gener-
ally very hard to understand with simple visualisations, and therefore
quantitative techniques are required.

The development of particle image velocimetry (PIV) enabled mea-
surements of the instantaneous velocity flow field in a planar domain.
However, due to the optical problems mentioned before, it has not been
widely used in Taylor-Couette flow when compared to other flows. A
first time application was shown by Wereley and Lueptow [114, 115],
who implemented 2D PIV to Taylor-Couette flow and measured ax-
ial and radial velocity components. Their work initiated the usage
of PIV in Taylor-Couette flow to investigate different aspects of the
flow [1, 6, 27, 52, 80, 96, 111, 112], as well as stereo PIV to measure all
three velocity components in a plane [82]. But these implementations
only provided measurements in a single plane, while for the analysis
of the flow dynamics, volumetric measurements, for example with to-
mographic PIV [42], are required. On the other hand, especially for
the investigation of turbulent flows, the spatial resolution of the tomo-
graphic PIV raises questions at this point about its ability to resolve
small scales. Higher spatial resolution is required to capture small scale
structures in the flow [5]. Although Worth et al. [122] compared tomo-
graphic PIV measurements with DNS to study the spatial resolution,
the actual spatial resolution of tomographic PIV has not been studied
in the literature using actual experiments.

On the other hand, with the improvement of computational capac-
ities, Taylor-Couette flow has been studied numerically by several au-
thors [10, 13, 15, 16, 32, 33, 74]. These DNS studies focused on the dif-
ferent aspects of the flow, such as torque, turbulence, boundary layers
and stability. Mainly because of the current computational capacity,
these studies are mostly limited to low Reynolds numbers (Re ∼ 103),
with the exception of the work by Brauckmann and Eckhardt [15, 16]
and Ostilla-Mónico et al. [75] (Re ∼ 104 − 105). Among these numer-
ical studies, the work by Dong performed at conditions of only inner
cylinder rotation [32] and exact counter rotation [33] of the cylinders,
showed the coherent turbulent flow structures in the instantaneous and
mean Taylor-Couette flow and their contribution to the Reynolds stress.
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In addition to the specific studies on Taylor-Couette flow, the ap-
paratus can also be used to investigate dynamics of wall-bounded tur-
bulent flows. Dynamics of turbulent flows is an important part of our
understanding of turbulence and it has been studied widely in the liter-
ature [2,83,97]. Introduction of time-resolved tomographic PIV enabled
investigation of temporal evolution of the turbulent flow structures in
a true volumetric domain [51, 71, 91, 92]. As the rotation speeds of the
cylinders can be controlled independently, it is possible to have turbu-
lent flow (Re ∼ 103 − 104) with small convection velocity using Taylor-
Couette apparatus. Applying time-resolved tomographic PIV to Taylor-
Couette geometry, the coherent flow structures can be tracked over the
spatial domain for relatively longer duration compared to boundary-
layer flow. This fact can be used to improve our understanding on the
dynamics of the wall bounded flows.

1.3 Aim of the Thesis

The studies in fully turbulent Taylor-Couette flow raised several ques-
tions: how are the three-dimensional topologies of coherent flow struc-
tures? How do the coherent flow structures change with the relative
rotation speeds of the cylinders? Can we relate the change of the torque
scaling with the coherent turbulent motions? How do the large-scale
and small-scale turbulent motions contribute to the torque? From a
measurement perspective, what is the actual resolution of tomographic
PIV, and how effective is it to capture different scales of turbulent flow?
Which variable (i.e. size of interrogation window or distance between
two vectors) defines the actual spatial resolution for tomographic PIV?
Is there an optimum spatial resolution to resolve small scale motions in
turbulence? Furthermore, we can increase our knowledge on the dynam-
ics of wall-bounded turbulence using time-resolved tomographic PIV in
Taylor-Couette apparatus by answering questions like how do the co-
herent flow structures convect and evolve, and what are the mechanisms
they experience during their lifetime?

In order to answer these questions, we need to slightly change our ap-
proach. As turbulence is a 3D phenomena, a volumetric measurement
technique is preferred to properly reveal the details of the flow. For this
purpose, it is decided in this study to implement tomographic parti-
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Figure 1.1: Picture of the Taylor-Couette setup, taken between the
high-speed cameras. Please note the top plate was removed and the
calibration target was placed in the setup as it is done during acquisition
of calibration images.

cle image velocimetry (tomographic PIV) [42] to a Taylor-Couette flow
facility (Figure 1.1). The questions stated above are aimed to be an-
swered by investigating the fully turbulent Taylor-Couette flow, mostly
focussing on the coherent turbulent flow structures in relation to the
relative rotation speeds and directions of the cylinders and torque.

As mentioned above, optical distortions, such as the curvature of
the cylinders, change of the refractive index, a moving medium between
the cameras and the flow (i.e. a rotating outer cylinder), and reduced
image quality due to reflections, are potential error sources for tomo-
graphic PIV. As this is the first implementation of tomographic PIV to
a Taylor-Couette geometry, initially the method needs to be validated.
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Therefore, the study starts by validating the implementation by com-
paring the velocity measurements to analytically well defined laminar
Taylor-Couette flow (described in Chapter 2).

The spatial resolution of the measurement technique is crucial, espe-
cially for turbulent flows. The spatial resolution of the technique should
be high enough to capture the small-scale structures. However, the ac-
tual spatial resolution of the tomographic PIV is limited by the number
of the particles that can be recorded [5,42]. Typically a high interroga-
tion volume overlap is used for vector calculation. Therefore, frequently
the number of the measured vectors is an order of magnitude higher
than the number of particles in the flow. Hence the actual spatial res-
olution of tomographic PIV is poorly defined. Although similar studies
were performed for 2D PIV, the actual spatial resolution of tomographic
PIV has not been studied until recently. Worth et al. [122] performed
spatial resolution analysis by using DNS data, which excludes the effect
of several sources of error that appear in actual experiments. In this
study Taylor-Couette flow is used to obtain experimentally validated
estimates of the spatial resolution of tomographic PIV, by making use
of the fact that the turbulent dissipation rate is directly related to the
applied torque [80]. The actual dissipation rate can be determined from
the measured torque on the cylinders, while it is also possible to esti-
mate the dissipation rate from the full deformation rate tensor that is
measured with tomographic PIV. Hence, it is possible to compute the
dissipation rate by two independent methods, i.e. torque measurements
and tomographic PIV. The comparison of the estimated dissipation rates
can be used to assess the actual resolution of the tomographic PIV.

Additionally time-resolved tomographic PIV is applied to turbulent
Taylor-Couette flow. This work aims at improving our understanding
of the dynamics of turbulence. Although the pointwise and planar mea-
surement techniques are well developed and quite useful for explaining
the statistical aspects of the turbulence, the complexity of turbulent flow
limits the results to approximations, such as Taylor’s frozen turbulence
hypothesis [102]. Therefore, time resolved volumetric measurements are
required to understand the dynamics of turbulent flow [91, 92]. High-
speed tomographic PIV provides fully volumetric time-resolved measure-
ments of the flow. It enables one to track turbulent flow structures and
to study their evolution. For this purpose, as a part this study, measure-
ments are performed at exact counter-rotation of the cylinders. Under
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this condition, the fully turbulent flow has approximately zero mean az-
imuthal velocity. This results in a longer observation duration compared
to similar studies performed in other flows [40,41,51,71,91,92].

Finally, the study focusses on the relation between the torque and co-
herent structures in turbulent Taylor-Couette flow. The aim is to study
the large-scale structures at constant Reynolds number in fully turbu-
lent Taylor-Couette flow, and to study how they change with different
relative rotation speeds of the cylinders. The large-scale structures can
be defined as the structures that are mostly influenced by the flow geom-
etry (unlike the small scales, which should be universal), with their sizes
comparable to the flow scale. They are primarily responsible for the
transport and mixing in the flow [79]. The aim is to examine the topol-
ogy of the structures in relation to the reported change of the torque
scaling [76, 77, 82, 108, 109] (see Figure 5.1 for instance), and to try to
explain the torque scaling through changes in the turbulent flow struc-
tures.

1.4 Outline of the Thesis

The outline of this thesis is as follows. Chapter 2 gives details of the
Taylor-Couette geometry used for this study, and explains the implemen-
tation of the tomographic PIV to the Taylor-Couette setup. Validation
of the measurement accuracy is achieved by comparing the experimental
data to the analytical solution for laminar flow.

Chapter 3 discusses the actual spatial resolution of tomographic PIV
for fully turbulent Taylor-Couette flow. The quantification of the spa-
tial resolution is performed by comparing the dissipation rate computed
from the tomographic PIV measurements with the directly measured
dissipation rate through the applied torque. A parametric study is per-
formed to see how the spatial resolution is affected by the change of the
Reynolds number, interrogation domain size, and interrogation domain
overlap.

In Chapter 4, using time-resolved tomographic PIV, examples of dy-
namic events in turbulence are given to show the capacity and demon-
strate its potential for turbulence research. Examples of tracking of the
coherent turbulent motions to investigate their evolution are provided.
The measurements in Chapter 4 are performed at exact counter-rotation
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of the cylinders, where the mean azimuthal velocity is approximately
zero. This advantage is used to track the structures for a considerably
longer time compared to similar studies at the boundary layer and chan-
nel flows.

Changes in the coherent turbulent flow structures and their contri-
bution to torque values are discussed in Chapter 5. The dependency
of the large-scale structures on rotation number at constant Reynolds
number are shown. Vertically aligned Taylor column-like structures are
observed close to only outer cylinder rotation. The contributions of the
large- and smaller-scales to torque are separately investigated by de-
composing the instantaneous flow into large- and smaller-scale motions.
Finally, in Chapter 6 the conclusions of this study are provided and a
brief outlook for further studies is given.





2 Implementation of Tomographic
PIV to a Taylor-Couette Flow
Geometry

2.1 Introduction

This chapter focuses on the implementation of tomographic PIV in cur-
rent Taylor-Couette setup. Since tomographic PIV relies on the precise
volumetric reconstruction of the scattering sites in the measurement vol-
ume, optical aberrations that are not accounted for in the calibration
can deteriorate the quality of the reconstruction. A challenge that is
addressed here lies in the fact that tomographic PIV is applied to a flow
domain with a curved and moving outer wall, which complicates the
measurement. The reconstruction and a volumetric self-calibration can
be applied to correct for small optical distortions and aberrations.

In this chapter, tomographic PIV is used to measure different flow
states following the same categorization as Andereck et al. [7], and three
Taylor-Couette flow regimes are considered, namely laminar flow, flow
with Taylor vortices, and fully turbulent (i.e. “featureless” turbulent)
flow. These regimes have increasing dissipation rates, i.e. decreasing
micro length scales. For the laminar flow case there is only one dominant
velocity gradient determined by the differential angular speed of the
cylinders and the gap width between the cylinders. In this case the flow
can be fully resolved due to the absence of any small-scale variations of
the velocity. In the case of the Taylor-vortices flow regime, large-scale
vortical structures are present in the flow. Also here, by absence of
small-scale motions, the measurement should be able to fully resolve the
flow. The fully turbulent flow regime contains small scale flow structures.

Based on S. Tokgoz et al. Spatial resolution and dissipation rate estimation in
Taylor-Couette flow for tomographic PIV. Exp. Fluids, 53(3):561-583, 2012.
doi:10.1007/s00348-012-1311-7

11
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The flow is fully three-dimensional and the turbulent kinetic energy is
dissipated in small-scale vortices. The scale of these vortices depends on
the Reynolds number.

An outline of this chapter is as follows. Initially a brief literature
review is given in Section 2.2. Then the current Taylor-Couette geom-
etry is explained (Section 2.3). The parameters used in this thesis are
defined in Section 2.4. The implementation of tomographic PIV for a
Taylor-Couette flow system is discussed in Section 2.5, where several
problems that were encountered during the implementation are briefly
explained, as well. The validation of implementation of the experimen-
tal method is done for the analytically well-defined laminar flow case,
which is basically a stable circular Couette flow, in Section 2.6. The ef-
fect of a curved and rotating outer cylinder between the flow domain and
the cameras on the measurement results is tested in the same section.
Then, in Section 2.7, the characteristics of Taylor-vortex flow and the
fully turbulent flow regimes are analyzed. The experimental observation
of the formation of Taylor vortices is also given in the same section. The
results are concluded in Section 2.8.

2.2 Background

So far, field based experimental studies on Taylor-Couette flow mainly
focused on 2D structures of the flow, because of the limited capabilities
of available experimental methods. Wereley and Lueptow [114,115] per-
formed the initial 2D PIV measurements in Taylor-Couette flow. How-
ever, they could only measure the axial and radial components of the flow
velocity. They applied a glass box, filled with a liquid that matches the
refractive index of the working fluid, that encloses the Taylor-Couette
flow system in order to avoid effects due to refraction from the work-
ing fluid and the curved outer cylinder wall. Since then, 2D PIV has
been used to examine different flow characteristics of Taylor-Couette
flows [1, 6, 27, 80, 96, 112]. Akonur and Lueptow [6] performed planar
PIV in radial-azimuthal planes in a setup very similar to the one of
Wereley and Lueptow [114]. In order to obtain the third component
of the velocity, they combined their results with those of Wereley and
Lueptow [114], which were in the axial-radial direction. With the help
of phase averaging, they obtained time-resolved, three-dimensional and
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three-component PIV results. So far, their work has been the only ex-
perimental attempt to analyze volumetric flow structures in a Taylor-
Couette system by means of PIV. Recently Ravelet et al. [82] applied
stereo PIV to Taylor-Couette flow for the first time. They performed
measurements in the axial-radial plane, where the azimuthal velocity is
in the out-of-plane direction. They also performed torque measurements
on the inner cylinder. The combination of stereo PIV and torque mea-
surements was used to explore the torque scaling in relation to the flow
field structure.

Despite several papers on the application of PIV to Taylor-Couette
flows, the reliability of PIV measurements in Taylor-Couette flow has
not been studied widely. Akonur and Lueptow [6] report an error for
PIV measurements of laminar flow to be 1% for azimuthal and 4% for
radial velocities, relative to the inner cylinder velocity. On the other
hand, Ravelet et al. [82] showed the error level does not exceed 1% for
the same components, using stereoscopic PIV measurements. However,
they report a significant velocity difference in regions close to the outer
cylinder walls. They attributed this to refraction effects due to the
curved cylinder walls.

2.3 Taylor-Couette Geometry

The measurements were performed in the Taylor-Couette setup at the
Laboratory for Aero & Hydrodynamics of the Delft University of Tech-
nology, which was used previously by Ravelet et al. [82] and Delfos et
al. [25]. It consists of two coaxial cylinders that can rotate indepen-
dently. Additionally, the system allows performing torque measurement
on the inner cylinder shaft. The radii of inner and outer cylinders are
ri = 110.0 ± 0.05 mm and ro = 120.0 ± 0.05 mm, respectively (Figure
2.1). This results in a gap of d = ro − ri = 10.0 mm, and a correspond-
ing gap ratio of η = ri/ro = 0.917. The length of the outer cylinder is
L = 220.0 mm, which gives an axial aspect ratio of Γ = L/d = 22.0. The
geometric details of the Taylor-Couette setup are summarized in Table
2.1. The working fluid is water. The system is closed by top and bottom
covers, which are rotating with the outer cylinder. Both cylinders are
made from transparent polymethylmethacrylate (PMMA/Plexiglas), al-
lowing optical access. However, structural metal bars, which are placed
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Figure 2.1: Sketch of the experimental setup given in the used cylin-
drical coordinate system. The dimensions are not to scale.

Table 2.1: Geometric parameters of the Taylor-Couette setup.

Symbol Value Unit Meaning

ri 110.0 mm Inner cylinder radius
ro 120.0 mm Outer cylinder radius
d = ri − ro 10.0 mm Gap width
η = ri/ro 0.917 - Gap ratio
L 220.0 mm Cylinder height
Γ = L/d 22.0 - Aspect ratio
RC = d/r̃ 0.087 - Curvature number

inside of the inner cylinder, were found to cause strong reflections, and
noise on the recorded images in the case of volume illumination required
for tomographic PIV (see Section 2.5.3). Therefore, another cylinder,
which was painted black, was placed on the inside of the inner cylinder,
to cover the structural bars. This improves the quality of the images
considerably. More details of different aspects of the experimental setup
is given in subsequent sections.

2.3.1 Influence of the cylinder covers

In most Taylor-Couette studies the cylinders are considered as effectively
infinite. However for some situations the influence of the end plates can-
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not be neglected, especially when the aspect ratio is small [21]. Therefore
it is worth to mention how the top and bottom covers of the system and
their influence the flow.

The top and bottom covers of our system are attached to and co-
rotating with the outer cylinder. Similarly, the covers of the inner cylin-
der are attached to the inner cylinder. There is a 2 mm gap between
the covers of the inner and the outer cylinder on both top and bottom
sides, forming a so-called von Karman gap [82]. In this gap, von Kar-
man flow appears due to the rotation of the top and bottom covers,
which are acting like rotating disks. The rotation causes an outward
radial motion, and an accordingly axial motion towards the disk [12,81].
Consequently this phenomenon induces a secondary flow in the vertical
Taylor-Couette gap between the cylinders, with a magnitude that de-
pends on the rotation speeds [9, 10, 17, 26, 35, 55, 77, 78]. Although the
details of the secondary flow depend on the Reynolds number, Poncet
et al. [78] explained the basic mechanism simply as: the fluid is pumped
radially outward along the rotating disks, then the flow reaches to the
Taylor-Couette gap, and moves axially to mid-height, with the flow com-
ing from the top and the bottom meeting around the center and the fluid
going back to the top and bottom endplates. The effect of the secondary
flow is significant especially for small aspect ratios [21,55,119].

Different solutions were proposed to reduce the secondary flow, such
as dividing the end covers in to multiple segments, implementing rings
on the covers, as well as active control of the endplates [9,10,17,55,107].
Another relatively simple solution is to replace the cylinders with longer
ones (while keeping the cylinder diameters constant) in order to achieve
a higher aspect ratio [35]. However, these solutions have not been imple-
mented to current setup because of the complexity of the modifications,
so all measurements presented in this thesis were performed by using
cylinders with a length of L = 220.0 mm, corresponding to Γ = 22.0.

Instead, the effect of the secondary flow to the measurements in this
thesis were minimized by taking a few precautions. The measurements
were performed at the center of the cylinder height in the axial direc-
tion (0.4L ≤ z ≤ 0.6L), where the effect of the secondary flow is min-
imal [110]. Secondly, most of the experiments were performed in fully
turbulent flow conditions. It is known that the effect of the secondary
flow is surpassed by the intense turbulent fluctuations [77, 110]. In the
case of laminar flow, the measurements were performed in relatively low
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Reynolds numbers, where the intensity of the secondary flow is expected
to be low. In order to test the effect, the measurements were compared
to analytical solutions for the laminar cases (see Section 2.6). The com-
parison did not show any significant deviation from the analytical results
in the investigated range of shear Reynolds numbers.

2.3.2 Rotation control and torque measurements

The cylinders can rotate independently by means of two Maxon DC
motors that are connected to the cylinder shafts. A custom-made regu-
lation device is connected to the motors in order to control the rotation
speed [82]. The maximum rotation frequency is 10 Hz with a precision
of ±0.02 Hz [82]. The motors can either be controlled manually or using
a software (LABVIEW).

A torque meter (HBM T20WN, 2 Nm) is attached to the shaft of the
inner cylinder. The acquisition rate of the torque signal is 2 kHz and
the absolute precision of the torque meter is ±0.01 Nm [82]. Measur-
ing the torque values from the inner cylinder shaft (where the driving
motor is also connected) is relatively straightforward. However, this
torque measurement configuration has some disadvantages compared to
other designs. In the current design, the torque meter also records other
moments of forces acting on the shaft, such as mechanical friction in
the bearings and the contribution of the von Karman flow [49,82]. The
contribution of the bearings was found to be negligible for the current
setup [82]. The effect of the von Karman flow to the measured torque
values was discussed in several studies [17, 49, 63, 82, 119]. A proper so-
lution to minimize the contribution of the von Karman gap to torque
measurements is to build the inner cylinder in multiple sections and to
perform the measurements from the middle section by means of load
cells [60,108]. This enables to measure only the torque acting on the in-
ner cylinder. However, due to the complicity of such a system, it was not
implemented to the current setup. Furthermore, it is expected that the
effect is minimal for geometries with high aspect ratios, as it is for the
current geometry [17,49]. On the other hand, Greidanus et al. [49] sep-
arated the contribution of the Taylor-Couette gap and the von Karman
gap to the torque at high Reynolds numbers on the same Taylor-Couette
setup that was used in this study. Hence, the torque values were used
according to that correction in this thesis.
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2.3.3 Temperature control

In the case of closed systems such as a Taylor-Couette flow, small changes
in the water temperature might lead to significant effects since viscos-
ity is temperature dependent. The friction due to the rotation of the
cylinders, as well as the dissipation, produce heat, which is mostly ab-
sorbed by the fluid inside the setup. This results in an increase of the
temperature of the working fluid. Especially at high Reynolds numbers,
the temperature can increase quite rapidly. If it is not handled carefully,
this might result in a difference between the viscosity at the beginning
and the end of the measurements. Therefore the Reynolds number can
change during the recording of each case.

Different solutions on the temperature control for Taylor-Couette can
be found in the literature. One of the relatively simpler (and most
common) solution is to place the Taylor-Couette system in a fluid bath,
where the temperature of the fluid in the bath is controlled [1, 9, 96,
114]. However, this has disadvantages like limited outer cylinder rotation
capacity and limited optical access. Most of the experiments in this
kind of Taylor-Couette setups were performed with a stationary outer
cylinder. Another solution is to cool the system by the help of a cooling
fluid circulated inside of the top and bottom covers [63, 108]. However,
this solution is relatively more complicated to implement, and can cause
significant temperature gradients in the axial direction, especially for
tall geometries.

In the current Taylor-Couette system, it is not possible to directly
control the temperature of the working fluid. However, similar to pre-
vious studies [6,17,80,115], the fluid and the ambient temperature were
measured carefully between the recordings of each data set, and the
angular velocities of the cylinders were adjusted to compensate for the
temperature dependent fluid viscosity, so that a constant flow Reynolds
number could be maintained. When the temperature difference between
the beginning and the end of each set of recordings exceeds 0.5 ◦C, the
data were considered invalid and were not used. Thus, variations of the
operating temperature of the working fluid were less than ±0.5 ◦C for
the results presented in this thesis. The ±0.5 ◦C change in the operating
temperature results in a maximum of 1.2% uncertainty in the kinematic
viscosity of the fluid, which is water for the current study. Since each
set of experiments takes around 20 minutes (except the measurements
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in Chapter 4, which are even shorter; of the order of few minutes), in-
cluding the period to achieve stationary flow conditions, and given that
the measurements were performed at relatively low angular velocities,
this approach is assumed reliable.

2.4 Parameters

Taylor-Couette flow can be described by different sets of parameters.
The preferred set has changed over the years. In this thesis the pa-
rameters defined by Dubrulle et al. [35] were adopted to characterize
the Taylor-Couette flow. The Reynolds numbers for inner cylinder and
outer cylinder, based on the gap between the cylinders (d), are tradi-
tionally defined as

Rei =
riΩid

ν
, (2.1)

and

Reo =
roΩod

ν
, (2.2)

respectively. These Ωi and Ωo represent the angular velocities of the
inner and the outer cylinders, and ν represents the kinematic viscosity
of the fluid. It should be noted that although a “negative” Reynolds
number is physically meaningless, it is commonly used in Taylor-Couette
studies [7, 33]. The sign of the Reynolds number defines the rotation
direction of the cylinders in this case.

Dubrulle et al. [35] introduced new parameters, based on flow dy-
namics, to define the flow and make it comparable to other rotating and
shear flow types. Shear Reynolds number (ReS) is a measure of the
shear rate between the cylinders, and it will be used throughout this
study. The shear Reynolds number is defined as:

ReS =
2 |ηReo −Rei|

1 + η
, (2.3)

where η (= ri/ro) is the gap ratio.
Another parameter called rotation number (RΩ) was introduced in

the same study [35]. The rotation number gives information about the
relative speeds and the directions of the cylinders. It depends on the
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gap ratio, η, and the Reynolds numbers of the cylinders, and is defined
as:

RΩ = (1− η)
Rei +Reo
ηReo −Rei

. (2.4)

In case of exact counter rotation (i.e. cylinders are rotating with the
exact same wall velocity, but they are rotating in opposite direction;
riΩi = −roΩo), the rotation number is RΩ,c = 0, regardless of the gap
ratio. For the current setup the case with only inner cylinder rotation
(i.e. the outer cylinder is at rest) is given by RΩ,i = −(1− η) = −0.083.
Any negative number in between (−0.083 < RΩ < 0) represents the
counterrotating cases where the inner cylinder is rotating faster than the
outer one. Corresponding rotation number for the opposite situation of
only the outer cylinder rotation (i.e. the inner cylinder is at rest) is
RΩ,o = (1−η)/η = 0.091. Similarly any positive rotation number in the
0 < RΩ < 0.091 range stands for the counter-rotation, where the outer
cylinder rotates faster than the inner cylinder.

It is known that the curvature of the cylinders affect the flow charac-
teristics as well as the angular momentum transport [17, 35]. However,
the subject has not been studied parametrically, maybe due to the fact
of “being more difficult to isolate” as Dubrulle et al. [35] mentioned. In
the same work, they defined the curvature number as:

RC =
d

r̃
=

1− η
√
η
. (2.5)

The r̃ is defined as “typical radius” and given as r̃ =
√
riro = 0.115 m.

The curvature of the current setup is RC = 0.087, which can be con-
sidered as a small curvature (i.e. close to plane Couette flow, where
RC → 0) compared to the literature [35]. The experimental parameters
and flow conditions used in this chapter and Chapter 3 are summarised
in Table 2.2.
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Figure 2.2: Sketch of the tomographic PIV setup and definition of
the Cartesian coordinate system in the measurement volume; x axial,
y azimuthal, and z radial direction. The positive angular velocities (Ωi

and Ωo) are in the direction of the positive y in the azimuthal direction.

2.5 Tomographic PIV Setup

Velocity measurements in this thesis were done using the tomographic
PIV (Figure 2.2) method [42]. Tomographic PIV is a fully volumetric
method, which allows us to measure all three velocity components in
the instantaneous flow field. Similar to other PIV methods, the flow is
seeded with tracer particles and illuminated by a light source. In the
case of tomographic PIV a flow volume is illuminated, rather than a thin
light sheet. Using the displacement of the particles over a known time
difference (between two frames), the velocity vectors in the measurement
volume can be computed. The work flow of the tomographic PIV can
be summarized in the following steps: image acquisition with multiple
cameras, volume reconstruction, vector calculation via correlation, and
validation of the vectors. These steps are explained in the following
sections. More detailed reviews of the developments and applications
of the tomographic PIV can be found in publications by Elsinga et al.
[37, 39,42], Scarano [87], and Westerweel et al. [116].

2.5.1 Image acquisition

In case of tomographic PIV the images of the particles following the flow
are simultaneously recorded with multiple cameras from different view-
ing angles. Due to the cost restrictions and practical issues, the optimal
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number of the cameras is given as four [42], but several studies using
more cameras can be found in the literature [45, 65]. One important
issue related to the image recording for tomographic PIV is the depth-
of-field. In principle, independent of their position in the measurement
domain, all of the particles should be in focus to achieve a good image
quality. Since the particles recorded in a volume instead of a plane, the
focal depth of the cameras should be large enough to cover all images
in the illuminated volume [37,42,87]. This can be adjusted by using the
aperture of the objectives (typically f/8 − f/11) as the depth of focus
increases with the f-number. However, the amount of light captured by
the camera is inversely proportional to the square of the f-number. Thus,
an optimum condition should be found in order to have all the particles
in focus while maintaining a reasonable intensity. The f-numbers used
in this thesis are indicated in each chapter.

Another problem related to the focusing occurs due to the off-axis
viewing of the cameras. If the sensor plane of the camera, the lens-plane
of the objective, and the image plane are not parallel to each other,
the image can only be focused sharply by tilting the camera and the
objective with respect to each other, so that the Scheimpflug condition
is satisfied [42, 87, 116]. For this purpose, an adapter with adjustable
tilt angle can be placed between the camera and the objective, as it is
mostly used in stereo PIV.

For the data described in this chapter, the recording and the im-
age analysis were done using commercial software (DAVIS by LaVision
GmbH). Four cameras (Imager Pro LX 16M) were used in double frame
mode for recording particle images with a resolution of 4800 × 3200
pixels for laminar, Taylor vortex, and a fully turbulent flow case with
ReS = 4700 and RΩ = 0.019. Only about 1000×600 pixels were used for
all cases in order to achieve a higher image recording rate (up to 7.55 Hz)
and to remove the unused part of the images. Recording rate and laser
pulse separation differ for each flow condition (see Table 2.2). Objectives
with a f = 105 mm focal length and f/8 aperture were used during the
image acquisition, which were mounted on Scheimpflug adapters. In or-
der to minimise the effect of the end gaps of the Taylor-Couette facility
on the measurements (see Section 2.3.1), the images were recorded at
the mid-height of the rotational axis of the Taylor-Couette setup (Figure
2.2). The dimensions of the volume recorded by all cameras is roughly
40× 20× 10 mm3 in axial, azimuthal and radial directions, respectively.
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One pixel in the recorded image corresponds to 37 µm in the flow field.
The reconstructed volume size changes slightly between individual ex-
periments.

It is convenient to interrogate the tomographic PIV data in a rectan-
gular volume, although a cylindrical coordinate system is more appro-
priate for the Taylor-Couette geometry. In order to avoid interpolation
errors in the conversion between coordinate systems the Cartesian repre-
sentation is followed throughout this thesis, except for Chapter 5. The
correspondence between the Cartesian and the cylindrical coordinate
systems for the measurement volume is given in Figure 2.3. Since the
axial direction, x, is completely collinear in both coordinate systems, it
is not shown in the figure. As shown, the z and r directions are collinear
only in one axial-radial plane, where θ = 0. On the other hand, the
y and θ directions are collinear on the same plane, as well. Hence,
x, y and z components of the measured velocity data corresponds to
axial, azimuthal and radial components of the velocities at the cylin-
drical coordinate system on the collinear plane. Thus, the z-coordinate
and r-coordinate are interchangeable, whereas the y-coordinate and θ-
coordinate also coincide in this selected plane. Please note that all 2D
plots in Chapter 2, 3 and 4 are plotted on this collinear plane.

2.5.2 Flow seeding

All PIV methods require the flow to be seeded with particles that are
small so they can follow the flow, and yet large enough so they scatter
sufficient light to be captured with the cameras [5]. The density of each
particle must be similar to the density of the working fluid in order to
avoid a significant influence of buoyancy.

At the beginning of our experiments, the image quality was tested
with non-fluorescent particles (Figure 2.4(a)). It was found that reflec-
tions from the cylinders, especially the small scratches on the outer cylin-
der surface, reduced the image quality significantly below an acceptable
level. Although it can be improved via image preprocessing, fluorescent
(Fluostar) particles, which contain Rhodamine B, with a mean diameter
of 15 µm [56] were applied instead (Figure 2.4(b)). These particles have
a density of 1.1 g/cm3. Even though these particles are not neutrally
buoyant, the settling velocity [5] of the particles is 13.7 µm/s. In this
thesis, the experiments are performed at the azimuthal velocities that
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Figure 2.3: Representation of the Cartesian (top) and cylindrical (bot-
tom) coordinates for the experimental setup. Grey areas represent the
zones which are included to reconstructed volume, but are outside of the
cylinders. Thus, they do not contain actual particles. Ghost particles
appear in the gap between the cylinders as well as in the outside of the
cylinders (grey areas).

are at least three orders of magnitude higher than the settling veloc-
ity of the particles. Therefore the error caused by the buoyancy of the
particles is negligible.

The fluorescent particles absorb green light of the laser and emit
fluorescent light at higher wavelengths (580 nm for current case). Opti-
cal 570 nm lowpass filters were applied for rejecting the non-fluorescent
illumination during the image acquisition. In order to have a homoge-
neous seeding distribution, the water containing the seeding particles
was mixed at high speeds of the inner and outer cylinders prior to each
experiment. Then, the system was stopped and the fluid motion was al-
lowed to settle down. After that, the cylinders were taken to the desired
rotational speeds, and PIV images were recorded after the flow reached a
stationary state. The whole procedure (including mixing, settling down
and reaching the stationary state) takes approximately 15 minutes.

The seeding density is kept low in order to achieve a high quality
in the tomographic reconstruction [42]. The quality of the tomographic
reconstruction decreases with the increasing number of, so-called, ghost
particles. Ghost particles can be considered as reconstruction noise [44].
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(a)

(b)

Figure 2.4: Instantaneous example images with non-fluorescent parti-
cles (a) and fluorescent particles (b) in Taylor-Couette geometry.
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They are unreal particles that appear alongside the actual ones. Their
position depends on the camera viewing angles and the location of the
actual particles [73]. Their presence can cause a significant bias error on
the velocity, and especially on the gradients [44]. Simulations and exper-
iments show that the number of ghost particles increases with seeding
density [42,44]. Therefore, one should be careful on deciding the seeding
density for tomographic PIV, which should be relatively lower than 2D
or stereo PIV. A detailed discussion on ghost particles, their formation
and their effects on the results were presented by Elsinga et al. [42, 44].
The reconstruction quality is proportional to the signal-to-noise ratio
(SNR) between the number of actual (Np) and the ghost particles (Ng),
which is given by

SNR =
Np

Ng
=

ppplxly

(pppAp)
N lxlylz

=
1

pppN−1ANp lz
, (2.6)

where ppp is the number of particles per pixel area, Ap is the effective
particle image area in pixels, N is the number of cameras and lx, ly, lz
are the dimensions of the reconstructed volume in voxel units [44, 122].
A voxel is a volumetric element, which is a three-dimensional equivalent
of a pixel [116]. In this thesis, the relative size of a voxel to a pixel is 1.

On the other hand, a high seeding density is desired to achieve bet-
ter spatial resolution [5]. Thus, a compromise should be found between
reaching a higher spatial resolution and reducing the number of ghost
particles. Based on these considerations and given the additional com-
plexity of curved and moving walls, the seeding density was kept around
the lower value of 0.025 ‘particles per pixel’ (ppp) for the measurements
presented here. Since four cameras were used during the experiments
N = 4. The depth of the measurement volume is lz = 270 pixels and
Ap = 2.5 pixel. This results in a SNR of 6.1, which is significantly
above the minimum level of 2 that indicates a high quality tomographic
PIV measurement [44]. The corresponding source density is NS = 0.18,
which is sufficiently low to exclude speckle effects in the recorded im-
ages [5]. The high quality of the tomographic reconstruction is also
observable in the radial profile of the intensity distribution in the recon-
structed volume (Figure 2.5), which reveals the sharp contrast between
the intensity inside and outside the liquid-filled gap.
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Figure 2.5: Mean intensity profile along the z-direction (see Figure 2.2
and 2.3) in the reconstructed measurement volume (over 150 instanta-
neous volumes). A width of 10 mm corresponds to 270 voxel units.

2.5.3 Illumination

Generally lasers are the most commonly used light sources for all PIV
applications. The most significant difference between 2D/stereo PIV and
tomographic PIV is the fact that the illumination for the tomographic
PIV is done in a 3D volume and planar illumination is required for the
2D or stereo PIV techniques. This is generally achieved by increasing the
thickness of the light sheet with lenses up to typically a few centimetres.
Therefore the quantity of the required light source is relatively higher
compared to 2D and stereo PIV methods [87].

The light source for illumination in Chapter 2, 3 and 5 was a double-
pulsed Nd:YAG laser (New Wave Solo-III) with 50 mJ/pulse energy at
a wavelength of 532 nm. The used optics with an anti-reflection coating
consisting of two spherical lenses (f = −50 mm, f = −40 mm) and one
cylindrical lens (f = +200 mm), which were placed between the laser
and the test section to achieve the necessary dimensions of the laser
beam for the illumination of the measurement volume.

2.5.4 Calibration

PIV requires calibration to map object planes onto image planes. The
tomographic reconstruction algorithms rely on accurate mapping of the
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camera images with respect to each other [42, 87, 116, 118]. Therefore,
the procedure for the calibration of the tomographic PIV system consists
of two main steps. The first step is to determine the mapping of the
calibration planes to all cameras, as it is usually done in stereo PIV. The
second step is the volumetric self-calibration method [118] for refining
the calibration.

Initially a known marked target is imaged simultaneously by all cam-
eras. The distance between the marks, as well as the size of the marks
for some cases, provide the information about the scaling and the posi-
tioning of the cameras with respect to each other. However, due to the
thickness of the measurement volume, generally it is needed to traverse
the calibration target in the depth direction (radial direction for current
case) and record images at multiple locations in the 3D volume [42].
This is needed in order to perform a calibration along the depth of the
volume.

In this thesis, the calibration of the camera system was done us-
ing a 1 mm thick, flat plate made from stainless steel (Figure 2.6(a)).
The dimensions of the plate are 150× 20 mm2, where the short edge is
placed tangential to the azimuthal flow direction (Figure 2.6(b)). Cir-
cular holes with diameter of 0.4 mm were drilled. The distance between
subsequent holes is 2.5 mm in both vertical and horizontal directions. At
least 8 holes in all directions were present in each of the calibration im-
age recordings. The calibration target was placed on a translating and
rotating traversing mechanism, capable of positioning the target with
micrometer precision (Figure 2.6(c)). Due to the thickness of the target
and the curvature of the cylinder, the calibration target can be translated
only over 50% of the gap width. Thus, calibration images were recorded
in three selected planes. The calibration for the remaining 50% of the
gap was computed by extrapolating the calibration function. During the
calibration the gap between the cylinders was also filled with water to
match with the experimental conditions. The curved outer walls of the
cylinders introduce some optical distortion. However, these distortions
are small enough so that they can be compensated for in the calibration.

Since the tomographic reconstruction requires an error level better
than 0.4 pixel [42] and the extrapolation of the mapping function can
introduce further uncertainties, the volumetric self-calibration [118] was
applied for further refinement of the calibration. Using triangulation
of the actual particle images recorded by all cameras, the volume self
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(a)

(b) (c)

Figure 2.6: Calibration target (a), placed in the gap filled with water
between the cylinders (b) and the side view of the double-axis traversing
mechanism connected to the calibration target (c). The lines and marks
on the target are drawn for orientation.
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calibration computes the disparity (or triangulation error) [118]. The
disparity is used to improve the calibration map. Iteratively repeating
the volume self calibration increases the accuracy of the calibration and
therefore the results. After several refinement steps with volumetric self-
calibration, the maximum calibration error could be reduced from 0.329
pixel to 0.019 pixel for the current application.

2.5.5 Image processing, reconstruction and vector validation

The most significant difference of tomographic PIV with respect to the
other PIV techniques might be the volume reconstruction step. Basically
in this step the intensity values (of the seeding particles) recorded from
different viewing angles are used to accurately reconstruct the position
of the particle in the 3D volume. In practice, using the “multiplica-
tive algebraic reconstruction technique” (MART) algorithm, recorded
intensities in the 2D images are converted into the 3D particles in a 3D
measurement volume [37,42]. The reconstruction is an iterative method
and requires lots of computational power. However, typically 5 iterations
are enough for an acceptable accuracy [87]. Several new approaches to
the reconstruction are developed recently [8,30,31,70,73,121]. However,
it is not intended to go into details of different reconstruction methods
in this study. All volume reconstructions presented in this thesis are
performed using MART algorithm, which is accepted as the standard
method.

Due to its nature, the reconstruction step is sensitive to the intensity
at the background [42, 87]. The quality of the reconstruction improves
when the intensity of the background is removed by a simple additional
pre-processing step before the reconstruction [5, 42, 87]. Thus, image
processing was performed to reduce the effect of background noise and
to increase the image quality of the recorded images. First, a sliding
minimum intensity of 25 × 25 pixels was subtracted from all images to
increase the signal to noise ratio. Then a smoothing with a 3 × 3-pixel
Gaussian kernel was applied to reduce noise level and improve particle
reconstruction quality for small particles [37,120].

The intensity distribution averaged over 150 reconstructed volumes
along the z direction is given in Figure 2.5. The distribution shows that
the illuminated volume occurs for voxels located at 19 ≤ z ≤ 266. Out-
side that region, the intensity values decrease approximately to one-third
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of that inside. The steep drop of the intensity indicates the presence of
the cylinder walls. The comparison of intensities inside and outside of
the cylinder walls reveals the contribution of ghost particles to the re-
constructed volume [42], which appears to be 35% of the total intensity.
The reconstructed volume size was around 40 × 20 × 10 mm3. This
corresponds to a resolution of approximately 27 voxel/mm.

The displacement of the particles between two reconstructed volumes
are computed by 3D cross-correlation. The 3D cross-correlation is the
three-dimensional version of the widely used 2D correlation and there-
fore relatively straightforward [87, 116]. For the experiments of all flow
types represented in this thesis, the adaptive multi-pass approach was
used for correlation. Unless stated otherwise, in this thesis the interro-
gation window size was 60×60×60 voxels with a 50% overlap in the first
pass and 40×40×40 voxels with a 75% overlap in the final two passes.
Spurious vectors were detected and removed by the universal outlier
detection method [117]. Linear interpolation was used to fill the gaps
where the vectors were removed.

2.6 Validation Using the Laminar Flow

The laminar flow case with only the outer cylinder rotating provides a
steady flow that can be used to assess the accuracy of the tomographic
PIV method. Therefore in this section, the accuracy of the tomographic
PIV is discussed using the laminar velocity profile, RMS and number of
outliers in the vector fields.

2.6.1 Velocity profiles

Laminar Taylor-Couette flow is analytically well defined, with zero axial
and radial velocities, and with an axisymmetric azimuthal velocity, v,
given by [35]:

v(r) = Ar +
B

r
, (2.7)

where, r is the radial distance with respect to the common axis of rota-
tion, and A and B are constants, defined as [35]:

A =
1

1− η2

(
Ωo − η2Ωi

)
, B =

r2
i

1− η2
(Ωi − Ωo) , (2.8)
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Figure 2.7: 3D plot (left), and 2D cross-section (right) of the lami-
nar Taylor-Couette flow, obtained from 150 time-averaged instantaneous
vector fields. Only every 5th vector in the x and y directions and every
2nd vector in the z direction are shown. Color coding represents the
absolute velocity (|U | =

√
u2 + v2 + w2). The data are represented in

a Cartesian coordinate system (see Figure 2.2 and 2.3), where z = 0
corresponds to the inner cylinder surface, and z = 1 corresponds to the
outer cylinder surface. Both images are non-dimensionalised with the
gap width d between the cylinders.

where, Ωi and Ωo are the angular velocities of the inner and outer cylin-
ders, respectively.

Laminar flow measurements were performed with only the outer cylin-
der rotating (i.e., Ωi = 0). Corresponding Reynolds and rotation num-
bers are summarised in Table 2.2. If Ωi = 0 in equations 2.7–2.8 there
we have for the estimated velocity:

v(r) =
Ω0

1− η2

(
r − r2

i

r

)
. (2.9)

The measured 3D velocity fields are shown in Figure 2.7. The curved
streamlines are in correspondence with the curvature of the cylinders.

Quantitative comparison between the analytical result and the mea-
surements is necessary to assess the reliability of the method. The results
are plotted in Figure 2.8, where the velocity profile of v(r) appears as
linear for η = 0.917. Flow profiles presented here were obtained from
an average over 150 instantaneous 3D vector fields. The profile of the
azimuthal velocity (v) is in good overall agreement with the analyti-
cal solution. The difference between the analytical solution and the
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Figure 2.8: Mean velocity of the laminar flow with only the outer
cylinder rotating (Ωo = 0.48 rad/sec, Ωi = 0, Reo = 643, RΩ = 0.091,
ReS = 615), as a function of the radial distance. Time-averaging was
performed over 150 instantaneous vector fields. All velocities are nor-
malised with the azimuthal velocity of the outer cylinder (Ωo× ro). The
dashed lines connect the measured data points and the theoretical values
at the walls.

tomographic PIV results does not exceed 3.2% of the outer cylinder
velocity anywhere between the cylinders. Especially, in the region of
0.20d ≤ r − ri ≤ 0.50d the deviation is below 2.5%, and in the region
0.50d ≤ r − ri ≤ 0.95d it is below 1%. Additionally, the maximum ab-
solute values for the axial (u) and the radial (w) velocity components,
which should be identical to zero, are within 0.7% and 0.5% of the outer
cylinder velocity, respectively. Presence of non-zero axial and radial
velocities can be explained as the result of the finite height of the exper-
imental setup, which results in large-scale Ekman-like circulation [35]
(see Section 2.3.1). Since the velocity deviation is always below 3.2%,
the effect of a moving and curved wall between the test section and
the cameras appears not to significantly deteriorate the measurement
quality.

Coles and Van Atta [23] performed laminar flow measurements in
Taylor-Couette facility with hot-wire anemometry, when only the outer
cylinder is rotating at a constant speed with Reynolds numbers between
Reo = 2000 and 12000. They reported a strong disturbance of the
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laminar flow in the mid-plane of axial direction, which is increasing with
the Reynolds number. This distortion effect was not observed during
current experiments, which is possibly due to the relatively low Reynolds
number in current experiments. Ravelet et al. [82] found that the error
level between analytical calculations and measurements was higher close
to the outer cylinder (0.7d ≤ r−ri ≤ d). They concluded that the reason
behind this is the refraction close to curved wall. However, for the results
presented here, the disagreement is found to be of the same order for
both regions close to the inner and outer cylinder walls, with a slightly
higher value near the inner cylinder. In the current case, the camera
viewing directions were much closer to the normal of the cylinder wall,
which may have helped to eliminate the errors due to refraction.

2.6.2 RMS of the velocities

In order to check the accuracy of the method, the RMS of the measured
fluctuating velocity deviations from the mean velocity profile were also
calculated (Figure 2.9). For the azimuthal velocity v, the RMS reaches
its maximum value of 4.8% of the outer cylinder velocity. The maximum
occurs at the outer cylinder wall. However, for 0 ≤ r − ri ≤ 0.85d, it is
always below 1.5%. On the other hand, RMS values of axial and radial
velocities are below 0.64% and 2.0%, respectively, of the outer cylinder
velocity. High RMS values for 0.85d ≤ r − ri ≤ d might be caused
by the low SNR close to walls. This is probably due to the effect of
the boundaries of the measurement volume and ghost particles, which is
explained in detail below. High RMS values might also be related with
slight unroundness of the cylinder.

PIV measurements in the vicinity of the edges of the measurement
domain are generally problematic. One of the reasons is the lower prob-
ability to find sufficient particle images in the interrogation window. A
lower number of particles reduces the height of the correlation peak,
which defines the measurement quality. This applies in particular to
tomographic PIV, where the reconstruction is done in a volume that is
slightly larger than the illuminated volume. Ghost particles are formed
randomly throughout the reconstructed volume, whereas actual particles
only exist in the illuminated volume between the cylinders. Although
the number of the ghost particles remains constant, the ratio of the ghost
particles to the actual particles in the interrogation windows becomes
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Figure 2.9: RMS of velocities, based on the time-average of 150 instan-
taneous vector fields of laminar flow with only the outer cylinder rotating
(Ωo = 0.48 rad/sec, Ωi = 0, Reo = 643, RΩ = 0.091, ReS = 615), as a
function of the radial distance. All RMS values are normalised with the
azimuthal velocity of the outer cylinder (Ωo × ro).

larger in the vicinity of the cylinder walls, where the interrogation win-
dows partially overlap with the walls. The measured velocity component
is affected by the presence of the ghost particles. Consequently, the sig-
nal strength, i.e. the height of the correlation peak, is reduced in the
vicinity of the inner and outer cylinder walls. This explains the higher
error levels and the increase of the number of outliers near the cylinder
walls.

The Taylor-Couette setup has one more disadvantage. The tomo-
graphic reconstruction implementation that was used here allows a re-
construction in a rectangular geometry only. In order to reconstruct the
full measurement depth at positions where θ 6= 0, one should include the
external part of the cylinders of the Taylor-Couette setup (represented
by the grey regions in Figure 2.3).

2.6.3 Number of outliers

Another criterion that defines the quality of PIV measurements is the
number of the invalid vectors per velocity field. The percentage of the
invalid vectors to the total number of vectors for an instantaneous ve-
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Figure 2.10: The percentage of outlier vectors to the total number of
vectors in the same radial-axial cross-section, as a function of the radial
distance. Calculated by 40×40×40 voxels final interrogation window,
with a 75% window overlap.

locity field is given in Figure 2.10. Except for the regions close to the
cylinder walls (0 ≤ r − ri ≤ 0.04d and 0.85d ≤ r − ri ≤ d) the number
of invalid vectors is below 4.1% of the total vectors. The value increases
from 5% to 14% in the region 0.85d ≤ r − ri ≤ d. Since the percentage
of the outliers are below 4% for most of the measurement volume, one
can use slightly smaller interrogation windows for vector calculations in
order to achieve a higher spatial resolution, which was not performed
for current study.

2.7 Results

In this section, the aim is to show the advantage of implementing to-
mographic PIV to Taylor-Couette setup by showing few examples on
different flow conditions. Starting with the famous Taylor vortex flow,
observations on Taylor vortex formation and fully turbulent flow will be
discussed.
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Figure 2.11: Mean velocity of the Taylor vortex flow with co-rotation
of cylinders (Ωo = 0.38 rad/sec, Ωi = 0.88 rad/sec, Reo = 500,
Rei = 1000, RΩ = −0.231, ReS = 565), as a function of the radial
position. Time-averaging was performed over 300 instantaneous vector
fields. All velocities are normalised with the azimuthal velocity of the
inner cylinder (Ωi × ri). The dashed lines simply connect the measured
data points to the theoretical values at the walls.

2.7.1 Taylor vortex flow

The measurements for Taylor vortex flow were performed at angular
velocities of the outer and inner cylinders of Ωo = 0.38 rad/sec and
Ωi = 0.88 rad/sec, respectively. Corresponding Reynolds and rotation
numbers are ReS = 565 and RΩ = −0.231 (Table 2.2). The measured
flow profile based on an average over 300 instantaneous velocity fields
is given in Figure 2.11. In addition to vorticity calculations (Figure
2.12), the vortical motion of the flow can be represented by means of
the Q-criterion [53], of which isosurfaces are shown in Figure 2.13.

Two significant properties can be concluded from the plots. The first
one is the inclined elliptical shape of the Taylor vortices. The inclination
axes have an angle of ±25◦ with the azimuthal direction of the cylin-
ders. The high-velocity radial flow in between adjacent vortices might
be responsible for the inclination of the vortex shapes. For instance,
at x/d ≈ 1 in Figure 2.12, both vortices with positive and negative
vorticity are tilted outwards. This can be associated with the strong
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Figure 2.12: Instantaneous representation of vorticity and velocity vec-
tors for Taylor vortex flow (Reo = 500, Rei = 1000, RΩ = −0.231,
ReS = 565), given at a cross-section at the center of the measurement
volume in the azimuthal direction (y). Vorticity in the azimuthal direc-
tion is color coded. The vectors represent the velocity components that
are tangential to the cross-sectional plane.

Figure 2.13: The isosurfaces for constant values of the Q-criterion
[53] (Q = 0.25 s−2) determined from the measured instantaneous flow
fields of Taylor vortex flow (Reo = 500, Rei = 1000, RΩ = −0.231,
ReS = 565). 3D view (left), and side view in axial-radial plane (right).



2.7. Results 39

outward flow in the radial direction between two vortices. Similarly, at
x/d ≈ 2.3 both vortices with positive and negative vorticity are inclined
towards the inner cylinder, because of the strong radial inflow coming
through this region. The strong inflow and outflow cause the tilting of
the elliptical shape of the Taylor vortices. This is in agreement with the
observations of Ravelet et al. [82], where they reported a similar defor-
mation for RΩ ≤ −0.04. Smieszek and Egbers [96] discussed similar, but
less significant deformation for Rei = 259 at RΩ = −0.5, with a shorter
cylinder height of Γ = 4.64.

On the other hand, the inclined characteristics of the vortices resem-
bles wavy-vortex flow. Wang et al. [112] reported inclination angles of
±45◦ for wavy vortex flow with a gap ratio of η = 0.733. However, there
is no evidence for a significant transfer of fluid between adjacent vor-
tices in our measurements, which is a typical property of wavy vortex
flow [1, 6, 112, 114]. On the contrary, the boundaries of each individ-
ual coherent structure are well defined for the measurements presented
here. Unlike wavy vortex flow [112], the boundaries between neighboring
Taylor vortices are fairly stationary in current measurements.

The second property is the presence of two concentrated regions with
a high vorticity level inside each individual Taylor vortex structure. If
we consider the Taylor vortex in the middle of the Q-plots in Figure
2.13, the core of the vortical structure can be seen as divided into two
vortices inside. This can be explained with the existence of two separate,
highly concentrated, vortical regions inside each individual Taylor vor-
tex. The high-concentration regions become more obvious if the value
of Q-criterion isosurface is increased for visualisation or perform time-
averaging. Any possible relation between the high concentration zones
and the inclined shape of Taylor vortices will need to be confirmed in
further studies.

2.7.2 Taylor vortex formation

In addition to the observations above, the formation of new Taylor vor-
tices was observed in the present set of measurements as well. Although
the measurements in the current chapter are not time resolved, the repe-
tition rate was high enough to capture the formation. An example of the
formation cycle is shown in Figure 2.14. Initially, the leading edges of a
pair of counter-rotating vortical structures appear in the outflow region
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between two counter-rotating Taylor vortices (Figure 2.14 (a)). They
are similar both in shape, size and vorticity strength. They emerge in
the region close to the inner cylinder wall and then move in the stream-
wise (azimuthal) flow direction. As they move forward, their size and
diameter tend to expand, and they move to the center of the radial gap
between cylinders (Figure 2.14 (b-g)). Their presence imposes the bigger
vortices to move away from each other in axial direction. This progress
continues until the diameter of the newly appeared vortical structures
becomes equal to the diameter of the original structures (Figure 2.14 (h-
i)). New counter-rotating vortical structures replace the previous ones
at the end of the cycle (Figure 2.14 (h-i)). The opposite behaviour was
observed as well. Disappearance of pairs of vortical structures follows
the same cycle, but in reverse order.

In current measurements, the formation of new vortices always starts
at the (radial) outflow region, while the disappearance always ends at
the inflow region. Similarly, the leading edges of the new vortices ap-
pear in the vicinity of the inner cylinder, where the trailing edges of
the disappearing vortices are close to the outer cylinder. It should be
noted that these cycles were observed randomly both in time and space.
However, it is not possible to make a guess of the appearance frequency.
Thus, one should be careful when performing time-averaging over in-
stantaneous Taylor vortex flow fields. The averaging can only be per-
formed when the cores of the vortical structures remain at the same
positions. Similar phenomena were reported by Coles [22] as well. He
briefly discussed single vortex filaments that first doubled themselves,
then merged again into a single vortex filament. However, for current
measurements, the phenomenon was not observed as a “doubling”. It is
more like an appearance or disappearance of new vortex pairs in between
two counter-rotating vortices. Further investigation should be done to
find out any possible relation between these two incidents. On the other
hand, based on visualisation experiments in a Boger fluid, Smieszek and
Egbers [96] reported the continuous formation of new vortices in the
middle of the axial position of the cylinders. They related the formation
to the instability of the Taylor vortices. However, their observations on
periodic movement of the vortex cores in the axial direction has not been
observed in the measurements presented in this chapter.
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Figure 2.14: 3D representation of one cycle of the new vortex forma-
tion for Taylor vortex flow. Isosurfaces of constant vorticity values in
the azimuthal direction y (yellow: 0.75 s−1, blue: −0.75 s−1). Blue and
red arrows indicate the approximate centres of the new-forming vortical
structures in the axial direction. The time differences between conse-
quent images are ∆t = 0.21 sec.
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2.7.3 Fully turbulent flow

In this section, results for the characteristics of fully turbulent flow at a
slightly positive RΩ (= 0.019) are discussed. In their paper, Andereck
et al. [7] defined fully turbulent flow as a region of turbulent flow with-
out any apparent large-scale structure, and characterized the dominant
length scale as smaller than the gap d for high cylinder speeds. Since
they could not identify obvious structures, they identified it as “feature-
less turbulent flow”.

The measurements presented in this section were performed when
the outer and inner cylinders are rotating with angular velocities of
Ωo = −2.26 rad/sec and Ωi = 1.57 rad/sec, respectively. The shear
Reynolds number is ReS = 4700 and the rotation number is RΩ =
0.019. Corresponding Reynolds and rotation numbers, as well as the
tomographic PIV measurement parameters are labelled as “FT4700” in
Table 2.2.

The measured velocity profile is given in Figure 2.15. The character-
istic of the azimuthal profile is similar to results reported in the litera-
ture [33,82,106]. Since RΩ > 0, the azimuthal flow profile is not symmet-
ric, and the plateau in the middle section is shifted in positive direction
towards the velocity of the outer cylinder. The velocity near the outer
cylinder wall is found to be underestimated by 11%, and near the inner
wall by 47% compared to their theoretical values (Ωo × ro = −0.27 m/s
for the outer and Ωi × ri = 0.17 m/s for the inner cylinder walls). This
is because of the thin near-wall layer that is not resolved and gradients
are underestimated due to low resolution.

A total of 300 vector fields were measured to make a further anal-
ysis of the characteristics of the time-averaged velocity field for fully
turbulent flow. In contrast to findings by Dong [33] at RΩ,o = 0, the
time-averaged vector fields do not contain any apparent large structures
like Taylor vortices. Dong [33] explains the Taylor vortex-like structures
in time-averaged field as the cumulative effect of instantaneous small-
scale vortex organization, which results in average structures similar to
Taylor vortices. If the instantaneous vector fields are considered, obvious
structures similar to Taylor vortices were not observed in current mea-
surements (Figure 2.16). However, the flow fields contain disorganised
small-scale and large-scale structures, as typical for a regular turbulent
shear flow.
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Figure 2.15: Mean velocity profile of the fully turbulent flow with
counter-rotation of cylinders (Reo = −2900, Rei = 1850, RΩ = 0.019,
ReS = 4700), as a function of the radial position. Time-averaging was
performed over 150 instantaneous vector fields. Spatial averaging was
performed in the axial direction of the cylinders. All velocities are nor-
malised with the azimuthal velocity of the outer cylinder (Ωo× ro). The
dashed lines simply connect the measured data points and the theoreti-
cal values at the walls.

Figure 2.16: The isosurfaces for constant values of Q-criterion [53] (Q =
400 s−2) determined from the measured instantaneous flow fields of fully
turbulent flow (Reo = −2900, Rei = 1850, RΩ = 0.019, ReS = 4700);
3D view (left), side view in the axial-azimuthal plane (right).
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2.8 Conclusion

In this chapter the implementation of tomographic PIV for a Taylor-
Couette flow was described. This was achieved through a rotating and
curved transparent outer wall, i.e. without the usage of an enclosure to
reduce the effects of refraction. Fluorescent tracer particles, appropriate
optical filters and black paint on the inside of the inner cylinder were
used to reduce the effects of surface reflection of the incident laser light.
The accuracy of the measurement in this situation was shown from the
comparison of the measured velocity in the laminar flow state with the
exact analytical solution. The results showed that the measured vector
fields deviates from the analytical solution by 3.2% of the outer cylinder
velocity at maximum. The discrepancy is below 2.5% over 75% of the
radial gap.

Measurement results for Taylor-vortex and featureless turbulence flow
were also described. The inclined orientations of the Taylor vortices were
shown and the absence of the large-scale vortical flow structures in the
fully turbulent flow was reported. The formation of a counter-rotating
Taylor vortice pair was also captured and described.



3 Spatial Resolution of Tomographic
PIV

3.1 Introduction

The development of modern multi-camera methods, such as tomographic
particle image velocimetry (tomographic PIV; [42]), makes it possible
to measure all three components and their spatial derivatives of the in-
stantaneous velocity field in a volumetric domain. Such data enable the
investigation of the instantaneous structure of turbulent flows, and they
provide quantitative experimental data on the full deformation tensor
and derived quantities, such as the energy dissipation rate and vortex
stretching.

For turbulence measurements it is necessary to resolve the spatial ve-
locity gradients, which requires a high spatial resolution. However, the
spatial resolution in tomographic PIV is limited by the maximum density
of particle images that can be recorded [5, 42]. As a consequence, there
exists an upper limit to the number of tracers within the volume. This
is further augmented by the common practice to use overlapping inter-
rogation domains, which may result in a final data density (determined
by the total number of interrogation locations) that exceeds the esti-
mated tracer particle density in the measurement volume. Hence, the
question arises what the actual spatial resolution is of a tomographic
PIV measurement. Recently, Worth et al. [122] used DNS of homoge-
neous isotropic turbulence to simulate a tomographic PIV measurement
and compared them with the actual experiments, in order to discuss the
resolution of 2D and of tomographic PIV. They used the discrepancies
between the simulations and the measurements as indicator of the effect
of the measurement noise and the spatial resolution over the velocity

Based on S. Tokgoz et al. Spatial resolution and dissipation rate estimation in
Taylor-Couette flow for tomographic PIV. Exp. Fluids, 53(3):561-583, 2012.
doi:10.1007/s00348-012-1311-7
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and the dissipation rates. Here the effect of the resolution is considered
using actual experiments instead of simulations. To validate the spa-
tial resolution of tomographic PIV the (turbulent) dissipation rate in
Taylor-Couette flow is considered. For this flow, the dissipation rate is
proportional to the torque applied to the rotating cylinders [80]. Hence,
there is an independent measurement for the dissipation rate, and this
can be compared against the dissipation rate estimated from the velocity
data. A discrepancy between these values is a measure of the accuracy
and the spatial resolution of the measurement, as the dissipation rate is
determined by the smallest scales that appear in the flow.

According to the energy-cascade model, the turbulent energy is dis-
sipated on the smallest eddies, and it is important to estimate the dissi-
pation rate for some industrial processes such as mixing [54,85,93]. The
approach to determine the local dissipation rate from tomographic PIV
data follows those reported by others, using planar PIV data [11,61,80,
93, 95, 100]. In order to resolve the smallest scales in turbulence and
to capture the velocity gradients accurately, measurements of turbulent
flows should ideally have a resolution of the order of the Kolmogorov
microscale [5, 93]. Nevertheless, for accurate results, the knowledge of
velocity gradients in all directions, which is not possible by 2D PIV,
is required [5]. The missing data can be estimated by assuming local
isotropy or by making use of symmetry properties in the statistics of the
local deformation tensor [80,93,94]. Those assumptions limit the calcu-
lations because of significant non-isotropic and inhomogeneous structure
of the flow [94]. Sharp and Adrian [93] showed that, using additional
correction methods it is possible to measure the dissipation rate up to
70% of the actual dissipation rate. Racina and Kind [80] followed the
same assumptions. They used 2D PIV measurements to calculate the
dissipation rate in a Taylor-Couette system for the first time. Indepen-
dent torque measurements allowed them to compare the dissipation rate
measurements with their actual values. The measured energy dissipation
rate showed good reproducibility according to their results.

In this chapter, instead of simulations, torque measurements are used
as an independent measure to validate the tomographic PIV-based es-
timations of dissipation rates. Initially, the validation of the dissipa-
tion rate estimations is done by comparing them with the analytically
well-defined laminar flow (Section 3.3.1). Moreover, the computed dis-
sipation rate values are compared with the dissipation rates that were
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estimated using torque measurements. Then, in the case of fully turbu-
lent flows, the average dissipation rate is compared to the values that
are obtained from torque measurements for increasing ReS numbers. By
increasing ReS , it is possible to decrease the smallest flow scales rela-
tive to the measurement resolution. In the current chapter the effect
of the Reynolds number (Section 3.4.1), the interrogation window size
(Section 3.4.2), and the data spacing relative to the interrogation win-
dow size (i.e., window overlap) on the spatial resolution of tomographic
PIV (Section 3.4.3) are discussed. Additionally, in Section 3.4.4 the large
eddy PIV method [95] is also used to provide a more accurate estimation
of the dissipation rate, and discuss its performance.

3.2 Experimental Setup

The Taylor-Couette geometry and tomographic PIV setup used in this
chapter is as given in Table 2.1 and Section 2.5, with an exception of the
cameras that were used. The experiments in the current chapter were
performed by using four Imager Pro X 4M cameras with a resolution
of 2000 × 2000 pixels. Similarly, approximately 1000 × 600 pixels were
used for all cases in order to achieve a higher image recording rate.
Calibration of the tomographic PIV was done using the procedure that
was explained in Section 2.5.4.

3.2.1 Image processing and vector validation

Similar to Chapter 2, the adaptive multi-pass approach was used for
correlation. Unless stated otherwise (see Sections 3.4.2 - 3.4.3), the in-
terrogation window size was 60×60×60 voxels with a 50% overlap in
the first pass and 40×40×40 voxels with a 75% overlap in the final two
passes. Spurious vectors were detected and removed by the universal
outlier detection method [117]. Linear interpolation was used to fill the
gaps where vectors were removed. Further details on flow seeding, illu-
mination, calibration and image processing can be found in Section 2.5.
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3.3 Dissipation Rate Estimations

The dissipation rate in Cartesian coordinates, which simplifies the cal-
culations over cylindrical coordinates in our experiments [63, 93, 94], is
given by:

ε = ν
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(3.1)

where, “〈•〉” represents an ensemble average, which in the present case
is estimated by a temporal average. In addition to temporal averaging,
spatial average of the dissipation rate in the axial direction is used to
compute the values. The u, v and w values are the instantaneous veloci-
ties in the x, y and z directions, respectively. McEligot et al. [68] showed
that in case of the dissipation rate estimations, the fluctuating velocity
components are dominant in the bulk flow, while the mean flow is im-
portant in the regions close to the wall. However, since it is aimed to
compute the total dissipation here, the instantaneous velocities, which
include both the mean and the fluctuating velocity components, are used
for the estimations.

Different to the previous efforts to compute the dissipation rate us-
ing 2D PIV measurements [11, 80, 93–95], all instantaneous 3D velocity
gradients in equation (3.1) are known via tomographic PIV. As a conse-
quence, assumptions based on flow axisymmetry or isotropy to correct
the equation for missing terms are not necessary, and only directly mea-
sured values are used to compute ε [11]. The precision of the current
computations is mainly limited by the spatial resolution of the measure-
ments.

The computed dissipation rates are compared against dissipation val-
ues based on separate torque measurements (represented by εT ) [80]. For
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Taylor-Couette flow, the total dissipation of kinetic energy per unit time,
must be equal to the power supplied by the rotating cylinders. Further-
more, the balance of momentum in the steady state requires the torque
magnitude on the inner and outer cylinder to be equal, which reduces
the expression for the mean dissipation rate per unit volume to:

εT =
P

ρVf
=
T |Ωi − Ωo|

ρVf
(3.2)

where P stands for the power input due to the inner cylinder rotation,
T represents the torque measured on the inner cylinder, Ωi and Ωo are
the angular velocities of the inner and outer cylinders respectively, ρ is
the density of the fluid and Vf is the total volume of the fluid in the
Taylor-Couette setup.

In order to compute the velocity gradients in equation 3.1, a second-
order polynomial regression to the measured velocity field was done [38]:

freg(rx, ry, rz) = a0 + a1rx + a2ry + a3rz + a4rxry + a5rxrz

+ a6ryrz + a7r
2
x + a8r

2
y + a9r

2
z (3.3)

where rx, ry and rz are the relative distances from a point in the x, y and
z directions, respectively. The method fits a second order polynomial
function to the velocity distribution in a 5×5×5 neighbourhood around a
point (x1,y1,z1), which acts like a filter as well [38,86]. The fit parameters
a1, a2 and a3 represent the velocity gradients at (x1,y1,z1) in the x, y,
z directions, respectively.

The PIV method encounters problems to properly resolve Kolmogorov
microscales, because of the limit of the spatial resolution [5, 11, 61, 80,
93,95,100]. Using the dissipation rate that is estimated from the torque
measurements, the Kolmogorov microscale can be defined as:

λK ≡
(
ν3

εT

)1/4

(3.4)

where ν is the kinematic viscosity and εT is the mean dissipation rate
estimated from the torque measurements.
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Small scale fluctuations are filtered out when the space between the
vectors (δx) is larger than the Kolmogorov length scale [95, 100]. This
results in the underestimation of turbulent dissipation rate [80,95,100].
In contrast, for cases where δx is smaller than the Kolmogorov scale
length, a decreasing δx leads to a rapid increase of the measured dissi-
pation rate because of the measurement noise. This noise is due to the
finite measurement error [85,100].

Another measure of the measured dissipation rate that is captured
by tomographic PIV can be represented using equation 3.4, as well. It
provides the information about the degree of the smallest captured scales
with tomographic PIV (λ). However, εT should be replaced by the mean
dissipation rate computed by tomographic PIV (i.e. ε). The effect of the
spatial resolution to the dissipation rate estimations can be evaluated by
λ/λK ratio. The spatial resolution of the measurement is better if the
ratio is closer to unity. The ratio of λ/λK is indicative of how well the
flow has been resolved with respect to the dissipation rate estimation.

3.3.1 Laminar flow and assessment of dissipation rate estimations

Local dissipation rate estimations for the laminar flow are given in
Figure 3.1. They were computed with two different approaches. The
first approach is to compute the gradients and the dissipation rates
from a single, time-averaged vector field, which will be referred to as
“method 1”. Since the time-averaging smooths the vector field, this
method results in slightly lower values of velocity gradients and local
dissipation rates.

The second approach, that is indicated as “method 2”, is to compute
the gradients and the dissipation rates for each of the 150 instantaneous
vector fields individually, and then average the dissipation rates. In
general, “method 2” results in slightly higher dissipation rates, since it
includes the contribution of random noise in the measured velocity. The
difference between these two methods is also plotted in Figure 3.1. Both
methods yield data that are in good agreement in the inner region, which
might indicate that the contribution of random noise to the measured
velocity in the bulk flow is relatively low. The difference is below 3.4% of
the maximum dissipation rate in the region 0.1d ≤ r−ri ≤ 0.85d, which
is associated with PIV noise. It is obvious that the difference between
the results of the two methods is higher close to the cylinder walls. The
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Figure 3.1: Local dissipation rate estimations for laminar flow, ob-
tained by tomographic PIV, as a function of radial position. Calcula-
tions were performed with two methods explained in the text.

difference between the methods remains small however, indicating that
the effect of random measurement noise is not significant. Since the
other flow regimes are unsteady, only “method 2” is considered in the
remainder of this chapter.

The analysis of individual velocity gradients reveals two dominant
gradients, which are ∂v/∂z (azimuthal velocity gradient in the radial di-
rection) and ∂w/∂y (radial velocity gradient in the azimuthal direction).
These gradients are an order of 10 times higher than the remaining ones.
However, all of the gradients were included in the dissipation rate es-
timations. The “wavy” characteristics of the local dissipation rates is
caused by the step-like behaviour of the gradient ∂w/∂y, which might
be due to a peak locking effect [5]. Post-processing methods to correct
the peak locking effect can be found in the literature [20,84]. Since it is
aimed to use the raw data without any correction, these methods were
not implemented in this study.

Obviously, the measured local dissipation rates in Figure 3.1 signif-
icantly decrease towards the walls. This is due to errors related to the
velocity gradient estimation. A second-order polynomial regression uses
a 5× 5× 5 neighbourhood of vectors at each point. Therefore, the effect
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Figure 3.2: The effect of boundaries to the local dissipation rate esti-
mations for laminar flow, as a function of radial position. 2 and 3 points
extraction refers to the number of points removed from the data close
to the inner and outer cylinders.

of the gradients at the borders of the domain (i.e. the cylinder walls) at
both sides expands toward the inner section of the gap. This continues
until the edges no longer are part of the domain of the 5× 5× 5 kernel,
which is the fourth data point from cylinder walls in the radial direction
for current case. This effect was tested by excluding two and three data
points from measurement domain at both sides for the velocity gradient
estimations, and is plotted in Figure 3.2. The local dissipation rate in
the region 0.18d ≤ r − ri ≤ 0.81d was identical for both estimations.
However, the deviation between two domains is large close towards each
wall. In the case of excluding two data points from each side, the effect
of the cylinder walls is still dominant in the domain. Thus, similar to
Worth et al. [122], it was decided to continue with excluding three data
points for the analyses with 75% overlap, unless otherwise stated (see
Section 3.4 and Table 3.3 for the exceptions). It should be noted that for
all of the mean dissipation rate estimations presented in this chapter, the
local dissipation rates at the central plane of the measurement volume
in the azimuthal direction (i.e. θ = 0, see Figure 2.3) were used. Ad-
ditionally, spatial averaging was performed in the axial direction in the
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Figure 3.3: Dissipation rate estimations, computed analytically and
with tomographic PIV data, for laminar flow. Plotted as a function of
radial position. Spatial averaging was performed in the axial direction
of the cylinders. (Inset) Normalised dissipation rate estimations for lam-
inar flow as a function of radial position. Normalisation was performed
according to the analytically computed local dissipation rates. Error
bars are representing the effect of uncertainty of the kinematic viscosity
due to ±0.5 ◦C temperature difference.

measurement volume, which is a homogeneous direction in the current
system.

Comparison with the analytical calculations

As the laminar flow has a well defined analytical form, local dissipation
rate estimations based on the measurement of tomographic PIV can be
compared with the analytical calculations of the local dissipation rate.
A volumetric domain of the analytical solution, which has the exact
grid positions with the measured domain, was generated. Then, the
same procedure for the dissipation rate estimation by tomographic PIV
was followed on the analytically generated velocity vector domain. The
results are shown in Figure 3.3. The local dissipation rates estimated by
tomographic PIV measurements are in good agreement with analytical
results. The decreasing trend through the gap is consistent as well.
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In order to make a quantitative comparison, the values estimated
from the tomographic PIV data were normalised with the analytical
result. The normalisation of the local dissipation rate with the analytical
value is given as:

ε∗ =
ε

εA
(3.5)

where ε represents the local dissipation rate estimated by tomographic
PIV and εA stands for the local dissipation rate calculated analytically.
The plot for the normalised local dissipation rate is given in the in-
set of Figure 3.3. The normalisation points out that the tomographic
PIV measurements overestimates the local dissipation rate values ev-
erywhere. However, the difference is below 20% of the local dissipation
rate, with the exception of a few data points near the cylinder walls.
On the other hand, the effect of the uncertainty of the water temper-
ature to the dissipation rate estimations are represented by error bars
in the inset of Figure 3.3. The uncertainty caused by the fluctuation of
the fluid temperature is relatively small compared to the deviance from
the analytical solution. Hence, it can be concluded that, the error in the
dissipation rate estimations of the laminar flow case is mostly due to the
errors in the measurements and the estimation of the spatial derivatives.

Comparison with the torque measurements

Even though the comparison with the analytical solution is the simplest
and most reliable method for the validation of the dissipation rate esti-
mation, it is not feasible for all flow types. Another approach should be
used especially for the fully turbulent flows.

An advantage of the Taylor-Couette setup is the possibility of per-
forming torque measurements. For the experimental setup presented
here, the torque of the inner cylinder can be measured by a torque-meter
that co-rotates with the inner cylinder shaft. More detailed information
about the torque measurements on the current experimental setup is
given by Ravelet et al. [82] and Greidanus et al. [49]. Using equation
3.2, a direct comparison between the mean dissipation rate obtained by
tomographic PIV and by the torque measurement can be performed. It
should be noted that the working fluid in current experiments was water,
and the system was operated at relatively low rotating frequencies. As
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a consequence, the torque values are much lower than the limits of the
measurement capability of the torque-meter. Therefore, a torque scaling
of the data presented by Delfos et al. [25] and Ravelet et al. [82] was
used instead. If equations 3.2 and 3.5 are combined, the normalisation
of mean dissipation rate obtained by tomographic PIV (ε) is done as:

ε∗ =
ε

εT
(3.6)

Estimation of the dissipation rate close to the cylinder walls

Another question arises in the computations of the mean dissipation
rate, ε. Because of the reasons explained above, the dissipation rates
close to the cylinder walls can not be estimated via tomographic PIV.
However, these values are needed for computing the mean dissipation
for the complete system. In order to estimate these values, a linear
polynomial curve fitting operation was performed on the dissipation rate
values on the radial direction. By the help of these polynomials, the
dissipation rates at the cylinder walls were estimated. For the laminar
flow case, all data points of the domain was used to fit the equation.
Since the analytical solution shows approximately linear behaviour, this
approach seems reasonable. However, as it will be discussed in the next
section, the dissipation rates of the fully turbulent flows have different
characteristics to that of the laminar flow. Thus, using the complete
domain for the curve fitting would result in erroneous estimations for
the turbulent flow cases. Hence, 3 data points, which are the closest
to the cylinder walls, were used to fit linear polynomials. Two separate
polynomials; one for the inner cylinder and another one for the outer
cylinder (see dashed lines in Figure 3.5), were used for each case to
estimate the dissipation rates at the inner and outer cylinder walls. In
order to compute the mean dissipation of the Taylor-Couette system,
numerical integration was performed over the measured data points in
the middle region and the estimated values on the walls.

A summary of the dissipation rate estimations for all flow cases are
presented in Table 3.1. Note that, for the laminar case, the Kolmogorov
length scale-related values in Table 3.1 (i.e. λK , δx/λK , λ and λ/λK),
are meaningless in terms of “turbulence” characteristics. However, they
are presented for the aim of comparison. The mean dissipation rate
for the laminar flow case (ReS = 615) is in good agreement with both
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estimations of the analytical value and the scaled torque data. The
error level is of the order of 15%. Since the equivalent “Kolmogorov
length scale” is relatively large for the laminar case, the vector spacing
is smaller than this (δx/λK = 0.915). Thus, the overestimation is caused
by the noise during the measurements [5, 18, 80, 85, 100]. Tanaka and
Eaton [100] reported an error level of 20− 30% at a similar δx/λK , but
with a correction. It can be concluded that, without any need for a
further correction, tomographic PIV has a similar order of error as for
corrected 2D PIV estimations.

The different nature of the torque and tomographic PIV methods
might lead to a some degree of uncertainty. Comparison of both mea-
surements with the analytically calculated mean dissipation rate indi-
cates an uncertainty of the torque measurements as ≈ 1% and the
tomographic PIV measurements as ≈ 15%.

The mean dissipation rate estimation for the Taylor vortex flow (ReS =
565) is similar to the laminar flow case. As expected, measurements are
very close to resolving the flow (λ/λK = 1.04). The error level is of
the order of 15% again, but the dissipation rate is now slightly under-
estimated. Since both large-scale flow cases have similar error levels,
the discrepancy might be due to the contribution of the errors in the
tomographic PIV and other effects in the estimations.

3.4 Results

In this section the fully turbulent flows are evaluated, where the aim is to
investigate the relation between turbulent length scales and the spatial
resolution of the tomographic PIV measurements, using three different
methods. Initially, in order to understand the effect of the turbulence
intensity to the dissipation rate estimations, the size of the interrogation
window (IW in voxel - DI in mm) was kept constant. In the mean time,
ReS was increased from 3800 to 47000, at an exact counter rotation of
the cylinders; RΩ,o = 0 (Section 3.4.1). This approach results in mea-
surements with constant spatial resolution, but decreasing Kolmogorov
length scales.
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Figure 3.4: Convergence of the average dissipation rate (ε) with the
number of frames compared to the average of 1000 frames (ε1000), at
three radial positions. Computations were performed at ReS = 14000
with 40× 40× 40 voxel3 final interrogation window and 75% overlap.

In the second approach (Section 3.4.2), the size of the interrogation
window was increased, while the shear Reynolds number remained con-
stant. In this way, λK was kept constant, while δx increased. Worth et
al. [122] performed a similar analysis, but using DNS data at a single
Reynolds number.

Finally, in Section 3.4.3, the shear Reynolds number is kept constant,
and the influence of different interrogation window overlap values while
maintaining constant interrogation window size is discussed. This has
the same effect on δx and λK as it has in the second approach. How-
ever, this approach allows to evaluate the effect of oversampling to the
measurement result. Additionally, in Section 3.4.4, the dissipation rate
estimates are compared with the estimates computed by the large eddy
PIV method [93,95].

Estimations of dissipation rate for fully turbulent flows were per-
formed over 1000 instantaneous velocity fields, which is sufficiently higher
than the required number of samples for statistically reliable results [11].
Tests (Figure 3.4) show that an uncertainty below 4% requires at least
150 independent vector fields, where the uncertainty level becomes lower
than 1% when at least 650 vector fields are used. From this it can be
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concluded that the sampling error of 1000 vector fields is below 1%.

3.4.1 Effect of Reynolds number

The results of the dissipation rate estimations for increasing shear Reynolds
numbers are plotted in Figure 3.5. The plots show the characteristics
of the local dissipation rates along the gap between the cylinders. The
dissipation rates are increasing for increasing ReS , as expected. The
ratio between the dissipation rates at ReS = 3800 and 47000 is of the
order of 102 for the estimations via tomographic PIV. Furthermore, for
each shear Reynolds number, the local dissipation rates are almost sym-
metrical with respect to the r − ri = 0.5d plane. The regions close to
the inner and the outer cylinder have similar rates of dissipation, and
they are higher than for the middle section. The local dissipation rate
values reveal a plateau at the middle region. The difference between the
minimum and the maximum dissipation rates for each profile decreases
for increasing ReS . Hence, the plateau becomes flatter for increasing
values of ReS .

As explained before, unlike the case for laminar flow, it is not possible
to compute the dissipation rates analytically for fully turbulent flows.
However, the mean dissipation was estimated using the torque data mea-
sured with the same experimental setup by Delfos et al. [25] and Ravelet
et al. [82]. Results for the estimations of the mean dissipation rate are
given in Table 3.1.

In the case of fully turbulent flows, the agreement between the esti-
mates for the mean dissipation rate via torque scaling and tomographic
PIV measurements are not as good as for the laminar flow case. Tomo-
graphic PIV underestimates the mean dissipation by 47% for the best
case (ReS = 3800), and up to 97% for higher values of ReS . Mainly, this
is the result of the finite spatial resolution of the tomographic PIV data.
If the Kolmogorov scale is less than the vector spacing (i.e. δx/λK > 1),
the dissipation rate values would be underestimated [95, 100], which is
due to unresolved small-scaled structures [61].

In the literature, various values of dissipation rate estimation errors
have been reported. Tanaka and Eaton [100] demonstrated that at high
spatial resolutions the error level might reach up to 10 times the actual
dissipation value and for lower spatial resolutions the dissipation rates
are underestimated. Sharp and Adrian [93] estimated the contribution
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Figure 3.5: Dissipation rate estimations for fully turbulent flow cases
(ReS = 3800−47000) with exact counter-rotation of the cylinders. Pro-
files were computed with 40× 40× 40 voxel3 final interrogation window
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Dashed lines represent the linear extrapolation to estimate the wall value
for ReS = 3800.
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of the unresolved scales using a Smagorinsky model. They concluded
that approximately 70% of the turbulent dissipation had been captured
in their measurements at a spatial resolution of about 8 Kolmogorov
length scales. Tomographic PIV returns similar errors at comparable
spatial resolution. Racina and Kind [80] showed lower mean dissipation
rates obtained from 2D PIV data with decreasing resolution, but the
results are somewhat difficult to compare due to the different nature of
the flow, i.e. wavy vortex flow compared to fully turbulent here.

3.4.2 Effect of the size of the interrogation window

In order to isolate the effect of the interrogation window size on the
velocity vector, calculations are performed on the very same measure-
ment data with different final interrogation window sizes. This way, the
Kolmogorov length scale, λK , is maintained constant. This analysis was
performed for ReS = 3800, 14000 and 47000.

The local dissipation rate estimations for ReS = 14000 with different
interrogation window sizes are plotted in Figure 3.6. Since the char-
acteristics are similar to those for ReS = 3800 and 47000 those were
omitted in Figure 3.6.

The effect of the interrogation window size to the mean dissipation
rate is summarised in Table 3.2. Consistent with previous reports in
literature [61, 80, 85, 100], the estimates are decreasing with increasing
size of the interrogation windows; IW (i.e., with increasing values of DI

and δx), for all ReS numbers. If the values are compared to the best
estimations of each case (i.e. IW = 40 voxel), doubling the interrogation
window size results in an average decrease of 76% for all ReS . The
difference increases to an average of 95% in the case of 4-times larger
window size (IW = 160 voxel).
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3.4.3 Effect of the overlap of the interrogation window

As the last approach, the effect of the overlap value of the final interro-
gation volumes to the dissipation rate estimations are discussed.

It should be noted that the velocity gradient computation scheme
is the same for all cases in this study (see Section 3.3 and equation
3.3). However, for the computations in this section, the kernel sizes
were adjusted according to the overlap values. The 5 × 5 × 5 kernel
size that is used to filter the measured velocity field, is chosen equal
to the interrogation window with 75% overlap [38]. In order to match
the kernel size to the correlation window size at 0% and 50% overlap,
1×1×1 and 3×3×3 kernel are used in these cases. This means that, the
velocity gradients for 0% overlap were calculated without any filtering.
Thus, the expected noise level is higher for 0% overlap.

Since the kernel size is not constant, the number of excluded data
points close to the cylinders are varied between the overlap values as well.
Three, two and one data points were excluded from the measured domain
for the analyses with 75%, 50%, and 0% overlap, respectively. The only
exception to this procedure is the case of 160 × 160 × 160 voxel3 final
interrogation window with 75% overlap. Since the measured data for this
case contains only 7 points in the radial direction, three point exclusion
results in the removal of 6 data points. Obviously, one data point in
the radial direction is not enough for the total dissipation estimation,
and introduces additional uncertainty. Hence, two data points were
excluded from the measurement domain at both sides for the velocity
gradient estimations of the corresponding case. The parameters of the
velocity gradient computations are summarised in Table 3.3.

The results of changing interrogation overlap values at a constant
interrogation window size of IW = 40 voxel are presented in Table 3.4.
The dissipation rate estimations increase with increasing overlap value.
Incrementing the overlap from 0% to 50% and 75%, results in 15− 17%
and 55− 60% improvement of the estimation for all three values of ReS
considered here.
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Table 3.3: Parameters that were used to compute the dissipation rates
for the fully turbulent flow cases. “Overlap” stands for interrogation
window overlap value in percentage. “Kernel size” is the number of
the neighbouring data points to calculate the velocity gradients during
regression analysis. “Number of excluded data points” stands for the
number of the data points excluded from the measurement domain at
both inner and outer cylinder sides in the radial direction.

ReS IW Overlap Kernel Nr. of excl.
[−] [vox] [%] size [-] data points [-]

All 40 75 5× 5× 5 3
3800, 14000, 47000 40 50 3× 3× 3 2
3800, 14000, 47000 40 0 1× 1× 1 1
3800, 14000, 47000 50, 60, ... 100 75 5× 5× 5 3
3800, 14000, 47000 80 50 3× 3× 3 2
3800, 14000, 47000 160 75 5× 5× 5 2

Table 3.4: Dissipation rate estimations at a constant final interroga-
tion window size (IW = 40 voxel, DI = 1.564 mm), but for different
interrogation window overlap values.

ReS Overlap δx DI δx/λK DI/λK ε∗ λ/λK ε∗SGS
[−] [%] [mm] [mm] [-] [-] [-] [-] [-]

0 1.564 1.564 12.61 12.61 0.200 1.50 0.295
3800 50 0.782 1.564 6.30 12.61 0.235 1.44 0.350

75 0.391 1.564 3.15 12.61 0.532 1.17 1.629

0 1.564 1.564 30.89 30.89 0.040 2.24 0.139
14000 50 0.782 1.564 15.44 30.89 0.046 2.16 0.164

75 0.391 1.564 7.72 30.89 0.084 1.86 0.498

0 1.564 1.564 71.11 71.11 0.012 3.04 0.118
47000 50 0.782 1.564 35.55 71.11 0.014 2.90 0.150

75 0.391 1.564 17.78 71.11 0.032 2.37 0.824



66 Chapter 3. Spatial Resolution of Tomographic PIV

T
a
b
le

3
.5
:

R
el

at
io

n
b

et
w

ee
n

in
te

rr
og

at
io

n
w

in
d

ow
si

ze
,

v
ec

to
r

sp
ac

in
g,

an
d

th
e

d
is

si
p

at
io

n
ra

te
es

ti
m

at
io

n
s

fo
r
R
e S

=
1
4
00

0
.
D
I

=
1
.5

64
,

3.
12

8
an

d
6.

25
6

m
m

co
rr

es
p

on
d

to
I
W

=
40

,
80

an
d

16
0

v
ox

el
,

re
sp

ec
ti

ve
ly

.
M

ov
in

g
h

or
iz

on
ta

ll
y

fr
om

le
ft

to
ri

gh
t

in
a

ro
w

re
p

re
se

n
ts

th
e

d
ec

re
as

e
of

th
e

ov
er

la
p

va
lu

es
“O
L

”
(f

ro
m

7
5%

,
5
0
%

to
0
%

),
at

a
co

n
st

an
t

in
te

rr
og

at
io

n
w

in
d

ow
si

ze
.

F
or

ea
ch

ro
w

,
th

e
fi

rs
t

n
o
n

-e
m

p
ty

ce
ll

fr
o
m

th
e

le
ft

re
p

re
se

n
ts

a
75

%
ov

er
la

p
va

lu
e

fo
r

th
e

co
rr

es
p

on
d

in
g

in
te

rr
og

at
io

n
w

in
d

ow
si

ze
.

M
ov

in
g

in
th

e
d

ia
go

n
al

d
ir

ec
ti

on
fr

om
to

p
-l

ef
t

to
b

ot
to

m
-r

ig
h
t

re
p

re
se

n
ts

th
e

in
cr

em
en

t
of

th
e

in
te

rr
og

at
io

n
w

in
d

ow
si

ze
a
t

a
co

n
st

a
n
t

ov
er

la
p

va
lu

e.
F

or
in

st
an

ce
;

th
e

ce
ll

fo
r
D
I

=
3
.1

28
m

m
an

d
δ x

=
1
.5

64
m

m
st

a
n

d
s

fo
r

a
50

%
ov

er
la

p
,

w
h

er
ea

s
th

e
ce

ll
D
I

=
6.

25
6

m
m

an
d
δ x

=
1.

56
4

m
m

re
p

re
se

n
ts

a
75

%
ov

er
la

p
.

D
I

δ x
=

0.
39

1
m

m
δ x

=
0.

78
2

m
m

δ x
=

1.
5
64

m
m

[m
m

]
δ x
/
λ
K

D
I
/λ

K
ε∗

λ
/λ

K
O
L
δ x
/λ

K
D
I
/λ

K
ε∗

λ
/λ

K
O
L
δ x
/λ

K
D
I
/λ

K
ε∗

λ
/
λ
K

O
L

[-
]

[-
]

[-
]

[-
]

[%
]

[-
]

[-
]

[-
]

[-
]

[%
]

[-
]

[-
]

[-
]

[-
]

[%
]

1
.5

6
4

7
.7

2
30

.8
9

0.
08

4
1.

86
75

15
.4

4
30

.8
9

0.
04

6
2.

16
50

30
.8

9
30

.8
9

0.
0
40

2
.2

4
0

3
.1

2
8

-
-

-
-

-
15

.4
4

61
.7

8
0.

02
3

2.
57

75
30

.8
9

61
.7

8
0.

0
12

3
.0

0
50

6
.2

5
6

-
-

-
-

-
-

-
-

-
-

30
.8

9
12

3.
56

0.
0
05

3
.7

6
75



3.4. Results 67

The effect of overlap ratios was tested with IW = 80 and 160 voxels
as well. For the simplicity, results are given only for ReS = 14000 in
Table 3.5. The performance of the dissipation rate estimations decreases
for increasing vector space at a constant interrogation window size DI .
At a constant distance between vectors, δx, increasing the interrogation
window size results in lower dissipation estimations. However, the de-
pendency of the estimations on the change of DI and δx are not the
same.

3.4.4 Dissipation rate estimations with large eddy method

In order to estimate the contribution of the non-resolved scales to the
dissipation rates, the dissipation rates were computed using large eddy
PIV [95]. Using the sub-grid scale (SGS) flux, the large eddy method
takes the unresolved scales of PIV measurements into consideration for
dissipation rate estimations [93,95].

The dissipation rate estimations by the large eddy PIV method were
performed only for fully turbulent cases and are given by ε∗SGS in Ta-
ble 3.1, 3.2 and 3.4, in normalised form. Similar to Sheng et al. [95],
CS = 0.17 was used as the Smagorinsky constant for the computations.
As stated by Sheng et al. [95], the Smagorinsky model results in better
estimations for higher ReS .

Comparisons show that the large eddy method results in improved
dissipation rate estimations than the direct estimations by tomographic
PIV, as expected. The improvement for all cases indicates that the error
in the direct estimation of dissipation rates by tomographic PIV is due
to the unresolved scales.

3.4.5 Summary of the dissipation rate estimations

The results are is summarised in Figures 3.7 and 3.8. As reported in the
literature, underestimation of the dissipation rates is evident for fully
turbulent flow cases, and the degree of underestimation increases with
Reynolds numbers [61,80,85,93,95,100].

The results show that the success of the dissipation rate estimations
are strongly related to the spacing between the vectors and the interro-
gation window size. The error level increases with a logarithmic char-
acteristic, as reported [11, 61, 80, 122]. Different cases with a constant
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Figure 3.7: Normalised mean dissipation rate estimations of three ap-
proaches for fully turbulent flow cases with exact counter-rotation. For
details, see Tables 3.1, 3.2 and 3.4.
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Figure 3.8: Ratio of the equivalent Kolmogorov scale over the actual
Kolmogorov scale (λ/λK), as a function of the vector spacing relative to
the Kolmogorov scale (δx/λK). The symbols follow the same coding as
given in Figure 3.7.
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overlap of 75% fall almost on same curve, with relatively small scatter.
Decreasing window overlap at a constant interrogation window size in-
creases the error. However, it results in lower error levels compared to
similar vector spacing with larger window sizes. Hence, the dissipation
rate estimations, therefore the actual spatial resolution of tomographic
PIV, is a non-linear function of both δx/λK and DI/λK .

Extrapolating the values in Figure 3.8 to λ/λK = 1 implies that
vector spacing of δx/λK ≈ 1.5−2.0 (equivalent to window sizes DI/λK ≈
6.0−8.0 at 75% overlap or DI/λK ≈ 3.0−4.0 at 50% overlap) is required
to fully resolve the turbulent dissipation scales. This is comparable
with numbers reported by Buxton et al. [18], Worth et al. [122] and
Saarenrinne and Piirto [85] (δx/λK ≈ 1.5− 3.0), which were calculated
with 50% overlap. The results presented here are also seem consistent
with a study by Jiménez et al. [54], who reported an average diameter
of Burgers’ type vortices of 6− 10λK .

In conclusion, the computations are more sensitive to changes of the
interrogation window size than changes of the vector spacing. Although
it results in a higher data density that possibly exceeds the tracer par-
ticle density, oversampling the measured data results in better estima-
tions. The actual spatial sampling improves with the increasing window
overlapping.

3.5 Conclusion

An attractive feature of Taylor-Couette flow is that it is possible to
generate different flow conditions by changing the angular velocities of
the inner and outer cylinders, i.e. laminar flow, Taylor-vortex flow,
and turbulent flow. The laminar flow is stationary, while the Taylor-
vortex flow is dominated by large-scale flow structures. The turbulent
flow is without any dominant large-scale structures (i.e. “featureless”
turbulence). This was utilized to determine the spatial resolution of
tomographic PIV in relation to the length scales that are present in
the flow. The measured torque on the cylinders is used to obtain an
independent estimate of the dissipation rate, and this was compared
with the dissipation rate as is estimated from the measured velocity
gradients. In tomographic PIV the velocity gradients can be measured
of all three velocity components and for all three principal directions.
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Hence, it was possible to estimate the dissipation rate and Kolmogorov
length scale without recourse to any symmetry assumptions.

As a metric to express the difference between the measured dissipa-
tion rate and the actual dissipation rate, the ratio of the dissipation rate
as estimated from the PIV data relative to the dissipation rate given by
the measured torque, as well as the ratio of the Kolmogorov scale deter-
mined from corresponding dissipation rates were used. Evidently, the
accuracy is improved for decreasing dimensions of the (3D) interroga-
tion window, while maintaining a minimum image density of at least 6
particle images per interrogation window. While the laminar flow and
Taylor-vortex flow cases appear to be fully resolved, the turbulent flow
cases are increasingly under-resolved. Only the turbulent flow with the
lowest Reynolds number investigated here appears to be (almost) fully
resolved. The measured dissipation rate relative to the actual dissipa-
tion rate quickly drops with increasing Reynolds number. Yet, the use
of the so-called large-eddy PIV method is capable to recover most of
the dissipation due to unresolved scales. It should be noted that the
large-eddy PIV method is valid when the sub-grid scales are sufficiently
isotropic, which may not be always the case in the present study. Most
notably, the results show that an increment of the overlap ratio for sub-
sequent (3D) interrogation windows yield improved results. It was also
showed that a vector spacing in the range of δx/λK ≈ 1.5 − 2.0, which
equals to DI/λK ≈ 6.0− 8.0 at 75% overlap (DI/λK ≈ 3.0− 4.0 at 50%
overlap), should be used for a good estimation of turbulent dissipation
with PIV.

It is noted that the actual accuracy is also determined by many data
reduction steps and experimental parameters, such as the number of par-
ticle images inside the (3D) interrogation window, the smoothing of the
measurement data or the velocity gradient computation method. They
might change the contribution of the noise to the measurements. How-
ever, it was showed that the contribution of the noise to the estimations
is lower (3.4% maximum) compared to other error sources. Further in-
vestigation should be done to reveal the effect of different aspects in the
data reduction in relation to achieving an improvement of accuracy by
means of oversampling.



4 Time-Resolved and Volumetric
Inspection of a Turbulent Flow with
Small Convection Velocity

4.1 Introduction

Coherent motions at turbulent flows are crucial for our understanding of
the turbulence. They are associated with the transport of momentum,
and with the dissipation and production of turbulent kinetic energy [2],
and therefore related by the drag or torque acting on surfaces (see Chap-
ter 5). Publications by Robinson [83], Adrian [2], Marusic et al. [67] and
Smits et al. [97] give a detailed overview on the coherent structures in
turbulence, especially in wall-bounded flows. Until recent years, studies
were mostly focused on the statistical aspects of coherent motions in tur-
bulence. However, with the development of new experimental techniques
and numerical methods, we can now track and study the evolution of
the turbulent flow structures in a true 3D volume, which makes it now
possible to investigate the dynamical aspects of the coherent motions.

Previously, tracking of flow structures has been performed using ba-
sic flow visualization techniques, where instantaneous flow patterns were
initially visualized by smoke or colored dye [2,24]. Although these stud-
ies were quite useful to investigate the flow topology, due to the limi-
tation of the visualization techniques, mostly they were qualitative and
focused on large scale patterns.

Early quantitative experimental studies to investigate the spatial evo-
lution of the flow structures used point-wise measurement techniques
such as laser Doppler anemometry (LDA) or hotwire probes [83]. On the
other hand, planar measurement techniques like 2D and stereo PIV pro-
vided more information about the flow over single measurement plane
[29, 62]. Although the methods listed above are quite helpful, espe-
cially in a statistical sense, they are either not time-resolved or volumet-

71
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Figure 4.1: Sketch of velocity profile between two cylinders at
RΩ,c = 0.

ric [2, 83,92,97].

The introduction of time-resolved tomographic PIV (or high-speed
tomographic PIV) [51, 71, 89–91], enabled to study the temporal, as
well as the spatial, evolution of instantaneous flow structures in a fully
volumetric measurement domain. With the addition of the time evo-
lution to the technique, the high-speed tomographic PIV sometimes is
also called as “4D-PIV” [89]. Time-resolved tomographic PIV made
it possible to track turbulent flow structures over space and time and
to study their evolution. The initial studies of turbulence using time-
resolved tomographic PIV were mostly focused on two flow types: cylin-
der wakes [51,71] and boundary layers [40,41,46,91,92].

In the case of a Taylor-Couette geometry, it is possible to create fully
turbulent flow with different cylinder rotation rates. In this study it
was decided to use this advantage to create a fully turbulent flow with
approximately zero mean velocity. This is possible by rotating the cylin-
ders in the opposite directions with equal wall velocities. Further details
on the flow conditions are given in Section 4.2. Actually, the mean az-
imuthal velocity can be zero at only one radial position for RΩ,c = 0 (see
Figure 4.1). In other radial positions the advection velocity still moves
the structures away from the measurement volume, especially near the
walls. However, under these circumstances when the mean azimuthal
velocity is very small, the flow structures are still expected to remain in
the measurement domain for a extended times compared to other wall
bounded flows. Using the time-resolved tomographic PIV, the aim here
is to track turbulent flow structures to demonstrate the capabilities of
the geometry and the measurement system for the studies on the dy-



4.2. Flow Conditions 73

Table 4.1: Flow conditions.

ReS RΩ Rei Reo Ωi Ωo Ui Uo ∆t
[-] [-] [-] [-] [rad/s] [rad/s] [m/s] [m/s] [ms]

3500 0 1750 -1750 1.45 -1.32 0.158 -0.158 2.288

namic events in turbulence. Tracking of the coherent structures is useful
for understanding turbulence by providing more insight on the dynamic
events such as the actual convection velocities, interaction between struc-
tures, and generation and breakup of structures [41]. In this chapter,
different instantaneous events, such as azimuthal velocity bursts, and
formation and breakup of turbulent flow structures are investigated.

4.2 Flow Conditions

As mentioned above, the turbulent flow in this chapter was created by
rotating the cylinders in the opposite directions with the equal wall
velocities. The experiments were performed at a shear Reynolds num-
ber of ReS = 3500 (Table 4.1). The Reynolds numbers for the in-
ner and the outer cylinders are Rei,o = ±1750. The wall velocities
are Ui = 0.158 m/s and Uo = −0.158 m/s, respectively, which equals
exact counter rotation of the cylinders. Hence, the corresponding ro-
tation number is RΩ,c = 0. Under this flow condition, the mean az-
imuthal velocity in the bulk of the flow is approximately zero (Fig-
ure 4.1) [33], with zero mean velocities in the axial and radial direc-
tions. The mean azimuthal velocity profile for similar Reynolds numbers
(1000 ≤ ReS ≤ 8000) at RΩ,c = 0 has a flat central part with approx-
imately zero velocity, and with higher velocities close to the cylinder
walls [33]. The regions close to the cylinder walls are expected to have
higher azimuthal velocities due to the no-slip wall conditions. The size
of the central part increases with Reynolds number, due to the increas-
ing Reynolds number imposing a thinner boundary layer, hence stronger
gradients near the wall [33]. However, asymmetry of the azimuthal ve-
locity profile was also reported in the literature [33].

Tracking of coherent structures can be performed in different flow
types. However, due to the slow convection velocities and therefore
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longer observation times, wall-bounded flows such as boundary layer,
channel flow or plane Couette flow, are preferred. The first two flow
types are incapable of having a convection velocity close to zero. There-
fore the tracking time for those cases are relatively short compared to
Couette or Taylor-Couette flow in a finite-size measurement domain. On
the other hand, a recent approach for extended observation times in tur-
bulent boundary layer flow is used by Gao et al. [46]. They implemented
a moving tomographic PIV system, where they moved the camera and
the laser system together with the flow to track the flow structures and
to study their evolution. Even though it is a very promising method
and applicable to different flow types, compared to conventional (i.e.
steady) high-speed tomographic PIV, the experimental setup is more
complicated to build. Furthermore, the maximum achievable flow speed
is limited to the traversing speed of the tomographic PIV system for me-
chanical reasons [46]. They reported the maximum traversing velocity
as 1 m/s for their system.

On the other hand, in plane Couette and Taylor-Couette flow it is
possible to create flow conditions with approximately zero convection
velocity. This principle has been utilized by Dauchot and Daviaud [24],
where they used it at plane Couette flow facility. They created turbulent
spots with injection in order to visually investigate characteristics and
evolution of the turbulent spot under condition of zero mean convection
velocity. Recently, Suryadi et al. [99] studied evolution of transitional
flow structures, using rotating plane Couette flow. To the authors knowl-
edge, these works have been the only tracking studies performed under
similar flow conditions.

4.2.1 Duration of observation

The observation (or the tracking) duration of a structure can be defined
as the timespan t* over which we can follow a coherent structure con-
vecting through the measurement domain. It can be computed using a
simple formula

t* =
L

UC
, (4.1)

where L and UC are representing the length of the measurement domain
in the flow direction and the convection velocity, respectively.
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inner
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U = 0.5 Ui D

Figure 4.2: Sketch of the Taylor-Couette gap showing the variables
used for the computation of the observation time.

In the case of a boundary layer, it can be assumed that the width
of a typical measurement domain in the free-stream direction would be
approximately twice the boundary layer thickness δ, therefore L ∼= 2δ.
Actually this assumption is based on some of the values in the literature.
For instance, Schroder et al. [92] used L = 1.65δ. In the outer layer of
a turbulent boundary layer with a freestream velocity Ue, the macro-
scopic length and velocity scale are δ and u′ (≈ 1/20Ue), respectively.
The observation time for boundary layers expressed in the turbulent
macroscales thus becomes

t*TBL =
2δ

Ue
=

2δ

20u′
= 0.1

δ

u′
. (4.2)

In current study, the velocity difference between the walls is ∆U =
Ui − Uo. Since the cylinders are rotating in the opposite direction with
equal wall velocities (Ui = −Uo), the mean velocity in the bulk is ap-
proximately zero. Therefore the convection velocity Uc can be assumed
to be dominated by u′. The macroscopic length scale is the gap width d.
In the present case the size of the measurement volume is approximately
2.5d in the azimuthal direction (see Figure 4.2). The observation time
for turbulent Taylor-Couette flow is then approximated by

t*TC =
2.5d

u′
. (4.3)

Using the simple calculations above, it can be assumed that the typ-
ical observation time in current study is one order of magnitude higher
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Figure 4.3: Experimental setup with high-speed cameras.

than the observation time for typical boundary layer experiments and
larger than a large-scale eddy turnover time δ/u′.

4.3 Experimental Setup

The Taylor-Couette setup used in this chapter is identical to the one
described in previous chapters (Chapter 2 and 3, Table 2.1) with slight
modifications to the imaging system with the purpose of performing
time-resolved measurements. The most significant differences are the
implementation of CMOS high-speed cameras (Figure 4.3) instead of
CCD cameras used before, and a laser with higher repetition rate to
match the recording rate of the CMOS cameras. The modifications are
detailed in the following subsections. Further details on the experimental
setup can be found in Chapter 2.
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4.3.1 Image acquisition

Four Imager PRO HS 4M cameras with a resolution of 2016×2016 pixels
are used for image acquisition. The size of a single pixel is 11× 11µm2,
which is larger than those of the previously used cameras (Chapters 2
and 3). The maximum recording speed at this resolution is 1279 fps
(frames per second). However, only an area of 860× 1400 pixels are uti-
lized. This increased the number of the recorded images per time serie
as the camera memory was fixed. The images are recorded with 437 fps.
At the current recording rate the target particle image displacement
between two frames is 10 pixels. The dimensions of the reconstructed
volume are approximately 46.5 × 25 × 10 mm in the axial, azimuthal
and radial directions, respectively. Objectives with a f = 105 mm focal
length and f/8 aperture are used during the image acquisition, which
are mounted on Scheimpflug adapters. The cameras are arranged in
a rectangular configuration (Figure 4.3). The angle between the cam-
eras are approximately 23 and 44 degrees in the horizontal (azimuthal)
and vertical (axial) directions, respectively. Time-series of 10, 000 im-
ages were recorded, which corresponds to 22.9 s. The calibration of
the tomographic PIV is done using the procedure that was explained
previously (Section 2.5.4).

In accordance with previous experience (see Chapter 3), the spatial
resolution is adjusted to be able to capture the smallest flow structures.
The Kolmogorov length scale is λK = 0.12 mm at ReS = 3500. The
ratio between the vector spacing at 75% interrogation volume overlap
(δX) to Kolmogorov length scale ratio is adjusted to be δX/λK = 2.6
(equivalent to interrogation window size DI/λK = 10.4 at 75% overlap),
which is sufficient to resolve all scales in the flow [18,54,85,122]. At the
current ReS , the Kolmogorov time scale (τ = (ν/ε)1/2) is 16.08 ms. If it
is compared to the recording rate (∆t = 1/437 = 2.29 ms), the sampling
rate is high enough to temporally resolve the motions of the coherent
structures and track them through the measurement volume.

4.3.2 Illumination and flow seeding

The illumination and the flow seeding applied in this chapter is similar
to Chapter 2, with the exception of the laser. A Nd:YLF laser (Litron
LDY304-PIV), that emits light with a wavelength of 532 nm and with
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34 mJ/pulse energy at 437 Hz, is used to illuminate the volume for time-
resolved measurements. The cross-section of the laser beam is extended
to the required value using two cylindrical-planar lenses (f = −90mm
and −12.5 mm). Fluorescent (Fluostar [56]) particles and 570 nm low-
pass optical filters are implemented to reduce the effect of the back-
ground (see Figure 2.4). The fluorescent tracer particles absorb green
light of the laser and emit fluorescent light at wavelength of 580 nm.
The mean diameter of the particles is 15 µm and the particles have a
density of 1.1 g/cm3 [56]. During the experiments the seeding density
is kept around 0.02 particles per pixel (ppp). For further details on the
flow seeding and the illumination please refer to Sections 2.5.2 and 2.5.3.

4.3.3 Image processing and vector validation

In order to increase the image quality, a sliding minimum intensity over
25 × 25 pixels was subtracted. Then 3 × 3 pixels Gaussian smoothing
was applied to the images [37,120]. Similar to the previous chapters, the
adaptive multi-pass approach was used for correlation with 40×40×40
voxels and 75% overlap in the final two passes. Spurious vectors were
detected and removed by the universal outlier detection method, with
a threshold value of 2, which can be considered as “universal” [117].
Linear interpolation was used to fill the gaps where the vectors were
removed. The final measurement volume contains 145× 78× 34 vectors
in the axial, azimuthal and radial directions, respectively. For further
details of the seeding of the flow, illumination, calibration and image
processing please refer to Chapter 2.

4.4 Results

In this section initially the assessment of the measurement accuracy is
discussed. Then the results for the mean flow is given. It is followed
by the initial observations on dynamical aspect of the flow, such as the
azimuthal velocity bursts and stretch and break-up events of turbulent
flow structures. The results are presented as an overview to show the
capacity of the measurement technique, rather than details, and mostly
focus on the qualitative aspects.
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4.4.1 Assessment of the measurement accuracy

The accuracy of high-speed tomographic PIV measurements can be in-
vestigated using one of the basic principles of the fluid dynamics; con-
servation of mass [5, 87]. For an incompressible flow, the divergence of
the flow velocity should be zero everywhere in the measurement domain
(∇ · ~V = 0). In Cartesian coordinates the divergence is

∇ · ~V =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (4.4)

In the case of fully volumetric measurements, all gradients in equation
4.4 are known for each data point, and the relative error distribution can
be computed using the expression [5, 57,58](

∂u

∂x
+
∂v

∂y
+
∂w

∂z

)2
∼= C

(
σ∆X

DI∆t

)2

, (4.5)

where σ∆X is the overall particle displacement error amplitude, DI is
the size of the interrogation windows (that is 40 pixels), ∆t is the time
between two frames (∆t = 2.288 ms) and C is a constant that is depend-
ing on the differentiation scheme [5,57,58]. However, in the literature, C
is not defined for the differentiation with second order regression anal-
ysis. In order to estimate C for this chapter, simulations are performed
using synthetic velocity field. The results show that if 75% overlap and
second order regression analysis are used for computations, C = 4.54
can be applied in equation 4.5.

Figure 4.4 shows the distribution of the divergence values computed
over 10000 vector fields. The width of the distribution is indicative of
the measurement accuracy [5, 87]. The standard deviation of the fitted
Gaussian distribution to Figure 4.4 is 0.012, which is of the order of
previous studies [5, 31, 57, 88, 89]. It is found using equation 4.5 that
σ∆X = 0.24 pixels, which is in agreement with values reported in the
literature [5, 57,58].

Another way to investigate the measurement quality is the scatter
plot of −(∂u/∂x) versus (∂v/∂y+∂w/∂z), where ideally the data should
be along the 45◦ diagonal line representing zero divergence [5, 64, 122,
123]. The length of the distribution along the diagonal represents the
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Figure 4.4: Histogram of the divergence error, represented by the dis-
tribution of the divergence values.
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computed at each vector location for full data set (10000 vector fields).
The contours represent the number of samples. Diagonal line represents
the divergence free (∇ · ~V = 0) condition.
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range of the measured gradients, while the width of the distribution
(in the direction normal to the diagonal line) is indicative of the noise
level. Therefore the dynamic range in the measured gradients can be
inferred [5]. Figure 4.5 shows the results for current data set, which is
nicely elongated over the diagonal line. The ellipsoid aspect ratio of the
scatter plot is ≈ 1/2.61, which is of the order of similar studies [64].

4.4.2 Mean flow

The temporal mean of the azimuthal velocity component along the radial
gap is shown in Figure 4.6. The azimuthal velocities are normalized with
the actual velocity of the inner cylinder (Ui = 0.158 m/s). The measured
velocities very close to the cylinder walls show that the velocity of the in-
ner cylinder is underestimated by 11%. In the case of the outer cylinder,
the underestimation increase to 16%. On the other hand, the maximum
axial and the radial velocities are 0.6% and 0.9% of the azimuthal ve-
locity, respectively. It should be mentioned that the discrepancy of the
wall velocities is also partly due to the uncertainty of the control of the
rotation speeds of the cylinders. Although the rotation speeds are inde-
pendently checked with a light gate and a stroboscope, still the precision
of the cylinder rotation frequency is at the order of 10−2 Hz. At the cur-
rent rotation speeds of the cylinders, this introduces approximately 4%
uncertainty to the wall velocities (Ui = 0.158 ± 0.006 m/s). However,
the velocities on the wall are omitted in Figure 4.6.

As it is seen in Figure 4.6 the azimuthal velocity in the bulk is
close to, but not exactly zero. The mean azimuthal velocities remain
within U/Ui = 0 ± 0.05 in the range of 0.46 ≤ (r − ri)/d ≤ 0.68 and
U/Ui = 0±0.15 in the range of 0.27 ≤ (r−ri)/d ≤ 0.79. The flat central
part of the profile (dashed-dotted line in Figure 4.6) has a slope of ≈ 24◦

(∂Ui/∂r = 7.1 s−1) with the wall normals. On the other hand, the up-
ward shift of the velocity profile shows the general advancing direction
of the structures, such that for the most of the central part of the gap,
there is a non-zero mean velocity in the direction of the inner cylinder
rotation. Actually, investigation of the time resolved 3D velocity fields
confirm this observation; the turbulent flow structures in the gap are
found to be mostly advancing in the direction of the inner cylinder rota-
tion (Figure 4.7). Furthermore, the advancing behaviour of a structure
depends on its actual radial location, as well. In general, in the region
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Figure 4.6: Mean velocities as a function of the radial position. The
velocities are averaged over 10000 vector fields and spatially averaged
in the axial direction. The velocities are non-dimensionalised with the
inner cylinder velocity. Dashed-dotted line is the reference line to show
the inclination of the profile.

(a) ∆t = 0 ms (b) ∆t = 43 ms

Figure 4.7: Advancing vortical structures represented by Q criterion
isosurfaces. The radial velocity is color coded. The red and blue ar-
rows indicate the rotation direction of the inner and the outer cylinders,
respectively.
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where there is a positive azimuthal velocity (0.0 < (r − ri)/d ≤ 0.58),
the structures are mostly moving in the direction of the inner cylinder
rotation. In the remaining part of the gap (0.58 ≤ (r − ri)/d < 1.0) the
structures are moving in the opposite direction. Naturally, this observa-
tion is very general, therefore it does not hold for extreme events such
as the azimuthal velocity bursts (see Section 4.4.3).

Figure 4.6 also reveals the so-called “zero crossing”, where the az-
imuthal velocity changes from positive to negative. This can be con-
sidered as a neutral surface (a virtual cylindrical surface with zero az-
imuthal velocity) separating the inner and outer part of the Taylor-
Couette gap [16, 36]. The location of this neutral surface might change
the stability and torque characteristics of the Taylor-Couette flow, even
causing a smaller effective gap width [16,36]. It should be mentioned that
the zero crossing is gap ratio and Reynolds number dependent [33, 36].
In current case the velocities reach zero at (r − ri)/d ≈ 0.58. Dong [33]
reported the zero crossing around (r−ri)/d ≈ 0.53 at ReS = 3000 with a
gap ratio of η = 0.5. Any possible influence of the location of the neutral
surface to the flow characteristics should be further investigated.

The mean azimuthal velocity profile also shows the presence of the
higher velocity gradients close to both walls, which gives an idea of the
thickness’s of the inner wall regions on cylinder walls. The inner wall
region close to the inner cylinder (δi ≈ 0.23d) is slightly thicker than the
one close to the outer cylinder wall (δo ≈ 0.20d). This might indicate
that the characteristics of the inner wall regions are different for the
inner and the outer cylinders.

4.4.3 Azimuthal velocity bursts in the radial direction

In addition to the mean flow properties, instantaneous flow fields are also
investigated to detect dynamical events. Inspection of the instantaneous
azimuthal velocity profiles shows the presence of a velocity burst in the
radial direction. The bursting events can be explained as the sudden
increase of the (positive or negative) azimuthal velocities at a specific
location. If it is visualised by means of azimuthal velocity isosurfaces,
the bursts can be seen as a shift of isosurfaces in the radial direction (see
Figure 4.8, where examples of intense bursts are also indicated by green
arrows). Due to this shift, the “zero crossing” moves radially during the
bursting events. In the given example, the area under dominance of the
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inner cylinder (i.e. with positive azimuthal velocity) suddenly extends
radially in the gap (Figure 4.8(a) and 4.8(b)), causing a retraction of
the region under the dominance of the outer cylinder (i.e. with nega-
tive azimuthal velocity) in the bulk of the flow. The flow changes in
such a way that instantaneously the effective radius of the inner cylin-
der is expanded towards the outer cylinder and the neutral surface is
shifted closer to the outer cylinder. Then, another burst coming from
the outer cylinder region (i.e. with negative azimuthal velocity) follows
and surpasses the region affected by the inner cylinder in the radial
gap (Figure 4.8(c)). These “alternating bursts” event continue to os-
cillate until the flow reaches its initial state as shown in Figure 4.8(d).
The bursts are observed several times in the current data set, but the
occurrence of the burst is found to be random in time. Additionally
the frequency and the duration of each bursting event appear different
and seem to be random, as well. If it is assumed that the convection
velocity of the features shown in Figure 4.8 are equal to the velocity
of the shown isosurfaces (UC = 0.3Ui), they convect 0.013 m (= 1.3d)
over ∆t = 274.5 ms. Therefore it can be said that shown features are
dynamic events that are not convected in or out of the measurement
volume during the period of the observation.

One could hypothesize that these bursts can be due to non-ideal as-
pects of the cylinders (such as wobbling or deformation) during the mea-
surements. In order to test this an additional analysis was performed.
The reconstructed intensity profile in the radial direction (depth direc-
tion in the camera coordinate system) defines the location of the mea-
surement volume [42, 43,72], i.e. the volume containing the illuminated
tracer particles. Since the particles cannot penetrate the cylinder walls
in current case, and the whole cylinder gap is illuminated, the intensity
profile should not move in the radial direction over time. Intensity dis-
tribution of the reconstructed volume in the radial direction is plotted
as a function of time in Figure 4.9, using 300 reconstructed volumes
(≈ 0.67 s). Using the velocity fields, at least 2 bursting events are de-
tected during this time. If this is due to the wobbling of the cylinders,
this should be observed as a horizontal shift in Figure 4.9. However,
the intensity distribution showed that during these two burst events,
the maximum displacement of the borders of the reconstructed volume
is at most 8 voxels (≈ 0.22 mm). Considering the fact that the size
of the reconstructed volume in the radial direction is 355 voxels, the
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(a) ∆t = 0 ms (b) ∆t = 54.9 ms

(c) ∆t = 219.6 ms (d) ∆t = 274.5 ms

Figure 4.8: Azimuthal velocity bursts. The isosurfaces represent the
positive and negative azimuthal velocities; red = 0.3Ui, blue = 0.3Uo.
The green arrows indicate the axial location and the radial direction
of the examples of the intense burst events. The x, y and z axes are
representing the axial, azimuthal and radial directions, respectively. The
red and blue arrows indicate the rotation direction of the inner and the
outer cylinders, respectively.

change of 8 voxels is equal to 2.3% change, which can simply be asso-
ciated with the slight intensity change of the particles or fluctuation of
the laser power. Furthermore, the radial displacement of the isosurfaces
shown in Figure 4.8 is around 45 voxels, which is significantly higher
than the observed border displacement of 8 voxels. Therefore, it can be
concluded that these bursts are not due to this kind of non-ideal aspect
of the experimental setup, and are physical events.

4.4.4 Vortical structures and stretch & break-up events

In fully turbulent Taylor-Couette flow at ReS = 3500, the most common
instantaneous vortical structure that was found is the tube-like structure
that is elongated in the azimuthal direction (Figure 4.10). Examples
of other coherent motions such as hairpins are present in the flow, as
well. But in correspondence to the results in the literature [32, 33], the
tube-like structures that are elongated in the azimuthal direction are
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Figure 4.9: Intensity profiles of 300 instantaneous reconstructed vol-
umes along the radial direction (z). Only the part close to the inner
cylinder, which is located at z = 5 voxel units, is shown. The dashed line
shows the mean intensity over 300 reconstructed volumes. The inten-
sities are normalized with the maximum intensity of 300 reconstructed
volumes.

(a) azimuthal-radial view (b) azimuthal-axial view

Figure 4.10: Example of typical turbulent flow structures. Isosurfaces
are Q = 400 s−2 (blue), and azimuthal velocity U = 0.5Ui = 0.079 m/s
(green). The red and blue arrows indicate the rotation direction of the
inner and the outer cylinders, respectively.
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by far the most common structures. It is known that these large-scale
motions contribute mostly to the turbulent kinetic energy [2, 4, 83, 97]
(also see Chapter 5). In the specific examples given here these structures
are mostly accumulated around the velocity streaks. They appear as
counter-rotating pairs as reported in the literature [33,111], and typically
are inclined with respect to the cylinder walls (represented by dashed
red lines in Figure 4.10(a)) within the range 25◦ ≤ α ≤ 47◦, which was
also observed in fully turbulent Taylor-Couette flow [32, 33], as well as
in the boundary layer flows [4, 38,92].

Due to the long observation time it is possible to examine their evo-
lution, which involves stretching and the break-up. It is proposed that
in wall-bounded flows vortex stretching might be an important mech-
anism that is responsible for the transfer of turbulent kinetic energy
between different scales [2, 33, 79, 103]. In the current case, stretching
is observed especially for the azimuthally-aligned tube-like structures.
They are mostly found to be stretched from both ends. The structures
break-up in to several smaller structures during stretching. Following
the break-up, the (new) smaller structures either disappear or start to
be stretched by a similar process.

An example of this process is given in Figure 4.11. Initially the vor-
tical structure is advected in the direction of the inner cylinder rotation
(positive y). The advancing slows down to a convection velocity very
close to zero (Figure 4.11(a)). Then the structure starts to be stretched
in the azimuthal direction (Figure 4.11(b)). The stretching continues
and the structure becomes approximately 3 times longer than its initial
length (Figure 4.11(c)). Another vortical structure (aligned in the axial
direction) approaches the stretched vortex (Figure 4.11(d)) and causes
it to breakup into two azimuthally-aligned structures (Figure 4.11(e)).
The axially-aligned vortical structure in this specific example is found
to be associated with an axial-velocity streak close to the outer cylinder.
Figure 4.11(f) shows two new structures after the break-up. Both are
comparable in length with each other as well as with the initial length
of their “parent” structure. Similarly, they are also aligned in the az-
imuthal direction and inclined with respect to the cylinder walls. One
of these structures disappears in a short time (approximately 118.98 ms
after the break-up), whereas the other one goes into a stretching process
similar to the one explained here. Please note that the process explained
here is one of possibly many events, and the explanation is only valid for
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(a) ∆t = 0 ms (b) ∆t = 91.52 ms

(c) ∆t = 183.04 ms (d) ∆t = 274.56 ms

(e) ∆t = 366.08 ms (f) ∆t = 457.60 ms

Figure 4.11: Example of stretch and break-up. Isosurfaces are
Q = 550 s−2. Intermediate time steps are skipped for better visi-
bility. The red and blue arrows indicate the rotation direction of the
inner and the outer cylinders, respectively.
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this specific example. Further statistical analysis is required for a more
general understanding of the break-up mechanism.

4.5 Conclusions

In this chapter, time-resolved tomographic PIV was implemented to
the Taylor-Couette flow with approximately zero mean velocity. This
configuration allowed longer observation time compared to similar ex-
perimental studies in wall-bounded flows. It allows for unique insight
into the evolution of the turbulent flow structures. Examples of some
dynamic events were given to illustrate the newly acquired capabilities
and demonstrate its potential for turbulence research.

Despite the approximately zero mean velocity in the bulk, most struc-
tures convect slowly in the azimuthal direction. The convection direction
and velocity of a coherent structure depends on its radial position. In
accordance with the slight shift of the mean velocity profile towards the
inner cylinder rotation, most of the structures in the bulk convect in the
direction of the inner cylinder rotation. The mean azimuthal velocity
profile also shows that the thickness of the inner wall region is slightly
different for the inner and the outer cylinders.

Several dynamic events are observed at fully turbulent Taylor-Couette
flow. One of them is the azimuthal velocity burst, which can be ex-
plained as the instances of sudden increase of the positive or the negative
azimuthal velocities. This results in a shift of the velocity isosurfaces
in the radial direction, which change the effective radii of the cylinders
in the gap. Bursts appear in alternating patterns; positive and negative
velocity bursts follow each other. However, the bursting events appear
random in time.

Various kinds of instantaneous vortical structures are present in the
flow. However, the most common structure type appears to be the
tube-like vortex that is elongated in the azimuthal direction. These are
frequently located in association with the velocity streaks and inclined
with respect to the cylinder walls. Events of stretching and break-up of
these structures were revealed using the time resolved measurements. In
the future, this research can be extended to higher Reynolds numbers
as well as other rotation rates, with more detailed quantitative analysis
on the observed events.





5 Change of Coherent Turbulent Flow
Structures at Counter-Rotating
Taylor-Couette Flow

5.1 Introduction

Taylor-Couette is a canonical flow geometry to study transport of mo-
mentum in turbulence, where the stresses due to turbulence can be mea-
sured directly through the torque on the cylinder axes. Studies on torque
scaling in Taylor-Couette flow [16,36,76,109,110] reported a significant
change of torque values for different rotation rates of the cylinders. The
limited number of studies that focused on the relation between turbu-
lent flow structures and the torque scaling [33, 82] could not fully ex-
plain the mechanism that is responsible for this change. Even though
coherent flow structures at different flow regimes in Taylor-Couette flow
were qualitatively studied in the literature [7], they are limited to low
Reynolds numbers (ReS ≤ 6500). The studies at turbulent flow are
performed at relatively higher Reynolds numbers and mostly focused on
angular momentum transport [16,36,76,109,110], while only few studies
focused on both the turbulent flow structures and the angular momen-
tum transport [33,82,111].

In this chapter, the observations on large-scale flow structures are re-
ported to reveal the transition of the large scale turbulent flow structures
from Taylor vortices to inclined vortices, then to structures similar to
Taylor columns at fully turbulent counter-rotating Taylor-Couette flow.
The results reveal new flow states compared to what was assumed be-
fore, in particular the presence of structures similar to Taylor columns
that are observed for the first time in Taylor-Couette flow. The observed
structural change is used to explain the change of torque with the ro-

Based on S. Tokgoz, G. E. Elsinga, R. Delfos, J. Westerweel Large scale structures
and Taylor columns in Taylor-Couette flow. Submitted to Physical Review Letters
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Taylor-Couette Flow

tation number, where inclined vortices are found to enhance angular
momentum transfer rather than Taylor vortices.

The scaling of torque with Reynolds number is discussed in detail by
Eckhardt et al. [36] for only outer cylinder rotation, which also describes
the similarity between Rayleigh-Bénard and Taylor-Couette turbulence.
Based on that work, recent turbulence studies in Taylor-Couette flow are
performed at relatively higher Reynolds numbers around 105−106 [16,76,
109,110], which showed the presence of an optimum angular momentum
transport at slightly negative rotation numbers defined as RΩ = (1 −
η)(Rei + Reo)/(ηReo − Rei), where η is the gap ratio (η = ri/ro, with
ri and ro are the inner and outer cylinder radii, respectively), and Rei
(= riΩid/ν) and Reo (= roΩod/ν) are the Reynolds number for the
inner cylinder and the outer cylinder, respectively. They showed the
optimum angular momentum transport depends on the gap ratio and
moves closer to exact counter-rotation for η → 1 [16, 109, 110]. Van
Gils et al. [109] provided an expression that summarises the optimal
transport in their experiments, although the principal mechanism for
the optimal transport is not provided. Following their method [109] and
using the torque measurements performed by Ravelet et al. [82], it is
found that the optimal transport occurs at RΩ ≈ −0.025 in current flow
facility. To further explore the optimum transport, detailed data and
the instantaneous flow fields are required, which are presented in this
chapter.

Similarly Ravelet et al. [82] determined (see Figure 5.1) the fric-
tion factor Cf (= T/2πρr2

iLU
2
sh) as a function of RΩ for several shear

Reynolds numbers ReS(= (2 |ηReo −Rei|)/(1 + η)) [35]. They reported
that for 29000 ≤ ReS ≤ 47000, Cf remains almost constant up to
slightly negative RΩ = −0.035. After that point Cf decreases, reach-
ing approximately half of its initial value at RΩ,o. In addition to this,
they reported an initially decreasing trend till RΩ = −0.05 for lower
ReS (11000 ≤ ReS ≤ 17000). They also observed a change of coherent
flow structures in such a way that the flow is dominated by large-scale
structures for RΩ < 0 and by small-scale structures for RΩ > 0. They
proposed that this variation might be responsible for the change of the
torque at constant shear.

To characterize the angular momentum transport, rather than the
mean flow, the instantaneous turbulent flow structures should be con-
sidered. In this chapter the instantaneous large-scale turbulent struc-
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Figure 5.1: Friction factor Cf as a function of RΩ, redrawn after Rav-
elet et al. [82]. Dashed red lines represent the measurement points where
the tomographic PIV was obtained in addition to the black lines showing
RΩ,i = −0.083, RΩ,c = 0 and RΩ,o = 0.091. A black arrow indicates the
location (RΩ ≈ −0.025) of the optimum angular momentum transfer for
current setup.

tures (ILS) are considered in connection to their contribution to angular
momentum transport and therefore to the torque, using tomographic
particle image velocimetry (tomographic PIV) [42] in Taylor-Couette
flow. The dependence of the ILS organisation on the relative rotational
speeds of the cylinders (i.e. RΩ) at constant shear rates (ReS = const.)
are investigated. The ILS are separated from instantaneous smaller-scale
turbulent structures (ISS). This enables the isolation of the ILS and ISS
and their contribution to angular momentum transport. It should be
noted that in this chapter “smaller-scale structures” are defined as the
range of scales between the smallest resolved scale and the filtered length
scale, and it should not be confused with the conventional “small scales”
such as Kolmogorov or Taylor microscales.
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5.2 Experimental Setup

The Taylor-Couette geometry used in this chapter is identical to the one
described in previous chapters (see Chapter 2 and Table 2.1 for more
details). Similarly, tomographic PIV measurements are performed to
measure all velocity components in a volume of 40 × 20 × 10 mm3 in
the axial, azimuthal and the radial directions, respectively. Although
all other components and configurations of tomographic PIV setup are
the same as Chapter 2, the cameras used in current chapter are dif-
ferent. The cameras that were used in Chapter 3 (i.e. Imager Pro X
4M) are used in current chapter, as well. Four cameras are arranged in
rectangular configuration, recording PIV images at a rate of 7.55 Hz.
The flow is seeded with fluorescent particles of 15µm diameter, which
are illuminated by a Nd:YAG laser with 50 mJ/pulse energy at a wave-
length of 532 nm. Further detailed information about the experimental
setup, the implementation of tomographic PIV to Taylor-Couette, image
acquisition, particles, vector calculation and validation can be found in
Chapter 2.

The flow is investigated at three ReS , that is ReS = 11000, 29000
and 47000. Corresponding Taylor numbers (Ta) [36] are of the order of
1.3×108, 8.5×108 and 2.2×109, with respect to the corresponding ReS .
The rotation number [35] is selected to be the parameter to be varied
between RΩ,i = −0.083 (only inner cylinder rotates) and RΩ,o = 0.091
(only outer cylinder rotates), where RΩ,c = 0 represents exact counter
rotation of the cylinders. The Rossby number (Ro = (Ωi−Ωo)/Ωo) [76]
is in −∞ < Ro ≤ −1 range. The flow conditions are specified in Table
5.1.

Please note the different coordinate system and naming followed in
this chapter. As mentioned previously (see Section 2.5.1), the tomo-
graphic PIV measurements were performed in a Cartesian coordinate
system. However, the velocities and the axes are converted to cylindri-
cal coordinate system for the current chapter. The azimuthal, radial and
the axial directions are given by θ, r and z, respectively. The velocities
in the corresponding directions are represented by their indices, such as
uθ, ur and uz.
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5.3 Mean Flow

The examination for this chapter begin by averaging the velocity fields
over whole data set (200 images for each flow case). The mean velocity
fields showed a significant rotation number dependence. In the case of
only inner cylinder rotation (RΩ,i = −0.083) the flow is well organized for
all ReS (Figure 5.2(a)). The velocity fields show typical characteristics of
Taylor-vortex flow; all velocities are axial-position dependent, and clear
regions of in- and outflow are present. Confirming this, the vortical
structures in the mean flow are resembling the Taylor vortices (Figure
5.3). They are appearing in counter-rotating pairs with high in- and
outward radial velocities in between. This is in agreement with the
Taylor vortex-like structures in the mean flow as reported in literature
[32, 33, 82, 104, 105]. Their presence was explained by the cumulative
effect of the structures with relatively smaller scale.

However, the organisation of the velocity fields, therefore the turbu-
lent flow structures, changes significantly in parallel with the increase of
the rotation number. As shown in Figure 5.2(b), in the case of only outer
cylinder rotation (RΩ,o = 0.091), the axial dependence of the velocities
is lost. The azimuthal velocities are depending on the radial position
(also indicating the dominant velocity gradient in the radial direction),
where the radial and the axial velocities become very small. In parallel
with the velocities, if the rotation number is increased towards the only
outer cylinder rotation, the Taylor vortices start to deteriorate as the
coherent structures get smaller. After RΩ ≥ −0.005, large scale motions
resembling the Taylor vortices are completely disappear from the flow.
At positive rotation numbers the chaotic organisation of the relatively
smaller structures become dominant in the flow.

5.4 Instantaneous Flow

The results shown by the mean flow indicate that at a constant Reynolds
number, the organisation of the turbulent flow structures strongly de-
pends on the relative rotation speeds and the directions of the cylinders.
However, in order to understand the real dynamics of this change one
needs to investigate the instantaneous velocity fields.
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(a) RΩ,i = −0.083

(b) RΩ,o = 0.091

Figure 5.2: Cross-section of the volume showing the mean flow at
ReS = 29000. The azimuthal velocities are color coded. Vector ar-
rows indicate the velocities tangential to the cross-section (i.e. axial and
radial velocities).

Figure 5.3: Flow structures in the mean flow at RΩ,i = −0.083 and
ReS = 29000, represented by the means of Q-criterion [53] isosurfaces
(Q = 175 s−2) (see Figure 5.2(a)). The radial velocities (ur) are color
coded. The red arrow indicates the rotation direction of the inner cylin-
der, while the outer cylinder remains stationary.
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5.4.1 Spatial correlation

Spatial autocorrelation of the fluctuating radial velocities (u′r) in the
axial direction is also an indicator of the organisation of the coherent
flow structures [33]. If the autocorrelation of the fluctuating radial ve-
locities in the axial direction is computed, the inflow velocities would be
negatively correlated with the velocities in the outflow zones, whereas
the correlation between an inflow zone with another inflow zone, as well
as between an outflow zone with another outflow zone would result in a
positive correlation value. This result would be more clear in the case
of organised large-scale motions like Taylor vortex flow. In the case of
Taylor-vortex flow, since the counter-rotating vortex pairs are separated
from each other by an inflow or outflow zone, the autocorrelation peaks
and the minimums would be well organised and separated from each
other approximately by one Taylor-vortex diameter, where the number
of the peaks are determined by the number of the Taylor vortices in the
domain.

The autocorrelation of the fluctuating radial velocities in the axial
direction are computed for all RΩ, using 200 vector fields for each case
(Figure 5.4 and 5.5). The results confirm the presence of large-scale vor-
tices in the mean flow for−0.083 ≤ RΩ ≤ −0.005, as well as their change.
As seen in Figure 5.4 and 5.5 the correlation changes significantly for
increasing RΩ, such that the peaks initially located at ∆z/d ≈ 1.5 and
2.8 disappear, suggesting the large-scale vortices are no longer present
in the flow. The central peak (∆z/d = 0) reduces in width, indicat-
ing the coherent structures reduced in size. These results confirm the
observations by Ravelet et al. [82] on the change of the structures.

5.4.2 Instantaneous flow structures

As shown in Figure 5.6, the small scale, high-intensity turbulent flow
structures dominate the instantaneous flow for all RΩ and ReS that are
investigated, confirming earlier findings in the literature [7, 32, 33, 104].
No significant ReS dependence is observed by flow visualisation.

Even though the instantaneous flow fields are chaotic, there are still
some indications of organisation. For instance, close to only inner cylin-
der rotation (Figure 5.6(a) and 5.6(b)), structures that are larger and
slightly more organised than those at the other rotation numbers are
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(a) RΩ,i = −0.083
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(b) RΩ,c = 0
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(c) RΩ,o = 0.091

Figure 5.4: Autocorrelation of all three fluctuating velocities in the
axial direction at ReS = 29000. Plotted at (a) only inner cylinder
rotation, (b) exact counter rotation and (c) only outer cylinder rotation.
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Figure 5.5: Autocorrelation of fluctuating radial velocities (u′r) in the
axial direction at ReS = 29000 for different RΩ.

observed. Similarly, as seen by the radial velocity contours, the veloc-
ity fields are relatively more organised at RΩ,i = −0.083, as well. The
coherent structures aligned in the azimuthal direction outnumbers the
ones aligned in the other directions. However, compared to the Taylor
vortices, they have smaller diameters. This confirms the proposed expla-
nations [32, 82, 105] about the appearance of the Taylor vortices in the
mean flow by the accumulation of the relatively smaller scale structures.

Close to exact counter-rotation of the cylinders, the structures start
to become gradually more disorganized (Figure 5.6(c) and 5.6(d)), which
was also indicated by the autocorrelations. The size of the coherent
structures decrease and they align themselves in all directions.

If we move towards the only outer cylinder rotation (RΩ,o = 0.091),
we observe relatively less change as seen in Figure 5.6(e) and 5.6(f).
The size of the coherent structures comparable to those at RΩ,c = 0.
Although alignments in all directions are present, the structures are
mostly aligned in the axial direction of the cylinders.

The inspection of the instantaneous flow structures even at only three
rotation numbers indicates the change of the structures, and confirms
the results of Ravelet et al. [82] about the change of the dominant scales
at different RΩ. However, at this point the small scale structures are
still dominant in the flow and the visualisations do not give a very clear
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(a) RΩ,i = −0.083, ReS = 29000 (b) RΩ,i = −0.083, ReS = 47000

(c) RΩ,c = 0, ReS = 29000 (d) RΩ,c = 0, ReS = 47000

(e) RΩ,o = 0.091, ReS = 29000 (f) RΩ,o = 0.091, ReS = 47000

Figure 5.6: Examples of the instantaneous turbulent flow structures at
ReS = 29000 and 47000, represented by the means of Q-criterion [53]
isosurfaces for; (a-b) only inner cylinder rotation, (c-d) exact counter
rotation and (e-f) only outer cylinder rotation. Isosurfaces are (a, c, e)
Q = 3000 s−2, (b, d, f) Q = 12000 s−2. The radial velocities (ur) are
color coded.
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picture. Therefore one needs to change his approach to reveal how the
large and small-scales change.

5.5 Decomposition of the Instantaneous Flow to Large
and Smaller-Scale Motions

In order to have a deeper understanding of the dynamics of the flow and
to reveal the torque scaling in relation to the instantaneous turbulent
flow structures, it was decided to separate the instantaneous large-scale
motions from the smaller-scales and inspect them separately for current
chapter. The flow is decomposed into large and smaller-scale motions,
following the method proposed by Adrian et al. [3].

In turbulence, the decomposition of the instantaneous velocities (u)
at each data point is done following the “Reynolds decomposition”

u = U + u′, (5.1)

where U is the time-averaged velocity (over 200 instantaneous fields for
current case), and u′ stands for the instantaneous fluctuating velocity.
According to Adrian et al. [3], the fluctuating part can also be separated
into large-scale and small-scale components, such as:

u′ = u′L + u′S . (5.2)

The large-scale component u′L is computed by filtering the instantaneous
fluctuating velocities, where the residual is equal to the smaller-scale
component u′S . Second-order regression [38, 86], which is a linear filter,
is used for spatial low-pass filtering of the three-dimensional fluctuating
velocities (see Chapter 3). The filter length is taken to be the gap width
d, which is of the order of the height of a Taylor vortex [13]. If equations
5.1 and 5.2 are combined, we end-up with

u = U + u′L + u′S , (5.3)

which gives the decomposition of the instantaneous flow field containing
both large and smaller-scale motions.
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In relation with the separation of the large and smaller-scale motions,
the Reynolds stress can be computed using the decomposed velocity
fields by;

uv = (U + u′L + u′S)(V + v′L + v′S)

= UV + Uv′L + Uv′S + u′LV + u′SV

+ u′Lv
′
L + u′Lv

′
S + u′Sv

′
L + u′Sv

′
S . (5.4)

If the average of the Reynolds stress is taken over time, as some terms
(which include production of a mean and fluctuation) are equal to zero
by definition, one ends-up with the equation to compute the Reynolds
stress as given below.

uv = UV +�
��Uv′L +�

��Uv′S +
�
��u′LV +

�
��u′SV + u′Lv

′
L + u′Lv

′
S + u′Sv

′
L + u′Sv

′
S

= UV + u′Lv
′
L + u′Lv

′
S + u′Sv

′
L + u′Sv

′
S . (5.5)

The decomposition is examined by computing the kinetic energy con-
tained in the large and smaller-scale motions by means of velocity RMS
values (Figure 5.7). Close to the RΩ,c (−0.025 ≤ RΩ ≤ 0.005), the en-
ergy contained in the ILS shows a maximum, which implies that most
of the energy included in the turbulent flow is due to the large scale
motions in this RΩ range. The relative kinetic energy contribution of
the ILS becomes lower than the ISS for positive rotation numbers (es-
pecially RΩ ≥ 0.050). However the ILS contain significant amount of
energy for all RΩ.

5.5.1 Change of the instantaneous large-scale structures with
rotation

The visualisation of the decomposed vector fields reveals the change
of the orientation of the ILS with the relative rotational speeds of the
cylinders. The vortical structures are computed using sum of the mean
flow and ILS, and represented by Q-criterion [53] isosurfaces in Figures
5.8 and 5.9. As it will be shown in Section 5.6, the mean flow is only
effective close to RΩ,i = −0.083 and does not contribute much for other
RΩ. The change of the organisation is explained below starting from
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Figure 5.7: RMS of fluctuating large and small-scale velocities at
ReS = 29000. u′z, u

′
θ and u′r represent the fluctuating velocities in

the axial, azimuthal and the radial directions, respectively. The second
indices L and S (i.e. u′z,L and u′z,S) represent the large and smaller-
scale component of the fluctuating velocity, respectively. The lines are
to guide the eye.

only inner cylinder rotation (RΩ,i = −0.083) and increasing the RΩ at
ReS = 29000. However, the change also holds for other two Reynolds
numbers that were examined.

At RΩ,i = −0.083 (Ro = −∞), the ILS have tube-like shapes (Figure
5.8(a)). They are elongated in the azimuthal direction with axes almost
parallel to the cylinder walls. These structures are analogous to Taylor
vortices that are observed in the time-averaged flow at similarRΩ, as well
as to those in the instantaneous flow at different Reynolds numbers (i.e.
Re ∼ 103 − 104 by Dong [32] and Re ∼ 104 by van Hout & Katz [111]).
The ILS appear as counter-rotating pairs, covering the whole range in
the axial direction of the cylinder. High positive and negative radial
velocity zones are located in between the ILS. However, their distribution
in the axial direction is not as homogeneous as it is for Taylor vortices,
and their diameters are found to be slightly smaller than regular Taylor
vortices. Examination at different time steps revealed that the axial
movement of the vortices are minimal. The presence of the ILS without
any significant axial movement explains the reported observations of the
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(a) RΩ,i = −0.083

(b) RΩ = −0.010

(c) RΩ,c = 0

Figure 5.8: Typical ILS for different RΩ at ReS = 29000, shown by 2D
projections on the azimuthal-radial plane, represented by the means of
Q-criterion [53] isosurfaces (Q = 2000 s−2) of ILS+mean flow motions.
The rotation directions of the cylinders are represented by red arrows.
Dimensions are not to scale.
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Taylor vortices in the time-averaged flow [32, 82, 105]. Similar findings
of ILS are also reported by Dong [33] at exact counter rotation of the
cylinders (RΩ,c = 0), but at relatively lower ReS (1000 ≤ ReS ≤ 8000)
and smaller gap ratio (η = 0.5). The difference of RΩ between the
studies might be associated with the gap ratio and/or Reynolds number
dependency of the organisation of ILS, which was suggested by Dong
[33]. However, no significant ReS dependence is observed in the current
study.

Increase of the RΩ results in a small deformation of the shapes of the
ILS until RΩ = −0.010, that is they become shorter. However, there is
a significant change of orientation in this range. The ILS are still mostly
elongated in the azimuthal direction, but they tend to have an inclination
with the cylinder walls (Figure 5.8(b)). The inclination angle increases
with increasing RΩ, such that the ILS tend to connect the inner and the
outer cylinder walls. It is found that the inclination enhances turbulent
angular momentum transport, which will be discussed later. Further
increment of the rotation number in the proximity of RΩ,c (−0.005 ≤
RΩ ≤ 0.0125) reveals a considerable deformation of the ILS, as seen in
Figure 5.8(c). The orientational preference and the elongation are lost
and they appear as blob-like structures (Figure 5.8(c)). The change of
the ILS and ISS in this range are in agreement with results of van Hout
& Katz [111] and confirm the suggestions of Ravelet et al. [82].

Taylor column-like structures

Further increase of RΩ reveals a completely new organisation of the ILS,
which has not been reported in the literature on Taylor-Couette flow
before. Especially at higher rotation numbers (RΩ = 0.050 and 0.091),
the axes of the ILS are found to be aligned in the axial direction of
the cylinders (Figure 5.9). The axially elongated ILS at RΩ = 0.050 and
0.091 (Ro = −1.304 and −1) are longer than the azimuthal ILS observed
at negative rotation numbers. Even though they are segmented instead
of a single long column, these structures resemble Taylor columns. In
fact, similar structures have been reported in the literature for analogous
rotating flows, such as rotating Rayleigh-Bénard flow at Ro < 1 [59,
98]. Recent numerical studies focusing on the perturbations in turbulent
Taylor-Couette flow proposed the presence of columnar structures in
both co-rotating (close to only-outer cylinder rotation) and counter-
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Figure 5.9: Typical ILS at RΩ,o = 0.091 at ReS = 29000, shown by 2D
projection on the azimuthal-axial plane, represented by the means of Q-
criterion [53] isosurfaces (Q = 2000 s−2) of ILS+mean flow motions. The
rotation direction of the outer cylinder is represented by a red arrow.
Dimensions are not to scale.

rotating regimes [66]. However, till now they have not been observed
experimentally or numerically in Taylor-Couette flow.

A few differences were observed between the Taylor column-like struc-
tures that are reported in Taylor-Couette and Rayleigh-Bénard flows.
Unlike the counter rotating pairs of Taylor column-like structures in
Rayleigh-Bénard flow [50, 59], they appear as co-rotating columns in
Taylor-Couette flow. Additionally, azimuthal positions of the vortices
change spatially, which causes the Taylor column-like structures to be
averaged-out in the mean. This explains the absence of Taylor column-
like structures in the time-averaged flow.
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It can be conjectured that the occurrence of these Taylor column-like
structures in turbulent Taylor-Couette flow are related with the top and
bottom boundary conditions [50, 98]. Studies performed with different
configurations (such as very high Γ or stationary endplates) would not
result in the Taylor column observation. On the other hand, as their
segmented form might suggest, they may be associated with instability
[66], as well. It should be noted that no significant ReS dependence
of the Taylor column-like structures was observed over current range of
ReS .

5.5.2 Quantification of the orientation of the instantaneous
large-scale structures

The results of visual inspection is further supported by quantification
of the orientation of the vorticity vector within the ILS vortical struc-
tures. The vorticity vectors are computed using the 3D-3C velocity fields
at ReS = 29000 and distribution of the angles are plotted in Figure
5.10 and 5.11. The β represents the angle between the vorticity vec-
tor and the axial direction on the azimuthal-axial plane. The φ shows
the elevation of the vorticity vector with respect to the same plane (see
inset of Figure 5.10). The angles are computed at data points where
Q ≥ 2000 s−2, representing the isosurfaces given in Figures 5.8 and 5.9.
Higher Q thresholds (2000 ≤ Q ≤ 3000 s−2) were also tested, however
no significant Q dependency of the results was observed.

The results show that at RΩ,i = −0.083, the structures mostly accu-
mulate around β = 90 and −90◦, in a relatively small φ range (Figure
5.10 (a)), confirming the alignment in the azimuthal direction resembling
Taylor vortices. At RΩ = −0.010 (Figure 5.10 (b)), the distribution of
angles broadens and φ in particular attains higher magnitudes consis-
tent with the observed increase in the inclination of the vortices. In
the case of RΩ,c = 0 (Figure 5.11 (a)) the data is more evenly scat-
tered over horizontal-S shape. The relative number of occurrences in
the β = φ = 0◦ neighbourhood is significantly increased. This almost
uniform distribution of β and φ confirms the blob-like structures, having
no significant preference of orientation, as previously shown in Figure
5.8(c). At RΩ,o = 0.091 the distribution of angles reveal again a signifi-
cant change (Figure 5.11 (b)). The data is accumulated at both β = 0◦

and φ = 0, with a scatter range much smaller than the other cases. This
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Figure 5.10: Joint p.d.f of the orientation of the vorticity vectors in the
azimuthal-axial plane w.r.t axial direction (β), and the elevation w.r.t
the same plane (φ) at ReS = 29000 and RΩ,i = −0.083 (a), RΩ = −0.010
(b).
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Figure 5.11: Joint p.d.f of the orientation of the vorticity vectors in the
azimuthal-axial plane w.r.t axial direction (β), and the elevation w.r.t
the same plane (φ) at ReS = 29000 and RΩ,c = 0 (a), RΩ,o = 0.091 (b).
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clearly confirms previous visual inspection of Taylor column-like vorti-
cal structures that are aligned in the axial direction (see Figure 5.9).
Although only four RΩ are given here, the results at intermediate RΩ

follow the same trend and confirm the visual findings.

5.6 Contribution of Coherent Structures to Reynolds
Stress

In addition to the organisational change, the contribution of the ILS to
the torque was studied by means of friction coefficient,

Cf =
τ̄

ρU2
sh

, (5.6)

where τ̄ represents the mean Reynolds stresses in the radial gap and Ush
(= S×d, where S is the laminar shear rate) is the shear velocity [35,82].
It was assumed that the wall shear rate is equal to the total mean stress
in the flow. Given that the viscous stresses in the bulk are negligible
and only important in a very thin region near the wall, the total stress
is almost equal to the Reynolds stress in the bulk flow.

Results in Figure 5.12 show that the most significant influence to
the Reynolds stress is due to the interaction between the fluctuating
velocities in the azimuthal and the radial directions (u′θu

′
r). Compared to

the measurements with the torque meter presented by Ravelet et al. [82]
(see Figure 5.1 and “total torque data” in Figure 5.12), current Cf values
from PIV (indicated as “total” in Figure 5.12) are on average 0.15×10−3

lower for all RΩ studied. Please note that Ravelet et al. [82] plotted
the Cf values based on the total measured torque of the setup (which
also includes top and bottom von Karman gaps). In this chapter, the
contribution of the von Karman gaps were subtracted from the total Cf ,
assuming the torque in the von Karman gap is independent of RΩ and is
equal to half of the measured torque at RΩ,o = 0.091, as suggested [82].
However, apart from the nearly constant shift, the Cf essentially follow
the same trend.

Figure 5.12 shows that the turbulent stress due to the large-large
scale interaction in the azimuthal-radial direction (u′θ,Lu

′
r,L) is dominant

for all RΩ, except RΩ ≥ 0.025. The stress due to u′θ,Lu
′
r,L reaches its
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Figure 5.12: The friction factor Cf due to the interaction between
the instantaneous large scale (LS) and smaller-scale (SS) motions in the
azimuthal-radial directions, as a function of RΩ, measured at the center
of the gap d at ReS = 29000. The u′θ and u′r represent the fluctuating
velocities in the azimuthal and radial directions, and U is the mean
velocity, respectively. The values indicated by “total” represent the sum
of all Cf values (including the contributions of all scales and directions)
that are computed using tomographic PIV. The torque values (i.e. “total
torque data”) are adapted from Ravelet et al. [82]. The dashed lines are
indicative.
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peak value at RΩ ≈ −0.010, where the azimuthal ILS contain most
of the turbulent kinetic energy, associated with the inclined structures
connecting the inner and outer cylinders, as discussed previously.

The interactions including any smaller-scale motion are negligible for
RΩ < 0. However, the contribution of smaller-smaller scale interaction
in the azimuthal-radial direction (u′θ,Su

′
r,S) starts to increase around

RΩ,c = 0 for increasing RΩ values, and becomes the dominant Reynolds
stress for RΩ > 0.025. Actually, the increment is also valid for large-
smaller scale interactions in the azimuthal-radial direction (i.e. u′θ,Lu

′
r,S

and u′r,Lu
′
θ,S). This trend can be explained by higher turbulent kinetic

energy contained in the ISS for this RΩ range, as explained in Section
5.5 (see Figure 5.7).

5.7 Large and Smaller-Scale Structure Interaction
versus the Change of Torque

In the light of the observations made about the organisational change
of the ILS, the optimum angular momentum transportation in Taylor-
Couette flow can be explained. According to the results presented here,
at highly negative rotation numbers (−0.083 ≤ RΩ ≤ −0.025), the rel-
atively well-organised ILS, as well as the ISS, are inefficient in terms of
angular momentum transport. At that range, most of the contribution to
Cf is due to the mean flow. However, close to the RΩ,c, the transforma-
tion from azimuthal alignment to the inclined vortices enhance the tur-
bulent angular momentum transfer. This is because the inclined vortices
induce u′θ,L and u′r,L simultaneously enhancing their overall correlation

(u′θ,Lu
′
r,L), which contributes significantly to the Reynolds shear stress.

This is in agreement with a statement of Tennekes and Lumley [103],
where they suggest that the vortical structures that are aligned with
the direction of the mean strain rate are more effective for transferring
energy between the mean flow and turbulence.

Therefore, slightly negative rotation (−0.0125 ≤ RΩ ≤ −0.005) be-
comes the region where the turbulent angular momentum transport is
enhanced. On the other hand, the optimum angular momentum occurs
at RΩ ≈ −0.025, which might be due to the coexistance of the u′θ,Lu

′
r,L

and the mean flow in the region. Compared to the literature with lower
η (= 0.500− 0.717), the change of the location of the optimum angular
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momentum transfer closer to RΩ,c = 0 is in agreement with the predic-
tions for Taylor-Couette setups with η → 1 [16,109,110].

After the peak, the efficiency of ILS decreases for increasing RΩ. It
is due to the fact that, at positive rotation numbers, the ILS start to
align themselves in the axial direction as co-rotating Taylor column-
like structures, where the angular momentum cannot be transported
efficiently. In the mean time, the ISS start to take over the dominant
role of the ILS in the flow. However, the ISS do not contain enough
energy to keep the angular momentum transportation as high as the
ILS around RΩ ≈ −0.010.

5.8 Conclusion

In this chapter, using fully volumetric measurements, the rotational de-
pendence of the coherent structures and their influence to the reported
change of the torque values were investigated in fully turbulent, counter-
rotating Taylor-Couette flow at constant shear. The investigations at
the mean and the instantaneous flow showed the significant dimensional
and orientational change of the turbulent flow structures. In order to get
more insight on the dynamics of the flow, the instantaneous flow fields
were studied by separating into large and smaller-scale motions. The
change of instantaneous large-scale structures from azimuthally aligned
structures to Taylor column-like structures, with intermediate regimes,
was shown quantitatively and qualitatively.

Additionally the stresses associated with the large and smaller-scale
structures were computed. It is found that close to only inner cylinder
rotation, the large and smaller scale structures are inefficient for the
angular momentum transport, whereas the mean flow is responsible for
the measured stresses. In the proximity of the exact counter-rotation of
the cylinders, the roles change. The inclined large-scale vortices enhance
the turbulent angular momentum transport. Using the change of the
structures and computing their contribution to torque it was possible
to explain the reported behaviour of torque and angular momentum
transport.



6 Conclusions and Outlook

6.1 General Conclusions

The aim of this thesis was to measure the coherent turbulent flow struc-
tures in turbulent Taylor-Couette flow, and examine their contribution
to the torque. In order to perform the experimental analysis in a fully
volumetric measurement domain, state-of-the-art tomographic PIV is
implemented to the Taylor-Couette setup. In Chapter 2, the details
of the implementation of the tomographic PIV is explained and vali-
dated. The measurements are performed in a volume with a size of
40× 20× 10 mm3 in axial, azimuthal and radial directions, respectively.
The laminar flow is analytically well defined in the Taylor-Couette geom-
etry and therefore used to validate the measurements. It is found that
the maximum error on the mean velocity estimation (relative to the
inner cylinder wall velocity) is 3.2% for the azimuthal velocity and be-
low 0.7% for the axial and the radial velocities. In steady laminar flow
the RMS of the velocities are a measure for the random noise, which
is below 1.5% over most of the gap, but reaches to 4.8% of the outer
cylinder velocity. Additionally, in order to demonstrate the capabilities
of tomographic PIV, examples of flow structures at different flow states
like Taylor-vortex flow and fully turbulent flow are presented in Chapter
2. Details of the problems that were experienced during the implemen-
tation (such as the illumination, reflection and optical distortions), and
the solutions are explained in the same chapter.

The actual spatial resolution of tomographic PIV, and even the way
to define it (either the distance between two neighbouring vectors or the
size of the interrogation window), is still a debate in the literature. In
Chapter 3, the actual spatial resolution of tomographic PIV is analysed
to clarify the spatial resolution issue. Taylor-Couette flow is almost ideal
for this analysis because of the independent torque measurements that
can be used to determine the power supplied to the flow. In fully tur-
bulent Taylor-Couette flow, the power input is directly related to the
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viscous dissipation rate in the flow [80]. The fully volumetric measure-
ment techniques such as tomographic PIV provide velocity gradients
of all three velocity components in all directions, which allows the dis-
sipation rate to be estimated. Comparison of those two independent
dissipation values provides the necessary information about the actual
resolution of the tomographic PIV. A parametric study is performed
over several variables such as the Reynolds number, the interrogation
volume size and overlap, to see how do they effect the spatial resolution.
The large-eddy PIV method [95] is also tested to check its performance
on the improvement of the dissipation rate estimations.

It is found that the dissipation rates are underestimated for most of
the turbulent flow measurements, with the exception of the low Reynolds
number cases. The underestimation increases with the Reynolds num-
ber at fixed window size. The results showed that the accuracy of the
dissipation rate estimations is strongly related to both the interrogation
volume size and the space between the vectors (which is a combination
of both interrogation volume size and interrogation volume overlap). It
is found that the actual spatial resolution of tomographic PIV is a non-
linear function of both interrogation volume size and the overlap ratio,
such that decreasing the volume overlap at a constant interrogation size
increases the error, whereas it results in lower error compared to similar
vector spacing with larger interrogation volume sizes. The computa-
tions are more sensitive to the changes of the interrogation volume size
than the vector spacing. Despite the fact that some studies in the lit-
erature define the spatial resolution by the interrogation volume size, it
was shown here that the vector spacing is a more suitable parameter
to quantify the actual spatial resolution of tomographic PIV and PIV
in general. Additionally oversampling the data with high overlap ratios
result in better estimations, even though it possibly results in a higher
data density than the actual tracer particle density. On the other hand,
the large-eddy method is found to improve the estimations compared
to the direct estimations by tomographic PIV. The spatial-resolution
requirement of tomographic PIV to fully resolve the turbulent dissipa-
tion scales is also defined in the same chapter. It is found that a vector
spacing of 1.5 − 2.0 times Kolmogorov length scale (which is equal to
interrogation volume size of 6.0− 8.0 times Kolmogorov length scale at
75% overlap) should be aimed to resolve all scales, which confirms pre-
vious studies with 2D and tomographic PIV [18, 54, 85, 122]. However,
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the results indicate that if the vector spacing is kept small using high
overlap ratios (up to 75%), the restriction of using small interrogation
volume size can be relaxed. Therefore, interrogation volumes that are
larger than the values suggested in the literature might be used while
still having a enough spatial resolution to resolve small scales. On the
other hand, as a post-processing routine, the large eddy PIV method
can be used to improve the dissipation rate estimation, especially for
high Reynolds numbers.

In Chapter 4, time-resolved tomographic PIV is implemented to the
Taylor-Couette geometry in order to demonstrate possible capabilities
of the technique for investigating the dynamics of fully turbulent Taylor-
Couette flow. The measurements are performed at exact-counter-rotation
of the cylinders (i.e. the absolute velocity of the inner cylinder wall is
equal to the outer cylinder wall, but they are rotating in opposite direc-
tions), where the velocity of the mean flow in the bulk is nearly zero.
Due to this advantage, it is possible to have a longer observation times
to track the coherent structures passing through the measurement vol-
ume, compared to similar studies in a boundary layer or channel flow.
Actually, the convection velocity of the structures are found to be non-
zero despite the approximately zero mean flow. They advance in the
azimuthal direction depending on their radial position. The most fre-
quently observed coherent vortex structure are the tube-like vortices,
which are elongated in the azimuthal direction. Several dynamic events
in turbulent Taylor-Couette flow, such as bursts of the azimuthal ve-
locity in the radial direction, and stretch and break-up of the tube-like
vortices are observed and discussed.

The dependence of the torque values on the relative rotation speeds
of the cylinders at a constant Reynolds number is a widely studied sub-
ject in the literature [16, 76, 82, 109, 110]. In this thesis, tomographic
PIV is used to analyse the turbulent flow structures to reveal any con-
nection with the change of the torque scaling at counter-rotation regime
(Chapter 5). It is shown that even at a constant shear rate, the mean
and instantaneous turbulent flow structures change significantly with
the rotation number, i.e. the relative rotation speed and direction of the
cylinders. Large-scale structures resembling Taylor-vortex flow domi-
nate the mean flow at negative rotation numbers (i.e. the inner cylinder
is rotating faster than the outer cylinder in the opposite direction). They
disappear from the mean in the case of positive rotation numbers (i.e.
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the outer cylinder is rotating faster than the inner cylinder in the oppo-
site direction).

More detailed analysis on the dependence of the turbulent flow struc-
tures to the rotation number is performed by decomposing the instanta-
neous flow fields to large and smaller-scale motions. It is shown that the
instantaneous large-scale structures change significantly with the rota-
tion number, similar to the mean flow structures. New sub-regimes with
azimuthally aligned structures (resembling Taylor-vortices), azimuthally
aligned structures with inclined axes, as well as structures with no ori-
entational preference are defined. Additionally, Taylor column-like co-
herent structures, which are elongated in the axial direction of the cylin-
ders, are observed in Taylor-Couette flow for the first time. Using the
Reynolds stresses associated with the different types of the large and
smaller-scale coherent motions, it was possible to explain the highly dis-
cussed change of the torque scaling values. The results show that the
inclined vortices are responsible for the increase of the angular momen-
tum transport between the cylinders.

The relatively well-organised instantaneous large and smaller-scale
structures are found to be inefficient in angular momentum transport at
highly negative rotation numbers (−0.083 ≤ RΩ ≤ −0.025), where most
of the contribution to the friction factor Cf is due to the mean flow.
At slightly negative rotation numbers close to exact-counter rotation
(−0.0125 ≤ RΩ ≤ −0.005), the inclined vortices enhance the turbulent
angular momentum transfer by inducing velocities in the azimuthal and
the radial directions, which contributes significantly to the Reynolds
shear stress. In the case of positive rotation numbers, the instantaneous
large-scale structures start to align themselves in the axial direction as
co-rotating Taylor column-like structures, so that the angular momen-
tum cannot be transported efficiently any more. At the same time, the
smaller-scale structures become dominant over the large-scales in terms
of their angular momentum transfer. However, the total momentum
transfer drops.

6.2 Outlook

This study provides new insights about the role of the coherent turbulent
flow structures on skin friction and torque. Currently the connection
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between those two subjects is weak in the case of Taylor-Couette flow.
This study may be seen as a step forward to understand the relation
between them and it can further be extended to other flow types like
the co-rotating regime, as well as the dependence of the results on the
gap ratio of the cylinders.

On the other hand, the most imminent and practical application of
this study would probably be based on the results presented in Chapter
3 on the spatial resolution of tomographic PIV. Users of tomographic (or
other) PIV technique may benefit from the results and they can adjust
their measurement parameters to resolve small flow scales in turbulence.
Although the results presented in this thesis show that the spatial res-
olution of tomographic PIV increases with the overlap of interrogation
volumes in the studied range (0 ≤ overlap ≤ 75%), there still remains
a question about its limits. Probably the trend of improvement does
not continue up to very high overlap values (i.e. 99%), and there may
be an optimum value in between. However, due to the required compu-
tation time of tomographic PIV, it was not possible to further extend
the investigation range or steps within current study, and the analysis
remained limited to the cases presented here. Further studies should in-
clude a wider range of interrogation volume overlap ratios to determine
or confirm the possible optimum value.

Due to the very small convection velocity (and therefore the longer
observation time), the time-resolved measurements in a turbulent flow
with approximately zero mean velocity is a promising approach to study
the evolution of coherent motions in turbulence. Although plane Cou-
ette and Taylor-Couette flows are widely used for different studies, it is
interesting that the “approximate zero mean velocity” principle has yet
not been employed in the literature of plane Couette and Taylor-Couette
flows. As it is shown here, with the combination of time-resolved and
volumetric measurements, tracking coherent flow motions and studying
their evolution in 3D may provide more insight about the dynamics of
turbulence. Further studies may benefit from the fact that those two
flow types can also be used for studying the flow under the influence of
an accelerating (or decelerating) wall. The time-resolved results given
in Chapter 4 remained limited to the few examples of the events, rather
than a detailed quantitative analyse of the dynamics of the turbulent
flow that is investigated. Further detailed analyses can be performed
using the obtained data including additional Reynolds numbers.
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