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Abstract: The representation of vector data at variable scales has been widely applied in geographic
information systems and map-based services. When the scale changes across a wide range, a complex
generalization that involves multiple operations is required to transform the data. To present such
complex generalization, we proposed a matrix model to combine different generalization operations
into an integration. This study was carried on a set of river network data, where two operations,
i.e., network pruning accompanied with river simplification, were hierarchically constructed as the
rows and columns of a matrix. The correspondence between generalization operations and scale,
and the scale linkage of multiple operations were also explicitly defined. In addition, we developed
a vario-scale data structure to store the generalized river network data based on the proposed
matrix. The matrix model was validated and assessed by a comparison with traditional methods that
conduct generalization operations in sequence. It was shown that the matrix model enabled complex
generalization with good generalization quality. Taking advantage of the corresponding vario-scale
data structure, the river network data could be obtained at any arbitrary scale, and the vario-scale
representation was achieved across a wide scale range.

Keywords: matrix model; vario-scale representation; complex generalization; hydrographic
network generalization

1. Introduction

The representation of vector data at variable scales has been widely applied in geographic
information systems and map-based services, e.g., OpenStreetMap, Google Maps and Crowdsourcing
maps [1]. With the advances in Geoweb [2], vario-scale representation is not only utilized to present
data at any appropriate level of detail (LoD), but is also required to facilitate data transmission
and knowledge discovery using its data abstraction technologies [3,4]. Given varied objectives and
application domains, such as displaying a topographical map on both a wall screen and smart phone,
tailoring a set of volunteered geographic information data (e.g., vehicle trajectories and geotagged
place names) to fit a few user-defined mashups [5], spatial representation should be adaptable in
variable LoDs (levels of detail) over a wide range of map scales.

To achieve a vario-scale representation of spatial data, cartographers apply map generalization to
generate coarse LoDs from a given detailed data set [6–8]. A large number of generalization operations
can be used: elimination is used to remove one or more geographic features to reduce the content
for display; simplification removes points from a line or polygon boundary to reduce unwanted
small details; merger combines connected or adjacent features into a single feature without changing
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dimension; and so on [9]. As for network generalization, elimination also refers to pruning, selection,
or thinning, which concern topological maintenance and data model integrity [10–13]. Note that
these generalization operations also transform data at different aspects. Some may affect groups of
map objects or individual map objects (e.g., elimination vs. simplification), while others may lead
to changes in topology or geometry (e.g., merger vs. simplification). When the map scale changes
across a wide range, generalization often requires a complex process that adopts multiple operations
to ensure satisfactory generalized results that meet the application requirements.

Ideally, the generalization process should be holistic, and fundamentally depends on the scales
and feature class involved (e.g., rivers, buildings, or points of interest). However, as one generalization
operation only addresses one specific generalization issue, the complex process has to be broken
down into a set of sub-processes, and relevant operations are then conducted in series to output
an abstracted result [14]. Two major problems currently exist. First, only a few studies have been
concerned with how to properly organize different generalization operations into a rational workflow.
According to Cecconi [15], the generalization operations are non-homogeneous within the range
of map scale. Though selection (or elimination by Stanishlawski) and simplification act as two
common operations through the complete scale range, other operations may take place at different
scale ranges. Some studies have tried to orchestrate the logic sequence of generalization operations
for particular scales [16–18], but it was argued that performing the operations in different orders
would generate completely different results [19]. Thus, a model that combines multiple operations
for a range of scale is still missing. Second, though numerous algorithms have been developed
for various generalization operations [8,20–23], the tolerance parameters for scales change were
determined separately as the linkage between the tolerance parameters of multiple operations were not
considered during the generalization. Thus, the issue of vario-scale representation involving multiple
generalization operations still requires future study.

In this paper, we present an integrated model to combine different generalization operations for
vario-scale representation. In our previous work [11], a matrix diagram was presented to describe the
progressive selection and simplification of a hydrographic network. As the involved operations were
performed separately (i.e., the network was pruned before the flowlines were simplified), reasonable
generalization results could not be confirmed (as shown in Figure 1). A number of points, which
should have been removed from the flowlines, were kept to preserve the topological relationships
between adjacent branches. This study extends our previous work in three areas: (1) developing an
integrated matrix to organize hydrographic LoDs raised by different operations, i.e., selection (network
pruning) and simplification, as a hybrid hierarchy; (2) defining the scale correspondences of two
involved operations; and (3) establishing a vario-scale structure to assemble the data based on the
integrated matrix to provide vario-scale representation at any scale required.
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This study was conducted on a set of river network data extracted from the Multiple
Representation Database (MRDB) produced by the China National Geographic Information Institute.
We assumed that the river network consisted of linear elements, and the polygonal river channels
and other area elements were substituted by their linear counterparts. The complex generalization
was confined to the combination of selection operations (i.e., pruning the river network) and the
simplification operation (i.e., simplifying the rivers) concerned. The remainder of this paper is
organized as follows: Section 2 reviews the relevant work. In Section 3, first, our generalization
methods including network pruning and river simplification are presented to define the sequence of
LoDs for scales. Then, a hybrid matrix is developed to integrate the generalized results. In Section 4,
the scale correspondence of generalization operations in the matrix is investigated. Section 5 establishes
a vario-scale data structure based on the proposed matrix, and Section 6 assesses the matrix model
through a comparison with traditional solutions referring to sequence generalization through an
empirical study. Finally, Section 7 concludes the paper and provides an outlook for future work.

2. Relevant Work

Vario-scale representation refers to the situation where the LoD at any arbitrary map scale
can be obtained by an automatic generalization process [24]. It is quite different to multi-scale
representation, which provides LoDs representation for a fixed number of scales. Furthermore,
vario-scale representation supports continuous and topologically consistent transformation without
abrupt changes [25]. With respect to vario-scale representation of river networks, related
research involves at least three aspects: continuous generalization, vario-scale data structure,
and hydrographic generalization.

2.1. Continous Generalization

Continuous generalization aims to produce maps that adapt the generalization degree to any
scale in a continuous way [26–28]. When LoD representation changes from one scale to another,
intermediated states can be defined to provide a smooth transfer. To achieve continuous generalization,
efforts were made based on interpolation technologies, which are known as morphing in computer
graphics and computational geometry [28,29]. These efforts usually include two phases: to find
the corresponding data at two scales; and to specify the trajectory that connects the pairs of
corresponding data. Due to the lack of algorithms for spatial correspondence and trajectory
specification without spatial conflicts, morphing-based generalization still remains a challenge. Some
scientists have suggested another option where the incremental generalization generates a more
detailed representation with small incremental changes. In addition, algorithms have been mainly
reported in the literature for line simplification [30]; building ground plans displacement [27]; and land
use area aggregation [31]. We categorized our study into the incremental generalization.

2.2. Vario-Scale Data Structure

A data structure that stores data of variable scale in terms of vario-scale data structure enables
a promising application to deliver LoDs with continuous transformation [25,32–35]. This has been
proposed to overcome the drawback of multi-scale data structures, which support only a limited
number of scale intervals with data redundancy [15,25]. A few vario-scale models have been
successfully carried out, including the Binary Line Generalization tree (BLG tree) [36], Reactive
tree [37], topological Generalized Area Partitioning (tGAP) structure [33], and Simple Operations
(SOs) vocabulary [27]. Most of these focus on a single generalization process, such as simplifying,
merger, and displacement, and are used to provide progressive data transfer with less data redundancy.
Additionally, existing vario-scale structures are still rare.
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2.3. Hydrographic Generalization

Hydrographic generalization produces LoDs representations for hydrographic feature (i.e., rivers,
stream, and lakes). It is one of the basic topics in map generalization. Over the last few decades,
plenty of generalization operations have been applied to derive coarse hydrographic data such as
simplification to remove small geometric variations in the flowline or lake boundary; selection for
pruning (i.e., thinning) the river network; aggregation to combine an array of closed ponds; and
collapse to replace the narrows rivers with a linear counterpart.

Increased research in this area has indicated that complex generalization (referring to multiple
operations) should be applied to generate reasonable hydrographic LoDs [11,15,17,19,38,39].
For instance, Buttenfield et al. [17] specially tailored generalization operations and their processing
sequences based on the physiographic diversity. Considering the river network, the pruning
(i.e., selection) operation had a higher priority. Additional operations which either removed or
modified details from individual rivers were then implemented post-pruning. Other research have
also suggested that network pruning and river simplification should act together during the overall
process of hydrographic generalization [11,15,38].

To present the complex generalization, we proposed an integrated matrix by modeling the
generalization process (consisting of network pruning and river simplifying) as a hybrid. This then
carried out the corresponding generalization algorithms in combination. Beyond that, we developed a
vario-scale data structure to store the generalized river network data based on the matrix model. This
vario-scale structure enabled us to generate river network data for an arbitrary scale, and supported
vario-scale representation across a wide scale range.

3. Matrix Model for Vario-Scale Representation

The basic idea of the model is to present multiple generalization operations as different dimensions
of a matrix, so that the complex generalization process can be achieved by sliding the matrix. For the
river network, we hierarchically constructed the network pruning and river simplification as the rows
and columns of the matrix. The procedure contained the following steps: first, defining the hierarchical
LoDs of the river network and individual rivers, before combining them into a hybrid structure.

In the following sections, the term river refers to a complete flow path that may consist of one or
a series of segments in the river network. Node means the point by which two rivers are connected.
The term segment refers to the channel between to two consecutive nodes.

3.1. Hierarchical Construction for Network Pruning

Network pruning, or eliminating rivers from the river network while still maintaining the
correct topology, is a common operation in hydrographic generalization. A number of pruning
methods have been proposed based on various hydrographic factors, such as river length, Horton
code, watershed partition, and upstream drainage area (UDA) [40–43]. The key consideration is to
measure the importance of rivers so that rivers of higher importance are preserved, and those of low
importance eliminated.

In this study, the importance of rivers was measured considering watershed partition [43],
associated with the length, hydrographic topology, and feature class of the rivers. The procedure of
watershed partition is shown in Figure 2. First, rivers were labelled with the Horton code [44]; then,
the watershed area of each river was created using the linear constrained Voronoi diagram [45]. Next,
the watershed area corresponding to the lowest-order label merged iteratively with the watershed area
that had a higher order label. Based on the watershed partition, the importance value of each river in a
network can be specified as follows:

Imp(i) = ω(i) × Length(i) × Area(i),
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where the importance value of river i is presented as Imp(i); the length of river i is presented as
Length(i); and the area of the corresponding watershed containing all its sub-watersheds was presented
as Area(i). Furthermore, we introduced a class-dependent weight factor represented as ω(i). The value
of ω(i) varied due to the hydrographic pattern of river network. For instance, a river in a high density
area had a smaller value than one in a low density area. The calculation of ω(i) was beyond the scope
of this study, so to consider the distribution of the river network relatively evenly, we used a constant
weight of 1 for all rivers.
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Figure 2. The results of iterative merging based on hierarchical partitioning of the river catchment.
(a) Rivers labeled with the Horton code. (b) Watershed partition based on the linear constrained
Voronoi diagram. (c) Intermediate result that watershed area corresponding to the lowest-order label
merged iteratively with the one which had a higher order label. (d) The final merging result.

Network pruning was carried out step-by-step by sorting the rivers into a descending order
of importance; subsequently, the LoDs of the river network were derived in a progressive manner.
Figure 3 illustrates the stepwise procedure. For each step, the least important river was eliminated
from the network, which was not always the shortest, lowest order, or related to the smaller watershed
area. The river segments adjacent to the eliminated river were merged. This procedure is presented as
a linear hierarchy shown in Figure 4.

3.2. Hierarchical Construction for River Simplification

During network pruning, the preserved rivers were also appropriately simplified. Considerable
simplification algorithms can be used [22,46,47]; it has been noted that the well-known
Douglas–Puecker (DP) algorithm, which selects the critical or shape-describing points globally
and iteratively, has the best performance out of the other algorithms in terms of data accuracy
and reduction [46,48]. Therefore, we applied a modified Douglas–Peucker algorithm advanced by
Meijers [49] for the simplification of grouping lines.

For a single river, the offset of points to the corresponding base line was calculated. Taking the
river segment P1P4 in Figure 5 for instance, a straight line P1P4 was regarded as the base line, then the
distance from point A4 to the base line was measured as the offset of point A4. Next, the intermediate
point with the maximum offset was selected as the significant point and used to divide the river into
two parts. The offset was also recorded as the importance value of the point. For rivers in group,
the river with the highest priority in selection was simplified first, before the less important river was
simplified using the more important river as the constraint. The topological relationship between
the simplified river and the simplified and constrained river was checked during the simplification.
In cases where a local conflict arose, points with the second or third maximum offset were selected
instead of the maximum offset.

Due to the recursive nature of the DP algorithm, it was able to retrieve the shape-describing points
from rivers to define a set of BLG trees hierarchically for LoDs representation (as shown in Figure 5).
To maintain the correct adjacent relationship between rivers, we used the simplification operation on
segments. Thus, the point hierarchy for an individual river may be constructed as a forest (i.e., several
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trees present the related river segment) rather than a single tree. Cutting off the point hierarchy using
different tolerances provided generalized rivers at various LoDs (as shown in Figure 6).ISPRS Int. J. Geo-Inf. 2017, 6, 218  6 of 20 
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Order refers to the Horton code; and Step refers to the order in the process of pruning. Pruning 
considered the length, area, and Horton order of rivers together rather than by a single 
hydrographic factor. For example, the river eliminated at Step 7 was longer than that at Step 10, and 
the one eliminated at Step 8 had a larger watershed area than that at Step 9). 

Figure 3. An example of a river network and the stepwise network pruning (Length means the length
of the eliminated river drawn in magenta; Area means the corresponding watershed area; Order refers
to the Horton code; and Step refers to the order in the process of pruning. Pruning considered the
length, area, and Horton order of rivers together rather than by a single hydrographic factor. For
example, the river eliminated at Step 7 was longer than that at Step 10, and the one eliminated at Step 8
had a larger watershed area than that at Step 9).
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Note that, in the point hierarchy, the offset distance of a parent point may be smaller than those
of its child points. For instance, the offset distance of A13 and A12 was 2266 and 2405, respectively,
in Figure 5, and it was not guaranteed that a higher level point had a larger offset than that of a lower
level point. Therefore, we set the offset of the child point equal to its parent points. In Figure 6, the
offset of A12 was changed to 2266, equal that of its parent point A13. In this way, the hierarchical
structure was transformed into a linear storage structure by first adding the two end points of the river
section, and then appending the remaining points in an offset-decreasing order, as shown in Figure 7.
By selecting points from left to right in this linear structure, it was easy to reconstruct the river lines of
different LoDs. The selected points were adjusted in correct sequence as in the original line.
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Figure 7. Linear BLG trees of r1 and the simplification process by selecting points from the linear BLG
tree. For a given scale, if the river r1 is preserved, the primary head-water points of involved segments
will always be retained. Others will be selected from left to right in the linear BLG trees using the
simplification tolerance. To generate a desired LoD representation, the selected points are adjusted in
the correct sequence as in the original line.

3.3. A Matrix Hybrid: Integration of Network Pruning and River Simplification

As both network pruning and river simplification were constructed in linear hierarchies of LoDs,
it was easy to describe the complex process using a matrix diagram, where the rows represent river
lines ordered by importance, and the columns the sorted points of a river [11]. The key was to integrate
these LoDs into a comprehensive pattern.

Figure 8 demonstrates the complex generalization of a river network. When a river was eliminated,
two adjacent segments were properly simplified, and merged as a new segment for the subsequent
process. Such a merger arose as a turning point in river simplification. Furthermore, the corresponding
simplification of merged segments were presented in one BLG tree instead of two separated trees, and
some important points became less important after the merge, such as point C.
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Therefore, the matrix hybrid of a river network can be built as follows: 

1. Construct the linear hierarchy of the river network by sorting the rivers in descending order of 
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2. Select the least important river from the river hierarchy, simplify its shape and construct a 
corresponding linear BLG tree that refers to the LoDs representation. Identify the river as an 
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3. Check the river hierarchy and search the parent river which is adjacent to the current 
eliminated river (e.g., r1 is the parent river of r11 in Figure 5), retrieve the related segments 
(e.g., segment P4P8 and P8P6 of r1), then construct their linear BLG trees. 

4. Merge the adjacent segments, construct a new tree for the newly merged segment and insert in 
front of the original two linear trees. The original linear BLG trees of those adjacent segments 
are clipped at the relevant LoDs of the eliminated river. 

5. Repeat steps 2–4 until no rivers are left in the river hierarchy. 

4. Scale Correspondence in the Matrix 

Scale correspondence refers to the relationship between the LoDs and scale, as well as the scale 
linkage among different LoDs. In our study, we established scale correspondence for the proposed 

Figure 8. The complex generalization of a river network. (a) The original river network.
(b) Intermediate generalized result when river BF was eliminated and the preserved revers were
simplified. (c) Intermediate generalized result when river CE was eliminated and the preserved revers
were simplified. (d) The generalized result when only river DA was preserved and simplified.

To present the transformation, we constructed a matrix structure following the conceptualization
of the tGAP tree advanced by van Oosterom [33]. That is, for each merger (corresponding to the river
pruning), the matrix column was reformed by creating a new BLG tree to represent the simplification
process of the merged segment. A schematic representation of the matrix hybrid is illustrated in Figure 9.
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Therefore, the matrix hybrid of a river network can be built as follows:

1. Construct the linear hierarchy of the river network by sorting the rivers in descending order
of importance.

2. Select the least important river from the river hierarchy, simplify its shape and construct a
corresponding linear BLG tree that refers to the LoDs representation. Identify the river as an
eliminated river.

3. Check the river hierarchy and search the parent river which is adjacent to the current eliminated
river (e.g., r1 is the parent river of r11 in Figure 5), retrieve the related segments (e.g., segment
P4P8 and P8P6 of r1), then construct their linear BLG trees.

4. Merge the adjacent segments, construct a new tree for the newly merged segment and insert in
front of the original two linear trees. The original linear BLG trees of those adjacent segments are
clipped at the relevant LoDs of the eliminated river.

5. Repeat steps 2–4 until no rivers are left in the river hierarchy.

4. Scale Correspondence in the Matrix

Scale correspondence refers to the relationship between the LoDs and scale, as well as the scale
linkage among different LoDs. In our study, we established scale correspondence for the proposed
matrix through connecting the row and column that represented the sequence of LoDs to map scale,
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whilst associating each row with a column by the scale. Utilizing the corresponding scale, it was able
to retrieve any LoDs by scanning the rows and columns of the matrix.

4.1. Three Scale Correspondences

4.1.1. Scale Correspondence of the Row

During the network pruning, the least important river was removed from the map in a stepwise
manner. According to Töpfer’s Radical Law, which is widely applied, the ratio of river amount at two
scales should be proportional to the ratio of map scales [20]. The calculation can also be modified by
replacing the river amount with the summed length of rivers [10,17]. Given the continuity of rivers
and the topologic constraint of network, we presented the relationship between the statistic of river
network and the map scale as follows:

TotalLent

TotalLenb
=

Mb
Mt

(1)

where Mb represents the scale dominator of the source (base) map, and Mt is that of the target map;
the symbols TotalLenb and TotalLent represent the summed length of rivers at corresponding scales.

Then, the relation between scale and row (i.e., the step of pruning) can be expressed by:

TotalEL(It) = TotalLenb ×
(

1− Mb
Mt

)
(2)

Here, the symbol It means row and TotalEL(It) means the summed length of rivers that have
been eliminated. The calculation of TotalEL(It) is approximate, as the entire river will be eliminated at
each pruning step.

4.1.2. Scale Correspondence of the Column

As for river simplification, the retrieval of the shape-describe points was conducted using a
simplification tolerance ε which refers to the smallest visible offset distance. Using the symbol
L to represent the minimum length that can be visually identified on a map (in terms of map
distance) [50,51], we presented the column Jt based on the calculation of simplify tolerance εt as:

Jt = εt = Mt × L×
(

1− Mb
Mt

)
(3)

4.1.3. Scale Linkage between Row and Column

The scale linkage between row and column was established on the basis of topology change that
happened during the generalization of the river network. For each step that a river was removed whilst
the adjacent segments were merged, the scale relation between row and column can be denoted as:

Mt(I) = Mt(J) (4)

Here, Mt(I) is the scale dominator corresponding to row and Mt(J) is the scale dominator
corresponding to the column. Thus, the linkage between row and column can be expressed by:

Jt =
TotalEL(It)×Mt × L

TotalLenb
(5)

As map scale is used as the measure base of both row and column, the vario-scale representation
can be consequently derived by top-down scanning on rows and left-right scanning on columns in the
matrix until the required scale is reached. The results of the matrix scanning are illustrated in Figure 10.
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The selective data elements in the matrix behaved as an expanding area from the top left to bottom
right corner.

4.2. Parameter Determination

Among all the above-mentioned parameters, the parameter Mb, Mt and TotalLenb are always
known, but the L needs to be considered further. Several researchers have carried out this investigation;
for instance, Muller [52] suggested 0.4 mm as an appropriate value L. Chen et al. [53] recommended
a value of 10 mm. Li and Zhou [54] proposed that the parameter value should be in an appropriate
range for different map series, e.g., from 0–25 mm.

There were two ways to determine the L value for the proposed matrix. One was to customize
the smallest acceptable graphic distance based on the map applications. The other as to calculate the
similarity of the vario-scale results derived from the matrix and the corresponding benchmark.
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of the matrix).

According to the Amos’ similarity [55], the similarity of the river network at two scales can be
measured as:

Similarity =
∑i (A ∩ B)

∑ A + ∑ B−∑i (A ∩ B)
(6)

where ∑ A is the summed length of the rivers in LoD derived from the vario-scale matrix; and ∑ B is
the summed length of the rivers in the benchmark. The symbol ∑i (A∩ B) is the summed length of the
rivers common to the LoD and benchmark. In our study, we selected the common rivers from the LoD
and Benchmark by querying their attribute ID, for example Ri_A and Ri_B, then the length of the shorter
river (either from the LoD or Benchmark) was summed up as A∩B = min(length(Ri_A), length(Ri_B)).

To determinate the appropriate value of L, an empirical study was carried out on the experimental
river network data. The topological river network at 1:250,000 was used as original data to establish
the matrix and the data at 1:500,000 and 1:1,000,000 were used as the benchmark for the similarity
evaluation. The initial range of L was from 0.01–5 mm with 0.01 mm as an interval.

The relationship between parameter L and the similarity is presented in Figure 11. Theoretically,
the peak similarity of the series comparison indicated the most appropriate value of parameter L.
As shown in Figure 11, it was easy to determine a peak range of similarity in each case. The appropriate
values of L were also determined. In the cases of 1:500,000 and 1:1,000,000, the appropriate L was
approximately 0.2 mm. Therefore, we used it as the appropriate value of L for the current series
of maps.
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5. Vario-Scale Data Structure Based on the Matrix 

In light of the integrated matrix proposed in Section 4, we implemented the physical storage of 
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5. Vario-Scale Data Structure Based on the Matrix

In light of the integrated matrix proposed in Section 4, we implemented the physical storage of
the complex generalization using a vario-scale data structure, which consists of several tables: Face,
Line, Face_hierarchy, Line_hierarchy, Segment_hierarchy, and a lookup table Imp_dictionary. The table
definitions and relationships are given in Figure 12. Some notes are as follows:

• Face refers to the watershed area represented in the polygon. Table Face records the area, and the
length of the related river.

• Line refers to the river that is comprised of a few segments.
• Table Face_hierarchy records the importance values of the watershed area. The column imp records

the importance value for each record, and the columns imp_low and imp_high indicate the importance
range. Parent face refers to the watershed area which the current watershed area merges with.

• Table Line_hierarchy is joined with table Line and Face_hierarchy by line_id and face_id.
• Table Imp_dictionary stores the stepwise process of network pruning. The column imp records

the importance value of eliminating rivers for each step. The I_value equals to step and is added
for illustration purposes referring to the row of the matrix. The J_value is the simplified tolerance
when a less important river is eliminated and two adjacent segments are merged. The I_eliLen
means the summed length of all the removed rivers, i.e., TotalEL(It) in Section 4.1.

• Table Segment_hierarchy stores the process of segment simplification and mergers. A record
refers to either an original river segment or a new segment merged from two adjacent segments.
The BLG is a list of offset distance of the points in each segment. The parent_segment_id indicates
the id of its next river segment going down the river.

• In the able Segment_hierarchy, the imp_low of segment equals the imp_high of eliminated river
that causes the creation of the current segment. For an original river segment, the value of
imp_low is 0. The imp_high of segment equals the imp_high of eliminated rivers, which lead the
current segment to merge with another.
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The vario-scale data structure does not explicitly store the LoDs representation of the river network.
When a scale is given, the LoD representation will be derived dynamically via the following steps:

Step 1: calculate the summed length of eliminated rivers eliLen_t for desired scale m_t by Equation (2);
Step 2: look up the importance value of rivers imp_t and the simplification tolerance J_value_t in

table Imp_dictionary;
Step 3: retrieve the rivers river_t that have imp_low ≤ imp_t and imp_high > imp_t from table

Line_hierarchy;
Step 4: retrieve the segments segment_t which have segment_t.id = river_t.id, imp_low ≤ J_value_t

and imp_high > J_value_t from the table Segment_hierarchy; and
Step 5: reconstruct the river network using river_t and segment_t under the condition that points of

each segment have a larger BLG value than J_value_t.

6. Empirical Study and Discussion

In our study, empirical experiments were conducted to evaluate the performance of the proposed
matrix. The study data were a set of river network data extracted from the MRDB at a scale of 1:250,000,
1:500,000, and 1:1,000,000 from a region of Zhejiang Province, China. The data of 1:250,000 were used
as original data to derive generalized LoDs for other scales, and that of 1:500,000, and 1:1,000,000 were
used as benchmark data for the scale correspondence calculation in the matrix. The matrix model was
established and stored with the vario-scale data structure using PostgreSQL 9.3. The test computer
was equipped with a Core i7-3520, 2.90 GHz, running a Microsoft Windows 7.0 operating system.

6.1. Generalization Quality

As the proposed matrix aimed to integrate network pruning and river simplification for the
complex generalization of a river network, a comparison between the generalization between the
matrix-based method and other approaches was undertaken. The compared methods included
SelectSimpGen, which was to first select the rivers and then simplify the preserved river segments,
and SimpleSelGen, which performed simplification before selection. All these methods used the same
algorithms and parameters, and the only difference was that the multiple generalization operations
were implemented either combined or in sequence.

The results of the complex generalization using the proposed matrix-based, SimpleSelGen and
SelectSimpGen methods are illustrated in Figure 13, and observations were made from a detailed
visual comparison. In the SimpleSelGen results, some unwanted linear jitters arose (Figure 13b), the
reason being that this method first simplified river segments, then preserved the abstracted rivers for
a given scale. To maintain the topological characteristics of the network, the points that connected
tributaries to the mainstream were maintained unconditionally. This method may have also caused the
issue of data redundancy as too many connecting points were maintained. As for the SelectSimpGen
method, which uses the most common operation order in river generalization application [10,17,40],
the results were also not satisfactory as the abstracted representations were not consistent. Some
points appeared at a coarse LoD (1:1,000,000), but disappeared at a fine LoD (1:500,000) (Figure 13d).
The matrix-based method provided better results than the other. On one hand, the generalized results
showed good transformation when referring to the comprehensive process of network pruning and
river simplification and the relationships between the rivers were well maintained without keeping
unnecessary points. When a branch was removed, the point of the mainstream used to connect with
the branch could be eliminated, if it did not overly describe the shape of river. On the other hand, the
results illustrated a consistent generalization for continuous representation. The data at coarse LoD
were the subset of that at the detailed LoD. This observation is also confirmed in Table 1, where some of
the statistics are listed. Though all three methods had a similar length compression, the matrix-based
method and SelectSimpGen method had a higher point compression. In contrast to the SelectSimpGen
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method, the matrix-based method did not create new points during the scale changes from detailed
to coarse.
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Figure 13. The generalized results using the matrix-based method, SimpleSelGen method and
SelectSimpGen method. The original data are presented with grey in the background. (a) Generalized
result by the SimpleSelGen method, 1:3,000,000. (b) Generalized result by the SimpleSelGen method,
1:5,000,000. (c) Generalized result by the SelectSimpGen method, 1:3,000,000. (d) Generalized result by
the SelectSimpGen method, 1:5,000,000. (e) Generalized result by the matrix-based method, 1:3,000,000.
(f) Generalized result by the matrix-based method, 1:5,000,000.
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Table 1. Numerical evaluation of the generalized results by the proposed matrix-based method,
SimpleSelectGen method and SelectSimpGen method.

Length Compression (%) Point Compression (%) Ratio of New Points 1 (%)

Matrix-
Based SimpleSelGen SelectSimpGen Matrix-

Based SimpleSelGen SelectSimpGen Matrix-
Based SimpleSelGen SelectSimpGen

1:250,000 - - - - - - - - -
1:500,000 6.46 7.26 6.46 6.46 6.46 7.26 0 0 0

1:1,000,000 1.40 2.01 1.41 1.40 1.41 2.01 0 0 17.88
1:2,000,000 0.34 0.73 0.34 0.34 0.34 0.73 0 0 13.42
1:3,000,000 0.14 0.42 0.14 0.14 0.14 0.42 0 0 9.46
1:4,000,000 0.10 0.41 0.10 0.10 0.10 0.41 0 0 6.22
1:5,000,000 0.06 0.23 0.06 0.06 0.06 0.23 0 0 23.81
1:6,000,000 0.05 0.23 0.05 0.05 0.05 0.23 0 0 0

1 The new point refers to the point that did not exist at a previous scale, but is present at the current scale.
For instance, the SelectSimpGen method has 17.88% ratio of new points at 1:1,000,000, which means that there are
17.88% points that are not presented at 1:500,000.

6.2. Data Storage

Note that the proposed matrix did not only provide guidance on integrating multiple
generalizations, i.e., network pruning and river simplification, for the complex generalization of
a river network, but also stored the variable LoDs using a vario-scale data structure. As a further step
to evaluate the performance of the proposed matrix, we measured the time consumption of creating
vario-scale data, the storage of vario-scale data, and the data retrieval for vario-scale representation.

Table 2 shows the execution time of vario-scale data creation and the actual amount of data
storage in comparison to the MRDB. It was observed that the total storage space of the vario-scale
data was 11.73 MB, smaller than that of the MRDB, which was 13.32 MB with only three datasets of
1:250,000, 1:500,000 and 1:1,000,000 available. The time consumption to create the vario-scale data
structure and retrieve the data for 1:500,000 and 1:1,000,000 was acceptable.

In addition, the matrix-based data set provided more scales than the MRDB, which only had three
scales. According to the proposed matrix, the vario-scale data were stored with scale range (indicated
by the importance range, as mentioned in Section 5), rather than a fixed scale. Furthermore, it was able
to retrieve the data at any desired scale within the scale scope.

6.3. Scale Scope

Based on the scale correspondence, the rows of proposed matrix related to the river amount and
indicated a set of discrete scales. The columns related to the simplification tolerance and led to a series
of continuous scales. Therefore, it was easy to obtain the scale scope when a matrix was set for certain
river network data.

Figure 14 illustrates the scale serial along the row and column of the matrix for the case study data.
Theoretically speaking, the maximum scale is the scale of the original (source) data; the minimum scale
is the map scale when there is only one river left. In this study, the scale scope was from 1:250,000 to
1:6,443,703. Note that the matrix did not support only fixed or limited number of scale. Any required
scale within the scope was available through the interpolation calculation based on the scale scope.
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Table 2. Performance of vario-scale data creation and data retrieval based on the matrix method
in contrast to the Multiple Representation Database (MRDB). (a) Execution time of vario-scale data
creation and the amount of data storage. (b) Execution time of vario-scale data retrieval and the
data amount.

(a)

Execution Time (s) Data Amount (MB)

Matrix-Based Method MRDB 1 Matrix-Based Method MRDB

Vario-scale 29.62 - 11.73 13.32
1:250,000 - - - 12
1:500,000 - - - 0.94

1:1,000,000 - - - 0.38

(b)

Execution Time (s) Data Amount (MB)

Matrix-Based Method MRDB Matrix-Based Method MRDB

1:250,000 0.18 2.3 8.9 12
1:500,000 0.46 0.12 1.05 0.94

1:1,000,000 0.07 0.06 0.02 0.38
1:2,000,000 0.05 - 0.05 -
1:3,000,000 0.04 - 0.02 -
1:4,000,000 0.03 - 0.02 -
1:5,000,000 0.03 - 0.02 -
1:6,000,000 0.03 - 0.02 -

1 The compared river network data at 1:250,000, 1:500,000, and 1:1,000,000 was directly from the MRDB. The time
consumption of data generation was unknown, because there was no record in the metadata.
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7. Conclusions and Future Work

This study developed an integrated matrix that referred to complex generalization for the
vario-scale representation of river networks. First, two linear LoDs, i.e., the LoDs of network pruning
and river simplification were constructed and organized as rows and columns in a matrix hybrid. Then,
correspondences between the map scale and the row/columns, as well as the scale linkage between
the rows and columns of the matrix, were presented. Thus, the vario-scale LoDs were obtained by
scanning the rows and columns in the matrix. The matrix model was validated by experimental
evaluations, and the following conclusions were made:

• The proposed matrix fit the complex transformation of the river network, when different
generalization operations, i.e., network pruning and river simplification, were involved
(or any other generalization operators that could deliver data as a sequence of LoDs by setting
appropriate parameters). Compared with traditional methods that conduct generalization
operations in sequence, the matrix-base method provided the best results by integrating the
operation in combination.

• Taking advantage of the proposed matrix, the LoDs data at an arbitrary scale were retrieved.
In contrast to the MRDBs, where LoDs are stored as multiple versions separately and only limited
scales are available, the storage of LoDs data based on a vario-scale matrix was much smaller.

• The proposed matrix enabled the vario-scale representation of a river network across a wide scale
range. The large scale depended on the original data, which was used to establish the matrix.
Theoretically, the smallest scale was the map scale when only one river was left.

In future work, several directions can be explored. First, the proposed matrix was established
based on the linear LoDs hierarchies. In this study, the Douglas–Puecker algorithm was applied to
construct the BLG tree for river simplification. Other algorithms, such as the Bend Simplify algorithm
(which is widely adopted to simplify the United States National Hydrography [10,17]), can also be used.
Efforts should be made to construct a bend-related LoDs hierarchies and the scale correspondence.
Second, as network pruning and river simplification were assembled as two dimensions of the
integrated matrix in this study, more generalization operations such as aggregation, displacement
and smoothing may be appended to develop a high dimensional matrix for more complex data
transformation. Third, the integrated matrix needs to be improved to be able to update (e.g., delete,
insert and change) LoDs and propagate to all relevant scales. Fourth, though we only discussed the
vario-scale matrix for a hydrographic network with a dendritic drainage pattern, it is possible to adapt
it to hydrographic networks with other types of drainage patterns, or to extend it to other features
such as roads and buildings. In addition, for content visualization where the objects of interest require
considerable detail, while other coexisting objects do not require as much detail, the vario-scale matrix
is a bright prospect in generating mixed-scale representation with a non-homogenous scale by mixing
data at different LoDs [34].
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