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Abstract. Sandy coasts are constantly changing environments governed by complex, interacting processes.
Permanent laser scanning is a promising technique to monitor such coastal areas and to support analysis of ge-
omorphological deformation processes. This novel technique delivers 3-D representations of the coast at hourly
temporal and centimetre spatial resolution and allows us to observe small-scale changes in elevation over ex-
tended periods of time. These observations have the potential to improve understanding and modelling of coastal
deformation processes. However, to be of use to coastal researchers and coastal management, an efficient way
to find and extract deformation processes from the large spatiotemporal data set is needed. To enable automated
data mining, we extract time series of surface elevation and use unsupervised learning algorithms to derive a
partitioning of the observed area according to change patterns. We compare three well-known clustering algo-
rithms (k-means clustering, agglomerative clustering and density-based spatial clustering of applications with
noise; DBSCAN), apply them on the set of time series and identify areas that undergo similar evolution during
1 month. We test if these algorithms fulfil our criteria for suitable clustering on our exemplary data set. The three
clustering methods are applied to time series over 30 d extracted from a data set of daily scans covering about
2 km of coast in Kijkduin, the Netherlands. A small section of the beach, where a pile of sand was accumulated
by a bulldozer, is used to evaluate the performance of the algorithms against a ground truth. The k-means al-
gorithm and agglomerative clustering deliver similar clusters, and both allow us to identify a fixed number of
dominant deformation processes in sandy coastal areas, such as sand accumulation by a bulldozer or erosion in
the intertidal area. The level of detail found with these algorithms depends on the choice of the number of clusters
k. The DBSCAN algorithm finds clusters for only about 44 % of the area and turns out to be more suitable for the
detection of outliers, caused, for example, by temporary objects on the beach. Our study provides a methodology
to efficiently mine a spatiotemporal data set for predominant deformation patterns with the associated regions
where they occur.

1 Introduction

Coasts are constantly changing environments that are essen-
tial to the protection of the hinterland from the effects of
climate change and, at the same time, belong to the areas
that are most affected by it. Especially long-term and small-
scale processes prove difficult to monitor but can have large
impacts (Aarninkhof et al., 2019). To improve coastal mon-
itoring and knowledge of coastal deformation processes, a
new technique called permanent laser scanning (PLS) (also

called continuous laser scanning) based on light detection
and ranging (lidar) measurements is available. For this pur-
pose, a laser scanner is mounted on a high building close to
the coast in a fixed location acquiring a 3-D scan every hour
during several months up to years.

The resulting spatiotemporal data set consists of a series
of point cloud representations of a section of the coast. The
high temporal resolution and long duration of data acquisi-
tion in combination with high spatial resolution (on the order
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of centimetres) provides a unique opportunity to capture a
near-continuous representation of ongoing deformation pro-
cesses, for example, storm and subsequent recovery, on a
section of the coast. As reported by Lazarus and Goldstein
(2019), the natural effects of a storm on a typical urban beach
can rarely be analysed separately from anthropogenic activ-
ities, since in most cases work with bulldozers starts imme-
diately after or even during severe storms. There is a need
for the detection and quantification of change processes that
influence the geomorphology of the coast, to allow under-
standing and modelling them, as the reaction of the coast
to extreme weather events gains importance (Masselink and
Lazarus, 2019). More examples for potential use of such a
data set are presented by O’Dea et al. (2019), who use data
from a similar setup in Duck, USA.

The PLS data set is large (on the order of hundreds of
gigabytes), and to be relevant, the information on deforma-
tion processes has to be extracted concisely and efficiently.
Currently, there are no automated methods for this purpose
and studies focus on one or several two-dimensional cross-
sections through the data (for example, O’Dea et al., 2019).
The high temporal resolution and long observation period
lead to a high-dimensional data set of long time series (i.e.
30 data points up to several thousands). Data mining on high-
dimensional data sets can be challenging as discussed, for
example, by Zimek et al. (2012). In a first step towards ex-
traction of interesting events and change patterns, we build
on the method introduced by Lindenbergh et al. (2019). We
use clustering algorithms on time series representing the evo-
lution of topography to group these time series according to
their similarity in change pattern and then identify underly-
ing processes. We use clustering (or unsupervised learning)
to avoid having to specify the patterns and processes that we
are looking for in advance.

One example of spatiotemporal segmentation on our data
set from permanent laser scanning was recently developed
by Anders et al. (2020). They detected seed points for de-
formation in time series from permanent laser scanning, to
then grow a region affected by the detected change around
the seed points with the use of dynamic time-warping dis-
tance to spatial neighbours. Dynamic time warping (DTW) is
a distance measure between time series that accounts for sim-
ilarity in patterns even though they might be shifted in time
(see, for example, Keogh and Ratanamahatana, 2005). One
drawback of this approach is that temporal patterns of inter-
est have to be defined beforehand, and therefore only defor-
mation patterns that are expected can be found. Another ap-
proach to model spatiotemporal deformations in point clouds
from laser scanning is presented by Harmening and Neuner
(2020). Their model assumes that the deformation can be
represented by a continuous B-spline surface. This approach
could potentially be used to further analyse some of the de-
formation patterns found in our study but does not allow the
exploratory data mining that we are aiming to accomplish.
A more general overview of methods to find spatiotemporal

patterns in Earth science data was published by Tan et al.
(2001) and a continuation of this study was presented by
Steinbach et al. (2001). The study of Tan et al. (2001) deals
with pre-processing of time series of different variables from
satellite data including issues with auto-correlation and sea-
sonality. Steinbach et al. successfully apply a novel cluster-
ing technique introduced by Ertöz et al. (2003) to explore
spatiotemporal climate data. However, this technique only
focuses on contiguous clusters, where all time series are in
a close neighbourhood to each other, and does not allow us
to find general patterns independent of location.

Time series data sets are also used to assess patterns
of agricultural land use by Recuero et al. (2019). For this
study, time series of normalized difference vegetation index
(NDVI) data have been analysed using auto-correlation val-
ues and random forest classification. Benchmark data from
an alternative source were needed to train the classifier. Such
benchmark data are currently not available in our case. A
study by Belgiu and Csillik (2018) used time series from
Sentinel-2 satellite data for cropland mapping. They made
use of dynamic time-warping classification and showed that
in areas with little available reference data for training a
classifier, their approach delivers good results in segmenta-
tion based on time series’ evolution. Also in this case, pre-
labelled training data are required. Another approach us-
ing expectation-based scan statistics was presented by Neill
(2009): to detect spatial patterns in time series from public
health data, a statistical method based on expectation val-
ues is used. Clusters are formed where the observed values
significantly exceed the expectation. The results are promis-
ing but depend on the choice of time series analysis method,
statistics used and the shape of the search region, which all
have to be defined in advance specific to each data set and
application. Generally, there is a lack of studies on mining
spatiotemporal data for deformation patterns, without using
training data or predefined change patterns.

The goal of the present study is to evaluate the application
of clustering algorithms on a high-dimensional spatiotempo-
ral data set without specifying deformation patterns in ad-
vance. Our objectives in particular are

1. to analyse and compare the limits and advantages of
three clustering algorithms for separating and identify-
ing change patterns in high-dimensional spatiotemporal
data, and

2. to detect specific deformation on sandy beaches by clus-
tering time series from permanent laser scanning.

We compare the k-means algorithm, agglomerative clus-
tering and the density-based spatial clustering of applications
with noise (DBSCAN) algorithm on a PLS data set over 30 d
to investigate the effectiveness of the identification of coastal
change patterns. All three algorithms are well established
and represent three common but different approaches to data
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clustering. To determine if an algorithm is suitable, we ex-
pect that it fulfils the following criteria:

– A majority of the observation area is separated into dis-
tinct regions.

– Each cluster shows a change pattern that can be associ-
ated with a geomorphic deformation process.

– Time series contained in each cluster roughly follow the
mean change pattern.

We use the different clustering approaches on a small area
of the beach at the bottom of a footpath, where sand accu-
mulated after a storm, and a bulldozer subsequently cleared
the path and formed a pile of sand. We determine the quality
of the detection of this process for both algorithms and com-
pare them in terms of standard deviation within the clusters
and area of the beach covered by the clustering. We compare
and evaluate the resulting clusters using these criteria as a
first step towards the development of a method to mine the
entire data set from permanent laser scanning for deforma-
tion processes.

2 The permanent laser scan data set

The data set from permanent laser scanning is acquired
within the CoastScan project at a typical urban beach in Kijk-
duin, the Netherlands (Vos et al., 2017). For the acquisition,
a Riegl VZ-2000 laser scanner was used to scan over a period
of 6 months from December 2016 to May 2017. The full data
set consists of hourly scans of a section of sandy beach and
dunes.

For the present study, a subset of the available data is used
to develop the methodology. This subset consists of 30 daily
scans taken at low tide over a period of 1 month (January
2017). It covers a section of the beach and dunes in Kijkduin
and is displayed in top view in Fig. 1. The area contains a
path and stairs leading down to the beach, a paved area in
front of the dunes, a fenced in dune area and the sandy beach.
It is about 950 m long, 250 m wide and the distance from
the scanner to the farthest points on the beach is just below
500 m. For the duration of the experiment, the scanner was
mounted on the roof of a hotel just behind the dunes at a
height of about 37 m above sea level (as shown in Fig. 2).

The data are extracted from the laser scanner output format
and converted into a file that contains xyz coordinates and
spherical coordinates for each point. The data are mapped
into a local coordinate system, where the origin in x and y di-
rections is at the location of the scanner and the height (z co-
ordinate) corresponds to height above sea level. Since we are
interested in relative changes between consecutive scans, we
do not transform the data into a georeferenced coordinate
system for this analysis.

Each point cloud is chosen to be at the time of lowest tide
between 18:00 and 06:00 LT, in order to avoid people and

Figure 1. Top view of a point cloud representing the observation
area at low tide on 1 January 2017. The laser scanner is located
at the origin of the coordinate system (not displayed). The point
(xt ,yt ) indicates the location of the time series shown as an ex-
ample in Fig. 3. The test area, which is discussed in Sect. 3.4, is
indicated with a box at the end of the northern path leading to the
beach. The paved paths leading to the beach are used as a stable ref-
erence surface for the errors reported in Table 1. Parts that are white
between the dunes and the sandy beach are gaps in the data due to
occlusions caused by the dunes.

dogs on the beach, with the exception of two instances where
only very few scans were available due to maintenance ac-
tivities. The data from 9 January 2017 are entirely removed
from the data set because of poor visibility due to fog. This
leads to the 30 d data set, numbered from 0 to 29. Addition-
ally, all points above 14.5 m elevation are removed to fil-
ter out points representing the balcony of the hotel and flag
posts along the paths. In this way, also a majority of reflec-
tions from particles in the air, birds or raindrops are removed.
However, some of these particles might still be present at
lower heights close to the beach.

Since the data are acquired from a fixed and stable posi-
tion, we assume that consecutive scans are aligned. Never-
theless, the orientation of the scanner may change slightly
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Figure 2. Riegl VZ2000 laser scanner mounted on the roof of a
hotel facing the coast of Kijkduin, the Netherlands. The scanner is
covered with a protective case to shield it from wind and rain.

due to strong wind, sudden changes in temperature or main-
tenance activities. The internal inclination sensor of the scan-
ner measures these shifts while it is scanning, and we apply
a correction for large deviations (more than 0.01◦) from the
median orientation.

The remaining error in elevation is estimated as the stan-
dard error and the 95th percentile of deviations from the
mean elevation over all grid cells included in the stable paved
area. We chose the stable surface that is part of the paved
paths on top of the dunes and leading to the beach in the
northern and southern directions as indicated in Fig. 1. This
area includes 1653 grid cells with complete time series. The
derived mean elevation, standard error and overall 95th per-
centile of deviations from the mean per time series averaged
over the stable area are reported in Table 1. The elevation on
average does not deviate more than 1.4 cm from the mean
elevation, and 95 % of deviations from the mean elevation
are on average below 3.5 cm. An example time series from
the stable paved area on top of the dunes (at location (xt ,yt )
marked in Fig. 1) is shown in Fig. 3.

3 Methods

To derive coastal deformation processes from clusters based
on change patterns, we follow three steps: extraction of time
series, clustering of time series with three different algo-
rithms and derivation of geomorphological deformation pro-
cesses. To cluster time series, the definition of a distance be-
tween two time series (or the similarity) is not immediately

Table 1. Test statistics of the gridded elevation values on the paved
area, which is assumed to be stable throughout the observation pe-
riod of 1 month. Values are calculated per time series and averaged
over the entire stable area, which results in mean elevation, standard
error and an average 95th percentile of deviations from the mean.

Mean elevation 12.43 m

Standard error 1.4 cm

95th percentile of deviation from mean 3.5 cm
(averaged over all grid cells)

Figure 3. Time series of elevation at location (xt ,yt ) (marked in
Fig. 1) on the path that is assumed to be stable throughout the entire
month. Elevation varies within less than 2 cm.

obvious. We discuss two different options (Euclidean dis-
tance and correlation) to define distances between time se-
ries with different effects on the clustering results. The rest
of this section is organized as follows: we focus on time se-
ries extraction in Sect. 3.1, discuss distance metrics for time
series (Sect. 3.2), and introduce three clustering algorithms
(Sect. 3.3) and our evaluation criteria (Sect. 3.4). The deriva-
tion of deformation processes will be discussed with the re-
sults (Sect. 4).

3.1 Time series extraction

Time series of surface elevation are extracted from the PLS
data set by using a grid in Cartesian xy coordinates. We only
use grid cells that contain at least one point for each of the
scans.

Before defining a grid on our observed area, we rotate the
observation area to make sure that the coastline is parallel
to the y axis, as shown in Fig. 1. This ensures that the grid
covers the entire observation area efficiently and leaves as
few empty cells as possible. Then we generate a regular grid
with grid cells of 1 m× 1 m. Time series are generated for
each grid cell by taking the median elevation zi for each grid
cell and for each time stamp tk . That means, per grid cell with
centre (xi,yi), we have a time series

Z̃i = (zi (t1) , . . .zi (tT )) , (1)

with the number of time stamps T = 30. To make the time
series dependent on change patterns, rather than the absolute
elevation values, we remove the mean elevation zi of each
time series Z̃i . This leads to time series

Zi =
(
z′i (t1) , . . .,z′i (tT )

)
, (2)
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with z′i(tk) := zi(tk)− zi .
In this way, we extract around 40 000 grid cells that con-

tain complete elevation time series for the entire month. The
point density per grid cell varies depending on the distance to
the laser scanner. For example, a grid cell on the paved path
(at about 80 m range) contains about 40 points (i.e. time se-
ries at (xt ,yt ) in Fig. 1), whereas a grid cell located close to
the water line, at about 300 m distance from the scanner, may
contain around three values. This implies that the median per
grid cell is based on more points the closer a grid cell is to
the scanner.

3.2 Distance metrics

We consider two different distance metrics for our analysis:
the Euclidean distance as the default for the k-means algo-
rithm and agglomerative clustering, and correlation distance
for the DBSCAN algorithm.

3.2.1 Euclidean distance

The most common and obvious choice is the Euclidean dis-
tance metric defined as

dE (Z0,Z1)= ||Z0−Z1|| =

√√√√ n∑
i=1
|Z0i −Z1i |

2 (3)

for two time series Z0 and Z1 of length n.

3.2.2 Correlation distance

Another well-known distance measure is correlation dis-
tance, defined as 1 minus the Pearson correlation coefficient
(see, for example, Deza and Deza, 2009). It is a suitable mea-
sure of similarity between two time series, when correlation
in the data is expected (see Iglesias and Kastner, 2013). Cor-
relation between two time series Z0 and Z1 is defined as

Cor(Z0,Z1)= 1−

(
Z0−Z0

)
·
(
Z1−Z1

)
||Z0−Z0|| · ||Z1−Z1||

, (4)

with Z being the mean value of time series Z and || · || the
Euclidean 2-norm as in Eq. (3). We have to note here that cor-
relation cannot compare simple constant time series (leads to
division by zeros) and is therefore not a distance metric in
the sense of the definition (Deza and Deza, 2009).

3.2.3 Comparison

For a comparison of the two distances for some example time
series, see Fig. 4. The example shows that the distance be-
tween two time series is not intuitively clear. The use of dif-
ferent distance metrics results in different sorting of distances
between the shown pairs of time series. When normalizing
all time series (subtracting the mean and scaling by the stan-
dard deviation), correlation distance and Euclidean distance

Figure 4. Example of three pairs of time series that are “similar”
to each other in different ways. The Euclidean distance would sort
the differences as follows: dE(Z2,Z3) < dE(Z4,Z5) < dE(Z0,Z1),
whereas according to the correlation distance the order would be
Cor(Z0,Z1) < Cor(Z2,Z3) < Cor(Z4,Z5).

are equivalent (as shown, for example, by Deza and Deza,
2009). However, this leads to issues when comparing to a
constant time series (with 0 standard deviation).

Both Euclidean distance and correlation are not taking into
account the order of the values within each time series. For
example, two identical time series that are shifted in time are
seen as “similar” with the correlation distance but not as sim-
ilar with the Euclidean distance and would not be considered
identical by either of them (see Fig. 4). Additionally, neither
of the two distance metrics can deal with time series of dif-
ferent lengths or containing gaps.

3.3 Clustering methods

Clustering methods for time series can be divided into
two categories: feature-based and raw-data-based approaches
(see, for example, Liao, 2005). Feature-based methods first
extract relevant features to reduce dimensionality (for exam-
ple, using Fourier or wavelet transforms) and then form clus-
ters based on these features. They could also be used to deal
with gaps in time series. We focus on the raw-data-based ap-
proach to not define features in advance and to make sure
that no information within the data set is lost. We use three
different methods: k-means clustering, agglomerative clus-
tering and DBSCAN. In Fig. 5, an illustration of a partition-
ing of a simple 2-D data set is shown for each of the three
algorithms. The two clusters that can be distinguished in this
example have different variances and are grouped differently
by each of the algorithms.

https://doi.org/10.5194/esurf-9-89-2021 Earth Surf. Dynam., 9, 89–103, 2021
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Figure 5. Example of clustering of data with two clusters with different variance: the k-means algorithm separates them but adds a few
points in the middle to the purple cluster instead of the yellow one (a). Agglomerative clustering separates both clusters according to their
variances (b) and DBSCAN detects the cluster with low variance and high point density (yellow) and discards all other points as outliers
(turquoise) (c).

For the implementation of all three algorithms, we make
use of the Scikit-learn package in Python (see Pedregosa
et al., 2011).

3.3.1 k-means clustering

The k-means algorithm was first introduced in 1955 and is
still one of the most widely used clustering methods (Jain,
2010). The algorithm is based on minimizing the sum of
all distances between points and centroids over all possible
choices of k-cluster centroids V = {v1, . . .,vk}:

MinV J (V )=
k∑

j=1

∑
xi∈vj

||xi − vj ||
2, (5)

with Euclidean distance metric || · ||. After the initial choice
of k centroids among all points, the following steps are re-
peated iteratively until the above sum does not change sig-
nificantly:

1. assign each point to the cluster with the closest centroid;

2. move centroid to the mean of each cluster;

3. calculate the sum of distances over all clusters (Eq. 5).

Note that minimizing the squared sum of distances over
all clusters coincides with minimizing the squared sum of
all within-cluster variances. The convergence to a local mini-
mum can be shown for the use of Euclidean distance (see, for
example, Jain, 2010). The convergence is sped up using so-
called k-means++ initialization: after the random selection of
the first centroid, all following centroids are chosen based on
a probability distribution proportional to their squared dis-
tance to the already-defined centroids. In this way, the initial
centroids are spread out throughout the data set and the de-
pendence on the random initialization of the cluster centroids
is reduced.

There are variations of the k-means algorithm using al-
ternative distance metrics such as the L1 norm (k-medoids
clustering; Park and Jun, 2009); however, the convergence is

not always ensured in these cases. Another issue to take into
account when considering alternative distance metrics is the
definition of the cluster centroids as a mean of time series,
which is not automatically defined for any distance metric.
For more information on k-means clustering, see Jain (2010),
Liao (2005) and the documentation of the Scikit-learn pack-
age (Pedregosa et al., 2011).

3.3.2 Agglomerative clustering

Agglomerative clustering is one form of hierarchical cluster-
ing: it starts with each point in a separate cluster and itera-
tively merges clusters together until a certain stopping crite-
rion is met. There are different variations of agglomerative
clustering using different input parameter and stopping cri-
teria (see, for example, Liao, 2005, or the documentation of
the Scikit-learn package (Pedregosa et al., 2011)). We choose
the minimization of the sum of the within-cluster variances
using the Euclidean distance metric (Eq. 5, where the cen-
troids vj are the mean values of the clusters) for a predefined
number of clusters k. The algorithm starts with each point in
a separate cluster and iteratively repeats the following steps
until k clusters are found:

1. Loop through all combinations of clusters:

– form new clusters by merging two neighbouring
clusters into one and

– calculate the squared sum of distances (Eq. 5) for
each combination.

2. Keep clusters with minimal squared sum of distances.

In this way, we use agglomerative clustering with a sim-
ilar approach to the k-means algorithm, the same optimiza-
tion criterion with the same input parameter and Euclidean
distance measure. We therefore expect similar results. How-
ever, this agglomerative clustering can easily be adapted to
alternative distance measures and could therefore potentially
deal with time series of different lengths or containing gaps.
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3.3.3 DBSCAN algorithm

DBSCAN is a classical example of clustering based on the
maximal allowed distance to neighbouring points that auto-
matically derives the numbers of clusters from the data. It
was introduced in 1996 by Ester et al. (1996) and recently
revisited by Schubert et al. (2017). The algorithm is based
on dividing all points into core points or non-core points that
are close to core points but not surrounded by enough points
to be counted as core points. The algorithm needs the max-
imum allowed distance between points within a cluster (ε)
and the minimum number of points per cluster (Nmin) as in-
put parameters. These two parameters define a core point: if
a point has a neighbourhood of Nmin points at ε distance, it
is considered a core point. The algorithm consists of the fol-
lowing steps (Schubert et al., 2017):

1. Determine neighbourhood of each point and identify
core points.

2. Form clusters out of all neighbouring core points.

3. Loop through all non-core points and add to cluster
of neighbouring core point if within maximal distance;
otherwise, classify as noise.

In this way, clusters are formed that truly represent a dense
collection of “similar” points. Since we choose to use corre-
lation as a distance metric, each cluster will contain corre-
lated time series in our case. All points that cannot be as-
signed to the neighbourhood of a core point are classified as
noise or outliers.

3.4 Evaluation criteria

To determine if an algorithm is suitable, we expect that it
fulfils the previously defined criteria:

– A majority of the observation area is separated into dis-
tinct regions.

– Each cluster shows a change pattern that can be associ-
ated with a geomorphic deformation process.

– Time series contained in each cluster roughly follow the
mean change pattern.

In order to establish these criteria, we compare the three
clustering algorithms, as well as two choices for the number
of clusters k, using the following evaluation methods.

3.4.1 Visual evaluation

The clustered data are visualized in a top view of the obser-
vation area, where each point represents the location of a grid
cell. Each cluster is associated with its cluster centroid, the
mean elevation time series of all time series in the respec-
tive cluster. For visualization purposes, we have added the
median elevation back to the cluster centroids, even though

it is not taken into account during the clustering. We sub-
sequently derive change processes visually from the entire
clustered area. We establish which kind of deformation pat-
terns can be distinguished and estimate rates of change in
elevation and link them to the underlying process.

3.4.2 Quantitative evaluation

We use the following criteria to compare the respective clus-
tering and grid generation methods quantitatively:

– percentage of entire area clustered;

– minimum and maximum within-cluster variation;

– percentage of correctly identified change in test area
with bulldozer work.

The percentage of the area that is clustered differs depend-
ing on the algorithm. Especially DBSCAN sorts out points
that are too far away (i.e. too dissimilar) from others as noise.
This will be measured over the entire observation area. The
number of all complete time series counts as 100 %.

Each cluster has a mean centroid time series and all other
time series deviate from that to a certain degree. We calcu-
late the average standard deviation over the entire month per
cluster and report on the minimum and maximum values out
of all realized clusters.

3.4.3 Test area

To allow for a comparison of the clusters with a sort of
ground truth, we selected a test area at the bottom of the foot-
path. In this area, a pile of sand was accumulated by a bull-
dozer after the entrance to the path was covered with lots of
sand during a period of rough weather conditions (8–16 Jan-
uary, corresponding to days 7–14 in our time series), as re-
ported by Anders et al. (2019). We chose two time stamps for
illustration and show the elevation before the bulldozer ac-
tivity at the end of the stormy period on 16 January, after the
bulldozer activity on 18 January and the difference between
the elevations on these two days in Fig. 6a–c. The area does
not change significantly after this event. Within this test area,
we classify (manually) each point as “stable” or “with sig-
nificant change” depending on a change in elevation of more
than 5 cm (positive or negative). Then we evaluate for each
clustering method if the points that are classified as “with
significant change” are in a separate cluster than the “stable”
points.

The stable cluster consists of cluster 0, the largest cluster
when using k = 6 for k-means and agglomerative clustering
and clusters 0 and 1 combined in the case of k = 10 clus-
ters. For evaluating the results of the DBSCAN algorithm,
we consider all locations that are not clustered (noise) and
points in cluster 1 as the “stable” areas, because the average
erosion in cluster 1 is less than 0.15 cm d−1. We do not dis-
tinguish if there are different clusters within the category of
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Figure 6. Test area for the comparison of clusters generated with three different algorithms. The test area is located where the northern
access path meets the beach (see Fig. 1). (a–c) The elevation in the test area is shown on the day before the bulldozer accumulated a sand
pile, when the entrance of the path was covered in sand (a) and after the bulldozer did its job (b). Behind the sand pile, a gap appears in the
data (in white), as the sand pile is obstructing the view for the laser scanner. To the right, we show the difference in elevation between 16 and
18 January from a significant level upwards (red) and downwards (blue) (c). (d–f) Test area with significant changes in elevation (contour
lines) and points clustered using the k-means algorithm (d), agglomerative clustering (e) and the DBSCAN algorithm (f). The colours of the
clustered dots represent the clusters, as shown in Figs. 7, 8 and 9, respectively. (g–i) The corresponding mean time series for each of the
relevant clusters are displayed below each of the plots (g, h, i). The dotted lines mark the beginning and end of a stormy period.

“with significant change”. However, in Fig. 6, the different
clusters can be distinguished by their colours, correspond-
ing to the colours of the clusters shown in subsequent figures
(Figs. 7, 8 and 9). We then compare the percentage of cor-
rectly classified grid points for the test area, for each of the
grid generation and clustering methods.

4 Results

The results are presented in two parts. First, we compare two
different choices of the parameter k for the k-means algo-
rithm and for agglomerative clustering. Then, we compare
all three clustering methods and evaluate results on the test
area, where a bulldozer created a pile of sand (as indicated
in Fig. 1) and in terms of percentage of data clustered, stan-
dard error within each cluster and physical interpretation of
clusters.

4.1 Clustering

For the k-means algorithm and agglomerative clustering, we
consider two different values (k = 6 and k = 10), which are

exemplary for a smaller number of clusters and a higher num-
ber of clusters.

4.1.1 k-means clustering

With the k-means algorithm, the entire observation area is
partitioned. The resulting partition depends on the random
initialization. The standard error within each cluster is rela-
tively high, compared to the stable area (see Table 1) and gen-
erally increases with the size of the cluster. Even the cluster
with the smallest standard error (averaged standard deviation
per time series over the clustered area) still shows a standard
error of 0.77 m (cluster 5 for k = 6). We show the resulting
clusters obtained using the k-means algorithm with number
of clusters k = 6 and k = 10. Visual inspection shows that
both values lead to good, usable results by partitioning the set
of time series into clusters that are small enough to capture
geomorphic changes but not too large, which would make
them less informative. As displayed in Fig. 7, a large part
of the beach is contained in a “stable” cluster when using
k = 6 (cluster 0, blue). This cluster, as well as some of the
others, is split up into several smaller clusters when using
k = 10. For example, the intertidal zone (i.e. the area that is
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under water during high tide and exposed during low tide)
is eroding mostly during stormy days in the first half of the
month. This zone is contained entirely in cluster 1 (green)
when using k = 6. In the case of k = 10, this part is split
up into three clusters: one with a similar mean time series
(cluster 2, green), one eroding with a pattern similar to clus-
ter 2 but mostly representing sand banks (cluster 3, brown)
and one gradually eroding at a low rate over the entire month
(cluster 1, orange). It also becomes clear that the sand piles
that were generated by bulldozer work at different locations
(k = 6 cluster 5, light blue) were created on different days
(k = 10, clusters 8 and 9, yellow and light blue). Some fea-
tures, like the cleared part of the paths, the sand piles and the
intertidal zone, can be distinguished in both cases.

On the test area the k-means algorithm correctly classi-
fies about 85 % of points into “stable”, “significant negative
change” or “significant positive change” in the case of k = 6.
However, as can be seen in Fig. 6, a part of the points with
negative change are not identified. These clusters are split up
further in the case of k = 10, which does not influence the
results in the test area a lot. A summary of these results is
provided in Table 2.

4.1.2 Agglomerative clustering

The agglomerative clustering algorithm is set up, as the k-
means algorithm, to find 6 and 10 clusters. It produces results
very similar to the clusters found with the k-means algorithm,
as can be seen by comparing Figs. 7 and 8 and Fig. 6d and
e. Clusters 2 and 3 from agglomerative clustering correspond
roughly to clusters 3 and 2 from k-means clustering. The or-
dering of clusters is according to size, so more time series are
considered “noisy” according to k-means clustering, whereas
agglomerative clustering assigns more of these time series to
the gradually accreting cluster. All other clusters appear to be
nearly identical and show similar spatial distributions as well
as centroid shapes. The differences between the two choices
of the number of clusters k are also very similar.

On the test area, the detection of negative and positive
changes is more balanced and leads to an overall score of
88 % correctly identified points. Agglomerative clustering
clearly separates the path that was cleared by the bulldozer
and identifies it as eroding.

4.1.3 DBSCAN

When we use the DBSCAN algorithm on the same data set,
with minimum number of points Nmin = 30 and maximum
distance ε = 0.05, a large part of the time series (55 %) is
classified as noise, meaning that they are not very similar (i.e.
not correlated, since we use correlation as distance measure)
to any of the other time series. However, they roughly match
the combined areas that are identified as stable and noisy by
the k-means algorithm (clusters 0 and 2 for k = 6). The re-
maining time series are clustered into six clusters. The stan-

dard error within each cluster is generally lower than in the
clusters generated with k-means clustering (minimum stan-
dard error is 0.33 m) without considering the time series that
are classified as noise.

The intertidal zone cannot be separated clearly from the
“noise” part of the observation area, nor can we distinguish
the stable path area or the upper part of the beach. In the
test area, the sand pile is not represented by a separate clus-
ter and positive changes in elevation are not found, which
results in an overall worse percentage of correctly identified
points. However, two clusters represent areas which are rela-
tively stable throughout the month, except for a sudden peak
in elevation on 1 d. These peaks are dominated by a van park-
ing on the path on top of the dunes and people passing by and
are not caused by actual deformation; compare Fig. 9.

On the test area, the DBSCAN algorithm performs worse
than both other algorithms. In total, 79 % of points are
correctly classified into “stable” or “significant negative
change”. As stable points, we count in this case all points
that are classified either as noise or belonging to cluster 1 (or-
ange). The reason for this is that the mean of all time series
that are not clustered appears relatively stable, while clus-
ter 1 describes very slow erosion of less than 0.15 cm d−1.
This matches with 99 % of points classified as stable in the
ground truth data. However, no single cluster is formed con-
taining only the points where sand is accumulating, even
though these clusters are distinguished by the other two al-
gorithms. These points are mixed up with the large cluster
of slightly eroding points in cluster 1. We can see in Fig. 6
that the only significant process found in the test area is the
cleared path (cluster 2, red).

4.2 Identification of change processes

Considering the clusters found by the k-means algorithm and
agglomerative clustering, we can clearly distinguish between
time series that represent erosion and accretion with differ-
ent magnitudes and at different times of the month, as well
as a sudden jump in elevation, caused by bulldozer work. In
Fig. 10, we show the clusters and associated main process. To
give an idea of the magnitude of the most prominent change
patterns, we fit straight lines through the mean time series or
parts of it (where the slope is steepest) and derived average
rates of change in elevation from the estimated slopes. The
clusters dominated by erosion close to the water line (clus-
ters 2 and 5) represent the intertidal zone of the beach. The
elevation changes in this area are likely caused by the effects
of tides and waves. The change rates were partly accelerated
during the stormy period in the first half of the month. Ac-
creting areas are mostly at the upper beach, close to the dune
foot and on the paths in the dunes (clusters 4, 6 and 7). These
areas as well as a large cluster on the upper beach (cluster 1,
orange), which undergoes a slight and gradual erosion over
the entire month, are likely dominated by aeolian sand trans-
port. The most obvious change process is the sand removed
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Figure 7. (a, c) Overview of the entire observation area divided into clusters using the k-means algorithm with k = 6 (a) and k = 10 (c).
(b, d) Corresponding cluster centroids for each of the clusters are shown in panels (a) and (c), respectively. By using a larger number of
clusters k, more processes become visible, for example, two sand piles (a, b: cluster 5) created on two different days (c, d: clusters 8 and 9).
Also the large stable areas (a, b: cluster 0) and slowly accreting areas (a, b: cluster 3) are split up into several clusters: a slightly eroding area
(c, d: cluster 3) is split up from the stable part, and the accreting area is split into two (c, d: cluster 4 and cluster 6).

Table 2. Summary of comparison of k-means algorithm, agglomerative clustering (AGG) and DBSCAN algorithm.

k-means algorithm AGG DBSCAN

Entire observation area

No. of clusters 6 10 6 10 6
Min no. points per cluster 108 34 108 39 45
Area clustered 100 % 100 % 100 % 100 % 44 %
Max standard error per cluster 3.22 m 3.1 m 3.18 m 2.86 m 4.0 m
Min standard error per cluster 0.77 m 0.68 m 0.79 m 0.71 m 0.33 m

Test area: correctly identified

Stable points 81 % 82 % 86 % 86 % 99 %
Positive changes 97 % 97 % 86 % 86 % 0 %
Negative changes 93 % 93 % 98 % 98 % 54 %
Total 85 % 86 % 88 % 88 % 79 %

from the entrances of the paths leading to the beach by bull-
dozer work (cluster 7) and accumulated in piles of sand at
four different locations on 2 d (clusters 8 and 9). Points con-
tained in the noisy cluster (cluster 3) are spread out through
the dune area, and noise is probably caused by moving vege-
tation.

5 Discussion

We successfully applied the presented methods on a data set
from permanent laser scanning and demonstrated the identi-
fication of deformation processes from the resulting clusters.
Here, we discuss our results on distance measures, clustering
methods and the choice of their respective input parameters
and derivation of change processes.

5.1 Distance measures

Possible distance measures for the use in time series clus-
tering are analysed, among others, by Iglesias and Kastner
(2013) and Liao (2005). We use Euclidean distance in com-
bination with the k-means algorithm and agglomerative clus-
tering for our analysis. It has been shown by Keogh and
Kasetty (2003) that especially for time series with high di-
mensions, alternative distance measures rarely outperform
Euclidean distance. However, we have to note here that Eu-
clidean distance is affected by the so-called “curse of dimen-
sionality”, which causes a space of long time series (with
many dimensions) to be difficult to cluster. The problem with
clustering time series in high-dimensional spaces with the
k-means algorithm is that Euclidean distance is based on
the sum of all pointwise differences. This leads to a space
where the variance of the distances decreases with increas-
ing time series length. Therefore, it will be harder to cate-
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Figure 8. (a, c) Overview of the entire observation area divided into clusters using agglomerative clustering with k = 6 (a) and k = 10 (c).
(b, d) Corresponding cluster centroids for each of the clusters shown in panels (a) and (c), respectively. The clusters are similar to the ones
found with k-means clustering.

Figure 9. Mean time series per cluster found with the DBSCAN
algorithm. Outliers or points that are not clustered are represented
by the blue mean time series. The two most prominent time series
(clusters 5 and 6, light green and light blue) are located on the path
on top of the dunes. The peaks are caused by a group of people and a
van, on 5 and 6 January, respectively, illustrated by the point clouds
in the middle of the plot.

gorize time series as similar, and fewer meaningful clusters
will emerge, the more observations we use. This could possi-
bly lead to difficulties when extending these methods to the
use of longer time series but does not appear to degrade re-
sults on our current data set. For more details on this issue,
see Assent (2012), Verleysen and François (2005) and Zimek
et al. (2012).

Figure 10. Observation area partitioned into clusters by the k-
means algorithm with k = 10. The associated processes are anno-
tated with the corresponding colours.

We chose the use of correlation distance with the DB-
SCAN algorithm, because correlation in principle represents
a more intuitive way of comparing time series (see Fig. 4).
DBSCAN is based on identification of clusters of high den-
sity, which in our case works better using correlation dis-
tance instead of Euclidean distance. Using Euclidean dis-
tance, there are very few clusters of “very similar” time se-
ries and an even larger part of the beach is classified as noise.
Only in combination with correlation distance could we de-
rive a set of input parameters for the DBSCAN algorithm to
produce relevant results.

Scaling the time series with their respective standard de-
viations for the use of Euclidean distance would make these
two distance measures equivalent. However, this did not im-
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prove our results using k-means or agglomerative clustering.
Subtle differences within the stable cluster would become
prominent in that case, but the larger differences between
clusters as we find them without the scaling would be re-
duced.

Neither of the two distance measures analysed here can
deal with gaps in the time series, which would be of great
interest to further analyse especially the intertidal area and
sand banks. Additionally, both distance measures do not al-
low us to identify identical elevation patterns that are shifted
in time as similar. An alternative distance measure suitable
to deal with these issues would be DTW, which accounts for
similarity in patterns even though they might be shifted in
time (Keogh and Ratanamahatana, 2005). An interpolation
method to fill gaps in elevation over short time spans based
on surrounding data or a feature-based clustering method
could be other alternatives.

5.2 Clustering methods

The use of k-means clustering on elevation time series from
the same data set was demonstrated by Lindenbergh et al.
(2019) and has shown promising first results. We follow the
same approach and, as a comparison, use agglomerative clus-
tering, with the same optimization criterion, distance metric
and input parameter. As expected, the results are similar, al-
though agglomerative clustering does not depend on random
initialization. It therefore delivers the same result for every
run, which is an advantage. Considering our previously de-
fined criteria stating that

– a majority of the observation area is separated into dis-
tinct regions,

– each cluster shows a change pattern that can be associ-
ated with a geomorphic deformation process, and

– time series contained in each cluster roughly follow the
mean change pattern,

both algorithms are suitable and the differences in the result-
ing clusters are negligible for our specific data set.

However, the computational effort needed to loop through
all possible combinations of merging clusters for agglomera-
tive clustering is considerably higher. Of the three algorithms
that were used in this study, agglomerative clustering is the
only one that regularly ran into memory errors. This is a dis-
advantage considering the possible extension of our method
to a data set with longer time series.

One of the disadvantages of the k-means algorithm and
our configuration of agglomerative clustering is that the num-
ber of clusters has to be defined in advance. Our choices of
k = 6 and k = 10 clusters both yield promising results but
remain somewhat arbitrary, especially without prior knowl-
edge of the data set. A lower number of clusters k (for ex-
ample, k = 6) yields a division of the beach into sections (in-
tertidal zone, dry part of the beach) and highlights the most

prominently occurring changes (bulldozer work). When us-
ing a larger number of clusters k, several of the previously
mentioned clusters are split up again and more detailed pro-
cesses become visible. The erosion and accretion patterns
on the beach appear at different degrees in distinct regions,
which is valuable information. Also the sand piles, which ap-
peared in one cluster for k = 6, are now split up according to
the different days on which they were generated. We con-
sider this possibility to identify and specify anthropogenic-
induced change an illustrative example of the influence of
the choice of the number of clusters k. We have consid-
ered two data-independent methods to determine a suitable
value for k: analysis of the overall sum of variances for dif-
ferent values of k and so-called “cluster balance” following
the approach of Jung et al. (2003). Neither of them resolved
the problem satisfactorily, and we cannot make a general-
ized recommendation, independent of the application, for the
choice of k at this point.

To avoid this issue, we also compare both approaches with
the use of the DBSCAN algorithm. It is especially suitable
to distinguish anomalies and unexpected patterns in data as
demonstrated by Çelik et al. (2011) using temperature time
series. To decide which values are most suitable for the two
input parameters of the DBSCAN algorithms, we plot the
percentage of clustered points and the number of clusters
depending on both parameters (see Fig. 11). However, this
did not lead to a clear indication of an “optimal” set of pa-
rameters. After the trade-off analysis between the number of
points in clusters and the number of clusters (not too high, so
that the clusters become very small and not too low so that
we generate only one big cluster), we chose ε = 0.05 and
Nmin = 30 by visually inspecting the resulting clusters.

An alternative clustering approach for time series based on
fuzzy C-means clustering is proposed by Coppi et al. (2010).
They develop a method to balance the clustering based on
the pattern of time series while keeping an approximate spa-
tial homogeneity of the clusters. This approach was success-
fully applied to time series from socioeconomic indicators
and could be adapted for our purpose. It could potentially im-
prove detection of features like sand bars or bulldozer work
but not distinguish moving vegetation in the dunes as our
current approach does.

A similar approach would be to use our clustering results
and identified change patterns as input to the region-growing
approach of Anders et al. (2020). In this way, we could com-
bine advantages of both methods by making the identification
of the corresponding regions for each distinct deformation
pattern more exact, without having to define possible defor-
mation patterns in advance.

5.3 Derivation of change processes

As shown in Fig. 10, we identified change processes from the
clusters generated by the k-means algorithm. Agglomerative
clustering shows similar clusters and therefore yields simi-
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Figure 11. DBSCAN selection of input parameters: number of
clusters versus input parameter maximum distance within clusters,
and minimum number of points and percentage of total points in
clusters (not classified as noise or outliers). The choice of an “op-
timal” set of parameters is not obvious. We indicate our selection
with a red circle in both plots.

lar results. Each centroid representing the mean time series
of the k-means clusters shows a distinct change pattern (see
Figs. 7 and 8), which allows us to conclude on a predomi-
nant deformation process. By fitting a straight line through
the mean time series, or part of it, we estimated the slope
corresponding to the average rate of change in elevation. As-
sociating the centroids with the location and spatial spread
of the clusters allows us to derive the main cause for the re-
spective deformations. In some cases, extra information or
an external source of validation data would be useful to ver-
ify the origin of the process. This will be taken into account
for future studies. The location of the clusters and, for ex-
ample, the steep rise of the mean time series representing
the sand piles allow for the conclusion that the cause of this
sudden accretion is anthropogenic. The information found by
Anders et al. (2019) for the research on their study confirms
the coinciding bulldozer work. The derived average rates of
change in elevation allow for the possibility to derive mass
budgets to quantify volume changes over specific amounts
of time from our data, showing a possible application of our
method that is of large scientific interest (see, for example,
de Schipper et al., 2016).

The DBSCAN algorithm successfully identifies parts of
the beach that are dominated by a prominent peak in the time
series (caused by a van and a small group of people). Out of
the three algorithms that we compare, it is most sensitive to
these outliers in the form of people or temporary objects in

the data. It was not our goal for this study to detect people
or objects on the beach, but this ability could be a useful
application of the DBSCAN algorithm to filter the data for
outliers in a pre-processing step.

6 Conclusions

We compared three different clustering algorithms (k-means
clustering, agglomerative clustering and DBSCAN) on a sub-
set of a large time series data set from permanent laser scan-
ning on a sandy urban beach. We successfully separated the
observed beach and dune area according to their deformation
patterns. Each cluster, described by the mean time series, is
associated with a specific process (such as bulldozer work,
tidal erosion) or surface property (for example, moving veg-
etation cover).

The most promising results are found using k-means and
agglomerative clustering, which both correctly classify be-
tween 85 % and 88 % of time series in our test area. How-
ever, they both need the input of the number of clusters we
are looking for, and agglomerative clustering is computation-
ally expensive. DBSCAN turned out to be more suitable for
the identification of outliers or unnatural occurring changes
in elevation due to temporary objects or people in the ob-
served area.

Our key findings are summarized as follows:

1. Both k-means and agglomerative clustering fulfil our
criteria for a suitable method to cluster time series from
permanent laser scanning.

2. Predominant deformation patterns of sandy beaches are
detected automatically and without prior knowledge us-
ing these methods. The level of detail of the detected de-
formation processes is enhanced with increasing num-
ber of clusters k.

3. Change processes on sandy beaches, which are associ-
ated with a specific region and time span, are detected in
a spatiotemporal data set from permanent laser scanning
with the presented methods.

Our results demonstrate a successful method to mine a
spatiotemporal data set from permanent laser scanning for
predominant change patterns. The method is suitable for the
application in an automated processing chain to derive de-
formation patterns and regions of interest from a large spa-
tiotemporal data set. It allows such a data set to be partitioned
in space and time according to specific research questions
into phenomena, such as the interaction of human activi-
ties and natural sand transport during storms, recovery pe-
riods after a storm event or the formation of sand banks. The
presented methods enable the use of an extensive time se-
ries data set from permanent laser scanning to support the
research on long-term and small-scale processes on sandy
beaches and improve analysis and modelling of these pro-
cesses. In this way, we expect to contribute to an improved
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understanding and management of these vulnerable coastal
areas.
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