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ABSTRACT 

Shearography and electronic speckle pattern interferometry (ESPI) have historically been developed in limited 
collaboration. Both techniques have a significant entry barrier for new researchers to get reliable results. The situation is 
even worse regarding data and code availability: only three documented and publicly available shearography datasets and 
very limited open software realisations exist. The data sharing aspect gets more critical. First, AI developments are well 
reported, while only two datasets were published. Second, developments in phase processing are reported without publicly 
available code. This limits reproducing and validating the results. Following an example from open data challenges in 
digital image correlation (DIC), this presentation highlights the Open Science issues and proposes three shearography 
datasets with inspection of composites. This presentation intends to initiate a discussion in the field that could lead to better 
practices on data and code sharing. 

Keywords: speckle interferometry, shearography, ESPI, non-destructive inspection, optical metrology 

1. INTRODUCTION 
Speckle interferometry techniques, including shearography and electronic speckle pattern interferometry (ESPI), have been 
developed with limited collaboration and data sharing. Multiple research groups have published papers and books with 
theoretical and practical insights into optical arrangements, interferogram and phase processing, and numerous application 
cases. However, both techniques have a significant entry barrier. Researchers who are new to the topic have to learn and 
master the “art” experimentally to achieve reliable experimental results or even reproduce already reported ones. As a 
general overview of the field, there is a lack of well-documented best practices and industrial standards for inspection 
(which are limited to ASTM E2581, DIN 54180). The situation is even worse regarding data availability and code-sharing 
practices.  

At this moment (June 2025), there are four documented and publicly available shearography datasets1-5, a limited number 
of open code software realisations6-9 and almost no pre-prints or white papers with best practices. The Open Science 
movement aimed at making research results accessible to researchers of all levels has limited depth in the shearography 
and ESPI fields. 

The data sharing aspect gets more critical for at least two reasons. First, AI and machine learning (ML) developments 
penetrate all engineering practices. Most of the recently reported AI developments in shearography10-14 are made by the 
same experimental engineers who have mastered the technique. This limits open and community-driven multi-disciplinary 
projects. Now, only two datasets used for training purposes4,5 and two code realisations for the models6-8 are publicly 
available. Second, novel developments in phase processing, e.g. filtering and unwrapping, are reported without code 
realisation and used datasets. Readers can reproduce the results assuming well-documented theoretical grounds. However, 
different code implementations may not give the same results. Therefore, reproduction of the results, validation and 
benchmarks are limited. 

Relevance of open data sets for shearography inspection. Most of the reported shearography inspections and all 
available commercial instruments provide the out-of-plane inspection scheme where the surface gradient (with practical 
assumptions) equal to the out-of-plane surface strain components 𝑑𝑤 𝑑𝑥⁄  or 𝑑𝑤 𝑑𝑦⁄  is analysed. Verification and 
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validation of the out-of-plane strain at low levels (up to 1000 microstrain) is challenging in comparison with the reference 
in-plane specimens (e.g. when validated with strain gauges). 

Open science practices are well developed in the neighbouring field of digital image correlation (DIC). One of many 
examples is the data processing challenges15,16 where researchers worldwide can benchmark their developments without 
access to the equipment. 

In 2000-2010 there were several EU projects, addressing the standardisation of full-field optical measurements, namely 
Standardisation Project for Optical Techniques of Strain measurement (SPOTS)17 and Validation of Numerical 
Engineering Simulations: Standardisation Actions (VANESSA)18. The main results related to this study include: 

o Reference specimens for in-plane strain characterisation with full-field techniques with non-regularities (openings, 
holes), asymmetry and complex strain field (small and large local gradients)19. 

o Round robin exercise for optical strain measurement (including ESPI, grating interferometry, photoelasticity and 
thermoelasticity were benchmarked)20. 

The main practical problem is that the outcomes of these projects, including raw data, are not publicly available anymore. 

This paper presents three datasets with shearography inspection data that can be used for benchmarking of shearography 
phase processing algorithms (filtering, unwrapping, background deformation compensation), ML and other applications. 

2. DATASET 1. INSPECTION OF THICK COMPOSITE WITH CONTROLLED SURFACE 
TEMPERATURE 

Inspection of relatively thick structures (e.g. laminates of 50 mm) requires significant heating time (reaching 10 minutes) 
and power (order of several kW). In such cases, the heating surface may reach high temperatures. To avoid overheating, 
an approach was developed to gradually decrease the heating power to allow heat to propagate through the thickness of 
the material while keeping the front surface at a controlled constant value. The inspection results, FEM modelling and 
analysis were previously reported21. 

The inspection of a 51 mm thick GFRP was done with the out-of-plane shearography configuration, five-step temporal 
phase shift with the shearing device based on a Michelson interferometer21. The experimental results and the guiding FEM 
estimations are shown in Figure 1 (a), the model overview in Figure 1 (b). 

The reported dataset for a thick composite material1 is presented in Table 1. 

 
Figure 1. Thick composite inspection. (a) Comparison of the experimental phase map (left) and FEM guidance (right) 

for 51 mm thick GFRP specimen21. Phase in radians. (b) The FEM model of the specimen with mesh. 
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Phase map by 
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Table 1. Dataset 1. Inspection of thick composite GFRP with controlled surface temperature heating. 

Readme Text description of the dataset 

The raw data Raw bmp files (2456 × 2058 pixels, 8 bit) with the speckle interferograms (in sets of 5), captured before 
heating and during the cooling part of the inspection 

Code MATLAB code for reading the raw files, temporal phase shifting, filtering. 2D unwrapping is not included 

Pre-processed data MATLAB .mat files with processed phase maps (directly available pre-processed numerical results) 

FEM data FEM results based on analysis in Abaqus21, exported to MATLAB .mat files with the surface displacement 
(w in [m]), displacement gradients 𝑑𝑤 𝑑𝑥⁄  or 𝑑𝑤 𝑑𝑦⁄  in [-] and reproduced phase maps 𝜑!" !#⁄  and 𝜑!" !%⁄  
[in radians] where the calibrated shear distance and the laser wavelength are taken into account. 

Results preview Videos with the variation of the phase induced by the defects over time (experimental and FEM guidance) 

 

3. DATASET 2. INSPECTION OF SUBMILLIMETER DEFECTS IN CFRP 
A challenging case of small defect detection is shown in Figure 2 where flat bottom holes with diameters from 0.4 to 3 mm 
at depths of 1 to 3 mm are present in a composite specimen. The results highlighted in Figure 2 (c) are obtained with the 
newly developed and reported shearography pair method. At the same time, conventional observations during heating and 
cooling parts of the inspection do not reveal the defects due to extensive background fibre-induced noise (Figure 2 (a-b)). 
The inspection results and analysis were previously reported22. 

The inspection of a 4 mm thick aerospace grade CFRP was done in a similar way as the Dataset 1: using the out-of-plane 
shearography configuration, four-step temporal phase shift with the shearing device based on a Michelson interferometer22. 
During this inspection, the shearography pair method minimised the observing strain signatures of the material layup and 
maximised the signal-to-noise ratio22. 

The reported dataset for submillimeter defects in CFRP2 is presented in Table 2. 

 
Figure 2. Inspection of submillimeter defects in CFRP. Comparison of phase maps: (a) only during heating, (b) only during cooling, 

(c) following the developed and reported approach of the corresponding shearography pair 
 (4 mm CFRP, [0/90] layup, phase in radians). 

 
Table 2. Dataset 2. Inspection of submillimeter defects in CFRP. 

Readme Text description of the dataset 

The raw data Raw bmp files (2456 × 2058 pixels, 8 bit) with the speckle interferograms (sets of 4 interferograms), captured 
before heating, during heating and further in the cooling part of the inspection 

Code MATLAB code for reading the raw files, temporal phase shifting, filtering. 2D unwrapping is not included. 

Pre-processed data MATLAB .mat files with processed phase maps (directly available pre-processed numerical results) 

Results preview Videos with the variation of the phase induced by the defects over time 
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4. DATASET AND TRAINED MODEL 3. AUTOMATED DEFECT DETECTION IN COMPOSITE 
MATERIALS WITH SHEAROGRAPHY 

In 2022, we presented one of the first applications of deep learning to shearography for non-destructive testing of composite 
materials at the 20th European Conference of Composite Materials in Laussane2. The core of our approach was based on 
a Faster R-CNN architecture, adapted to detect and localize defects directly from demodulated shearographic phase maps 
acquired under thermal loading. The model was trained on artificially induced discrete damages such as flat bottom holes 
in GFRP, CFRP, and sandwich specimens, with ground truth validated by destructive sectioning, and was subsequently 
evaluated on specimens exhibiting more complex, diffused damage patterns such as impact and dry spots. Recently, its 
capability to detect impact damage on composite plates was successfully demonstrated in an industrial application by 
edevis GmbH, Stuttgart, achieving promising accuracy even outside the original training domain (Figure 3). 

 
Figure 3. (a) Specimens used for the dataset generation and (b-c) demonstration of the industrial uptake of the developed ML model. 

All shearography map images were manually annotated to mark defect locations and sizes, ensuring high-quality labels 
for supervised training. To promote transparency and reproducibility, we publicly released the entire dataset on Zenodo4,6 
(Table 3) and the training pipeline, model, and evaluation scripts on GitHub7. 

The dataset was structured using open and human-readable formats such as JSON files to store annotation metadata, 
including defect positions, bounding boxes, and class labels. This format is particularly well-suited for sharing annotations 
linked to image data, as it is simple, transparent, and widely supported across programming environments. In addition, 
JSON can also store measurement parameters and metadata, effectively acting as a lightweight self-contained container. 

For larger-scale applications involving high-resolution image stacks, volumetric or multi-modal data, more efficient binary 
formats such as HDF5 can be used5. HDF5 supports complex hierarchical structures, compression, and fast access to large 
datasets, making it ideal for storing large volumes of measurement data while maintaining a consistent structure. Both 
formats complement each other well – JSON for lightweight interoperability and HDF5 for scalable scientific storage. 

Our results showed that even with a relatively small dataset, a well-designed deep learning model could significantly 
support the automation of defect detection in shearography. We hope this example encourages broader data and code 
sharing and interdisciplinary efforts within the shearography and NDT communities. 

 

 

(b) Original shearography map of a 
composite plate from evedis GmbH 

(c) Detected impact damages with the 
proposed machine learning algorithm 

(a) Illustration of specimens with defects 
of defined geometry 
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Table 3. Dataset 3 with the trained ML model for automatic defect detection in composites. 

Readme Two different specimen classes were selected to construct a balanced and diverse dataset: 

Specimens with defined artificial defects: Three CFRP specimens with precisely defined drilling patterns, 
varying in: dimensions hole layouts and depth, Laminate thicknesses (Figure 3 (a)) 

Specimens with undefined and realistic defects: 

- Impact damage (4 CFRP specimens), generated using varying impact energies  

- Dry spots (2 GFRP specimens), induced during manufacturing by adding different amounts of 
ammonium hydrogen carbonate (NH₄HCO₃) to introduce voids and resin-starved areas. 

Experiments were conducted using an SE3 shearography system from isi-sys GmbH, equipped with a 5 MPx 
(2452 × 2052 px) CCD sensor and a 500 mW LED laser array (wavelength λ = 658 nm). Thermal loading of 
the specimens was applied using a 1.2 kW halogen radiator, resulting in a measured surface temperature 
increase of ΔT = 2 K. All specimens were examined under varying shear angles and magnitudes. The shear 
range extended from 10 to 40 kSt in 5 kSt increments in both horizontal and vertical directions, corresponding 
to a spatial shear amount between 2.63 mm and 6.98 mm, based on a fixed working distance of 833 mm. 

The raw data The shearographic phase maps are stored as (2452 x 2052) Px2 12bit mono-chrome uncompressed *.tif files. 

Code The codebase accompanying the ShearDetect dataset is publicly available on GitHub. It is implemented in 
Python, with a strong emphasis on the use of open-source machine learning libraries, particularly PyTorch, 
for accelerated model training and inference. GPU acceleration via PyTorch enables efficient training on large 
datasets and supports integration with modern architectures like Faster R-CNN or custom lightweight 
backbones. 
The checkpoint of the model with all pretrained weights can be downloaded from Zenodo6. 

Pre-processed data The data was manually annotated, and the data was stored in json file. *.json-files contain the following 
annotations and infos: 
{ 
  "fileID": "specimenName_imageName", 
  "Dataset": "specimenName", 
  "image": "imageName", 
  "defect": [[x1, y1, x2, y2]],     // list of bounding boxes of defects 
  "specimen": [[x1, y1, x2, y2]]    // list of bounding box of the entire specimen 
} 

Results preview The GitHub repository offers a pre-processing and post-processing modules to display detected defects as 
bounding box with confidence probability from ML algorithm as depicted ion Figure 3 

 

5. POTENTIAL PUBLIC USE OF DATASETS 
All datasets presented here share similarities, e.g. detection of defects in composite materials. The main differences are in 
the thickness and scale of the defects. The datasets and the trained model also share potential for public use: 

Potential public use: 

o Development and benchmarking of new phase filtering approaches and 2D unwrapping algorithms. 
o Developing approaches to isolate, characterise and maximise the defect-induced phase and signal-to-noise ratio: 

n The defect-induced phase from the global or background deformation of the specimen due to bending, buckling or 
rigid body movements during consecutive heating and cooling (e.g. similar to the phase compensation9). 

n The defect-induced phase from the background fibre-related noise caused by the composite layup and non-uniform 
distribution of reinforcement fibres. 

o For training, validation and testing for existing and new ML developments. 
o Benchmarking of ML algorithms  

Open challenges where the community can contribute: 

o Maximising the defect-induced phase compared to the observing fibre-induced deformation (for details see previous 
publications21,22; equivalent to maximising the signal to noise ratio). 

o Detection of smaller or deeper defects in composite materials. 
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o Depth estimation from time-resolved shearography: developing robust methods to extract defect depth information 
from temporal shearography phase data remains an open problem. 

o Multimodal defect detection: combining complementary modalities – such as thermography and shearography – to 
improve detection reliability and defect characterisation presents technical and data integration challenges. 

o Standardisation of data annotation and storage for benchmarking: establishing a common, open standard for 
annotating, storing, and sharing NDT data would greatly enhance reproducibility and interoperability across research 
groups and applications 

6. CONCLUSIONS 
This presentation highlights the Open Science issues and proposes three datasets and one trained model with challenging 
defect detection cases in composite materials, including inspection of thick GFRP material and detection of submillimeter 
defects in aerospace-grade CFRP. This presentation intends to initiate a discussion in the field that could lead to better 
practices on data sharing and start the shift towards Open Science principles. 

As a further development, a round robin exercise can be executed. The possible options are: 

o Option Inspection. The objective is to evaluate the detection sensitivity of shearography for typical defects and damage 
in composite materials: 
n Specimen: to design a representative specimen or set of specimens to be inspected in various laboratories and 

companies 
n Excitation: thermal excitation can be proposed as the main one. Other available options can also be benchmarked. 
n Criteria to benchmark: signal-to-noise ratio for reference defects 
n Deliverables: raw interferograms, phase maps, defect mapping, and inspection report. 

o Option Data. A reference data set can be generated and shared (also, one of the existing datasets can be used): 
n Data: experimental data set with a FEM modelling prediction of the surface displacement gradients. 
n Criteria to benchmark: signal-to-noise ratio for reference defects, phase difference between the experimental data 

and FEM guidance. 
n Deliverables: phase maps, defect mapping, comparison experiments with FEM and overall report. 

o Option Code. Promote transparency and reproducibility in defect detection algorithms through the publication and 
benchmarking of open-source code. 
n Content: publish reference code for preprocessing, model training, and evaluation (e.g., CNNs, U-Nets, or even 

Recurrent Convolutional Networks for time-resolved interpretation of measurements) on platforms like GitHub. 
n Benchmarking: assess accuracy (IoU, mAP), inference time, and generalization across datasets. 
n Deliverables: GitHub repository with training scripts, pretrained models, example data, and documentation. 
n Goal: foster community contributions and establish a common baseline for ML-driven NDT. 
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