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Preface

This thesis is the main output of my research as PhD student, carried out at Delft

University of Technology and funded by Deltares Foundation. The position I have

occupied, halfway between these two institutions, is reflected in its content, having

both application and theoretical value. It combines a practical usefulness, which is

of value for a consulting company that sells innovative solutions, and attention to

the formal correctness, which is of value for an university that delivers education

and research.

From the application side, it can be seen as a Real Time Control (RTC) application

to water systems. Complex systems can be integrated and harmonized by optimal

control. Initially, after the Second World War, control was a warfare application only

(missile control). Control applications were later extended to industry (powerplants),

showing now their usefulness for water systems operation. If technologies had karma,

the reincarnation of control in nobler and nobler systems means that it behaved well

in previous applications.

Deltares applies RTC to different water systems all over the world. Deltares have

recently won a research contract for the management of the Federal Columbia River

Power System, by Bonneville Power Administration (USA). The method presented

in this thesis is a constituent element of the Deltares proposal; even before the end

of my PhD, the research investment already paid back.

From a more theoretical side, this thesis is about decisions under uncertainty, in-

volving utility theory and probability. The work presented here is an attempt to

bring decision theory “down from the platonic world of ideas”, and probability “out

of the urn”.

Herbert Simon, nobel laureate, regarded in fact utility theory as an ideal method,

good as mental framework, but with little practical applicability, difficult to extend

to real world problems. Utility theory is indeed a rather formal method; it requires

to define explicitly the system model and the objectives. However, in water sys-

tems operation, models of the physical process are available, and the decision set
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viii Preface

is generally bounded. Therefore a complete problem setting, as required in utility

theory, is a possible option. Defining all elements of the problem forces the analyst

to make them explicit, thus verifiable and communicable. This matches the educa-

tive role that, in my opinion, university should have: providing instruments to frame

problems. The adage of Charles Kettering, saying that “a problem well stated is a

problem half solved” is, in this context, even more true. Nevertheless, the objective

function definition deserves, in my opinion, further research. An objective function

defines what I call “subjective” rationality, i.e. what I think it is rational. However,

it does not ensure “objective” rationality, i.e. what it is actually rational.

A cornerstone of this thesis is uncertainty, and the mathematical tool to deal with

it, probability theory. Probability theory is the science of partial information. Infor-

mation is, in this framework, a constraint on uncertainty.

A paradigm shift is taking place within universities, that I am experiencing and

promoting. I was taught to interpret probability as frequency for an experiment

repeated sufficient times; I have turned to interpret probability as lack of knowledge.

Uncertainty does not stem from some randomness of the system, as an ontological

property of the real world [Popper, 1959], but from a systematic partial knowledge

of it [Jaynes and Bretthorst, 2003]. Information is in itself an interesting entity.

Information is costly to obtain and to store, measurable, as mass or electricity, and

as mass or electricity, it propagates according to its own laws. Understanding the

laws that explain the information flow in time is an exciting challenge.

My PhD has been “a pleasant Research Path on the equilibrium between the Valley

of Chaos and the Desert of Boredom”. I managed to go through it until the end.

It was indeed pleasant, I never got bored and rarely got lost in the chaos. Doing

research requires communication, problem solving, and analytical skills, emotional

balance, concentration, intuition, curiosity, creativity, and hard work. Even if this

thesis is an individual product, it was not a solitary walk. I thank here all the

people with whom I shared part of this path and supported me, professionally or

emotionally. They are recognized, one by one, in the Acknowledgments section.



Summary

Water systems consist of natural and man made objects serving multiple essential

purposes. They are affected by many types of meteorological disturbances. In order to

deal with these disturbances and to serve the desired objectives, infrastructures have

been built and managed by societies for specific purposes. Given a water system, and

its purposes, the control of the existing infrastructures is the subject of operational

water management. The system controller, either a natural person or a mathematical

algorithm, takes his recursive decisions observing the state of the system and trying

to bring it to the desired condition. Model Predictive Control (MPC) is an advanced

method for the control of complex dynamic systems. When applied to water systems

operation, MPC provides integrated and optimal management.

If disturbance forecasts are available, this information can be integrated in the con-

trol policy and water management becomes proactive. Before the realization of the

disturbance, the MPC controller sets the system to a state which is optimal to ac-

commodate the expected disturbance. A typical example is lowering the water level

of a reservoir before an expected storm event in order to avoid floods. However,

MPC is a deterministic algorithm, therefore mismatches between the nominal and

the real system can jeopardize its robustness.

In proactive control of open water systems, the main uncertainty is generally related

to the difficulty of producing good forecasts. Weather and hydrological processes

are difficult to predict, and meteorological or rainfall-runoff models can be wrong.

Especially when using only one deterministic estimate, the control is more vulnerable

to forecast uncertainty, running the risk of taking action against a predicted event

that will not occur.

The research question of this thesis is

How to use existing forecasting methods in optimal control schemes,

thereby enhancing robustness in the face of forecasting uncertainty?

In open water systems, such as rivers, canals, or reservoirs, the available forecast is

generally the natural inflow, which is the output of a deterministic rainfall-runoff

ix



x Summary

model. The model produces a point estimate, which is the expected value of the

variable of interest. Nevertheless, the nonlinearity of the control problem requires

the forecast of the entire probability distribution. When residuals are assumed inde-

pendent, identically distributed, zero-mean, and Gaussian, then the variance is the

only extra parameter required to build up the entire distribution, and its value can

be estimated from the data. However, residuals of rainfall-runoff models are in fact

heteroscedastic (i.e. the variance changes in time) and autocorrelated. In Chapter

2 it is shown how to deal with both deficiencies. Dynamic modelling of predictive

uncertainty is built up by regression on absolute residuals, and applied to two test

cases: the Rhone River, in Switzerland, and Lake Maggiore, at the border between

Italy and Switzerland.

When the information on the catchment state does not offer sufficient anticipation,

for example because the catchment dynamics are fast compared to the controlled

system, it is necessary to include weather forecasts. Meteorological agencies produce

not only a deterministic trajectory of the future state of the weather system, but a

set of them, called ensemble, to communicate the forecast uncertainty.

The algorithm presented in Chapter 3, called Tree-Based Model Predictive Control

(TB-MPC), exploits the information contained in the ensemble, setting up a Multi-

stage Stochastic Programming (MSP) problem within the MPC framework. MSP is

a stochastic optimization scheme that takes into account not only the present uncer-

tainty, but its resolution in time as well. Going on in time along the control horizon,

information will enter the system. Consequently, uncertainty will be reduced, and

the control strategy after uncertainty reduction will change according to the occur-

ring ensemble member. The key idea of TB-MPC is producing a tree topology from

the ensemble data and using this tree in the following MSP optimization. A tree

specifies in fact the moments when uncertainties are resolved.

Generating a tree from ensemble data is both difficult and of critical importance. It

has been considered an open problem until now, especially regarding the tree branch-

ing structure, which also strongly affects control performance. Chapter 4 shows a

new methodology that produces a tree topology from ensemble data. The proposed

method models the information flow to the controller. This implies the explicit def-

inition of the available observations and their degree of uncertainty.

Chapter 5 summarizes the contribution of my PhD and the research directions that,

in my opinion, deserve more investigation.



Samenvatting

Watersystemen bestaan uit natuurlijke en kunstmatige objecten die meerdere es-

sentiële doelen dienen. Ze worden benvloed door verschillende meteorologische ver-

storingen. Om met deze verstoringen om te kunnen gaan en om aan de gewen-

ste doelstellingen te kunnen voldoen, is infrastructuur gebouwd die wordt beheerd

volgens de maatschappelijke doelen. Operationeel waterbeheer betreft het regelen

van de bestaande infrastructuur gegeven het watersysteem en haar doelstellingen.

De systeemregelaar, zijnde een natuurlijke persoon of een wiskundig algoritme, ob-

serveert de toestand van het systeem en probeert het in de gewenste staat te brengen.

Model Predictive Control (MPC) is een geavanceerde methodiek voor het regelen

van complexe dynamische systemen. Toegepast op watersystemen kan met MPC een

gentegreerde en optimaal beheer worden verkregen.

Als voorspellingen van verstoring beschikbaar zijn, kan deze informatie worden gen-

tegreerd in het operationele beheer en wordt het waterbeheer anticiperend, dat wil

zeggen: vóór de realisatie van de verstoring, brengt de MPC-regelaar het systeem

naar een staat die optimaal is, anticiperend op de verwachte storing. Een voorbeeld

is de verlaging van het waterpeil van een reservoir vóór een hoog afvoer gebeurtenis

om zodoende een overstroming te voorkomen. Echter, MPC is een deterministisch al-

goritme, waarbij de onzekerheden tussen model en werkelijkheid de betrouwbaarheid

in gevaar kunnen brengen. De grootste onzekerheid in het anticiperend regelen

van open-watersystemen heeft vaak betrekking op de moeilijkheid om goede voor-

spellingen te produceren. Hydrologische en meteorologische processen zijn moeilijk

te voorspellen. Meteorologische en neerslag-afvoer modellen kunnen onnauwkeurig

zijn. Vooral bij het gebruik van slechts een deterministische puntschattingen is de

regeling kwetsbaar voor onzekerheden in de voorspellingen met het risico om actie

te ondernemen anticiperend op een voorspelde gebeurtenis die uiteindelijk niet zal

gebeuren. De onderzoeksvraag van dit proefschrift is aldus

hoe kunnen de bestaande voorspellingen in optimale regelmethodieken

worden gebruikt om zodoende te zorgen voor robuustheid tegen de

onzekerheden in deze voorspellingen.
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xii Samenvatting

Bij open-watersystemen zoals rivieren, kanalen of reservoirs, is de beschikbare voor-

spelling de natuurlijke afvoer, zijnde de uitput van een deterministische neerslag-

afvoer model. Het model produceert een puntschatting, die de verwachtingswaarde

van de variabele is. Toch vereist de niet-lineariteit van het regelprobleem de voor-

spelling van de gehele kansverdeling. Typisch worden residuen onafhankelijke, iden-

tiek verdeelde, nul-gemiddelde en normaal aangenomen. In dit geval is de variantie de

enige extra parameter vereist om de gehele verdeling te construeren en deze waarde

kan uit de data worden geschat. Fouten in neerslag-afvoer modellen zijn echter het-

eroscedastisch (de variantie verandert) en autogecorreleerde. In hoofdstuk 2 wordt

getoond hoe met beide gebreken om te gaan. Dynamische modellering van predic-

tieve onzekerheid wordt opgebouwd door regressie op de absolute afwijkingen en

toegepast op twee testcases: de rivier Rhône, in Zwitserland, en het Maggioremeer,

op de grens tussen Italië en Zwitserland.

Als de informatie over het stroomgebied niet voldoende anticipatietijd biedt, bijvoor-

beeld omdat het stroomgebied dynamisch snel is in vergelijking met het geregelde

systeem, is het noodzakelijk om weersvoorspellingen te gebruiken. Meteorologische

instituten produceren niet alleen een deterministisch traject van de toekomstige

toestand van het weersysteem, maar tevens een verzameling van trajecten om de

voorspellingenonzekerheid te communiceren, genaamd ensemble.

Het algoritme dat wordt gepresenteerd in Hoofdstuk 3, genaamd Tree-Based Model

Predictive Control (TB-MPC), maakt gebruik van de informatie beschikbaar in

de ensemble en construeert Multistage Stochastic Programming (MSP) binnen het

MPC kader. MSP is een stochastische optimalisatie methodiek die rekening houdt

met de huidige onzekerheid en tevens de resolutie van onzekerheid in de tijd. Met

het voortschrijden in de tijd over de regelhorizon, komt informatie het systeem bin-

nen. Hierdoor zal de onzekerheid worden verminderd en de regelstrategie zal veran-

deren na deze reductie van onzekerheid afhankelijk van het optredende lid van het

ensemble. Het idee van TB-MPC is het opbouwen van een boomstructuur uit de

ensemblegegevens en de boom te gebruiken in de volgende MSP-optimalisatie. Een

boom geeft de momenten aan dat onzekerheden worden opgelost.

Het opbouwen van een boom uit ensemble data is zowel moeilijk als van cruciaal

belang. Tot nu toe is het een open probleem, vooral wat betreft de boomstructuur

die ook grote invloed op de regeling heeft. Hoofdstuk 4 toont een nieuwe methode die

de boomstructuur uit de ensemble genereert. De voorgestelde methode modelleert

de informatiestroom richting de controller. Dit impliceert de expliciete definitie van

de beschikbare waarnemingen en hun mate van onzekerheid.

Hoofdstuk 5 vat de bijdrage van mijn promotieonderzoek samen en de onderzoek-
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srichtingen die, mijns inziens, meer aandacht verdienen.
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Chapter 1

Integrated, Optimal, and Proactive Operational Water

Resources Management

1.1 Integrated Water Resources Management, down to earth

Integrated Water Resources Management (IWRM) is defined by Cardwell et al.

[2006] as

a coordinated, goal-directed process for controlling the development

and use of river, lake, ocean, wetland, and other water assets.

Although the concept of IWRM has been dominant for decades in the water re-

sources management debate, it has been deeply criticized by authoritative experts,

accused of vagueness and of being a “mere trendy label”, whose success is due to

the feeling of using a broader and holistic approach, suggesting the idea of a better

management [Biswas, 2004]. The concept is not just charged with a naively innocent

vagueness. Biswas [2008], criticizing specifically IWRM as defined by the Global

Water Partnership (GWP), also accused the IWRM paradigm of lending itself to

legitimize the centralization of competencies and power under the water authorities.

Indeed, the IWRM concept is very abstract. Its generality aims at encompassing

the large heterogeneity of problems and situations you can meet in water systems;

but then it seems to have little usefulness when brought to an operational level.

Nonetheless, since the acceptance of the IWRM principle, many experts have worked

to bring this concept into practice and this thesis can be considered part of this

stream.

Conscious of the high level of connectivity among variables in water related problems,

and the influence of water on other sectors, experts stress the need for a “multi-

dimensional” approach. Under an organizational point of view, this requires the

coordination and cooperation among the many different sectors and issues related

to water management. However, this does not necessarily imply the simplistic (and

generally wrong) solution of centralization under water authorities.
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Management

The word “integrated” suggests the thought of systems thinking. This all-connected-

to-all approach was already present in the forefather of modern science, the Italian

Galileo Galilei, who stated: “you cannot pick up a flower without disturbing a star”.

Systems thinking can be defined as the process of understanding how things influ-

ence one another within a whole. In water management, this implies considering all

water management dimensions (physics, economics, etc.) together, as opposed to the

reductionist approach, in which the problem is broke down in pieces and solved by

parts.

On the other hand, if systems are always interrelated, then there is no limit to

integration, neither some threshold that defines whether a management is integrated

or not. A shift of focus is needed here to avoid the fall of indistinguishability. In “the

night where all the cows are black”, to quote Hegel, and all the managements are

integrated, then IWRM is indeed just a trendy label that “can be attached to the

same thing people used to do” [Biswas, 2004].

A first answer to the critics of IWRM is that integrated is different from holistic

[Mitchell, 2004]. Admitting that there is no limit to integration does not exclude that

you can move to more integrated management. In this sense, integrated-integration

is not an attribute of the management, but a process. Therefore, the focus should

shift from the adjective “integrated”, as a state of the management, to the verb

“integrate”, that draws attention to the action of integration.

The idea of integration as a process has been criticized for the absence of both a

clear defined objective and a way to identify whether this has been reached or not

[Biswas, 2004]. However, it is completely acceptable that IWRM has no content

objectives, which depend from case to case and from stakeholder to stakeholder.

The objective of IWRM is a “meta-objective”. While the content objectives can

change, IWRM states the permanency of some process-related objectives. Water

professionals, working within the IWRM framework, have only process objectives.

Similarly to a referee in a football match, who is not interested in the results itself.

His role is to take care that the process (the match) follows some specific rules that

ensure some “meta-objectives” (fairness of the result, show, and so on).

For this reason I reject the GWP definition of IWRM, stating that the scope of

IWRM is “maximizing the resultant economic and social welfare in an equitable

manner without compromising the sustainability of vital ecosystems”. In this defi-

nition, which is one of the most cited ones, IWRM is framed within a specific value

system. But integration is a technical issue, thus a process objective, whereas equity,

sustainability, and efficiency are political values, thus content objectives. Objectives

(thus values) should be derived from society. Scientist and technicians can partic-
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ipate to a shift of values by providing new information, but have no legitimacy to

define them.

In summary, integration is a tool, a process objective that is desirable because it

enhances the achievement of better results, whatever they are. This statement, far

from being a truism, is a strong assumption of the IWRM paradigm.

1.1.1 Models for IWRM

IWRM has been defined as “a journey, and not a destination” [Biswas, 2004]. Using

the same metaphor, models are then the vehicles that help the Decision Maker to get

the final destination that he desires to reach. The image of IWRM as a journey is in

line with the stress on integration as a process, as just explained. The word process

comes in fact from the latin procedere, which means to go forward, and models are

a valuable instrument to go forward along the path of integration.

A model is a mathematical object that mimics reality in order to make predictions

by quantifying some variables of interest. In the field of water management, these

variables can be, for example, the water levels along a river or the concentration of

some pollutant at a specific location. The power of models lies in their capacity to

combine reductionist and systemic approaches. A physical system can be analyzed

(the etymological meaning of analysis is to cut apart, to divide in smaller pieces).

Once divided in smaller element, every sub-element is modeled by a mathematical

object. Then, the sub-elements can be synthesized (whose etymology is to put to-

gether, to combine) by modeling the relations among the components, in order to

reproduce the original system. If analysis is for science and understanding, synthesis

is for integration. Integration can be enlarged to what we are able to model. For this

reason mathematical models are a tool for integrated management.

Different water-related themes can be included in the same model and coordinated.

For example, water quantity problems can be managed together with water quality,

geomorphology, and/or ecological issues. Integration in space can be implemented by

enlarging the model to encompass the up or downstream systems, as done by Over-

loop et al. [2010], or joining surface water and groundwater. Galelli et al. [2010] ex-

tended the system to encompass irrigation districts, and Harou et al. [2009] included

the economic dimension. Integration in time can mean both integration among dif-

ferent moments, where present and future uses and conditions are analyzed, and

integration between different time scales, where long and short term decisions are

considered together. In the first case, the problem is balancing of resource use over

time in order to find a satisfactory compromise, which is the concept of sustain-

ability. The latter is the combination of decision at strategic and operational level.
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For example, the strategic decision is whether to build up a new reservoir and the

operational decisions regard its daily management. Both aspects are of paramount

importance for the good management of any resource. This is further explored in

section 1.3.

To represent water systems, we generally use dynamic models having the following

general form.

xt = ft(xt−1, ut, dt, εt) (1.1a)

yt = gt(xt, ut, dt, εt) (1.1b)

c(xt, ut) ≤ 0 (1.1c)

In Equations (1.1), x are the states, holding the system “memory”, u are the system

inputs, or the controls, that we can choose and manipulate, and d the disturbances,

on which we do not have any influence. ε is a vector of stochastic variables modelling

the uncertainties. All the variables are vectors of the proper size, and t is the time

index. Equation (1.6e) is the state equation and represents the system dynamics,

written in an explicit, finite difference form. Equation (1.6f) is the output equation,

in which y is the output vector. Inequalities (1.6h) are other physical constraints.

Taking a reservoir as simple example, x is the water volume stored in the reservoir,

u is the release, d the inflow from the upstream basin, y the reservoir water level,

and t the daily time index. The constraints are in this case on state and control.

The reservoir volume is in fact positively defined and the release capacity is limited

between zero and some maximum value.

Models are used to build up knowledge providing the information on how the deci-

sions u affects the output y, which are variables meaningful to the stakeholders. In

this way they can assess the effects of alternative decisions u and value them [Liu

et al., 2008; Loucks, 1992; Loucks et al., 1985]. This is, in summary, the added value

of a model for decision making.

1.2 Optimization for IWRM

Models can be used to assess the effect of a set of alternative decisions for decision

making. The set of alternatives U is made of all possible u. When this set is small, it

can be assessed by a simple “what-if” analysis. For example, if the decision is whether

building up a fixed weir or not, the decision variable is a binary one; studying the
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effects of different configurations boils down to analyzing the two situations: with or

without the structure.

When the decision space is large, then assessing all alternatives can become ex-

tremely complex. For example, the release from a reservoir at a specific moment

cannot be decided alone but it must be coordinated with all the other releases along

a horizon. In such a problem, there are as many decision variables as time steps in

the horizon. The set of all possible alternatives is the cartesian product of the de-

cision variables. This implies that the alternative dimension growths exponentially

with the length of the horizon. It is very easy, in such a case, to run into a decision

space larger than the human capacity to handle it.

At such level of complexity, optimization is a valuable tool. By setting an opti-

mization problem, a large number of alternatives can be evaluated and coordinated

[Soncini-Sessa et al., 2007].

Optimization for water management has also been criticized [Reed and Kasprzyk,

2009]. However, this was referred to the deterministic, single-criterion optimality,

as a sort of “automatic” way to find a simple solution for a complex problem. It is

unlikely that the authors neglect the added value in terms of meaningful information

that optimization (and decision theory, in general) can provide as aid to the decision

[Tsoukias, 2008].

Beyond the model of the physical process, Equation (1.1), optimization for decision

making requires an objective function J , modelling the interests at stake.

J({yt}ht=1, xh) = G({yt}ht=1) + gh(xh) (1.2)

J is a functional that quantifies the “satisfaction” of the stakeholder, assigning a

value to the trajectory of the system output, {yt}ht=1. The second term, gh(·), is the

terminal condition, that accounts for the consequences of leaving the system at state

xh at the end of the horizon h. As an example, in a reservoir used for hydroelectric

production, G is the value of produced energy, and gh the value that can be produced

after time h. Objectives are separable if they can be split in “sub-objectives” gt, one

per each time step [Soncini-Sessa et al., 2007]. In this case, Equation (1.2) can be

written in the following form.

J(·) =
h∑
t=1

gt(yt) + gh(xh) (1.3)

Choosing a proper objective function is, in general, not an easy task. It requires the
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rationalization of stakeholders’ values. Defining J is in fact a participatory modeling

process [Soncini-Sessa et al., 2007], in which human preferences are translated into

a mathematical object.

A loss function, quantifying the “dissatisfaction” of the stakeholder, is assumed, in

a rational framework, to be equivalent to the negative of the objective function. I

stressed here the word rational because an important research line investigated how

people tend to overestimate losses on gains, having a higher sensitivity to negative

events [Kahneman et al., 1982]. This is a cognitive bias, though; for a rational de-

cision maker there is no difference between a gained euro and a not-lost one. As a

simple example of loss function, for a stakeholder interested in avoiding floods, −J
can be the probability of a flood event per year. In the following of this thesis, if J

is to be minimized, it is a loss function, otherwise it is an objective function.

J has dimension RM , where M is the number of the objectives included in the

project. When the objectives are more than one, J is a vector having at least one

element per group of stakeholders, and the optimization is a multi-objective one.

This is a common case in water management, in which many stakeholders contend

the resource on a shared system, each willing to manage the common resource for

its own interest [Castelletti et al., 2008; Draper et al., 2003; Castelletti and Soncini-

Sessa, 2007]. The inclusion of multiple interests in order to strike a balance1 among

the involved stakeholders is probably the most relevant dimension of integration.

1.3 Operational Water Management as Optimal Control Problem

Decisions can be divided in strategic, up, and operational, ut. They differ in the time

span of their effects, or, equivalently, the frequency at which they are taken. The

first is a one-off decision, whereas the second is a recursive one. Their difference is

not just in frequency, but also in nature. Recursive decisions can balance each other.

If one has been slightly wrong, the next decision can compensate the error. This

cannot be done, or it is much harder, for strategic decisions.

The relation between these two classes is that strategic decisions require the defi-

nition of an operational decision law, m(·). An operational decision law, or control

law, is a function that, at each decision instant t, gives the decision ut depending on

the present state xt.

1. Cultural note: When dealing with conflicting objectives that must be considered and balanced,

Dutch has a more proper word, “overleggen”, without equivalent in English. “Overleggen” conveys

the idea of the process of meeting, discussing, consulting, thinking (carefully) about a solution,

negotiating, agreeing on a compromise, and deliberating.
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The optimal operation problem is nested within the optimal strategic decision, as

described in Equation (1.4).

min
up

[
min
m(·)

J(·)
]

(1.4)

Modelling and optimization can be used for both strategic and operational decisions,

and their coordination [Soncini-Sessa et al., 1999]. However, this thesis is about

operational water management only, for example operating hydraulic structures,

thus dealing with the optimal use of existing structures when strategic decisions are

fixed. Operational water management is about solving a control problem, that is the

recursive selection of control ut to steer the system and bring it to the desired state.

Optimal control is the optimal selection of ut that minimizes the objective function

J .

Solving the optimal control problem

Solving an optimal control means finding a control law for a given system (Equations

1.1) such that a certain optimality criterion (Equation 1.2) is achieved, i.e. solving

the optimal control problem (1.5).

min
m(·)

J(·) (1.5a)

System dynamic (Equations 1.1) (1.5b)

Other constraints (1.5c)

The method to solve problem (1.5) depends on the specific problem characteristics

[Labadie, 2004; Sahinidis, 2004; Reznicek and Cheng, 1991]. Dynamic Programming

(DP) (and its stochastic version, Stochastic Dynamic Programming, SDP) [Bert-

sekas, 1995] offers a brilliant and elegant solution for the optimal control of dynamic

systems. DP is an off-line optimization; its solution gives a optimal control law, in-

dicating the optimal control value to apply to the system in function of the present

state. Based on the Bellman equation, DP splits costs in present-costs and cost-to-go,

and finds a functional solution solving iteratively the equation backwards.

While DP is, from a theoretical point of view, a superb object, practical applica-

tions reveal its limits. It requires in fact variables discretization and separability of

the objective function, thus written in form of Equation (1.3). The main limit of

DP, however, is that the calculation time increases exponentially with the number
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of variables. Using a evocative name, this drawback has been called the “curse of

dimensionality” [Bellman and Dreyfus, 1966]. Practical applications of DP are thus

limited to simple systems. To find a solution using DP, large systems must be reduced

to a model having a small number of states, and these necessary approximations lead

then to suboptimal solutions.

In summary, even if the optimal control law obtained with DP has the form of a

perfect theoretical framework, another formulation of the optimal control problem,

much leaner and simpler, has become popular for practical real time applications.

This is the argument of the next section.

1.4 Model Predictive Control for operational IWRM

Model Predictive Control (MPC) solves an open-loop optimal control problem at

every control instant along an finite horizon, applying to the real system only the

first control value. At the following instant the horizon is shifted and the optimal

control problem reformulated. For this reason MPC is also called receding horizon

control, which is less used but conveys better the essence of MPC characteristics

[Morari et al., 1999; Camacho and Bordons, 2004; van Overloop, 2006].

At each decision time step, MPC solves the following optimization.

min
{ut}ht=1

J({yt}ht=1, xh) (1.6a)

subject to

Initial conditions (1.6b)

x0 (1.6c)

System model (1.6d)

xt = ft(xt−1, ut, dt) (1.6e)

yt = gt(xt, ut, dt) (1.6f)

Other Constraints (1.6g)

c(xt, ut) ≤ 0 (1.6h)

MPC solves the open-loop optimal control problem as in (1.6) in order to find an

optimal control signal {u∗t }ht=1 on a finite control horizon h. From this control signal,

only u∗1 is applied to the real system. In operational use, MPC works as follows:
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1. obtain measurements/estimates of the system states x0 and, when available,

disturbances {d}ht=1

2. solve optimization problem as in problem (1.6)

3. implement the first part the optimal control signal until new measurements/estimates

are available

4. repeat from 1

MPC generally uses a linear model and a quadratic loss function (distance from a

desired trajectory) [Camacho and Bordons, 2004]. More recently, nonlinear models

have been employed [Henson, 1998], though, the objective function remains almost

always a quadratic distance from a trajectory. The research activity on MPC is still

very active, and the existing literature is vast. The reader interested in the argument

can read the good summary written by Morari et al. [1999], or the good introduction

by Maciejowski [2002].

Compared to simple feedback controllers, such as Proportional Integral Delay (PID)

[Astrom, 1995], MPC has the advantage to explicitly include constraints, even if

it requires the modeling of the physical process and the “tuning” of an objective

function definition. MPC shows clear advantages in dealing with systems with delay,

where reactive rules can lead to instability. According to Qin and Badgwell [2003],

MPC success is mainly due to its explicit constraint handling capability, including

constraints in the optimization problem, enabling the controller to predict future

constraint violations and respond accordingly [Henson, 1998].

Mayne et al. [2000] points out that, under some conditions, MPC control law is

implicitly equivalent to the optimal feedback control law, obtained using DP. The

difference is that, in MPC, m(·) is not pre-computed off-line for all possible values

of x, but it is found in real time at each control instant, for the present x0 only,

where the hypothetical control law for MPC is mMPC(x0) = u∗1|x0, and u∗1|x0 is the

first time step of the optimal control signal given x0.

In problem 1.6, the argument of the optimization is a control series. Therefore prob-

lem (1.6) is much simpler to solve than problem (1.5), where the argument of the

optimization is the entire control law, that is a function. This allows the control

of larger systems. According to Mayne et al. [2000], the ability to handle control

problems where off-line computation of a control law is difficult or impossible to

compute is the raison d’etre of MPC.

The finite control horizon is at the same time the strength and the weakness of MPC.

The horizon finiteness makes it easier to find a solution in real time. On the other

hand, all the effects from the end of the horizon h onwards are not taken into account.

Whether these effects are relevant to the the first controls that will be applied
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depends on the specific physical system and objective function. Experience shows

that, for water systems, this can be an issue, especially for reservoir management.

This is further discussed in the conclusions, in Chapter 5.

1.4.1 Proactive operational water management using forecasts and the

problem of uncertainty

Scientist and engineers have worked to build up meteorological and hydrological

models to predict the system dynamic ahead of time. The output of such models are

forecast trajectories of the variable of interest, {dt}
hf
t=1, where hf is the forecasting

horizon, spanning from some hours to a few days ahead. Forecasts of the upstream

system (including weather forecasts) that are inputs to the controlled system are

valuable information for control.

Use of forecasts makes the control proactive [Zavala et al., 2009], which is defined

as the capacity to set the system to a state that best accommodates the incoming

disturbances. Adding a deterministic input does not add any complexity to the MPC

scheme, then forecasts can easily be integrated in it. This is, in general, an advan-

tage, but it can bring along some risks. Forecasts introduce in fact hydrological and

meteorological uncertainty in the control problem. These uncertainties are typically

much larger than those of the controlled hydraulic systems. The scope of this thesis

is finding methods to enhance the control robustness using existing forecasts.

Uncertainty affects negatively the control performance. Disregarding the presence of

uncertainty, thus treating the problem as deterministic, leads to a departure from

the optimal results. The distance from optimality depends on the specific prob-

lem and grows with the distance from certainty equivalence conditions. Certainty

equivalence is guaranteed when i) costs are evaluated by quadratic functions; ii) sys-

tem dynamics are linear; iii) there are no inequality constraints; and iv) uncertain

inputs are independent and normally distributed. Under the certainty equivalence

condition, deterministic and stochastic optimization give the same results. Systems

departing from certainty equivalent conditions are more sensitive to wrong controls

[Van de Water and Willems, 1981]. Philbrick and Kitanidis [1999] explored how

much, departing from certainty equivalency, deterministic solutions give worse re-

sults, noticing that few actual water systems are close to certainty equivalence.

Uncertainty introduces the issue of robustness, which, in control theory, has been

intensively studied. A system is robust when “stability is maintained and that the

performance specifications are met for a specified range of uncertainty range” [Morari

et al., 1999] 2. In water systems, dealing generally with stable or meta-stable systems,

2. Also within the water management community, the word “robust” implies the explicit treatment
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stability is generally not a problem. But performances are, being the system used

for human purposes. Robustness is not a property of the system itself; it requires, by

definition, the selection of some performance specifications under some uncertainty

range.

MPC is a deterministic optimization that does not deal with uncertainty in an

explicit way. Despite this, MPC has some “inherent robustness” [Mayne et al., 2000;

De Nicolao et al., 1996; Magni and Sepulchre, 1997] linked to the feedback mechanism

given by iterative reformulation of the optimal control problem. MPC is, in fact, an

open loop optimization, but only the first control values are applied. This limits

the performance loss due to uncertainty. Therefore, for some systems, under defined

uncertainties and robustness requirements, solving the nominal control problem is

sufficient for satisfactory results.

In other cases, effects of uncertainty are larger and unacceptable. In these cases,

MPC’s inherent robustness is not sufficient. Control theory research has developed

many ways for synthetic robustness [Bemporad and Morari, 1999], which means en-

hancing the performance, given a range of uncertainty. Different works are dedicated

to this task [Muñoz de la Peña, 2005; Löfberg, 2003; Batina, 2004], and solutions

are generally tailored to the specific problem at hand.

This thesis presents some new methods for synthetic robustness that have been

developed specifically for the operation of water systems when uncertainty lies not

within the controlled system but in the forecasted inflow. The thesis can be divided

in two parts. The first one treats a case where the uncertainty model was not defined,

where we show an innovative method to build up a distribution around the punctual

output of a deterministic hydrological model. This is the content of Chapter 2. The

second part contains a method to use the forecast in MPC when it comes in form of

an ensemble [Leutbecher and Palmer, 2008]. This is shown in Chapters 3 and 4.

of uncertainty [Watkins Jr and McKinney, 1997].
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Chapter 2

Predictive uncertainty by absolute errors dynamic

modelling

Setting up a stochastic optimal control problem requires a probabilistic hydrological

forecasts. Nevertheless, many existing hydrological models are deterministic and

provide point estimates of the variable of interest. Often, the model residual error is

assumed to be homoscedastic, however practical evidence shows that the hypothesis

usually does not hold.

We propose a simple and effective method to quantify predictive uncertainty of deter-

ministic hydrological models affected by heteroscedastic residual errors. It considers

the error variance as a hydrological process separate from that of the hydrological

forecast, and therefore predictable by an independent model. The variance model

is built up using time series of model residuals and, under some conditions on the

same residuals, it is applicable to any deterministic model. Tools for regression anal-

ysis applied to the time series of residual errors, or better their absolute values,

combined with physical considerations upon the hydrological features of the system,

can help identifying the most suitable input to the variance model and the most

parsimonious model structure, including dynamic structure if needed. The approach

has been called Dynamic Uncertainty Modelling By Regression on Absolute Errors

(DUMBRAE) and is demonstrated by application to two test cases, both affected

by heteroscedasticity but with a very different dynamics of uncertainty. Modeling

results and comparison with other approaches, i.e a constant, a cyclostationary, and

a static model of the variance, confirm the validity of the proposed method.

2.1 Introduction

Deterministic models have been widely used in hydrology for both forecasting and

simulation purpose. The assessment of their uncertainty is a major research issue. For

13
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managers and decision-makers, quantification of uncertainty associated to model es-

timates is a valuable information for both alarm and operational purposes. From the

modeler point of view, it provides indications for model diagnosis and improvement

[Gupta et al., 2008; Reichert and Mieleitner, 2009], and targeted data collection.

Theoretically, since the forecast value by a deterministic model will never be exact,

associating it with some kind of characterization of its error is the only way to assess

its quality [Weijs et al., 2010]. The lower the error the better the model: this is what

we implicitly do in practice every time we use a deterministic model, since we re-

gard the model prediction as the expected, or most probable value of the estimated

variable. Quantification of model uncertainty makes this assumption explicit and

provides the model user with a more formal and accurate evaluation of the residual

error.

Sources of uncertainty in deterministic models are often classified in measurement

errors, both in the input and output, uncertainty in the parameters and uncertainty

in the model structure, including selection of the input and the mathematical rela-

tion between input, state and outuput variables. Many approaches to uncertainty

assessment rely on such decomposition. One or more sources of uncertainty are given

a statistical description and uncertainty is propagated in the model via random sam-

pling and simulation, to obtain a sample or distribution of model predictions in place

of a single value (see for example Thyer et al. [2009]; Kuczera and Parent [1998];

Kavetski et al. [2006]). The application of these methods may require collecting

several information for the statistical characterization of the different uncertainty

sources (e.g. the accuracy of the measurement devices, the analysis of the error in-

duced by data pre-processing), and can be limited by the computational cost of

model simulation.

On the other hand, “model residual” approaches skip any distinction of uncertainty

sources and directly analyze the time series of model residuals to build a model of

the global predictive uncertainty, which is often sufficient for practical purposes. The

drawback of model residual approaches is that, while they do not require assump-

tions about the different sources of uncertainty, they usually do for the character-

ization of the model residual. Historically, and especially in model calibration, the

most common approach is to assume that the residual be an independent identi-

cally distributed process, usually zero-mean and Gaussian. The approach has been

widely criticized because most of these assumptions are violated in hydrological ap-

plications, especially autocorrelation and homoscedasticity of the model residuals

[Sorooshian and Dracup, 1980]. Many methods have been proposed either to ma-

nipulate model residuals so that they satisfy such assumptions (e.g. using Box-Cox
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transformations [Box et al., 1970], see [Kuczera and Parent, 1998; Bates and Camp-

bell, 2001], or the normal quantile transform as in Montanari and Brath [2004]) or

to relax some of these assumptions (e.g. Romanowicz et al. [2006]; Schaefli et al.

[2007]; Schoups and Vrugt [2010]).

We present here a novel “model residual” approach for estimating the predictive un-

certainty of deterministic hydrological models. In our approach, we will assume that

the residual error of the model be uncorrelated in time or that it can be described

by an autoregressive model with uncorrelated residual. The assumption is very use-

ful because the statistical description of the residual process reduces to providing

a sequence of marginal probability distribution functions (pdfs). We use the same

distribution type at all time steps while allowing for the residual variance to change

in time and reproduce the heteroscedastic behaviour that is often observed in hy-

drological time series. For several practical reasons that will be clarified throughout

the chapter, we will use Gaussian distributions, although the approach can be ex-

tended to other distributions if Gaussian proved to be unsatisfactory, provided that

they are symmetric. Under these hypotheses, the identification of the residual error

pdf is reduced to the estimation of the error variance (or standard deviation). The

latter can be a function of time (the season) or other hydro-meteorological inputs,

depending on the case study under exam.

The novelty of our approach is that we will not assume a priori the input variables of

the variance model nor the type of relation between these inputs and the variance,

but rather we will infer such information from data analysis and consideration of

the features of the hydrological system under exam. This is possible if one regards

the variance model identification as a regression analysis over the time series of the

model residual errors. Further, we will show that under the Gaussian assumption it

is possible (and numerically more efficient) to identify a model of the error standard

deviation from the time series of absolute errors, rather than a model of the variance

from the time series of squared errors. Another contribution of our work is that we

will show the effectiveness of introducing past absolute errors among the input of the

standard deviation model, which means that the error standard deviation is mod-

elled as a dynamic process. For all these reasons, we named the proposed approach

Dynamic Uncertainty Model By Regression on Absolute Error (DUMBRAE).

This chapter is organized as follows. In the following section, the DUMBRAE ap-

proach is fully described from the methodological standpoint. Then the issue of how

to evaluate the quality of an uncertainty model is discussed, from visual inspection

of the inferred confidence bounds to formal methods. Relying on these results we
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can demonstrate the effectiveness of the proposed approach through the application

to two case studies.

2.2 Methodology

We consider a deterministic model

ŷt = f(xt,λ) (2.1)

that provides the flow forecast ŷt as a function of several inputs collected in the

vector xt and a parameter set λ. Since the forecast is affected by multiple sources of

error, including measurement error in the input xt, error in the model parameters

λ and structure f(·), the actual flow will be given by

yt = ŷt + rt (2.2)

where rt is the model residual error. Equation (2.2) implicitly assumes that the model

output can be univocally split into two mutually exclusive components, deterministic

and random. This dichotomy is questionable (see discussion in Koutsoyiannis [2009])

but it is very useful from the operational standpoint because it allows one to separate

the identification of the hydrological model (2.1) and that of the uncertainty model,

and define one common strategy to uncertainty modelling that can be applied to

any pre-calibrated hydrological model independently from its structure.

The residual error rt can be described by its probability distribution function (pdf)

and the predictive uncertainty of model (2.1) is derived from such pdf. For instance,

confidence bounds can be obtained by adding the quantiles of the error pdf to the

flow forecast ŷt. The most common approach is to introduce some hypothesis about

the pdf shape, and identify the pdf parameters from the residual time series. Al-

ternatively, Solomatine and Shrestha [2009] propose a method to derive the error

quantiles for given degree of confidence (and ideally the entire error pdf) without

making any a priori assumption.

Traditionally, the residual error is assumed to be independent, identically distributed,

zero-mean and Gaussian, i.e. it is assumed that the error pdf be N(0, σ2) for all t.

The approach is often unsatisfactory since in hydrological time series all these as-

sumptions are rarely satisfied, and many works in the literature aim at relaxing some

of them.
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Violation of the assumption of independence means that the deterministic model

(2.1) produces systematic error, for instance because it neglects some of the processes

(snowmelt, evapotranspiration, ...) occurring in the system. However, when model

(2.1) is used in prediction mode, the problem can be easily overcome by modelling

the model residual rt as an autoregressive process of order q,

rt = α · vTt−1 + et = [α1, ..., αq] · [rt−1, ..., rt−q]T + et (2.3)

whose residual et satisfies the independence assumption provided that a sufficiently

large value of q is used. Identification of model (2.3) is straigthforward as ordinary

least squares can be used to estimate the parameters αi. Once model (2.3) is avail-

able, the flow forecast is corrected as

ŷ′t = ŷt + α · vTt−1 (2.4)

and its predictive uncertainty is given by projecting the pdf of et, which is indepen-

dent by construction.

Independence is a valuable property because it allows describing et by a marginal

distribution pt(·), independently of the error distribution at previous or following

time step, i.e.

et ∼ pt(·;ηt) t = 1, 2, ...

where ηt is the parameter vector for the distribution family pt(·). However, this

means that the distribution pt(·) must be identified and evaluated based on one

data only, since we have one observation per time step. Sometimes, the error his-

togram is used to infer the shape of the error pdf. However, this is not justified

if we assume that the pdf be different at each time step, because each datapoint

should be considered as an extraction from a different distribution. The QQ plot (or

probability plot, see section below) is a tool to assess the overall fit of a sample of

data e1, e2, ..., eN against a sample of different distributions p1, p2, ...pN , however it

can be used only after all the distributions have been identified. Therefore, in our

analysis we will assume a given distribution family for each time t, identify all the

distributions (i.e. estimate the parameters ηt for all t), and finally we will test our

choice a posteriori by means of the probability plot. With this approach, the most

flexible distribustion possible should be assumed so that the shape of the pdf is not

constrained a priori.

In the absence of other information, the error is assumed to be zero mean and to

follow the same distribution at all time steps, while its standard deviation σt is let
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vary in time, thus accounting for the heteroscedasticity observed in the error time

series,

et = σtẽt, ẽt ∼ p(·;η) (2.5)

In general, a sequence of random variables is said to be heteroscedastic if the ran-

dom variables have different variances. Regression analysis in the presence of het-

eroscedasticity has been widely studied in econometrics [Engle, 1982]. In the hy-

drological context, variability of the standard deviation σt is usually related to flow

conditions: the higher the flow, the higher the variance. For instance, Schaefli et al.

[2007] assume that the error distribution p(·) be Gaussian with zero mean and that

the standard deviation takes one out of two possible values corresponding to two

different hydrological condition, low or high flow. Schoups and Vrugt [2010] use a

Skew Exponential Power (SEP) density as error pdf p(·), and assume that the error

standard deviation σt be linearly related to the flow forecast ŷt, based on the evi-

dence that predictive uncertainty increases at higher flow.

In our approach we will demonstrate that the variability of the standard deviation

σt can be effectively related also to other hydrological inputs, not necessarily flow,

and we will provide a general method to infer what variables are most significant and

how to estimate their relation to σt. By application of our method to the proposed

case studies we will show that improving the model of the standard deviation can

significantely enhance the uncertainty model, even under simple assumptions about

the error pdf p(·) (e.g. Gaussian). In general, we will assume that σt be given by

some relation of the form

σt = g(zt,φ) (2.6)

where zt is a vector of suitable input variables, not necessarily flow but possibly also

other variables like, for instance, precipitation; and φ is a parameter vector.

The model identification thus encompasses (i) modelling the variance, i.e. identifying

relation (2.6); and (ii) estimating the (stationary) pdf p(·) appearing in (2.5). The

model identification criterion will be the maximization of the likelihood function L

which, under the independence assumption and equations (2.5),(2.6), takes up the

form

L( e | η,φ ) =
N∏
t=1

p

(
et
σt

;η

)
=

N∏
t=1

p

(
et

g(zt,φ)
;η

)
(2.7)

Notice that, when Gaussian distribution is used, the error pdf p(·) is fully described

by its mean and standard deviation and the parameter vector η disappears from

equation (2.7). On the other hand, the problem can be enlarged to encompass also
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the calibration of the original hydrological model (2.1), or (2.4). In this case, the

likelihood function becomes

L( e | η,φ,λ,α ) =
N∏
t=1

p

(
ȳt − f(xt,λ) −α · rTt

g(zt,φ)
;η

)
(2.8)

Notice, however, that Equation (2.8), requiring the past observed residuals rt, can

be used in real time forecasting mode only, which is the use that, in this thesis, we

are interested in. In the remaining of this chapter we will focus on the case when the

hydrological model has already been calibrated, and use Gaussian distribution as

the error pdf p(·). Under this assumption, the likelihood function is (2.7), where the

pdf parameter vector η is dropped. Then, the problem boils down to identifying the

standard deviation model (2.6), that is, selection of the input variables xt, choice

of the class function g(·) and estimation of the parameters φ. These topics will be

discussed in the following section.

2.2.1 Identification of the standard deviation model

In our approach we propose not to fix a priori the relation between the error standard

deviation and the hydrological inputs, but rather to infer it from data analysis and

consideration of the specific features of the case study under exam. This is possible

because the dynamics of σt is revealed by the time series of the residual error. In

fact, by definition the error variance σ2t is given by E[(et−µt)2] and thus, if the error

is zero mean, σ2t = E[e2t ]. Identifying the model of the variance σ2t can be viewed as

a regression analysis problem where the time series to be modelled is the time series

of squared errors.

However, modelling the time series of squared error can be difficult because the

operation of squaring emphasizes high values and increases the distance between

high and low errors, so that the resulting time series is difficult to model. If the

error pdf is Gaussian, it is possible to directly relate the standard deviation σt to the

absolute error |et|, which is a much smoother time series. In fact, under assumption

of symmetric distribution, it can be demonstrated that the standard deviation is

linearly proportional to the absolute error

σt = k E[|et|] (2.9)

where the proportionality coefficient equals k =
√

2π/2 in the case of Gaussian dis-

tribution (see Appendix for proof). Therefore we can directly identify model (2.6)

by regression analysis over time series of absolute error. Selection of the model input

zt can be based on analysis of the autocorrelation function between absolute error
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and candidate input variables like flow forecast, past observations of flow or meteo-

rological variables (precipitation, temperature, etc.). Other data analysis tools that

may prove useful for input selection include scatterplots, cluster analysis, mutual

information, etc. For a review of available methods for input variable selection and

their application in the hydrological context, see Bowden et al. [2005]. As it will be

shown in the application case studies, data analysis is also guided and supported by

the knowledge of the system characteristics and the model features.

Once the model input have been chosen, model identification requires choosing the

class function g(·) and parameter estimation. In this work, we will follow a parsimo-

nious approach and start by simple relations, e.g. linear, and move to more complex

ones only if the modelling results are not satisfactory.

As for parameter estimation, the problem is spontaneously formulated as maximiz-

ing the likelihood function (2.7). Notice that even if the error pdf p(·) is Gaussian

and the standard deviation model (2.6) is linear, both the likelihood function and its

logarithm are nonlinear in the parameters φ, which can make the maximum likeli-

hood approach computationally demanding. The problem is further complicated by

the fact that parameter values should be constrained to guarantee that the resulting

standard deviation be positive for all possible values of the input vector zt.

Alternatively, a more straightforward approach to parameter estimation is to min-

imize the mismatch between the output of model (2.6) and the observed absolute

error, e.g. using Euclidean distance

φ̂ = arg min
φ

N∑
t=1

(k |et| − g(zt,φ))2 (2.10)

The advantage is that when p(·) is Gaussian and g(·) is linear, the fast and efficient

linear least squares solution can be used. However, the criterion underlying the

solution (2.10) does not reflect the true modelling scope, which is to identify the

error pdf and not to interpolate the absolute error time series. Nonetheless, the

solution (2.10) can be effectively used as the initialization of the recursive nonlinear

optimization approach used to solve the maximum likelihood problem.

2.2.2 Model evaluation

The identified model of the standard deviation will be evaluated in terms of like-

lihood value L, or equivalently, negative log-likelihood − log(L), evaluated over a

validation dataset different from the one used for model calibration. The use of L
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as an evaluation indicator is theoretically justified by the likelihood principle, which

states that, for given model structure, all information that the data contains about

the model parameters is in the likelihood function [Jaynes and Bretthorst, 2003].

Also, the likelihood is the only scoring rule which is unambiguous, local and proper

[Weijs et al., 2010]. Other evaluation indicators that will be used are the Akaike

Information Criterion AIC= 2nφ − log(L), which balances the model log-likelihood

and the model complexity, as measured by the number nφ of model parameters; and

the proportion of observations within the confidence limits (or prediction interval

coverage probability, PICP [Solomatine and Shrestha, 2009]).

A closer insight into the behaviour of the standard deviation model will be given

by visual inspection of the associated confidence bound, as well as the QQ plot.

The QQ plot, or probability plot [Laio and Tamea, 2007; Thyer et al., 2009], is a

graphical tool for assessing the goodness-of-fit of a sample of probability distributions

against a sample of data. In our application, since the error is assumed additive and

Gaussian, the conditional probability distribution of the flow forecast ŷ′t is Gaussian

with standard deviation equal to the error standard deviation computed by model

(2.6). The goodness-of-fit of such distribution cannot be assessed by conventional

statistical tests, because only one extraction from that distribution is available, i.e.

the measurement yt. However, from the probability integral transform it follows

that if the estimated cumulative distribution function (cdf) F̂yt(·) of yt coincides

with the true cdf F 0
yt(·), then the value ut = F̂yt(yt) is an extraction from a uniform

distribution over [0, 1]. Since this is true for any t = 1, ..., N , N being the number

of flow measurements, one can evaluate the goodness-of-fit of the N cdfs F̂yt(·)
by checking if U = {u1, ..., uN} is a sample of mutually independent, uniformly

distributed observations. Independence of the sample can be checked by looking at

the autocorrelation function. As for the uniformity hypothesis, we compute the value

of the empirical cdf of ut as F 0
ut = Rt/N , where Rt is the number of elements in U

lower than ut, and compare it with the value of the uniform cdf, u0t = F 0
ut(ut) = ut.

2.3 Application to the simulation model of Rhone River,

Switzerland

Rhone River is located in a high mountainous catchment, where the hydrological

regime is strongly affected by glacier and snowmelt, with peak flows in summer (July-

August) and a low flow period in winter (February-March). The simulated discharge

is generated using a semi-lumped conceptual glacio-hydrological model, described

in details in Schaefli et al. [2005]. The model has two levels of discretization. The
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first one distinguishes between catchment areas covered and not covered by ice.

Accumulation and melting of snow and ice in the ice-covered area are modelled by

two parallel linear reservoirs. The not-covered area is modelled by a linear reservoir

for the slow contribution of the soil underground water and a nonlinear one for the

direct runoff. The second level of discretization is among a set of elevation bands:

runoff discharge is computed separately for each band and then aggregated. No

routing among the components of the model is considered because the runoff delay

is much smaller than the modeling time step, which is 24 hours. Time series for

model identification (precipitation, temperature and potential evapotranspiration)

cover the period from 1981 to 1984. Data from 1990 to 1994 are used for validation.

The error of this conceptual model is correlated in time, as already discussed in

Schaefli et al. [2007], and it can be described by a first order autoregressive model.

The residual error after adding the autoregressive component is

et = yt − ŷt − αrt−1 (2.11)

where yt is the measured runoff, ŷt is the hydrological model prediction at time t, and

rt−1 is the residual of the hydrological model at previous time step, rt−1 = yt−1−ŷt−1.

Figure 2.3 shows that although the residual et is independent from its previous

values, its squared value e2t have a significant autocorrelation. This is an evidence

of heteroscedasticity [Engle, 1982]. The absolute error |et| shows an even higher

autocorrelation. As anticipated, squaring the error reduces the smoothness and thus

the autocorrelation of the time series. For this reason we will focus on the absolute

error time series and use it to derive a model of the error standard deviation.

2.3.1 Model identification

Potential inputs of the standard deviation model are all the inputs and the output of

the hydrological model, i.e. precipitation pt, temperature Tt and runoff forecast ŷt, as

well as the absolute value of the last observed residual |et−1| and, since temperature

mainly affects the flow through snowmelt, temperature value when positive, Tt ·
H(Tt), where H(·) is the unit step function.

Table 2.1 reports the crosscorrelation value between different candidate input vari-

ables and the absolute error. It shows that the precipitation is weakly related with

the absolute value of the residual, whereas all the other inputs have a significative

correlation. Weak correlation between precipitation and error can be justified by

the fact that precipitation includes both snow and rain undistinguished. Predicted

runoff has a slightly higher correlation than the other variables.
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Figure 2.1: Autocorrelation of residual error et (white circles), squared error e2t (squares)

and absolute error |et| (black circles) for the Rhone River case study (calibration data set).

Following this data analysis, we selected as the input variable the lagged absolute

error, which accounts for the slow dynamics of the standard deviation; an exoge-

nous component identified in the predicted runoff ŷt; and a constant term, to avoid

too small variance values during low flow periods. According to the parsimonious

modelling approach, we started from a linear relation between these variables, while

relaxing the lag-one assumptions and considering also absolute error and flow fore-

cast values in previous time intervals. The model is thus an ARX (Auto-Regressive

eXogenous input) model and takes the following form:

σ̂t = a+

n∑
i=1

bi|et−i|+
m∑
i=1

ciŷt−i (2.12)

The model order n and m is chosen by trial-and-error. Parameters a, bi and ci are

estimated using criterion (2.10) because g(·) is linear and (2.10) becomes numerically

efficient. However, the optimization should be constrained such that σ̂t can take

up positive values only. If the domain of all inputs is real positive, as in this case,
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Table 2.1: Crosscorrelation value between different candidate input variables and the ab-

solute error (Rhone River, calibration period 1981-1984).

input

pt Tt Tt ·H(Tt) ŷt |et−1|
corr(input,|et|) 0.116 0.456 0.511 0.588 0.530

positivity of all the parameters is a sufficient condition for the positivity of the model

output. The calibration procedure thus starts by applying unconstrained linear least

squares and, if the solution does not satisfy the positivity constraint, uses such

solution as the starting point for an iterative constrained least-squares procedure

(lsqnonlin function in the Matlab Optimization Toolbox)

2.3.2 Model evaluation

The Dynamic Uncertainty Model By Regression on Absolute Error (DUMBRAE) of

equation (2.12) is here compared with a constant, a mixture of normal distributions

(here called two-mixed) and a periodic model. The constant model assumes that

the standard deviation of the prediction error be constant in time and equal to the

sample standard deviation. For this test case, this model was already recognized

as unsatisfactory by [Schaefli et al., 2007], who proposed (ibidem) a model mixture

of two normal distributions to treat heteroscedasticity using two different values of

the variance, one smaller variance for the more predictable low flow and one higher

variance for the high flow. The rule for switching from one to another is based

on some conditions on the predicted runoff. For a more complete benchmark we

also developed a simple periodic model that estimates the standard deviation as a

function of time and is identified using a Fourier series expanded until a (small)

finite number of harmonics. The model is described in details in appendix B.

Table 2.2 reports the values of the evaluation indicators over the calibration and

validation period by the DUMBRAE model (2.12) with n = 1 and m = 1, and the

three benchmarks. It shows that DUMBRAE is the best of the evaluated set, since

it has the minimum value of − log(L) and AIC, and the PICP closest to 0.95. As

expected the constant variance model is extremely poor. The periodic model proves

better over the calibration data set but in validation the negative log-likelihood goes

to infinity. A closer insight into data shows that the periodic model performs well

in many cases (this is also showed later in the QQ plot) but for two events that

fall in the tail of the estimated pdf and thus are associated with extremely small

probability value. This is because the periodic model follows the seasonal trend but
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Table 2.2: Comparison of different standard deviation models (Rhone River): nφ is the

number of model parameters; − log(L) is the negative log-likelihood; AIC is the Akaike

Information Criterion; PICP is the prediction interval coverage probability at level of con-

fidence α = 0.95.

Model nφ
− log(L) AIC PICP

cal val cal val cal val

Constant 1 6.02×103 3.34×103 10.9×103 6.02×103 0.946 0.940

Periodic 7 2.26×103 Inf 4.54×103 Inf 0.929 0.919

Two-Mixed 3 4.68×103 2.05×103 8.42×103 4.25×103 0.952 0.962

DUMBRAE 3 1.71×103 1.36×103 3.60×103 2.57×103 0.953 0.958

it does not use real-time information. DUMBRAE instead, even if traced by a simple

ARX relation, can dynamically adjust to the increase and decrease of the variance.

Figure 2.3.2 shows the 95% confidence interval in time of the four benchmark models

for the first year of the calibration period (1981). It can be seen that the periodic and

the DUMBRAE model have more or less the same trend, which follows relatively well

the observed values of the residuals (black points). The two-mixed and the constant

model provide an unnecessary large confidence band. The two-mixed model, having

only a binary configuration (high-low uncertainty), can only partially modulate the

variance. The constant variance model is completely inflexible, and the estimation

of its average value is dominated by few, large error values. Notice that because

the error distribution is assumed to be Gaussian and thus have an infinite support,

negative flows are given a non-zero probability and the lower quantile of the flow can

be negative. In principle this is not acceptable and may be a reason for abandoning

the Gaussian assumption. In practice, however, the problem may be overcome by

simply setting to zero the negative quantiles. In this application, the DUMBRAE

model did not produce any negative flow quantile over the calibration horizon nor the

validation horizon while all the other benchmark models did, especially the constant

model. The reason for this good property of DUMBRAE is that it reduces the

standard deviation in correspondence to small forecast values (see equation 2.12),

thus keeping the lower quantile very close to the forecast when the latter is close to

zero.

Finally, Figure 2.3) shows the QQ plots corresponding to the four standard deviation

models over the calibration and validation dataset. It shows that none of the em-

pirical cdfs, as estimated by DUMBRAE and the benchmark models, lays exactly

on the bisector, i.e. none of them coincides with the theoretical cdf, however the

empirical cdf corresponding to the periodic and DUMBRAE model are the closest
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Figure 2.2: Top panel: Rhone River discharge. Bottom panel: residual error (black dots)

and 95% confidence bounds based on the constant variance model (blue), two-mixed (red),

periodic (green), and DUMBRAE (magenta). First year (1981) of the calibration dataset.

ones. Notice that these two models exhibit very similar results in the QQ plot, while

having very different log-likelihood values. Specifically, the periodic model outper-

forms DUMBRAE in the QQ-plot over the validation dataset although it is definetly

outperformed in terms of log-likelihood (see Table 2). This is because the periodic

model strongly underestimates the variance in a small number of events, which are

not visible in the QQ plot but are heavily penalized in the likelihood score.

In conclusion, the analysis indicates that the DUMBRAE model (2.12), although

simple, provides an effective tool for estimating the standard deviation error. It

outperforms the other three benchmark models in terms of the log-likelihood, AIC

and PICP indicators; it provides an error cdf closer to the theoretical one than that

of the constant and two-mixed model, although the s-shaped QQ-plot indicates that

the standard deviation is sometimes overestimated; and it produces a confidence

interval that more closely adjusts to the variation in the model (absolute) error.
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Figure 2.3: QQ plot of the constant variance model (blue), two-mixed (red), periodic

(green), and DUMBRAE (magenta) for the Rhone River case study over the calibration

dataset (left) and validation data set (right).

2.4 Application to inflow forecasting in Lake Maggiore catchment

Lake Maggiore is a regulated lake at the border between Italy and Switzerland. The

lake catchment covers about 6600 km2, with 17% of the watershed area above 2000

m above sea level. Climate conditions are extremely variable, with higher precipita-

tion in autumn and spring and significant contribution from snowmelt in late spring

and summer. A flow forecasting model was developed to support real-time operation

of the lake [Pianosi and Ravazzani, 2010]. It is a data-driven, lumped model that

provides the total inflow ŷt to the lake in the next 24 hours, as a function of the data

available at the time of forecast: measured precipitation in the catchment (spatial

average), the observed inflow and the forecasting error in previous time intervals.

The model is composed of (i) an autoregressive component employing the logarithm

of the flow, so that the recession curve follows a more than exponential decay; (ii)

an exogenous component that weights the precipitation input by a periodic func-

tion estimated from data; and (iii) a moving average component based on previous

forecasting errors. Although it is a data driven model, its parameters can be given

a physically-sound interpretation.

The model was calibrated using time series of inflow and precipitation over the

period 1993-1997. The time series of residual error over the same period is used to

identify the error variance model, whereas data from 1998 to 2000 are used for model

validation.

Figure 2.4 shows the autocorrelation function of the model residuals. It can be seen

that while the residual error is almost uncorrelated, the squared error and the abso-

lute error are significantly autocorrelated, which is an evidence of heteroscedasticity
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Figure 2.4: Autocorrelation of residual error et (white circles), squared error e2t (squares)

and absolute error |et| (black circels) for the Lake Maggiore catchment case study (calibration

data set).

of the error process [Engle, 1982].

2.4.1 Model identification

Potential inputs of the standard deviation model are first searched among the hy-

drological model inputs, that is, precipitation, residual error and flow observation in

previous time intervals.

Figure 2.4.1 shows the correlation between past precipitation pt−k and error et (white

circles), squared error e2t (squares) and absolute error |et| (black circles). It can

be noticed that the error is highly correlated with precipitation in the same time

interval (k = 0), because the forecasting error is often due to a simultaneous and

thus unpredictable precipitation event, while the correlation with past precipitation

records (k > 0) is negligible, which confirms that all the information available at

the time of forecast is correctly exploited by the hydrological model. However, the
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Figure 2.5: Cross-correlation between past precipitation pt−k and error et (white circles),

squared error e2t (squares) and absolute error |et| (black circles) for the Lake Maggiore

catchment case study (calibration data set).

correlation between precipitation and squared error is high also for k > 0. This means

that while the error value does not depend on past precipitation, the error variance

does; or, in physically-sound terms, uncertainty in the inflow forecast increases after

rainfall events. Finally, the correlation between precipitation and the absolute error

is even stronger than between precipitation and squared error. Therefore, it can

be expected that identifying the standard deviation model from time series of the

absolute error be easier than identifying the variance model from squared errors.

Since the correlation of the absolute error |et| with predicted flow ŷt (0.44) and

with observed flow in the previous time interval yt−1 (0.35) are both lower than

correlation with the observed precipitation, the latter will be used as the exogenous

input of the standard deviation model, which takes the form

σ̂t = a+

n∑
i=1

bi|et−i|+
m∑
i=1

cipt−i (2.13)
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Table 2.3: Comparison of different standard deviation models (Lake Maggiore catchment):

nφ is the number of model parameters; − log(L) is the negative log-likelihood; AIC is the

Akaike Information Criterion; PICP is the prediction interval coverage probability at level

of confidence α = 0.95.

Model nφ
− log(L) AIC PICP

cal val cal val cal val

Constant 1 12.1×103 7.32×103 24.1×103 14.6×103 0.965 0.959

Periodic 5 11.7×103 7.20×103 24.0×103 14.3×103 0.921 0.911

State dependent 2 11.8×103 7.18×103 23.6×103 14.4×103 0.942 0.940

DUMBRAE 5 10.8×103 6.60×103 21.8×103 13.4×103 0.945 0.923

Following the uncertainty decomposition based on hydrological causes and presented

by Götzinger and Bardossy [2008], the first two components (constant and autore-

gressive) in (2.13) can be interpreted as uncertainty due to the process description,

whereas the third component is due to the precipitation input. Model calibration

follows the same approach as described in the Rhone River application.

2.4.2 Model Evaluation

Just as in the Rhone River application, a constant and a periodic model of the

standard deviation will be used as benchmarks. Furthermore, a state dependent

model, as used for instance by Thyer et al. [2009]; Schoups and Vrugt [2010], will

be assessed. It assumes that the standard deviation is linearly proportional to the

inflow forecast, i.e.

σ̂t = a+ b ŷt

Table 2.4.2 reports the evaluation indicator values by these three models and the

DUMBRAE model (2.13) with n = 2 and m = 2. It shows that DUMBRAE has

the lowest negative log-likelihood and thus the highest skill in reproducing the error

probability. The AIC value is also minimum and the PICP is quite close to the the-

oretical value of 0.95 (even if the constant and state dependent model are slightly

better over the validation dataset). Contrary to the Rhone river application, the

lower quantile of the flow estimated by DUMBRAE is negative in correpondence to

some heavy rainfall events that produce a very high standard deviation values (see

equation 2.13), even if the frequency of such negative values is lower than with the

constant and periodic model. As discussed in the previous section, this is not a prob-

lem for operational purposes (it will be sufficient to replace negative flow quantiles

by zero) but it is a conceptual weakness in the proposed approach. Nonetheless, our
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opinion is that for application-oriented scopes this weakness is acceptable since, on

the other hand, the Gaussian assumption provides several important computational

advantages (the variance model can be identified separately from the mean; time

series of absolute errors can be used in place of squared errors thanks to equation

2.9).
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Figure 2.6: Top panel: Daily inflow to lake Maggiore. Bottom panel: residual error (black

dots) and 95% confidence bounds based on the constant variance model (blue), state-

dependent (dashed red), periodic (green), and DUMBRAE (magenta). Days 200-360 in the

calibration dataset.

Figure 2.4.2 compares the 95% confidence intervals of the flow based on the DUM-

BRAE model and the three benchmark standard deviation models. It shows that

if a constant standard deviation is used, the confidence interval (blue lines) is too

large for low flow events and too narrow for flood events. Since floods generally

occur in autumn, the periodic model properly produces a larger standard deviation

value in that period, and thus a wider confidence interval (green lines). Still, the

periodic model is not completely satisfactory since it provides an average assess-

ment of the seasonal uncertainty but it cannot distinguish high uncertainty periods
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caused by precipitation events. The confidence intervals based on DUMBRAE and

the state dependent model (red and magenta lines) are narrow in correspondence

to low flow values and wider in correspondence to floods, when unpredictability in-

creases. However, an important difference in behaviour between those two models

can be detected observing their trends during the recession process, i.e. from day

290 to day 300 in Figure 2.4.2. Forecasting errors in this phase are small because

the hydrological model can accurately reproduce the flow dynamics in the recession

phase. The DUMBRAE model can quickly adapt to this situation and properly re-

duce the confidence intervals because it is updated by information on absolute errors

in previous time intervals (see equation (2.13)). The state dependent model, instead,

by simply relating the standard deviation to the flow forecast, cannot distinguish

if the high flow is due to an ongoing precipitation event (high uncertainty) or to a

recession process (low uncertainty), and in this latter case overestimates the confi-

dence interval. From a model diagnostics perspective, DUMBRAE indicates that the

forecast error is mainly related to precipitation input, suggesting that either the pre-

cipitation observations (or their spatial aggregation) is a major source of uncertainty

or that the hydrological model is not adequate in reproducing the fast response of

the catchment to rainfall events (while properly reproducing the recession curve).
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Figure 2.7: QQ plot of the constant variance model (blue), state-dependent (red), periodic

(green), and DUMBRAE (magenta) for the lake Maggiore catchment over the calibration

dataset (left) and validation data set (right).

Finally, Figure 2.7 reports the QQ plot generated by the four standard deviation

models over the calibration and validation dataset. The line generated by the DUM-

BRAE model (magenta) is very close to the bisector (black line), while the curve of

the other standard deviation models is s-shaped, which means that the zt points are

concentrated towards the center of the interval [0, 1]. This indicates that the confi-

dence interval is frequently wider than needed, or in other terms, that the standard
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deviation is often overestimated.

2.5 Conclusion

We have presented here a method for identifying a simple but effective uncer-

tainty model to be associated with the predictions of a hydrological model with

heteroscedastic errors. The method is very general and only requires the time series

of residual errors over a historical period as an input, regardless of the structure of

the hydrological model. However, it relies on the assumption that such error be inde-

pendent and zero mean, and thus an appropriate transformation of the hydrological

model output may be required to meet this condition. Also, we show that under the

further assumption that the residual error is Gaussian, the error standard deviation

is linearly proportional to the error absolute value, which means that modelling the

error standard deviation boils down into a regression analysis of the absolute error

time series. Based on these considerations, we show that a proper data analysis com-

bined with physical considerations on the case study at hand can help identifying

the most suitable input to the standard deviation model and the most parsimonious

model structure. The approach has been called Dynamic Uncertainty Modelling By

Regression on Absolute Errors (DUMBRAE).

We also provide some theoretical background and practical approaches for model

identification, based on the maximum likelihood principle. The effectiveness of the

method was demonstrated by application to two case studies and comparison with

other approaches presented in the literature for modelling the error variance, as well

as a simple constant and periodic model. Modelling results are assessed in terms

of the formal likelihood measure, plus other evaluation indicators and a graphical

tool, the QQ plot, which provides more insight about the estimated probability dis-

tribution. The analysis shows that the proposed method can effectively reproduce

the heteroscedasticity of the residual errors. A suitable choice of the inputs to the

standard deviation model can improve the model accuracy and compensate for the

simplifying assumption of Gaussian errors. Using precipitation measurements and

past observations of the error itself, and not only the flow forecast as usually done

in the literature, significantly enhance the uncertainty description especially in the

recession phase of the hydrograph. Finally, although DUMBRAE is an application-

oriented approach and it was originally conceived for the practical goal of effectively

associating prediction bounds to flow forecasts, it can also contribute to model di-

agnostics. In fact, as demonstrated in the proposed case studies (especially the lake

Maggiore catchment), the analysis of the time series of residual errors help to iden-

tify what variables and processes mostly contribute to the forecasting error, and
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thus what components of the hydrological model should be improved. One limita-

tion of the proposed approach is that it depends on the a priori assumption of an

adequate function family for the error standard deviation model. Further research

will also concentrate on extending the approach to other more flexible probability

distribution like for instance Gamma distributions.



Chapter 3

Tree-Based Model Predictive Control for Short-Term

Management of Reservoir Systems using Ensemble

Forecasts

Model Predictive Control (MPC) is a method for controlling complex, constrained

dynamic systems. Applied to water systems operations, MPC provides integrated,

optimal, and proactive management, when hydrological forecasts are available. Notwith-

standing these properties, uncertainties can jeopardize MPC reliability. In water re-

sources systems, the main uncertainty is generally introduced by the hydrological

forecast. To communicate the forecast uncertainty, meteorological and hydrological

forecasts are often produced in the form of ensembles, i.e. a set of possible future

trajectories of the system.

We present an adaptive control method, called Tree-Based MPC (TB-MPC), which

is able to exploit the information contained in an ensemble forecast. TB-MPC intro-

duces the feedback mechanism of closed-loop in the MPC control scheme limited to

the uncertainty covered by the ensemble, reducing the sensitivity to wrong forecasts

and enhancing the control performances. In TB-MPC, ensemble members branch out

when they diverge from each other. A tree, made through repeated out-branching,

is used to set up a Multistage Stochastic Programming (MSP) problem, finding a

different optimal control strategy for each branch. To show its potential advantages,

TB-MPC is applied to the operational management of the Salto Grande reservoir, lo-

cated at the border between Argentina and Uruguay, and compared to other control

methods.

3.1 Introduction

Management of water systems can be considered as an optimal control problem

[Labadie, 2004; Soncini-Sessa et al., 2007; Castelletti et al., 2008]. Optimal control

35
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problem can be solved using dynamic programming (DP) [Bellman and Dreyfus,

1966], which is an off-line method, resulting in a series of optimal control laws.

Drawback of DP is that it is generally difficult to solve, running into the so-called

“curse of dimensionality” [Bellman and Dreyfus, 1966]. In water management, DP

has been used mainly for reservoir management, and yet for systems made of a small

number of reservoirs [Stedinger et al., 1984; Trezos and Yeh, 1987]. Much research

effort has been devoted to bypass the curse of dimensionality by some approximations

in the solving methods or in the model of the physical system. See, for example,

[Pereira and Pinto, 1991; Rotting and Gjelsvik, 1992; Faber and Stedinger, 2001;

Castelletti et al., 2010; Turgeon, 1980; Castelletti et al., 2007; Tilmant et al., 2008].

Model Predictive Control is another way to solve the control problem, alternative

to off-line solutions solved with DP. MPC resulted effective for optimal centralized

control of complex, constrained systems [Maciejowski, 2002], and it is a promising

technology for water systems [van Overloop, 2006; Raso and van Overloop, 2011].

Differently from DP, where a optimal control law is calculated off-line for all states, in

MPC the current control action is obtained by solving on-line a finite horizon open-

loop optimal control problem, where the initial state is is the current state of the

system being controlled. Key elements of MPC are [Morari et al., 1999]: (1) a model

of the physical process to predict future trajectories of the controlled variables over

a finite horizon, (2) the calculation of a control sequence that optimizes an objective

function, and (3) a receding horizon strategy. The receding horizon strategy means

that, at each time instant, the first signal of the control sequence is applied and

the horizon is shifted ahead. In MPC, constraints on inputs, states and outputs are

explicitly considered [Schwanenberg et al., 2011a].

Solving the open-loop optimal control requires a mathematical programming prob-

lem, much less computationally costly than DP. For this reason, MPC is best fitted

for all cases where an off-line control law is difficult or even impossible to com-

pute [Mayne et al., 2000]. For water systems, this means that MPC can enlarge

the controlled system beyond reservoirs only, such as including the routing along a

downstream river [Ficch̀ı et al., 2013], or combining water quantity and quality [Xu

et al., 2010, 2013].

In MPC, available disturbance forecasts can be directly used in the control scheme,

bringing along advantages and threats. The advantage is that the control strategy

becomes proactive [Zavala et al., 2009]; before the realization of a forecasted dis-

turbance, the control sequences set the system to a state optimal to accommodate

it, for example by lowering the water level in a reservoir before an expected flood

event. The threat is that use of forecasts can jeopardize the control robustness [Be-
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mporad and Morari, 1999]. Forecasts are in fact the output of a model generally

affected by large uncertainties, whereas MPC is a deterministic controller. For this

reason, a deterministic open-loop proactive controller runs the risk of taking action

in anticipation of an expected disturbance that, eventually, will not occur.

Even MPC is a deterministic open-loop control problem, the on-line iterations ensure

the feedback mechanism to MPC, guaranteeing an ”inherent robustness” [Mayne

et al., 2000]. For some systems, solving the nominal control problem produces sat-

isfactory results. Other systems, specifically when their characteristics depart from

certainty equivalence [Philbrick and Kitanidis, 1999; Van de Water and Willems,

1981], are more sensitive to wrong controls. The more a system is away from the

certainty equivalence condition, the more the explicit recognition and treatment of

uncertainty has an advantage on deterministic solutions [Weijs et al., 2007].

In open water systems, uncertainty is often related to the difficulty of producing

good meteorological and hydrological forecasts. Different studies show how stream-

flow forecast uncertainty can affect water systems operation [Zhao et al., 2011; Pi-

anosi and Soncini-Sessa, 2009]. To communicate forecast uncertainty, meteorological

and hydrological centers produce ensemble forecasts (EF). An ensemble is a set of

representative trajectories of the possible future outputs of the meteorological or

hydrological system [Gneiting and Raftery, 2005].

EFs have been employed in optimal control schemes in various recent applications,

such as Multiple Model Predictive Control (MMPC) for open water systems [van

Overloop et al., 2008], or equivalent approaches applied on storehouses [Doeswijk

et al., 2006], and on energy systems [Lukasse et al., 2006; Zavala et al., 2009]. MMPC,

and these equivalent methods, find the optimal control series using the entire ensem-

ble in a stochastic optimization, and are apparently more robust than deterministic

MPC. However MMPC still solves an open-loop optimal control problem; the control

problem is set as if the entire control sequence is to be applied. Open-loop scheme

does not consider that, in the next decisions instants, it will be possible to adjust

the control according to the ongoing scenario using the last up-to-date information.

In fact, future observations will reveal which ensemble members can be excluded

and which ones can still happen, hence the controller will be able to adapt its con-

trol strategy accordingly. In this sense, MMPC, even if stochastic, is non-adaptive

[Bertsekas, 1976].

MMPC, not considering that new information will be available in the next future,

overestimates the uncertainty, and results in an over-conservative control policy. In

addition, there is a larger risk of getting infeasible solutions in the presence of state

constraints. Closed-loop control schemes add robustness, but are more computation-
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ally intensive. In our approach we limit the closed-loop response to the most relevant

uncertainty. The algorithm we propose, called Tree-Based Model Predictive Control

(TB-MPC), sets a closed loop optimal control problem limited to EF uncertainty.

TB-MPC embeds the ensemble data in a Multistage Stochastic Programming (MSP)

problem. MSP is the proper problem formulation when decisions are interdependent

and some of them can be taken after uncertainty is resolved [Birge and Louveaux,

1997].

MSP has been the subject of many studies [Dupačová et al., 2003; Birge and Lou-

veaux, 1997], even specific to MPC and control of dynamic systems, [Muñoz de la

Peña et al., 2005], or to water management [Watkins and Wei, 2004; Watkins Jr

et al., 2000; Pallottino et al., 2005; Escudero, 2000], yet its major practical draw-

back is its intractability. In MSP in fact, every time some uncertainty is resolved, the

system dimension is multiplied by the number of possible outcomes of the uncertain

variable. Assuming a system multiplication at every time step, the number of vari-

ables increases exponentially with the horizon length. For its prohibitive complexity,

Mayne et al. [2000] consider MSP for control of dynamic systems as “conceptual

rather than practical” method. TB-MPC, instead, sets up a MSP problem limiting

the number of “branches” in the tree, still capturing the major uncertainties.

3.2 Methodology

In MPC scheme, at each control instant t0, the open-loop optimal control problem

(3.1) is solved in real time.

min
{ut}ht=1

h−1∑
t=1

gt(xt, ut, dt) + gh(xh, uh, dh) (3.1a)

xt = ft(xt−1, ut, dt) (3.1b)

c(xt, ut) ≤ 0 (3.1c)

Where t, the time index, goes from 1 to the final time step of the control horizon,

h; gt is the time step cost function, gh the final penalty that sums up all the future

costs beyond the control horizon, xt, ut and dt, vectors of appropriate dimension,

are respectively the state, control, and disturbance at time t, f is the process model,

and c(·) the inequality constraints present in the system. The initial conditions (x0)

and the series of deterministic disturbances (dt ∀t) are given.

MPC solves Problem (3.1) at each control time step. In MPC, the argument of the

optimization problem is the control series {ut}ht=1, that is a single control strategy.
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Instead, in TB-MPC, the argument of the optimization problem is a “control tree”.

A control tree is a larger space than the control series. Using a tree, the optimal

control problem in TB-MPC takes explicitly into account that the control can change

along the control horizon dependently on the occurring ensemble member, finding a

different optimal control strategy for each “branch”.

In TB-MPC, ensemble data are used to generate a tree structure, then the tree and

the ensemble are used in the optimization algorithm. Tree structure generation and

optimal control are two separate problems. We introduce the tree in (3.2.1), then,

in (3.2.2), we show how to use the tree and the ensemble in TB-MPC.

3.2.1 From ensemble to tree

An EF consists of different trajectories of the possible future outputs of a mete-

orological or hydrological model. EF typically refers to meteorological predictions,

where trajectories are generated running the model n times, under different initial

conditions or different numerical representations of the atmosphere, accounting for

the major sources of forecast uncertainty [Gneiting and Raftery, 2005]. However, we

extend the definition of EF to include also hydrological forecasts, that are generally

called Ensemble Streamflow Prediction (ESP) [Cloke and Pappenberger, 2009; Day,

1985; Schaake and Larson, 1998; Faber and Stedinger, 2001]. In our terminology,

ESP is just a subclass of EF.

Generally, the ensemble trajectories have small differences at the initial stage of

the forecast, and tend to diverge in time. In the EF representation of uncertainty,

randomness is among trajectories, but not within them. The ensemble trajectories

are dt,z, where t ∈ {1, 2, ..., h} is the time index, and z is the ensemble member index,

outcome of the stochastic variable z ∈ Z = {1, 2, . . . , n}. The ensemble dimension n

is generally a number between 5 and 100. Each ensemble member z has an assigned

probability p(z) ≥ 0, such that
∑n

z=1 p(z) = 1. Members are generally equiprobable.

In this case, z’s distribution is uniform, and p(z) = 1/n,∀z.

While an ensemble is simply a collection of possible trajectories, a tree specifies

when these trajectories diverge from each other. In a tree, at the initial stage t = 1,

all trajectories are possible. At any branching point the sample space of possible

ensemble members splits in two subsets. A branching point is placed where trajecto-

ries diverge, indicating the moment when uncertainty on the occurring sub-branch

is going to be resolved, or in other words, the moment in which it will be clear which

sub-branch is going to occur. From this instant onwards, these subsets are mutually

exclusive, i.e. the occurrence of one excludes the occurrence of the other.
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The most compact way to define a tree structure is assigning a parent P (·) and a

branching point B(·) to each ensemble member, [Raso et al., 2012b], i.e.:

P (z), B(z) ∀z (3.2)

B(z) and P (z) define respectively the time on the forecast horizon and the member

from which member z branches out.

Generating a proper tree structure is a problem separate and prior to the optimal

control problem. Stive [2011] shows that the tree structure has a strong influence on

the control performance, stressing the importance of the tree generation problem.

Existing methods to build up a tree from complete scenarios include: [Šutienė et al.,

2010], presenting an empirical method to bundle scenarios based on the k-means

technique, [Growe-Kuska et al., 2003], showing an algorithm based on transporta-

tion metrics in which the problem is formulated as a minimal mass transportation

problem, and [Raso et al., 2012b], introducing an approach that takes into account

the available information along the forecasting horizon.

The tree structure influences the control performances. A correct tree structure

should neither overestimate nor underestimate the capacity to resolve uncertainty

along the control horizon. In the extreme case, a tree is made of a fan of indi-

vidual scenarios, as in [Dupačová et al., 2003]. Such a tree structure implies that

uncertainty is completely resolved already at the second time step. This, in general,

overestimates the future capacity of resolving uncertainty. At the other opposite ex-

treme, a tree without any out-branching, equivalent to the MMPC control problem,

assumes no expected uncertainty resolution, hence overestimating the total uncer-

tainty. A proper tree structure is likely to lie between these two extremes.

The scenario tree nodal partition matrix, M(t, z) [Dupačová et al., 2003]. is a differ-

ent way to represent the tree structure. Although less concise than (3.2), M provides

the necessary labeling scheme to set up the MSP problem. M can be obtained from

(3.2), and viceversa, as described in Equation (3.3).

M(t, i) = M(t, j) when t < B(i), P (i) = j; i, j = 1, . . . , n (3.3)

The matrix M has dimension h× n. As explanatory example, the same simple tree

(having h = 5 and n = 3) is shown in Figure 3.2.1 and defined in (3.4), using both

M and (3.2).
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M =

1 2 3 4 5

1 2 6 7 8

1 2 6 7 9


T

←→
z 1 2 3

P(z) 1 1 2

B(z) 1 3 5

(3.4)

Figure 3.1: Graphical representation of the tree defined in (3.4)

3.2.2 From tree to optimal control

Consider an ensemble member and its parent. TB-MPC finds two different control

strategies from the branching point onwards. Controls after the branching points

can adapt to the occurring ensemble member, and improve. In dynamic systems,

each state xt depends on all the controls up to t. Controls ut at different time steps

t are thus interdependent. For this reason, controls before the branching point also

improve, including the first one {ut}t=1 that, coherently with the receding horizon

approach, is eventually applied to the real system.

At the decision instant t0, if the controller knew the occurring ensemble member z,

it could set the optimal control conditional to this information, i.e. find the optimal

control strategy ut using {dt,z}ht=1 as disturbances. But, at instant t0, z is a stochastic

variable, outcome of Z, and the best that the controller can do is to weigh the effects

of dt,z by their probability p(z). Along the control horizon, however, direct or indirect

observations of dt will become available, giving information about which z is actually

occurring [Raso et al., 2012b]. The feedback on which occurring scenario is occurring

can be used to adapt the control strategy to it. From the instant that the controller

will be able to distinguish z as the occurring scenario, it will find a control strategy

optimal to z only. These moments along the control horizon are marked by the

branching points.

The branching point B(z) identifies when z is distinguishable from its parent P (z).

For t < B(z), both z and P (z) are possible outcome of Z, thus the control strategy

from t = 1 to B(z) is found by weighting the effects of {dt,z}B(z)
t=1 by p(z). After the
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branching point, from t = B(z) to the end of the control horizon h, the controller is

free to take different control strategies for z and P (z).

The key idea of TB-MPC is to consider a different control strategy for each ensemble

member (or set of them), to be applied from the moment that this ensemble member

(or set) branches out. This is expressed in Equation (3.5), in which for different

ensemble members, i and j, up to their branching points, the controls must be the

same.

ut,i = ut,j when

P (i) = j

t < B(i)
i, j = 1, . . . , n (3.5)

Equation (3.5) translates the non-anticipativity condition, saying that controls should

not depend on the outcome of stochastic variables that have not been extracted yet

[Birge and Louveaux, 1997].

The non-anticipative condition, as expressed in Equation (3.5), is implemented in

TB-MPC by enlarging the control set, using M. The optimal control problem for

TB-MPC is defined in (3.6).

min
uM(t,z)

n∑
z=1

p(z)

[
h−1∑
t=1

gt(xt,z, uM(t,z), dt,z) + gh(xh,z, uh,z, dh,z)

]
(3.6a)

xt,z = ft(xt−1,z, uM(t,z), dt,z) (3.6b)

c(xt,z, uM(t,z)) ≤ 0 (3.6c)

where uM(z,t) is the control space, a matrix of dimension m × Nu. m is defined as

the largest value of M, and Nu is the control dimension. In the example tree of (3.4)

and when Nu = 1, M is a 9× 1 vector.

Matrix M(t, z) provides the ”address” (i.e. the row) in uM , given t and z. Before a

branching point, for different z’s, M gives the same address, thus the same control

value, which is the non-anticipativity condition already expressed in Equation (3.5).

Consider, as an example, a member z and its parent P (z). For t < B(z), when

it is not know which member will happen, the same control must find an optimal

compromise between the effects of z and P (z), weighted by their probability, p(z)

and p(P (z)). After the branching point, Matrix M returns a different address for

different z’s, thus different control values. In this way, M takes into account the

future capacity to change the control strategy depending on the occurring sub-

branch.
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The first control is to be implemented to the real system, thus it must be unique.

Imposing the condition that branching points lay only from the next time step

onwards (B(z) > 1 ∀z) guarantees their uniqueness. On M, this condition implies

that on the first columns all rows have the same value.

M(i, t) = M(j, t) ∀i, j ∈ Z; t = 1 (3.7)

The future possibility of changing control strategy along the control horizon implies

a larger control space; the degrees of freedom in TB-MPC problem is determined by

the tree structure, but uM’s dimension is never smaller than in deterministic MPC,

being m ≥ h. The larger dimension of the optimization problem influences the com-

putational complexity of TB-MPC. It is difficult to draw general conclusions on the

computational burden, which depends on a large number of elements. Nonetheless,

it has been shown that, for the interior point method, the complexity has a polyno-

mial growth with respect to the number of variables [Forsgren et al., 2002], which is

a rather benign condition. Moreover, to speed up the solving time, TB-MPC can be

easily parallelized, as shown in [Maestre et al., 2012a,b]. Some more empirical data

about the computational time are presented in section (3.3.3).

3.3 Application

TB-MPC is applied for the operation of Salto Grande, a hydropower reservoir on the

Uruguay River, at the border between Uruguay and Argentina. The reservoir extends

for 800 km2 and the storage volume is about 5.5 × 109m3. The catchment area is

approximately 240.000 km2 and covers parts of Argentina, Brazil and Uruguay. The

average inflow is about 4700 m3/s and the installed capacity is 1890 MW .

Section (3.3.1) describes the control problem. Section (3.3.2) shows how to generate

the ensemble and the tree. Section (3.3.3) describes the control method against which

TB-MPC is compared and the results.

3.3.1 Controlled system and objectives

The controlled reservoir is modeled by a (discrete time) mass balance equation

xt = xt−1 + ∆t ·
(
dint − uturbt − uspillt

)
(3.8)

Where the state x is the reservoir volume, the disturbance din is the hydrological

inflow, and uturb and uspill are the controlled releases from the turbines and the
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spillways. The controlled system is made of one state, one disturbances and two

controls. The control time step ∆t is six hours. The inflow to the reservoir is the

disturbance obtained from the hydrological model and described in section (3.3.2).

Evaporation and other flows are neglected.

The water level can be obtained from the volume using the storage curve A(·) as in

Equation (3.9).

hforebayt = A (xt) (3.9)

The control uturbt and uspillt are constrained according to inequalities (3.10).

0 ≤ uturbt ≤ uturb,max
t (3.10a)

0 ≤ uspillt ≤ uspill,max
t (3.10b)

where uturb,max
t and uspill,max

t are the maximum release through the turbines and the

spillways. These values depend on the water level h according to their rating curves

R as in Equations (3.11).

uturb,max
t = R1

(
hforebayt − htailwatert

)
(3.11a)

uspill,max
t = R2

(
hforebayt

)
(3.11b)

htailwatert+1 = R−13

(
uoutt

)
(3.11c)

htailwatert is the tailwater elevation, downstream of the reservoir. Equations R’s are

static, i.e. they do not take into account unsteady conditions. Nonetheless, the given

accuracy is sufficient for the purposes of this study.

The objective of the reservoir management, as expressed by the reservoir manager,

can be phrased as:

Maximizing energy production and avoiding upstream and downstream

floods.

In addition, a minimum flow must be maintained for environmental requirements.

Table 3.3.1 shows the objectives included in the optimization problem. Referring to

the points of Table 3.3.1, points 1 and 3 penalize the exceedings of the upstream

flood threshold level (35 m) or emptying of the reservoir (water level under 30 m).

Points 2 and 4 are intended to maximize the energy production by maximizing

the water level in the reservoir and minimizing the spillage. This indirect way of

formulating the energy production maximization has the advantage of offering closed

loop stability [Bemporad and Morari, 1999] without requiring a cost-to-go function

gh(·), which is difficult to define. Points 5 and 6 maintain the downstream flow
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i Sub-objective Coefficient [wi] Formula

1 Flood upstream 100
[
max

(
hsaltot − 35.0, 0

)]2
2 Energy production 1

[
min

(
hsaltot − 35, 0

)]2
3 Resource deployment 5

[
min

(
hsaltot − 30.0, 0

)]2
4 Energy production 5x10E-4

[
uspillt

]2
5 Flood downstream 10E-4

[
max

(
utott − 20.000, 0

)]2
6 Environment 10E-4

[
min

(
utott − 500, 0

)]2
7 Wear and tear of structures 5x10E-7

[
uspillt − uspillt−1

]2
8 Wear and tear of structures 5x10E-7

[
uturbt − uturbt−1

]2
Table 3.1: Sub-objectives that make up the total cost function

between the minimum environmental requirements (500 m3/s) and the flooding

threshold level (20,000 m3/s). Points 7 and 8 smoothen the control trajectories to

avoid continuous and rapid changes. All these sub-objectives i, considered for the

entire control horizon h, are weighted by their weight wi and summed up in the total

cost function J to be minimized.

J =

h∑
t=1

gtot,t =

h∑
t=1

m∑
i=1

wi · gi,t (3.12)

Both the forecasting and the control horizon are 15 days. The control horizon is

relatively short because the reservoir, compared to the inflow, is relatively small. This

also implies little controllability of the system, as shown in the results.A new weather

forecast is produced every 6 hours, which is also the time step of the hydrological

model, the reservoir model, and the control. Therefore, optimal control problem

uses a new inflow EF and tree at each time step. The next section describe how to

generate them.

3.3.2 Ensemble and Tree Generation

To produce the streamflow EF, A meteorological forecasting system provides the

inputs to the hydrological model, whose output is the inflow to the reservoir.

The Numerical Weather Predictions (NWP), both in its deterministic and ensem-

ble version, is produced by the US National Center for Environmental Prediction

(NCEP). The weather EF is made of 20 equiprobable ensemble members. The fore-

casting horizon is 15 days and the frequency is 6 hours. The weather EF used as input
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for the hydrological model is made of {Pt,z,k, Tt,z,k}, where t = [0, 1, . . . , 60]×6h, z =

1, . . . , 20, and k = {Sao Joacquim, Joacaba, Santa Rosa, Sao Borja, Uruguaiana}.
P is the precipitation, T is the 2-m temperature, t is the time index, z the ensemble

member index and k the location index.

The hydrological model uses the weather EF as input and produces a streamflow

EF {dt,z}, which is the inflow to the reservoir. Description of the hydrological model

is in the appendix.

Streamflow data assimilation is realized using an AR output correction, as described

in Schwanenberg et al. [2011b]. This module updates the hydrological model output

at the three locations where observed discharge is available: Irai, Sao Borja, and

Salto Grande. A Bayesian Model Averaging (BMA) method, as described in Raftery

et al. [2005], using no bias correction and equiprobable ensemble members, is used

to post-process the original ensemble and include the hydrological uncertainty in the

EF.

The BMA enlarge the EF in order to include the hydrological uncertainty. However,

in this enlarged ensemble, many members that are similar to each other increase the

computational burden without adding much information. To reduce their number,

members can be effectively aggregated using the scenario reduction technique de-

scribed in Dupačová et al. [2003]. This method, solving iteratively a minimum mass

transportation problem, finds the two closest ensemble members, deletes one and

assigns its probability to the other. This reduce the computation burden without

loosing much in terms of performances, as shown in Stive [2011] for a similar system.

The streamflow EF dint,z is reduced to 15 members, and used in the optimal control

problem.

The tree structure is generated using the information-based approach described in

Raso et al. [2012b] by setting the threshold probability to p∗ = 0.95. The present

inflow to the reservoir is the only available observation considered. The observational

uncertainty is considered independent on previous values and normally distributed,

with standard deviation 300 m3/s, quantified using an simplified approach derived

from Di Baldassarre and Montanari [2009].

3.3.3 Results

The main objective, energy production, is realized by keeping a high water level with-

out spilling water. The turbine capacity is limited. Therefore, before flood events,

the controller must lower the water level to create storage for the approaching peak

that, otherwise, cannot flow entirely trough the turbines. A higher water level in-
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creases the risk of spillage. Performances are linked to the ability to find an optimal

trade-off between these two needs.

The closed loop horizon, for which we have EF data, extends from 26 February 2010

to 13 June 2011. In this period, there are just 5 events that require anticipation. This

is a rather short horizon, affecting the representativeness of performance statistics

used to compare the methods.

Objective of this TB-MPC application is to show its potential advantage. The system

on which it is tested, made of a single reservoir, was selected for its simplicity of

interpreting and communicating the results. Even if, in this specific system, the

control problem could be solved with other off-line methods, similar on-line optimal

control methods offer a more sensible benchmark.

The control methods against which TB-MPC is tested are: i) MPC, ii) MMPC [van

Overloop, 2006], and iii) MPC under Perfect Forecasts (PF). MPC, in its original

form as defined in Equations (3.1), neglects uncertainty completely. Deterministic

inflow forecasts to the reservoir are obtained from the hydrological model, run with

the deterministic weather forecast provided by NCEP. MMPC uses the same en-

semble in a simple stochastic programming scheme. PF serves as reference, being an

upper boundary of the achievable performances. PF conditions are emulated by run-

ning the MPC using, as forecasted disturbance, the observed inflow {dint,obs}
k+h−1
t=k in

the optimization horizon window, where k is the closed loop simulation time index.

Results are summarized in Table 3.3.3, which shows that TB-MPC performs better

than both MPC and MMPC. This suggests that EF contains valuable information

for optimal control of water systems. Secondly, enlarging the control space by a

tree is significantly preferable to simple stochastic programming. The latter result is

meaningful because both TB-MPC and MMPC use EF, thus TB-MPC makes better

use of the same information. When analyzed by sub-objective, TB-MPC scores better

than MMPC on both the main objectives, i.e. energy production and flood upstream.

All the other sub-objectives are not taken into account because, in the closed loop

results, sub-objectives 3, 5, and 6 do not play any role and sub-objectives 7 and 8

are negligible.

Figure 3.2 shows the closed-loop water levels for the considered controllers. A good

controller must correctly lower the water level in order to store the peaks. PF serves

as reference point, showing the best possible trajectory. The emerging patterns are:

i) even under PF conditions, some upstream flood still happens. ii) MPC tends to

underestimate the losses due to peak events, not lowering the water level enough

before them. iii) Along the entire horizon, MMPC tends to stay below the target

level. This is due to its conservative behavior, forcing the system to stay safely un-
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Controller Jrel Spillage Flood upstream

[-]
∑

tQ
spill
t [10e8 m3/year]

∑
t g1(ht) [10e3]

PF 0% 6.7 9.0

TB-MPC 37% 12.2 19.6

MMPC 64% 13.1 25.2

MPC 100% 12.9 31.0

Table 3.2: Results summary for the different control methods. Jrel is J calculated for

the closed loop simulation, standardized between zero (best case, PF) and one (worst case,

MPC)

der the upstream flood threshold. Nonetheless, this precaution does not help before

peak events. When it is really necessary to be conservative, MMPC does not antici-

pate enough. iv) Before expected peaks, TB-MPC is always the most precautionary

controller. This behavior follows from the open-loop results of MMPC and TB-MPC.

Figures 3.3 and 3.4 give a better insight on how MMPC and TB-MPC work, also

explaining why, before a peak event, MMPC does not lower the water level as TB-

MPC does. MMPC, not considering the feedback in the open-loop optimization,

finds a single control strategy, then the predicted open-loop water levels spread out

along the open-loop horizon (Figure 3.4, bottom panel). For some members, water

levels go below 30 m, activating sub-objective 3. To avoid possible costs in case

of occurrence of a very low inflow, the controller limits the lowering of the water

level. On the other hand, TB-MPC, correctly considering the possibility of changing

control strategy, does not show this behavior (Figure 3.3, bottom panel). For each

ensemble member, TB-MPC finds an control branch that brings the water level back

to the target.

To give an insight into the computational complexity, MPC optimal control problem

has h×Nu variables. In this test case h = 61 and Nu = 2 variables, and the optimal

solution is found in about 2-4 seconds. In TB-MPC, the optimization argument has

m×Nu, where m depends on the tree structure, which changes at each time steps.

For this test case and for a tree made of 15 branches, m is about 400-500, and the

optimal solution is found in 15-22 seconds.

The advantage of TB-MPC over MMPC, in terms of avoided spillage, was 8.3× 107

m3/year, that if turbined at average conditions would produce approximatively

5.5 × 103MWh, which monetized at the present energy price of 200 US$/MWh

gives a revenue of 1.1× 106 US$/year.
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3.4 Conclusion and Discussion

This chapter presented the Tree Based Model Predictive Control (TB-MPC), a

method for control of water systems when the disturbance forecast is represented

in form of ensemble. TB-MPC proved to be effective, and results from the test case

indicates the advantages of TB-MPC over other existing on-line optimal control

methods, including MMPC, that uses the same ensemble information.

Adaptivity of TB-MPC is limited to the preserved ensemble members which, even

when properly selected, are a subset of all the possible disturbance trajectories. TB-

MPC is not adaptive to deviations from the EF, or to jumps from one trajectory to

another. The ensemble must correctly represent the relevant uncertainties affecting

the controlled system. Processing of the ensemble forecasting is a required precon-

dition, prior to its application in TB-MPC. A proper EF is a necessary condition

for the effectiveness of the method.

TB-MPC is an on-line optimal control method. At each control instant, TB-MPC

solves a closed loop optimal control problem where the feedback is limited to EF

uncertainty. TB-MPC solves in fact a Multistage Stochastic Programming (MSP)

problem. MSP is performed using a tree. The tree, enlarging the control space, makes

the control strategy adaptive, i.e. capable to consider a different control strategy for

each ensemble member (or set of them), to be applied from the moment that this

ensemble member (or set) diverges from the others. This has an advantage in terms of

control performances at the cost of a higher computational complexity, yet without

reaching the obstructive complexity of some other methods, such as DP. Future

works will explore how TB-MPC performs when scaled up to larger systems, as in

[Ficch̀ı et al., 2013], where the system is made of 55 states and 8 controls.

TB-MPC was tested on Salto Grande reservoir, a system consisting of a single reser-

voir. TB-MPC, however, not suffering the curse of dimensionality, can easily be

applied to the control of large scale systems with a high degree of interconnectiv-

ity. EF are in fact particularly attractive to control systems consisting of multi-

ple reservoirs, because EF captures the correlation among streamflows in multiple,

neighboring basins [Faber and Stedinger, 2001].
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Figure 3.2: Water levels for the closed-loop horizon of TB-MPC (black line) MMPC (green

line), MPC (blue line), and PF (red line)
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Figure 3.3: Open loop optimization results for the TB-MPC controller at 12 May 2010,

18:00. Top panel: disturbance forecast, EF of the inflow to the reservoir, and actual future

inflow (circled line). Central Panel: optimal control tree, discharge from the reservoir. Bottom

panel: open loop output, water levels
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Figure 3.4: Open loop optimization results for the MMPC controller at 12 May 2010, 18:00.

Top panel: disturbance forecast, EF of the inflow to the reservoir, and actual future inflow

(circled line). Central Panel: optimal control, discharge from the reservoir. Bottom panel:

open loop output, water levels



Chapter 4

Tree Structure Generation from Ensemble Data

This chapter presents a new methodology to generate a tree from an ensemble.

The reason to generate a tree is to use the ensemble data in multistage stochastic

programming, as seen in Chapter 3. A correct tree structure is of critical importance

because it strongly affects the performance of the optimization. A tree, in contrast

to an ensemble, specifies when its trajectories diverge from each other.

A tree can be generated from the ensemble data by aggregating trajectories over

time until the difference between them becomes such that they can no longer be

assumed to be similar, at such a point the tree branches.

The proposed method models the information flow: it takes into account which ob-

servations will become available, at which moment, and their level of uncertainty,

i.e. their probability distributions (pdf). No conditions are imposed on those distri-

butions.

The method is well suited to trajectories that are close to each other at the beginning

of the forecasting horizon, and spread out going on in time, as ensemble forecasts

typically are.

4.1 Introduction

When disturbance forecasts are available, this information can be integrated in the

control strategy and the water management becomes proactive, Zavala et al. [2009]:

before the realization of the disturbance, the controller sets the system to a state

which is optimal to accommodate the expected disturbance. An example would be

lowering the water level of a reservoir before an expected storm event in order to

avoid floods. This generally enhances the reliability of the system.

However, weather is difficult to forecast and meteorological models can be wrong.

Especially when using only one deterministic forecast, the control is more vulnerable

53
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to forecast uncertainty, running the risk of taking action to counteract a predicted

event that will not occur.

Ensemble Forecasting recognizes this uncertainty producing a large number of pos-

sible future trajectories. These are close to each other at the early stages of the

forecasting horizon and spread out in time. Ensemble Forecasts can be used for con-

trol by setting up stochastic programming. This makes the control less vulnerable

to the forecast uncertainty, especially in the presence of nonlinearity in the cost

function or in the system to be controlled.

Ensembles have been directly used in stochastic programming, but this overestimates

the uncertainty, as it does not consider its expected future resolution. In fact the

proper problem formulation is Multistage Stochastic Programming (MSP). A tree

serves the scope of embedding ensemble data in MSP, specifying the moments when

some uncertainties are resolved.

Generating a tree from ensemble data is both difficult and of a critical importance.

This can be done by bundling ensemble members at their initial stages, until the

point where they are similar to each other. This is a different problem from that of

other studies regarding tree generation, like those by Latorre et al. [2007] or Šutienė

et al. [2010], in which the starting point is a much larger set of scenarios (or the

conditional probability to generate them), then the tree is created by reducing their

number, but the tree structure is given. On the contrary, when building up a tree

from an ensemble, defining the tree structure is the core of the problem, and all the

trajectories must be used.

Growe-Kuska et al. [2003] present a method to bundle complete scenarios based on

a transportation metrics (Kantorovic distance), in which the problem is formulated

as a minimal mass transportation problem. However, when this method is extended

to tree generation, the aggregation rule must be slightly modified. In Heitsch and

Römisch [2009] the authors recognize that this method is not appropriate to derive

a tree structure from complete trajectories.

Defining the tree structure is part of the modelling process. It is recognized as a

crucial problem in applications by Dupačová et al. [2003]. Defourny et al. [2011]

already noticed that this field is still in a state where the scope of existing methods

is not well defined, and the algorithmic description of the methods is incomplete,

especially concerning the branching structure of the trees, despite its importance.

Stive [2011] has shown in fact how the tree structure strongly affects the control

performances.

We propose here a new methodology to produce a tree structure from ensemble data.



4.2. Stochastic programming using ensemble forecasts 55

This approach models the information flow to the controller. This implies the explicit

definition of the observations available in the future and their degree of uncertainty.

The paper is organized as follows. The next two sections introduce the ensemble

and the tree as uncertainty models, the difference between them, and the way to use

a tree in multistage stochastic programming. The subsequent methodology section

is dedicated to the detailed description of the new approach for the tree structure

generation. The test case section presents an application to the discharge forecast of

the Salzach river. Implications, advantages, and limitations of the new method are

discussed in the conclusion.

4.2 Stochastic programming using ensemble forecasts

An Ensemble Forecast (EF) is a prediction composed of representative trajectories

of the possible future states of the system. The trajectories have generally small

differences at the initial stage of the forecast, then they tend to diverge because of

the chaotic nature of the underlying model. The most important Ensemble Predic-

tion Systems (EPS) for short-medium term EF are based at the European Center

for Medium-Range Weather Forecast (ECMWF) and the U.S. National Centers for

Environmental Prediction (NCEP). They use global numerical weather prediction

models.

The EF method offers the advantage of simulating uncertainty directly from a com-

plex, physically based model. The trajectories produced are physically consistent

and no derivation of a simplified stochastic model is required.

An Ensemble emulates the contemporary presence of a deterministic and a stochas-

tic component assuming uncertainty among its members, but determinism within

them. The ensemble trajectory is yt|z, where t is the time instant, with t ∈ T :

{1, 2, . . . ,H}, H being the length of the forecast horizon. Each trajectory comprises d

different variables (for example ground temperature, total precipitation, wind speed,

etc). z, representing the ensemble member, is a random variable; its sample space Ω

is composed of N values, where N is the number of ensemble members, generally a

number between 5 and 100.

z ∈ Ω : {1, 2, . . . , N} (4.1)

Each ensemble member z has an assigned probability p(z) ≥ 0, such that
∑N

z=1 p(z) =

1. Generally members are equiprobable, in this case the distribution of z is discrete

uniform and p(z) = 1/N ∀z.
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Ensemble Forecasts (EF) have often been used for optimal control van Overloop

et al. [2008]; Doeswijk et al. [2006]; Lukasse et al. [2006]; Zavala et al. [2009]).

In the cited approaches, however, uncertainty is considered the same along the entire

forecasting horizon. Implicitly, one assumes that there will be no future information

to update the control. In reality, uncertainty differs if decisions are at an early or

late stage of the forecast horizon: New information will become available on time,

revealing which ensemble member is going to happen. When this uncertainty is

resolved, the controller will change its control strategy, adapting it to the occurring

ensemble member. Earlier decisions, depending on later ones, also improve when

considering the future possibility to adapt.

4.3 Multistage stochastic programming using trees

In recursive decision making, when decisions are interdependent and some of them

can be taken after uncertainty reduction, Multistage Stochastic Programming (MSP)

(Birge and Louveaux [1997]) is the proper problem formulation.

In practical MSP applications the number of scenarios is limited, both because of

calculation time and, as in ensembles, because they are originally few. In this case

a tree serves the scope of setting those scenarios in a MSP setting. A tree, in fact,

locates uncertainty resolution at specific moments along the forecasting horizon.

In a tree, up to the first branching point, all the trajectories are possible. From

that point on, and at any other branching point, the entire set of possible scenarios

splits in two subsets. A branching point represents the instant when uncertainty

over which subset will occur is resolved. The occurred subset can be thought as

determined by the result of a coin tossed at that instant. From this instant on,

these subsets are mutually exclusive. Before a branching point, the series of control

is optimal on average for all the considered trajectories. From the branching point

onwards, two optimal control strategies (one per each branch) can be specified. The

tree bifurcates repeatedly until the subsets are all made of a single scenario.

Compared to an ensemble, a tree is a different uncertainty model. A tree, specifying

the moment when trajectories diverge, contains more information than an ensemble,

which is merely a set of possible trajectories. Therefore, an ensemble cannot be used

directly in MSP, but a tree structure must be generated from it first.

Dupačová et al. [2003] define a tree using a scenario tree nodal partition matrix. We

do it here in the most compact way. A tree structure is in fact completely defined by

assigning a parent P (·) and a branching point B(·) to each ensemble member. The
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parent function P (z) is defined from Ω to Ω and it indicates from which member the

member z branches out. By convention, the parent power zero of a member is the

same member, P 0(z) = z, and parent power n is the n-times recursive evaluation of

the function, for example P 2(z) = P (P (z)). The branching point function B(z) is

defined from Ω to T and it indicates the time on the horizon when the member z

branches out.

One ensemble member, called “root”, is the one from which all the others branch out.

It is a special member because it begins at t = 1 and it does not branch out from any

other member, thus it has no parent. The convention used is that the root’s parent is

the root. In a tree there is only a single root member, i.e. ∃!z|P (z) = z,B(z) = 1, and

the branching point of a member always follows the branching point of its parent,

i.e. B(P (z)) < B(z).

The formal definition of a tree is given in (4.2). The sample space of a tree Ξ depends

on the time t and the considered member ξ.

Ξ(ξ, t) = z|
n−1⋃
k=0

[
P k(z) = S,B(P (z)) > t

]
(4.2a)

S = P j(ξ)|min
j
B(P j(ξ)) < t (4.2b)

Equation (4.2b) defines the stem member S. This is the member from which all

other members in the considered sample space Ξ(ξ, t) will branch out. Equation

(4.2a) indicates the ensemble members (and all their future “offsprings”) branching

out from the stem member after t. The union stops at n− 1 because, in a tree of n

members, that is the largest number of possible “generations”.

Figure 4.1 presents an illustrative example. It shows the trajectories of a simplified

ensemble, having only four members.

Table 4.1: Parent and branching point function for each member z of the ensemble in

Figure 4.1

z 1 2 3 4

P (z) 1 1 1 3

B(z) 1 27 17 29

Table 4.1 contains all information needed to define the relative tree. In the picture,

the branching points are highlighted using a dot and the part of the trajectory when

a member has branched out using a slightly bolder line. For every sub-branch, the
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Figure 4.1: Illustrative ensemble. Sample space and stem member for every subbranch are

specified.

sample space and the stem member are shown. These can be derived from Table 4.1

using Equation (4.2).

The MSP problem, defined using a tree is then:

min
uzt

N∑
z=1

p(z)J(yzt , u
z
t ) (4.3a)

uit = ujt when

P (i) = j

B(i) < t
i, j = 1, . . . , N (4.3b)

other constraints (4.3c)

Where J(·) is a generic cost function depending on the disturbances trajectories yzt
and the control uzt ∈ Rh × RN , in the case that there is a single controllable value.

Equation (4.3b) ensures the non-anticipativity (see Birge and Louveaux [1997]) of

the control strategies.

4.4 The Information Flow Modelling approach: methodology

The premise of the Information Flow Modelling approach is that a decision strategy

optimal for a specific ensemble member (or a set of them) is applied as soon as that
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ensemble member (or that set) is considered certain to happen. The key idea is to

identify this moment and to place the proper branching point there.

A branching point is in fact a pivotal element of a tree. It represents the instant when

it is certain if its relative ensemble member (and its “offspring”) has occurred or not.

Along the horizon, new information will become available and this is expected to give,

up to that moment, sufficient evidence to determine which of the two branches is the

one actually happening. The approach we propose models how available information

changes the ensemble member’s probability taking explicitly into account which

observations are available, when, and with what degree of certainty. Notice that

observation is intended here in a broader sense than its usual one, following Weijs

[2011]. Typically observation is understood as the sensing of the present state of a

system using devices, but we include also the acquaintance of future states using

models. Consequently, the definition of observational uncertainty is also different

from the one typically used in hydrology and water resources (as by Götzinger and

Bardossy [2008] for example), encompassing all the uncertainty sources. This will be

shown and clarified further in the application.

At the forecasting instant, the ensemble member’s probability is the a priori one.

Going on in time, new information enters the system. Information at time t is com-

posed of observations available at that instant It and their likelihood of coming from

an ensemble member, fIt(It|z). This function is in fact the observational uncertainty,

i.e. the probability distribution of the observations.

When information is available, the ensemble member’s probability will change in

time, increasing if the collected observations are more likely to have been produced

by this member, decreasing otherwise. Bayes’ theorem describes how new informa-

tion changes the conditional probability of an event (Jaynes and Bretthorst [2003]).

Bayes’ rule can be used to calculate the ensemble member’s probability conditional

to new observations. When the observation is continuous and one-dimensional, the

form of the Bayes’ rule is:

pt+1(z|It) =
fIt(It|z)pt(z)∑N

j=1 fIt(It|zj)pt(zj)
(4.4)

Equation (4.4) describes how new observations update the ensemble member proba-

bilities. Here, pt(z) is the a priori ensemble member’s probability, i.e. before making

the observation, the left part of the equation pt+1(z|It) is the conditional probability

of z given It, i.e. when It has been observed.

In Equation (4.4), the observations come only from the ensemble trajectories. The

implicit assumption is that no deviations from the ensemble trajectories or jumps
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from a trajectory to another one are allowed: the ensemble covers all the possible

outcomes. This is clearly an approximation: the set of all possible trajectories is much

larger than the ensemble (made of relatively few members). Nevertheless defining the

possible trajectories by producing a sufficient number of them is a separate problem

on which we do not have any influence.

Equation (4.4) can not be used directly for our purpose, because the tree has to be

generated at the forecasting instant, when no observations have been made yet. Nev-

ertheless, Bayes’ rule can be used “on average” to calculate the expected evolution

of the ensemble member probabilities. If one assumes that member zk happens, ob-

servations It will be extracted from the distribution fIt(It|zk), and the new expected

ensemble member’s probability is

E
It|zk

[pt+1(z|(It|zk))] =

∫ +∞

−∞
pt+1(z|It) · fIt(It|zk)dIt (4.5)

where pt+1(z|It) is Bayes’ rule, the right side of Equation (4.4) written as a function

of It only, with pt(z) given.

A possible interpretation of Equation (4.5) can be given following the decomposition

of information in meaning and surprise of Applebaum [1996]. The observation It can

be interpreted as the surprising component, and its meaning is given by its relation

with the ensemble members, p(z|It). Surprise is the quantity of information conveyed

by the observation, increasing when the probability of that event decreases. Less

expected observations convey much information. The function p(z|It) represents the

meaning, attaching significance to the new (more or less surprising) observation,

indicating from which ensemble member it is likely to come, which is what we are

interested in. Equation (4.5) represents thus the meaningfulness of the surprise that

is expected at time t.

Equation (4.5) can be applied at every time step over the forecasting horizon to

evaluate the expected evolution of an ensemble member’s probability. Given the

observation available if member zk happened, it is possible to predict the probability

dynamic of any z.

pt(z) = p(z) for t = 1 (4.6a)

pt+1(z) = φ(pt(z), fIt(It|z), zk) for t = 1, . . . ,H − 1 (4.6b)

Equation (4.6a) states that, at the first time step, the probability is the a priori one,

p(z), given from the ensemble. From that point on, probability evolves in time. In
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Equation (4.6b), φ is a generic dependence function. It represents Equation (4.5)

written in a form that clearly presents its inputs. Going on in time over the forecast-

ing horizon and as long as more information becomes available, pt(zk) approaches

one and pt(z 6= zk) approach zero.

Knowledge of the probability dynamics can be used to determine the instant in which

an ensemble member is expected to be distinguishable from another. Information on

distinguishability is contained in the distinguishability matrix D. Each element of

this matrix, Dk,j , is the earliest moment at which, considering only two members at

a time, zk and zj(k 6= j), it is sufficiently certain that member zk is the occurring

one, given that the available observations It up to that moment come from this

member. Sufficient certainty means that the probability of that event is larger than

a predefined confidence level p∗, chosen sufficiently large (say equal to 0.95).

The procedure to build up D(p∗) is described below. For every Dk,j the sample

space is reduced to the two considered members. The reduced sample space is thus

Ωr = {zk, zj} and its probability is pt(Ω
r) = pt(zk)+pt(zj), being the events mutually

exclusive. The probability of scenario zk, considering the reduced sample space, is

prt (zk) =
pt(zk)

pt(Ωr)
=

pt(zk)

pt(zk) + pt(zj)
(4.7)

Then, for ∀zj 6= zk

Dk,j(p
∗) = t|mint [prt (zk) > p∗] (4.8)

The distinguishability matrix is not defined on the diagonal. The matrix D depends,

among other things, on the a priori member’s probability. The matrix is a function

of the confidence level p∗. A larger p∗ requires more evidence from the observations,

shifting ahead in time the instant when two members are distinguishable, corre-

sponding to larger values in the D matrix. It can happen that two trajectories are

so close to each other that, even at the end of the horizon, when all the available ob-

servation will have been collected, one ensemble member is not distinguishable with

sufficient certainty from the other. In this specific case, Dk,j will have an infinitive

value.

The D matrix contains sufficient information to build up a tree, indicating, for each

ensemble member, the most similar member and the instant they are sufficiently

distinguishable. We describe now how to generate a tree from a distinguishability

matrix. Starting from the complete D matrix:
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1. Find the maximum value of D and the member corresponding to its row and

column, called “row” and “column” member

2. The maxD value and the column member are assigned to the row member

as branching point and parent respectively

3. Matrix D is reduced, removing row and column of “row member” (its row

and its column)

4. The procedure from (1) to (3) is repeated until a single member remains

5. The last member is the root, its parent is itself and its branching point is 1

Notice that a tree does not use the entire information contained in D. Choosing the

maximum value implies considering only the case when a member is distinguishable

from all the others. Fuzzy situations, when a member is distinct from some, but

not all members, are ignored. This approximation obviates the need for a more

complicated object than a tree, in practice a more general graph, with no limits on

the number of “parents”. Nevertheless, the objective of this study is to build up a

tree, that it is considered a sufficient approximation, then the implicit assumption

is that those fuzzy situations are of minor importance. The limits of the tree as

uncertainty model will be shown in the application too.

4.5 Application

The method is tested on ensemble data for the Salzach river at Saltzburg. The basis

of this ensemble is a meteorologic ensemble from ZAMG (Austrian meteorological

office, Vienna) based on the INCA system, Haiden et al. [2010], with 50 ensemble

members. The discharge at Salzburg is computed using COSERO (see Stanzel et al.

[2008] and references therein), a continuous, semi-distributed rainfall-runoff model

developed at the University of Natural Resources and Life Sciences (BOKU) of

Vienna. The ensemble used was produced the 26th May 2011 at 8.00 am. The time

step is 15 minutes and the forecast horizon is 3 days. The ensemble is reduced from

50 to 10 members using the scenario reduction algorithm of Growe-Kuska et al.

[2003].

The approach requires the definition of the observable variables at every time step

and their level of uncertainty. In river discharge forecasts, the observable variable

is the water level, from which it is possible to derive the discharge using a rating

curve. Di Baldassarre and Montanari [2009] show that this function is affected by

uncertainty. We will follow here the method Di Baldassarre and Montanari [2009]

proposed to analyze and quantify the uncertainty of this relation, extending their

results to our test case.
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Observations of water levels are assumed without uncertainty. The total error ε in

the rating curve is normal and heteroscedastic, depending on the water level. It

is composed of i) uncertainty in river discharge measurements and ii) rating curve

uncertainty. The first component ε1 is the error in the measurements of the rating

curve.The second component ε2 can be decomposed in: ε2,1, error in the rating

curve interpolation-extrapolation, ε2,2, error due to the presence of unsteady flow

conditions, and ε2,3, error due to the seasonal changes of the river roughness. Those

errors are assumed to be all independent from each other and normally distributed,

having zero mean and a quantified variance (see Appendix), thus

ε = ε1 + ε2,1 + ε2,2 + ε2,3 (4.9)

and the distribution of ε is N ∼ (0,
∑

i σ
2
i ).

The system observation, specifically the water level h, happens every 15 minutes,

thus It = ht for t = 1, 2, . . . ,H. Notice that the not direct observability of the

forecast variable is not a limitations, having a relation in probability between the

observable variable (water level) and the variable of interest (discharge). Therefore

fqt(qt|z) = fqt(qt|ht) · fht(ht|z) (4.10)

Where fqt(qt|ht) is the probabilistic rating curve and fht(ht|z) is a deterministic rela-

tion (having assumed no uncertainty in the water level observation). The confidence

level is chosen sufficiently high (p∗ = 0.95).

Table 4.2 shows the distinguishability matrix. Its asymmetry is also due to the

different a priori probability of the ensemble members, being the ensemble made of

10 members obtained by reduction of the original one by deleting trajectories and

aggregating probabilities.

Table 4.3 shows the tree structure.

Infinity as branching value means that that ensemble member never branches out

from its parent. This happens when the trajectories of the considered member and

its parent are so close that all the future observations along the horizon are not

sufficient to distinguish them with the required certainty.

Figure 4.2 shows the trajectories of the original ensemble (thin lines) and that of

the tree produced from it (bold lines). The numbers label the ensemble members

at their branching point. The most different trajectories bifurcate first. Going on

in time, also the more similar ones are distinguishable and branch out. The yellow-

greenish trajectory (ensemble member 6) has an interesting behavior: despite its
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Table 4.2: Distingushibility matrix obtained from the ensemble of Figure 4.2.

zk\zj 1 2 3 4 5 6 7 8 9 10

1 NaN 55.5 27.5 26.25 24.25 35.5 34 27.25 27 27.75

2 Inf NaN 28.75 27.5 27.25 44.5 35.75 28.5 27.75 39.25

3 41 41.25 NaN 35.75 59.5 36.5 59 66.5 45.5 49

4 29.25 29.5 31.75 NaN 33 28 32.25 34.5 41.75 30.25

5 20.25 24 20.75 21.75 NaN 18 28.75 34.75 32.5 25.75

6 44.5 45.25 49.25 30.25 43.75 NaN 49.5 32.75 30.5 56.25

7 Inf 56.75 48.75 32.25 51 30.25 NaN 42.75 35.5 45.25

8 33.75 35 62.5 37.5 51.75 27.25 53.75 NaN Inf 35.5

9 27.5 28 31 44 38.75 26 32.25 46.5 NaN 28.75

10 44.25 45.25 54.75 31.25 48.75 54.75 53.5 36.5 32.25 NaN

Table 4.3: Tree structure defined by Parent and Branching Point for each ensemble member

z, obtained from the D matrix (Table 4.2). The branching point values are expressed in hour

z 1 2 3 4 5 6 7 8 9 10

P (z) 5 1 5 5 5 10 1 9 4 5

B(z) 24 15’ Inf 59 30’ 33 1 56 15’ Inf Inf 44 48 45’

deviation from other ensemble members (for example from the light-blue trajectory,

member 4) already at some earlier stages, it branches out relatively late. This hap-

pens because the algorithm that build up a tree from the D matrix considers only

the highest value. Thus, an ensemble member branches out only when it becomes

univocally recognizable from any other one, including the most similar one, which

in this example is the red trajectory (member 10). Nevertheless, this limit is a char-

acteristic of the tree as uncertainty model and not of the specific tree generation

algorithm, as explained in section (4.4).

In Figure 4.3 two ensemble members are separated. Plot A shows their trajectories,

plot B shows the probability of zk, assuming that that is the happening ensemble

member. On the first part of the horizon, the trajectories are very close, the observa-

tional pdf’s fqt(qt|z) overlap, thus observations here are not informative. When the

trajectories diverge, observations are less ambiguous and the confidence that zk is

occurring increases. After some time, from hour 40 onwards, it is already clear that

the trajectories have diverged, thus the additional observations do not add much

more information. The branching point is placed when this confidence is sufficiently

high. The graph below shows also to what extent the branching point is postponed
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Figure 4.2: The reduced ensemble at Saltzburg, 26th May 2011 at 8.00 am (thin line), and

the tree generated from it (bold line), defined in Table 4.3.

when the confidence level p∗ increases.

If the control is applied every 6 hours, then observations with a higher frequency

cannot be used until the new control is chosen. Therefore at every control time step

(every 6 hours) the last 24 past observations are available (one observation every

15 minutes for six hours). The available information is in this case It = {hτ}tτ=t−23
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Figure 4.3: Plot A: Trajectories of two ensemble members (bold lines) and the ±σ bounds

of their observational uncertainty (thin line). Plot B: the evolution of the reduced probability

dynamic for zk on time (Equation 4.6) when It = {yt} t = 1, 2, 3, . . . ,H (continuous line)

and It = {yτ}tτ=t−23 t = 24, 48, 72, . . . ,H (dashed line).

for t = 24, 48, 72, . . . ,H. It is a 24-dimensions variable, assuming independence of

the errors in time, then I ∼ N (0,Σ), and Σ = I · σε (I is the identity matrix). The

dotted line in Figure 4.3, plot B shows the probability dynamic for this case. The
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trend has steps corresponding to the moments when information enters the system

and a new control can be applied. The information flow has a coarser discretization

and the branching points are postponed.

Until now, we have considered the information gained observing the water level at

every decision time step. Nevertheless, the river stage is not the only available obser-

vation. Considering the broader definition of observation that we gave, the controller

disposes also of a forecasting system that every hour provides an estimation of the

future discharge values. This information source should be modeled too.

The information flow including the future forecasts comprises It = {qt}Ht with t =

4, 8, 12, 16, . . . ,H. The forecast information will not be tested here because of the

difficulty to integrate a H-dimensional variable (in this ensemble H is 288). In case,

it would be necessary to define an uncertainty model of the ensemble forecasting as

well.

4.6 Conclusions

This paper presents a new methodology to create a tree from ensemble data, called

Information Flow Modelling. The methodology models how information becomes

available to the system controller in time. Information consists of the observations

and their uncertainty. Observational uncertainty fI(I|z) is also the link between the

probability of observing I to the ensemble member z.

Just as in the information theory framework described in Weijs et al. [2010], ob-

servations are seen here as a communication process in which uncertainty about

the outcome of a random event is reduced by delivering an informative message to

the user, in this case the controller. Information Flow Modelling approach requires

the explicit definition of what the controller can observe and its level of certainty.

These requirements give to the method a formal character and guarantee a strong

theoretical basis.

The ease of use has been shown by applying the method to a test case. Differently

from other methods, information on the conditional probability in time is not re-

quired. All one needs to define is the observational uncertainty fIt(It|z) and the

confidence level p∗. The first is more difficult to determine, although in the test case

it was already defined. Hydrologists have recently put more and more effort into

associating a distribution characterization to a forecast, see for example Schaefli

et al. [2007], Pianosi and Raso [2012], Montanari and Brath [2004], Solomatine and

Shrestha [2009] and Schoups and Vrugt [2010]. The confidence level is a threshold
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value, representing the certainty level required for considering a ensemble member

as the one actually happening. Typical values are 0.95 or 0.99. Its value is rather

arbitrary, as any other hypothesis testing threshold, and its influence on the control

performances should be tested.

Another important property of this approach is its generality. The function fIt(It|z)
can be any type of distribution, for example, a discrete one (rain, no rain) or a

deterministic relation. In the application shown it is a normal distribution, but this

is not a generally required condition.

Further research will investigate the influence that the tree structure has on the

control performance when trees are generated by the Information Flow Modelling

approach, applying it to the real time control of dynamic systems.



Chapter 5

Conclusions and recommendations

5.1 Contribution of this thesis

In the context of operational water management, controlling the hydraulic structures

by deterministic optimization offers many advantages, reviewed in Chapter 1. A

deterministic optimization can harmoniously manage complex systems even under

stringent constraints. It requires a model of the physical process and an objective

function.

Uncertainty affects the performance, for unexpected events can drive the system

off from the optimal conditions. Stochastic optimization explicitly takes into ac-

count the presence of uncertainty and reduces the performance loss due to it. Uncer-

tainty can be present in any element of the control problem: the system model, the

state-output relation, the objective function, the initial state estimation, and future

disturbances. In water systems, the controlled components are generally hydraulic

structures (canals, reservoirs, or a combination of them), which are well known,

when compared to the hydrological or meteorological components, where the uncer-

tainty is much larger. Meteorological and hydrological systems are both upstream

of the controlled system, thus are not affected by the control. They take part in the

control problem forming the disturbances that can be partially predicted. Even if

disturbances can be forecasted, a large uncertainty still remains. This thesis focused

on the forecast uncertainties relevant for the real time control of water systems.

Errors in the hydrological model can, under some conditions, be much larger than

under regular conditions. I showed this in Chapter 2, where I also showed a simple

and effective dynamic modeling of the error standard deviation, based on a regres-

sion using the absolute error. The approach has been called Dynamic Uncertainty

Modelling By Regression on Absolute Errors (DUMBRAE). The standard deviation

model can be built up using the time series of residual errors only, independently

of the hydrological model. The necessary assumptions on the error distribution may

69
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necessitate some appropriate transformation when the assumptions are not satis-

fied. The method proved to be effective under any indicator, including maximum

likelihood. DUMBRAE outperformed all other methods to which it was compared

and showed to be able to effectively reproduce the heteroscedasticity of the residual

errors, both under a fast response catchment, as in the Lake Maggiore test case, and

a slower process dominated by snowmelt, as in the Rhone River.

In Chapter 3 and 4, I have shown a way to use ensemble forecasts within the MPC

framework by building up a tree and using it to implement multistage stochastic

programming. In order to set an optimal control problem, the analyst typically

models the physical system, defining how the water flows from one component to

another. Part of my work has shown the importance of modelling a different flow,

the information flow, made of observations (in a broad sense) that the controller is

able to make. The information flow modeling is part of the problem setting. The

future uncertainty resolution affects the present decisions; this is counterintuitive,

but taking it into account affects (positively) the control performances.

Chapter 4 showed a method to build up a tree structure from a set of complete sce-

narios by quantifying the expected level of certainty along the control horizon. This

is an advantage when compared with other existing methods that are empirically

based or adapted from other problems. The approach has been called Information

Flow Modelling, because the tree is built up following how and when information

becomes available to the system controller. Information consists of the observations

and their uncertainty, therefore this method requires the explicit definition of what

the controller can observe, when, and its level of certainty. Further research should

investigate the influence that the tree structure has on the control performance when

trees are generated by the Information Flow Modelling approach, applying it to the

real time control of dynamic systems.

In Chapter 3, the tree is then used in the proposed control algorithm called Tree-

Based Model Predictive Control (TB-MPC). This control method considers the feed-

back mechanism of MPC. It does not search for an optimal control time series, but

for many control strategies, one for each branch of the tree. The tree is in fact used

to enlarge the control space in order to set up multistage stochastic programming.

This makes the control adaptive. Even if, eventually, only the first control is applied

to the system, considering the future capacity to change strategy improves the closed

loop results. TB-MPC has been applied for the operation of Salto Grande reservoir,

at the border between Uruguay and Argentina, which is a simple system made of

a single reservoir. TB-MPC, not suffering of the curse of dimensionality, shows its

advantages especially on large, hardly constrained, strongly connected systems.
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In this thesis, I used the tree for real time control. The method is general and

can be extended to any type of scenario analysis. For example, consider climate

change scenarios. If climate change trees are produced, we would have available,

apart from the scenarios themselves, the information about when it will be known

(with sufficient certainty) that each scenario is actually the happening one.

5.2 Recommendations for Further Research

As any good research, my work raised more questions that it answered. Some of

them are presented here.

5.2.1 Balance between model complexity and uncertainty

A practical question, central for any analyst modelling a controlled system under

uncertainty, is how much detail to reserve for physics or uncertainty modelling.

Computer power is in fact limited and an optimal compromise between the two

needs to be found.

In the last decades, computer power has grown following Moore’s law. This exponen-

tial growth gives the idea that computation capacity will, at some point, overcome

all the limitations that we now face. Computer power allocation seems just a tem-

porary problem that will be wiped out in some future. However, we do not believe

in eternal exponential growth. Moore’s law is just an empirical extrapolation of past

data. There are no reasons to think that it will grow infinitely. Actually, it is more

sensible to think that, at some point, for some physical constraint, it will saturate.

Moreover, if we also look at the recent history of environmental modeling, we will see

that the system boundaries have grown with time too [Washington et al., 2009]. The

bonanza of computer power has been used for more integration. The trend is, and

very likely will continue to be, towards more integrated models, and not, as someone

stated, towards more spatial and temporal model accuracy. There will always be a

limited computer capacity then, and always the need for a trade-off in its allocation.

Uncertainty is very computational demanding. In the worst case, i.e. without some

smart algorithm, treating uncertainty requires multiplying the problem complexity

for the number of realization of any stochastic variable. At the same time, uncertainty

is very significant for decision making.

The question on which uncertainties to include has not a clear solution yet and it is

left to the analyst’s subjective choice. Some general rule, guiding the analyst in the

problem setting, would be a valuable tool. This rule should quantify the benefits, in
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terms of performance improvement and generalized costs, brought by an extended

problem, and then suggest what to include next and when to stop.

5.2.2 Optimal uncertainty reduction

In order to manage a system, a decision maker (DM) tries to make the best deci-

sion under uncertainty, having partial knowledge of the effects of his/her decision.

However, instead of just accepting the present uncertainty, he/she can reduce it by

getting more observations. Uncertainty is lack of information and can be reduced

by new observations. Observation is intended here in a general sense, as a carrier

of a piece of information. Possible observations are, for example, getting a forecast,

building up a model, or sensing the system at some location for some variable.

Observations reduce uncertainty, but are costly. The DM should then reduce uncer-

tainty and, at the same time, minimize the costs due to observation until an optimal

level of rational ignorance Simon [1990] is reached. Uncertainty reduction is in fact

not an end to itself, but aimed at taking better decisions; at some point, accepting

uncertainty will be more effective than reducing it further. I called this the Optimal

Observation Problem (OOP) [Raso et al., 2013], suggesting that, in addition to the

optimal control problem, there is a secondary decision, linked to the first, concerning

the most effective observation. OOP suggests what to observe next and if the next

observation is worth its cost.

5.2.3 Defining the Objective Function

Optimal control is essentially selecting a control value given a process model and

an objective function. Presently, a large part of the research focus on improving

the model representing the physical process; the objective function is simply given.

Nevertheless, the objective function determines the final results as much as the

process model does.

In MPC, the loss function is often nothing more than a quadratic function [Camacho

and Bordons, 2004]. But this is mostly a legacy of previous MPC applications, where

the typical problem was trajectory tracking. The reason to stick to a quadratic func-

tion are mostly historical. Secondary, but not less important, the success of quadratic

cost function is linked to the ease to solve a quadratic programming problem. How-

ever, now that we have better solving algorithms [van den Boom and Backx, 2003]

a quadratic cost function is no more a necessity.

In water resources management, researchers often focus on the presence of multi-

ple objectives. There is in fact a large research production using multi-objective
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optimization, for which we have analytical instruments. The presence of multiple

stakeholders with conflicting requirements from the same water system is a com-

mon situation, and a multi-objective analysis formalizes and offers a solution to this

conflict. The output of a multi-objective optimization is generally a Pareto front,

a graph that is supposed to inform the decision maker about the possible opti-

mal trade-offs among the conflicting objectives. Even if multi-objective analysis is a

valuable tool, multiplying the objectives adds complexity and should be limited to

cases when the objectives are really irreducible, because of incommensurability or

irreconcilable groups.

Nevertheless, even when the objective is unique, or aggregated, objective function

definition is a complex task. It requires identifying the interests at stake in the system

and reducing them to a mathematical object. Castelletti and Soncini-Sessa [2006]

do this using a participative process, and Fishburn [1982] shows how to translate

statements and preferences into a cardinal function. These are useful tools to define

what I call the subjective rationality, which does not ensure the objective rationality.

As remarkable example, let us focus on risk aversion, intended as the nonlinearity

of the loss function to negative effects [Hashimoto et al., 1982]. Imagine that risk

aversion can be summarized in a single parameter; the analyst estimates it by getting

the necessary information from the stakeholder. Even if the stakeholder is satisfied

with the analyst output, this is a subjective assessment. It could be the case that

the stakeholder is risking too little, or too much. Subjective rationality, got from the

interaction with the stakeholder, does not necessarily provide objective rationality,

represented by the “optimal” risk aversion. Objective rationality is here defined as

the probability of surviving. This definition is teleologically based because entities are

selected based on it. Those who did not have this objective, are already extinguished.

Thus an objectively rational decision maximizes the probability of surviving.

Even if useful as reference point to reject the relativism of subjective rationality,

this definition has little usefulness in practice. No model has surviving probability as

output. Therefore the research question, on how to define a good objective function,

is still an open one, bringing with it some related problems, first of all the verifiability

problem.

The procedure to define the objective function should not be different from that of

a physical model. Hypotheses are formulated, expressed in mathematical formulas,

and eventually verified. In hydrology, for example, the way to verify the goodness

of a model is typically by looking at the difference between the predicted and the

observed values, trying to minimizing this distance. Objective functions should be

verified as well, and if the quality criterion for a model is to make good predictions,
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the quality criterion for an objective function is to make (objectively) good decisions.

Presently, objective functions are not verified; the acceptance by the stakeholders is

considered a sufficient criterion for its quality.

5.2.4 Closed Loop Stability

One of the main drawbacks of MPC is that the horizon finiteness introduces the issue

of closed loop stability [Bemporad and Morari, 1999]. Closed loop stability ensures

that the series of decisions obtained from the open loop optimization do not bring

the system state away from the equilibrium in the closed loop iteration. It can be

compared to the idea of sustainability, i.e. the present decision about the resource

use does not lead to its over-exploitation.

The control theory community has developed many theorems dedicated to finding

sufficient conditions for stability. In a finite horizon scheme, stability can be guar-

anteed by a cost function that is Lyapunov, or a terminal constraint (or penalty) on

the state of the last time step. However, for reservoir management, the cost function

is not always of the Lyapunov type, and obtaining a terminal penalty gh(xh) is not

trivial. The terminal penalty should summarize all the costs from h to infinity, which

is the costs of having left the system in state xh. A possible solution to this problem

is using, a terminal cost function obtained from DP. However, if the DP problem

can be formulated, MPC looses its usefulness.

An infinite horizon guarantees stability [Maciejowski, 2002]. Further research in this

direction is needed, to apply MPC to systems with memories longer than control

horizon, as reservoirs typically are. Therefore, if MPC for reservoir management

wants to reach a mature state, exploring different forms of infinite horizon MPC is

a priority.

5.2.5 Decision Support Systems (DSS) vs Automatic Control

Looking at the history of control [Bennett, 1996], automatic control has proved to be

an effective solution in a variety of fields. For industrial application, experts initially

thought that optimal control algorithms were aimed at suggesting the decision only.

Nowadays the automation is pervasive, and for some systems close to complete. The

question for water resources management researchers is whether the same trend will

rise in water systems. Even if water seems to be different from other commodities

[Savenije, 2002], the super-positivist hypothesis of a completely automatic system

cannot be excluded.
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My opinion is that the implementation of automatic control in water management

encounters an essential difference with respect to the other classical applications.

Gourbesville [2008] stresses the complexity of river management, thus the need for

DSS. However, it is not so much the physical complexity that hampers the automati-

zation (a powerplant is also complex), but the political complexity, i.e. the presence

of conflicting interests, that can generate a resistance to delegation of responsibility

to an algorithm. Moreover, water is a strategic resource1, too important to bypass

the presence of a human decision maker for its management. Nonetheless, his/her

decision can anyway be supported by the application of control theory techniques

within a DSS.

Process Oriented Algorithms for an Operational DSS

Experience has shown that a suggested optimal control can be meaningless for the

decision maker, who will eventually discard it. Borowski and Hare [2007] documents

the existence of a gap between the research community developing model based

tools, which sees the innovation of such instruments and the potential improvement

in performance of water systems, and the decision makers at an operative level, who

do not understand the meaning of the tool output.

Figure 5.1: a simple possible scheme of the decision

process and the role of the model within it.

Researchers, instead, tend to

neglect the importance of an es-

tablished existing procedure de-

veloped to take decisions us-

ing all available information,

and assume that introducing

the tool will reshape straight-

forwardly the decision proce-

dure. In applications where the

tool radically changes the pro-

cedure, this approach can lead

to the failure of its effective

implementation. Process Ori-

ented Algorithms propose an

integrated design of the model

based tool and the desired process. Its objective is to close the gap between the

existing optimization algorithms and the decision making process, by analyzing the

information requirements of the decision maker, as suggested by Janssen et al. [2009],

1. For the same reason, its strategic nature, water cannot be reduced to a mere economic good
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and shaping both the tool and the decision making process to adapt them to each

other.



Appendices

Appendix A: Expected value of the absolute value of a normal

variable

First it can be proved that if X ∼ N(0, σ2) and Y = |X|, then

fY (y) = 2 · fX(x) ∀x ∈ R, y = |x|

where fY (·) and fX(·) are the pdfs of X and Y respectively. In fact, from the

definition of Y , it follows that P [Y < y] = P [|X| < y] = P [−y < X < y] and thus∫ y

0
fY (ξ)dξ =

∫ y

−y
fX(ξ)dξ

Since fX(·) is an even function,∫ y

0
fY (ξ)dξ =

∫ y

0
2 · fX(ξ)dξ

from which the thesis follows.

Therefore the expected value of Y is given by

E(Y ) =

∫ ∞
0

y 2fX(y) dy =
2√
2π

∫ ∞
0

y

σ
exp

(
− y2

2σ2

)
dy =

2√
2π
σ = kσ (5.1)

Appendix B: Periodic model of the standard deviation based on

Fourier decomposition

A periodic model of the error standard deviation is

σt = g(t,φ) = α0 +

n∑
i=1

αi sin

(
2π

T
it

)
+ βi cos

(
2π

T
it

)
(5.2)

where T is the time period (for instance, if the modelling time step is 24 hours,

T = 365 day) and t is the current time step counter. Identification of model (5.2) is

77
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straightforward, in fact, for given order n of the Fourier decomposition, the coeffi-

cients φ = |α0, α1, ..., αk, β1, ..., βk| can be estimated by least squares according to

the well known formula

φ =

(
N∑
t=1

ut u′t

)−1 N∑
t=1

ut yt

where N is the number of data, the regressor vector ut is given by

ut =

[
1, sin

(
2π

T
t

)
, ..., sin

(
2π

T
n t

)
, cos

(
2π

T
t

)
, ..., cos

(
2π

T
n t

)]
and the observation yt is simply given by k |et|, according to equation (2.9).

Appendix C: Additional information to Chapter 3

5.2.6 Programming environment

The hydrological model, the reservoir model, and the optimization are programmed

in RTC-Tools, a open source, free software developed by Deltares Foundation. EF’s

can be freely downloaded from the TIGGE portal.

5.2.7 Hydrological model

The hydrological model is a semi-distributed HBV model [Bergström et al., 1995]

with a topology according to Figure 5.3, simulating both the rainfall-runoff process

and the routing process. The routing process is modeled by a triangular unit hy-

drograph. The model is calibrated on one and half year of data, from December the

28th, 2009 to June the 28th 2011, using weather data from five weather stations and

observed discharge from three hydrological stations (see Figure 5.2). The HBV model

inputs are precipitation, temperature, monthly average temperature, and monthly

average evaporation. The Nash index, as a measure of model performance, scores

0.74.

Appendix D: Observational uncertainty estimation

The variance of ε1 is: σε1(t) = 0.027 · qt

For the errors ε2,i, Di Baldassarre and Montanari [2009] give the 95% of the error

falls in the αi% of qt, thus σε2,i(t) = αi·qt
1.96 , where 1.96 is the 97.5-quantiles of a

standard normal distribution, that takes into account the 2.5% on both the left and

the right tail of the distribution.
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