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ABSTRACT As wind energy adoption is growing, ensuring the efficient operation and maintenance of
wind turbines becomes essential for maximizing energy production and minimizing costs and downtime.
Many Al applications in wind energy, such as in condition monitoring and power forecasting, may benefit
from using operational data not only from individual wind turbines but from multiple turbines and multiple
wind farms. Collaborative distributed Al which preserves data privacy holds a strong potential for these
applications. Federated learning has emerged as a privacy-preserving distributed machine learning approach
in this context. We explore federated learning in wind turbine condition monitoring, specifically for fault
detection using normal behaviour models. We investigate various federated learning strategies, including
collaboration across different wind farms and turbine models, as well as collaboration restricted to the
same wind farm and turbine model. Our case study results indicate that federated learning across multiple
wind turbines consistently outperforms models trained on a single turbine, especially when training data is
scarce. Moreover, the amount of historical data necessary to train an effective model can be significantly
reduced by employing a collaborative federated learning strategy. Finally, our findings show that extending
the collaboration to multiple wind farms may result in inferior performance compared to restricting learning
within a farm, specifically when faced with statistical heterogeneity and imbalanced datasets.

INDEX TERMS Condition monitoring, federated learning, industrial fleets, normal behavior model, privacy-

preserving, wind energy, wind farm, wind turbine.

I. INTRODUCTION

A. PROBLEM FORMULATION

The deployment of wind turbines for renewable energy
generation is witnessing exponential growth globally [1], [2],
driven by the transition towards sustainable energy sources.
Ensuring the efficient and reliable operation of wind turbines
is critical to maximizing energy production and minimizing
downtime and maintenance costs. Condition monitoring and
anomaly detection play a pivotal role, offering insights into
the health and performance of critical components. Deep
learning methods, in particular, have risen as an efficient
approach to anomaly detection [3], [4], [5], [6]. However, the

The associate editor coordinating the review of this manuscript and
approving it for publication was Long Xu.

demanding data prerequisites of deep learning models present
a major challenge as they necessitate either an abundance
of labeled data from faulty operation or, in our scenario,
a large amount of fault-free data for training a normal
behaviour model (NBM). A NBM operates by predicting
target variables like component temperatures or power output
that are crucial for assessing system health or performance.
Anomalies are identified when the predicted target variable
diverges significantly from the measured value of the target
variable, such as detecting an abnormal spike in component
temperatures compared to the system’s normal operational
values. Condition monitoring and anomaly detection are
extensively studied fields within the area of wind turbine
operations. In recent years, deep learning has emerged as
a particularly promising approach for condition monitoring
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tasks. Among the methodologies employed, NBMs have
gained prominence. These models rely on the comparison
between critical features measured in wind turbines and
their corresponding predicted values, serving as indicator for
assessing wind turbine health [7], [8], [9].

Training an effective NBM requires a substantial amount
of data, which can be time-consuming or even impractical
to obtain. A single wind turbine would require a significant
amount of time to gather enough data to train a representative
and accurate NBM. Scarcely available data may lead to
an unrepresentative training set. For instance, measurements
observed during a short two-week period in summer may
lack certain wind speeds, power generation behaviour,
or only cover a limited range of component temperatures.
They would therefore not represent a sufficient range of
possible normal WT operational states that are expected to
occur at later stages, i.e., during test time. This lack of
representative training data may cause a substantial drop
in fault detection performance, as observed in [10]. For
wind turbines, the fastest way to amass sufficient data is
by collecting training data from multiple turbines. However,
this approach raises significant data privacy concerns as
manufacturers and operators are hesitant to share operational
data due to strategic business interests [11]. Additionally, data
sharing may introduce risks and complexities in complying
with data privacy regulations, such as the EU General Data
Protection Regulation (GDPR) [12]. To address this issue,
we propose privacy-preserving collaborative learning meth-
ods to leverage training data collected from multiple wind
turbines simultaneously. Federated Learning (FL) emerged
as a promising paradigm to address these challenges [13].
FL enables collaborative decentralised model training across
multiple wind turbines while preserving their data privacy.
By exchanging only FL. model parameters and not operational
data, the sensitive operation data of each wind turbine remains
local and inaccessible to others. This approach allows wind
turbines to collaboratively train an effective NBM with less
data, without compromising their privacy. Federated learning
has gained traction across various domains [14]. It was
also adopted in renewable energy sectors [13], notably in
wind energy applications, for tasks such as wind power
forecasting [15], [16], [17], [18], [19], to obtain significantly
more accurate forecasts compared to local models. It also
has shown promising results in fault detection applications,
exhibiting improved performance over local training method-
ologies for tasks such as blade icing detection [20], [21], [22],
[23], fault detection [24], [25] and condition monitoring with
an NBM [10]. Despite these advancements, the application
of FL for training NBMs for wind turbines remains largely
unexplored.

B. RESEARCH CONTRIBUTIONS

Our study is the first to demonstrate collaborative federated
learning strategies across different wind farms (inter-farm
learning) for training NBMs. We demonstrate collaborative

146618

inter-farm learning for condition monitoring and fault
detection, and compare it to collaborative learning within
a single wind farm (intra-farm). We find that federated
learning across multiple wind turbines consistently outper-
forms normal behaviour models trained on a single wind
turbine, especially when training data is scarce. Further,
we investigate the effects of statistical heterogeneity between
different wind turbines and wind farms in collaborative
machine learning model training. We show that extending
collaboration to multiple wind farms may result in inferior
performance compared to intra-farm learning if model
training data are statistically heterogeneous or imbalanced.
Finally, we present the first investigation of how FL affects
the amount of training data needed to achieve accurate
condition monitoring and its potential in accelerating model
deployment. Our findings show that the amount of historical
data necessary to train an accurate normal behaviour model
can be significantly reduced by collaborative federated
learning.

The objectives of our study are twofold: 1. We assess the
effectiveness of collaborative federated learning strategies
among wind turbines of multiple wind farms, comparing
intra- and inter-farm collaborative federated learning (Fig. 1).
We ask which learning method (local, intra-, or inter-farm)
yields the best results to ensure the reliability of Federated
Learning methods. 2. We quantify the time savings in
collecting training data for a NBM through collaborative FL
across multiple wind turbines compared to collecting training
data from a single WT (referred to as “local” data). This
investigates the concrete expected gain from using Federated
Learning on newly installed farms. These findings should
provide further insights into the added value of FL. methods
in this industrial application.

Inter-Farm

Intra-Farm

- | I
I\ _i< I\ Farm 3 I\

FIGURE 1. Left: Intra-farm learning, only the turbines from the same wind
farms collaborate. Right: Collaborative inter-farm learning on the turbines
of all wind farms.

Il. FEDERATED LEARNING FOR CONDITION MONITORING
OF WIND TURBINES

FL is a collaborative deep learning framework that involves
distributed participants referred to as clients. In our scenario,
each wind turbine acts as an individual client and aims to
collaboratively train a machine learning model for condition
monitoring. In FL, it is crucial that the clients never share
their locally stored data in order to preserve data privacy. The
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iterative FL training process involves that clients train local
models, such as a NBM, using only their private local dataset,
and then transmit the model parameters to a central server
where they are aggregated. This approach ensures the privacy
of locally stored client data and can provide a viable solution
to overcome data scarcity [10], [13]. FL with a central server
involves the following iterative steps:

Algorithm 1 Centralized Federated Learning

Require: R: number of training rounds, central server,
initialized server model
forr=1---Rdo
- N clients receive a global FL model from the server
- All clients independently perform training updates on
this model using only their local datasets &;, i =1...N;
- The clients send the parameters of their updated local
models #;,i = 1...N, to the server
- The server aggregates the parameters of all models
M, to obtain the updated global FL model
end for

The most widely applied FL framework is the Federated
Averaging (FedAvg) algorithm [26] in which the aggrega-
tion step consists of averaging the received model parameters

N
Wt =3 Dyt 1)
i=1

where ' and ] denote the global model parameters and the
model parameters of client i, respectively, in training round ¢.
n; denotes the amount of data available to client i while n is
the total amount of available data across all clients involved
in the aggregation.

Although FedAvg has demonstrated empirical success
and serves as a cornerstone in many FL algorithms, its
effectiveness in real-world applications can be hindered by
statistical heterogeneity, where the data distributions differ
across the clients participating in the learning process. The
clients’ data may differ in their statistical properties and in
size, for example, because of differences in feature distribu-
tions or in label distributions. In wind turbines, individual
turbines may display differing mechanical characteristics
and possibly even differing turbine models and supervisory
control and data acquisition (SCADA) systems may be
involved. Statistical heterogeneity poses a challenge for FL
model training and convergence because the aggregated
model must learn to generalize across the diverse datasets.
The variations among clients result in differences in the
statistical distributions of their local datasets, leading to
non-identically distributed (non-iid) data distributions.

Fleets of industrial assets, such as wind turbines, can
display significant statistical heterogeneity across clients.
In such settings, global FL. models tend to exhibit suboptimal
performance [27], [28] compared to locally trained models.
The latter may even achieve higher accuracy than their
globally trained counterparts [10]. As a result, some clients
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may lack incentives to participate in training the global
FL model ( [10], [29], [30]). To address this challenge,
Personalised FL (PFL) has been proposed to customize global
FL models to individual clients. PFL retains the advantages
of collaborative learning while tailoring the resulting global
FL models to each client’s specific local data. Various PFL
approaches exist, including client clustering [31], [32], [33],
[34], personalised model layers [35], meta-learning [36], and
fine-tuning methods [37]. We refer to [38] and [39] for a
comprehensive overview of customisation approaches, and
to [13] for PFL applications in renewable energy contexts.

Ill. INTRA- AND INTER-FARM FEDERATED LEARNING OF
NORMAL BEHAVIOUR MODELS

Training a NBM on data from a single WT requires a
significant amount of data representative of the WT’s normal
operational behaviour, which may not always be available.
For example, this is typically the case in newly installed wind
farms or after component updates and replacements. The
resulting lack of data to train a representative and accurate
model is known as the cold start problem in computer
science, e.g., [40]. We propose to exploit data gathered
from multiple wind turbines to reduce the amount of time
required for collecting data for training NBMs. We refer
to the time savings as the cold start speed up because it
is the speed up achieved by training a NBM from scratch
through collaborative training rather than training on only
local data. Due to privacy considerations, the data from
individual turbines are kept confidential, so no data sharing
with other wind turbines or servers is allowed. We employ FL
for collaborative learning across different wind turbines and
different wind farms. We assess the impact of having multiple
turbines with different specifications in different wind
farms on the efficacy of collaborative learning. Condition
monitoring often relies on NBMs which simulate the normal
operation behaviour of the monitored WT components under
the current environmental and operation conditions. NBMs
are trained on WT data from fault-free operation periods,
and allow quantifying the deviations between the measured
target variables and their expected values as simulated by
the NBM.

A. WIND FARM DATA

We investigate FL. for wind turbine condition monitoring
using SCADA data of WTs from three different wind farms
(Table 1).

The wind farms provide different WT models and site
conditions, which can give rise to statistical heterogeneity
of the WTs’ SCADA variables. An illustrative example of
the present statistical heterogeneity in our selected wind
farms is shown in Fig. 3. The wind farms Penmanshiel and
Kelmarsh exhibit similar configurations, sharing identical
SCADA variables, whereas the EDP wind farm features a
different SCADA system. We chose 10-minute averages of
wind speed, ambient temperature, and wind direction as input
features for the NBM, with gear-bearing temperature as the
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TABLE 1. Description of the three wind farms used in this study.

Wind farm Penmanshiel Kelmarsh EDP
Location 55.906°N, 2.262°W |52.402°N, 0.945°W |unknown
Turbine model Senvion MM82 Senvion MM92 unknown
Time period 2016-2021 2016-2021 2016-2017
Number of turbines | 14 6 4

Rated power 2.05 MW 2.05 MW 2.0 MW
Rotor diameter 82 m 92 m unknown
Cut-out wind speed |25 m/s 24 m/s 25 m/s
SCADA data source | [41] [42] [43] & [44]

% of training data

100 -
. i I i I
I EDP
20 B Kelmarsh
{888 Penmanshiel
- * _ - -

0

& L W W W S M M ey
[\ N \ b ¥ [ b (SR b ¥ b‘b
AT @ e D e & A

FIGURE 2. Proportion of data available per wind farm when taking
different time windows of data (1 to 12 weeks by 1-week intervals). Due
to a larger share of missing data, SCADA data from the Penmanshiel farm
represents only a comparably small amount of total data, whereas the
EDP farm represents a share of roughly 50% to 60% across varying
training set sizes.

target variable to be predicted. Our selection follows one
possible common set-up (e.g., [45]), while we further restrict
ourselves to SCADA variables matching across our differing
SCADA systems. The SCADA data were cleaned manually
by removing curtailment periods and outliers (removing
times when the turbine was not operational with wind for
example). During the creation of input windows, we use
linear interpolation to fill the gaps smaller than 1h and
remove windows containing a larger gap. Wind speed and
ambient temperature were normalised, while wind direction
was cyclically encoded by a sine-cosine transformation.
Details of our pre-processing are available in our provided
implementation.

The SCADA datasets of the EDP, Kelmarsh and Pen-
manshiel wind farms contain significant fractions of missing
values of 1%, 5%, and 30%, respectively. This leads to
the data balance depicted in Fig. 2. The FL algorithm
FedAvg applied in our study weighs the WTs’ contribution
to the training in accordance with the fraction of training
data available from them (eq. 1). This data imbalance,
depicted in Fig. 2, can therefore affect the learning process in
intra- and inter-farm FL.

For our experiments in this case study, we randomly
selected four turbines from each of the three wind farms
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Kelmarsh WT
Penmanshiel WT

ing Temperature [°C]
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FIGURE 3. lllustration of the statistical heterogeneity across the three
considered wind farms. We used a randomly selected WT from each farm
for comparison of the data distributions. Left: The distribution

of the wind speed, an input feature of the NBM. Middle: Distribution of
the target variable, the gear-bearing temperature. Right: A scatterplot of
the power (input feature) in relation to the output feature (gear bearing
temperature).

to reduce data imbalance and computational cost for FL
model training. SCADA data from the resulting 12 WTs
in total was used to train a NBM with FL. From our
dataset, we extracted 24-hour trailing windows as model input
samples to ensure that the NBM can capture the temporal
dynamics and operational conditions of the past 24 hours.
That is, the task of the NBM is to predict the gear-bearing
temperature at the end of the 24 hour window sample based
on the respective historical data of the input features.

B. MODEL ARCHITECTURE AND TRAINING

The NBM trained in this study is an LSTM (Long Short-Term
Memory) network, selected due to its suitability for time
series data and its ability to capture temporal dependencies
in the data, consisting of layers of LSTM units followed
by fully connected layers. The NBM predicts the expected
gear-bearing temperature at the end of the 24 hour input
sample. The resulting LSTM model comprises two LSTM
layers of sizes 16 and 64, respectively, and ReLU activation,
followed by two fully connected layers of sizes 64 and 32 with
ReLU activation. Hyperparameters of the LSTM network
were optimized by searching for the best performance on
a single randomly selected turbine from the Penmanshiel
wind farm, whose data presented greater complexity than
the turbines of other wind farms. We used random grid
search and manually iteratively restricted the grid boundaries
according to the insights from preliminary results (e.g.
removing learning rates that are too low/high according
to grid search) to get an increasingly improving search.
The metric used for the selection was the MAE on the
validation dataset and the search space was defined via
standard parameters such as network depth, layer sizes, Adam
optimizer parameters, learning rates and so on. The initial
boundary of our search was taken excessively large and was
successively refined to go from coarse to fine parameter
tuning.

To assess the reduction of the training data accumulation
time (cold start speed up), we train our NBM using increasing
time intervals of training data. We will start by selecting a
specific date as the start date. Then, for each start date, we will
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train multiple NBMs, each incorporating progressively more
historical data by using different time ranges of training
data. The time ranges commence from the selected start
date and incrementally increase by one week, reaching a
maximum of 12 weeks. This approach allows us to evaluate
the impact of FL on reducing the time required to accumulate
adequate data for model training. To account for seasonal
variations and avoid bias towards any particular season,
we select four different start dates spread evenly throughout
the year: December 2016, March 2017, June 2017, and
September 2017. For each of these start dates, we train models
using all 12 different time ranges, enabling a comprehensive
evaluation of the cold start speed up achieved by FL across
different seasons. For each start date, a test set is given by the
4-week time window that follows the 12th week of training
data as illustrated in Fig. 4.

Number of week local dataset Test dataset

1] 2] i I

A

1 day gap

4 weeks

FIGURE 4. For each training time range from 1 to 12 weeks, we select the
subsequent 4 weeks as the test set, beginning at the end of the 12-week
training period. We introduce a one-day gap between the training and
test sets to prevent data overlaps of the time windows. This is repeated
for each starting date on the first of December 2016, March 2017, June
2017, and September 2017.

Each local dataset is split into 80% for training and 20%
for validation. We note that in the case of only one or up
to two weeks of data, this may result in a validation dataset
that is not fully independent from the training dataset due to

autocorrelation of environmental condition time series.

C. LEARNING STRATEGIES

For each training set described above (defined by a selected
start date and time range), we trained normal behaviour
models of gear bearing temperature according to three
different learning strategies representing different types of
collaboration:

e Local learning: Each wind turbine independently trains
its own model using only its local data without any
collaboration with other turbines.

o Intra-farm learning: Each wind farm utilizes FedAvg
to train its own FL model, with no exchange of data
or knowledge across different wind farms. Models are
trained on similar clients, as WTs within a given wind
farm typically exhibit similar and correlated SCADA
data patterns. Employed in [10].

o Inter-farm learning: WTs of multiple farms participate
in a single FedAvg learning process. The participating
turbines involve different WT models, SCADA systems,
and geographic locations, which results in significant
data heterogeneity among the participating WT clients.

All models are trained by minimizing the mean squared

error between the measured and the predicted gear bearing
temperature using an Adam optimizer at a learning rate of
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0.0008 and batch size of 256. Training is stopped once the
validation loss (i.e., calculated either over the local WT’s
validation data for local training or as an average across all
involved validation sets in FL) stops improving. The intra-
and inter-farm learning strategies are illustrated in Fig. 1.

As outlined in Section I, globally trained models resulting
from the FedAvg algorithm may in certain cases result in
inferior performance compared to exclusively locally trained
model. To this end, we additionally employ fine-tuning as a
Personalized FL approach. For each FL strategy, we assessed
the performance of the trained normal behaviour models with
and without fine-tuning. Fine-tuning involves retraining the
global model on each wind turbine’s local training data after
the FL training process. Fine-tuning is commonly used as
a customization process in FL applications (e.g., [13]) and
aims to retain knowledge embedded in the global model while
further adjusting the model weights to local WT data, thereby
possibly improving performance, as demonstrated in [10].
Moreover, it can be viewed as extra, post-training local
updates, thereby not requiring any additional framework or
coordination. We consider identical feature and label spaces.
Other types of FL, such as vertical FL and federated transfer
learning [46] are not considered in this study. We provide our
implementation on GitHub.!

IV. RESULTS AND DISCUSSION

A. FL OUTPERFORMS LOCAL TRAINING IF TRAINING
DATA ARE LIMITED

We compare the FL strategies by analyzing the quality of the
NBMs trained for the gear-bearing temperatures of the twelve
WTs from the three wind farms. We assess the average Mean
Absolute Error (MAE) of the individual WTs when trained
with the respective learning strategy and training data time
range. This average is taken across all time ranges, start dates,
and all twelve wind turbines. We will discuss both the impact
of fine-tuning on the models’ performances and compare the
relative effectiveness of the different learning strategies. The
results are given by the unweighted average of the MAE
(predicted v. actual temperature) for each turbine (on the test
set) using either the global model (non-fine-tuned results) or
the specialized model for that turbine (fine-tuned models or
local training).

As shown in Table 2, the overall best result is obtained
by using intra-farm FedAvg with fine-tuning, followed
by inter-farm learning with fine-tuning. Intra-farm FedAvg
with fine-tuning demonstrates a significant improvement
over local training, reducing the MAE by approximately
40%. While inter-farm FedAvg with fine-tuning also
demonstrates improvement over local training, it falls slightly
behind fine-tuned intra-farm learning.

a: FINE-TUNING
Across all strategies evaluated, fine-tuning always outper-
forms the performances of the global model. The results

ICode available at https://github.com/Energy WeatherAI/FL-Wind-NBM
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TABLE 2. Mean absolute errors (in °C) of the gear-bearing temperature
NBMs trained with different learning strategies, averaged across all time
ranges, start dates, and wind turbines.

‘ FedAvg ‘ Local ‘
Fine-tuned | Intra-farm | Inter-farm
no 1.31 6.92
yes 0.87 0.97 1.44
3.0 - Local

—— FedAvg Intra-farm
—— FedAvg Inter-farm

MAE (°C)

N ¥ P
N o o N a S N
Training Set Size

FIGURE 5. Mean absolute errors for fine-tuned redavg and local
training. We show the error depending on the size of the training set
(with evaluations in 1-week intervals). The losses are averaged across all
start dates and wind turbines. The relative performance of the considered
strategies remains consistent across varying training set sizes.

of Table 2 suggest that fine-tuning federated models com-
bines both local and collaborative knowledge embedded
in the global FL. model (knowledge obtained from differ-
ent turbines), even though non-fine-tuned models exhibit
moderate to poor performances compared to local training.
This highlights the importance of fine-tuning in consoli-
dating collaborative learning gains and improving model
performance.

b: LEARNING STRATEGIES

We obverse that after fine-tuning, the federated strategies
sharply outperform local training. This is particularly so when
little training data (less than a few months, as in this study) is
available as shown in Fig. 5.

However, while intra-farm learning outperforms local
training by approximately 9% without fine-tuning, inter-
farm learning without fine-tuning performs very poorly (the
MAE is about fivefold higher than local training according to
Table 2). This discrepancy may be caused by the significant
statistical heterogeneity between the wind farm SCADA
variables.

The relative performance between local training and fine-
tuned intra- and inter-farm FedAvg remains consistent
across all time ranges considered, as shown in Fig. 5.
FL consistently exhibits a strong improvement compared to
local training, even with 12 weeks of training data.

c: SEASONALITY
Our above results were averaged over different start dates.
We investigated whether the results depend on the time of
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Dec. 2016 Jun. 2017

—— Local

Intra-farm FedAvg
Inter-farm FedAvg

¥ &
N ¥ -_y& » P /\ S

Training Set Size

FIGURE 6. Mean absolute errors for each start date, with fine-tuned
Fedavg and local training. These results are averaged across all turbines.

Intra-farm

w

Speed up by 66 days

-
[8a]
<
= 1 - “Qg=====-—--————-==-===
T
! 18 days
0- 1 ! 1 1 1 1 1 1
Inter-farm
- Speed up by 58 days Lacal
—— FedAvg
5)
&
4]
<
=

Training Set Size

FIGURE 7. The mean absolute error for the intra-farm (top) and the
inter-farm (bottom) setting. Fedavg with fine-tuning reduces the time
needed to accumulate the amount of historical training data required to
achieve performances comparable to local training by 66 days in
intra-farm learning and by 58 days in inter-farm learning, when averaged
across all WTs and start dates.

year and found they remain largely consistent across different
seasons, as shown in Fig. 6. In all seasons, intra- and interfarm
FL enable more accurate NBMs than local training.

Fig. 6 shows that the evolution of the mean absolute
errors for fine-tuned FedAvg and local training by start-
ing date is also consistent across all seasons with the
exception of the starting date in June 2017. A possible
explanation for this behaviour is a seasonality-based data
distribution shift between the training and test set for
the Kelmarsh wind farm, which is discussed further in
Section I'V-C.

VOLUME 13, 2025
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TABLE 3. Mean absolute errors (in °C) of the gear-bearing temperature
NBMs trained with different learning strategies from each wind farm,
averaged across all time ranges, start dates, and wind turbines of the
respective wind farm.

FedAvg Local
Fine-tuned | Intra-farm | Inter-farm

EDP no 1.74 2.33
yes 1.35 1.44 2.10

Kelmarsh no 1.18 1.81
yes 0.87 0.65 1.23

Penmanshiel no 1.02 16.65
yes 0.40 0.82 1.00

Penmanshiel

0.5 =

i

Kelmarsh
2.0 -
O 15 =
<
:‘:J 1.0 -
=
0.5 -
1 1 1
EDP
6 -
~ Local
8 ) Intra-farm FedAvg
L<Ic.] 47 Inter-farm FedAvg
=

S ]
& R &
> ES S
Training Set Size

FIGURE 8. Evolution of the mean absolute errors (in °C) for fine-tuned
FedAvg and local training across varying training set sizes. These losses
are the averaged results across all start dates and turbines within each
wind farm. Fine-tuned federated learning consistently outperforms local
training across wind farms.

d: FL STRONGLY REDUCES THE TRAINING DATA
COLLECTION TIME

The cold start speed up refers to the reduction of time
needed to accumulate the amount of historical training
data required to achieve performances comparable to local
training when employing FL. As shown in Fig. 7, FedAvg
with fine-tuning reduces the training data collection time
by approximately eight to nine weeks out of the twelve
weeks under consideration in intra-farm and inter-farm FL.
For example in Fig. 7, to achieve the equivalent accuracy
of the best performing gear bearing temperature NBM
trained with local data, intra-farm FedAvg with fine-tuning
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TABLE 4. Mean absolute error (in °C) for each wind farm, start date and
learning strategy, averaged across all time ranges, and wind turbines
within each wind farm.

| | Il EDP Il Kelmarsh Il Penmanshiel
FedAvg Local FedAvg Local FedAvg Local
Fine-tuned || Intra-farm | Inter-farm Intra-farm | Inter-farm Intra-farm | Inter-farm

2016-12-01 no 1.79 2.49 0.81 1.82 0.95 17.80
yes 1.48 1.53 224 0.42 044 072 0.34 077 10.93

2017-03-01 no 1.67 247 0.78 1.93 0.94 16.32
yes 139 1.51 223 0.35 040 | 0.59 0.25 0.68 | 0.83

2017-06-01 no 1.77 2.02 2.08 1.85 1.06 13.76
yes 1.30 1.32 1.88 1.89 0.96 2.08 0.48 0.85 1.09

2017-09-01 no 174 234 1.06 1.63 L2 18.76
yes 1.24 138 | 2.05 0.83 0.80 1.53 0.52 0.97 1.16

requires only 18 days compared to the 84 days of training
data required using local data only. This speed up allows
for earlier deployment of accurate NBMs, enabling earlier
fault detection and thereby reducing the risk of undetected
incipient faults.

B. RESULTS BY WIND FARM

The statistical heterogeneity of the datasets of different
clients can present a significant challenge to collaborative
learning. Our results suggest that increasing the number of
WTs involved in the training does not necessarily lead to
improved collaborative learning outcomes, even after fine
tuning. In particular, if the data distributions vary among
the different wind turbines, the performance of collaborative
learning across WTs of different wind farms (inter-farm
learning) can be worse than that of collaborative learning
within a given wind farm (intra-farm learning).

We also assessed the performance of FL for NBM training
in the context of the individual wind farms. We averaged the
accuracies of the NBMs across the four turbines involved in
the FL training from each wind farm, as shown in Table 3.

FedAvg with fine-tuning consistently outperformed the
other learning methods at each wind farm. Intra-farm FL with
fine-tuning significantly surpasses the accuracy of inter-farm
learning with fine-tuning at the Penmanshiel wind farm,
as shown in Table 3 and Fig. 8. The comparatively poor
performance of inter-farm FL is likely related to the low
fraction of SCADA data from the Penmanshiel wind farm,
as its small data contribution to the inter-farm FL training
results in a small contribution to the inter-farm FL model.
The non-fine-tuned inter-farm MAE is substantially higher
(16.65 °C), indicating that the NBM primarily learns from
the other two wind farms in the case of inter-farm learning.
Conversely, the EDP wind farm exhibits minimal disparity
between intra- and inter-farm learning. This is likely because
a significant portion of the global model’s influence stems
from EDP’s data, which accounts for roughly 50% of the total
data across the various wind farms (as depicted in Fig. 2).
Thus, the global model’s performances on EDP’s wind
turbines are less affected by the heterogeneity introduced by
other wind farms’ data.

For each wind farm, the implementation of FL strategies
results in a significant cold start speed up, with saved time
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FIGURE 9. Cold start speed up for fine-tuned Fedavg. These MAEs are averaged across the different start dates and
turbines within each wind farm. For each farm, Fedavg consistently provides a cold start speed by achieving the best
considered performance of local training several days earlier.
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FIGURE 10. Mean absolute error for all four start dates and wind farms to illustrate the impact of seasonality on the
results. These results are averaged across the turbines within a given wind farm.
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ranging from four to more than ten weeks. This phenomenon
is illustrated in Fig. 9, where the cold start speed up for fine-
tuned FedAvg is depicted. The most substantial reduction
in the time required to collect training data occurs with
intra-farm learning with fine-tuning in the Penmanshiel wind
farm.

We considered four different start dates, one in each
season, to investigate how seasonality impacts the accuracy
of NBMs trained with different FL strategies at each wind
farm. This resulted in twelve combinations of start date and
wind farm, as shown in Fig. 10 and Table 4.

Intra-farm learning with fine-tuning emerged as the
best-performing strategy in most cases (10 out of 12), and
inter-farm learning with fine-tuning in the remaining two
cases which pertain to the Kelmarsh wind farm. In one of
the two cases, the difference between intra- and inter-farm
is insignificant, in the other case, we explain in more
details what might have happened in Section IV-C. We also
investigated how the different learning strategies perform
for individual wind turbines and found that the previous
results from Sections IV-A and IV-B are confirmed also
at the WT level. Federated learning enables more accurate
normal behaviour models than local training with limited
data, and a reduction in the amount of time needed
to collect the required model training data. Fine-tuning
provided more accurate NBMs in all cases. Moreover,
intra-farm FL tended to provide more accurate NBMs than
inter-farm FL.

C. GROUND TRUTH EXAMPLES AND DISCUSSION

We examine the model prediction compared to the ground
truth of the gear-bearing temperature for one selected turbine
from each wind farm. We restrict ourselves here to models
trained on three weeks of training data in December for
Fig. 11 and June for Fig. 12, using the corresponding
four-week test dataset for evaluation. This analysis provides
insights into the performance of various learning methods,
enabling a qualitative assessment of FL. Notably, predic-
tions from local training (no collaboration) and fine-tuned
FedAvg closely align with the ground truth. However, non-
fine-tuned FedAvg exhibits inferior performance, especially
in scenarios characterized by significant data heterogeneity
among clients, such as inter-farm learning.

Fig. 11 illustrates the performance of the local, intra-
and interfarm learning strategies on the respective test
sets. A single WT has been picked randomly from each
wind farm to this end. One important observation from
Fig. 11 is the widening error of non-fine-tuned inter-farm
FedAvg as the data proportion decreases. Specifically, the
red curve representing non-fine-tuned inter-farm FedAvg
for Penmanshiel (the wind farm with the smallest data
proportion) shows a pronounced deviation from ground truth
and is closer to the temperature ranges observed in the
Kelmarsh and EDP wind farms. This disparity arises from
the observable heterogeneity, with Penmanshiel exhibiting a
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temperature range of 25 °C to 35 °C, contrasting with the
40 °C to 60 °C range observed in Kelmarsh and EDP wind
farms. FedAvg attributes a larger weight to clients with
more data, resulting in Penmanshiel’s turbine contributing
significantly less than those of Kelmarsh and EDP wind farms
(see Fig. 2).

Non-fine-tuned intra-farm learning outperforms non-fine-
tuned inter-farm learning in this case study. This indicates
that the different wind farms involved in the collaborative
FL process end up competing to achieve different learning
objectives rather than collaborate. However, this disparity is
no longer visible after fine-tuning and opens the question of
whether there is a retention of collaborative knowledge.

While these observations hold across most start dates and
time ranges, a different behaviour emerges in situations where
the local training fails to fit the test set, as shown in Fig. 12.

In Fig. 12, the overall observations remain consistent,
except for the Kelmarsh wind farm during the testing
period between September 11 and September 17. During
this period, local training fails to effectively fit the ground
truth, likely indicating data points lying outside the range
of the model’s training data, leading to poor generalization.
Upon examining the data distribution of various features,
we find no indications of anomalous behaviour during
that period. Furthermore, we observe wind speed and
ambient temperature value ranges slightly higher and lower,
respectively, in the affected test set compared to the training
set. Such variations are expected when comparing weather
conditions between June and September. A distribution shift
being a possible cause is further supported by the observation
that during this period, inter-farm learning, both with and
without fine-tuning, outperforms intra-farm learning (see
also Fig. 6). This suggests that inter-farm learning may
benefit from insights gained from other farms, enabling it
to better adapt to locally unseen data. However, in practical
scenarios, our primary concern is not whether a model
trained on data from June will perform well on test data
in September. Instead, our focus would lie on ensuring that
the model performs effectively in the weeks that follow the
training set. We could continuously retrain the model with
new data as it becomes available, thereby mitigating any
seasonality shift and increasing the likelihood of the model
performing well on near-future data in a continuous learning
setting.

D. OTHER ALGORITHMS

In addition to FedAvg, we implemented an alternative
federated learning algorithm named FedProx  [47].
FedProx follows a similar learning process as FedAvg but
incorporates a regularization term in the loss function during
local training, which measures the discrepancy between the
current global model and the updated local model of the
clients. Our preliminary results indicated that FedProx
performs comparably but slightly worse than FedAvg for
both inter-farm and intra-farm learning, for which we did
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FIGURE 11. For each wind farm, we compare ground truth (in black) to the predicted gear bearing temperature
(in °C) using local learning (first row), non-fine-tuned intra and inter-farm Fedavg (second row), and their
fine-tuned version (third row). A single turbine has been picked from each wind farm. Results depicted for the
models trained on three weeks of training data in December.
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not further consider it for further investigation. This may
be attributed to the fact that FedProx slows down local
training to retain more knowledge from the global FL model.
Although FedProx was initially developed to handle
statistical heterogeneity, it mainly addresses covariate shift,
i.e., different distributions of the input variables. However,
as visible in Fig. 3, our input variables, such as the wind
speed, do not exhibit such distribution shifts. Instead, we are
faced with a concept shift, where the task (input-output
relationship) differs across the different wind farms. Such a
shift cannot be resolved by FedProx.

V. CONCLUSION

Our study demonstrated the effectiveness of privacy-
preserving collaborative learning of wind turbine normal
behaviour models for condition monitoring. We demon-
strated that federated learning enables a reduction of the
training data accumulation time, allowing for an earlier
detection of developing faults, compared to local training.
We also found that having more collaborators is not
necessarily better in collaborative learning. In the presence
of high statistical heterogeneity, i.e., significant differences
between the data distributions of the involved wind turbines,
the performance of federated learning across different wind
farms (inter-farm learning) is worse than that of federated
learning within a given wind farm (intra-farm learning).

We assessed two distinct collaborative learning
approaches: inter-farm learning, which involves collaboration
across turbines from different wind farms, and intra-farm
learning, which restricts collaboration to turbines in the
same wind farm. Our analysis shows that high levels of
statistical heterogeneity present significant challenges to
collaborative learning. The accuracy of NBMs trained in
intra-farm learning surpassed that of inter-farm learning
in most situations, underscoring the adverse impacts of
heterogeneity on collaborative learning. We demonstrated
fine-tuning as a successful approach to address FL model
training in view of significant statistical heterogeneity.

These findings highlight the trade-offs involved in deploy-
ing federated learning for industrial condition monitoring.
While collaborative training can enable accelerated learning
and improved generalization when data distributions are
sufficiently aligned, the presence of heterogeneity introduces
challenges that can degrade the model performances. These
insights emphasize the importance of considering the hetero-
geneity for FL deployment.

This study is subject to several limitations. First,
we focused our investigation on an application of a
specific NBM. Further experiments with varying model
constellations, e.g., different input and target variables, more
wind farms, as well as more variations in the data imbalance
and extent of heterogeneity among the farms are required
to validate the generalizability and robustness of our results.
Scaling FL to larger wind farms may also introduce additional
challenges and considerations, for instance regarding
efficiency and the practical deployment of FL. In the latter,

VOLUME 13, 2025

there are furthermore numerous choices open to practitioners
regarding data efficiency, possible privacy enhancements, and
the structure of FL (e.g., centralized server or decentralized
set-up), for which a suitable decision may depend on various
factors. In our study, we considered a standard FL setting
with a central server. In practice, this requires the set-up of
a centralized server handling the coordination, organization,
and communication overhead. Certain considerations might
need to taken particularly when considering more complex
models or scaling FL to larger fleets, as this would follow a
rise in overhead and communication costs. We refer to [13]
for a discussion of factors and challenges regarding the
framework flexibility and choices, computational efficiency,
communication overhead, and scalability of FL.

Lastly, our work is restricted to homogenous feature spaces
and largely similar SCADA systems. An investigation into
federated transfer learning [46] may prove insightful on how
to adapt to changing feature spaces across wind farms.

There are several further directions of future research.
Firstly, our model selection and hyperparameter tuning
processes were conducted on a full dataset from a single
turbine, potentially diverging from real-world conditions
where historical data accumulation occurs incrementally and
disregarding the contributions of the other turbines. Address-
ing this challenge entails the development of automated and
adaptive model selection methods capable of accommodating
evolving data volumes and complexities [48]. Moreover,
integrating FL techniques for hyperparameter tuning [49]
could enhance efficiency and scalability in FL settings. Fur-
thermore, we highlight the potential of continuous learning
strategies [50] to reduce communication costs and training
time in FL by enabling incremental model updates instead
of periodic full re-training. Finally, we considered identical
feature and label spaces of all client wind turbines but did not
consider other types of FL in this study, such as federated
transfer learning [46]. They may be the subject of future
research in wind energy applications.

In conclusion, our study demonstrated the potential and
challenges of collaborative learning in wind turbine condition
monitoring through FL. By advancing our understanding of
effective collaboration strategies and addressing challenges
such as statistical heterogeneity and model adaptation,
we move closer to realizing the full potential of FL for
enhancing the reliability and efficiency of wind farms and
other renewable energy systems.
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