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Multiobjective Output-Feedback
Control via LMI Optimization

Carsten Schereember, IEEE Pascal Gahinetylember, IEEE and Mahmoud Chilali

~ Abstract—This paper presents an overview of a linear matrix control problems [5], [9], [11], [22]. In [29], a complete
inequality (LMI) approach to the multiobjective synthesis of | MI treatment of the general mixeH,/H.., output-feedback
linear output-feedback controllers. The design objectives can be a synthesis problem was presented. This work eventually lead to

mix of H., performance, H, performance, passivity, asymptotic .. . N
disturbance rejection, time-domain constraints, and constraints realizing that output-feedback problems could be “linearized

on the closed-loop pole location. In addition, these objectives can Py @ mere change of controller variables, much like in the
be specified on different channels of the closed-loop system. Whenstate-feedback case [11], [30]. While this change of variable

all objectives are formulated in terms of a common Lyapunov s more sophisticated than its state-feedback counterpart, it

function, controller design amounts to solving a system of linear ftarg an equally systematic means of turning output-feedback

matrix inequalities. The validity of this approach is illustrated by e - , - L

a realistic design example. _speC|f|cat|ons m_to LMI's. We_ would like to stress that similar
ideas emerged in the other independent works [23], [24].

The main purpose of this paper is to give a fairly com-
plete overview of the design technique that guarantees the
desired closed-loop specification in terms ofsiagle Lya-
punov function. The objectives addressed here inclddand

. INTRODUCTION H_, performance, passivity, peak output amplitude, peak-to-
INEAR matrix inequalities (LMI's) have emerged as #&€ak gain, nominal and robust regulation, and regional pole
powerfu| formulation and design technique for a Variet?'&CGment. While most of these results are easily obtained
of linear control problems [9]. Since solving LMI's is a convexXPy applying the controller parameter transformation proposed
optimization problem, such formulations offer a numericalljn [11], [23], and [30], the extension to nominal regulation
tractable means of attacking problems that lack an analyti¢gAuires a modification that is new and reveals the potential to
solution. In addition, efficient interior-point algorithms areaddress an even larger class of problems.
now available to solve the generic LMI problems with a The paper is organized as follows. Section Il gives the
polynomial-time worst-case complexity [8], [18], [25], [26],Problem statement and motivations. Section Ill reviews the
[32]. Consequently, reducing a control design problem to d@rious specifications and objectives that can be formulated in
LMI can be considered as a practical solution to this problefarms of LMI's. Section IV discusses the design methodology
[9]. and its interpretation as a “Lyapunov shaping” paradigm. It

General multiobjective control problems are difficult an@lso defines the critical change of controller variables that
remain mostly open to this date. By multiobjective control, wallows us to linearize the problem and turns it into a set of
refer to synthesis problems with a mix of time- and frequenc}MI’s. Section V lists the resulting LMI constraints for each
domain specifications ranging frof, and H., performance individual specification and discusses how they can be com-
to regional pole placement, asymptotic tracking or regulatioBined to solve various multiobjective problems. Section VI
and settling time or saturation constraints. comments on reduced-order controller design, and Section VII

For the multiobjectiveH»/H.. problem, it has been pro- illustrates this approach on a realistic design example.
posed to Specify the C|Osed-|00p Objectives in terms of aThe notation is falrly standard. The Compact notation
common Lyapunov function [7], [22]. This still guarantees
the desired specifications at the expense of conservatism. As a
benefit, controller design can be reduced to a convex optimiza-
tion problem [22]. The same technique has proved valuable

in arriving at design procedures for various state-feedbagkysed to denote the transfer functi6i{s) = D + C(sI —
A)7LB.
Manuscript received December 8, 1995; revised January 20, 1997. Recom-
mended by Associate Editor, A. Vicino.

Index Terms—Controller parameter change, linear matrix in-
equalities, Lyapunov shaping paradigm, multichannel multiob-
jective control.
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plant is given by the state-space equations In summation, multiobjective design allows for more flex-
ible and accurate specification of the desirable closed-loop
& = Az + Byw + Bu behavior.
Plz=C.o+ D.pw+ D.u 1) Henceforth, all specifications and objectives are expressed in
o terms of the transfer functidfi;, keeping in mind thaf; refers
y=Cx+ Dyw J J

to any particular 1/0 channel in the closed-loop mapping. Since
our approach is state-space based, we first provide a state-

whereu € R is the control inputy is a vector of exogenousﬁg e realization foll; and introduce some useful shorthand
inputs (such as reference signals, disturbance signals, se @9 . J .
puts ( 9 9 notation. With the plan and controllerk” defined as above,

noise),y € R" is the measured output, ardis a vector of losed.| ‘ dmits th lizati
output signals related to the performance of the control systettli]fa closed-loop system admits the realization

Let 7" denote the closed-loop transfer functions frano = Zet = Aze; + Bw
for some dynamical output-feedback control law= K. Our B 4)
. . 2z =Cxqy + Dw
goal is to compute a dynamical output-feedback controller
) where
K{C Ixéls’C + iKy @) A B
= -+ -
(4 IsC KY C D
that meets various specifications on the closed-loop behav- A+BDgC  BCg B, +BDgD,
ior. Typically, these specifications are defined for particular — BgC Ak Bg Dy
chan.n.els'or comb.lnajuon.s of channels. M_ore precisely, each C.+D.DxC D.Cx ‘ D., + D.Dx D,
specification or objective is formulated relative to some closed-
loop transfer function of the form With

Bj = Bij, Cj = LjCZ, Dj = LjDszj

" — TR, 3
CTJ JTRJ ( ) EJ :IL]'DZ, -FJ = DwRJ

where the matriced;, R; select the appropriate input/outputt is readily verified that a realization &;(s) = L;T(s)R;
(/O) channels or channel combinations. Unlike previous woik given by

[13], [22], our approach does not require that the selected input

or output channels are the same for all objectives. Rather A B;

the multiobjective problem considered here is intrinsically C; D;

multichannel A BR.
The specifications and objectives under consideration ;:< J )

include H,, performance,H, performance, dissipativeness, L;C L;DR;

time-domain constraints (peak amplitude, overshoot, settling A+ BDxC BCk B; + BD F;

time), and regulation. Additional regional constraints on the ~ _ By C Ax ‘ BiF; 5)
closed-loop poles can also be imposed. The motivations for )
using such a mix of performance measures are as follows. Cj+ EjDkC  E;Ck ‘ Dj+ E; Dkl

« The H, performance is convenient to enforce robustnedote thatT;(s) is nothing but the transfer function from;
to model uncertainty and to express frequency-domadia z; if specifying the input and output signals in (4) as
specifications such as bandwidth, low-frequency gain, and= R,;w; andz; = L,z.
roll-off.
* The H, performance is useful to handle stochastic aspects|||. LMI F ORMULATION OF THE DESIGN SPECIFICATIONS
such as measurement noise and random disturbance. : . . . .
. . . o This section gives an overview of the various closed-loop
» Passivity requirements appear in specific control systems_ ... N )
. S specifications and objectives that can be captured in the LMI
such as flexible structures and circuits. o :
framework. All LMI characterizations listed below have the

* Time-domain constraints are useful to tune the tran5|efn lowing common origin: let4 andzr; denote the closed-loop

response and peak amplitudes such as the peak of %%aete matrix and state vector, respectively. Since the controller
impulse response, the overshoot of the step response

or : o
the peak control inpu. has to be internally stabilizing, the closed-loop system must

; ) i [ ic L functi
e It is often desirable to enforce some minimum deca‘ril/dmIt a quadratic Lyapunov function

rate or closed-loop damping via regional pole assignment V(za) =25 Pza, P>0 (6)
[11]. In addition, pole constraints are useful to avoid fast
dynamics and high-frequency gain in the controller, whicBuch that
in turn facilitate. its digital implgmer]tatipn. _ ATP+PA<O. 7)
« A general goal is the asymptotic rejection of disturbance
or tracking of reference signals that are generated byTae LMI approach consists of expressing each control speci-
known model (integral control). fication or objective as an additional constraint on admissible
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closed-loop Lyapunov functions satisfying (6) and (7). In the  which is to say that the mappirifj = L;TR; lies in the
multichannel spirit, we consider specifications on a generic sector{«, 3}.

closed-loop transfer functio;(s) = L;T(s)R;, whose  Suppose thaf > 0 and

realization is given in (5). The corresponding LMI constraints T

are therefore formulated in terms of the state-space matri ed"P+PA PB; >+ <Cj Dj)

A, B;, C;, D;. BfP 0 U
Remark 1: Given a quadratic functio)(w,, z;), we use Uy, W;\(C D 0. (10
the shorthand notatio@(w;, z;) < 0 to denote the existence AWE VY o 1)< (10)
of € > 0 such that)(w;, z;) < —ew; w; for all w;. Similarly Recalling thatz; = Cyz + Dyw; and that
T
T /sar
Qw;(t), z(t))dt < 0 d _ (zal(t) ATP+PA PB;\ (za(t)
/0 g Vwat) w; (1) BIP 0 ) \w;(t)
means that for V defined in (6), we infer from (10) that
T T
T
Quy(t), 5@ <~ [ wye ) de d SO\ (U W (50 g
holds for all square-integrable inputs;(.) and some fixed (11)
«>0 Integration from¢ = 0 to ¢t = 1" then yields
A. H_., Performance T\t
» dwpean+ [ (20)
Let ||7}||- denote theH, norm of T, that is, its largest o \Wj
gain across frequency in the singular value norm [15]. The U W zi(t) dt < 0
H_, norm measures the system input—output gain for finite WjT Vi w;(t)

energy or finite rms input signals. The constrg|fft||.. < v
can be interpreted as a disturbance rejection performance.
constraint is also useful to enforce robust stability. Specifically,

it guarantees that the closed-loop system remains stable for gff z;(t) T u, w; z;(t)
perturbationsy = R;AL;z, with A having incremental gain [, \ w;(¢) WE vy J\w;(t)

not larger thanl/~. T
By virtue of the Bounded Real Lemma [4], [284 is stable <x‘:l(t)> <d 0 ) <$Cl(t)>dt <o.
and theH,, norm of 7; is smaller thany if and only if there w; (t) 0 el J\w;(t)
exists a symmetrié® with By standard results from indefinite linear-quadratic (LQ) the-
(ATPJr PA PB; CF ory [33], we conclude that there exists a symmefficsatis-

-and (9) follows by observing that,(T)Pzc(T) > 0.
&onversely, (9) implies that there exists ar 0 with

J

BIP -yl Df) <o, P>0. (8 ™M

¢ Dy =yl <AT7>+7>A PBj> +<cj Dj>T

BfP 0 0 I
B. General Quadratic Constraints U: Wi\ /C: D
i J J J J
Given fixed matrices/; > 0, V; = VI, and W, the <WJT V; ) <0 I )—i—eIS 0

previous characterization extends to more general quadr

constraints onw;(.), z(.) of the form ?tl'%e controllability hypothesis in [33] can be weakened to
MANPARGIAN

stabilizability by a perturbation argument.) This implies (10).
T it _ I
/T <zj(t) ) < U; Wj> <Zj(t) )dt <0 ©) In addition, the left-upper block of (10) reads! P + P.A +
0

w;(t) Wi v ) \wi(®) %TU;CJ0 < 0, which implies? > 0, since A is stable and
. , . =
for z,,(0) = 0 and allT > 0, w; € Ly (with < defined i Hence, we have proved that the existence of a positive
Remark 1). definite solution of (10) is necessary and sufficient fbrto
Important special cases include: be stable and (9) to hold.
« the H,, constraint||T;||.c < = which corresponds to For the purpose of synthesis we need to rewrite (10). We
Uy =1/ V; = =1, W; = 0; factorize U; > 0 as
* the strict passivity c_onstralmj(iw) + T;(iw)* > 0 for U, = Q57107 5, >0,
all w € RU {oo} which corresponds t&/; =0, V; =0, G
W; = -1, Then (10) is equivalent to
. selctor Cojn_?tralgnt?:ea\:lljzmj =1,V; = —apl, W; = ATP L PA PB; +CTW;
—3(a+ 41 (9) BYP+Wre, DIW;+WID;+V;

| et = auws ) s t6) = sty <0 + (G Jomriate oy <o
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A Schur complement argument leads to the final analysisSuppose that there exists a symmetric maRisatisfying

LMI's .
ATP+PA PB; _
P>0 BI'P -I
ATP +PA PB; +C{ W, crQ; P T
"t e i )>0, D;=0.  (16)
BIP+wlc; WFD;+DIw;+V; DIQ; | <0 ¢ ol ; i =0
Qfc; QID; =

(12) The first inequality ensures that(d/dt)V(z.(t)) —
w;(t)Tw;(t) < 0, which yields after integration

for general quadratic performance. r

V(za(T)) < / w; (1)  w;(t) dt.

C. H, Performance 0

AssumeA is stable andD; = 0. The Hz norm of 7; is  Meanwhile, the second inequality implies thay«)C¥C; <
defined by P, and thusz; (1)1 z;(T) < aV(zu(T)). Combining these
1 tee two inequalities leads to
1753 = o Te (T;(iw) " T (iw)) dw T
=~ Zj(T)TZj(T) < o / wj(t)ij(t) dt

and corresponds to the asymptotic variance of the output 0

% = Lz when the system is driven by = R;w; with white - to; o) 7 > 0, whence||T;||2 < «. It is not difficult to show

noisew;. It is well known that this norm can be computed ag,,; the solvability of (16) is also necessary for this norm
75113 = Tr(CjSOCjT), whereS, solves the Lyapunov equationy o ind to hold [27].

ASo + SoAT + BB = 0. . )
0F 0T+ 555 E. Peak Impulse Response and Settling Time

Since Sy < S for any S satisfying Suppose thaP; = 0 and thatZ};(s) is single input. Then the
impulse response; (¢) coincides with the output of the system

{-/I}cl :Axclv .’L'CI(O) = Bj

Zj ICjach.

AS +SAT +B;B] <0 (13)

it is readily verified thaf|7;||3 < v if and only if there exists
S > 0 satisfying (13) andlr (CjSCjT) < v. With an auxiliary
parameter(), we obtain the following analysis resul is

stable and|7;||3 < v iff there exist symmetri® := S~* and

(@ such that

Following [9], a sufficient condition to guarantee that
|z ()] < & for all ¢ > 0 is the existence of a symmetric

P such that
ATP 4+ PA PBj) P PB,
<0 T f
< B]TP .y AP+ PA <O, <B]T77 §I>>O
P Cf) P Yt
>0 / -
<Cj Q <Cj §JI> >0, D; =0. a7)
Tr (@) <v, D,; =0. (14)
Indeed, the inequalities respectively ensure that, fot all0
D. GeneralizedH, Performance wcTz(t)chz(t) SBJ»TPBJ, BfPBj <t

The H,, norm considered in Section IlI-A gives the system T T
o0 T (t)z;(t) < .
gain when both the input and the output are measured in the 2 (0)24(t) < &xa(®)Pralt)
energy orL, norm. Rather than bounding the output energyng the bound|z;(t)|| < ¢ readily follows. Note that un-

it may be desirable to keep the peak amplitude of the outfle most LMI characterizations given in this section, the

#; below a certain level, e.g., to avoid actuator saturationSy| conditions (17) are only sufficient and can prove fairly
If the input w; is still quantified by its energy, this leads t0,q4servative in some cases.

considering the so-called generaliz&id-norm defined by If replacing the first inequality in (17) byATP + PA +
2a/P < 0, the bound orj|z;(¢)|| can be improved tdz;(¢)|| <
| T|ly == sup < ||z;(D)]| : 2 (0) = 0, Se—a_t. T_his can be used to imp_ose an upper bound on the
settling time through the appropriate choicecof- 0 [9].

T
T>0, /0 [[w; (#)]|? dt < 1}- (15) F. Bounds on the Peak-to-Peak Gain

The generalizedd, norm measures the peak amplitude of
This measures the peak amplitude of the output sign@l) the output over unit-energy inputs. Suppose, instead, that the
over all unit-energy inputsu, (). input signalw; is only bounded in amplitude. To bound the
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peak amplitude of,, we then need to consider the so-calle®. Regional Pole Constraints

peak-to-peak gain of; defined by Pole assignment in convex regions of the left-half plane can
|75 peak := sup {||z; ()| : z1(0) = 0, T" > 0, also be expressed as LMI constraints on the Lyapunov matrix
lw(®)|| < 1 for ¢ > 0} ‘P. To this end, a useful tool is the notion of the LMI region

introduced in [11]. An LMI region is any regiofR of the
This measures the peak norm of the output signdt) complex plane that can be defined as
for inputs w,;(¢) whose amplitude do not exceed one. Note .
that | Tj|loe < ||T]lpear @S is easily seen by considering a R={z€C:L+zM+zM" <0} (21)
sinusoidal input with frequency such thato,, .. (7;(j = . .
il P quency (T3(jw)) where L = LT and M are fixed real matrices. Note that
jlloo-
To date there is no exact characterization of the peak- 175 is a convex region in the complex plane. Special cases

peak norm in the LMI framework. However, it is possible t6nc|ude vertical strips, disks, horizontal strips, conic sectors,
derive upper bounds o7} || peax along the lines of [3] and EiPS0ids, parabolas, and arbitrary intersections thereof (see
7 llpea

: [11] for detalils).
[9]. Suppose thaP, A, yi, and¢ satisfy The standard Lyapunov theorem for the open left-half plane

A> {z: 2+ 7% < 0} can be generalized to arbitrary LMI regions.
<AT77+77A+)\77 PB; ) Specifically, a matrix4 has all its eigenvalues in the LMI
BIp —uI regionR if and only if some LMI involving.A is solvable. This
AP 0 result makes LMI regions particularly appealing for synthesis
0 (¢-wl DT (18) purposes.
(Cj D, ) Theorem 2 [11]: The matrix.A has all its eigenvalues in

the LMI region{z € C: [l;j + mi;z +m;Z];,; < 0} if and
Choose anyw;(.) with w;(t)*w;(t) < 1 for ¢t > 0. The onyy if there exists a symmetri® such that
second inequality implies that

[liﬂ) + mij.ATP + mjﬂ).A]i,j < 0, P > 0. (22)

SV (alt) + XV (@a(t)) - () y() <0, (19)

Hence(d/dt)V (z(t)) < 0 holds wheneveV (zq(t)) > u/A. _ _ o
SinceV (x(0)) = 0, this shows that/(z.;(t)) cannot exceed ~We say that a controlleachieves nominal regulatioif it
the value:/\ is stabilizing and iflim: .. z;(t) = 0 holds for all signals

w;(.) in the set

: _ _ {w; () | () = Sw;(t)} (23)
To derive a bound of7}||eax, it Now suffices to bound;(t)
in terms of V(x(t)) and w;(¢), which is achieved through This can be interpreted as asymptotically rejecting the distur-
the third inequality in (18). Indeed, this inequality gives ~ bancew = R;w; from z; = L;z or, equivalently, letting
Cijx + Eju track —Djw; asymptotically. The matrixS is

H. Nominal Regulation

Vigat) <%, for tz0, (20)

ct AP 0 .
§<DT>(C D;) < < 0 (¢- M)I> called the signal generator.
We want to apply the results of [14] that have been
and thus formulated under the following hypotheses:
T T
Zj(t) Zj(t) < C()‘V(xcl(t)) + (C - N)wj(t) wj(t)) (CJ Dj EJ) _ (C E) 0), 0_(5) c oyt
<COV (za() + (€ = )- 4B,
Recalling from (20) that\V(z.(t)) — p < 0, this yields 0 S | is detectable.
2; ()T 2;(t) < ¢2. Summing up, (18) secures the stability of c I
A and the bound J
15 pea < C. The first condition states that the controlled output signal

for this performance specification is identical to the measured

Note that (18) is only linear if fixing\. Finding the best signaly. Since any regulating controller is stabilizing, we can
bound guaranteed by (18) hence requires performing a linfispense with decaying signals which motivate the second
search ovei > 0. The implications for synthesis are clarifiedproperty. If the third hypothesis does not hold, one can in fact
in Section V-E. For the purpose of the analysis, we observgduce the signal generator to arrive at this property without
that we can confine the searchXce (0, —2max Re(c(A))) causing loss of generality. Now we are ready to provide
(with o(A) as the set of eigenvalues of) since this is the solution to the nominal regulation problem as it can be
obviously implied by ATP + PA+ AP < 0. extracted from [14].

Finally, we remark that (18) can be fairly conservative, Theorem 3: There exists a controller which achieves nom-
especially when the system has slow or lightly damped modegll regulation iff the linear equation
that are weakly connected to the outpuft). Also, the peak-
to-peak gain may be a poor estimate of the overshoot of the <A B) <U) _ <U>S — <Bj> (24)
step response. ¢ 0/\V 0 F}
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has solutiond/, V. A controller achieves regulation iff it has Then, define

a realization
u, v, 0 0
S Ck2 | Dk . 0 U; 0
w= |0 Ak Br |y (25) S;=|: U
V Ck ‘ Dy, 0 0 U; V;
0 0 0 U
whereV satisfies (24) (for som¥) and A, Bk, Ck1, Ck2, 0
Dy, and D5 are such that the system 0
R,=| |, S=diagsi, -, S,
v 0
<v;> = |Ck1 Dy |Y (26) W,
J
Ck2 Do i
stabilizes the extended plant R=|:
A BV ’ Bwe B 0 Rs
2y _ |0 S 0o 0 I Z}U 27) where S; is square ands;, R; haves; block rows.
v) |c. D.v D., D. 0 Ul ' Then we arrive at the following classical result [12].
C 0 D, 0 0 2 Theorem 5: There exists a controller which achieves robust
regulation iff
Remark 4: Note that (25) can be factorized as A 3\ B
— (o +48;) has full row rank
LC 0
S 0 I/,
1 U1 .
U = < ), < )z Y forall j=1,---,s.
vV I 0]\v2 V2
K2 D2 A controller achieves robust regulation iff it has a realization
and that (27) is nothing but the original system precompen- Ax  Bg Bieo
sated by we| 0 S ‘ RL |, (29)
S| oI <U1> Ck Di1 ‘ Do
u = .
1’4 I 0| \¥2 where Ay, Bi1, Br», Ck, Di1, andDg- are such that the
system
I. Robust Regulation
J o _ Ak ‘ Br1 Bra| (y
In many problems it is important to keep up the regulation u= ‘ (30)
requirement in the face of uncertainties affecting the plant. The Ck Drr D2 | \Y

controller achievesobust regulationif it achieves nominal stapjlizes the extended plant
regulation (as defined in the last section), even after slightly

perturbing the matrices describing the original system [12]. A0 ‘ Bu b
Classical results about robust regulation apply if z RLC S RLD, 0 w
vi=1cC. o0 D., D. <u ) (31)
(C; D; E;)=L(C F; 0), L of full row rank y 0 I 0 0
o(S) ccluct. (28) cC 0 Dy, O

The first condition implies that the controlled output signal ~ Remark 6: Now, regulator (29) can be factorized as

is a linear functionLy of the measured output, and the second Ag ‘ Bri B
one can be made since decaying signals are automatically U= <U>
regulated if the system is stabilized. Ck ’ Dry Dio | \Y
By the internal model principle, any robust regulator must S RL
contain a replica of the signal generator dynamics that can be v = [4'7 Y
constructed as follows. Létbe the number of rows of, let I 0
a; +ifB;, j = 1,---, s, be the list of all pairwise different and (31) is nothing but the original system postcompensated by
eigenvalues of with nonnegative imaginary part, and denote ~ -
by s; the size of the largest Jordan blgck~corresponding to v = [S RL ’.
a; +if3;. Then define the internal modé$, k) as follows. I 0

(o, =551 - _ (L, O . . .
< If B >0, setU; == (4 %) Vi=1(0 1) In contrast to the nominal regulation problem, the internal
W, = (2) model is hence put at the output of the system to arrive at
o If 8, =0, setl; :=o,;;, V; =1, W; =1. the extended system (31).
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In [12] this result is stated with the following modification:reduced to LMI’swithout additional conservatisras shown
replaceR by an (varying)R such that(S, R) is controllable. below.

Hence, as an additional ingredient, we claim that one can fixBefore moving to the LMI solution of this simplified

R to R without loss of generality. Indeed, it is not difficult toproblem, we make a few comments on the implications of (32).
show the following algebraic fact: for ang such thqt(S‘, R) Clearly, this restriction is stringent and brings conservatism
is controllable, there exists a nonsingutawith 7-1S7 = S into the design. Nevertheless, the resulting synthesis technique
andT~'R = R. Hence, ifR differs from R, we just need to has valuable merits over existing alternatives. First, it is nu-
perform a state coordinate change in the controller to transfomerically tractable since it leads to an LMI problem. Second,
R back to R. it produces controllers of reasonable order. Finally, it exploits
all degrees of freedom iR. Specifically, the Lyapunov matrix

‘P is shapecby LMI optimization until either all specifications
are met or all degrees of freedom are exhausted.

In the previous section, several time- and frequency-domainThis Lyapunov shaping paradigm offers greater flexibility
specifications have been expressed as LMI constraints than standard “optimal” design techniques. For instance, sup-
the closed-loop state-space matrices and Lyapunov functiopsse that we need to minimize ti##, norm on one channel,
These analyses’ results are now used for multiobjective syntkgmbject to some moderatl,, performance requirement on
sis purposes. We begin by formalizing the underlying principlgnother channel. While there may be a large set of Lyapunov
and discussing its merits and limitations. We then proposgatrices’ compatible with the specified., performance,

a systematic procedure to turn analysis results into LM¥__-synthesis techniques based on Riccati equations are un-
constraints on the synthesis variables. This procedure reliesabie to exploit these additional degrees of freedom and may
a simple change of controller variables to map all LMI's ofeturn a solution with poorH, performance or unaccept-
Section lllinto a set of affine constraints on the new controlleibly fast controller dynamics. In contrast, multiobjective LMI

IV. LMI A PPROACH TOMULTIOBJECTIVE SYNTHESIS

variables and the closed-loop Lyapunov function. synthesis will use these degrees of freedom to optimize the

H, performance or pole location. Thus our approach, while

A. Lyapunov Shaping Paradigm conservative, is nonetheless an improvement over classical

Our goal is to compute a single LTI controlldd that: Zifghﬁz's techniques and a valuable tool to fine-tune complex
1) internally stabilizes the closed-loop and 2) meets certain gns.

specifications on a particular set of channels. The specificatigns
under consideration are those listed in Section lll. For ea
specification, we have an analysis result of the form: In the state-feedback case, the simplification (32) makes all
T; satisfies the specificatios; if there exists a Lya- ~nequalities affine inP ' and FP~%, where " is the state-
punov matrix?; > 0 that satisfies some given LMI in feedbgck gain to b_eldetermmefil. It then only takes.the .change
P.. of variablesX = P~*, F = F'P~! to turn all constraints into
! LMI's. A similar approach was long believed beyond reach in
X : L X the output-feedback case. However, recent results [11], [24],
cations Sy, ---, Sy (without restriction on which channel ;34; haye proved otherwise. This critical change of variables

they.épp'_y)- When gathering. the LM formul_ati_on of €aCls defined next. Note that we use boldface letters to emphasize
specifications;, we end up with a set of matrix inequalitiesy, o | optimization variables.

whose variables are:

Linearizing Change of Variable

Suppose that our synthesis problem invol&s specifi-

Let n be the number of states of the plant (sizeAf and

+ the controller matricesly, Bx, Ok, Dx; _let k be the order of the controller. Partitidh and P! as
. the_N Lyapunov matricesP;, ---, Py (one per specifi- Y N ) X M
cation); P= <NT . >7 P = <MT N ) (33)
« additional auxiliary variables such &g (H; norm), A, i
(peak_to_peak norm), and (nomina| regu|ation). where X andY aren x n and symmetric. FronPP—1 = 1,
Since expressions likd”P; +P; A involve products of?; We infer 7’(]&2) = (}) which leads to
and the controller variables, the resulting feasibility problem ) X 7
is nonlinear. Hence, it cannot be handled by LMI optimization PIL =11 with IT; := <MT 0)
and does not seem easily tractable numerically.
To recover convexity, we must require that all specifica- I, = <é ]\I;T) (34)

tions are enforced by single closed-loop Lyapunov function
V(za) = 24Pz with P > 0. This amounts to imposing the Let us now define the change of controller variables as follows:

constraint (A:=NAxM?T + NBxCX +YBCyM?
P=.=Pyx="P. (32) +Y(A+BDC)X
B:=NBy +YBDy (35)
This restriction has been extensively used in the state-feedback | ~, _ . ¢ ’
case [6], [9] and in previous work on mixdd./H ., synthesis C =CM™ + DX
[5], [22]. With (32) in force, all inequalities can be further | D :=Dg.
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Note that the new variabled, B3, C have dimensions x n, M, N, andP that satisfy (34). Looking at the left upper block
n X n,, andn, x n, respectively. IfA/ and N have full of PII; =1l,, M and N should be chosen such that
row rank, and if)l, B, C, D, X, and Y are given, we
can always compute controller matricels;, By, Ck, Dk MNT =1 -XY. (39)
satisfying (35). IfM and NV are squarek = n) and invertible
matrices, thendy, By, Ck, and Dy are unique. For full- By (f;) > 0, we inferY > 0, X —Y~! > 0 such that
order design, one can always assume thatand N have I — XY is nonsingular. Hence, one can always find square
full row rank. Hence the variabled i, By, Cx, D can be and nonsingulai/ and N satisfying (39). After definindl;,
replaced byA, B, C, D without loss of generality. Note thatII, as in (34), we observe that these matrices are nonsingular,
this same change of variables was already used in [17] in thed we can seP = H2H1_1 to obtain (34). SinceM and
context of pureH ., control and in [11] and [30] for special N are nonsingular, (35) can be solved bYy, Ck, By,
cases of the general multiobjective problem discussed in tlisd A; in this order. Since (34) and (35) imply (36), we
paper. know that (37) and (38) are identical. Recalling that

The motivation for this transformation lies in the followingis square and nonsingular, we can reverse the congruence
identities derived from (34) and (35) after a short calculatiotransformation with diagll;, /) to obtain (16) from (37).

~ A Hence the constructed controller indeed lead§Zg||? < «.

AX j; BC éifgg) Let us finally observe that the synthesis LMI’'s areg also affine

LT PALL =117 ALl = <
in «. Hence, minimizinga subject to the LMI constraints

nTPB; =115, = <Bj + BPFJ> (38) is also an LMI problem. For the controller computation,
YB; + BF; however, one should keep in mind that— XY ought to
¢, =(C; X + E;C C;+ E;DO) be well conditioned to avoid ill-conditioned inversions of the
- - X 7 matricesM and N. Unfortunately,! — XY will be nearly
Pl =1 1y = <I Y)' (36) singular if the constraint (41) is saturated at the optimum.

To avoid such difficulties, we advise the following remedy:
In light of these identities, we are ready to show how synthesifoose some nearly optimal value @f and include the LMI
LMI's can be derived from the analysis results of Section IlI
via a suitable congruence transformation. A detailed proof is X
given only for the generalizedi, problem. <tI Y) >0

Fix o > 0 and suppose that (16) holds for soffe> 0 and
some controller with realizatiofd i, Bx, Cx, Dx). We can with the additional variablé and maximizet. This procedure
assume without loss of generality that this controller is of ordemaximizes the minimal eigenvalue &Y and, hence, pushes
at leastn, and thatd/ and IV in (33) have full row rank (see it away from one such thaf — XY is expected to be well
[17] for details). By (34), and sinc® is nonsingular]l; has conditioned.
full column rank. If we perform a congruence transformation

with diag(1l,, I) on both inequalities (16), we obtain C. Synthesis LMI's and Controller Computation
NFATPIL + 11EPALL, UEPB; <0 The discussion of the last section allows us to extract a
BfPHl —1 recipe for getting to an LMI synthesis result on the basis

nfpr, nict of an LMI analysis result: suppose the analysis result is

< C;1L al ) >0. (37) formulated in terms of LMI's in the block®, P.A, PB;, Cj,
D;, and their transposes, and suppose one can find congruence
Now we just need to replacd? P .All;, HITPB]», C;1I;, and transformations of these LMI's that involve the blodk;
II{PIL; by their explicit expressions (36) to arrive at (38)and that transform the original LMI's into LMI's in the
shown at the bottom of the page. These inequalities/equatidmscks I1¥PII,, ¥ PALL, ITPB;, C;II;, D; and their
are clearly affine in?l, B, C, D, X, Y. Thus we have proved transposes. If one substitutes all the appearing blocks by
that the solvability of these LMI's imecessaryfor the exis- the formulas (36), one arrives at the corresponding synthesis
tence of a stabilizing controller renderifd’|? < a. LMI'sin A, B, C, D, X, Y and possible auxiliary variables.
Let us now reverse the argument and assume that we h&fger solving the synthesis LMI's, the controller construction

found solutions to the LMI's (38). First we need to construgiroceeds as follows: find nonsingular matridds /V to satisfy

AX + XAT 4+ BC + (BC)T A"+ (A+ BDO) B; + BDF;
( A+ (A+BDO)T ATY + YA+ BC + (BC)T YB; +BF; | <0
(Bj + BDF))" (YB; + BE;)* —1
X I (C;X + E;C)T
( I Y (C; + EJDC)T> >0, D;+E;DF;=0  (38)
C,X +E;C C;+E;DC al
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MNT =] — XY and define the controller by Since the requiremeriP > 0 is common to all analysis
results of Section Ill, the constraint
(D]' :ID
L r X 1)y (41)
CK = (C—DKCX)M I Y
By :=N"'(B-YBDy) (40) _ _ _ _ _
R T should always be included in the list of synthesis LMI’s, either
Ag :=N""(A- NBxCX - YBCOxM explicitly or as part of some other LMI constraint [see, e.g.,
- Y(A+BDrC)X)M™T, the second LMI in (38)].

This gives a formal description of all problems to whict\. Hoe Synthesis

we can apply the controller parameter transformation in orderthe analysis LMI's (8) are transformed withl; and

to obtain the synthesis LMI's. The proof is literally the sam@iag(Il, I, I). Then, (36) leads to the synthesis LMI as
as for the generalized/,> problem discussed in Section IV-in (42), shown at the bottom of the page, whereeplaces

B. Note that the necessity part of the proof does not restrisfocks that are readily inferred by symmetry. Singenters

the order of the controller and that the construction in thgearly, it can be directly minimized by LMI optimization to
sufficiency part leads to a controller that is of the same ordgid the smallest achievablE., norm. As a single objective

as the plant. Finally, we stress that this procedure does fpbblem, no conservatism is involved. Imposing independent
introduce any conservatism: if the analysis result does ngt_ constraints on several different channels just amounts to

involve conservatism, the synthesis result does neither.idtorporating (42) for each individual channel and introduces
combining several of these specification into a multiobjectiveynservatism.

design, additional conservatism is only introduced through
using a common Lyapunov function, at the benefit of bein ) i
able to restrict the order of the controller to that of the planB- G€neral Quadratic Constraints
For nominal and robust regulation, we need a slight modi- With  the  congruence transformationsIl; and
fication of this procedure that is discussed in Section V-G. diag(Il;, I, I), we obtain the synthesis LMI given in
(43), also shown at the bottom of the page, where (1, 1), (1,
2), and (2, 2) refer to the corresponding blocks in (42). Instead
of fixing V; and X;, we can allow some free parameters
in these matrices. Then, it is clearly possible to minimize
For completeness, this section lists the synthesis LMIg maximize a linear function in these free parameters. The
attached to each specification or objective considered dgnthesis LMI's for designing a strictly passive system are
Section lll. These synthesis LMI's are readily derived frombtained by just settin); =0, %; = I, V; =0, W; = —I
the analysis results of Section Il by applying the systematiguch that the fourth block row and column can be canceled);
procedure described in Section IV-B. No new proof is requiraflis extends [31] to general systems. Again, at the expense of

to justify these results, the proof in IV-B being generic. Thigonservatism, we can include as many quadratic constraints
section is meant as a catalog where one can easily find Hi¢ different channels as desired.

appropriate LMI formulation for each particular specification.
For instance, suppose that the design problem involvd$ an
constraint on channel one, dtf, constraint on channel two,
and a regional pole placement constraint. One would then findThe synthesis LMI's for generalizeH, control have been
the corresponding synthesis LMI's on the list below, gathgiven in (38). With the same congruence transformation
them in a single system of LMI's, and solve this LMI systendiag(Il;, I), we obtain from the analysis LMI's (14) for the
numerically to derive a solution of the multiobjective problenstandardH, problem the synthesis LMI's, as in (v), shown

V. A CATALOG OF LMI’ s FOR FULL-ORDER SYNTHESIS

C. H, and Generalizedd, Synthesis

under consideration. at the bottom of the next page.
AX +XAT +BC+(BC)T A" +(A+BDC) . *
A+ (A+ J?DC)T ATY + YA+ BC + (BOYY * * <0 (42)
(B; + BDF))* (YB; + BI;)" —v1 *
CjX + EjC Cj + EjDC Dj + EJDFJ —~1
(1,1) (1,2 (Bj + BDE)) +(C; X + E;C) W (C; X + E;0)TQ;
* (2,2) (YB; +BF;) +(C; + EjDC)TAWj (C; + Eij)TQj <0 (43)
* * Vi + WJT(DJ + EjDFj) + (Dj + EjDFj)TWj (Dj + EjDFj)TQj
* * * -3

J
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These involve the auxiliary variableg and» which enter F. Regional Pole Placement
linearly. Hencey can be directly minimized by LMl optimiza-  the matrix diagIL;, ---, II;) transforms (22) to the LMI
tion. Note that synthesis results for a variety of generalized
H, criteria can be derived by simply replacifg (¢}) with X I AX+BC A+ BDC
any affine functionf(@) mapping symmetric matrices into l’”<[ Y) +mik< A YA—i—BC)
symmetric matrices [30].

A YA+ BC

D. Synthesis for Bounds on Peak Impulse Response Jik

The congruence transformatiofls and diag(I1;, I) trans- We can include this inequality in any of the design problems
form (17) intoD, + E, DF = 0 and (w), shown at the bottom discussed so far to enforce that the eigenvaluesdofand
of the page. One can dlrect|y minimize the upper bognd hence the poles of the closed-loop system) are contained in
on the peak impulse response. We stress again that evenlfteLMI region (21).
single objective synthesis result involves conservatism since
the analysis result does. G. Nominal Regulation

Theorem 3 suggests the following procedure to design a
controller that achieves regulaticemd leads to any of the
specifications we have listed so far. test whether (24) is

Using the congruence transformations diHg, I), solvable. Then, try to achieve the desired specification with
diag(lly, I, I), one arrives at the following synthesisthe controller (26) for the extended system (27) and s¥me
inequalities: A > 0 and those in (44), shown at the bottom ofor which there exists & such that (24) holds.
the page. Note that the auxiliary variableenters nonlinearly.  The central technical difficulty in this procedure arises from
However, if we fix A > 0, we can minimize( to obtain an the new unknowr¥ in the plant description (27) which we
infimal upper bound(.()) of the peak-to-peak norm thatneed to vary in a linear manifold determined by the solution set
clearly depends on. Hence, to improve this upper bound, wef (24). If (24) does not have a unique solution, there are free
have to further minimize(,(\) over A > 0, which involves parameters that enter the synthesis inequalities nonlinearly.

+mk]<AX+BC A+BDC>> <0. @5)

E. Synthesis with Bound on the Peak-to-Peak Gain

solving a one-dimensional minimization problem. In general, such problems are hard to resolve. Due to the
AX + X AT + BC + (BC)T A" 1 (a+BDO) B; + BDF;
A+ (A+ BDC)” ATY +Y A+ BC + (BOYT YB + BF
(B, + BDF;)T (Y B; + BF,)”
X I (C; X + E &)
I Y (C; + E DC
CjX + EjC Cj + EjDC
T (Q)<v, D;+EDF;=0 (v
<AX+AXAT+B(A.}+(B(AJ)T A +(A+ BDC) ><0
A+ (A+ BDO)T ATY + YA+ BC + (BO)T
X I B; + BDF;
I Y YB + BF;
(Bj + BDFj)T (YBj + BFJ)
X I (C; X + E o)t
I Y (C; + E DC (W)
CjX + EjC Cj + EjDC
AX + XAT 4+ BC+ (BC)T + )X ko x
A+ (A+BDO)T + M ATY +YA+BC+(BOT +Y x| <0
(B, + BDE)” (Y B, + BE)" —ud
AX A 0 *
A AY 0 *
>0 44
0 0 (C-—mwl = “44)

CX+EC C+EDC D+EDF ¢l
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particular structural dependence, however, the present problasmfollows: reverse (47) as
is fully tractable. Indeed, one has to work with a suitable Y = W-Ty -1 A—w-TA
modification of II; to arrive at tractable LMI's. For this =Wy YWy, =Wy
purpose we define B=w;TB C—C— <0 V)X
S - 0 0
I U . ala A AL .
Wo=1{, 1) to obtainU, V, X, Y, A, B, C, D; find squareM, N with
MNT =] — XY, and define the parametess,, By, Ck,
Then, one easily obtains and Dy as in (40) for the extended system (27); partition the
rows of Cx and Dg as in (26); then, the desired controller
1A BV (A By is given as (25) and its order is bounded by the order of the
Wy 0o S Wy = 0 S plant (size ofAg) plus the size ofS.
and Note that this procedure does not introduce conservatism.
. ' For a single-objective specification with an exact LMI analy-
(€ )Wy =(C F;) (46) sis/synthesis characterization, it leads to an exact solution of
the corresponding problem with nominal regulation, and in the
other cases, conservatism is only introduced through nonexact
analysis tests or through the use of a common Lyapunov
I 0 X Wy g . 2
Iy =1L = T function for multiple objectives.
0 Wy M 0 . X
For nominal regulation, the most related results are found

and consider the blocks (36) for the extended system (27) dAd[10], where a specialid., problem (for coprime factor
with 11, replaced byll,. The block11%PAIL; is given by uncertainty) is discussed under the hypothesis that (24) has

(x), shown at the bottom of the page. These formulas motivaiéiniquesolution. Incorporating a general nominal regulation
the introduction of the new variables requirement [without hypothesis on (24)] in all the other

single-objective or mixed problems are new design goals that
Y — WEYWy, A= WEA found a complete solution.
0V
0 0

from (24). Let us modifyll; to

B =wW!B, C:= < )X +C (47) H. Robust Regulation
Contrary to nominal regulation, the internal model and the

and due to the nonsingularity di¥;, this is just another extended system in Theorem 5 are fixed such that they pose no
parameter transformation. If we exploit (46), we obtain (y), goblem for including the requirement of robust regulation in
shown at the bottom of the page. Obviously, all these blocksy of the specifications listed so far without introducing extra
depend affinely on the variablés, V, X, Y, A, B, C, D. conservatism. Build (31), solve the corresponding synthesis

We arrive at the following procedure for performing mulproblems for this extended plant with a controller (30), and
tiobjective synthesis including nominal regulation: in anylefine the final controller by (29). Its order is bounded by that
analysis LMI, substituté®, P A, PB;, C; by these new formu- of the plant plus the size of.
las [instead of those in (36)] and add the linear constraint (24)One can in fact prove that the controller (29) achieves
for the extra variable®, V. Test the resulting synthesis LMI's regulation forany LTI system (1) for which (30) stabilizes
for solvability. With a solution, the controller is constructed31). Suppose that (1) is affected by perturbatians=

A BV B 0\ (A BV B 0\,

<0 S)X—i—<0 I)C <0 S)WU—i—<O I)D(C 0)We
A BV . ()
WEA W5Y< )WU+WLT,B(C 0)Wy

0o S

(8 5)x(o v)e (0 57) s (o 1)me w)

HEPAlly =
~ . (A B.: .
A Y<0 Sf)+B(c F;)
I U B; B 0);
T 0D s ()5 (C T)em
WPu=|/,,; ) o yPB; = /B, N
<UT I) Y Y Oj>+BFj,

Cilly =((C; 0)X+(B; 0)C (C; CGU+EV)+(E; 0)D(C Fj)) )
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R;AL;z with a (stable) LTIA in some classA. Let us of dimensionk and since the kernel dimension of the left-
assume that one can design a controller (30) which robustignd sides of (37) are at mokst it is not difficult to see that
stabilizes (31) for this same class of uncertainties (e.g., bye matrices involved in (16) cannot have a kernel at all—the
solving an H,, or passivity problem or any other robustinequalities are strict.

stability specification given in our list). Then, the controller We extract the following conditions for a general synthesis
(29) achieves regulation for all perturbed systems, @ijnply problem: matrices (49) vanish on a common subspace of
because (30) stabilizes all the perturbed extended systems (8ithensionk, and any synthesis LMI is nonstrict such that the
Hence, one can guarantee regulation for the (possibly largeatrices involved have a kernel of at most dimengsibiif r is
class of uncertaintieA, and this solves the problem of robusthe number of matriceH; in the corresponding blockdiagonal

regulation in the large. congruence transformation.
The present result extends those in [1] and [2] to signal
generators that are not necessarily diagonizable and to the VII. DESIGN EXAMPLES

vari f mix roblem nsidered in thi r. . . . .
ariety o ed problems considered in this pape The first example is of academic nature and illustrates the

conservatism of this approach. The second example applies
VI. A REMARK ON REDUCED-ORDER CONTROLLERS the methodology developed in this paper to the design of
In all mixed problems discussed in this paper, the com- dynamic positioning system (DPS) for a moored floating
structed controllers have the same dimension as the plafatform. All LMI-related computation was performed with
(possibly plus internal model in regulation). For completenefise functionhinfmix  from the LMI Control Toolbox[18].
and only as a theoretical insight, we include a characterizationExample 7: Consider the three-state unstable plant with
for the existence of controllers that have dimensienk < n. equations:
Let us assume w.l.o.g. that

0 10 2 1 0
B oT zt=|-1 1 Olz+ |0 |w+ |1 |u

<DZ> and <D’£> have full column rank. (48) 0 2 —5 1 0
To be specific we outline the result for the generalizZésl y=zot2w
problem. and performance outputs

Suppose a controller of dimensien- k£ < » leads to (16).

As earlier, we obtain (34) where the matricés, N are of r1 T2
sizen x (n— k) and can be assumed to have full column rank. oo = <u )v 72 = | ¥3
Hence II; has a kernel of dimensiahisuch that all the blocks w

I PALL, I ATPIL, BLPIL, C.10L, andIIfPIL vanish (, andy denote the control and measurement as before). We

2 o\ T H, performance fromw to z,. The optimalH, performance
<)I( é), <AX};BC Bé)) , from w to 2, is 7.748 and is achieved for the controller
2 a —3.7275(s + 5.168)(s — 0.2711
C DC (49) Ky(s) = - ( . ) ) '
A YA+ BC (54 5.164)(s? + 3.669s + 9.933)

vanish on the very same subspace. Moreover, sindéen closing the loop ois(s), the Ho, performance from

diag(Il;, I) has a kernel of dimensiork, the left-hand W 10 2ec IS = 23.586.

sides of the LMI's (38) both have a kernel of dimension NOW consider the multiobjective problem

k—the LMI's are nonstrict. Minimize || T,,., |l2 subject o [T, [l < 23.6.  (50)
Conversely, if (49) vanishes on a common subspace of

dimension at least and if the LMI's (38) are nonstrict but We know thatK»(s) is the optimal solution since it g,

the left-hand sides have a kernel of dimension at nkpsine optimal and satisfies thél,, constraint. Hence, we can test

can construct a controller of order— & with (16) as follows: the performance of our LMI approach to multiobjective design

the matrix — XY has a kernel of dimension equal kzcssuch against this known optimal solution. Solving (50) with LMI

that one can find full rank matrice®/, NV with & columns optimization yields 8.956 as best constrairég performance,

satisfying — XY = MNT. We definell,, II, as in (34) which is 15% higher than the optimal value 7.748. The

and observe that these matrices have full row rank. Sincerresponding controller is

all the blocks in (49) vanish on a common §ubs_pac_e, it is _7.5924(s + 5.271)(s — 0.05601)

possible to show that there exists a symmefPicsatisfying Kiwv(s) = - 5 - =

(34) and (unique) solutiond s, By, Ck, Dy of (35). Then, (5 +5.272)(s" + 4.2535 + 10.25)

we conclude again that the left-hand sides of (38) and (3Mpte that because we use a common Lyapunov function

are identical. By assumption, the nonstrict versions of thekm both objectives, the LMI-optimal value 8.956 is only an

inequalities hold. With the right-inversB} of II;, we can upper bound on the closed-lodp, performance. In fact, the

transform (37) with diagllf, ) to arrive at the nonstrict controller K1 has an actuaH, performance of 8.07 (only

inequalities that correspond to (16). Sintle has a kernel 4% above the optimal value 7.748) andiy, performance of
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1+0.1/s

@

sea level

actuator 1/(0.7s+1)

I
u

Fig. 2. Control structure.

Open-loop gain F -> Y Open-loop gain F > Phi
sea floor 5O« - e o e
Fig. 1. Moored floating platform. 2 Py 2 T
2 S 50
17.87 [24% lower than th&l., performance of thé,-optimal g H
controller K»(s)]. -100L ; ,  -took ; \
Summing up, this example shows that the LMI approach T Frequeney adser) " Frequeney adsery
is indeed conservative, but not unduly so. Meanwhile, it o rerioop gn > ¥ so—ertoop g M > P
offers the flexibility needed to improve over single-objective g g
“optimal” techniques. £ g o
Example 8: This problem was provided by Prof. H. Kaji- & N
wara [20], [21]. The system is a floating platform depicted in & &
Fig. 1. This platform is anchored to the bottom of the ocean  _isl - , 1004 - \
and equipped with two thrusters. The goal is to minimize the P requency radses) 7 frequency (radsee)

drift Y resulting from Fhe wave action bylappropriate thrusteFrig' 3. Open-loop magnitude responses.
control. The wave action can be summarized as a féremd
a torqueM . The forcel" consists of two components
* Due to actuator limitations, keef,| below 0.25 N,

F=F +F and make sure that the thrusters are not excited by the
high-frequency component;.
with the following characteristics. Both Y and¢ are measured, and the platform dynamics are

e F; is a high-frequency high-amplitude excitation Withdescnbed by the state-space equations

small drifting effect. Due to its large magnitude, it cannot F v
be countered by the thrusters. t=Ar+B| M |, <¢> =Cxz
e F5 is a low-frequency low-amplitude excitation that can F,

cause a large drift over time. This drifting action ought . .
to be eliminated by proper thruster control. with A, B, C, as shown in (z) at the bottom of the page. The

. corresponding open-loop frequency responses fiam/ to
The spectral energy of, is concentrated between 0 and L, are displayed in Fig. 3. In addition, the thruster dynamics

rd/s, while that off7 is beyond 5 rd/s. i are modeled by the first-order transfer function
Let Y, ¢, and F,, denote the horizontal drift, the angular

deviation from the vertical axis, and the force delivered by the F, = d(s)u, d(s) = 1
thrusters, respectively. The control objectives are as follows. 0.7s+1
* Reject the drifting forceF, by thruster control. where » denotes the control input an#,, the actual force
* Maintain |Y| below 0.025 m and¢| below 3 degrees delivered by the thrusters; see (z), shown at the bottom of the
(these figures are for a lab model of the platform). page.
0 0 1 0 0 0 0
0 0 0 1 0 0 0
A B —0.1010 -0.1681 —0.04564 -—0.01075 0.1179 0.1441 0.1476
<C D) = | 0.06082 —2.1407 —-0.05578 —0.1273 0.1441 1.7057 —0.7557 @)
1 0 0 0 0 0 0

0 1 0 0 0 0 0
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Closed-loop gain F —> Y Closed-loop gain F -> Phi Closed-loop gain F —> Y Closed-loop gain F —» Phi
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Fig. 4. Design #1: Closed-loop magnitude responses. Fig. 6. Design #2: Closed-loop magnitude responses.
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Fig. 5. Design #1: Closed-loop time responses. Fig. 7. Design #2: Closed-loop time responses.
. . Closed-loop gain F —> Y Closed-loop gain F —> Phi
For design purposes, we use the control structure displayed o8 o T
in Fig. 2. HereK () denotes the controller to be designed, and ¢ L 8
the filter w (s) = 1+ 0.1/s is used to enforce integral action 5 3
on the outpul”. Note that the controller actually implemented £ g
would consist of bothK (s) andw;(s) (Theorem 5). Our first & &
design is a standarH ., synthesis aimed at minimizingl'|| .., 100 o e e o o
1 1 requency {rad/sec’ Frequency (rad/sec’
whereT'(s) is the closed-loop transfer defined by o o e o
O e -~ 50 o - e
A\ 2 / 3 ‘[
Y r 8 é O e " 1
wedp | =T(s) <M>’ We = wy = 0.1. £ w0 g !
Wy U _§, §, -50
@ 7]
. . . -100— 0 . ~100— - .
The optimal H., performance is approximately 0.4, and the O ey O sy

resulting closed-loop frequency and time responses are shown _ .
in Figs. 4 and 5, respectively. The driving forfeused in the ™'9- 8- Design #3: Closed-loop magnitude responses.
simulation comes from experimental data over a 200-s period. S ) .

While this H.., controller meets the rejection specification@ Multiobjective problem with arff,, constraint on7j(s)
onY, it clearly violates the constraint on the maximum thrusté@nd anf» objective on the transfer functidfiz(s) mapping
effort. To reduce the control effort, we choose to minimize th _4)_ to w. The corresponding LMI formulation consists of
cost of control in theH, norm while maintaining thetf,, Minimizing v subject to the synthesis LMI's listed in V-B
disturbance rejection constraififi||.. < 0.5, where 71 (s) and V-C. The LMI optimization yields aif, performance of

. I v . 1.22, and the closed-loop frequency and time responses for
is the closed-loop transfer frorfy,) to (wm)' This is now " ond design appear in Figs. 6 and 7.
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(s 4 1.43)(s + 338.36)(s% + 254.03s + 3.472 x 10%)(s? + 0.329s + 3.677 x 1072)

ki(s) =—20.36

ka(s) =64.37

s(s + 3.25)(s2 + 172.11s + 2.722 x 10%)(s2 + 37.37s + 1.051 x 10°)
(s 4 1.43)(s +0.23)(s + 411.41)(s? + 51.38s + 2.065 x 10%)

(s + 3.25)(s2 + 172.11s + 2.722 x 10%)(s? + 37.375 + 1.051 x 103)

All specifications are now met, and this second design woulth] M. K. K. Cevik and J. M. Schumacher, “The regulator problem with
be deemed satisfactory. Yet, inspection of the closed-loop g:ﬂn]
from M to ¢ reveals a residual resonance near 1 rd/s that, n‘1
excited, could boost the amplitude ¢f This is confirmed by

the presence of a pair of poorly damped mod®s168 + 1.5¢

[12]

robust stability,” Rep. BS-R9321, CWI, Amsterdam, 1993.

M. Chilali and P. Gahinet, H . design with pole placement constraints:
An LMI approach,”|EEE Trans. Automat. Contrvol. 41, pp. 358-367,
1996.

E. J. Davison, “The robust control of a servomechanism problem
for linear time-invariant multivariable systemdEEE Trans. Automat.

among the closed-loop poles. To dampen these modes, we can contr., vol. AC-21, pp. 25-34, 1976.
resort to an additional regional pole placement objective. FB8] J. C. Doyle, K. Zhou, K. Glover, and B. Bodenheimer, “Mixé¢;
instance, we can impose that the closed-loop modes lie in the

conic sectokS with tip at the origin and anglé = 67/7. The [14]
characteristic function for this LMI region is [11] 1]
_ (sin6(z+7Z) cosb(z—7%) [16]

Js(z) = <COS 0(zZ—2) sinb(z+%) )’
[17]

To incorporate this additional constraint in the synthesis, we
simply add the LMI (45) withZ = 0 and [

[19]

sin 6

M = <— cos 6 [20]

cos @
sin 6

to the system of LMI's used in the second design. THé!!
resulting bestH, performance is 2.6, and the closed-loop
frequency responses are shown in Fig. 8. The time responses pp. 181-184.
are essentially similar to those for the second design. Note t
the resonance has been attenuated, the pair of badly dampedpp. 824-837, 1991.

modes being moved te-0.4 + 1.46;. This final design gives [23] I. Masubuchi, N. Suda, and A. Ohara, “LMI-based controller synthesis:
the stable control laws = k1(s)Y + k2(s)¢ as given in the

equation shown at the top of the page.

(1]

(2]
(3]

(4]
(5]

(6]
(7]

(8]
(9]

[24]
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