
Short term traffic
prediction using
local information.

Improving graph-based time series prediction
using local information flows.

by

R.J. Dijkhuizen

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Monday January 27, 2025 at 13:45.

Student number: 4866177
Project duration: June 3, 2024 – January 27, 2025
Thesis committee: dr. C. Kraaikamp, TU Delft, chair

dr. M. Vittorietti, TU Delft, supervisor
Ir. L. Krol, Goudappel B.V, supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

This thesis presents localized methods for traffic prediction and analysis. The prediction method
presents an extension of a state-of-the-art Graph Neural Network inspired by traffic flow character-
istics on a local level. This inspiration from traffic flow characteristics consists of two parts. The first
intuition is that state at some location and at time 𝑇 in the future will be not influenced by information
which is further than traveling time 𝑇 away. The second intuition is that traffic information traveling with
or against the stream of traffic behaves differently. The developed model leverages these intuitions
to increase model prediction performance. Further, a modification is made which allows the model to
be applied at an arbitrary location in a network, at the cost of performance. Alongside these model
extensions, a novel method of visualizing a local traffic state is presented through constructing a novel
traveltime diagram. This diagram can be used as a visual tool for analyzing traffic locally. Further,
the traveltime diagram is designed to be summarized using Topological Data Analysis to a quantity
called the Travel Lifetime which can represent traffic states ranging from extremely calm to imminent
congestion to a congested state in a single number. The newly proposed Travel Lifetime is tested as
an input to a Neural Network model for predicting traffic speed showing that its use as an input can
improve model performance.

iii

Contents

1 Introduction 1
1.1 Problem definition and context. 1
1.2 Content overview . 3
1.3 Methodological choices . 3
1.4 Contributions . 4
1.5 Project structure . 5

2 Existing methods 7
2.1 Data . 7
2.2 Traffic characteristics . 7
2.3 ML time series modeling . 8

2.3.1 Time series . 8
2.3.2 Working with ML . 9
2.3.3 Neural networks . 10
2.3.4 Recurrent neural network . 11
2.3.5 Graph neural networks . 12
2.3.6 SpaceTime Neural Network . 12
2.3.7 Random forest . 13

2.4 Topological Data Analysis . 15
2.4.1 Simplicial complexes . 16
2.4.2 Homotopy . 17
2.4.3 Homology . 18
2.4.4 Persistent homology . 19
2.4.5 Previous work on TDA for time series analysis . 21

2.5 Software . 22

3 Developed methods 23
3.1 Forecasting methods . 23

3.1.1 Direction intuition . 23
3.1.2 Locality intuition. 24
3.1.3 SP-STNN . 24
3.1.4 Distance based GNN. 24

3.2 Traffic visualization and summarization . 26
3.2.1 Traveltime diagram . 26
3.2.2 TDA transformation. 27
3.2.3 Generalization to merging paths . 28

4 Results 33
4.1 Preliminary study . 33

4.1.1 Submodels . 33
4.1.2 Results . 34

4.2 Extending STNN . 35
4.2.1 Comparison with preliminary work . 35
4.2.2 Larger datasets . 36
4.2.3 SP-STNN . 37
4.2.4 Running time . 38

4.3 Previous work on TDA for time series analysis . 38
4.4 Travel lifetime . 39

4.4.1 Summarization value . 40

v

vi Contents

5 Discussion and conclusion 43
5.1 Discussion . 43
5.2 Conclusions. 45
5.3 Closing points. 46

A Appendix 53

The following table describes the meaning of various abbreviations and acronyms used throughout the thesis.

Abbreviation Meaning First mention Explanation
ML Machine Learning 1 9

(A)NN (Artificial) Neural Network 3 10
CNN Convolutional Neural Network 3 3
GNN Graph Neural Network 3 12
TDA Topological Data Analysis 3 15

MVVS Multimodaal VerkeersVoorspellend Systeem
(Multimodal Traffic Predicting System) 5 5

DEXTER Data EXploraTion and ExporteR 7 7
FCD Floating Car Data 7 7

NDW Nationaal Dataportaal Wegverkeer
(National Dataportal Road traffic) 7 7

MAE Mean Absolute Error 8 9
MSE Mean Squared Error 8 9
ReLU Rectified Linear Unit 10 10
GRU Gated Recurrent Unit 11 11
RNN Recurrent Neural Network 11 11
STNN SpaceTime Neural Network 12 12
P-STNN Propagation SpaceTime Neural Network 23 23
SP-STNN Selfless Propagation SpaceTime Neural Network 23 24
LOOCV Leave-One-Out Cross Validation 36 36

1
Introduction

This thesis is aimed at improving methods for short-term traffic prediction and analysis. The prediction
will be based on data-driven, Machine Learning (ML) methods, whereas the analysis will utilize an
emerging mathematical method. This chapter introduces the problem and its context and sheds some
light on the choices required for tackling the problem, as will be done in later chapters.

1.1. Problem definition and context
Imagine yourself in traffic not moving at all, just in front of a tunnel. For safety reasons, in case fire
breaks out for example, it is better to stand still before the tunnel than inside it. This is also the reason
you are at a complete standstill before the tunnel; the road operator has closed the tunnel because
they deemed congestion inside the tunnel a possibility. Let’s assume in this hypothetical situation that
they deemed this a possibility because of congestion occurring at the tunnel exit. If you had known
that congestion after the tunnel was likely just 5minutes ago, then you could have taken another route,
reducing your travel time.

The hypothetical situation above is a real-world [1] example of why predicting traffic could be useful.
Traffic prediction is a problemwith multiple scopes. In general, two broad scopes of traffic prediction are
distinguished. The first is long-term prediction, for which long-term trends are of interest. The second
is the previously mentioned short-term prediction, for which the deviations from usual situations are of
interest. Long-term prediction has its uses in a strategic setting, for example, in deciding where to build
new roads to handle traffic that one could expect to occur in the next 5-30 years.
Short-term predictions are the scope of this thesis and their use case is mostly in dynamic routing
advice. Currently, road operators mostly work with a ”wait and see” method, responding to events
once they occur [2]. The example above: Once congestion occurs near a tunnel, the road is closed
to prevent traffic from standing still in a tunnel. Dynamic routing advice may thus take shape as road
closures to prevent congestion in sensitive areas, or it could be used to improve navigation services
which find the fastest route taking traffic into account.

This thesis is a project to obtain a degree inmathematics and is a joint project with amobility consultancy
company, this joint nature is reflected in existing research on the topic of (short-term) traffic prediction.
The problem of short-term traffic prediction finds itself being of interest to two groups of researchers,
with a different motivation behind the same goal of the best prediction accuracy. The two groups could
be identified as traffic researchers (i.e. civil engineers) and data scientists (i.e. mathematicians).

A traffic scientist, in this context, is focused on traffic prediction. As a result of the research background,
the methods of study are strongly based on understanding complex factors which explain traffic behav-
ior such as routing choices [3]. There, complex factors are used in algorithmically simpler models. This
method guarantees some desirable properties of its output. As an example, this can guarantee the
conservation of the number of vehicles in a system; if at time 0 there are 10 cars in a village and the
method predicts 4 entering and 3 leaving, then there will be 11 cars in the prediction. Such a property

1

2 1. Introduction

Figure 1.1: Traffic state on a graph, edge properties are shown as the distance between two locations. Node
properties are the measured traffic speed and flow.

is desirable because it will follow the reasoning the traffic scientist expects to see, also allowing them
to easily identify if and where things are going wrong when applying a model. On the other side of the
coin; these models are typically quite slow in calculating a prediction. Also, these models are known
to flip-flop between traffic moving at the speed limit and moving slowly, for example near traffic lights.

A data scientist, in this context, has developing a method for general time series prediction as moti-
vation, which can be indicated by good traffic prediction. Common methods for time series prediction
were typically ARIMA and GARCH, which were also applied to traffic problems [4, 5]. This thesis will
use a more modern method: (graph-based) neural networks. Basic neural networks have existed for
over 50 years [6], but their use and development have surged in the last years because of modern
data collection and computation power [7]. Traffic prediction can be seen as a multivariate time-series
prediction problem where the variables are related according to some graph structure i.e. the road
network. To explain this a bit further, on a road network we measure how many cars pass and how fast
they drive. This can mathematically be represented with a graph with varying combinations of node
and edge attributes. In this thesis we use a graph representation which has node attributes: measured
speed and flow (vehicles per hour), and edge attribute: length or distance between two nodes (see fig-
ure 1.1). In this sense, traffic is perhaps one of the most intuitive representations of time-varying graph
problems we are familiar with. The data scientist is concerned with developing an all-capturing model
but may be less interested in every little detail of the problem the model is applied to. This difference
in interest as opposed to a traffic scientist becomes apparent from introductions in published research
on this topic [8–10]. Alongside this familiarity with its graph nature, there also exists a lot of recorded
data on how traffic is flowing. The combination of intuition and abundant data makes traffic prediction
an ideal proving ground for new methods for graph time-series prediction, such as graph-based neural
networks. These new methods, though developed on traffic data, are then applied to many different
problems, such as modeling epidemics or protein folding [11, 12]. Further, machine learning methods
typically require long training times, after which fast inference can be performed. The advantage in
computational practicality over the more classical models is then clear: we spend a long time training
once after which we can produce many predictions almost in real-time, as opposed to doing medium-
length calculations for every new prediction.

The motive with which traffic prediction is studied in this thesis is mostly improving ML time series
prediction methods. The goal of the thesis is to arrive at the best possible traffic prediction. Though
the motivation is more theoretical, the way in which the improvement is achieved is very much inspired
by knowledge of traffic characteristics, which comes in the form of two ideas central to this thesis:

Locality The traffic state at a given location results from information flowing towards it in a neighbor-
hood whose size is determined by the prediction horizon. In simpler words; a change at some
location 𝑇 minutes in the future is the result of traffic information which is 𝑇 minutes of travel time
away. As such, the traffic prediction problem is studied locally, instead of globally on an entire
network.

1.2. Content overview 3

Direction The direction in which information propagates is relevant to the way in which the information
interacts with traffic. As such we can leverage knowledge of the different interactions to improve
prediction accuracy.

These intuitions are named for easier reference throughout the thesis.

1.2. Content overview
Before starting an introduction regarding the specifics of the thesis content, we first give a general
overview of what is to come. The reader will find that the content of this thesis follows two different
paths to improve traffic prediction. The first describes changes to the inner workings of the ML methods
used. The second describes transforming inputs to extract information in a different way than the ML
methods used could. This thesis thus shows two approaches to make a step towards the goal of
the best possible traffic prediction and operate on different aspects of producing a prediction out of
measured data.

Our first path is focused on improving existing ML methods for short-term traffic prediction. The goal
is to achieve an improvement in prediction accuracy using the intuitions presented in the previous
section. Before incorporating these intuitions into a state-of-the-art ML model, a more simple ML model
is used to test the waters. Then, based on encouraging results of the simple model, the step to a more
sophisticated ML model is made. For implementation, especially the Locality intuition will ask for some
design choices to be made, which will result in different models. Namely; we say that for predicting
10 minutes ahead, we should take information into account which is 10 minutes of driving away, but
at what speed? We may use the speed limit of the roads in the network, or we can take a dynamic
approach and use the speed currently being driven. Both approaches are explored in this thesis and
their use cases will be discussed. This thesis will further present a way of ’freeing’ a model of being
constrained to predicting where traffic sensors are placed, at the cost of prediction accuracy.

The second path is focused on visualizing and extracting the information contained in a local neighbor-
hood. The idea for the developed method came after attempts to extract information from raw traffic
measurements using an emergingmathematical method called Topological Data Analysis (TDA). These
attempts failed, leading to the development of a visualization of the data which would additionally lend
itself well to TDA. The chapter thus starts with the visualization which can make traffic information trav-
eling on a path insightful, based on how fast parts of the path are traversed in the current traffic situation
and how many vehicles are traversing that path. This visualization is then also summarized using this
TDA to a single number, which can be used as an additional input to an ML model alongside the raw
measurements.

Both paths are described first in chapter 3, where the newly developedmethods are introduced. Results
of the new methods are then shown in chapter 4.

1.3. Methodological choices
As mentioned before, this thesis will implement ML methods. Specifically, Neural Network (NN) models
will be used. The space of NN models is very large, but some basis to start from has to be chosen.

In this thesis we discuss two major classes of neural networks: Convolutional Neural Networks (CNNs)
and Graph Neural Networks (GNNs). Required knowledge of how these NNs work will be presented
in chapter 2, for now we just sketch a comparison between their characteristics.

The CNN is an earlier class of neural networks. Due to the wide availability of tutorials and software
such as provided by TensorFlow [13], CNNs are easier to implement, though not the most appropriate
for a problem with a graph nature. If we were to implement a CNN for traffic prediction, we would give
it as input measurements of traffic and expect it to output a prediction for the traffic state at one or more
locations at some time in the future. This sounds like exactly what we would want; we measure traffic
and make a prediction. However, we can identify two shortcomings when applying a CNN to traffic
prediction, both stemming from ignoring the road network. The first is that a CNN considers many
more interactions than are possible on the network. As an extreme example; consider two isolated
islands. We might hope that a CNN learns that traffic on island A is not related to traffic on island B,
but there is no guarantee. As such, performance may be hindered. The second is that transferring a

4 1. Introduction

model to a new road network will be very difficult. This is because the type of ”reasoning” the CNN does
is as follows: ”I receive an input vector of 100 numbers, of which number 3 is very high, so I predict
congestion”. From such a line of reasoning we see that a permutation of the inputs might already
disrupt prediction and applying the same model to a new network is very likely to fail. Despite these
shortcomings, CNNs have shown to perform reasonably well on traffic prediction [14, 15]. This thesis
also applies a CNN to test the premise of the ideas central to this thesis in the context of predicting
traffic speed at a single location on a small road network. A CNN is applied there as a proof of concept
as only changes in performance are sufficient and where transferability is not needed.

A more recent class of neural networks is the GNN, which deals with the mentioned shortcomings of
the CNN by utilizing the structure underlying the problem, the road network in our case. This does away
with relations which we know to be non-existent from the road network. Its strength over CNNs is clear
from literature [10, 16], at the cost of requiring an underlying network structure. The advantages of a
GNN have already been mentioned in the previous paragraph, but we further distinguish two different
kinds of ways in which a GNN can operate:

Network level Some GNNs attempt to combine information of all nodes in a graph and the graph
structure itself directly. These methods often rely on algorithmically deciding which node inputs
are relevant given the node values and the network structure. A network-level predictor has
explicit access to all data and can thus capture long-range dependencies well [8].

Node level Other GNNs rely on nodes exchanging information with their neighbors as dictated by the
network. This restriction in inputs can improve short-term prediction performance [9] and scaling,
but removes explicit access to long-range dependencies. Another important difference with a
network-level GNN is that a node-level GNN can operate locally, on only a part of the network.

Due to the setup of these GNNs, a network-level GNN is naturally better suited to capturing long-range
effects. A node-level GNN is more flexible, in the sense that missing data on some part of the graph
does not influence other regions, as regions can be separated.

A central idea in this thesis is that the traffic state at a given location results from information flowing
towards it in a neighborhood whose size is determined by the prediction horizon. Conversely, longer-
range dependencies are deemed not relevant. In short-term predictions, this neighborhood can be
relatively small. This is in line with the idea of operating at a node level. As such, the traffic prediction
problem is studied locally, instead of globally on an entire network.

Lastly, this thesis will not only use neural networks for predicting traffic, but will combine outputs of
multiple NN models. This combination is performed using a different ML method: a random forest
decision model.

1.4. Contributions
The traffic prediction problem is studied locally, instead of globally on an entire network. This thesis will
present a way of defining a local neighborhood from a measured traffic state combined with knowledge
of traffic characteristics. To contrast, current GNNs utilize graph structure taking some information some
𝑘 edges away into account (i.e. exchanging information, message passing), where 𝑘 is usually taken
as 1 [17]. This thesis shows a way of generalizing from GNNs using information from 𝑘 edges away to
incorporating information from some nodes at distance 𝛿 away, where the distance is calculated from
edge properties i.e. the measured traffic state combined with knowledge of traffic characteristics. In
this way, the model presented in this thesis is constructed to leverage dependencies of a longer range
than 𝑘-nearest neighbors without becoming a network-level predictor.

Along with leveraging these traffic characteristics, an improvement in the applicability of GNN traffic
models will be made. Current GNN traffic models mostly focus on predicting traffic states on known
traffic sensor locations and some static road network configuration. Consquently, such a model can
only be applied to the locations where traffic sensors are placed. Recently, the requirement of static
road configuration has been lifted [9], but the applicability remains limited to sensor locations. This
thesis offers an extension allowing GNNs to predict at arbitrary locations within a network.

Using an ML model to give a prediction is a way of gaining insight from information. The information

1.5. Project structure 5

may contain a large number of variables, even when restricting to a local neighborhood as is done in
this thesis. A model combines all these variables into a prediction which is easier to interpret and use.
Another way of gaining insight into a traffic state is through visualization and summarization of the large
number of variables which define the local traffic state. This thesis presents a way of representing these
variables in an intuitive manner and additionally summarizes the representation to a single number
using an emerging branch of data analysis called Topological Data Analysis.

TDA is a collection of data analysismethods that are designed to find structure in data and is subjectively
one of the nicest applications of topology to the real world (note: this is an opinion, but not just mine
[18, 19]). Sometimes, the term TDA is also used to refer to just one of these methods; persistent
homology. Persistent homology is also the method which will be used in this thesis. Homology is the
mathematical study of holes; persistent refers to how long a hole is present in data with respect to some
scale parameter. Thus, persistent homology is a method which can identify holes in data and show
how important a hole is. Imagine a noisy set of data points which seem to come from a ring, one can
find lots of very small holes, but TDA will identify the hole in the ring as the most persistent feature.
This method can especially be useful when applied to high dimensional data as high dimensionality
typically means sparse data, known as the curse of dimensionality [20]. Sparse data means data with
holes or voids between data points. The method of persistent homology has shown to be powerful in
a wide range of applications including classifying time series [21] and reconstructing the structure of a
rat’s physical environment from measuring its brain activity [22]1.

TDA is especially new in the scope of time-series prediction. Methods for applying TDA to time series
directly have been developed, which work well for time series classification [21], but do not seem to
work well for time series prediction. This thesis shows an alternative approach; generating a new time
series by transforming the data at each timestep using TDA. In short, the traffic state is summarized
into a diagram of lines which will be called a ”traveltime diagram”. Between these lines, there will be
gaps or holes, which are exactly what TDA is designed to deal with. Persistent homology will be used
to transform these diagrams of lines into topological information, which will be fed to a NN to arrive at
the end result of a predicted new traffic state.

1.5. Project structure
This thesis is a project in collaboration with Goudappel B.V. Goudappel is a consultancy company for
mobility problems. A current implementation for making these predictions is using their ”Multimodaal
Voorspellend Verkeersmodel Systeem”, MVVS for short (Multimodal Forecasting Traffic model System
in English) [23]. The MVVS system falls within the first scope of the goals mentioned earlier; its goal is
prediction and it is developed from a strong civil engineering background. This system relies on iterative
methods for numerically estimating traffic states, which have as most significant drawback their compu-
tation time. Depending on the desired accuracy and resolution, their evaluation might take longer than
the prediction horizon. In simple words: predicting 10 minutes ahead can take 15 minutes to calculate,
so that the ’prediction’ is 5 minutes late. Predictions can be made on time by simplifying the prediction
method, at the cost of accuracy. As a consequence, Goudappel is also interested in data-driven traffic
prediction. Their interest is currently both in studying the capabilities of data-driven methods and in
bridging the gap between academic improvements in GNNs and practical implementation.

This thesis presents answers to the following questions:

How can we use knowledge of traffic characteristics to improve GNNs?
As mentioned earlier, we can take inspiration from traffic characteristics to design a new GNN. The
new design is more flexible in the selection of nodes to exchange information with than previous
GNN definitions and can operate differently depending on the edge direction in the graph.

How can GNNs be used for short-term traffic prediction in a practical setting?
Current traffic prediction GNNs are limited in where they can be applied in space. For a practical
application, we wish to be able to predict at an arbitrary location, so that the model is not limited
by the existence of physical traffic sensors.

1This publication is also explained more accessibly by the author in the following podcast: https://open.spotify.com/
episode/0DYHgH8G3o0NIBuh2BZ8RR?si=-TbZ1LooRvS9wG2f5TQEJQ.

https://open.spotify.com/episode/0DYHgH8G3o0NIBuh2BZ8RR?si=-TbZ1LooRvS9wG2f5TQEJQ
https://open.spotify.com/episode/0DYHgH8G3o0NIBuh2BZ8RR?si=-TbZ1LooRvS9wG2f5TQEJQ

6 1. Introduction

How can the traffic state of a local region be summarized?
The traffic state of a local region is described by many different variables (at least 2 measured
quantities at every sensor in the region). Making sense of these numbers is difficult. Directly
applying a NN to obtain a prediction is a way of gaining insight, but we may also ask how we can
condense the information in a local region to some quantity which is more humanly interpretable.

This thesis will present an answer to the first two questions in the form of GNN models. The third
research question will result in an algorithm for transforming data.

Before any answer can be presented, the methods used must be established. Newly developed meth-
ods are introduced, tested and discussed in separate chapters. This leads to the following thesis
structure, numbered as their respective chapters in the thesis:

2. A review of literature on the existing methods used in this thesis.

3. Description of the newly developed methods

4. Result from testing the new methods and applying them to data.

5. Conclusions drawn from the results, with a discussion of the work presented.

Lastly, I would like to refer the reader with interest in reproduction and/or extending my work to my
GitHub repository associated with this project.

https://github.com/Renzed/SP-STNN

2
Existing methods

Methods used in this thesis are explained before the innovations of this thesis are introduced. This
chapter is divided into a part dedicated to the resources used in this thesis, a part dedicated to time
series modeling using machine learning methods and a part that introduces Topological Data Analysis
(TDA).

2.1. Data
A project in machine learning and prediction naturally requires data. Data will be used to train models
and assess model performance, which is thus essential to the project. Most of the data used in this
thesis is gathered in Nationaal Dataportaal Wegverkeer (NDW, English: National Dataportal Road
traffic). The data is accessible through their tool DEXTER (Data EXploraTion and ExporteR); which
could be accessed through Goudappel B.V. The NDW collects and stores traffic data such as speed
and flow (vehicles per hour) on more than 19000 sensor locations throughout the Netherlands every
minute. The only data used in this thesis not directly accessible through DEXTER is an aggregation of
multiple sources. This aggregated dataset is collected by and available through Goudappel B.V. This
dataset extends NDW data with, among others, speed and flow measured at traffic lights. The dataset
is used for studying traffic in the city of Groningen on a very fine level and it exists because Goudappel
use this dataset for their MVVS study. As such, it is dubbed the MVVS dataset.

In this thesis, two measured traffic quantities are used:

Speed The average speed of all vehicles passing the sensor in some time window

Flow The number of cars passing the sensor in some time window, rescaled to the unit of vehicles per
hour. Thus, 3 cars passing in 2 minutes amounts to a flow of 90 vehicles per hour. Can also be
referred to as traffic intensity.

The combination of these two quantities gives a good picture of a traffic state; slow or fast and calm
or busy, and anything in between. Speed and flow are measured by and at physical sensors, often
embedded in the road surface and strategically placed by some road authority. As such, spatial res-
olution of measured traffic state using sensor data is limited. However, with vehicles becoming more
connected to the internet, another data source is becoming more reliable: floating car data (FCD). This
data source gathers data from vehicles reporting their position and aggregates the information. The
resulting data is speed on arbitrary positions in a road network. It might be possible to infer some flow
data from FCD, but the FCD data sources currently do not offer information on flow.

2.2. Traffic characteristics
The introduction of this thesis already eluded to using knowledge of traffic characteristics to arrive at
better traffic predictions, this section will introduce the characteristics which will be used.

The most important realization is that traffic information flows differently depending on the direction

7

8 2. Existing methods

in which it flows. We distinguish two directions: upstream, against the direction of the vehicles, and
downstream, with the direction of the vehicles. Information flowing downstream is carried by the vehi-
cles themselves and thus travels with the speed of the traffic. Information flowing upstream is different.
When a traffic slow-down occurs at one location, vehicles approaching that location will also slow down
to avoid collisions. The slow-down will travel upstream with a speed lower than that of the vehicles,
which can intuitively be seen as vehicles piling up in front of a traffic jam. This is described as a wave
in vehicle density (amount of vehicles per unit length of road), which travels upstream with a speed of
at most 20kmh−1[24]. We can thus say that information travels upstream with the speed of this wave.
This upstream wave speed will be used when selecting relevant inputs for an ML model later in the
thesis.

2.3. ML time series modeling
Now we will start introducing the ML methods that will be used in this thesis, but first we note that
the traffic prediction problem can be seen as a time series problem on a graph. To this end, some
concepts crucial in time series modeling are introduced before delving into ML specifics. The main ML
method used in this thesis is called a Graph Neural Network, the introduction of which will start with
simpler Neural Networks. The random forest, another ML method, is also used, but this thesis does not
propose any changes to the random forest, so its introduction is a bit shorter. The goal of this section
is to establish how time series modeling and the machine learning methods used in this thesis work
individually and to establish how they are used together.

2.3.1. Time series
We begin with general methods of modeling time series and assessing the performance of a model.
Suppose there exists time series data of 𝑛-dimensional variable 𝑥𝑡 ∈ ℝ𝑛, for some arbitrary 𝑛 ∈ ℕ. This
variable may correspond to traffic flow and speed at some sensor location for example. The goal of
time series modeling is to obtain a function 𝑓 ∶ ℝ𝑛 ↦ ℝ𝑛 which predicts the variable 𝑥 at some time in
the future. One might want to predict the variable at an arbitrary time step in the future, so we introduce
the prediction horizon ℎ, such that 𝑓(𝑥0) is aimed at predicting 𝑥ℎ. Further, more information than just
the current observation can be used. Let the input width 𝑊 ∈ ℕ be the number of timesteps used as
input and let 1 ∶ 𝑊 denote 1, 2, ..,𝑊. The goal of a so-called single-step estimation problem is then
to find the function 𝑓 such that 𝑓(𝑥1∶𝑊) = 𝑥𝑊+ℎ. This process is outlined in figure 2.1. This process
is extended in a multi-step estimator 𝑓(𝑥1∶𝑊) = (𝑥𝑊+ℎ1 , 𝑥𝑊+ℎ2 , ..., 𝑥𝑊+ℎ𝑚)𝑇 for arbitrary ℎ𝑖 ∈ ℕ,𝑚 ∈ ℕ.
This windowing process means that there are some requirements for the data. Note that a time-series
of 𝑇 consecutive steps will generate 1 + 𝑇 − (𝑊 + ℎ) samples. Thus, some time-series of 𝑚 groups of
𝑊 long consecutive data points will yield no usable data for the chosen value of𝑊.

Figure 2.1: The windowing process of a single-step estimator is shown for an input width of 𝑊 = 5 and a horizon
of ℎ = 3. The time series is thus split up into inputs of size 𝑊 and a prediction target at time ℎ ahead of the last
entry in the corresponding input.

There exist many methods of optimizing 𝑓, most share the property that they are intended to optimize
the Mean Squared Error (MSE) or Mean Absolute Error (MAE). In this thesis, functions will be optimized
w.r.t. the MSE. Given some time series x = 𝑥1, 𝑥2, ..., 𝑥𝑇 for some 𝑇 ∈ ℕ≥𝑊+ℎ, the MSE and MAE are
formulated as follows:

2.3. ML time series modeling 9

MSE(𝑓,x) = 1
1 + 𝑇 − (𝑊 + ℎ)

𝑇−ℎ

∑
𝑖=𝑊

(𝑓(𝑥𝑖∶𝑖+𝑊) − 𝑥𝑖+𝑊+ℎ)
2 ,

MAE(𝑓,x) = 1
1 + 𝑇 − (𝑊 + ℎ)

𝑇−ℎ

∑
𝑖=𝑊

|𝑓(𝑥𝑖∶𝑖+𝑊) − 𝑥𝑖+𝑊+ℎ| .

Common methods for finding an 𝑓 approximating the true relations, thus modeling time series, are the
ARIMA [25] and GARCH [26] models (and their plentiful variants). These models however tend to share
the assumption that the process they are modeling is stationary in some sense. This assumption does
not hold in the traffic problem. Some simple reasons for this are that people tend to travel more during
rush hours causing congestion, whereas traffic at night is very stable since there are few vehicles on
the road, or that traffic is influenced by random external factors such as the weather.

In the last 20 years, some of the focus in time series prediction has shifted to using machine learning
methods to obtain 𝑓. The large data availability and complex spatio-temporal dependence of the traffic
problem make ML well suited [27].

2.3.2. Working with ML
In this thesis ML methods will be used, but what is ML? The original description can be paraphrased
as ’statistical models which can perform a task without being explicitly programmed to do so’ [28]. In
other words: a computer uses statistics to ’learn’ how to perform some task. In this thesis ML will be
used to arrive at the best possible traffic prediction. This thesis will have regression and classification
models. A regression model predicts a continuous value such as future traffic flow or speed from its
input data. Classification models give a value in some finite set of values; this thesis will use this as
automation in combining outputs of multiple regression models into a single prediction.

Most of the models used are based on artificial neural networks, which is the most popular form of
machine learning judging by the sheer volume of research published on the subject [13, 16, 29–31]. In
this thesis, artificial neural networks for regression and random forests for classification will be used.
Both will be explained here.

Machine learning models tend to have a large number of parameters, which is both their strength and
weakness. To illustrate how many parameters can be used; over 5 ⋅ 105 is very common: the popular
Chat-GPT4 model is rumored to have 1.8 trillion parameters[32]. Having so many parameters is a part
of what makes neural networks good general predictors. On the other hand, this much freedom will
almost definitely lead to overfitting if no countermeasures are taken. Most of these measures are based
on restricting data usage. Two methods used in this thesis are explained below.

The first method is splitting the available data into three sets: training, validation and testing data. Their
respective sizes used in this thesis are 70%, 15% and 15%, which is a commonly occurring partitioning
[33]. The neural network models are trained by passing over the training data multiple times, each pass
is called an epoch. After each training pass, the prediction performance of the model on the validation
data is calculated. The model with the best validation performance over all epochs is taken as the
final model. The performance of this model may now be correlated with the validation data, so the
final performance of the model is calculated on the testing data. This method is designed to ’stop’ the
training when overfitting to the training data occurs. In the case of a random forest, no validation step
is needed, so data is simply split into training and testing sets of sizes 85% and 15% respectively.

The second method is aimed at preventing overfitting to the training data and is called drop-out. Within
this thesis, it is applied to neural networks only. Given some input 𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑁), the drop-out
method randomly sets the 𝑥𝑖 to 0 with probability 𝑝 and then rescales the vector by 1/(1 − 𝑝). That is,
if 𝑦𝑖 ∼ Ber(𝑝) i.i.d., then

Dropout(𝑥) = 1
1 − 𝑝 ⋅ (𝑥1 ⋅ 𝑦1, 𝑥2 ⋅ 𝑦2, ..., 𝑥𝑁 ⋅ 𝑦𝑁).

10 2. Existing methods

This random dropout is applied after every layer in the neural network. The 𝑦𝑖 are independently drawn
on every evaluation of the Dropout function, so that the dropped 𝑥𝑖 may differ for every sample and every
epoch. This method has shown to be very useful in preventing overfitting and improving performance
on testing data [34]. During validating or testing, 𝑝 = 0 is taken, so that Dropout is just an identity
mapping.

2.3.3. Neural networks
As previously mentioned, the most popular form of machine learning models is the (Artificial) Neu-
ral Network ((A)NN). Their popularity is understandable, given their ease of use and performance on
seemingly arbitrary tasks, even flying airplanes [35]. A simple neural network model is first described
below, after which more modern adaptations are explained.

The initial idea of the ANN was to mimic neural signaling in the brain so that a computer might be
able to learn the same way a human can. Their main structure consists of so-called neurons, grouped
in ”hidden layers”. Input data would then propagate to a hidden layer through some weighted linear
aggregation, after which a non-linear function is used to calculate the values of the neurons in the
hidden layer. The neuron values are then the inputs for the next layer and so on. The structure is also
shown in figure 2.2.

Figure 2.2: Basic neural network with 2 inputs, 2 hidden layers of each 3 neurons and 1 output. The arrows indicate
the existence of a weight between two neurons.

In more technical terms, let 𝑥𝓁 be the vector of values in layer 𝓁 of the neural network. For a current layer
𝓁 with 𝑛 neurons and next layer 𝓁 + 1 with 𝑚 neurons, we have that the inputs are aggregated linearly,
after which a non-linear function 𝑔 is applied to obtain 𝑥𝓁+1. This non-linear function is often taken to
be the so-called Rectified Linear Unit (ReLU), given by Relu(𝑥) = max(0, 𝑥). Since the aggregation
is linear 𝑦 = 𝑎𝑥 + 𝑏, we can write the aggregation of 𝑥𝓁 as a weight matrix 𝑊 ∈ ℝ𝑚×𝑛 and some bias
𝑏 ∈ ℝ𝑚. Written out fully:

Let 𝑧 = 𝑊𝑥𝓁 + 𝑏, then 𝑥𝓁+1 = (𝑔(𝑧1), 𝑔(𝑧2), ..., 𝑔(𝑧𝑚))
𝑇 .

The weights and biases are then adjusted layer for layer at every training step of the model, propa-
gating backwards from the model output, based on the gradient of the output of each layer. Thus, the
weights and biases are what is optimized during the training of a neural network and are also called
the ’learnable parameters’. The transformation of the data according to the weights𝑊 and biases 𝑏 is
also called a ’learnable’ transformation. See [36] for more details on how the backward propagation is
calculated. The layers in the neural network sketched above are often called ’Dense’ layers.

A recent improvement over the simple NN introduced above is the addition of ”soft” weights through
the so-called attention mechanism [37]. This mechanism makes the weights going from layers 𝓁 to
𝓁 + 1 dependent on the output 𝑥𝓁 of layer 𝓁. The idea behind this mechanism is that some parts of an
input might be more relevant in some situations. The attention mechanism used in this thesis will be
explained on an intuitive level, with in-depth details found in [9, 31, 37].

Consider a device which can generate two periodic signals; a positive signal with a period of 3 and a
negative signal with a period of 5. Given a sample of 5 steps of one of the waves, we task a model with
outputting the signal continuously. As the signal is periodic, the model could output the value 1 period
earlier to perfectly predict the signal. To obtain what the period of the signal is, the model could ”pay
attention” to the polarity of the signal; if negative, it will output the part of the input corresponding to 5

2.3. ML time series modeling 11

steps ago. Thus, if we describe the model as a NN with 5 inputs, no hidden layers and 1 output, we
may write the weights as

𝑊 = {(0, 0, 1, 0, 0) 𝑥1 > 0
(0, 0, 0, 0, 1) 𝑥1 < 0.

This automatic calculation is often not as clear cut in practice, so the model is allowed to ’learn’ what
it needs to pay attention to itself. How much attention it needs to pay to each aspect of the input is
normalized using what is called a softmax function, though readers from other field than mathematics
or computer science might recognize this function as exponential weighting or a Boltzmann distribution
[38]. More details regarding for example how training works can be found in one of [9, 31, 37].

Note that in figure 2.2, the network could also stop after the first layer, then it would be a neural net-
work with 1 layer and 3 outputs. The other way around, we could append to the network in figure 2.2
another neural network predicting some quantity 𝑧 from 𝑦, forming a larger NN in which we see fig-
ure 2.2 as a more complicated layer. From here on, the terms neural network and layer can be used
interchangeably.

2.3.4. Recurrent neural network
Although the previously sketched NN can already be quite powerful in certain tasks, neural network
use in time series prediction can be made more natural using a Recurrent Neural Network (RNN). The
basic idea of an RNN is that its inputs are not only the input at time 𝑡, but also a secondary output of
the RNN at time 𝑡 − 1, as shown in figure 2.3. This passing along of some information between the
RNN allows the NN to better capture time-varying signals1.

Figure 2.3: Basic RNN structure. Inputs are denoted by 𝑥𝑖, outputs by 𝑦𝑖 and the between-RNN in-/output is
denoted by ℎ𝑖.

The space of RNNs has seen improvements in dealing with long-term dependencies resulting in the
form of RNN used in this thesis: the Gated Recurrent Unit (GRU) [39]. The exact calculations of the
GRU are not the focus of this thesis, so they are omitted here. We do however show figure 2.4, which
is a slight adaptation of the figure seen before. The GRU does not pass a secondary output, but rather
uses its output as an additional input at the next time step.

Figure 2.4: GRU structure. Inputs are denoted by 𝑥𝑖, outputs by 𝑦𝑖.

The use of previous predictions allow the RNN to have a form of memory, which aids in time-series
prediction.

1Language can also be seen as a time-varying signal, RNNs are often used in large language models: chatbots.

12 2. Existing methods

2.3.5. Graph neural networks
Another extension of the ANN is Graph Neural Networks (GNNs), which will leverage a graph structure
underlying the traffic problem to improve prediction performance. As in the introduction, the best way
to motivate GNNs is perhaps by imagining the shortcomings of a neural network which does not utilize
the graph structure. To this end, consider feeding a NN with traffic information of an entire country:
speed and flow measured at sensor locations. If by chance there exists some correlation in the training
data between nodes which are at different extremes of the country, the neural network will pick up on
this correlation and use it for prediction, even though a human observer would consider this relation
non-existent. Still, one might ask why picking up on this relation is bad. The answer is that probably,
most of the time it is not, traffic intensity is often correlated through rush hours. However, if an accident
occurs at one location, we know that this should not influence the other extreme of the country.

A graph neural network extends artificial neural networks by incorporating the underlying graph struc-
ture of a problem. There exist many ways to incorporate this structure, but since we will be applying
the GNN to operate locally, the most relevant types are based on what is called ’message-passing’.
Message passing means passing information to neighboring nodes, so that we may write a general
GNN layer as follows

𝑥𝓁𝑢 = 𝑁𝑁 ({𝑥𝓁−1𝑣 ∶ 𝑒𝑣𝑢 ∈ 𝐺}) .
In this notation, a node 𝑣 is said to be a neighbor of node 𝑢 if there exists an edge from 𝑣 to 𝑢, denoted
by 𝑒𝑣𝑢, in the graph 𝐺. Information on the edge along which information is passed to a neighbor can
also be used, writing

𝑥𝓁𝑢 = 𝑁𝑁 ({𝑥𝓁−1𝑣 , 𝑒𝑣𝑢 ∶ 𝑒𝑣𝑢 ∈ 𝐺}}) .
Here 𝑢 is the output node, 𝑣 is a possible input node, 𝑒𝑣𝑢 denotes an edge from node 𝑣 to node 𝑢 in
the graph 𝐺 and 𝑁𝑁 denotes an NN applied to the graph-based inputs. Taking into account only the
direct neighbors of 𝑢 is called a 1-hop GNN and is the most common implementation of a GNN. There
also exist 𝑘-hop GNN implementations, where all neighbors within 𝑘-hops are included [17].

The GNN can be seen way of restricting or streamlining the information which can be used in predict-
ing at some specific edge or node. Aside from this restriction, there is often also information added
regarding the path the information took, for example how long a section of road between two sensors
is. This new way of selective information usage improves the prediction performance of artificial neural
networks [10, 16].

2.3.6. SpaceTime Neural Network
Chapter 3 of this thesis extends a state-of-the-art GNN. The GNN used as a base model is called
SpaceTime Neural Network (STNN), by Yang et al. [9]. The largest difference to other GNNs [10,
16] applied to traffic prediction is that it performs a node-level task. This means switching to local
estimation and incorporating information on only a local sub-network. By training a single model on
many sub-networks, the goal is to obtain a general traffic predictor applicable in an arbitrary region of
a network.

Switching to local prediction weakens the dependence on the larger structure with the following advan-
tages over network-level predictors:

1. Switching from predicting on an entire network to predicting locally means that evaluation scales
linearly with the number of nodes in the network instead of quadratically. This leads to faster
training and inference.

2. Predicting locally means that the model can be trained and evaluated on all nodes of an arbitrary
network. This is called having high transferability.

3. Larger sample size from the same measurements. Given 𝑁 measurements at 𝐾 traffic sensors,
a network-level predictor has at most 𝑁 data samples. A local predictor can split sub-networks
for each traffic sensor, giving at most 𝑁 × 𝐾 data samples.

The local sub-network is a sub-network in both space and time. Suppose we are trying to predict traffic
at some sensor which we will now call the target sensor. Given an input width 𝑊 and an amount of
neighbors to consider 𝑀, STNN will take as inputs all past 𝑊 measurements of the 𝑀 sensors which

2.3. ML time series modeling 13

are closest to the target sensor in travel distance. This process can be described in the framework of
a 1-hop GNN, though it is a bit cumbersome. A better suiting framework is presented in chapter 3.

Consider transforming the𝑊 timesteps of the𝑀 nodes by creating a local space-time graph with nodes
𝑣𝑖𝑗 where 𝑖 ∈ {1, 2, ...,𝑊} denotes a time and 𝑗 ∈ {1, 2, ..., 𝑀} denotes the sensor. Edges are added in
this new space-time graph from all 𝑣𝑖𝑗 to the target sensor 𝑣𝑊𝑡 , then the STNN process can be seen as
applying a 1-hop GNN layer to all past𝑊-measurements at the 𝑀 closest sensors. These new edges
have as weight the shortest path distance to the target sensor. An example of this transformation is
shown in figure 2.5, which is also used as input to the next layers.

Figure 2.5: The graph transformation process used in STNN. The target node is indicated with an orange disc and
other nodes are shown as blue squares. In the left network, roads are indicated with solid black lines and the time
dimension is shown using grey dashed lines. On the right, we have a graph with all nodes linking to the target
node at the latest timestep.

After using this GNN step to collect input information, STNN automatically decides which of its𝑊 ×𝑀
inputs to ”pay attention” to using an attention layer as briefly explained in subsection 2.3.3 before
applying more conventional Dense (ReLU) layer steps. Details of the parameters and setup of these
layers are not relevant to this thesis, but can be found in [9].

It has been shown that for traffic prediction, STNN is capable of outperforming other GNNs when the
prediction horizon is less than or equal to 15minutes [9]. STNN, being a node-level predictor, was also
compared against network-level predictors (like [8]). The latter performed better at longer prediction
horizons of more than 30 minutes. The fact that STNN as a local predictor performs well with a shorter
prediction horizon is expected within the Locality intuition used in this thesis, as we deem a local
neighborhood which can be traversed in around 15 minutes unlikely to capture information important
to the traffic state 30 minutes into the future.

Further, as a local predictor does not depend on the network structure of an entire network, STNN
trained on one city and then tested on another city has shown to perform comparably to some previously
state-of-the-art GNNs. Applying these previously state-of-the-art GNNs to a different city is either not
possible at all or does not perform well [9].

The combination of both improvements seems too good to be true. As mathematicians often say, there
is no such thing as free lunch. The catch is that STNN only performs this well in practice on a prediction
horizon of less than 15 minutes.

2.3.7. Random forest
As eluded to in the description of traffic characteristics, information in traffic will propagate differently
based on its direction. This thesis will generate models for traffic prediction based on these different
directions, whose outputs will combined into a final prediction using random forests.

To explain a random forest we first describe the population of the forest: (classification) trees. A classi-
fication tree splits data into groups using inequalities. As an example, consider how tall people are. We
use two categories: tall and short. The classification tree would then decide whether a person is tall or
short, given their length and gender. It would deem men above 181.1 cm and women above 167.4 cm

14 2. Existing methods

tall, the decision tree is shown in figure 2.6. The tree has 4 endpoints, which are called leaves, which
does not need to correspond to the number of categories.

Figure 2.6: A decision tree which decides on whether a person is tall based on their height and gender.

These trees are formed automatically in practice according to some optimization rule, often entropy
optimization [40]. Decision trees however suffer from high variance; a small change in training data can
cause a large change in its outputs. This is mitigated by taking the mean output of many trees, trained
on datasets created by sampling with replacement from the original dataset. Typically, if the original
dataset contains 𝑁 samples, then so does every resampled dataset 𝑁. This process is called bagging.
To further reduce variance, each tree is only allowed to consider a small subset of the features, typically
√𝑀 where 𝑀 is the number of available features. The model resulting from bagging and restricting
features is called a random forest. For details on the cases in which resampling does not reduce the
variance see [40].

The final output of the random forest can be the class predicted by the majority of the trees, or it can
be a normalized vector of how many trees of the forest voted on a certain class. In the context of the
example above, suppose we have a random forest with 300 trees, 200 of which gave output Tall and
100 of which gave output Short. The output could thus be either the majority vote Tall, or it could be
the vector (2/3, 1/3)𝑇 corresponding to classes Tall and Short respectively.

The way in which the outputs of the NNs and random forests will be combined is explained later in the
modeling chapter.

2.4. Topological Data Analysis 15

2.4. Topological Data Analysis
We now switch to a deeper mathematical topic in Topological Data Analysis, which is another important
method used in this thesis. TDA will be used to summarize traffic data with the goal of extracting more
useful information to use in prediction.

TDA is based on the idea that the ’shape’ of data is important. To be more precise, TDA is concerned
with the absence of data in 𝑛 dimensional regions or holes. As mentioned in the introduction, this thesis
will show a way of visualizing local traffic information in a diagram of lines with gaps between them.
These gaps will be transformed into holes, which are analyzed using TDA. This section will show how
holes in a cloud of data points are identified and tracked using TDA.

As an example, consider the point cloud as shown in figure 2.7a. It is sampled from a circle with some
noise added to it. We can visually inspect this figure and might conclude that there is a hole. Seeing
that 2.7b is sampled from a torus however is more difficult and higher dimensional data can no longer
be shown in a single image. TDA can be used to identify holes in data and provide information on their
size and underlying topology. In order to track holes, the notion of a topological space and homotopy
equivalence is introduced below.

Definition 1 (Topological space). Let 𝐷 be a set and let 𝜏 be a collection of subsets of 𝐷, such that
• ∅ ∈ 𝜏 and 𝐷 ∈ 𝜏,
• Any (finite or infinite) union of members of 𝜏 belongs to 𝜏,
• Any finite intersection of members of 𝜏 belongs to 𝜏.

The members of 𝜏 are called open sets and 𝜏 itself is called a topology. If we write the combination
𝑋 = (𝐷, 𝜏), then 𝑋 is called a topological space.

Definition 2 (Homotopy). Let 𝑋 and 𝑌 be topological spaces and let 𝑓 and 𝑔 be continuous functions
mapping from 𝑋 to 𝑌. A homotopy between 𝑓, 𝑔 ∶ 𝑋 ↦ 𝑌 is a continuous function 𝐻 ∶ 𝑋 × [0, 1] ↦ 𝑌
such that 𝐻(𝑥, 0) = 𝑓(𝑥) and 𝐻(𝑥, 1) = 𝑔(𝑥) for all 𝑥 ∈ 𝑋.

As such, a homotopy continuously deforms 𝑓 to 𝑔. In visual terms; a homotopy 𝐻 continuously deforms
the image of 𝑓(𝑋) to 𝑔(𝑌), meaning that its topological holes. As such, two functions are said to be
homotopy equivalent if there exists a homotopy between them. Homotopy equivalence is what is meant
when mathematicians say that a donut and a mug have the same shape.

(a) Data sampled from a circle with some noise. (b) Data sampled from a torus with some noise.

Figure 2.7: Point clouds sampled from shapes with holes.

This section will explain how to extract these holes from data. Also, we will stop talking about holes
and will talk about topological features instead. This is because the topological features are of some
dimension. Suppose we were to keep talking about holes, a 1-dimensional is like that shown in figure
2.7a. A 2-dimensional hole could be the circular void inside a torus. However, 0 or higher dimensional
holes are hard to imagine. To avoid confusion, we will talk about topological features in this section.
Later parts will refer to 1-dimensional features as holes.

16 2. Existing methods

2.4.1. Simplicial complexes
At the basis of TDA lie the mathematical objects named simplicial complexes. Simplicial complexes
will allow us to define topological features later in the explanation of TDA. We start with a simplex.
Consider a set of 𝑛 + 1 points 𝕏 = {𝑥0, 𝑥1, ..., 𝑥𝑛} in ℝ𝑑 which are affinely independent. The convex hull
of 𝕏 is also called the 𝑛-dimensional simplex 𝜎 = [𝑥0, 𝑥1, ..., 𝑥𝑛], where the 𝑥𝑖 are called its vertices. The
simplices spanned by the subsets of 𝕏 are called the faces of 𝜎. A geometric simplicial complex 𝐾 in
ℝ𝑑 is defined as follows:

Definition 3 (Geometric simplicial complex). A geometric simplicial complex 𝐾 is a collection of sim-
plices such that

1. Any face of a simplex 𝜎 ∈ 𝐾 is also in 𝐾

2. The intersection of two simplices in 𝐾 is either empty, or a common face of both.

Note that the intersection taken is with regard to the space spanned by a convex hull. An example of
when this fails is shown in figure 2.8. The union of all simplices in 𝐾 is called the underlying space of 𝐾
and it inherits topology from ℝ𝑑, So, 𝐾 can also be seen as a topological space through its underlying
space. Also, note that 𝐾 can be fully described by a combinatorial description of the elements of its
underlying space following some rules. The possibility of describing a geometric simplicial complex
through combinatorics gives rise to an abstract simplicial complex as shown in figure 2.9.

Figure 2.8: Intersection of simplices [1, 2, 3] and [1, 2, 4]. Their intersection is region A, which is not a possible
simplex given these data points. Simplices [1, 2, 3] and [2, 3, 4] would satisfy condition 2 in the definition of a
geometric simplicial complex.

Definition 4 (Abstract simplicial complex). Let 𝑉 be a set. An abstract simplicial complex with vertex
set 𝑉 is a set 𝐾̃ of finite subsets of 𝑉 such that

1. The elements of 𝑉 are in 𝐾̃

2. For any 𝜎 ∈ 𝐾̃, all subsets of 𝜎 are in 𝐾̃

The elements of 𝐾̃ are called its simplices or its faces.

Note that the abstract simplicial complex has no notion of spanned space, so any intersection of sim-
plices is simply the intersection of their vertices.

Figure 2.9: An example of switching between geometric and abstract simplicial complexes. The black points cor-
respond to 0-dimensional simplices, blue lines to 1-dimensional simplices and the orange area to a 2-dimensional
simplex.

2.4. Topological Data Analysis 17

The reverse relation also exists: consider some abstract simplicial complex 𝐾̃ with some associated
topological space |𝐾̃| from which it could have been constructed. Then, if geometric simplicial complex
𝐾 has combinatorial description 𝐾̃, the underlying spaces of 𝐾 and |𝐾̃| are homeomorphic. Homeo-
morphy is stronger than homotopy, so the underlying spaces of 𝐾 and |𝐾̃| are homotopic. Note how
this allows tracking topological features in some geometric simplicial complex by studying its abstract
simplicial complex.

There exist many ways to generate simplicial complexes from data, but this thesis makes use of one
widely used method: the Vietoris-Rips complex. However, as the theoretical framework can be ex-
plained more naturally with another method, we will first introduce the Čech complex and later define
the Vietoris-Rips complex and discuss their differences.

Definition 5 (Čech complex). Given points 𝕏 = {𝑥1, 𝑥2, ..., 𝑥𝑛} ⊂ ℝ𝑑 and 𝑟 > 0, the Čech complex of 𝕏
at radius 𝑟 is the abstract simplicial complex defined by the set of simplices [𝑥1, 𝑥2, ..., 𝑥𝑘] such that the
𝑘 closed balls 𝐵𝑟𝑥𝑖 have non-empty intersection. Thus,

Čech𝑟(𝕏) = {[𝑥1, 𝑥2, ..., 𝑥𝑘] ∶ ∩𝑘𝑖=1𝐵𝑟𝑥𝑖 ≠ ∅} .

2.4.2. Homotopy
As remarked earlier, studying the abstract simplicial complex associated with some geometric simplicial
complex tracks its topological features. In practice, the geometric complex is the data to be studied.
The question then arises, what are the topological features in the data? An intuitive way to make these
topological features apparent is to consider the union of balls with radius 𝑟 centered at the datapoints
𝑥 ∈ (𝕏 ⊂ ℝ𝑑). It has been proven that, assuming some well-chosen value of 𝑟, the union of balls is
homotopy equivalent to some offset of the support from which 𝕏 is sampled, see reconstruction theo-
rem in [41] for more details. From the union of balls, an abstract simplicial complex can be generated
using nerves. Thus, nerves are introduced.

Definition 6 (Nerve). Given a cover U = (𝑈𝑖)𝑖∈I of𝕄, that is a family of sets 𝑈𝑖 such that ∪𝑖∈I𝑈𝑖 ⊇ 𝕄,
the nerve of U is the abstract simplicial complex 𝐶(U) with vertex set {𝑈𝑖}𝑖∈I such that

𝜎 = [𝑈𝑖0 , 𝑈𝑖1 , ..., 𝑈𝑖𝑘] ∈ 𝐶(U) ⟺ ∩𝑘𝑗=0𝑈𝑖𝑗 ≠ ∅.

An example of some data points with balls of radius 𝑟 as cover turning into a nerve is shown in figure
2.10.

Figure 2.10: The nerve resulting from the union of balls on some example data points. Note that this corresponds
to the abstract simplicial complex in figure 2.9 as each ball is identified by its center.

The nerve also admits homotopy through the nerve theorem:

Theorem 1 (Nerve theorem). Let U = (𝑈𝑖)𝑖∈I be a cover of a topological space 𝑋 by open sets such
that the intersection of any subcollection of the 𝑈𝑖 ’s is either contractible or empty. Then, 𝑋 and the
nerve 𝐶(U) are homotopy equivalent.

Now stringing the nerve theorem (theorem 1) and the reconstruction theorem (again, see [41]) together:
for some well-chosen radius 𝑟, the nerve of the union of balls on some data 𝕏 is homotopy equivalent

18 2. Existing methods

to the support the data was sampled from. We have seen the nerve of the union of balls with radius
𝑟 before: the Čech complex with radius 𝑟. In other words, if 𝑟 is well-chosen, the Čech complex is
homotopy equivalent to the support of the data.

2.4.3. Homology
So far, the possibility of tracking topological features through homotopically equivalent objects has been
shown. The definition of topological features in complexes is studied using homology groups of chain
complexes. Let 𝐾 be a finite simplicial complex and let 𝑘 ∈ ℕ≥0. A simplex 𝜎 = [𝑥0, 𝑥1, ..., 𝑥𝑘] of 𝑘 + 1
elements is called a 𝑘-simplex. The space of 𝑘-chains on 𝐾, denoted 𝐶𝑘(𝐾) is the set of finite sums of
the 𝑘-simplices in 𝐾. That is, for 𝜎𝑖 𝑘-simplices in 𝐾, a 𝑘-chain 𝑐 is defined as

𝑐 =
𝑝

∑
𝑖
𝜀𝑖𝜎𝑖 , with 𝜀𝑖 ∈ ℤ2.

This notation is simply stringing together simplices, where requiring that the 𝜀𝑖 are in ℤ2 = {0, 1} auto-
matically removes doubly counted simplices. To see this, we let 𝑐 = 𝜀1𝜎1 and 𝑐′ = 𝜀′1𝜎1, with 𝜀1 = 𝜀′1 = 1.
Then, 𝑐 + 𝑐′ = (𝜀1+𝜀′1)𝜎1 = (1+1)𝜎1 = 0, as 1+1 = 2 ≡ 0 in ℤ2. Imagine two adjacent triangles, with
the edges between their vertices being the 1-simplices. If 𝑐1 is the chain enclosing the first triangle and
𝑐2 is the chain enclosing the second triangle, 𝑐1 + 𝑐2 encloses the diamond formed by the union of the
two triangles. This is shown in figure 2.11.

Figure 2.11: Sum of two triangular chains.

The boundary 𝜕𝑘(𝜎) of a 𝑘-simplex 𝜎 = [𝑥0, 𝑥1, ..., 𝑥𝑘] is the 𝑘 − 1-chain of all 𝑘 − 1-sub-simplices of 𝜎:

𝜕𝑘(𝜎) =
𝑘

∑
𝑖=0
[𝑥0, 𝑥1, ..., 𝑥𝑖 , ..., 𝑥𝑘],

where [𝑥0, 𝑥1, ..., 𝑥𝑖 , ..., 𝑥𝑘] denotes the simplex with vertex 𝑥𝑖 removed. Note that the 𝑘-simplices form
a basis of 𝐶𝑘 and that 𝜕𝑘 can be extended to applying on chains as a linear map, called the boundary
operator. In the scope of figure 2.11,

𝜕𝑘 ([1, 2, 3] + [2, 3, 4]) =
simplices from [1,2,3]

⏜⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⏜[1, 2] + [2, 3] + [1, 3]+
simplices from [2,3,4]

⏜⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⏜[2, 3] + [2, 4] + [3, 4]
= 1 ⋅ [1, 2] + 2 ⋅ [2, 3] + 1 ⋅ [1, 3] + 1 ⋅ [2, 4] + 1 ⋅ [3, 4]

𝜀𝑖 ∈ ℤ2= [1, 2] + [1, 3] + [2, 4] + [3, 4] ∈ 𝐶𝑘−1.

A 𝑘-chain which has zero boundary is a 𝑘-cycle, with the kernel 𝑍𝑘(𝐾) = {𝑐 ∈ 𝐶𝑘(𝐾) ∶ 𝜕𝑘(𝑐) = 0}. The
space of 𝐾-cycles which are the boundary of some 𝑘+1 cycle in 𝐾 is called the space of 𝑘-boundaries
of 𝐾; 𝐵𝑘(𝐾) = {𝑐 ∈ 𝐶𝑘(𝐾) | ∃𝑐′ ∈ 𝐶𝑘+1(𝐾) ∶ 𝜕𝑘+1(𝑐′) = 𝑐}. By realising that 𝜕𝑘 ∘ 𝜕𝑘+1 = 0, one can see
that 𝐵𝑘(𝐾) ⊆ 𝑍𝑘(𝐾). Then, we arrive at the following definition:

Definition 7 (Simplicial homology group and Betti numbers). The 𝑘-th simplicial homology group of 𝐾
is the quotient vector space

𝐻𝑘(𝐾) = 𝑍𝑘(𝐾)/𝐵𝑘(𝐾).
The 𝑘-th Betti number of 𝐾 is the dimension of the vector space 𝐻𝑘(𝐾); 𝛽𝑘(𝐾) = dim𝐻𝑘(𝐾).
From this definition it follows that the 𝑘-th Betti number of𝐾 corresponds to the number of 𝑘-dimensional
topological features in 𝐾. Also, note that two 𝑘-cycles are homologous if they differ2 by a 𝑘-boundary,
2A difference is equivalent to a sum since we are dealing with the field ℤ2.

2.4. Topological Data Analysis 19

so the boundary of a 𝑘 + 1-chain which exists in 𝐾. Conversely, if two 𝑘-cycles differ by a cycle which
can not be a boundary of a 𝑘+1 chain in 𝐾, they are not homologous. If a cycle can not be a boundary
of a 𝑘 + 1 chain in 𝐾, then it is homologous to the boundary of a 𝑘-dimensional topological feature in
𝐾. This is also illustrated in figure 2.12.

Figure 2.12: An example of cycles. All shaded areas are 2-simplices, the unshaded areas are absent in the
simplicial complex. Note that the cycle indicated by dashed line 1 and the cycle indicated by the solid line 2 differ
by a boundary of shaded regions, so they are homologous. The cycle indicated by dash-dotted line 3 does not differ
by a boundary of a shaded region; it encloses the right hole (1-dimensional topological feature). As such, cycle
3 is not homologous to cycle 1 and cycle 2. This example has 𝛽1 = 2, as there are two holes i.e. 1-dimensional
topological features.

With this knowledge of homology combined with what is explained in subsection Homotopy, we can
see how topological features can be identified and we know how they relate to the homology of the
support of the sampled data. However, recall that earlier we discussed placing balls of radius 𝑟 around
data points. The choice of 𝑟 still remains uninformed, which is addressed in the next subsection.

2.4.4. Persistent homology
At this point, it is clear that the Čech complex built from data can be used for identifying topological
features in the support of the data. However, the choice of 𝑟 remains uninformed. This subsection will
introduce the important notion of persistent homology. Persistent homology will deal with the choice
of scale parameter 𝑟 and will fill form the bridge between the abstract mathematics in the previous
subsections and real-world data.

We also take a step away from the Čech complex, as it is expensive to compute. This is often tackled
by switching to the aforementioned Vietoris-Rips complex. Furthermore, the Vietoris-Rips complex de-
pends on distances between datapoints, whereas the Čech complex on the positions of the datapoints
in ℝ𝑑. The Vietoris-Rips complex can thus also be used on data which does not embed into ℝ𝑛 for any
𝑛. The Vietoris-Rips complex can hence also be used on for example a correlation matrix. However,
the Vietoris-Rips complex at some radius 𝑟 is not guaranteed to be homologous to the union of balls
with radius 𝑟 on the data. Both the new Vietoris-Rips problem and choice of 𝑟 are tackled by making
use of the to be introduced notion of persistence.

First, define the Vietoris-Rips complex, sometimes also referred to as simply Rips complex.

Definition 8 (Vietoris-Rips complex). Given points 𝕏 = 𝑥1, 𝑥2, ..., 𝑥𝑛 ⊂ ℝ𝑑 with some distance between
points 𝑑(𝑥𝑖 , 𝑥𝑗), let 𝑟 > 0. The Vietoris-Rips complex of 𝕏 at radius 𝑟 is the abstract simplicial complex
defined by the set of simplices 𝜎 = [𝑥1, 𝑥2, ..., 𝑥𝑘] such that the distance between all vertices of any
simplex is less than 𝑟. Thus,

Rips𝑟(𝕏) = {𝜎 ∶ ∀𝑥𝑖 ,𝑥𝑗∈𝜎𝑑(𝑥𝑖 , 𝑥𝑗) ≤ 𝑟} .

20 2. Existing methods

It can be shown that

Čech𝑟(𝕏) ⊆ Rips2𝑟(𝕏) ⊆ Čech2𝛿𝑟(𝕏) ⊆ Rips4𝛿𝑟(𝕏), where 𝛿 = √
𝑑

2(𝑑 + 1) . (2.1)

As a consequence, there exist maps between their homology groups with the following commutative
diagram [42]:

𝐻𝑘 (Čech𝑟(𝕏)) 𝐻𝑘 (Čech2𝛿𝑟(𝕏))

𝐻𝑘 (Rips2𝑟(𝕏)) 𝐻𝑘 (Rips4𝛿𝑟(𝕏))

Figure 2.13: Mapping between homology groups of Čech and Vietoris-Rips complexes.

This diagram implies that any topological feature of the Čech complex which appears at 𝑟 and 2𝛿𝑟
also shows up in the Vietoris-Rips complex at radius 2𝑟; the Rips complex can capture all features a
Čech complex can, for 𝑟 chosen well. Conversely, if a topological feature appears in the Vietoris-Rips
complex at 𝑟 and 2𝛿𝑟, it must also exist in the Čech complex at radius 𝛿𝑟, so any feature captured in
the Rips complex is a true topological feature of the data, again for some well-chosen 𝑟.
It is clear that the choice of 𝑟 is important. There might exist a single value which properly extracts all
features, but finding this value is very impractical. As a solution, consider all possible values of 𝑟 ≥ 0.
This is done via filtrations. A filtration of a simplicial complex 𝐾 is a nested family of subcomplexes
(𝐾𝑟)𝑟∈R where R ⊆ ℝ with ∪𝑟∈R𝐾𝑟 = 𝐾. The nesting means that 𝐾𝑟 ⊆ 𝐾𝑟′ for 𝑟 ≤ 𝑟′. The index set R
may be infinite, but in practice, as 𝐾 is built on finite data, the filtration only changes at a finite number
of times, so R can be taken finite.

The idea of persistence is then as follows: at every 𝑟 ∈ R, track which topological features appear and
disappear. We say that a feature is born if it appears and dies if it disappears. Prominent topological
features will have long lifetimes. The process of growing a Čech complex with respect to its radius is
shown in figure 2.14, with the births and deaths of every topological feature tracked in the persistence
barcode (fig 2.14f). The barcode shows with lines when features are born and when they die, long
lines correspond to prominent features. The Čech complex is shown as it visualizes more clearly than
the Rips complex, but the process is the same for both. It is now also time to address the meaning of
a 0-dimensional topological feature. A 0-dimensional topological feature is by definition a connected
component. Thus, at 𝑟 = 0, every datapoint corresponds to a 0-dimensional topological feature or
0-dimensional topological feature. When 𝑟 grows, simplices containing more than one point appear,
connecting two data points. This reduces two data points to one connected component until there is
only one 0-dimensional topological feature left once everything has become connected. Also shown in
the figures are 1-dimensional topological features, which we call holes and are present in figure 2.14c.

The persistence barcode is an insightful way of visualizing the persistence information of this example,
but can become cluttered when a lot of data points are considered; there is at least 1 line for every
individual data point. Alternatively, persistence can be visualized in a persistence diagram. The per-
sistence diagram transforms the bars into points located at (birth,death). Features which are similar
in the persistence barcode will then be very close together, or a point may even lie at the same point.
If this happens we say that that point has a multiplicity equal to the amount of features represented by
that point. The barcode in figure 2.14f translates to the persistence diagram in figure 2.15. Points far
from the diagonal correspond to more persistent topological features. We note that there exist other
representations of persistence like persistence landscapes, but these are not used in this thesis.

Now revisiting the data shown in figure 2.7 generates persistence diagrams shown in figure 2.16. Ob-
serving the data in figure 2.7b did not clearly show its torus nature. We now inspect the persistence
diagram in figure 2.16b. We see a lot of topological features, most of which are near the diagonal. Two
points however are much farther from the diagonal than other points (from their respective dimension-
ality); a 1-dimensional feature and a 2-dimensional feature: the signature of a torus.

2.4. Topological Data Analysis 21

(a) 𝑟 = 0.06, no balls overlap. (b) 𝑟 = 0.09, a hole in the right circle ap-
pears due to overlapping balls around the
data.

(c) 𝑟 = 0.16, a hole in the left circle also
appears.

(d) 𝑟 = 0.5, a hole in the right circle dis-
appears.

(e) 𝑟 = 1, all holes have now disap-
peared.

(f) Persistence barcode showing the life-
times of the homological features

Figure 2.14: Process of growing the Čech complex on data, with associated persistence barcode.

2.4.5. Previous work on TDA for time series analysis
Now that the mathematics of TDA have been established, the focus shifts to how TDA can be used to
analyze time series data specifically.

Most work on time series analysis using TDA first transforms the time series to a high-dimensional
embedding. For some time series 𝑥𝑡 ∈ ℝ, this embedding consists of the past 𝜇measurements, spaced
𝜏 timesteps apart. This embedding is called the Takens embedding and is based on the Takens theorem
which states that for well-chosen 𝜇 and 𝜏, the dynamics of the studied system can be fully reconstructed
[43]. The Takens embedding can be analysed using TDA to distinguish different dynamics of the time
series; to classify the time series. This method can for example differentiate human activity when
analysing data of some motion sensor attached to limbs [44].

Another method is to use a sliding window. This method is often given its own name (”sliding window”),
though it is equivalent to a Takens’ embedding with parameter 𝜏 = 1. As an example take four stock
prices at closing and a window of 50 days, to obtain a sample of 50 datapoints in 4 dimensions. One
would then apply the TDA process of taking the Rips complex of these points and calculating the cor-
responding persistence diagram for each window. The final metric would be the Wasserstein distance
between consecutive diagrams. This method has been shown to be capable of predicting financial
market crashes [45]. The Wasserstein distance given some 𝑝 ≥ 1 between two diagrams dgm1 and
dgm2 is defined as the sum of 𝐿∞ distances between optimally matched points in the diagrams. Thus,
with 𝑚 ⊂ dgm1 × dgm2 describing an optimal matching of points,

𝑊𝑝(dgm1,dgm2)𝑝 = inf
matching 𝑚

∑
(𝑝,𝑞)∈𝑚

‖𝑝 − 𝑞‖𝑝∞.

Both methods will be explored in this thesis, though the brevity of this subsection and the tone of this
sentence foreshadow the fruitless outcome of this exploration.

22 2. Existing methods

Figure 2.15: Persistence diagram corresponding to the births and deaths of the process shown in figure 2.14

(a) Persistence diagram of circle data in 2.7a. (b) Persistence diagram of torus data in 2.7b.

Figure 2.16: Persistence diagrams generated from data in figure 2.7 using a Vietoris-Rips filtration.

2.5. Software
The machine learning part of this thesis is implemented in Python through the use of the two most
popular packages: TensorFlow [13] and (Py)Torch [46]. The random forests are implemented using
Yggdrasil [47]. TDA is performed using the Python package GUDHI [48].

3
Developed methods

This chapter will build new methods for short-term traffic prediction using the existing methods de-
scribed in the previous chapter. In practice, there is of course a bit of back-and-forth between this
chapter and the results in the next chapter. When reading this section there will be references to the
next chapter, which refer to some results encouraging that the development process was on a good
track.

This chapter will be divided into developed methods in forecasting - arriving at a prediction given some
information - and alternative representations of the data - to extract more information from the same
data.

3.1. Forecasting methods
This section will implement the Locality and Direction intuitions into existing (G)NN models to im-
prove their performance. These intuitions will be used to extend the state-of-the-art STNN model to a
Propagation-STNN (P-STNN). Additionally, we also modify the new P-STNN model to improve appli-
cability in spatial context, giving a Selfless-Propagation-STNN (SP-STNN). The Locality intuition also
gives rise to a reformulated GNN framework, as the developed model no longer fits in the framework
often found in literature [17].

3.1.1. Direction intuition
Section 2.2 has highlighted how traffic information can travel with the flow of traffic, but also against the
flow of traffic if congestion occurs. The Direction intuition is that the different directions give rise to a
different interaction. As such, different models could be better at predicting traffic from these different
interactions.

The implementation of this intuition is achieved through splitting the data into data from traffic sensors
upstream of the target sensor and data from sensors downstream of the target. Two regression models
are then trained on these split datasets. Having two models means two predictions, which we then
combine into a single output using a random forest decision model. Thus we obtain a combined model
consisting of regression models and a decision model.

The combined model is generated in two ways; fusing or switching between outputs of the regression.
The fusing model is aimed at optimally combining model inputs, whereas switching is an attempt at
having the combined result be ”explainable”. Explainable in this sense meaning, for example, ”the
model expects congestion due to congestion propagating upstream”. Let 𝑋 be the space of all possible
feature realizations and 𝑥𝑡 denote the target quantity to be predicted. The method is based on some
grouping of features which we denote 𝐺𝑖(𝑥), where 𝑥1∶𝑊 ∈ 𝑋 denotes realizations of input features at
timesteps 1, 2, ...,𝑊, where𝑊 is the temporal input width of the model. A model for predicting the target
feature from the features in the group is made for each group. We will denote these models𝑀𝑖, refer to
them as the regression models and write 𝑀 = (𝑀1, 𝑀2, ..., 𝑀𝑛)𝑇. Lastly, we also incorporate a random
forest classification model 𝐷 ∶ 𝑋 → ℝ𝑛, where 𝑛 is the number of groups, which outputs estimated

23

24 3. Developed methods

probabilities that each regression model performs the best, based on all features at 𝑡 = 𝑊. We finally
obtain ”Switch” and ”Fuse” models:

Switch: 𝑥̂𝑊+ℎ = 𝑀argmax(𝐷(𝑥𝑊))(𝑥1∶𝑊), Fuse: 𝑥̂𝑊+ℎ = 𝑀(𝑥1∶𝑊)) • 𝐷(𝑥𝑊). (3.1)

There is no theoretical limit on the regression models which the decision model could combine, so in
the next chapter we will also include other baselines against which we compare models as regression
models for the decision model.

3.1.2. Locality intuition
Another method developed in this thesis relies on the Locality intuition that information propagates at
some finite speed, so nodes which are located travel time ℎ away, with some margin 𝜏, must be used.
Additionally, information on how ’popular’ a node is, routing information, must also be used. The latter
is necessary to distinguish between nodes, as solely relying on nodes at travel time ℎ will cause the
same highway inputs to be used for predicting at every node in a city center. Nodes close to the target
node are used for this purpose. Given: 𝑛1 the number of near nodes, 𝑛2 the number of far nodes, 𝐴𝑡
a temporal distance matrix at time 𝑡 and 𝑃 the physical distances between all nodes, the method for
selecting inputs is described in the following algorithm:

Algorithm 1: The algorithm which selects 𝑛1 near nodes and 𝑛2 far nodes to be used for the pre-
diction task, for each target node. argmin𝑛1 /argmax𝑛1 indicates taking the 𝑛1 smallest/largest
arg values.
Data: Target nodes r, possible input nodes 𝑣𝑖, amount of near and far input nodes: 𝑛1, 𝑛2,

distance matrices 𝐴𝑡 , 𝑃 at current time 𝑡, prediction horizon ℎ and absolute tolerance 𝜏.
Result: Target indexed sets of input nodes N 𝑟

𝑡 for all 𝑟 ∈ r.
for 𝑟 ∈ r do

N 𝑟
𝑡 ← argmin𝑛1 𝐴𝑡⋅,𝑟;

𝑉𝑡𝑟 ← {𝑣𝑖 ∶ (|𝐴𝑡𝑖,𝑟 − ℎ| < 𝜏)};
N 𝑟
𝑡 ← N 𝑟

𝑡 ∪ argmax𝑛2 {𝑃𝑖,𝑟|𝑣𝑖 ∈ 𝑉𝑡𝑟 };
end

Note that this formulation asks for a distance matrix 𝐴𝑡 which depends on time. This matrix will store
the time it will take information to travel from sensor 𝑖 to sensor 𝑗, based on the shortest path between
𝑖 and 𝑗 as calculated from the road network and current speed measurements. We can also take 𝐴𝑡
to be a static matrix using, for example, the speed limit instead of current speed measurements. This
will be used when applying the method to traffic information traveling against the flow of traffic due to
problems in estimating the speed with which this information travels. In that case, the speed used is
20kmh−1, based on traffic characteristics described in section 2.2.

3.1.3. SP-STNN
This subsection shows the method improving applicability in space, in contrast to the previous two sub-
sections which improved model performance. Recall from subsection 2.1 that speed data is available
at arbitrary locations in a network thanks to Floating Car Data (FCD). Data on flow however is only
available at sensor locations. Models described so far have used past measurements of the predicted
variable as input, also limiting the locations at which predictions can be made. Thus, when predicting
at location A, models also use past measurements at location A, meaning that the model can only be
applied to locations where a sensor is placed. A model which does not take past measurements of the
predicted variable is free to predict anywhere within a road network. The change; when selecting near
sensors to use, omit the target sensor itself as input. We will see in chapter 4 that this will come at the
cost of performance.

3.1.4. Distance based GNN
We now zoom out a bit and look at the model developed. Placing the (S)P-STNN model within the
context of existing GNNs, we see that it does not fit in the descriptions most commonly found in lit-
erature. This change is due to the input selection in algorithm 1. In particular, most classifications of

3.1. Forecasting methods 25

GNN models are based on the arithmetic of the layers within the model [49], whereas the novelty of
(S)P-STNN lies in the inputs of the model. The current general description of GNNs regarding their
inputs falls within the class of 𝑘-hop message passing frameworks, whereas (S)P-STNN selects its
nodes based on edge attributes instead of edge count.

Consider a graph 𝐺 = (𝑉, 𝐸), where 𝑉 are the nodes and 𝐸 are the edges, with the edges denoted 𝑒𝑣𝑢
for the edge going from node 𝑣 to node 𝑢 having some weight. Let 𝐼 ⊂ ℝ be an interval. We show the
commonly occurring definition of a 𝑘-hop shortest path kernel and introduce the new definition of an
𝐼-distance shortest path kernel.

Definition 9 (𝑘-hop shortest path kernel). For a node 𝑣 in a graph 𝐺, the 𝑘-hop neighbors N𝐾
𝑣,𝐺 of 𝑣

based on shortest path hop count kernel is the set of nodes that have shortest path hop count from
node 𝑣 less than or equal to 𝑘. The set 𝑄𝑘𝑣,𝐺 denotes the set of nodes which have the shortest path hop
count from node 𝑣 of exactly 𝑘.

Definition 10 (𝐼-distance shortest path kernel). For a node 𝑣 in a graph 𝐺, the 𝐼-distance neighbors
N 𝐼
𝑣,𝐺 of 𝑣 based on shortest path distance kernel is the set of nodes 𝑢 that have shortest path length

𝓁𝑢𝑣 such that 𝓁𝑢𝑣 ∈ 𝐼.
Next, let 𝛿 > 0 and let 𝐼 = (𝐼1, 𝐼2, ..., 𝐼𝑛) be a finite partition of [0, 𝛿]. Using the defined notation, given
𝑥𝑣 ∈ ℝ𝑑 as the input, the 𝛿 distance based message passing framework is defined as follows:

𝑚𝐼𝑖𝑣 = MES𝐼𝑖 ({(𝑥𝑢 , 𝓁𝑢𝑣) ∶ 𝑢 ∈ N 𝐼𝑖
𝑣,𝐺})

ℎ𝐼𝑖𝑣 = UPD𝐼𝑖 (𝑚
𝐼𝑖𝑣)

𝑦𝑣 = COMBINE ({ℎ𝐼𝑖𝑣 ∶ 𝐼𝑖 ∈ 𝐼})

Here, MES𝐼𝑖 is a message function which gathers the information of the nodes in the 𝐼𝑖-kernel and
on the path from these nodes to the target node 𝑣. Note that the message function may be different
for each interval 𝐼𝑖. In a practical setting, a neural network needs to know how many input features it
will receive at any point in its calculations. Hence, a simple form of the message function is selecting
only the information from the first 𝑛 nodes from its input set. UPD𝐼𝑖 are the update functions, which
each produce a prediction ℎ𝐼𝑖𝑣 for 𝑦𝑣. These predictions are then combined to a final output 𝑦𝑣 with the
COMBINE function.

We see that (S)P-STNN falls more naturally in this reformulated framework with messages passing from
the closest 𝑛1 nodes within some short interval and from 𝑛2 nodes in the interval of [ℎ − 𝜏/2, ℎ + 𝜏/2]
sorted on the difference in physical distance which is a node property. The combine step combines the
near and far predictions. The random forest decision model is a compound model (trained separately)
and is thus not represented in this framework.

26 3. Developed methods

3.2. Traffic visualization and summarization
The Locality intuition takes local data from all data measured on the network. The local information is
made up of a lot of numbers from which we want to draw a conclusion. The previous section describes
a new method for arriving at a conclusion in the form of a prediction, this section will describe a new
method for visualizing and summarizing the current state of a local part of a graph. Thus, this section is
aimed at designing a measure on this data which could be used for analyzing a current state of a part
of a network. Ultimately, this quantity might be used to aid in traffic prediction as well. The designed
measure can be seen as a time series of a TDA-based transformation of the data. We will compare it
with other TDA-based time series tools as well as traditional graph metrics.

3.2.1. Traveltime diagram
We start with a newmethod for visualizing a local traffic state, by plotting out the trajectories information
might follow. Consider a road with a length of 6km long and with sensors 𝑠1, 𝑠2, ..., 𝑠5, 𝑠6 located at
1km intervals. Let 𝑣(𝑠𝑖) be the speed measured at sensor 𝑠𝑖 and let 𝑑(𝑠𝑖 , 𝑠𝑗) be the travel distance
between sensors 𝑠𝑖 and 𝑠𝑗. We let sensor 𝑠6 correspond to the target location. The current travel
time from sensor 𝑠𝑖 to target 𝑠6 on the road can be visualized by calculating 𝑡1 = 𝑑(𝑠0, 𝑠1)/𝑣(𝑠1) and
𝑡𝑖+1 = 𝑡𝑖 + 𝑑(𝑠𝑖+1, 𝑠𝑖)/𝑣(𝑠𝑖+1) for 𝑖 ≥ 1. We can take these times and may say: ”Given the current
traffic state, vehicles will be at distance 𝑑(𝑠𝑖 , 𝑠5) away from the target at time 𝑡𝑖”. This intuitively gives
a trajectory, which can be shown by interpolating between the (𝑑(𝑠𝑖 , 𝑠5), 𝑡𝑖) points in 2D space. This is
shown in figure 3.2a. Now suppose that a slowdown occurs at sensor 𝑠3, then the travel times of paths
which start before sensor 𝑠3 are longer, leading to figure 3.2b

Each curve represents how traffic flows between the target and some starting distance away. Note that
the most free-flowing traffic will show as straight lines with slope corresponding to (approximately) the
speed limit. When traffic slows down, some lines will stretch. The slowdown is thus not just represented
by the arrival time at the target becoming later, but also by an increased gap between lines. A slowdown
which has not reached the target, but is incoming, will show as a line which seems to bow upward (a
concave curve in the diagram).

The traveltime diagram proposed is somewhat similar to (vertically mirrored) graphs of trajectories tra-
versed by individual vehicles such as shown in figure 3.1; a tool familiar to traffic scientists. This means
that it follows similar characteristics as these trajectories, most notably bowing out when slowdowns
occur. The graph of trajectories carries more information than the traveltime diagram proposed. For
example, it is much easier to estimate the speed of a congestion wave traveling upstream. However,
the individual car trajectories trace out many lines and require tracking of every vehicle on a road.
Tracking every vehicle requires fine monitoring of every road section, which is a very intensive data-
gathering process. Further, there are issues with summarizing trajectories, as their length is variable.
This could be due to vehicles leaving/entering a road, but could also be due to some tracking system
losing track of a vehicle. The traveltime diagram is thus less informative, but can be generated from
readily available sensor data. Also, it is designed to be summarizable, which will be discussed in the
next subsection.

So far we have used an interpolated line, without motivation as to why interpolation was used and how
the distance between the interpolation points was chosen. This is because there is more data to be
used than just speed; flow. With the current setup any road section is equally important. This may
sound intuitive, but if there is just a single car on a road section driving slower because they have a
preference for driving slower, there would be no hindrance to other traffic.

To incorporate how ’important’ a section of road is, we interpolate that section using some parameter
𝐹 such that the Euclidian distance between each interpolation point is 𝐹/𝑓(𝑠𝑖), where 𝑓(𝑠𝑖) is the flow
at sensor 𝑠𝑖. In a more practical setting, we limit the interpolation spacing with some lower and upper
bounds 𝑟min and 𝑟max. The lower bound is to limit the amount of points in the diagram, to compute the
persistence diagram quicker. The upper bound is there to stabilize the algorithm in cases of low flow.
We are almost ready to apply the procedure to data, but sensors are not spaced as nicely in the real
world. As such, we shift the lines such that they intersect the distance axis at some regular interval,
taken to be 500m in the data study which will follow. We summarize this procedure in algorithm 2. This
regularization allows diagrams generated from different road sections to be compared to each other.

3.2. Traffic visualization and summarization 27

Figure 3.1: Vertically mirrored trajectories traversed by individual vehicles. From [50].

(a) All speeds are 60kmh−1. (b) Speed at sensor 𝑠3 is 15kmh−1. (c) Travel time diagram with interpolated
axes.

Figure 3.2: Travel time diagrams.

This would not be possible if we used sensor spacing as physically placed in the real world, as some
holes would already be larger than others even in freely flowing traffic states.

Note that the lines in the traveltime diagram spread apart when speeds drop; the gap between them
increases. Now connect the 𝑑 = 0 and 𝑡 = 0 axes in the same interpolated way to ’close’ the lines, as
shown in figure 3.2c, to obtain holes instead of gaps. This hardly changes the visual appearance of the
diagram, but is an important step for the summarization in the next subsection. Lastly, the diagram is not
yet finished, but the motivation for the final piece is best motivated by describing the summarization.
As such, the next subsection will slightly alter the traveltime diagram from what is presented in this
subsection.

3.2.2. TDA transformation
We mentioned before when comparing the traveltime diagram with individual vehicle trajectories that
the traveltime diagram is designed to be summarizable. From having read the title of this subsection
and the second part of chapter 2, the reader can already guess what mathematical tool is used for this;
TDA.

The previous subsection gives us a (near-final) traveltime diagram, whose lines spell out holes. At
a slowdown, these holes can change in size, or split in two through the pinching seen in figure 3.2b.
This allows the use of TDA for analyzing the diagram. Before we do this however, note that due to

28 3. Developed methods

Algorithm 2: The algorithm which creates a flow-interpolated travel time diagram on a simple path
(straight road). Line is an array of vectors, Line𝑖𝑗 denotes the 𝑖-th element of the vector at position
𝑗 in the Line array. The operator⊕ denotes appending/concatenating arrays.
Data: On a simple path with 𝑁 sensors: target node with sensor 𝑠𝑁, other sensors

𝑠1, 𝑠2, ..., 𝑠𝑁−1, with measured speed 𝑣(𝑠𝑖), flow 𝑓(𝑠𝑖) and travel distances between
sensors 𝑑(𝑠𝑖 , 𝑠𝑗). Let 𝑣max be the speed limit on the road and let 𝑑(𝑠𝑁 , 𝑠𝑁+1) = 𝑑 be the
distance between the target and the dummy sensor. Let the sensors be ordered by
increasing distance from 𝑠𝑁. Let the interval at which we want the lines to be spaced at
the distance axis be 𝑅 and let 𝐹 be a scaling factor for the interpolation distance. Let
0 < 𝑟min < 𝑟max be limits on the interpolation spacing.

Result: Pointcloud in ℝ2; the flow-interpolated travel time diagram. When used in algorithm 3:
sequence of lines yet without interpolation between its ends.

𝑠𝑁+1 is the dummy sensor;
𝑣(𝑠𝑁+1) ← 𝑣max;
𝑓(𝑠𝑁+1) ←max𝑖 𝑓(𝑠𝑖);
Line ← empty array;
Lines ← empty sequence;
Pointcloud ← empty array;
for 𝑖 ∈ {1, ..., 𝑁} do

Δ𝑡 ← 𝑑(𝑠𝑖 , 𝑠𝑖+1)/𝑣(𝑠𝑖+1);
Linepiece ← interp(start = (0, 𝑑(𝑠𝑖 , 𝑠𝑁+1))𝑇 ,stop = (Δ𝑡, 𝑑(𝑠𝑖+1, 𝑠𝑁+1))𝑇 ,spacing =
min(max(𝐹/𝑓(𝑠𝑖+1, 𝑟min)), 𝑟max));
Line = Line⊕ Linepiece;

end
for 𝑦 ∈ interp(start = 𝑑(𝑠1, 𝑠𝑁+1),stop = 𝑑(𝑠𝑁 , 𝑠𝑁+1),spacing = 𝑅) do

𝑗 ← index of point closest to 𝑦 in travel distance;
Δ𝑡 ← Line1𝑗 ;
Pointcloud ← shift_left(Line≥𝑗 ,by = Δ𝑡);
Lines.append(shift_left(Line≥𝑗 ,by = Δ𝑡));

end
Add points on the distance and time axes with spacing min(max(𝐹/𝑓(𝑠𝑁+1, 𝑟min)), 𝑟max);

the current setup, any hole splitting due to a slowdown of traffic at the target sensor is not captured in
this diagram. As such, we add a dummy sensor, whose speed is always the speed limit of the road.
From this 2D point cloud we generate Vietoris-Rips complexes, filtrations and ultimately a persistence
diagram, as described in subsection 2.4.4. The persistence diagrams corresponding to the traveltime
diagrams described here are shown in figure 3.3. Note that point 2 in the persistence diagrams has a
multiplicity of 4 in figure 3.3d and 5 in figure 3.3c. The holes and corresponding topological features
are indicated with the red numbers.

We now have a way to generate persistence diagrams from the data, but we wish to capture this
information into a single number so that we may compare it to other metrics. We do this by taking the
sum of lifetimes of one-dimensional features in the persistence diagram, so we summarize to

∑
(𝑏,𝑑)∈dgm𝑡

𝑑 − 𝑏,

where (𝑏, 𝑑) ∈ dgm𝑡 denotes the birth and death coordinates of a point in the persistence diagram of
the traveltime diagram at time 𝑡. We call this quantity the ”Travel Lifetime”.

3.2.3. Generalization to merging paths
So far, a procedure has been proposed to study simple paths; a section of a road without junctions.
This limits the useful scope of the pipeline, but it can be generalized to be applied to a road with an
arbitrary number of merging junctions. A merging junction in the setting of studying congestion traveling
upstream corresponds to a diverging junction when driving on the road.

3.2. Traffic visualization and summarization 29

(a) Numbered holes in the traveltime diagram. (b) Numbered holes in the traveltime diagram in case of a
slowdown at sensor 𝑠3.

(c) Persistence diagram corresponding to traveltime dia-
gram with all speeds being 60kmh−1.

(d) Persistence diagram corresponding to traveltime dia-
gram with a slowdown at sensor 𝑠3.

Figure 3.3: Traveltime diagrams and their corresponding persistence diagrams.

Suppose there are two starting roads, which merge and then continue towards the target, like shown
in figure 3.4, which merge at distance 𝑚 from the target; 8. The intuition behind the generalization is
that the distance traveled 𝑑2 in the figure is a different kind of distance than 𝑑1. As such, we use an-
other dimension to separate their influences. As an example, generate the lines in traveltime diagrams
for simple paths 𝑑1 and 𝑑2. Shift the lines of 𝑑2 such that their points at distance 𝑚 match the time
coordinates of the lines of 𝑑1 at distance 𝑚. We then embed the 𝑑2 traveltime diagram in 3D, calling
the new distance coordinate 𝑑̃, and rotate around the (⋅,𝑚, 0) axis. After this, chop off everything lying
in the half-space 𝑑̃ < 0 and combine with the 3D embedding of the 𝑑1 travel time diagram. The final
step is closing the gaps. As such, an interpolated line between all end or start points of a line is added,
including the point corresponding to where the roads have merged. We summarize this process in
algorithm 3, and show its steps in figure 3.5.

30 3. Developed methods

Figure 3.4: A simple example of a merging situation.

Figure 3.5: Algorithm 3; the process of combining the outputs of algorithm 2 of 2 paths which merge at distance 2
from the dummy sensor.

3.2. Traffic visualization and summarization 31

Algorithm 3: The algorithm which creates a flow-interpolated travel time diagram on a path with an
arbitrary amount of merging roads. Line is an array of vectors, Line𝑖𝑗 denotes the 𝑖-th element of
the vector at position 𝑗 in the Line array. The operator⊕ denotes appending/concatenating arrays.
Data: We denote 𝑁 the number of paths to the dummy sensor, 𝑀 the number of sensors and

take parameters 𝑅 and 𝐹 as used in algorithm 2. Let 𝑣max be the speed limit at the
target sensor, let 𝑓(𝑠𝑖) denote flow measures at sensor 𝑠𝑖 and take travel distances
between sensors 𝑑(𝑠𝑖 , 𝑠𝑗). Let 0 < 𝑟min < 𝑟max be limits on the interpolation spacing.

Result: Pointcloud in ℝ𝑁+1; the flow-interpolated travel time diagram.
𝑠𝑀+1 is the dummy sensor;
𝑣(𝑠𝑀+1) ← 𝑣max;
𝑓(𝑠𝑀+1) ←max𝑖 𝑓(𝑠𝑖);
Paths ← sort(Paths,by = ”travel distance”,order = desc);
Initial_lines ← apply algorithm 2 to the longest path in Paths;
Pad all lines in Initial_lines with zeros such that each point lies in ℝ𝑁;
Interp_lines ← interpolated lines between all endpoints and starting points of Initial_lines;
Pointcloud ← empty array;
∀𝑖≤𝑀Sensor_locations𝑠𝑖 ← 𝑑(𝑠𝑖 , 𝑠𝑀) ⊕ 0𝑁−1 # Keeps track of the sensor location in ℝ𝑁;
for 𝑖 ∈ {2, ..., 𝑁} do

New_lines ← apply algorithm 2 to the path Paths𝑖;
Merge_path, 𝑠merge ← get_merge_information(path = Paths𝑖 ,with_paths =
Paths<𝑖);
Merge_path ← find path in Paths<𝑖 with which Paths𝑖 merges first;
𝑠merge find sensor at which the new path merges with paths in Paths<𝑖;
for Sensors 𝑠𝑗 on path 𝑖 up to the merging sensor do

Set Sensor_locations𝑠𝑗 to Sensor_locations𝑠merge plus (0, ..., 𝑑(𝑠𝑗 , 𝑠merge), ..., 0)𝑇 where
the 𝑖-th dimension is non-zero;

end
for 𝑗 ∈ {1, 2, ..., |New_lines|} do

Line ← New_lines𝑗;
Line ← shift_down_in_distance(Line,by = 𝑑(𝑠merge, 𝑠𝑀+1));
Pad Line with zeros such that each point lies in ℝ𝑁+1, with only dimensions 1 (time) and
𝑖 + 1 (new distance) being nonzero;
Line += (0,Sensor_locations𝑇𝑠merge)𝑇;
Chop off all points in Line with any negative component;
if Line not empty then

Attach Line in dimension 1 (time) to 𝑗-th line from lines due from Merge_path which
start at distance greater than ‖Sensor_locations𝑠merge‖1;

end
Pointcloud ← Pointcloud ∪ Line;

end
Interp_lines ← Interp_lines ∪ Interpolate between all starting points of New_lines with
spacingmin(max(𝐹/𝑓(𝑠𝑁+1, 𝑟min)), 𝑟max);

end
Pointcloud ← Pointcloud ∪ Interp_lines;

4
Results

This chapter provides results of the developed methods in chapter 3. We repeat the idea of local
information flows incorporated into the models in this chapter. This idea consists of two parts:

1. The manner in which information flows, mainly the speed with which it moves, depends on the
direction of the flow. (Direction)

2. Relevant information for making a prediction with horizon ℎ ahead is contained within an interval
of size ℎ in time. (Locality)

Both parts are first tested for viability with a relatively simple neural network in section 4.1, after which
results from incorporation into a state-of-the-art GNN in section 4.2 are shown.

4.1. Preliminary study
To test the premise of the intuitions above, we set up a preliminary study concerned with predicting
congestion on highways during the morning rush. The target location is the eastward direction of the
A20 at the hectometer marker 41.3. This target location is named ’RWS01_MONIBAS_0201hrr0413ra’
in the NDW data. The aim is to predict traffic speed in peak hours, such as the morning rush, 10
minutes ahead. Traffic speed and intensity are extracted every minute from 05:30:00 to 09:59:59 on
all business days between 2023-03-06 and 2024-06-07.

Two neural network models for upstream and downstream information directions are trained. These are
also combined with and compared to much simpler predictors; the naive estimator and historic mean.
Both will be specified further. The combination is explained in subsection 3.1.1. We also compare the
split neural network models with a model trained directly on all data.

4.1.1. Submodels
As mentioned, 5 predictors are distinguished:

NN upstream The upstream neural network model has as input sensors the measured speed and
flow at the target location and sensors between 11.8km and 16.6km upstream. This, combined
with the prediction horizon of 10min, is in accordance with traffic traveling at speeds between
70kmh−1 and 100kmh−1. There is an additional selected location right after where the A16
and A20 merge, to include information on routing from both roads to the target location. Minutely
measurements of the last 25min were used, so that the input data is of size 14 locations ×
25 minutes × 2 features per sample.

NN downstream The downstream neural network model has as input sensors themeasured speed
and flow at the target location and sensors between 3.1km and 6.5km ahead, as shown in figure
2.1b. This was chosen in accordance with the typical speed of traffic waves propagating back-
ward, which is about 20kmh−1[24] and the prediction horizon of 10min. Minutely measurements

33

34 4. Results

(a) The locations used for the ML upstream model
(b) The locations used for the ML downstream
model.

Figure 4.1: Data locations used for the ML upstream and ML downstream models.

of the last 25min were used, so that the input data is of size 4 locations×25 minutes×2 features
per sample.

NN direct The direct neural network model uses all input sensors. Minutely measurements of the
last 25min were used, so that the input data is of size 17 locations×25 minutes×2 features per
sample.

Naive The naive predictor receives only one input: the measured speed at the target location.
There is no arithmetic, the model predicts the speed at time ℎ in the future 𝑣̂ℎ as simply being the
measured speed 𝑣0, so 𝑣̂ℎ = 𝑣0.

Historic mean The historic mean receives as input the time of day and the day of the week. It will
return the historic average of the requested minute of the week over the training data. That is:
𝑣̂ℎ =

1
|I| ∑𝑖∈I 𝑣𝑖 where I is the set of all measurements at the same minute and day of the week.

The types and sizes of layers used are shown in table 4.1.

Table 4.1: Machine learning architectures used in the ML backward and ML forward models.

Layer ML upstream ML downstream
1 16 ReLu nodes 4 GRU nodes
2 16 ReLu nodes 4 GRU nodes
3 4 GRU nodes 4 GRU nodes
4 4 GRU nodes 4 ReLu nodes
5 4 GRU nodes 1 linear node
6 4 ReLu nodes
7 1 linear node

4.1.2. Results
As stated in the case introduction, we considered the models with a prediction horizon of 10min. The
combined models are compared with all submodels which make it up and with the direct NN model.
In figure 4.2a true and predicted speeds are shown for a day on which congestion occurred. Table
4.2 shows the mean absolute error and mean squared error scores for all models. The results for two
fusing models are shown: one combining the upstream and downstream NN models and the naive
and historic mean baselines, and another only combining the upstream and downstream NN models.
The latter combination is shown to isolate the premise of the Direction intuition. Both fusing models
outperform their regression models. Interestingly, the direct ML approach did not perform better than
the regression models. From the result we can conclude that within this preliminary study, creating split

4.2. Extending STNN 35

models for each information flow direction and then combining outputs increases model performance.

We may also inspect the output probabilities/weights of the decision model. Figure 4.2b shows the
predicted probability that some regression model is the best-performing model at any time of the morn-
ing rush hour, averaged over all days in the data. Congestion usually starts around 6:15-6:30 for the
morning rush hour. During this period we see that the upstream NN model is the best predictor, which
indicates that congestion usually starts further upstream and then propagates against traffic to the
sensor location which is studied.

(a) True and predicted traffic speeds using the fuse model
based on all four submodels and a prediction horizon of
10min on data of one day in the testing set.

(b) Decision model output: predicted probability that some
regression model is the best-performing model at any time
of the morning rush hour, averaged over all days in the
data.

Table 4.2: Results of the switch and fuse models and the individual regression models from subsection 4.1.1.

Training Testing
Model MAE MSE MAE MSE
NN upstream 10.7 317.8 13.3 456.4
NN downstream 9.9 268.6 10.4 288.9
Historic mean 21.5 790.4 22.3 838.7
Naive 10.0 307.6 11.2 359.6
Switch 6.7 162.6 9.7 300.1
Fuse 6.8 146.3 9.2 236.2
NN direct 10.4 296.6 10.9 342.5
Fuse (NN up- & downstream) 8.1 184.9 10.1 264.1

4.2. Extending STNN
In this section, the STNN model introduced in chapter 2 is compared to the preliminary study. Later, it
is extended first to a propagation-STNN (P-STNN) by implementing a new method for dynamic local
neighborhood selection and by splitting, modeling and combining information flows. Another extension
to a selfless-propagation-STNN (SP-STNN) is later implemented. This second extension improves how
the model can be used in the real world.

4.2.1. Comparison with preliminary work
As a comparison with the preliminary work, the STNN model was also evaluated on the dataset from
the previous section. Note that the preliminary dataset already had inputs situated at around 10min
of travel time away from the target. As such, all nodes were used in a static way (no dynamic travel
time information). Results are shown in table 4.3, where the input models for the decision model were
constrained to forward, backward and naive models. The individual STNN models and their combined
model outperform their respective preliminary models, though the improvement is smaller. This could
be due to the upstream and downstream STNN models predicting closer to each other, so that there is

36 4. Results

less freedom for the decision model to work with. Interestingly; combining not just both STNN models,
but also the naive and historic mean predictors worsens the scores, we will comment on this later in
the discussion chapter. A direct NN model is not included, as both the preliminary results and crude
testing with STNN showed it performing worse than the best of individual upstream and downstream
NN models.

Table 4.3: Results of the switch and fuse models and the individual regression models from subsection 4.1.1,
where STNN is used as NN model.

Training Testing
Model MAE MSE MAE MSE
STNN upstream 9.4 226.9 10.4 251.7
STNN downstream 9.0 212.0 9.5 224.8
Historic mean 21.7 790.1 22.4 836.0
Naive 10.0 309.4 11.2 360.3
Switch 7.4 191.7 9.9 297.8
Fuse 7.3 168.8 9.3 235.2
Fuse (STNN up- & downstream) 8.1 193.5 9.3 224.7

4.2.2. Larger datasets
To test the capabilities of the P-STNN and SP-STNNmodels, more challenging datasets are used. Both
are concerned with predicting traffic in the city of Groningen, but their levels of detail vary. The datasets
are described in table 4.4. Note the properties ’Selected sensors’ and ’Usable data size’. Selected
sensors indicates that some sensors were omitted due to limited data availability, both missing flow
data and having too few data points in time. Some of the selected sensors still missed data at specific
points in time, which caused parts of the data to be too small in a temporal sense to be input for the
model and have an output to compare against, which limited the final amount of data available; the
usable data size. The NDW dataset consists of NDW data only, whereas the MVVS dataset is an
aggregation of multiple data sources. The graph corresponding to each dataset and its usable sensor
locations are shown in figure 4.3 and, in the Appendix due to the size of the figure, A.2. Figure 4.3 also
shows an example of how algorithm 1 selects nodes to use as input.

Table 4.4: Datasets used for the city of Groningen.

Properties Dataset
NDW MVVS

Spanned time Morning rush hour (5:30-10:00) of
workdays between 3-6-2024 and 23-6-2024

Days between 27-7-2024 and
21-08-2024

Temporal resolution 1 minute 1 minute
Usable sensors 28 56
Usable data size 3551 samples of 56 variables 19312 samples of 112 variables

We now test the developed algorithm 1 which was shown in subsection 3.1.2. This algorithm imple-
ments the Locality intuition. The test is evaluated on the NDW dataset by testing the performance of
downstream P-STNN models on sensor locations on which the model has been trained and on which it
has not been trained. We distinguish a static P-STNNmodel (denoted s-P-STNN), in which travel times
between nodes are calculated from speed limits and which thus has a static adjacency matrix 𝐴𝑡 = 𝐴
for all 𝑡, and a dynamic P-STNN model (denoted d-P-STNN), in which travel times are calculated from
current speeds at the time of inference. Note that the speed to be used in an upstream model is based
on the traffic wave speed described in section 2.2. Dynamic estimation of this wave speed between
two minutely measurements proved unusable as will be explained in the Discussion and conclusion,
so the downstream models were only run with a static adjacency matrix. The evaluation is carried out
on nodes 10, 11, 12 and 13 of the NDW graph, highlighted in figure A.1 in the Appendix. The out-of-
sample results are generated using leave-one-out cross-validation (LOOCV) and then averaged. The
in-sample results are generated using the same models as in the out-of-sample evaluation, so trained
on three nodes, but evaluated on all nodes on which it was trained and then averaged. The results

4.2. Extending STNN 37

Figure 4.3: Network for the NDW dataset. Nodes are colored according to selection with algorithm 1. Target
node 13 is shown in green. 5 near nodes were selected, shown in blue: 10, 12, 14, 15, 16. Also, 5 far nodes were
selected, shown in red: 0, 4, 24, 29, 30.

are shown in table 4.5a. Note that the in-sample results are nearly indistinguishable, but that the dy-
namic P-STNN model transferred better with a 5.6% improvement in MSE. The static P-STNN model
transferred badly, which could be due to its input containing confusing data.

Also shown in table 4.5 are results from downstream prediction performance, as well as flow prediction
performance in both directions. Note that the downstream model is based on traffic waves propagating
against the flow of traffic with a fixed speeds of 20kmh−1, so there is no dynamic P-STNN model.

4.2.3. SP-STNN
Recall from subsection 2.1 that speed data is available at arbitrary locations in a network thanks to
Floating Car Data (FCD). Data on flow however is only available at sensor locations. All models de-
scribed so far have used past measurements of the predicted variable as input, limiting the locations
at which predictions can be made. A model which does not take past measurements of the predicted
variable is free to predict anywhere within a road network. The change in code to P-STNN is small;
when selecting near sensors to use, omit the target sensor itself as input. This gives a ”selfless” model,
which we call SP-STNN (Selfless Propagation STNN). SP-STNN predicting flow is tested on both the
NDW and the MVVS datasets. The results are shown in tables 4.6 and 4.7 respectively. Note that, as
the model is ”selfless”, no in-sample test is performed as this is not representative of real-world use
of the model. Fusing and switching results on the NDW dataset are found in the Appendix in table
A.2 and results for the MVVS dataset are shown in table 4.7. The best-performing fuse model on the
MVVS dataset is the model using both static models. The predictions of this fuse model and both static
models are shown in figure 4.4.

38 4. Results

Table 4.5: Testing performance of upstream or downstream STNN and P-STNN models on speed or flow at target
nodes 11, 12, 13 and 14 in the NDW dataset. s-P-STNN stands for static P-STNN, d-P-STNN stands for dynamic
P-STNN.

(a) Speed, upstream

Model In sample Out of sample
MSE MAE MSE MAE

STNN 40.7 4.52 62.5 6.03
s-P-STNN 38.9 4.30 91.5 7.46
d-P-STNN 40.3 4.45 59.0 5.95

(b) Flow, upstream

Model In sample Out of sample
MSE MAE MSE MAE

STNN 2.17 ⋅ 105 356 2.6 ⋅ 105 386
s-P-STNN 2.15 ⋅ 105 354 2.98 ⋅ 105 407
d-P-STNN 2.17 ⋅ 105 356 2.63 ⋅ 105 405

(c) Speed, downstream

Model In sample Out of sample
MSE MAE MSE MAE

STNN 39.2 4.38 58.9 5.66
s-P-STNN 38.8 4.33 116 9.11

(d) Flow, downstream

Model In sample Out of sample
MSE MAE MSE MAE

STNN 2.16 ⋅ 105 354 3.66 ⋅ 105 480
s-P-STNN 2.17 ⋅ 105 356 2.72 ⋅ 105 403

Table 4.6: SP-STNN results on flow prediction on the NDW dataset.

Model Upstream Downstream
MSE MAE MSE MAE

Static-SP-STNN 3.13 ⋅ 105 432 4.01 ⋅ 105 508
Dynamic-SP-STNN 5.14 ⋅ 105 580

4.2.4. Running time
Important for implementation is how fast the models train and evaluate. All ML tasks in this thesis were
run on an Intel i7-12700H CPU. Training (SP-)STNN takes 9(3)msepoch−1 sample−1 node−1 on an
Intel i7-12700H. This corresponds to a mean training time of approx. 2.5h for the NDW dataset. Data
preparation and random forest training times were negligible compared to the training task. Inference
takes 5(1)mssample−1 node−1.

4.3. Previous work on TDA for time series analysis
We now shift focus from prediction results to the summarization of a local traffic state through the
traveltime diagram introduced in chapter 3.

Earlier in this thesis the use of a so-called Takens embedding is briefly explained. The method of using
a Takens embedding is particularly powerful when applied to time series which show some periodicity.
This is shown in the following example.

Consider the traffic flowmeasured every 5minutes onMondays on some sensor location. We use 𝜇 = 6
and 𝜏 = 40, such that (𝜇 + 1)𝜏 = 280, an entire day, so that we can capture the expected periodicity of
a day. The most important features of the embedding can be shown in a 2D figure through embedding
once more with principal component analysis (PCA). This is purely illustrative, its result is shown in
figure 4.5b. Again, a periodic signal with a period of a day (280 ⋅ 5 minutes) would be expected. The
time of day can be encoded as the path of 24-hour clock: a circle, 𝑡 ↦ (cos(𝑡/(24⋅60)), sin(𝑡/(24⋅60))),
with 𝑡 in minutes. A circle has a hole in the middle; a 1-dimensional topological feature, so a prominent
1-dimensional topological feature is expected when studying the persistence diagram, which is also
shown in figure 4.5c. In this example we already knew what period to expect and we set 𝜇 and 𝜏
accordingly. There exist automated methods for estimating appropriate 𝜇 and 𝜏 [51].
Another method has been mentioned; using a sliding window. This method was tested for viability in the
traffic problem. We show an example of such a test; we take a window of 25 measurements, each at
a single minute. This gives 25 points for a speed and flow measurement. Each window is transformed
to a persistence diagram and these diagrams are compared using the Wasserstein distance. Note that
we are taking overlapping windows, so the first datapoint in the sequence of Wasserstein distances is
the Wasserstein distance between diagrams generated from measurements 1−25 and measurements
2 − 26. The result is shown in figure 4.6. No correlation to past, current of future traffic states could

4.4. Travel lifetime 39

Figure 4.4: Predicted traffic flow on the 5th of August 2024 at some location in the city of Groningen. The fusing
model, the predictions being fused and the measured flow are shown.

Table 4.7: SP-STNN results on flow prediction on the MVVS dataset.

Model MSE MAE
Upstream static-SP-STNN 4.85 ⋅ 104 165
Upstream dynamic-SP-STNN 5.83 ⋅ 104 180
Downstream static-SP-STNN 5.01 ⋅ 104 172
Fuse (static upstream, static downstream) 4.56 ⋅ 104 162
Fuse (dynamic upstream, static downstream) 4.80 ⋅ 104 164

be found, nor was the sequence of Wasserstein distances useful as an input to a neural network.Thus,
though these methods have shown to be useful in some applications, they have not been of use in the
scope of this thesis.

4.4. Travel lifetime
In section 3.2 we introduced the traveltime diagrams and travel lifetime. Using this summarization, we
study a data example. We take a highway section close to what was used in section 4.1 on the 27th of
August 2024. The sensor placement and their distances can be found in figure A.3. We study the road
to track information propagating upstream; congestion propagating upstream at 20kmh−1 [24] would
take 8.4min to traverse the section.

We show the results for the entire day in figure 4.7a. We also zoom in on the time when congestion
starts upstream by showing some of the sensor speeds in figure 4.7b and the zoomed-in target speed
and the travel lifetime in figure 4.7c. It is most important to note that the travel lifetime starts to increase
before the congestion hits our target, and that it is low when the road is calm (between 00:00 and
05:00). As such, we conclude that the design of the travel lifetime succeeds in capturing both the
incoming congestion wave and the extremely calm period.

We call the ”Travel Lifetime” of a traffic state on a simple path the resulting number of the pipeline:
traveltime diagram to persistence diagrams to sum of lifetimes. In figure 4.7, this travel lifetime is
compared to a graph metric; the diameter of the graph. The diameter of a graph is given by the length
of the longest shortest paths, where the length of a path is determined by its travel time as calculated
from the measured speeds. The windowing method was already shown in figure 4.6 and is not included

40 4. Results

(a) Traffic flow on Sundays on some sen-
sor location.

(b) 2DPCA embedding of the Takens em-
bedding of the flow in figure 4.5a with pa-
rameters 𝜇 = 5, 𝜏 = 48.

(c) Persistence diagram of the Takens
embedding in the previous figure.

Figure 4.5: Process of time series TDA through a Takens embedding.

Figure 4.6: Windowing and Wasserstein distance method applied to traffic data.

here because it did not yield noteworthy results.

4.4.1. Summarization value
A method for visualizing and summarizing local traffic information has been presented. We may ask
now whether the travel lifetime captures a ”new” aspect from the data as opposed to what the neural
networks used could already extract. A simple test is designed, with the same sensors as in section
3.2.1 but the data now spans an entire month. Of this month, we split the data like we did earlier:
70% training, 15% validation and 15% testing data. NN models are evaluated with four different input
groups:

Travel lifetime This input group contains only the travel lifetime, so the model attempts to predict from
only the travel lifetime as input.

Sensor data The most straightforward usage of the data is feeding the raw data to the NN. This group
consists of measured speed and flow at all sensor locations.

All data This group combines all sensor data and the travel lifetime.

Target sensor only A final group included to compare how a local state condensed into a single num-
ber might compare to the measured speed and flow at just the target. This group can also be
compared to the sensor data group to test whether measurements at other sensors can be ”con-
fusing”.

All models are set up to predict speed at the target sensor location with a prediction horizon of 5minutes.
The test was carried out over three locations and on workweek and weekend separately, to prevent
drawing conclusions from a single case. The tests on workweeks are shown in table 4.8, weekend

4.4. Travel lifetime 41

(a) Target speed, travel lifetime and
graph diameter as calculated over an en-
tire day

(b) Speeds recorded at target sensor and
its three nearest sensors around a con-
gestion occurrence. Note that conges-
tion appears to travel upstream.

(c) Speed recorded at target sensor, the
travel lifetime and graph diameter around
a congestion occurrence.

Figure 4.7: Data study results of the process described in section 3.2.1

tests are shown in table 4.9. The three locations used were the situation around Gouda as shown in
the preliminary study (see fig A.3), the two new locations are Rijnsweerd and Zoeterwoude-dorp, which
were chosen because both locations offer a balanced mix between congestion during rush hours and
free-flowing traffic. The sensors used are shown in figures A.4 and A.5 in the Appendix. The best-
performing group varies per location and part of the week, but the group Both seems to be better than
or comparable to the Sensor data group.

42 4. Results

Table 4.8: MSE scores of NN models given the four input groups described earlier, during the workweek and at
different locations as shown in the appendix.

(a) Location Gouda.

Travel Lifetime Sensor data Both Target sensor only
GRU(1)→Dense(1) 129±1 130±2 125±2 133±1
GRU(2)→Dense(2) 132±1 128±2 125±3 130±1
GRU(4)→Dense(4) 131±1 125±3 121±2 132±1
GRU(8)→Dense(8) 131±1 111±2 111±2 127±1
GRU(16)→Dense(16) 129±1 115±2 111±2 128±1

(b) Location Rijnsweerd.

Travel Lifetime Sensor data Both Target sensor only
GRU(1)→Dense(1) 94±1 110±3 112±2 100±1
GRU(2)→Dense(2) 96±2 112±3 112±3 102±2
GRU(4)→Dense(4) 103±2 119±3 113±2 105±2
GRU(8)→Dense(8) 105±2 118±2 117±2 110±2
GRU(16)→Dense(16) 104±1 123±3 120±2 108±2

(c) Location Zoeterwoude.

Travel Lifetime Sensor data Both Target sensor only
GRU(1)→Dense(1) 112±2 113 ±3 100±2 123±2
GRU(2)→Dense(2) 114±3 110±3 106±3 126±3
GRU(4)→Dense(4) 113±2 114±3 107±3 136±2
GRU(8)→Dense(8) 117±3 113±3 109±3 133±2
GRU(16)→Dense(16) 114±2 115±3 101±3 135±2

Table 4.9: MSE scores of NN models given the four input groups described earlier, during the weekend and at
different locations as shown in the appendix.

(a) Location Gouda.

Travel Lifetime Sensor data Both Target sensor only
GRU(1)→Dense(1) 122±6 89±3 93±4 107±5
GRU(2)→Dense(2) 97±5 93±2 91±3 100±5
GRU(4)→Dense(4) 95±2 94±2 94±2 96±2
GRU(8)→Dense(8) 95±2 98±2 98±2 96±2
GRU(16)→Dense(16) 96±1 94±2 96±2 100±1

(b) Location Rijnsweerd.

Travel Lifetime Sensor data Both Target sensor only
GRU(1)→Dense(1) 72±5 57±4 57±3 72±5
GRU(2)→Dense(2) 60±4 53±1 53±1 59±4
GRU(4)→Dense(4) 57±3 52±1 52±1 55±1
GRU(8)→Dense(8) 53±1 52±1 52±1 54±1
GRU(16)→Dense(16) 55±1 52±1 51±1 54±1

(c) Location Zoeterwoude.

Travel Lifetime Sensor data Both Target sensor only
GRU(1)→Dense(1) 68±7 30±5 32±5 50±6
GRU(2)→Dense(2) 33±5 28±2 27±2 28±4
GRU(4)→Dense(4) 25±1 28±2 30±2 25±1
GRU(8)→Dense(8) 25±1 28±2 28±2 26±1
GRU(16)→Dense(16) 26±2 31±2 32±2 27±1

5
Discussion and conclusion

This thesis set out to present answers to the following questions:

1. How can knowledge of traffic characteristics be used to improve GNNs?

2. How can GNNs be used for short-term traffic prediction in a practical setting?

3. How can the traffic state of a local region be summarized?

The answers to these questions presented in this thesis are discussed and summarized in this chapter.

5.1. Discussion
In this section we identify and argue over some possible shortcomings of the models and methods
developed in this thesis.

Local neighborhood intuition
The inputs for the individual models are selected from a local neighborhood, which is constructed
by considering where information traveling at some speed can reach within the prediction horizon.
This allows for linear scaling of model training and inference complexity with the size of the network.
However, this determination of a local neighborhood is a heuristic based on the short-term prediction
horizon. The basis of this heuristic may break when considering longer prediction horizons due to two
reasons:

1. Traffic state changing multiple times within the prediction horizon. Imagine making a prediction
given a congested current state. This congestion could resolve, making information from out-
side the currently considered neighborhood more relevant as traffic speeds rise. The considered
neighborhood could then not be large enough to capture for example a new congested state
developing.

2. Information relevant to the prediction may not exist yet in the network; cars that might cause
congestion in an hour may not be on the road yet.

Both issues are in part mitigated by keeping the prediction horizon short. In practice, the issue of not
capturing a traffic state changing multiple times within a prediction horizon of 10min was not observed
in the inspected predictions of this thesis work.

Lastly, the local neighborhood can be rather large. When considering a prediction horizon of 10 min-
utes, an average speed of 50kmh−1 results in a travel distance of 8.3km, which might well be larger
than the size of a relatively large city. Groningen just fits, being inscribed by a circle with a radius of
approximately 5km. This could form a problem if no or very few traffic sensors are present outside the
city.

43

44 5. Discussion and conclusion

Wave speed
The input selection is implemented with static and dynamic adjacency information, where earlier the
difficulty in calculating the wave speed of traffic information traveling upstream was mentioned. The
speed of this wave can theoretically be calculated on a road section as a function of traffic flow 𝑞 and
speed 𝑣. The speed of this wave 𝜔 is then given by

𝜔 = 𝑞1 − 𝑞2
𝑞1/𝑣1 − 𝑞2/𝑣2

, (5.1)

where the subscripts denote different sensor locations [24]. In practice however, calculating this quan-
tity is not useful for predicting the start of congestion. This is because prediction would require capturing
small deviations, but small deviations give a 0/0 situation, making 𝜔 a very unstable quantity, as can
be seen in figure 5.1. We can also reason statistically that if 𝑞1 ≈ 𝑞2 and 𝑣1 ≈ 𝑣2, and rewriting 5.1 as

𝜔 = 𝑣1𝑣2
𝑞1 − 𝑞2

𝑞1𝑣2 − 𝑞2𝑣1
, (5.2)

then the fraction in equation 5.2 is approximated by a Cauchy distribution1, possibly explaining the
instability. The approximate relation to a Cauchy distribution breaks when 𝑞1 ≉ 𝑞2 or 𝑣1 ≉ 𝑣2. The
Cauchy approximation is also shown in figure A.6 in the Appendix using Monte Carlo sampling.

Figure 5.1: Calculated negative wave speeds 𝜔 and the congestion as visible from dropping speeds. Note that
min(𝜔, 0) is shown instead of 𝜔, to limit positive values which are often large.

The broader availability of features like adaptive cruise control has inspired estimating such a wave
speed on a vehicle level, which could be reported through FCD services [52].

Long range dependencies
We also feel the need to point out that predicting using local information loses explicit access to long-
range effects. To paint a picture, assume a prediction horizon of 10 minutes for predicting at location A
and assume there is a road closure at location B some 20minutes away. The effect of the road closure
can only be captured once it has reached the local neighborhood. This does not form a problem for
driving a route which originally passed location B, as the speed at that location can be predicted using
a neighborhood local to B. It does however raise the question of how well a local predictor can capture
long-range effects, given that its access to long-range events is implicit.

Decision model
Wealso remark that a combination of split models using a random forest improves performance, but that
including more predictors does not necessarily improve performance further. It seems that as outputs
1Using the fact that a normal with mean 0 divided by a normal with mean 0 gives a Cauchy distribution and that the difference of
two 𝜒2 distributions is approximately normal with mean 0. We are skipping some concerns over dependencies and just indicate
the type of relation we are dealing with.

5.2. Conclusions 45

of models converge on a similar answer, the decision model’s performance worsens slightly. This is
corroborated by a decrease in performance as the Naive estimator and historical mean are included
during freely flowing traffic conditions, where traffic behaves ”as normal”. The regression models to be
used should be seen as hyper-parameters of the model and finding the best model is an exercise in
exchanging inputs until the best model is found.

Local information wave endpoint
In chapter 3 a way of visualizing and summarizing the traffic state of a local neighborhood is introduced.
The visualization transforms a large number of variables into an insightful diagram which admits fur-
ther summarization into a single quantity. Both the visualization and summarization allow incoming
congestion waves to be captured before they reach the target and show extremely calm periods.

The method is shown in a thesis focused on short-term predictions, but the prediction horizon is not
used in the presented algorithms. This gives rise to the question: why would the use of the presented
method be limited to short-term prediction? The answer is two-fold:

1. Computation cost. Considering a large distance from where paths may start means that the paths
are long and that a large number of paths are considered. Though software implementations for
TDA are efficient in the sense that they execute their task efficiently, the task which they are
solving is cubic in complexity with respect to the point cloud they are operating on [41, 53].

2. A traffic event moving in the traveltime diagrammay stop or disappear before it reaches the target.

Local information method
The method of summarizing a traveltime diagram to the travel lifetime is a TDA-based transformation.
The transformation works well and is based on, in my opinion, very elegant mathematics. However,
it may seem TDA is an excessively powerful tool for the job which comes with the drawback of being
computationally expensive. One might imagine finding the largest inscribed balls in the holes. This
will ultimately rely on taking all combinations of 3 points in the diagram and fitting a circle, scaling with
(𝑛3) = O(𝑛3) with 𝑛 the number of points in the diagram: the same scaling as TDA [41, 53]. A different
method summarizing the data leading to the traveltime diagram is possible, but the TDAmethod seems
to me a very natural method to analyze the traveltime diagram.

5.2. Conclusions
With these possible shortcomings discussed, we summarize what has been achieved in this thesis.

Model improvements
First, an improved model for data-driven traffic prediction is developed. The improvements were made
on the basis of leveraging traffic characteristics and discarding far-reaching network relations. Further,
the model also admits a ”selfless” form, which trades some performance for removal of the restriction
to locations with sensors, allowing for greater flexibility.

Existing knowledge of traffic characteristics shows that information on some traffic state may propagate
downstream or upstream. When traffic is flowing freely, information moves along with the vehicles. The
other direction corresponds to congestion which travels upstream like a wave. This thesis has shown
that training individual ML models for both directions in which information can flow and then combining
both outputs can improve model performance. This has been shown in the Results chapter, and can
additionally be seen in tables A.1, A.2 and A.3. We have also seen (fig 4.2b) that analyzing the output
of the decision models used can bring insight into the origin of congestion. Another model performance
improvement has been made using information from a local neighborhood. This thesis has shown that
selecting inputs according to algorithm 1 can result in better model performance.

Local information summarization method
A method for visualizing and summarizing local traffic information is developed and called a traveltime
diagram. Though the value to a human interpreter is subjective, it can be objectively stated that the
form in which the data is presented in the traveltime diagram is easier to digest than the raw data. The

46 5. Discussion and conclusion

design of the method allows for similar interpretation of traveltime diagrams of two roads with equal
speed limits. The traveltime diagram is condensed into a single number; the travel lifetime. A neural
network model analysis is used as a proxy to determine the added value of the travel lifetime. This test
suggests that the Travel Lifetime is informative when used in addition to raw sensor data. Perhaps the
NN models used could not perform the same transformation that TDA could.

5.3. Closing points
Future work
Building on the work of this thesis, we can identify some things which are left to do in order to bring
data-driven prediction models further. We distinguish improvements to the workings of the model in a
more academic setting and improvements in application.

First, how could the presented model be improved further? SP-STNN works well for short-term predic-
tions, but literature has shown that network-level models tend to perform better in longer-term predic-
tions. As an example of such a model, the original STNN [9] was compared against (among others) a
network-level model called GMAN [8], which outperformed STNN on time scales of longer than 30min-
utes. A possible approach could be attempting to incorporate long-range dependencies in an efficient
manner.

The problem of only having implicit long-range dependence seems to be a limitation of message-
passing GNNs focused on in recent publications (mostly this year; 2024). Approaches to tackling
this problem have been introduced in the form of subsampling long-range dependence paths [54] or by
tackling a problem locally and then combining the local outputs [55], effectively subsampling in space.
Especially the latter, passing information up to larger groupings, might be of interest for improving a
traffic prediction neural network if the direction of information passing is reversed (or even made bidi-
rectional); a network level NN may predict vague quantities such as how busy traffic will be for a coarse
version of the road network, which can then be used as input for a locally predicting GNN. A basis for
this idea has already been laid in [53], which used TDA to show how the Louvain algorithm can be used
to make a graph coarser.

Long-range dependence is also studied extensively in physics, such as the statistical mechanics of the
Ising or XY model, see [38, 56] for definition. Statistical mechanics tells us that if a zoomed-out view of
a system behaves similarly to the original, we can exploit this rescaling to analyze the problem, this is
called renormalization theory. Using this as inspiration, one could also apply a locally predicting GNN
to a coarse version of the network and then refine it until a desired resolution has been achieved.

Secondly, for implementation more experience is useful. The model presented is quite ready to be
applied, but practical questions are likely to arise:

• How well will a model trained on one city transfer to another city?

• How does the performance of the model change when the prediction horizon is taken to be long?

• If regulations like maximum speed change, does the model need to be retrained, or will it capture
the new situation well?

These questions are best answered through gaining experience by simply trying and evaluating the
outcome. Crucial to being able to gain this experience is the availability of data like the MVVS dataset
of more cities/networks. As such, we recommend first gathering datasets like the MVVS dataset on
more networks.

Summary
This thesis presents localized methods for traffic prediction and analysis. The prediction method
presents an extension of a state-of-the-art Graph Neural Network inspired by traffic flow character-
istics on a local level. This inspiration from traffic flow characteristics consists of two parts. The first
intuition is that state at some location and at time 𝑇 in the future will be not influenced by information
which is further than traveling time 𝑇 away. The second intuition is that traffic information traveling with
or against the stream of traffic behaves differently. The developed model leverages these intuitions
to increase model prediction performance. Further, a modification is made which allows the model to

5.3. Closing points 47

be applied at an arbitrary location in a network, at the cost of performance. Alongside these model
extensions, a novel method of visualizing a local traffic state is presented through constructing a novel
traveltime diagram. This diagram can be used as a visual tool for analyzing traffic locally. Further,
the traveltime diagram is designed to be summarized using Topological Data Analysis to a quantity
called the Travel Lifetime which can represent traffic states ranging from extremely calm to imminent
congestion to a congested state in a single number. The newly proposed Travel Lifetime is tested as
an input to a Neural Network model for predicting traffic speed showing that its use as an input can
improve model performance.

Bibliography

1. Rijkswaterstaat (DutchMinistery of Infrastructure andWaterManagement). Tunneldoseren https:
//www.rijkswaterstaat.nl/wegen/wegbeheer/tunnels/tunneldoseren.

2. MT-ITS : 2015 International Conference on Models and Technologies for Intelligent Transporta-
tion Systems : Budapest University of Technology and Economics (BME), Faculty of Transport
Engineering and Vehicle Engineering, Department of Transport Technology and Economics : 3-5
June 2015, Budapest 191. ISBN: 9789633131428 (Institute of Electrical and Electronics Engi-
neers, 2015).

3. Oh, S., Byon, Y. J., Jang, K. & Yeo, H. Short-term travel-time prediction on highway: A review on
model-based approach. KSCE Journal of Civil Engineering 22, 298–310. ISSN: 19763808 (Jan.
2018).

4. Alghamdi, T., Elgazzar, K., Bayoumi, M., Sharaf, T. & Shah, S. Forecasting Traffic Congestion
Using ARIMAModeling in 2019 15th International Wireless Communications & Mobile Computing
Conference (IWCMC) (IEEE, June 2019), 1227–1232. ISBN: 978-1-5386-7747-6.

5. Anand, N. C., Scoglio, C. & Natarajan, B. GARCH —; non-linear time series model for
traffic modeling and prediction in NOMS 2008 - 2008 IEEE Network Operations and Management
Symposium (IEEE, 2008), 694–697. ISBN: 978-1-4244-2065-0.

6. Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in
the brain. Psychological Review 65, 386–408. ISSN: 1939-1471 (1958).

7. Park, W. J. & Park, J.-B. Park and Park: Artificial intelligence in dentistry. European Journal of
Dentistry (2018).

8. Zheng, C., Fan, X., Wang, C. & Qi, J. GMAN: A Graph Multi-Attention Network for Traffic Pre-
diction in The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20) (2020). https:
//github.com/zhengchuanpan/GMAN..

9. Yang, S., Liu, J. & Zhao, K. Space Meets Time: Local Spacetime Neural Network For Traffic Flow
Forecasting. http://arxiv.org/abs/2109.05225 (Sept. 2021).

10. Zhu, J., Song, Y., Zhao, L. & Li, H. A3T-GCN: Attention Temporal Graph Convolutional Network
for Traffic Forecasting. http://arxiv.org/abs/2006.11583 (June 2020).

11. Liu, Z., Wan, G., Prakash, B. A., Lau, M. S. & Jin, W. A Review of Graph Neural Networks in
Epidemic Modeling in Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (Association for Computing Machinery, Aug. 2024), 6577–6587. ISBN:
9798400704901.

12. Tsaban, T. et al. Harnessing protein folding neural networks for peptide–protein docking. Nature
Communications 13. ISSN: 20411723 (Dec. 2022).

13. Abadi, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Sys-
tems tech. rep. (). www.tensorflow.org..

14. Cao, M., Li, V. O. & Chan, V. W. A CNN-LSTM Model for Traffic Speed Prediction in 2020 IEEE
91st Vehicular Technology Conference (VTC2020-Spring) (IEEE, 2020). ISBN: 9781728152073.

15. Kumar, K., Parida, M. & Katiyar, V. K. Short term traffic flow prediction in heterogeneous condition
using artificial neural network. Transport 30, 397–405. ISSN: 16483480 (Oct. 2015).

16. Li, Y., Yu, R., Shahabi, C. & Liu, Y.Diffusion Convolutional Recurrent Neural Network: Data-Driven
Traffic Forecasting in (July 2017). http://arxiv.org/abs/1707.01926.

17. Feng, J., Chen, Y., Li, F., Sarkar, A. & Zhang, M.How Powerful are K-hop Message Passing Graph
Neural Networks in 36th Conference on Neural Information Processing Systems (NeurIPS 2022)
(2022). ISBN: 2205.13328v4.

49

https://www.rijkswaterstaat.nl/wegen/wegbeheer/tunnels/tunneldoseren
https://www.rijkswaterstaat.nl/wegen/wegbeheer/tunnels/tunneldoseren
https://github.com/zhengchuanpan/GMAN.
https://github.com/zhengchuanpan/GMAN.
http://arxiv.org/abs/2109.05225
http://arxiv.org/abs/2006.11583
www.tensorflow.org.
http://arxiv.org/abs/1707.01926

50 Bibliography

18. Tilson, S. Applications for Homology Dec. 2010. https://math.stackexchange.com/a/
13668.

19. Frederik. Applications of homological algebra in the sciences and engineering Feb. 2023. https:
//math.stackexchange.com/a/4645951.

20. Bellman, R. Dynamic Programming ISBN: 9780691079516 (Princeton University Press, 1957).
21. Majumdar, S. & Laha, A. K. Clustering and classification of time series using topological data

analysis with applications to finance. Expert Systems with Applications 162. ISSN: 09574174
(Dec. 2020).

22. Curto, C. & Itskov, V. Cell groups reveal structure of stimulus space. PLoS Computational Biology
4. ISSN: 15537358 (2008).

23. Palm, H. & Papjes, E. Groningen implementeert multimodaal én voorspellend verkeersmodel. NM
magazine (2022).

24. Dr. ir. R. van Nes. in. Chap. 4 (Technische Universiteit Delft). https://ocw.tudelft.nl/
course-readings/deel-4-verkeersstroomtheorie-en-verkeersmanagement/.

25. Contreras, J., Espínola, R., Nogales, F. J. & Conejo, A. J. ARIMA models to predict next-day
electricity prices. IEEE Transactions on Power Systems 18, 1014–1020. ISSN: 08858950 (Aug.
2003).

26. Bauwens, L., Laurent, S. & Rombouts, J. V. Multivariate GARCH models: A survey Jan. 2006.
27. Kontopoulou, V. I., Panagopoulos, A. D., Kakkos, I. & Matsopoulos, G. K. A Review of ARIMA vs.

Machine Learning Approaches for Time Series Forecasting in Data Driven Networks Aug. 2023.
28. Koza John R., Bennett, F. H., Andre David & Keane Martin A. in Artificial Intelligence in Design

’96 (eds Gero John S. & Sudweeks, F.) 151–170 (Springer Netherlands, Dordrecht, 1996). ISBN:
978-94-009-0279-4. https://doi.org/10.1007/978-94-009-0279-4_9.

29. Abiwinanda, N., Hanif, M., Hesaputra, S. T., Handayani, A. & Mengko, T. R. Brain tumor clas-
sification using convolutional neural network in IFMBE Proceedings 68 (Springer Verlag, 2019),
183–189.

30. Akhtar, M. & Moridpour, S. A Review of Traffic Congestion Prediction Using Artificial Intelligence
2021.

31. Bahdanau, D., Cho, K. & Bengio, Y.NEURALMACHINE TRANSLATIONBY JOINTLY LEARNING
TO ALIGN AND TRANSLATE in ().

32. Rickard, M.Mixture of Experts: Is GPT-4 Just Eight Smaller Models? June 2023. https://matt-
rickard.com/mixture-of-experts-is-gpt-4-just-eight-smaller-models.

33. Medar, R., Rajpurohit, V. S. & B., R. Impact of Training and Testing Data Splits on Accuracy of
Time Series Forecasting in Machine Learning in 2017 International Conference on Computing,
Communication, Control and Automation (ICCUBEA) (IEEE, 2017). ISBN: 9781538640081.

34. Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. R. Improving neural
networks by preventing co-adaptation of feature detectors. http://arxiv.org/abs/1207.
0580 (July 2012).

35. NASA. NASA NEURAL NETWORK PROJECT PASSES MILESTONE Sept. 2003. https://
www.nasa.gov/news-release/nasa-dryden-flight-research-center-news-
room-news-releases-nasa-neural-network-project-passes-milestone/.

36. John Hertz, Anders Krogh & Richard G Palmer. Introduction to the theory of neural computation
1st ed. (Addison-Wesley, Redwood, 1991).

37. Vaswani, A. et al. Attention Is All You Need tech. rep. (2023).
38. Thijssen, J. LECTURENOTESSTATISTICALPHYSICSAP3021Delft, 2022. http://brightspace.

tudelft.nl/underthecourseAP3021.
39. Cho, K. et al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Ma-

chine Translation. http://arxiv.org/abs/1406.1078 (June 2014).

https://math.stackexchange.com/a/13668
https://math.stackexchange.com/a/13668
https://math.stackexchange.com/a/4645951
https://math.stackexchange.com/a/4645951
https://ocw.tudelft.nl/course-readings/deel-4-verkeersstroomtheorie-en-verkeersmanagement/
https://ocw.tudelft.nl/course-readings/deel-4-verkeersstroomtheorie-en-verkeersmanagement/
https://doi.org/10.1007/978-94-009-0279-4_9
https://matt-rickard.com/mixture-of-experts-is-gpt-4-just-eight-smaller-models
https://matt-rickard.com/mixture-of-experts-is-gpt-4-just-eight-smaller-models
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
https://www.nasa.gov/news-release/nasa-dryden-flight-research-center-news-room-news-releases-nasa-neural-network-project-passes-milestone/
https://www.nasa.gov/news-release/nasa-dryden-flight-research-center-news-room-news-releases-nasa-neural-network-project-passes-milestone/
https://www.nasa.gov/news-release/nasa-dryden-flight-research-center-news-room-news-releases-nasa-neural-network-project-passes-milestone/
http://brightspace.tudelft.nl/underthecourseAP3021
http://brightspace.tudelft.nl/underthecourseAP3021
http://arxiv.org/abs/1406.1078

Bibliography 51

40. Gareth James, DanielaWitten, Trevor Hastie, Robert Tibshirani & Jonathan Taylor.An Introduction
to Statistical Learning 1st ed. ISBN: 978-3-031-38746-3 (Springer, 2023).

41. Chazal, F. & Michel, B. An Introduction to Topological Data Analysis: Fundamental and Practical
Aspects for Data Scientists. Frontiers in Artificial Intelligence 4. ISSN: 26248212 (Sept. 2021).

42. Botnan, M. B. Topological Data Analysis Mastermath tech. rep. (2024). https://www.few.vu.
nl/~botnan/.

43. Takens, F. Detecting strange attractors in turbulence in Dynamical Systems and Turbulence, War-
wick 1980 (eds Rand Davidand Young & Lai-Sang) (Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1981), 366–381. ISBN: 978-3-540-38945-3.

44. Dirafzoon, A., Lokare, N. & Lobaton, E. ACTION CLASSIFICATION FROM MOTION CAPTURE
DATA USING TOPOLOGICAL DATA ANALYSIS in 2016 IEEE Global Conference on Signal and
Information Processing (GlobalSIP) (IEEE, 2016).

45. Gidea, M. & Katz, Y. Topological data analysis of financial time series: Landscapes of crashes.
Physica A: Statistical Mechanics and its Applications 491, 820–834. ISSN: 03784371 (Feb. 2018).

46. Ansel, J. et al. PyTorch 2: Faster Machine Learning Through Dynamic Python Bytecode Transfor-
mation and Graph Compilation in International Conference on Architectural Support for Program-
ming Languages and Operating Systems - ASPLOS 2 (Association for Computing Machinery,
Apr. 2024), 929–947. ISBN: 9798400703850.

47. Guillame-Bert, M., Bruch, S., Stotz, R. & Pfeifer, J. Yggdrasil Decision Forests: A Fast and Ex-
tensible Decision Forests Library in Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (Association for Computing Machinery, Aug. 2023),
4068–4077. ISBN: 9798400701030.

48. The GUDHI Project. GUDHI User and Reference Manual 3.10.1 (GUDHI Editorial Board, 2024).
49. Bui, K. H. N., Cho, J. & Yi, H. Spatial-temporal graph neural network for traffic forecasting: An

overview and open research issues. Applied Intelligence 52, 2763–2774. ISSN: 15737497 (Feb.
2022).

50. Treiber, M. & Kesting, A. Traffic Flow Dynamics ISBN: 978-3-642-32459-8 (Springer, 2013).
51. Kennel, M. B., Brown, R. & Abarbanel, H. D. I. Determining embedding dimension for phase-

space reconstruction using a geometrical construction. Physical Review A 45, 3403–3411. ISSN:
1050-2947 (Mar. 1992).

52. Huang, D., Shere, S. & Ahn, S. Dynamic Highway Congestion Detection And Prediction Based
On Shock Waves in Proceedings of the seventh ACM international workshop on VehiculAr Inter-
NETworking (ACM Digital Library, 2010). ISBN: 9781450301459.

53. Carmody, D. R. & Sowers, R. B. Topological analysis of traffic pace via persistent homology.
Journal of Physics: Complexity 2. ISSN: 2632072X (June 2021).

54. Chen, D., Schulz, T. H. & Borgwardt, K. Learning Long Range Dependencies on Graphs via Ran-
dom Walks. http://arxiv.org/abs/2406.03386 (June 2024).

55. Hariri, A. & Vandergheynst, P. Graph learning for capturing long-range dependencies in protein
structures tech. rep. (2024).

56. Dijkhuizen, R. An exploration of the Kuramoto model PhD thesis (Technische Universiteit Delft,
Delft, 2021).

https://www.few.vu.nl/~botnan/
https://www.few.vu.nl/~botnan/
http://arxiv.org/abs/2406.03386

A
Appendix

Figure A.1: Network for the NDW dataset. Sensors used in the LOOCV study are marked red and slightly larger.

53

54 A. Appendix

Figure A.2: Network for the MVVS dataset. Sensor locations which reported sufficient flow data are shown with
red dots.

55

(a) Sensor locations used.

Sensor 461 452 449 444 439 433 Dummy
Distance to next 9hm 3hm 5hm 5hm 6hm 5hm -

(b) Distances between sensors as shown in figure A.3a

Figure A.3: Spatial context used for the 1-dimensional travel lifetime data study at location Gouda.

(a) Sensor locations used.

Sensor 825 829 835 839 844 847 851 854 Dummy
Distance to next 4hm 6hm 4hm 5hm 3hm 4hm 3hm 5hm -

(b) Distances between sensors as shown in figure A.4a

Figure A.4: Spatial context used for the 1-dimensional travel lifetime data study at location Rijnsweerd.

56 A. Appendix

(a) Sensor locations used.

Sensor 362 367 371 375 380 384 388 391 Dummy
Distance to next 5hm 4hm 4hm 5hm 4hm 4hm 3hm 5hm -

(b) Distances between sensors as shown in figure A.5a

Figure A.5: Spatial context used for the 1-dimensional travel lifetime data study at location Zoeterwoude-dorp.

57

Table A.1: Results of (P)STNN models for speed on the NDW dataset. Indiv in sample denotes having trained a
random forest for each sensor location, other columns apply a single general random forest for all sensor loca-
tions. The fuse and switch models in this table are combining output of two (P)STNN models, the historic mean
and the naive estimator. Fusing and switching models are denoted with -,s or d for STNN, static-P-STNN and
dynamic-P-STNN. An example: (d, s) denotes fusing upstream dynamic, downstream static, historic mean and
naive estimators.

in sample indiv in sample out of sample
MSE MAE MSE MAE MSE MAE

Upstream dynamic-P-STNN 40.2 4.44 58.9 5.95
Downstream static-P-STNN 38.7 4.33 116 9.11
Upstream static-P-STNN 38.8 4.29 91.5 7.46
Upstream STNN 40.6 4.51 62.4 6.02
Downstream STNN 39.2 4.37 58.8 5.65
Historic mean 63.6 5.54
Naive 61.2 5.53
Fuse (d, s) 46.0 4.76 42.9 4.58 45.5 4.77
Switch (d, s) 63.6 5.54 63.5 5.54 63.4 5.53
Fuse (s, s) 46.4 4.79 42.9 4.56 44.8 4.74
Switch (s, s) 63.6 5.54 63.7 5.55 63.6 5.54
Fuse (-, -) 45.4 4.72 42.4 4.46 45.5 4.74
Switch (-, -) 63.6 5.54 63.7 5.55 63.7 5.54
Fuse (d, -) 45.6 4.74 42.5 4.56 44.9 4.70
Switch(d, -) 63.6 5.54 63.5 5.54 63.7 5.55
Fuse (s, -) 45.4 4.74 42.4 4.56 44.6 4.70
Switch (s, -) 63.6 5.54 63.6 5.54 63.7 5.54
Fuse (-, s) 45.4 4.73 42.5 4.56 46.1 4.80
Switch(-, s) 63.6 5.54 63.7 5.55 63.3 5.52

Table A.2: Results of (SP)STNN models for flow on the NDW dataset. The fuse and switch models in this table
are combining output of two (SP)STNN models. Fusing and switching models are denoted with -,s or d for STNN,
static-P-STNN and dynamic-P-STNN. An example: (d, s) denotes fusing upstream dynamic and downstream static
models.

In sample Out of sample
MSE (⋅103) MAE MSE (⋅103) MAE

Upstream dynamic-SP-STNN 226 364 514 580
Downstream static-SP-STNN 217 355 402 509
Upstream static-SP-STNN 218 355 313 433
Upstream STNN 216 353 272 406
Downstream STNN 217 354 491 570

Fuse (d, s) 220 354 303 417
Switch (d, s) 219 356 393 502
Fuse (s, s) 220 354 244 374
Switch (s, s) 216 353 304 429
Fuse (-, -) 222 354 265 390
Switch (-, -) 216 353 272 406
Fuse (d, -) 221 354 327 433
Switch(d, -) 221 357 436 532
Fuse (s, -) 221 354 251 377
Switch (s, -) 216 353 308 430
Fuse (-, s) 220 354 260 388
Switch(-, s) 216 354 272 406

58 A. Appendix

(a) Situation where 𝑞1 ≈ 𝑞2 and 𝑣1 ≈ 𝑣2.

(b) Situation where 𝑞1 >> 𝑞2 and 𝑣1 >> 𝑣2

Figure A.6: Monte Carlo sampling of equation 5.1 with Cauchy and Normal distributions fit to the sampled data.
Both figures were sampled with 𝑞1, 𝑞2, 𝑣1, 𝑣2 having means such that 𝜔(𝑞1, 𝑞2, 𝑣1, 𝑣2) ≈ −17kmh−1.

Table A.3: Results of (SP)STNN models for speed on the NDW dataset. Indiv in sample denotes having trained a random forest for each sensor location, other columns
apply a single general random forest for all sensor locations. The fuse and switch models in this table are combining output of two (SP)STNN models, the historic mean and
the naive estimator. Fusing and switching models are denoted with -,s or d for STNN, static-P-STNN and dynamic-P-STNN. An example: (d, s) denotes fusing upstream
dynamic, downstream static, historic mean and naive estimators.

in sample indiv in sample out sample selfless in sample selfless out of sample
MSE (⋅103) MAE MSE (⋅103) MAE MSE (⋅103) MAE MSE (⋅103) MAE MSE (⋅103) MAE

Upstream dynamic-SP-STNN 217 356 262 405 226 364 514 580
Downstream static-SP-STNN 217 355 272 403 217 355 402 509
Upstream static-SP-STNN 215 354 299 407 218 355 313 433
Upstream STNN 217 356 260 385 216 353 272 406
Downstream STNN 215 353 367 480 217 354 491 570
Historic mean 325 428
Naive 840 737
Fuse (d, s) 256 379 245 372 247 375 252 378 260 384
Switch (d, s) 325 428 324 428 325 428 325 428 325 428
Fuse (s, s) 254 380 245 373 253 378 255 380 251 377
Switch (s, s) 325 428 325 428 325 428 325 428 325 428
Fuse (-, -) 255 381 247 374 251 377 259 383 253 379
Switch (-, -) 325 428 325 428 325 429 325 428 325 428
Fuse (d, -) 253 379 245 372 247 376 252 378 264 387
Switch(d, -) 325 428 325 428 325 428 325 428 325 428
Fuse (s, -) 254 380 246 384 257 381 256 382 251 377
Switch (s, -) 325 428 325 428 325 428 325 428 325 428
Fuse (-, s) 254 380 246 373 251 377 256 381 255 380
Switch(-, s) 325 428 325 428 325 428 325 428 325 428

	Introduction
	Problem definition and context
	Content overview
	Methodological choices
	Contributions
	Project structure

	Existing methods
	Data
	Traffic characteristics
	ML time series modeling
	Time series
	Working with ML
	Neural networks
	Recurrent neural network
	Graph neural networks
	SpaceTime Neural Network
	Random forest

	Topological Data Analysis
	Simplicial complexes
	Homotopy
	Homology
	Persistent homology
	Previous work on TDA for time series analysis

	Software

	Developed methods
	Forecasting methods
	Direction intuition
	Locality intuition
	SP-STNN
	Distance based GNN

	Traffic visualization and summarization
	Traveltime diagram
	TDA transformation
	Generalization to merging paths

	Results
	Preliminary study
	Submodels
	Results

	Extending STNN
	Comparison with preliminary work
	Larger datasets
	SP-STNN
	Running time

	Previous work on TDA for time series analysis
	Travel lifetime
	Summarization value

	Discussion and conclusion
	Discussion
	Conclusions
	Closing points

	Appendix

