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Common Factor Analysis Versus Principal
Component Analysis: A Comparison of Loadings

by Means of Simulations

JOOST C. F. DE WINTER AND DIMITRA DODOU

Faculty of Mechanical, Maritime and Materials Engineering, Delft University
of Technology, Delft, The Netherlands

Common factor analysis (CFA) and principal component analysis (PCA) are widely
used multivariate techniques. Using simulations, we compared CFA with PCA loadings
for distortions of a perfect cluster configuration. Results showed that nonzero PCA
loadings were higher and more stable than nonzero CFA loadings. Compared to CFA
loadings, PCA loadings correlated weakly with the true factor loadings for under-
extraction, overextraction, and heterogeneous loadings within factors. The pattern of
differences between CFA and PCA was consistent across sample sizes, levels of loadings,
principal axis factoring versus maximum likelihood factor analysis, and blind versus
target rotation.

Keywords Data reduction; Exploratory factor analysis; Latent variables.

Mathematics Subject Classification 62H25

1. Introduction

Before conducting an exploratory data analysis, a researcher has to decide upon the subjects
and variables to include, the method of analysis, the method for determining the number
of dimensions to retain, the rotation method, and the method for calculating scores (e.g.,
Costello and Osborne, 2005; DiStefano et al., 2009; Fabrigar et al., 1999; Floyd and
Widaman, 1995; Grice, 2001; Parmet et al., 2010; Preacher et al., 2013; Schmidt, 2011).

Concerning the method of analysis, both common factor analysis (CFA) and principal
component analysis (PCA) are used frequently, with PCA appearing to be the most popular.
Reviews investigating statistical practices in psychological, educational, marketing, and
organizational research journals have shown that 12%–34% of the exploratory data analyses
use CFA and 40%–67% use PCA (Conway and Huffcutt, 2003; Fabrigar et al., 1999; Ford
et al., 1986; Glass and Taylor, 1966; Henson and Roberts, 2006; Park, Dailey, and Lemus,
2002; Peterson, 2000; Russell, 2002). PCA is also frequently used in areas that involve the
analysis of a large number of variables, such as chemistry, human genetic variation, and
artificial intelligence (e.g., Kaplunovsky, 2005; Paschou et al., 2007; Reich et al., 2008).
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The popularity of PCA may be because of its simplicity and it being computationally
less intensive than CFA (although the latter argument is hardly defensible nowadays) or
because PCA is the default option in statistical packages such as SPSS. Steiger (2004) stated
that what practitioners do “is, unfortunately, determined to a considerable extent by what
SPSS, SAS, and other manufacturers of general-purpose statistical software are willing to
implement in their programs. For better or worse, statistical practice is software-driven”
(p. 71). Similar were the remarks made by Gorsuch (2003): “My personal opinion is that
the rationales for CA [component analysis] developed as a post hoc explanation because
so many used a computer package which had ‘Little Jiffy’ as the default” (p. 156). The
occasional similarities in results produced by the two methods have led some users to
consider PCA as a good approximation of CFA, but such practices have been a point of
discussion among methodologists.

1.1. Differences in Assumptions between CFA and PCA

There are some fundamental similarities and differences between CFA and PCA, see Mulaik
(2010), Ogasawara (2000), Schönemann and Steiger (1978), Steiger (1994), Velicer and
Jackson (1990a), and Widaman (2007) for previous accounts. CFA and PCA are similar in
the sense that both methods are concerned with describing a set of p manifest variables in
terms of f latent variables, with f ≤ p.

The CFA model presumes that each manifest variable is a function of f common factors
(i.e., latent variables that influence more than one manifest variable) and one unique factor
(i.e., a latent variable that influences only one manifest variable). This prediction can be
described as follows:

X = YL′
F + Z + e (1)

Herein, X is a N × p matrix of standardized scores on p manifest variables, Y is a
N × f matrix of standardized common factor scores, LF is a p × f matrix of least squares
multiple regression weights (the common factor pattern) for predicting the scores in X from
those in Y , and Z is a N × p matrix of unique factors. The common and unique factors are
uncorrelated (Y ′Z = 0) and the unique factors for different manifest variables are uncorre-
lated as well (Z′Z

N
= U 2, a p × p diagonal matrix of unique factor variances). Because the

unique factors are uncorrelated with each other and with the common factors, it is possible
to interpret Y as containing common factors that account for correlations among manifest
variables. Let us also assume an orthogonal common factor model, meaning that the f
factors in Y are uncorrelated among each other. Because of sampling error and model error
(e.g., nonlinear relationships between manifest variables and common factors, or minor
factors; MacCallum et al., 2001), the common factor model will almost never hold exactly,
and therefore e (N × p) is included as a residual matrix.

Equation (1) may be rewritten as follows:

S = X′X
N

= LF L′
F + U 2 + E (2)

with S a p × p sample correlation matrix and E a p × p matrix of residual correlations. A
factor analysis procedure attempts to keep E as small as possible by optimally choosing LF

and U2. Estimation in CFA typically employs an iterative procedure, where LF is calculated
at each U2 found by the algorithm. The iterative principal axis factoring procedure is a
popular method that provides a result that is asymptotically equivalent to the unweighted
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least squares discrepancy function. The squared multiple correlations can be used as initial
communalities. Factor loadings are then calculated by decomposing the reduced correlation
matrix:

VKV ′ = S − U 2 (3)

with V being a p × p matrix of eigenvectors normalized to unit norm and K an p × p diagonal
matrix containing the corresponding eigenvalues of the reduced correlation matrix (S−U2).
The principal-axis factor loadings are:

LF = VrK
1/2
r (4)

with Vr a p × f matrix of the first f eigenvector columns and Kr the diagonal f × f matrix of
the corresponding eigenvalues. The new unique variances per variable are calculated as 1
minus the sum of the squared factor loadings (i.e., 1 minus the level of the communalities).
The iterative procedure stops when a stable solution or a maximum number of iterations
has been reached. Although LF and U2 can usually be uniquely determined from a given S
(or X), Y and Z cannot, because the number of unknowns (f common factors + p unique
factors) exceeds the number of equations (p equations, one for each of the p manifest
variables). This is known as factor indeterminacy (e.g., Grice, 2001; Maraun, 1996).

In PCA, each manifest variable is a linear function of principal components, with no
separate representation of unique variance:

X = YCL′
C (5)

with YC being a N × p matrix of standardized component scores and LC a p × p matrix
of component loadings. PCA is a linear orthogonal transformation of the variables in X
to principal components in such a way that the first component has the largest possible
variance, the second component has the largest possible variance of the remaining data,
etc., with the total p components explaining 100% of the variance. S can be decomposed
as follows:

WMW ′ = S (6)

with W a p × p matrix of eigenvectors and M a p × p diagonal matrix of eigenvalues of S.
The component scores YC are:

YC = XWM−1/2 (7)

The p × p matrix of component loadings (i.e., the correlation coefficients between YC and
X) is calculated as follows:

LC = WM1/2 (8)

Usually, only the first f components are retained. The retained components account for less
than 100% of the variance in the data.

Summarizing, CFA and PCA describe the correlation matrix in a different manner:

S = LF L′
F + U 2 + E = LCL′

C = LCrL
′
Cr + R (9)

with LCr a p × f matrix of retained component loadings and R a p × p matrix of residual
correlations. In PCA, the component scores are uniquely determined by the data in X, and
R cannot be diagonal.
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Figure 1. Difference between CFA and PCA loadings as a function of the number of variables per
factor and the level of the CFA loadings.

A comparison of Eqs. (3) and (6) shows that the only difference between CFA and PCA
is that CFA involves a reduction of the diagonal elements of the correlation matrix and PCA
does not. CFA explains the off-diagonal elements of S according to a discrepancy function.
In contrast, in PCA, the retained components optimally account for the 1s on the diagonal
of S; that is, LCrL

′
Cr maximizes tr(S) among all possible orthogonal linear transformations

of X (Jolliffe, 2002). PCA will often perform well in explaining the off-diagonal elements
of S (Widaman, 2007), although this only occurs as a side effect. PCA’s actual aim is to
optimally account for the maximum amount of variance with the minimum number of
components.

Note that the loadings LF and LCr can be orthogonally rotated without compromising
the validity of the above equations. The total variance accounted for by the f retained
components remains the same when performing an orthogonal rotation, but the variance
is distributed more evenly amongst the rotated components as compared to the unrotated
components. Oblique rotation does compromise the variance maximization property of
PCA. Nonetheless, researchers often rotate obliquely in order to obtain an interpretable
pattern of loadings.

From Eq. (9), it can be inferred that the difference between CFA and PCA loadings
will be small when the unique variances in U2 are small. For loading matrices in which each
manifest variable loads on only one factor, all factor loadings are equal, and no sampling
error is present, the level of the component loadings lC is always higher than the level of
the factor loadings lF , with the difference between lC and lF depending on the number of
variables per factor p/f . This relationship is provided in Eq. (10) (adapted from Widaman,
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2007; see also Fig. 1):

lC =
√

l2
F + 1 − l2

F(
p
/
f

) (10)

Equation (10) shows that when the number of variables per factor is small, the PCA loadings
will be high with respect to the CFA loadings. Equation (10) also shows that the difference
between factor and component loadings becomes very small when the loadings reach unity
or when the number of variables per factor grows to infinity. This latter point is in line with
Velicer and Jackson (1990b): “Intuitively one can appreciate readily that the similarity will
increase as the number of variables increases in view of the obvious fact that as the diagonal
elements increase arithmetically the off-diagonal elements increase geometrically” (p. 104).

Several analytical and computational studies have shown that factor and component
loadings diverge from each other when departing from sphericity (Gower, 1966; Rao,
1955; Sato 1990; Schneeweiss, 1997; Schneeweiss and Mathes, 1995; Widaman, 2007),
where sphericity is defined as a condition in which unique variances are equal, and
therefore—assuming there are no cross-loadings—loadings within factors are equal as
well. The difference between CFA and PCA loadings is even larger when unequal loadings
occur within correlated factors (Widaman, 2007).

A frequently heard rationale in favor of CFA is its generalizability (Steiger, 1994). If a
large number of variables are explained by f common factors, then a subset of these variables
can also be explained by the same common factors. This means that factor loadings can
remain consistent for different subsets of variables. Widaman (2007) argued that “if one or
more manifest variables are added to a battery of measures and any additional variables rely
only on factors already well represented in the initial battery of p manifest variables (i.e., the
additional variables rely on no new common factors), then all parameters associated with
the original set of p manifest variables . . . remain unchanged” (p. 190). The usefulness of
components in generalizing to other sets of variables has been characterized as “awkward
if not impossible” (Mulaik, 1990, p. 53), because components are linear combinations of
manifest variables that “do not strictly represent inductive generalizations beyond data”
(Mulaik, 1987, p. 299). PCA implicitly has no concept of a universe of variables to which
it generalizes. Components describe the data at hand and any variable removed from or
added to the dataset will lead to different component loadings.

1.2. Previous Simulation and Empirical Studies Comparing CFA with PCA

In possibly the first ever study comparing CFA with PCA, McCloy et al. (1938) used
loading matrices with 10 variables and 3 rotated factors. The authors reported that PCA
loadings were higher than CFA loadings, and that CFA loadings better corresponded to the
population factor loadings than PCA loadings (see also Widaman, 2007).

Velicer (1974, 1976a, 1976b, 1977) and co-workers (Fava and Velicer, 1992a; Velicer
and Fava, 1987, 1998; Velicer, Peacock, and Jackson, 1982) carried out a series of simulation
studies to compare loading matrices produced by CFA (maximum likelihood factor analysis,
specifically) and PCA, as a function of the level of loadings, number of variables, number
of factors, and sample size. These authors mostly focused on clean pattern matrices (nearly
equal loadings per factor, large number of variables per factor, and orthogonal factors),
whereas Velicer et al. (1982) also tested structures with unequal loadings within factors
and moderate (half the size of the main loadings) cross-loadings. They consistently found
that the numerical differences between the loading estimates of the two methods were only
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minor (e.g., average correlation of .98 between factor scores and corresponding component
scores across all conditions tested in Fava and Velicer, 1992a). These results are supported
by several empirical studies which analyzed data with both CFA and PCA and found no
substantial differences in the loadings (e.g., Goldberg, 1990; Jensen and Weng, 1994).
Jensen (1983), well known for his work on the general intelligence factor, noted: “To
satisfy the purists who, from one theoretical standpoint insist on principal factor analysis,
and to satisfy those who, for a different set of reasons (mostly mathematical) favor principal
components analysis, I have often performed both types of analysis on the same data. Never
is there more than an iota of difference in the results . . . or in any theoretical or practical
conclusions one would draw from the analysis” (p. 314).

By reflecting on eight theoretical and practical issues (similarity of loadings, number
of factors or components retained, effects of overextraction, improper solutions, compu-
tational efficiency, factor indeterminacy, latent vs. manifest variables, and exploratory vs.
confirmatory analysis), Velicer and Jackson (1990a, 1990b) concluded that PCA is pre-
ferred over CFA based on the principle of parsimony: it is less computationally intensive,
it does not generate improper solutions (i.e., Heywood cases), and the components are
uniquely determined by the data. Velicer and Jackson’s claims were heavily challenged
and an issue of Multivariate Behavioral Research was devoted to the debate (Bentler and
Kano, 1990; Bookstein, 1990; Gorsuch, 1990; Loehlin, 1990; McArdle, 1990; Mulaik,
1990; Rozeboom, 1990; Schönemann, 1990; Steiger, 1990; Velicer and Jackson, 1990a,
1990b; Widaman, 1990).

Snook and Gorsuch (1989) pointed out that Velicer and colleagues typically investi-
gated clean and relatively large loading matrices: “The conclusion of Velicer et al. (1982)
that ‘the methods produce results which are equivalent’ is not surprising given the fact that
they used 36 variables” (p. 149). Furthermore, most of the studies by Velicer and colleagues
used the difference between factor and component scores or the root mean squared error
of the entire pattern matrix as similarity indexes, and did not investigate how individual
loading coefficients differ between CFA and CFA. Snook and Gorsuch (1989) compared
the accuracy of CFA (principal axis factoring, specifically) and PCA in reproducing pop-
ulation factor loadings. The authors found that CFA produced accurate estimates of the
nonzero factor loadings, whereas component loadings were substantially higher than the
factor loadings, especially when the number of variables was small. Furthermore, CFA
appeared to provide more stable estimates of the zero loadings than PCA.

A limitation of the work of Snook and Gorsuch (1989) is that they only analyzed
perfect cluster configurations (equal loadings per factor, no cross-loadings, orthogonal
factors). Widaman (1990, 1993, 2007) extended the simulations of Snook and Gorsuch and
confirmed that component loadings increase as the number of variables per factor decreases,
whereas factor loadings are invariant to the number of variables per factor (see Eq. (10)).
Widaman also showed that when factors are correlated and there is no sampling error, CFA
produces accurate estimates of the interfactor correlations, whereas the higher loadings
produced by PCA as compared to CFA lead to lower intercomponent than interfactor
correlations. Widaman (1993, 2007) further investigated differences between CFA and
PCA loadings in non-spherical cases, that is, unequal loadings within factors. The results
showed that CFA provided accurate estimates of the factor loadings, whereas PCA loadings
were more homogeneous than the CFA loadings. The differences between CFA and PCA
grew when the factors were correlated (e.g., for a case with two factors, .8, .6, .4 loadings
within factors, and interfactor correlation of .5, PCA’s corresponding loadings were .77, .77,
.71, and intercomponent correlation was only .32). In another simulation study, Beauducel
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(2001) found that CFA was better able than PCA to recover weak factors; PCA tended to
yield cross-loadings, dissolving the weak factor into the stronger factors.

The number of retained dimensions affects the two methods in a different manner.
In PCA, if the number of retained components is increased or decreased, the previous
unrotated component loadings will remain exactly the same. CFA, on the other hand, tries
to fit a common factor model in an iterative manner. Hence, increasing or decreasing the
number of factors will lead to different unrotated loadings. For CFA, at least two variables
are needed to identify the loadings (for more precise information on identification criteria,
see Anderson and Rubin, 1956), whereas PCA can produce single-variable components,
or “singlets” as Beauducel (2001) called them. Practitioners may, therefore, be inclined to
retain fewer factors than components (Jolliffe, 2002).

Fava and Velicer (1992b) found that overextraction (i.e., extracting more fac-
tors/components than the true/known number of factors) deteriorated the factor/component
scores within each method, but even at the maximum level of overextraction the correlation
between factor and component scores was high (.97 for 9 overextracted factors). Lawrence
and Hancock (1999) found that, when overextracting, the PCA loadings were more distorted
than CFA loadings with respect to their population counterparts. Based on simulation data,
Fava and Velicer (1996) concluded that underextraction is a much more severe problem
than overextraction, and that underextraction negatively affects factor analysis more than
component analysis.

Although a number of simulation studies have previously compared factor with com-
ponent loadings, the available evidence does not easily lend itself to comparative analysis.
Velicer and colleagues investigated clean loading matrices with many variables and did not
distinguish between the recovery of zero and nonzero loadings, but used crude similarity
indexes instead. The studies by Widaman (1993, 2007), on the other hand, focused on
a small number of variables and on severe distortions of a perfect cluster configuration.
Furthermore, Widaman used population matrices, “an ideal (i.e., unreal) world in which
the CFA model fits perfectly in the population” (Widaman, 2007, p. 189). In practice, the
factor model does not perfectly fit in the population (due to model error) or in the sample
(due to sampling error).

MacCallum and Tucker (1991), MacCallum et al. (1999), and MacCallum et al. (2001)
illustrated that when unique variances are large (i.e., the loadings are low) the impact of
sampling error is high. MacCallum and colleagues further illustrated how sampling error can
degrade factor recovery as a function of factor loadings and number of variables. However,
it is not yet clear how sampling error interacts with the difference between CFA and PCA
loadings. Widaman (2007) argued that model misfit and sampling error “only obscure
comparisons between CFA and PCA” (p. 189), suggesting that relative differences between
CFA and PCA loadings will remain the same regardless of additional sources of error.
Jolliffe (2002) hinted that there may be an interaction between CFA-PCA differences and
sampling error: “In practice, the model itself is unknown and must be estimated from a data
set. This allows more scope for divergence between the results from PCA and from factor
analysis” (p. 161). Trendafilov et al. (2013) recommended that “PCA and EFA [exploratory
factor analysis] solutions were to be directly compared according to their performance on
any particular data set” (p. 210). Similarly, Rao (1996, see also Trendafilov et al., 2013)
stated: “Some conditions under which the factor scores and principal components are close
to each other have been given by Schneeweiss and Mathes (1995). It would be of interest
to pursue such theoretical investigations and also examine in individual data sets the actual
differences between principal components and factor scores” (p. 18).
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Summarizing, although previous simulations have investigated parts of the spectrum
of similarities and differences between CFA and PCA, a synthesis about differences in the
loadings produced by both techniques is lacking. The remainder of this article is devoted to
a computer simulation aiming to investigate differences between CFA loadings and PCA
loadings in the case of sampling error. The aim of this work is not to designate which of
the two methods should be used. The decision whether to use CFA or PCA has to be based
on the purpose of the analysis, that is, explaining correlations in CFA versus data reduction
in PCA. Rather, the aim of this work is to quantify the differences between the loadings
produced by the two methods, and accordingly, the severity of error that occurs when
using PCA while actually intending to explain a correlation matrix. Considering that many
practitioners currently use both methods, it seems worthwhile to clarify the differences
between CFA and PCA loadings.

We introduced various distortions of a perfect cluster configuration that have been
investigated by others before (e.g., interfactor correlations, moderate cross-loadings, and
unequal loadings within factors), while keeping the mean loadings constant in order to
be able to make a valid comparison between the distortions. We also introduced some
distortions which have not been investigated before (e.g., model error, nonloading variables,
high cross-loadings, and under- and overextraction on unequal loadings within factors).
Some of these distortions have been previously used by the authors for measuring the
performance of CFA for small sample sizes (De Winter, Dodou, and Wieringa, 2009) and
for comparing loadings obtained with principal axis factoring versus maximum likelihood
factor analysis (De Winter and Dodou, 2012), but have not been used yet for comparing
CFA and PCA.

2. Method

2.1. Simulations

Simulations were conducted for 20 true factor loading matrices: a baseline loading matrix
of a perfect cluster configuration (level of loadings λ = .6, number of factors f = 3, number
of variables p = 18) and 19 distortions of this baseline, for N = 50,000 and N = 50. The
chosen baseline loading matrix is considered representative for the use of factor analysis
in psychological research (Henson and Roberts, 2006). N = 50,000 was chosen to verify
whether the loadings of each method converge for large N. N = 50 was considered a small
sample size, introducing a considerable amount of sampling error and yielding marginally
interpretable loadings (De Winter et al., 2009).

Based on the true factor loadings of each case, 10,000 p × N sample data matri-
ces were generated for N = 50,000 and for N = 50, by using Hong’s (1999) method.
This method uses the Tucker et al. (1969) procedure for the generation of population
matrices and on Kaiser and Dickman’s (1962) algorithm for the generation of sample
matrices. Hong’s method allows for introducing model error and correlated factors in
the correlation matrix. The correlation matrix of each sample was submitted to CFA and
PCA.

For CFA, the method of principal axis factoring was used, as it generates fewer improper
solutions than maximum likelihood factor analysis. The iterative procedure started with
squared multiple correlations in the diagonal and was terminated when the maximum of the
absolute differences of communalities between two subsequent iterations was smaller than
10−3. The maximum number of iterations was set at 9999. A large number of iterations
was chosen to ensure that all solutions converged to their asymptotic value. We also tried
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a tolerance interval of 10−3 with 25 iterations as well as 10−6 with 9999 iterations. The
results were hardly different. The former combination generated fewer improper solutions
because (slowly) diverging solutions halted after 25 iterations. The latter combination
slightly increased the number of improper solutions while requiring longer computational
time. Note that from all the N = 50 analyses in this study, only 0.6% required more than
100 iterations.

Three factors were extracted in Cases 1–13, one factor in Cases 14 and 18, two factors
in Case 15 (underextraction), four factors in Case 16, and five factors in Cases 17, 19, and
20 (overextraction). The loadings were Varimax rotated (normalized prior to rotation to
have unit norm, and unnormalized after rotation), except for the oblique Cases 2, 9, and
20, in which direct quartimin (i.e., oblimin with gamma = 0; rotation algorithm created by
Bernaards and Jennrich, 2005) was used instead. We used Varimax rotation because this is
the most commonly used rotation in practice. Varimax is used in 51.7% of the exploratory
data analyses, according to Henson and Roberts (2006).

To recover the order and sign of the loadings, Tucker’s congruence coefficient
(K; Tucker, 1951) was calculated for all f × f loading vector combinations between
the sample loading matrix and the true loading matrix. Next, the reordering procedure of
the sample loadings started with the highest absolute K and proceeded toward the lowest K
until the sign and order of the factors were recovered.

If CFA yielded a communality higher than 1, then that solution was labeled as improper
and disregarded together with the corresponding solution of PCA.

The following indices were calculated per sample loading matrix and subsequently
averaged across all sample loading matrices:

– Mean of absolute nonzero loadings (Mnz). Nonzero loadings in the sample were
defined as loadings corresponding to the nonzero true factor loadings.

– Mean of zero loadings (Mz). Zero loadings in the sample were defined as loadings
corresponding to the zero true factor loadings.

– Correlation coefficient (CC) between the sample loadings and the true factor load-
ings. The CC was calculated between the sample loadings and the true factor loadings
for each factor/component, and subsequently, the mean was taken across the fac-
tors/components. Note that in all cases examined, the true loadings on each factor
consisted of zeros along with a number of relatively high (mean of .6) nonzero load-
ings. Hence, it can be expected that the CC values will be consistently quite high.

– Standard deviation of the nonzero loadings (SDnz). First the standard deviation of
each individual loading coefficient of the pattern matrix was calculated across all
repetitions. Next, the average was taken across the loading coefficients corresponding
to the nonzero true loadings.

– Standard deviation of the zero loadings (SDz). SDz was calculated in the same
manner as SDnz, with the average taken across the loading coefficients corresponding
to the zero true loadings.

Several other indices were tried as well, including Tucker’s congruence coefficient, root
mean squared error, and score similarity (cf. Everett, 1983). These indices are composite
measures of the level of the loadings and the variability of the loadings, and were therefore
not used in the present study. A large root mean squared error, for example, could be
either the result of consistent under/overestimation of the true loading coefficient (i.e.,
precise but inaccurate) or a consequence of a large variability of the obtained loadings
around the true loadings (i.e., accurate but imprecise). The mean, standard deviation, and
CC of loadings are a set of nonredundant indices. Mnz and Mz describe the level of the
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loading independent of the variability of the loadings (note that we carefully avoid the term
“bias”; for further discussion, see Velicer and Jackson, 1990b). The standard deviation is
a measure of variability independent of the level of the loadings, and the CC describes the
linear correspondence of the sample loadings and true factor loadings.

The following 20 cases were simulated:

Case 1: Baseline (λ = .6, f = 3, p = 18).
Case 2: Correlated factors. All three combinations of factors were substantially (.5)

correlated.
Case 3: Random model error was introduced for every sample by means of 200 minor

factors explaining 20% of the variance. The parameter determining the distribution of the
minor factors was set at .25.

Case 4: Zero loadings replacing nonzero loadings. Six of the 18 nonzero loadings were
set to zero.

Case 5: Reduced number of variables. The number of variables was reduced from 18
to 9.

Case 6: Increased number of variables to 36 from 18.
Case 7: Unequal loadings of the three factors. The first factor was loaded with .8, the

second with .6, and the third with .4.
Case 8: Unequal loadings within factors. The nonzero loadings within each factor were

alternated to .8/.4.
Case 9: Unequal loadings within correlated factors. This was the same as Case 8 but

aggravated by correlating all three combinations of factors with .5.
Case 10: Cross-loadings (moderate). Four cross-loadings of moderate (.3) level were

added. Two of the four cross-loadings were of opposite sign to prevent factor rotation.
The main nonzero loadings were increased from .6 to .667, such that the mean of all true
nonzero loadings remained equal to .6.

Case 11: Cross-loadings (high). Four cross-loadings of high (.5) level, two of which
were of opposite sign, were added. The main nonzero loadings were increased from .6 to
.622, such that the mean of all true nonzero loadings remained equal to .6.

Case 12: Unequal p/f (moderate). The third factor was weakened by decreasing the
number of variables per factor from 6 to 3.

Case 13: Unequal p/f (severe). The third factor was weakened by including only 2
variables instead of 6.

Case 14: Underextraction (−2 factors). One factor/component was extracted instead
of three. The nonzero loadings of the three factors were altered to .6/.5/.4. In this way, the
nonzero loadings of the one retained factor were .6 and the other two factors were somewhat
weaker.

Case 15: Underextraction (−1 factor). Two factors/components were extracted instead
of three. The nonzero factor loadings of the three factors were altered to .7/.5/.3. In this way,
the mean nonzero loadings of the first two retained factors were .6 and the third omitted
factor was weak.

Case 16: Overextraction (+1 factor). Four factors/components were extracted instead
of three.

Case 17: Overextraction (+2 factors). Five factors/components were extracted instead
of three.

Case 18: Underextraction (−2 factors) on unequal loadings within factors. The nonzero
loadings were altered to .8/.4 within the first factor, .7/.3 within the second factor, and .6/.2
within the third factor, and one factor/component was extracted instead of three.
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Case 19: Overextraction (+2 factors) on unequal loadings within factors. The nonzero
loadings within each factor were altered to .8/.4, and five factors/components were extracted
instead of three.

Case 20: Overextraction (+2 factors) on unequal loadings within correlated factors.
This was a combination of the distortions of Cases 9 and 19. We also tested the same case
for underextraction (one factor instead of three) but did not include it in the analysis as the
CC values of both CFA and PCA were too low (about .23) for N = 50,000 to be meaningful.

The mean of the nonzero true loadings was .6 in all 20 cases. Table 1 shows the
factor loadings of the baseline and eight of the distortions. The analyses were conducted in
MATLAB (Version R2012b, The MathWorks, Inc., Natick, MA).

2.2. Supplementary Analyses

N = 50 was used above as a relatively small sample size, in order to introduce a large amount
of sampling error. Simulations were repeated with N = 200 to investigate loading estimates
for conditions that may be more representative for empirical research. Simulations were
also repeated with λ = .45 and with λ = .75 instead of .6, to investigate loading estimates
for different levels of true loadings.

Among the available model fitting procedures for CFA, principal axis factoring and
maximum likelihood factor analysis are the most widely used (Fabrigar et al., 1999). Hence,
simulations were repeated with maximum likelihood factor analysis (MLFA) instead of
principal axis factoring (PAF). For MLFA, a communality higher than .998 was labeled as
improper, because the MLFA algorithm did not allow for communalities higher than 1.

Finally, we repeated the simulations by using Procrustes rotation to achieve the best
least-squares transformation that fits the population pattern and to avoid rotational indeter-
minacy. Both oblique and orthogonal Procrustes rotations were performed, and the best fit
with the true loading matrix in terms of Tucker’s congruence coefficient was selected. Note
that Procrustes rotation represents an idealized situation; the target pattern is usually not
known when working with empirical data.

The MATLAB code for the simulations is provided as supplementary material.

3. Results

3.1. Simulations

3.1.1. CFA versus PCA loadings with N = 50,000. The mean nonzero factor loadings
approximated the true factor loadings (.6) within .003 in all investigated cases. The mean
nonzero component loadings were higher than the true factor loadings in all cases, with a
maximum of .757 for a small number of variables (Case 5). For matrices in which each
manifest variable loaded on one factor only and all true loadings on a factor were equal
(Cases 1, 2, 4, 5, 6, 7, 12, and 13), the PCA loadings corresponded to Eq. (10) (Widaman,
2007). The mean interfactor correlations of CFA were .5 for Cases 2 and 9, and .497 for
Case 20. The intercomponent correlations of PCA were .385 (≈.5.(.6/.683)2, cf. Widaman,
1993 for equations predicting intercomponent correlations), .437, and .329 for Cases 2, 9,
and 20, respectively.

The CCs between the loadings estimated by both methods and the true factor loadings
were above .99 in 19 of the 20 cases for CFA, and in 16 of the 20 cases for PCA. For
CFA, a CC below .99 was found for model error (Case 3: .959), which is an expected result
because model error represents lack of fit in the population. For PCA, a CC below .99 was
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Table 1
True Factor Loading Matrices Used in the Simulation Study

Case 4 Case 5 Case 7
Case 1 Zero loadings replacing Reduced number Unequal loadings

Baseline nonzero loadings of variables between factors

.6 0 0 .6 0 0 .6 0 0 .8 0 0

.6 0 0 .6 0 0 .6 0 0 .8 0 0

.6 0 0 .6 0 0 .6 0 0 .8 0 0

.6 0 0 .6 0 0 0 .6 0 .8 0 0

.6 0 0 0 .6 0 0 .6 0 .8 0 0

.6 0 0 0 .6 0 0 .6 0 .8 0 0
0 .6 0 0 .6 0 0 0 .6 0 .6 0
0 .6 0 0 .6 0 0 0 .6 0 .6 0
0 .6 0 0 0 .6 0 0 .6 0 .6 0
0 .6 0 0 0 .6 0 .6 0
0 .6 0 0 0 .6 0 .6 0
0 .6 0 0 0 .6 0 .6 0
0 0 .6 0 0 0 0 0 .4
0 0 .6 0 0 0 0 0 .4
0 0 .6 0 0 0 0 0 .4
0 0 .6 0 0 0 0 0 .4
0 0 .6 0 0 0 0 0 .4
0 0 .6 0 0 0 0 0 .4

Cases 8 and 9 Case 10 Case 12 Case 18
Unequal loadings

within factors
Cross-loadings

(moderate)
Unequal p/f
(moderate)

Underextraction
on unequal

loadings within
factors

.8 0 0 .667 .3 0 .6 0 0 .8 0 0

.4 0 0 .667 −.3 0 .6 0 0 .4 0 0

.8 0 0 .667 .3 0 .6 0 0 .8 0 0

.4 0 0 .667 −.3 0 .6 0 0 .4 0 0

.8 0 0 .667 0 0 .6 0 0 .8 0 0

.4 0 0 .667 0 0 .6 0 0 .4 0 0
0 .8 0 0 .667 0 0 .6 0 0 .7 0
0 .4 0 0 .667 0 0 .6 0 0 .3 0
0 .8 0 0 .667 0 0 .6 0 0 .7 0
0 .4 0 0 .667 0 0 .6 0 0 .3 0
0 .8 0 0 .667 0 0 .6 0 0 .7 0
0 .4 0 0 .667 0 0 .6 0 0 .3 0
0 0 .8 0 0 .667 0 0 .6 0 0 .6
0 0 .4 0 0 .667 0 0 .6 0 0 .2
0 0 .8 0 0 .667 0 0 .6 0 0 .6
0 0 .4 0 0 .667 0 0 .2
0 0 .8 0 0 .667 0 0 .6
0 0 .4 0 0 .667 0 0 .2

Note. For Cases 2, 3, 16, and 17, the true loading matrix was identical to Case 1. Case 6 was as
Case 1, but with 12 instead of 6 loading variables per factor. Case 13 was as Case 12, but with 2
instead of 3 loading variables on the third factor. Case 14 was as Case 1, but with .5 loadings on the
second factor and .4 loadings on the third factor. Case 15 was as Case 1, but with .7 loadings on the
first, .5 loadings on the second, and .3 loadings on the third factor. Cases 19 and 20 were as Cases
8/9.
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found for model error (Case 3: .967), unequal loadings within correlated factors (Case 9:
.980), and overextraction on unequal loadings within factors (Case 19: .989 and Case 20:
.952).

Summarizing, the results at the population (i.e., N = 50,000) level showed that CFA
loadings accurately corresponded to the true factor loadings, whereas PCA loadings were
always higher than CFA loadings. The CCs of both methods were higher than .99 for the
majority of the investigated cases. The full simulation results for N = 50,000 are provided
in Table A1 of the supplementary material.

3.1.2. CFA versus PCA loadings with N = 50. CFA generated high rates of improper
solutions for overextraction (Cases 16, 17, 19, and 20 with 9.0%, 25.7%, 26.9%, and
28.9%, respectively), small p (Case 5, 25.0%), and unequal p/f (Cases 12 and 13, with
4.0% and 18.2%, respectively). The remainder of the cases generated improper solutions
for less than 2% of the samples (see Table A2 of the supplementary material).

Table 2 shows the simulation results for N = 50. The mean nonzero loadings (Mnz) of
PCA were higher than the true factor loadings (.6) in most of the cases. The PCA loadings
were highest when the number of nonzero loadings per factor was small (Case 5: .734,
Case 12: .676, and Case 13: .670). The PCA loadings were lower than .6 when loadings
were unequal within factors (Case 9: .597, Case 18: .599, and Case 20: .568). Overall, CFA
loadings were slightly lower than the true factor loadings, with the lowest Mnz when factors
were correlated (Case 2: .542, Case 9: .555, and Case 20: .521).

The factor correlations of both methods were substantially lower than the population
factor correlations (.5). The mean observed correlations of CFA and PCA were .254 versus
.202 for Case 2, .324 versus .235 for Case 9, and .302 versus .223 for Case 20.

The mean of the estimated zero loadings (Mz) was very close to .000 for all cases and
for both CFA and PCA, except for correlated factors (Cases 2, 9, and 20). In these cases,
CFA produced better estimates of the zero loadings than PCA.

The CCs of PCA were lower than those of CFA when the true factor loadings were
unequal within factors and when over- and underextracting (Cases 4, 8, 9, 14–20). The
difference between the CCs of CFA and PCA were largest for unequal loadings within
correlated factors (Case 9: .856 vs. .792 for CFA vs. PCA). Large differences between the
CCs of the two methods were also noted for underextraction on unequal loadings within
factors (Case 18: .854 vs. .796 for CFA vs. PCA) and for overextraction on unequal loadings
within correlated factors (Case 20: .857 vs. .815 for CFA vs. PCA). Interestingly, the CCs of
both methods were higher for cross-loadings (Case 11: .928 vs. .933 for CFA vs. PCA) than
for the baseline (Case 1: .914 vs. .924 for CFA vs. PCA), indicating that factors/components
are better defined when cross-loadings are present.

The PCA nonzero loadings were more stable (i.e., had a lower SDnz) than the CFA
nonzero loadings, except for unequal loadings within correlated factors (Case 9), overex-
traction (Cases 16, 17, 19, and 20), and underextraction on unequal loadings within factors
(Case 18). The zero loading variables of PCA were less stable (i.e., had a higher SDz) than
those of CFA in all cases (mean SDz across all cases: .151 vs. .176 for CFA and PCA,
respectively).

Table 3 shows the mean and standard deviations of loadings across repetitions for Case
9 (unequal loadings within correlated factors) and Case 13 (severely unequal p/f ). For Case
9, both CFA and PCA underestimated the high (.8) true loadings and overestimated the
low (.4) true loadings, this homogenization being stronger in PCA. The underestimation
of the high true loadings was stronger than the overestimation of the low true loadings,
which also explains why the PCA loadings were lower than .6 for Case 9 (see Table 2).
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Table 3
Means and Standard Deviations of CFA and PCA Loadings Across Repetitions for Case
9 (Unequal Loadings Within Correlated Factors) and Case 13 (Severely Unequal p/f ) for
N = 50. Results are Based on 9899 and 8183 out of 10,000 Repetitions (101 and 1817

Improper Solutions Excluded)

Case 9

Loadings Standard deviations

CFA PCA CFA PCA

.725 .070 .070 .715 .103 .104 .142 .126 .125 .161 .156 .155

.379 .027 .027 .467 .017 .020 .186 .187 .185 .233 .244 .242

.724 .071 .069 .714 .104 .103 .145 .127 .126 .163 .158 .156

.377 .030 .027 .465 .023 .019 .185 .187 .185 .232 .243 .244

.722 .071 .070 .714 .104 .103 .145 .127 .124 .162 .157 .154

.379 .028 .027 .465 .020 .018 .185 .184 .185 .234 .242 .244

.071 .723 .070 .104 .714 .104 .127 .144 .126 .157 .162 .157

.026 .380 .031 .018 .465 .024 .186 .187 .186 .243 .234 .246

.070 .723 .072 .102 .713 .106 .126 .143 .127 .156 .162 .158

.032 .380 .025 .024 .468 .014 .184 .183 .184 .241 .230 .242

.069 .724 .071 .102 .715 .104 .126 .144 .128 .155 .161 .158

.026 .381 .029 .017 .468 .021 .184 .187 .186 .243 .234 .243

.070 .070 .723 .105 .106 .712 .125 .126 .140 .157 .159 .164

.026 .029 .379 .019 .022 .465 .184 .185 .184 .242 .243 .233

.070 .070 .724 .105 .105 .712 .124 .127 .141 .156 .159 .163

.029 .027 .381 .021 .020 .467 .181 .183 .184 .239 .243 .231

.071 .071 .723 .105 .106 .711 .125 .127 .141 .156 .160 .163

.031 .025 .381 .025 .018 .466 .186 .185 .186 .246 .241 .234

Case 13

Loadings Standard deviation

CFA PCA CFA PCA

.590 −.001 .001 .662 −.001 .001 .132 .136 .199 .119 .148 .226

.591 −.002 .005 .662 −.001 .003 .132 .137 .199 .118 .150 .226

.588 .000 .002 .660 .001 .001 .131 .135 .200 .118 .148 .227

.591 .000 .003 .663 .000 .002 .131 .136 .200 .117 .149 .225

.591 .002 .001 .663 .001 .002 .132 .134 .201 .119 .148 .226

.591 .002 −.001 .664 .002 −.001 .132 .136 .199 .116 .149 .222

.001 .591 .001 .001 .662 .000 .136 .132 .204 .148 .119 .231
−.001 .589 .003 −.001 .662 .001 .134 .133 .203 .147 .119 .228
.000 .590 .002 .000 .663 .001 .137 .130 .200 .148 .116 .225
.000 .590 .002 .000 .663 .002 .134 .132 .200 .147 .118 .225
.000 .590 .003 .000 .663 .003 .137 .131 .204 .151 .116 .228
.000 .590 .000 .000 .661 −.001 .136 .132 .201 .150 .120 .228
.002 .001 .534 .003 .001 .709 .134 .134 .233 .149 .148 .174
.000 .000 .534 .000 .000 .709 .133 .134 .233 .147 .149 .173
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Table 4
Loading Estimates by PCA After Having Excluded the PCA Solutions Corresponding to
Improper Solutions Generated by CFA Versus Loading Estimates by the PCA Solutions
Corresponding to the Improper Solutions Generated by CFA. Number of Proper Solutions

out of 10,000: Case 5: 7504; Case 13: 8183; Case 17: 7426

PCA solutions
corresponding to proper

CFA solutions

PCA solutions
corresponding to improper

CFA solutions

Case 5
Mnz .734 .708
Mean CC .924 .897
Mean SDnz .108 .152
Mean SDz .169 .184

Case 13
Mnz .670 .681
Mean CC .875 .903
Mean SDnz .126 .115
Mean SDz .182 .162

Case 17
Mnz .614 .616
Mean CC .875 .878
Mean SDnz .191 .190
Mean SDz .147 .146

Note. Mnz = mean of nonzero loadings; CC = correlation coefficient with true factor loadings;
SDnz = standard deviation of the estimated nonzero loadings minus the true nonzero loadings;
SDz = standard deviation of the estimated zero loadings. Mean of zero loadings (Mz) was .000 in all
cases.

The PCA nonzero and zero loadings were less stable than those of CFA. For Case 13, the
nonzero PCA loadings were higher than the true factor loadings, with this deviation from
the true loadings being the greatest for the third factor/component, which had only two
salient loadings. As Table 3 shows, the weak factor/component was also the least stable for
both methods. The PCA nonzero loadings were more stable than the CFA nonzero loadings,
whereas the zero loading variables of PCA were less stable than those of CFA (see also
Table 2).

Table 4 shows the loading estimates by PCA, corresponding to proper CFA solutions
and improper CFA solutions. Cases 5, 13, and 17 are shown, as these generated a high
percentage of improper solutions. It can be seen that loading estimates by PCA were about
the same, regardless of whether CFA provided a proper solution.

3.1.3. Supplementary analyses. Table A3 of the supplementary material contains the re-
sults of the simulations for N = 200 instead of N = 50. For both CFA and PCA, N = 200
yielded higher CCs than N = 50 (mean CC across all cases: .970 vs. .881 for CFA; .964 vs.
.876 for PCA). Mnz of CFA were higher for N = 200 than for N = 50 (mean Mnz across
all cases: .594 vs. .578). For PCA, the mean nonzero loadings (Mnz) were also higher for
N = 200 than for N = 50 (mean Mnz across all cases: .669 vs. .639).The rates of improper
CFA solutions were lower for N = 200 than for N = 50 (except for Case 13). Compared to
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N = 50, SDnz and SDz were about halved, in line with the commonly known fact that
standard errors decrease by the square root of sample size. The relative performance of
CFA versus PCA (i.e., which method provides the higher Mnz, CC, SDnz, and SDz per
case) was highly similar to N = 50.

Table A4 of supplementary material contains the simulation results when using
λ = .45 instead of .6. As compared to λ = .6, this condition generated higher rates of
improper solutions, reaching 57.0% for Case 5. Moreover, λ = .45 led to lower CCs than
λ = .6, confirming earlier studies that a larger sample size is required when loadings are
lower (e.g., MacCallum et al., 1999). Across all cases, CFA and PCA yielded a mean CC
of only .710 and .708, respectively (cf. .881 and .876 for λ = .6). Both methods produced
less stable solutions for λ = .45 than for λ = .6, as indicated by the higher SDnz (.203 vs.
.139 for CFA, .221 vs. .135 for PCA, all four SDnz calculated across the 20 cases) and
SDnz (.190 vs. .151 for CFA, .230 vs. .176 for PCA). Both methods yielded low inter-
factor/intercomponent correlations in the oblique cases (about .17 and .12 for CFA and
PCA, respectively, while the interfactor correlation in the population was .5). The relative
performance of CFA versus PCA, in terms of which method provides higher Mnz, CC,
SDnz, and SDz, was similar to λ = .6.

Table A5 of the supplementary material contains the simulation results for λ = .75
instead of .6. The relative performance of CFA and PCA was again very similar to λ = .6,
but λ = .75 yielded higher CCs (mean CC across all cases: .952 vs. .881 for CFA, .944 vs.
.876 for PCA) and more stable loadings than λ = .6.

Table A6 of the supplementary material shows the results of the simulations when
using Procrustes instead of blind (i.e., Varimax or Oblimin) rotation. In all but one (Case
14) of the cases, Mnz were higher for Procrustes than for Varimax (differences ranging
between .001 and .020 for both CFA and PCA). The relative performance of CFA versus
PCA under Procrustes rotation was similar to the Varimax solution in terms of CC, with
all CCs being slightly higher for Procrustes (differences between the two rotation methods
ranging between .001 and .020 for both CFA and PCA). For the three oblique factor patterns
(Cases 2, 9, and 20), Procrustes rotation yielded higher interfactor correlations than Oblimin
rotation, although the differences in estimated correlations were minor (.015, .007, and .011
for CFA, and .011, .015, and .016 for PCA).

Finally, Table A7 of the supplementary material shows the simulation results when
using MLFA instead of PAF as a model fitting procedure for CFA. MLFA generated a
considerably higher percentage of improper solutions than PAF, reaching 86%–89% for
three overextraction cases (Cases 17, 19, and 20; see Table A2). For cases in which PAF
yielded higher CCs than PCA, MLFA tended to yield even higher CCs (e.g., Case 14: .835,
.868, and .805 for PAF, MLFA, and PCA, respectively), whereas in cases in which PAF
yielded lower CCs than PCA, MLFA yielded even lower CCs (e.g., Case 13: .842, .812, and
.875 for PAF, MLFA, and PCA, respectively). In other words, the differences between CFA
and PCA loadings were magnified when using MLFA instead of PAF as method of analysis.
However, the overall pattern of differences between CFA and PCA was very similar for
PAF and MLFA, as can be seen by the mean Mnz across all cases (.578, .580, and .639
for PAF, MLFA, and PCA, respectively) and the mean CC across all cases (.881, .883, and
.876 for PAF, MLFA, and PCA, respectively).

4. Discussion

This simulation study confirmed earlier research by showing that PCA loadings are higher
than CFA loadings, especially when the number of variables per factor is small. PCA has a
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tendency to yield homogeneous loadings when factor loadings are unequal within factors.
Furthermore, PCA loadings correlate relatively weakly with the true factor loadings for
under- and overextraction. Our results extend the findings of Widaman (1993, 2007) to
conditions with sampling error and under/overextraction. We also showed that PCA yields
slightly higher CCs with the true factor loadings than CFA, for cross-loadings, model error,
and factors of unequal strength.

Our simulation study showed that sampling error does not significantly influence the
differences between CFA and PCA loadings, as the pattern of differences between CFA
and PCA loadings was consistent for N = 50, N = 200, and N = 50,000. Specifically, PCA
always yielded higher mean loadings than CFA and almost always lower standard deviations
of nonzero loadings and higher standard deviations of zero loadings than CFA, regardless of
the sample size. Our results showed that when sampling error was present, PCA occasionally
provided a better approximation of the true factor loadings (in terms of Mnz and/or CC)
than CFA did itself. For correlated factors in an otherwise clean factor pattern (Case 2),
PCA yielded a higher CC with the true loadings, and mean loadings closer to the true factor
loadings than CFA. This was true under both Oblimin and Procrustes rotation, indicating
that the low loading estimates by CFA were not due to the rotation procedure. This superior
performance of PCA comes artifactually in a sense, because sampling error results in lower
loading estimates; the “inflated” loadings of PCA are a virtue in this circumstance.

PCA nonzero loadings were generally more stable than the corresponding CFA load-
ings. This result is in line with Ogasawara (2003), who derived mathematical expressions
of the standard errors for factor and component loadings and showed that for equal numbers
of variables per factor and equal factor loadings, the standard errors of component loadings
are lower than the standard errors of factor loadings. However, our study also showed that
the zero loading variables of PCA were less stable than those of CFA. Moreover, both
nonzero and zero loading estimates of PCA were less stable than the corresponding loading
estimates of CFA when departing from sphericity, that is, when loadings within factors
were unequal.

For both CFA and PCA, underextraction appeared to be a more severe distortion than
overextraction, in line with previous research (Fava and Velicer, 1996). Note that in all cases
of underextraction (Cases 14, 15, and 18) we chose to make the omitted factors slightly
weaker than the retained factors. When components are of equal strength (i.e., eigenvalues
are equal), the principal axis cannot be uniquely determined in the population. This means
that even the smallest degree of sampling error can completely change the eigenvector of
the sample correlation matrix. CFA, on the other hand, iterates towards communalities that
provided a good fit with the common factor model.

Because PCA loadings were higher than CFA loadings, correlations between compo-
nents were lower than correlations between factors. For matrices in which each manifest
variable loaded on one factor only, all true loadings on a factor were equal, and there was
no sampling error, the predicted correlations between oblique components were in agree-
ment with Widaman (1993). Both CFA and PCA yielded substantially lower correlations
between factors/components in the case of sampling error than at the population level.

Our simulations showed that CFA is susceptible to improper solutions. Improper
solutions with principal axis factoring (PAF) occurred particularly for overextraction and
for a small number of variables per factor. Even for a sample size as large as 200, about
20% of the solutions were improper when overextracting two factors, or when having only
two salient loadings on a factor. For maximum likelihood factor analysis (MLFA), the rate
of improper solutions was even higher, being more than 50% in 6 of the 20 cases. If an
improper solution occurred for CFA, the results of both methods were discarded, thereby
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giving no penalty to CFA for producing an invalid outcome. PCA produced meaningful
solutions when CFA failed to provide a proper solution (see Table 4). Some researchers
have suggested that an improper solution has diagnostic value, indicating that the model
attempted to be fit to the data is misspecified or that factor model assumptions are violated
by the data, a problem that PCA will “bypass” (McArdle, 1990, p. 85). It is possible
to prevent improper solutions by keeping the number of iterations of the principal axis
factoring procedure small (cf. Snook and Gorsuch, 1989; Gorsuch, 2003), a pragmatic
sanctioning of the common factor model.

Because exploratory CFA and PCA are typically applied to correlation matrices, the
present simulations focused on correlation matrices only. MacCallum and Tucker (1991)
explained that fitting the factor model to a correlation rather than a covariance matrix
introduces additional sampling error, because the loadings are rescaled by rows as a function
of the sample standard deviations of the manifest variables. Schneeweiss (1997) pointed
out that the standardization of variables results in unique variances becoming more equal.
Hence, differences between CFA and CFA loadings are smaller when the methods are
applied on a correlation matrix instead of a covariance matrix. Further research needs to be
conducted into the effect of the correlation versus covariance matrices in exploratory data
analysis.

This simulation study cannot answer the infamous debate about whether CFA or PCA
is the most appropriate procedure. The question about which method to use hinges on issues
of generality, factor indeterminacy, and the theoretical status of latent variables (Borsboom
et al., 2003; Steiger, 1994). An infinite number of factor scores can explain a given pattern
of correlations—an indeterminacy issue discussed by many before (see a Special Section
in Multivariate Behavioral Research, 31 (4), “Indeterminacy,” 1996). That is, although the
loadings and the unique variances are uniquely determined from a given correlation matrix
(yet not always, due to a small number of variables per factor or Heywood cases), the factor
scores are not uniquely defined. Schönemann and Steiger (1978) argued that the factor
model has “absurd properties” (p. 290), as the factor scores can be chosen such that they
predict any criterion. Steiger (1994) pointed out that “going beyond the test space” may be
merely “a theoretical advantage” of factor analysis, because “the vector . . . that takes them
there is arbitrary. . . . the only determinate part of a common factor is, indeed, a component”
(p. 213). Velicer and co-authors recommended “to do no analysis” (Velicer and Jackson,
1990b, p. 101) when CFA and PCA loadings differ, or alternatively, to improve the quality
of the dataset by increasing the number of variables per factor or by including variables
with high loadings. However, this recommendation exactly leads to a convergence of CFA
and PCA loadings (cf. Eq. (10)). Steiger (1996) stated: “It seems high-reliability linear
composites are what the factor analytic community has been looking for all along” (pp.
549–550). Researchers sometimes seem to let a factor analysis procedure defining factors
for them. However, definitions should come from substantive evidence rather than from
a correlation matrix alone. Recovering factors should be the result of both an appropriate
selection of variables and of a data analytical technique that allows factors to have “some
reality beyond the mathematical manipulations that derived them from a correlation matrix”
(Jensen and Weng, 1994, p. 254, and see Johnson et al., 2004 for an interesting empirical
study on the general intelligence factor).

Summarizing, the present work investigated differences between CFA and PCA load-
ings for a wide variety of conditions with and without sampling error. Results showed that
CFA loadings were invariant to the number of variables in the dataset and that nonzero PCA
loadings were generally higher than the true factor loadings, especially when the number of
variables was small. Compared to CFA loadings, PCA loadings correlated weakly with the
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true factor loadings for underextraction and overextraction. Heterogeneous factor loadings
within correlated factors were homogenized by PCA. We found that PCA provided slightly
higher CCs with the true factor loadings than CFA, for cross-loadings, model error, and fac-
tors of unequal strength. CFA occasionally suffered from a high rate of improper solutions.
Sampling error led to a lowering of loadings and interfactor correlations for both CFA and
PCA. The pattern of differences between CFA and PCA was consistent across sample sizes,
levels of true factor loadings, principal axis factoring versus maximum likelihood factor
analysis, and blind versus target rotation.

So, should a practitioner use CFA or PCA? Clearly, as pointed out by Widaman
(2007), “the final word on comparisons between CFA and PCA has not yet been written”
(p. 201). The present simulation study showed that PCA loadings are sometimes closer
approximations of the true factor loadings than the loadings produced by CFA itself.
However, this outperformance seems to be insufficient reason for justifying PCA as a
substitute for CFA, because it is ‘artifactually’ caused by sampling error, is relatively
rare (PCA outperformed CFA on both Mnz and CC only in Case 2), and probably of
minor practical significance. We wish to reiterate that CFA and PCA are not competing
techniques, as both methods facilitate a different purpose (explaining a correlation matrix
vs. identifying the major sources of variation in data, respectively). The researcher’s purpose
should be the deciding factor in the choice of method. If a researcher has reasons to apply
PCA, such as data reduction to a smaller dimensionality, then PCA should be used, and
he should then not pretend that components are common factors. Practitioners seem to use
CFA and PCA almost interchangeably, leading to heterogeneity in the scientific literature.
The results of the present simulation study may contribute to measuring this heterogeneity
and to increased awareness of the numerical consequences of using PCA or CFA.

Supplemental Material

Supplemental data for this article can be accessed on the publisher’s website at http:
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References

Anderson, T. W., Rubin, H. (1956). Statistical inference in factor analysis. In: Neyman J., ed.,
Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Vol.
5, pp. 111–150.

Beauducel, A. (2001). On the generalizability of factors: The influence of changing contexts of
variables on different methods of factor extraction. Methods of Psychological Research Online
6:69–96.

Bentler, P. M., Kano, Y. (1990). On the equivalence of factors and components. Multivariate Behav-
ioral Research 25:67–74.

Bernaards, C. A., Jennrich, R. I. (2005). Gradient projection algorithms and software for arbitrary
rotation criteria in factor analysis. Educational and Psychological Measurement 65:676–696.

Bookstein, F. L. (1990). Least squares and latent variables. Multivariate Behavioral Research
25:75–80.

Borsboom, D., Mellenbergh, G. J., Van Heerden, J. (2003). The theoretical status of latent variables.
Psychological Review 110:203–219.

Conway, J. M., Huffcutt, A. I. (2003). A review and evaluation of exploratory factor analysis practices
in organizational research. Organizational Research Methods 6:147–168.

Costello, A. B., Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommen-
dations for getting the most from your analysis. Practical Assessment, Research & Evaluation
10.



CFA versus PCA: A Comparison of Loadings 319

De Winter, J. C. F., Dodou, D. (2012). Factor recovery by principal axis factoring and maximum
likelihood factor analysis as a function of factor pattern and sample size. Journal of Applied
Statistics 39:695–710.

De Winter, J. C. F., Dodou, D., Wieringa, P. A. (2009). Exploratory factor analysis with small sample
sizes. Multivariate Behavioral Research 44:147–181.
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