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Race Car Driver Model: Improved Generalization for
Behavioral Cloning with Image-Based Feature Sets

Renée Schwietert

Abstract—This thesis explores enhancing track generalization
in motorsport driver models through image-based feature sets,
drawing inspiration from autonomous driving applications in
urban settings. Traditional motorsport models often rely on
numeric features, which excel on known tracks but face limita-
tions when adapting to new, unseen environments. To address
this, I introduce a CNN-based model that integrates bird’s-
eye-view images with vehicle states and path-planning data,
allowing a more holistic perception of track layouts and sur-
roundings. Through open-loop evaluations on unseen tracks, the
proposed model demonstrates superior generalization, achieving
significantly lower RMSE compared to boundary point-based
models, with improvements observed across steering, braking,
and acceleration actions. Additionally, I apply novelty detection
using Mahalanobis Distance to isolate Out-of-Distribution(OoD)
scenarios, providing a precise measure of the generalization gap.
This work establishes a baseline for image feature design in
motorsport driver modeling, emphasizing the role of spatial
and contextual information in achieving adaptable and high-
performance autonomous racing agents.

I. INTRODUCTION

Motorsport racing captivates audiences worldwide, drawing
attention not only for its thrilling speed and precision but
also for its broader impact on technological advancements
and engineering excellence. Beyond the spectacle, motorsports
serve as a proving ground for pioneering innovations in vehicle
performance, safety, and sustainability.

Developing high-performance vehicles and refining driver
skills require substantial resources. Physical trials, though
effective, are costly and time-consuming. As a solution, simu-
lations have become central to motorsports, enabling engineers
to explore a range of scenarios and adjustments in a con-
trolled environment. While simulations often include human
drivers interacting directly within the virtual environment,
these driver-in-the-loop setups still require significant time and
resources. Driver models offer a more efficient alternative by
replicating human-like decision-making and driving behavior,
allowing simulations to closely mirror real-world scenarios
without the need for constant human involvement.

In motorsports, the focus in creating and evaluating these
models has been on optimizing performance on individual
tracks, with limited attention given to generalization [Fuchs
et al., 2021], [Braghin et al., 2008]. Track generalization—the
ability of a model to perform well across a variety of tracks—is
a key challenge that has not been fully addressed in motorsport
simulations. The concept of track generalization is critical in
motorsport applications, where small differences in track lay-
out can have a substantial impact on the vehicle’s optimal path
and overall performance [Gustafsson, 2008]. Achieving robust
generalization is not only crucial for improving performance
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Fig. 1. Behavioral Cloning race driver model from [Lockel, 2022a] incorpo-
rating numerical perception features, vehicle state features and path planning
features from the expert trajectory to select actions with a feedforward neural
network.
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but also significantly enhances the efficiency of training the
models. In practice, it is often impractical or inefficient to train
or explore on all available tracks, especially when new tracks
are introduced. An effective generalization strategy can relieve
this, allowing models to perform well on unseen tracks without
requiring extensive retraining. This capability is particularly
valuable in scenarios where no prior data from a new track is
available, enabling the agent to drive and navigate the track
autonomously and effectively from the outset.

An approach to race car driver modeling that incorporates
human factors, Behavioral Cloning (BC) [Lockel, 2022a],
[Lockel, 2022b] (Figure 1), has shown to be able to generalize
to unknown tracks to some extent. However, in the current
method, adaptation needs to be done through post processing
and it is limited in cases that it can handle due to the covariate
shift [Ross and Bagnell, 2010]. To further enhance BC in race
car driver modeling to address the challenge of generalization,
most approaches in related fields revolve around diversifying
data or applying specific training methods, including: Pro-
cedural Track Generation for Training [Behrens, 2020]
which diversifies the training set by exposing the model
to algorithmically created synthetic tracks [Li et al., 2020].
While this method creates diverse scenarios, the synthetic
tracks often lack the nuanced dynamics and environmental
realism of real-world tracks. This disconnect can lead to
models that overfit to procedural patterns (systematic biases)
rather than generalizable principles of driving. Moreover, the



computational expense of generating high-fidelity tracks can
outweigh the benefits for real-time applications, especially
in resource-constrained settings. Curriculum Learning intro-
duces progressively complex tracks during training to help the
model build foundational skills before tackling more difficult
scenarios [Bengio et al., 2009]. However, this method struggles
to prepare models for entirely novel scenarios outside the
curriculum. Data Augmentation applies transformations such
as flipping, scaling, or noise injection to expand the training
data [Volpi et al., 2018]. Data augmentation relies on existing
data as a foundation. While transformations add diversity, they
do not create fundamentally new scenarios. This means the
model may still struggle with completely novel track layouts
or conditions, which are common in motorsport.

Models used in motorsport simulations [Ganesh et al.,
2016], [Remonda et al., 2022], predominantly rely on numeric
perception features, such as rangefinders and other distance
measurements in combination with vehicle state and path-
planning features. Multi-Modal Input Features, particularly
the combining of image-based representations with different
inputs, have shown to enhance generalizability in urban driving
applications [Xiao et al., 2020], [Hwang et al., 2024]. By
capturing a holistic view of the track and combining this with
other inputs, image-based features can enable driver models
to learn patterns directly from the visual context. Despite
the success of generalization with multi-modal image-based
methods in urban driving, the motorsport domain has yet to
fully embrace this approach.

In this thesis, I aim to study the effects of image-based
feature sets on track generalization in motorsport driver mod-
eling, building on the successful approaches used in urban
autonomous driving. By leveraging CNNs for feature extrac-
tion and combining them with traditional numeric inputs, I
find that this model not only performs well on known tracks
but also generalizes effectively to new, unseen tracks. This
approach provides a more comprehensive understanding of
the track environment, enabling the model to make more
informed decisions based on the visual context of the track,
rather than relying solely on numeric features. Ultimately, this
work contributes to driver modeling in motorsport simulations
by demonstrating the benefits of image-based feature sets for
enhancing track generalization.

II. METHODOLOGY

My objective is to study the effects on track generalization
of the integration of image-based features in a driver model.
The method involves creating an image feature-set and a
feature extractor, such that spatial and contextual informa-
tion about the surroundings can be extracted, learned from
and transferred to enable high performance on an unknown
track. In this section I introduce a previous driver model
perception method that serves as a comparison to the new
method; explain the design methodology of the images; show
the integration into the network architecture and present the
evaluation method.
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Fig. 2. Boundary point perception features visualized on race track. Points
mark [5, 10, 20, 40, 80, 160, 320, 640] distances on left and right track
boundary. Arrow indicated the heading angle of the car. The raceline of the
expert is visualized in blue.

A. Previous Driver Modeling Method

This works builds on previous research done regarding
a Behavioural Cloning agent used as initialisation for a
Reinforcement Learning agent [Ju et al., 2023]. The model
consists of a feed-forward neural network mapping a feature
set to actions.

1) Feature set: The feature set used is made up of three
types: vehicle state features, path-planning features and per-
ception features:

[v, ag, Gy, Br, Br, TF, TR, Qpositions Cpolys (offsets doffset]

Vehicle states provide a comprehensive representation of
the vehicle’s dynamics, allowing for precise modeling of the
forces and motions that affect its stability and handling.

o The vehicle states include absolute velocity (v), longitu-
dinal acceleration (a,), lateral acceleration (a,), and the
average slip ratios (rp, rr) and slip angles (6r, Sgr) for
the front and rear tires.

o The path planning features consist of the coefficients
of a polynomial (c,01y) that describe the local path, along
with angular and distance offsets (offset, ofrset) calculated
within a specified preview time. These are derived from
the reference trajectory for each lap.

« Boundary Points (BPs) are used as perception features.
BPs are typically defined as 32 relative distances from
the car’s center of gravity to the track’s boundary on each
side. They are defined as the x, y distances [5, 10, 20,
40, 80, 160, 320, 640] on the left and right boundary.

The BPs provide essential information about the car’s spatial

position within the track in a simplified manner, represent-
ing only a few critical points rather than the entire track.
This makes BPs highly efficient for the model by reducing
computational complexity. However, the limitation of this
approach is that it sacrifices finer-grained details about the
track’s curvature or environmental context. Next to this, BPs
may face challenges in generalizing across tracks with varying
layouts, especially in regions with sharp curves or significant
changes in track width, potentially reducing the model’s ability
to adapt to new tracks.



Fig. 3. Final image feature design with 125m forward visibility, 45m
horizontal visibility, 20 m backward visibility and 2.5 pixels per meter
resolution. Designed to specifically consider the trade-off between speed and
accuracy. The car is shown in white.

2) Actions: The action a; consists of three components:
braking, accelerating, and steering, represented as a; =
[9¢, bt 5t]T, where g; refers to the accelerator pedal actuation,
b; refers to the brake pedal actuation, and J; represents the
steering wheel angle.

B. Image Design Methodology

Race car drivers’ decision-making is influenced by various
sensory inputs, including visual, auditory, and haptic feedback.
Visual perception plays a central role, providing crucial infor-
mation about the track layout, vehicle position and upcoming
turns. This visual data allows drivers to anticipate necessary
maneuvers, such as braking, steering, and accelerating, in
real-time. In addition to sensory inputs, drivers rely on prior
knowledge of the track and vehicle characteristics, as well
as gathered knowledge while driving, like the current grip
level and vehicle performance. In my model, the integration
of images brings an overall spatial overview of the track
ahead, next to and behind the agent. These images allow the
model to capture spatial and contextual information, improving
decision-making by giving a more complete representation of
the driving environment.

The image feature is designed to capture the information
most relevant for the agent at the current timestep. This
information consists of the current scenario, relevant
upcoming scenarios and relevant previous scenarios. These
can be broken down into 4 design parameters (forward
visibility, horizontal visibility, backward visibility and
resolution) with their respective criteria.

Forward Visibility

o Braking distance: the agent needs at least the braking
distance to the next turn in view to make correct decisions
on where to brake

o Turn anticipation: for the sharpness of turns and upcom-
ing track changes (e.g. whether another turn follows or a
straight)

e Gradual state changes: seeing further ahead may mean
encountering more similar states over time, reducing
abrupt differences

Horizontal Visibility

o Track boundaries: the agent needs to see both edges of
the track to maintain proper positioning within the lane
and avoid going off the track.

o Lateral adjustments: with a wider view, the agent can
make smoother, more informed lateral adjustments, espe-
cially during cornering, where understanding track width
is crucial for precision.

o Avoiding mistakes: seeing the full width of the track
reduces the risk of mistakes like understeering or over-
steering, as the agent is always aware of its boundaries.

Backward Visibility

« Previous trajectory: the agent needs to see a portion of
where it came from to help it maintain continuity in
decision-making, particularly in recovery scenarios (e.g.,
after a corner or a mistake).

o Acceleration decisions: by seeing the immediate past,
the agent can better time its acceleration out of corners,
understanding whether it has fully exited a turn or if it’s
still within the corner’s trajectory.

« Recovery from mistakes: the view behind the agent helps
it adjust after unexpected events (e.g., minor oversteer)
by giving context to recent changes in its state.

Resolution
The resolution of the image affects the level of detail that the
agent can perceive and process.

o Track detail precision: higher resolution allows the agent
to discern fine details of the track, such as exact curvature,
or subtle changes in track width, which are essential for
making precise control decisions.

o Feature detection: a higher resolution aids in better de-
tection of track boundaries and curvature.

« Relevance of detail: the level of resolution should capture
only the most relevant features (e.g., curvature, track
boundaries) without overloading the agent with unnec-
essary details that don’t significantly impact decision-
making.

e Temporal coherence: a consistent resolution helps the
agent maintain coherent state transitions, reducing con-
fusion that may arise from varying levels of detail in
successive frames.

These four parameters can be incorporated into an image
from a birds-eye-view perspective. Next to the required vis-
ibility needed in the image, the criteria in order to ensure
the practical implementation of the feature set needs to be
considered. The simulation-time as well as the training time
need to stay within reasonable bounds in order for the image
feature set to be a valid solution for this use-case. Multiple
methods of generating birds-eye-view images were created



and tested. As explained in Appendix A and B, the final
design the result of the best trade-off for speed, simplicity,
informativity and accuracy (on train and test data). Initial
generalization trials were done to determine the values of the
design parameters and alternative methods (involving active
zooming and altering resolution to velocity to match human
peripheral vision) were created and evaluated. The final design
(Figure 3) is a grey-scale image oriented at the heading angle
of the car. The car is placed with 125m forward visibility, 45m
horizontal visibility (on either side), 20m backward visibility
and 2.5 pixels per meter resolution. This results in an input
size of (362, 225, 1).

C. Model Architecture

The architecture of the CNN model, as shown in Figure 4,
is designed to process a combination of image features from
the track and state/path features. The CNN was chosen based
on tests done with AlexNet [Krizhevsky et al., 2017] as used
in [Djuric et al.,, 2020], Nature CNN [Mnih et al., 2015]
(for ease of future implementation in the RL agent described
in Section II-A), and Nature CNN with an additional layer.
Architecture comparisons are provided in Appendix D. Further
hyperparameter tuning as well as testing resulted in the best
generalization performance with the following model. The
model begins with a series of convolutional layers, which are
responsible for extracting spatial features from the images.
Each convolutional layer is followed by a max-pooling layer
to reduce spatial dimensionality while preserving the most
important features. The architecture includes three convolu-
tional layers: the first layer applies 32 filters with a kernel
size of 5x5, followed by max-pooling with a 2x2 kernel.
The second and third convolutional layers each use 64 filters
with smaller kernel sizes (3x3), and max-pooling is applied
after the second layer. Batch normalization is applied after
each convolutional layer to improve training stability, and
the value for L2 regularization (tuned to 0.005) is used to
prevent overfitting. ReLLU activation is used for all layers. After
the convolutional blocks, the image features are flattened and
concatenated with the state and path planning features before
being passed into two fully connected (dense) layers, each with
64 units and no L2 regularization (the use of L2 regularization
here was shown to have no generalization benefits during
tuning). The model is trained over 150 epochs with a learning
rate of 0.00002.

The CNN architecture is detailed in Table I, which lists the
layers, filter sizes, kernel sizes, strides, regularization tech-
niques, and activation functions used throughout the network.

D. Evaluation Method: Open-Loop Evaluation of Generaliza-
tion and Novelty Detection on Unseen Tracks

The primary objective of this thesis is to analyze the
generalization performance of an agent with image-based
perception, by assessing the gap between training loss and test
loss on new tracks (the generalization gap). A key challenge to
properly analyze this is to understand when the agent is truly
generalizing and when the agent is encountering segments of a

new track that theoretically fall within the training distribution.

1) Open-Loop Evaluation: Initially, I evaluate the agent’s
performance using an open-loop evaluation. This method
involves running the model in a simulated environment where
the agent is exposed to predefined expert lap data and expected
to make predictions at each timestep, without influencing
future states of the simulation. This allows for a controlled
analysis of the model’s decision-making at each point on the
track.

Open-loop evaluation is beneficial for focusing on predic-
tion accuracy without the complexity of closed-loop interac-
tions, where the agent’s predictions influence the next state
of the environment. The goal of this phase is to assess how
well the agent can generalize based on unseen track layouts
by examining the prediction errors throughout the track.

The open-loop evaluation is particularly valuable for
benchmarking the proposed approach against the previous
method (described in Section II-A), where prediction accuracy
at each point on the track is compared directly to the old
approach. This provides insight into whether the new method
performs better or worse in terms of error reduction.

2) Novelty Detection for Further Evaluation: While an
open-loop comparison of the full lap on a new track can
provide decent overall insights, it does not provide detailed
insights into specific regions of the track where the methods
truly encounter a new scenario. A straight segment on a new
track may, in theory, be familiar to the agent, for example after
having encountered straight segments in the training data. To
further evaluate the methods, I introduce novelty detection to
identify regions of the track that are novel to the agents, to
reach a more precise calculation of the generalization gap.

I employ Mahalanobis Distance (MD) [McLachlan, 1999]
to quantify the novelty of track segments.

Given the high-dimensional feature embeddings z; € R2?304
extracted from the outputs of agent’s feature extractor (CNN),
I reduce the dimensionality to m principal components using
Principal Component Analysis (PCA) [Wold et al., 1987] to
ensure computational efficiency and stability.

TABLE I
ARCHITECTURE OF THE CNN MODEL. BATCH NORMALIZATION IS
APPLIED AFTER EACH CONVOLUTIONAL LAYER, AND PADDING WAS USED
FOR THE CONVOLUTIONAL LAYERS. THE MODEL WAS TRAINED FOR 150
EPOCHS WITH A LEARNING RATE OF 0.00002.

Layer Type Filter/Units | Kernel Size | Strides | Regularization | Activation

Conv2D 32 (5,5) (4, 4) L2 (0.005) ReLU
MaxPooling2D 2,2 2,2

Conv2D 64 3,3) 2,2) L2 (0.005) ReLU
MaxPooling2D 2,2) 2,2

Conv2D 64 3,3) (1, n L2 (0.005) ReLU
Dense Layer 1 64 - - L2 - ReLU
Dense Layer 2 64 ReLU
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Fig. 4. Model architecture with CNN feature extractor for images as perception features. Extracted features are concatenated with vehicle state and path-

planning features and fed into dense layers.

The reduced feature embeddings z; € R™, in combination
with the state and path-planning features, are then used to
compute Mahalanobis Distance as a measure of how far a
given feature vector is from the distribution of the training
data.

The Mahalanobis Distance for a given feature embedding
z; with respect to the distribution of the training embeddings
is calculated as:

)

where p is the mean of the training feature embeddings, and
3 is the shared covariance matrix. The Mahalanobis Distance
provides a measure of how far a new feature embedding z; is
from the center of the training distribution. The same method
is applied to find novel timesteps for the old agent by taking
the boundary points, state and path-planning features.

MD(z;) = (zi — p) =7 (zi — p)

III. RESULTS

To have an general overview of the performance, both agents
were tested in open-loop on 12 laps for two unseen tracks:
track C and track D (Figure 6). Both agents were trained on
50 expert laps on track B and 50 on track A (Figure 5).

A. Full Track Generalization Gap

The generalization gap results highlight the differences in
adaptability between the image-based and boundary point (BP)
agents on track C and D. As can be seen in Figure 7 and
Figure 8, the image agent showed a smaller generalization gap
(0.014 on track C and 0.023 on track D) compared to the BP
agent (0.071 on track C and 0.097 on track D). These results
suggest that the image-based feature set allows for better
generalization across unseen tracks, demonstrating a reduced
performance drop from training to testing environments. This
indicates that image features can capture a more versatile

Fig. 5. Track A (above) and track B (below) for training the agent. Arrow
indicating start and driving direction.

understanding of track layout, thereby enhancing the agent’s
ability to adapt to new tracks more effectively than traditional
boundary point features.

B. Open-Loop Timeseries Analysis

The timeseries of the action traces of each agent of a lap
on track C and track D are shown in Figure 9 and Figure 10
respectively.

The overall RMSE results of the 12 laps on track C (Table
2) and 12 laps on track D (Table 3) show a clear higher
performance for the image agent. Overall, the image agent
has a loss of 2.3 times lower than the BP agent in steering,
1.5 times lower in braking and 2.5 times lower in accelerating.
All together, this leads to a 66% lower loss in decision-making
for the image agent in comparison to the BP agent. On the
training data the image agent performs the same as the BP
agent in terms of steering loss, and slightly better in braking
accelerating (Table 1V).



Fig. 6. Track C(above) and track D (below) for testing the agent. Arrow
indicating start and driving driection.
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Generalization Gap Image Agent 0.035
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Fig. 7. Generalization gap of the RMSE on train data track A and B of the
image agent and the boundary point agent when tested on track C.

0.032

1) Understeering of the BP Agent: On track C, the Bound-
ary Point (BP) agent understeers in the first and third turn
(visible in Figure 9), the issue likely stems from the BP
agent’s difficulty to predict and react appropriately to rapid
changes in curvature. The boundary points focus on specific
discrete distances, and these do not always provide sufficient
granularity for fine-tuned lateral adjustments. This becomes
a critical limitation in sections where maintaining a precise
trajectory is necessary, such as in tight turns. Since boundary
points represent the track in a simplified manner, the agent
may not fully understand the sharpness of an upcoming turn
until it is too late, leading to incorrect steering adjustments,
in this case understeering.

TABLE II
RMSE BP AGENT AND IMAGE AGENT ON TRACK C

Model RMSE actions
Steering | Braking | Accelerating
BP Agent 0.098 0.062 0.14
Image Agent 0.035 0.049 0.009

Generalization Gap Image Agent
0.021

Image Agent Train m Image Agent Test BP Agent Train m BP Agent Test

0.129

Generalization Gap BP Agent

0.044

0.032 v

Fig. 8. Generalization gap of the RMSE on train data track A and B of the
image agent and the boundary point agent when tested on track D.
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Fig. 9. Comparison of image agent and BP agent on a lap on track C. ‘acc’
refers to the throttle percentage, ‘brk’ refers to the brake pressure and ‘steer’
refers to the steering angle.

Furthermore, this issue is compounded by the nature of the
BP agent’s reliance on a smaller field of view compared to the
image agent, which uses a broader set of visual information.
The image agent has a wider ‘awareness’ of the track’s full
width and curvature, enabling more precise decision-making,
which is especially important in complex cornering situations.
This broader context allows the image agent to better predict
and execute steering adjustments, reducing the likelihood of
understeering.

2) Braking (Timing and Max Brake Pressure): The braking
behavior observed on track C and D shows distinct differences
between the BP and image agents, particularly in terms of
braking timing. The BP agent often brakes too late (§2% of the
cases late, 18% early), missing the optimal braking points by
0.06 seconds on average, whereas the IM agent, while better, is
more prone to braking too early (83% of the case early, 17%
late), 0.02 seconds on average. Braking at the correct time
is critical in motorsports, especially when the agent will be
used in practice in a closed-loop simulation (includes feedback
from the vehicle model and environment), because an error at
the braking point can cascade, leading to a domino effect. In
these cases the agent can enter corners at higher-than-expected



steer
brk acc
LS o ° °
L& o - o - o G =

0 0.2 0.4 0.6 0.8 1

Track Progress
—— Image Agent — BP Agent

Expert

Fig. 10. Comparison of image agent and BP agent on a lap on track D. ‘acc’
refers to the throttle percentage, ‘brk’ refers to the brake pressure and ‘steer’
refers to the steering angle.

TABLE III
RMSE BP AGENT AND IMAGE AGENT ON TRACK D

Model RMSE actions
Steering | Braking | Accelerating
BP agent 0.12 0.068 0.17
Image agent 0.043 0.060 0.018

speeds and struggle to stick to the plan and performance.

The BP agent’s late braking is likely tied to the same issue
of underrepresenting critical track features. Because the BP
agent depends heavily on state-based features and boundary
points, it may not fully recognize when to brake based on
track curvature and width. This results in a reactive approach
to braking, where the agent only responds once it is too late. In
contrast, the image agent, which has a broader forward view
and more detailed contextual information from the images, can
anticipate braking points better, though it tends to be cautious
and sometimes brakes earlier than necessary.

Both agents also exhibit occasional difficulties in reaching
maximum brake pressure. While this happens less frequently,
both models fail to reach the full braking capacity in around
15% of the braking zones. The primary reason for this could
be tied to an over-reliance on deceleration cues from the
states instead of focusing on the direct braking actions.

TABLE IV
RMSE BP AGENT AND IMAGE AGENT ON TRAIN TRACKS

Model RMSE actions
Steering | Braking | Accelerating
BP agent 0.032 0.026 0.041
Image agent 0.032 0.022 0.014

This subtle issue is more apparent in scenarios where braking
is not just about reducing speed but also about maintaining
control and maximizing tire grip, which requires hitting the
maximum brake pressure precisely.

3) Acceleration Timing and Max Throttle Pressure: The
timing of acceleration is another area where the BP agent
struggles. On both the track C and D, the BP agent frequently
accelerates prematurely, on average by 0.85 seconds in 92% of
acceleration zones. Premature throttle application in a closed-
loop setting can lead to significant performance drawbacks,
as it may cause the vehicle to become unstable when exiting
turns and can lead to overshooting the intended speed.

This behavior likely stems from the agent’s over-reliance on
state-based cues, such as velocity or slip ratio, which signal
that the vehicle is ready to accelerate, rather than using track
layout and trajectory to anticipate the optimal moment for
throttle application. The BP agent appears to misinterpret these
cues, causing it to initiate acceleration too early in anticipation
of the need to gain speed.

This premature acceleration means that the agent overshoots
the ideal throttle points, which can disrupt the vehicle’s bal-
ance, especially when transitioning from cornering to straight-
line driving. This can lead to reduced control and responsive-
ness, as the car may exceed the intended speed too quickly
and require correction. In a closed-loop context, this early
application of throttle can destabilize the vehicle’s trajectory
and increase the risk of understeering or overshooting turns,
ultimately impacting its ability to maintain competitive per-
formance on the track.

On the other hand, the image agent is able to more
accurately time its acceleration. The image agent’s broader
awareness of the track allows it to anticipate when to
get on the throttle, aligning its acceleration much more
closely with the optimal points, early 95% of the time
by only 0.01 seconds. The image agent also consistently
reaches and keeps maximum throttle pressure more effectively.

4) Error Analysis Using Gates: In order to evaluate the
agent’s performance across different driving scenarios, I define
three distinct types of ‘gates’, which correspond to different
driving actions:

o Cornering gate: a section of the track where the expert

driver is entering or in the middle of a cornering maneu-
Ver.

« Braking gate: a region where the expert driver applies
significant braking force to decelerate the vehicle. This is
detected when the brake pressure exceeds a minimal pre-
defined threshold, indicating an active braking maneuver.

o Drive gate: a section where the expert driver is acceler-
ating, marked by throttle input that surpasses a defined
threshold.

Figure 8 shows the Kernel Density Estimates (KDEs) of
action errors across three driving gates: Cornering, Brake,
and Drive. The KDEs visualize the distribution of errors
between predicted and expert actions, comparing the BP and



CORNERING

BRAKE

—— BP Agent

= = Mean Abs Error

—— Image Agent
= = Mean Abs Error

Fig. 11. Error KDEs of the BP agent and image agent of actions in specific
gates. In ‘cornering’ only the steering error is taken, in ‘brake’ the braking
error and in ‘drive’ the acceleration error.

image agent models. Each plot demonstrates how the errors
are distributed around zero (where zero indicates perfect
prediction) and provides a visual representation of how well
each agent performs in different driving scenarios.

Cornering gate: In this gate, the image agent demonstrates
a tighter distribution of errors around zero, with a lower
mean absolute error of 0.04, indicating better accuracy in
cornering compared to the BP model, which has a broader
spread and a higher mean absolute error of 0.08. The standard
deviation lines further emphasize the variability in predictions,
with the image agent showing less deviation than the BP agent.

Brake Gate: For braking, both agents show similar mean
absolute errors (0.07 for BP and 0.06 for image). However,
the KDE shows that the image agent’s errors are more tightly
concentrated around zero, while BP has a slightly broader
spread. The standard deviation reveals that the image model
is more consistent in predicting braking actions with a lower
variability compared to the BP model.

Drive Gate: The image model outperforms the BP model
again, with a significantly lower mean absolute error of
0.01 compared to 0.09 for BP. The KDE demonstrates that
image agent’s predictions are clustered much closer to zero,
meaning its driving acceleration is closely aligned with the
expert data. In contrast, the BP model exhibits a broader error
distribution, indicating less accurate predictions.

In summary, across all gates, the image agent consistently
exhibits lower errors and less variability, particularly in ac-
celeration (drive) and cornering. This demonstrates that image
has a better overall understanding of the track and is more
capable of replicating expert actions.

Gate Image Agent BP Agent
Mean Error | Std Error | Mean Error | Std Error
Cornering 0.035 0.032 0.084 0.088
Brake 0.055 0.046 0.074 0.061
Drive 0.011 0.016 0.091 0.094

C. Novelty Detection and True Generalization Gap

1) Novelty Detection Using Mahalanobis Distance: The
Mahalanobis distance (Equation 1) was calculated separately
for both the image-based and boundary point (BP) agents
to assess the portions of each test track that resemble the
training distribution, thereby identifying truly novel segments.
On track C (Figure 12), 59.5% of the track for the image agent
was classified as in-distribution, whereas only 13.8% was in-
distribution for the BP agent. On track D (Figure 13), the
in-distribution coverage was 24.5% for the image agent and a
mere 1.2% for the BP agent. These percentages indicate that
the image agent recognizes a larger portion of the test tracks as
similar to its training data, likely due to the richer contextual
information provided by image-based features, which aids in
generalizing across similar track sections. Both agents have
significantly less coverage of track D, these larger amount of
timesteps that are out-of-distribution provide clarification on
the higher mean error on track D in comparison to track C in
Table II and Table III for both agents.

By isolating Out-of-Distribution (OoD) samples—those
identified as novel by Mahalanobis distance—I can calculate
the true generalization gap. For the image agent, the gap
between in-distribution and OoD samples on the test track
is determined as the difference between the in-distribution
RMSE (0.021) and the OoD RMSE (0.079), yielding a gap of
0.058. In contrast, the BP agent shows a significantly larger
true generalization gap, with an in-distribution RMSE of
0.032 and an OoD RMSE of 0.26, resulting in a gap of 0.228.
This analysis provides a refined understanding of each agent’s
adaptability to genuinely unfamiliar track sections, offering
insight into their generalization capabilities on unseen tracks.
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Fig. 12. Novel samples (or timestamps) on track C for each agent. The left
image are the samples for the image agent and the right for the BP agent. The
regions that are classified as novel are Out-of-Distribution (OoD) determined
by the Mahalanobis Distance to the training data, whereas the other samples
are In-Distribution (ID).
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Fig. 13. Novel samples (or timestamps) on track D for each agent. The left
image are the samples for the image agent and the right for the BP agent. The
regions that are classified as novel are Out-of-Distribution (OoD) determined
by the Mahalanobis Distance to the training data, whereas the other samples
are In-Distribution (ID).
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Fig. 14. True generalization gap for RMSE for the image and BP agents
based on samples on the test track placed in (ID) and out of the training
distribution (OoD).

2) Focused Attention and Error Analysis: The novel sam-
ples detected for the image-based agent on track C provide a
natural segmentation of the track, as shown in Figure 15. These
segments, defined by regions where the agent encounters novel
inputs, allow for a more focused analysis to understand the
causes of the generalization gap. By examining the agent’s
perception in each segment, I can identify specific areas where
the model struggles to generalize. To gain further insights,
Grad-CAM analysis [Selvaraju et al., 2017] was applied to
these novel samples.

Using Grad-CAM, I identified an aggregated location of
the highest-impact pixels (focus point), representing where the
agent focuses its attention. By averaging the locations of the
focus points across samples, I derived an average distance
to the focus point for each segment, as well as a variance
measure indicating the spread of focus within the region. To
further investigate the role of these focus points, an additional
agent was trained with track C included in the training data.
Figure 16 shows the focus points and its spread of each agent.
The focus distances—measured as the track distance between
the car and the high-impact focus point—differed significantly
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Fig. 15. Five identified segments based on novel samples on track C for the
image agent.

between the agent trained with and without track C, revealing
variations in perception across segments. In contrast, on the
in-distribution parts of the track, the focus distances between
the trained and untrained agents only differ by a maximum
of 2 meters, indicating a much closer alignment in familiar
sections. Furthermore, it was shown earlier that the agent has
the highest average error in braking. The images in Figure 16
show timestep in the first turn of track C when the expert
is at max brake pressure. The agent is braking at 0.88 times
the expert brake pressure in the left image and exactly the
expert’s brake pressure on the right. The images show a
difference of 30 m in focus distance in this specific case. On
track C, the first turn is responsible for the majority of cases
the image agent was unable to reach max brake pressure on
this track. This trend is apparent in other regions where the
image agent doesn’t brake hard enough (in the case of these
samples, they are out of distribution), on average this distance
is approximately 28m. Overshooting the brake-pressure also
happens in this turn, where the difference in focus distance is
approximately 21m. On brake points where the agent manages
to reach the right brake-pressure without overshooting, the
difference in focus distance is approximately 7m. This large
difference indicates a lack of attention to features farther ahead
in higher braking error regions.

Table V summarizes the focus distances for each novel
segment from Figure 15. These results indicate that the
trained agent exhibits greater consistency in its focus across
segments, with generally lower variance in focus distance,
particularly in regions 1 and 3. The untrained agent, however,
shows a wider spread in focus distance, suggesting that
the inclusion of track C in training helps the agent develop
a more stable and accurate perception of key areas on the track.



TABLE V
AVERAGE FOCUS POINT DISTANCES (FPD) AND FOCUS POINT STANDARD
DEVIATION PER NOVEL SEGMENT FOR AGENT TRAINED ON TRACK C IN
ADDTION TO TRACK A AND B (IMAGE AGENT TRAINED) AND AN AGENT
ONLY TRAINED ON TRACK A AND B (IMAGE AGENT UNTRAINED)

Image Agent Untrained Image Agent Trained
Segment

Avg. FPD | Avg. FP Std | Avg. FPD | Avg. FP Std
1 34 10.6 44 5.4
2 68 15.6 86 6.8
3 55 8.3 72 3.7
4 44 9.2 69 4.9
5 39 9.8 65 4.4
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Fig. 16. Untrained (left) and trained (right) agents and their difference in
gradients for the same timestep in turn 1. In this heatmap, the color scale
represents the importance of different regions in the image: green areas
indicate moderate impact and blue areas indicate little to no impact regions,
while red areas highlight the pixels with the most influence on the agent’s
decision-making. The focus point is shown in red and the variance of gradients
in x and y as a red ellipse. The focus distance of the right image is 30m of
track distance ahead of the left image.

IV. DISCUSSION

The findings of this thesis demonstrate that incorporating
image-based features has a positive impact on the general-
izability of a race driver agent. Unlike previous approaches
that relied on numeric state representations, which, although
simple, often lack the detail necessary for precision on new or
unseen data, image features provide a richer source of spatial
awareness and contextual detail. This enhanced perception
allows the agent to capture a more nuanced understanding
of track conditions, leading to improved adaptability when
transitioning to new environments.

One limitation of purely numeric features is their tendency
to lead agents toward reactive behaviors, relying on state
representations that may only trigger responses after certain
thresholds are reached. This could limit the agent’s ability to
anticipate changes, resulting in delayed reactions rather than
proactive adjustments. In contrast, image-based features offer

a broader field of perception, allowing for more anticipatory
decision-making that can initiate behavior changes before the
agent encounters critical areas on the track.

This research suggests that shifting the focus from pure
performance optimization to prioritizing generalization can
have long-term benefits, especially in high-performance envi-
ronments like motorsport. Improved generalization capabilities
could contribute to more stable closed-loop performance,
reducing the likelihood of compounding errors that can emerge
when the agent encounters unfamiliar conditions. By minimiz-
ing the performance gap between in-distribution and out-of-
distribution scenarios, image-based agents are better equipped
to handle the variability and unpredictability of racing, thereby
taking a step closer to integrating into the iterative feedback
loops of real-world motorsport engineering. Additionally, if
a model successfully closes the generalization gap, this could
provide insights into areas where the driver may face difficulty
on a new track, effectively acting as a tool for identifying and
addressing challenging sections.

However, achieving a truly generalizable agent—one capa-
ble of maintaining comparable RMSE in both in-distribution
and out-of-distribution cases—remains a challenge. The cur-
rent image-based approach, while effective, still lacks certain
informational cues that could lead to even better decision-
making. The resolution of the image is currently set to 0.4
meters per pixel, which impacts the precision of both the car’s
location and the track borders, introducing a degree of impre-
cision. In a closed-loop scenario, this could lead to localization
errors, potentially resulting in collisions or off-track events. In-
creasing the resolution could enhance precision but would also
raise simulation time and computational cost. Further closed-
loop analysis will be necessary to evaluate the trade-offs
between resolution and stability in the agent’s behavior, aiming
to identify an optimal balance where precision is sufficient
without compromising real-time performance. Furthermore, a
time-based image feature as described in Appendix A could
provide the right amount of precision when needed (sharp,
slow corners), while reducing the resolution at fast paced
(straights) regions. The input-size could remain the same,
however the additional calculations could still slow down
simulation. These features could also potentially be very track
and lap specific and therefore prone to overfitting. Extensive
tuning and testing would be needed to validate this method.
Another clear limitation of the image agent is its inability to
reach the maximum brake pressure in 15% of the test cases.
Braking is essential and needs to be done at the right amount
in order to approach curves effectively. The focus area of the
agent is shows a larger spread and is focused closer towards
the agent in regions of error. This is also apparent specifically
in braking. Additional information highlighting regions of the
image the model can expect valuable information could be
beneficial.

This work establishes a baseline in image feature design
for race car driver agents, setting the foundation for further
exploration of more advanced perception methods. Future
research could examine alternative theories in image-based



perception, such as the role of peripheral vision and the impact
of velocity on visual focus and attention. Additionally, incor-
porating multi-agent dynamics and adapting to specific track
conditions could provide valuable insights, potentially leading
to agents that are not only generalizable but also capable of
sophisticated interactions in complex racing environments.

This work also highlights the effectiveness of incorporating
image-based features that, even with a simple design, capture
broad spatial and contextual information beneficial for fast-
paced simulation environments. This design simplicity allows
the model to focus on relevant cues without unnecessary
detail. By demonstrating the feasibility and advantages of
image-based approaches in motorsport, this effectively opens
a door to plenty of possibilities. In urban driver modeling,
image features have enabled advanced capabilities such as
scene understanding, semantic segmentation, and adaptive
decision-making in highly variable environments (summarized
in [Tampuu et al., 2020]). In regards to further improvement
in generalization, concepts such as attention mechanisms,
domain adaptation, and multi-scale feature extraction, long
utilized in urban settings to tackle the unpredictability of real-
world driving, can be adapted and refined for motorsport’s
challenges.

By accelerating and improving the efficiency of the innova-
tion process in motorsport through better generalization, this
research reduces the reliance on extensive data collection and
training for every new track. This enables faster development
cycles, more resource-efficient experimentation, and a stream-
lined path to advancing both competitive performance and the
underlying technologies that drive progress in the automotive
and mobility sectors.

V. CONCLUSION AND RECOMMENDATIONS

In this thesis, I aimed to study the effects on track general-
ization in motorsport driver modeling of image-based feature
sets with a behavioral cloning agent.

The use of images as perception features enabled the agent
to generalize more effectively to unseen tracks. In comparison
to boundary point-based perception, the image-based agent
demonstrated a 71% reduction in RMSE on in steering,
braking, and acceleration on out of distribution test data.
This result confirms that image-based features offer a more
robust and adaptable representation of the track’s spatial and
contextual information, crucial for effective generalization.

The remaining gap on both test tracks in generalization for
the image agent can be partially attributed to certain segments
of track C where the decisions made by the agent showed
worse performance, particularly in braking. Test track D was
overall more difficult to tackle by the agent due to the larger
number of samples in truly novel regions.

To further enhance the performance of autonomous agents in
racing, future work could explore:

o Improving forward-looking attention: the analysis of the
focus point suggests that agents trained on unfamiliar
tracks tend to focus too close to the vehicle, resulting in
poor anticipation of upcoming track features. Future work

could include refining the agent’s attention mechanisms
to extend its forward-looking capabilities, particularly in
unfamiliar or novel track regions. This could be achieved
by enhancing the feature extraction process to prioritize
long-range track visibility by pretraining the CNN on an
auxiliary task such as apex location prediction. Another
method could be to use a training method such as the
one described in [Akhauri et al., 2021], where saliency,
gradient and edge maps (including GradCAM) generated
by a pretrained model were used to train a second model
to ensure focus on the important regions of the image.

« Incorporating additional information into image features:
enhancing image inputs by adding information such as
brake points or the projected trajectory ahead could pro-
vide more context for the agent, enabling better decision-
making. Peripheral vision could also serve as inspiration,
where resolution and focus vary with velocity, allowing
the agent to adapt its perception based on its speed and
driving conditions.

o Considering future information on other agents: future
research could explore incorporating data on the presence
and actions of other agents on the track, enabling the
model to account for dynamic interactions. This would
be especially beneficial for multi-agent racing scenarios,
where anticipating the behavior of other vehicles becomes
critical.

o Expanding the track dataset: including a wider variety of
tracks with more complex features in the training dataset
could help test the robustness of the agent in even more
novel environments. This would provide a broader range
of scenarios and help the agent adapt to diverse track
layouts.

« Integrating closed-loop evaluations: closed-loop evalua-
tions could be used to assess how the agent handles long-
term decision-making and corrective actions in real-time
racing scenarios. This would give insights into how well
the model performs under conditions where its actions
influence future states of the environment, simulating real
racing conditions more accurately.

These enhancements would not only improve the agent’s
adaptability and anticipation of track features but also open
the door to more sophisticated behavior in complex, multi-
agent racing environments.
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APPENDIX

APPENDIX A: DECISION CRITERIA FOR INITIAL IMAGE
DESIGN

When determining the optimal image design for training
my model, several practical and problem-specific criteria had
to be addressed. The practical criteria were shaped by the
simulation environment and available computational resources.
The model needed to work efficiently with a single GPU and a
32-core CPU, ensuring a manageable training time, inference
speed, and computational complexity. In simulation, the goal
was to run as close to real-time (100Hz) as possible, requiring
fast processing for effective deployment.

From a problem-solving perspective, the images needed to
fulfill the following criteria:

1) Sufficient Surrounding Information: The model must
perceive enough of the track environment to make
informed decisions.

2) Clear Vehicle Localization: It was critical for the car’s
position to be distinctly represented in the images.

3) Focus on Upcoming Scenarios: The images must cap-
ture upcoming sections of the track central to decision-
making, such as turns or straights.

4) Track Segments Impacting Current Decisions: Any
segment that might influence the agent’s next actions
needed to be visible, such as the following turn or
straight section.

Initial Trials

Given these criteria, I initially experimented with a global
track map (as seen in Figure 17), using the Nature CNN
architecture. This architecture is commonly applied in rein-
forcement learning tasks, in continuation of my findings from
my thesis, my method would need to be implementable for
the Reinforcement Learning agent described in [Ju et al.,
2023] (other CNN architectures were additionally tested, this
information can be found in Appendix 3).



Fig. 17. Global track map image feature. Location of the car is circled in
red.

However, while the approach of a global map captured the
full track, it did not meet real-time performance goals. With a
full map resolution of 1 pixel per meter, each prediction took
around 0.1 seconds, which is ten times slower than real-time
simulation requirements (0.01s per prediction). Moreover, at
this resolution, the distinction between the car and the track
was insufficient.

Refinement: Focused Image Regions

Realizing the limitations of the full map, I shifted focus
to smaller regions of the track, where critical decision-making
occurs. Four key parameters were tested to strike a balance be-
tween simulation time and the necessary visibility for decision-
making:

o Forward Visibility: How far ahead the car can see

(measured in meters).

o Horizontal Visibility: The lateral view to the left and

right of the car (measured in meters).

« Backward Visibility: The view behind the car, to under-

stand rear dynamics (measured in meters).

o Resolution: The image’s spatial granularity, in pixels per

meter.

Through multiple tests, I determined that a reasonable sim-
ulation time of 0.06 seconds per prediction could be achieved
with the following parameter values:

o Forward Visibility: 200 meters

o Horizontal Visibility: 120 meters

o Backward Visibility: 50 meters

¢ Resolution: 0.1 meters per pixel (full resolution)

Training and Validation Tests

Once these values were determined, I conducted training
and validation tests using a Nature CNN on track data. The
train-validation split was set to 85% and 15%, respectively,
across 50 laps of data (train and validation segment shown
in Figure 18). The primary focus was to determine whether
the chosen parameters led to a generalizable model or caused
overfitting to the training data.

The resulting figures (Figure 19 and Figure 20) illustrate
the relationship for both forward and horizontal visibility
to the model’s training and validation losses at the best
epoch. A clear cut-off point for both forward and horizontal

Fig. 18. Locations of training and validation split of samples on track B for
initial generalization tests.

visibility was observed. Beyond certain visibility thresholds,
the additional information led to diminishing returns and a
larger gap between training loss and validation loss. This gap
indicates that adding too much visibility may cause the model
to overfit to the training data, reducing its ability to generalize
to unseen track segments. For backward visibility a similar
pattern emerged with a cut-off at 20m. The resolution analysis
left with a choice of a low loss for training and validation
(0.00604 training, 0.0084 in validation) at a resolution of 0.4m
per pixel or a slightly higher resolution (0.3m per pixel) with
a lower loss (0.00601, 0.0083) at the cost of an increase in
inference time of 0.008s. The final decision was taken in
favour of faster simulation and therefore 0.4m per pixel.

Final Design Choices

Based on these tests, I refined the final design to the
following parameters:

o Forward Visibility: 125 meters directly in front of the
agent.

« Horizontal Visibility: 90 meters total (45 meters to each
side of the agent).

o Backward Visibility: 20m behind the agent

o Resolution: 0.4m per pixel

The final input size into the model is therefore: 362 x 225.
A single channel was chosen where the values are normalized
to: car: 1, track: 0.5, off-track: 0.

These values balanced the need for accurate decision-
making with the constraints of simulation time and compu-
tational power. The cut-off points illustrated in Figure 19
and Figure 20 demonstrate that further increasing forward
or horizontal visibility would have resulted in diminishing
returns, leading to a larger gap between training and validation
loss. Therefore, these values were used as a compromise to
avoid overfitting while maintaining sufficient visibility for the
agent to make informed decisions.

APPENDIX B: EXPLORATION OF OTHER IMAGE-BASED
FEATURE VARIANTS

This section provides an overview of the different image-
based feature variants considered during the development of
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Fig. 19. Train loss and validation loss for agents with different forward
visibility. Cut-off for design parameter decision can be seen where image
turns to grey-scale, validation loss diverges from 125m.
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Fig. 20. Train loss and validation loss for agents with different horizontal
visibility. Cut-off for design parameter decision can be seen where image
turns to grey-scale on the right, validation loss diverges from 45m.

the behavioral cloning model for race car driver behavior. The
focus is on the trade-offs between local and global information,
time complexity, and smoothness penalties applied to the
images.

Key Concepts: Local, Global Information, Time & Smoothness

Local information refers to the immediate surroundings
of the car, primarily critical for close-up maneuvers such as
cornering, and capturing the car’s behavior with respect to
nearby track boundaries.

Global information refers to the lookahead distance or
forward visibility that gives the agent an understanding of
the upcoming sections of the track, crucial for high-speed
decision-making and long-term planning.

Time refers to the total computational cost of training and
inference, which is critical for offline simulations and deploy-
ment. The creation time of each image feature, combined with
the training time, provides a measure of the computational load
imposed by each feature variant.

Smoothness measures the consistency of the image tran-
sitions from one frame to the next, as assessed by optic
flow. A smooth image transition reflects natural, less erratic
visual inputs, which can help the model generalize better. A
smoothness penalty is applied to variants where distortions
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occur to keep specific elements (like track borders) in focus,
which might otherwise disrupt training.

The following feature variants were explored, each tack-
ling the balance between local and global information, time
complexity, and smoothness differently. The main performance
conclusions are based on time complexity, local and global
information, and the effects of smoothness.

IM_ALA (Agent-Lookahead)

In this variant, the car always maintains a fixed lookahead
distance ahead of it, corresponding to its braking distance
at maximum speed. This design ensures that the agent has
sufficient forward visibility to plan maneuvers but might miss
portions of upcoming corners due to the fixed width of the
image. The resolution is consistent, and the car’s position is
fixed in the frame.

Strengths: Captures local information reliably without los-
ing details. It doesn’t suffer from significant image distortions.

Weaknesses: Some critical information about corners might
be missed because the image is always aligned with the
heading angle of the car.

Time: IM_ALA is the least computationally expensive, as
both the creation and training times are minimal.

Smoothness: High, as the image is not dynamically ad-
justed.

IM_TLA (Track-Lookahead)

Two variants of this method are used: TLA_time and
TLA _distance.

TLA_time (Time-Based Lookahead): This variant captures
the car’s future and past positions, measured in time (seconds)
ahead and behind. The lookahead distance changes based
on the car’s velocity, mimicking how humans focus further
ahead at higher speeds. This results in the resolution adjusting
based on speed: at lower velocities, the resolution improves,
providing more local detail, while at higher velocities, the
focus shifts further down the track.

Strengths: Dynamic resolution based on time offers an
advantage for low-speed maneuvers, providing clearer local
detail. It balances local and global information well, particu-
larly in time-critical decision-making.

Weaknesses: Some information is cropped off because the
method doesn’t track the borders of the track, focusing instead
on maintaining the future point within the frame.

Time: TLA_time has moderate computational cost, more
than IM_ALA but still less than the other variants due to the
temporal nature of its adjustments.

Smoothness: High, due to its relation to velocity, allowing
for more natural transitions at different speeds.

TLA_distance (Distance-Based Lookahead)

In this variant, the lookahead is based on a fixed track
distance, not time. The advantage here is that it adjusts slightly
based on the curvature of the track, meaning it provides
more visibility around sharp turns than IM_ALA. However,
like TLA_time, some local information may be cropped off



because the method doesn’t prioritize tracking track borders
but rather keeps the desired future point within the image.

Strengths: Ties the lookahead more closely to the curvature
of the track, making it more effective in anticipating sharp
turns.

Weaknesses: The dynamic adjustment may lead to cropping
similar to TLA_time. Cropped sections can lead to missing
important track boundaries in certain scenarios.

Time: Similar to TLA_time, but slightly more computation-
ally expensive because it involves additional processing linked
to track curvature.

Smoothness: Moderate, linked to curvature but still more
stable than IM_FZoom.

IM_FZoom (Focused Zoom)

This variant is designed to ensure that all track borders
between the car and a predefined focus point (e.g., 125 meters
ahead) are always visible in the image. The car is positioned
towards the bottom of the image, and the focus point is at the
top, ensuring complete coverage of the track between them.
The primary trade-off in this method is the frequent image
distortions necessary to maintain this level of coverage, which
negatively impacts smoothness.

Strengths: Excellent global information capture since it
tracks the entire segment between the car and the focus point.
Ideal for scenarios where it is crucial to have all track borders
visible.

Weaknesses: High computational cost due to frequent dis-
tortions. The smoothness is significantly affected by these
adjustments.

Time: IM_FZoom is the most computationally expensive,
due to both the creation time (as the entire track between the
car and the focus point must be included) and the distortions
that lead to increased processing time.

Smoothness: Poor, as frequent adjustments and distortions
are necessary to maintain the focus on track borders.

Analysis Methodology

The plots presented in Figure 21 and Figure 22 aim to
compare the performance of different feature variants based on
time, local information, global information, and smoothness.
The test was done on track B and all parameter tuning in
this analysis was done specifically for this track. The input
into the network would ideally be the same in order to avoid
further architecture hyperparameter tuning per variant. The
input size for this analysis chosen was based on the results of
(APPENDIX A): (362, 225). The following parameters were
used for each feature variant in the analysis:

Parameters for each variant:

o Forward visibility:

— IM_ALA (Agent Lookahead): 125m directly in front
of the agent (see Appendix A for further reasoning).

— TLA_distance (Track Lookahead Distance): 125m of
track distance measured along the expert trajectory.

— IM_FZoom (Focused Zoom): Focus point at 125m of
track distance ahead (along expert trajectory).

— TLA_time (Track Lookahead Time): Based on time
rather than distance. The forward visibility is deter-
mined by the average braking duration (2.9 seconds)
plus a small margin (1.5 seconds for handling slow
turns (determined after tuning)), which totals 4.4
seconds. The distance from the agent to the location
of the expert 4.4 seconds ahead is taken per image.

« Horizontal visibility:

— IM_ALA (Agent Lookahead): 45m on either side (see
Appendix A for further reasoning).

— TLA_distance (Track Lookahead Distance): is depen-
dant on the scenario. 45m on straights. Affected by
the curvature of the track and what distance is shown
in the horizontal direction in that scenario.

— IM_FZoom (Focused Zoom): Scenario dependent.
Zoom keeps all of the track in the frame so this
depends on the track curvature.

— TLA_time (Track Lookahead Time): Similar to
TLA_distance and IM_FZoom. The width varies
with the time taken by the expert to pass a certain
segment.

« Backward visibility:

— IM_ALA (Agent Lookahead): 20m behind the agent
(see Appendix A for further reasoning).

— TLA_distance (Track Lookahead Distance): 20m be-
hind the agent in distance on the expert trajectory.

— IM_FZoom (Focused Zoom): 20m behind the agent
in distance on the expert trajectory.

— TLA_time (Track Lookahead Time): 0.5 seconds be-
hind the agent. Keeps the 20m on straights with a
small margin of 0.2 seconds (tuned during designing
the images).

o Resolution:

— IM_ALA (Agent Lookahead): 0.4 meters per pixel
(see Appendix A for further reasoning)

— TLA_distance (Track Lookahead Distance): varies
between 0.4 meters per pixel at top speed (straights)
and max resolution (0.1 m per pixels) at complex
curves.

— IM_FZoom (Focused Zoom):. varies between 0.4
meters per pixel at top speed (straights) and max
resolution (0.1 m per pixels) at complex curves.

— TLA_time (Track Lookahead Time): varies between
0.4 meters per pixel at top speed (straights) and max
resolution (0.1 m per pixels) at slow segments.

Time calculation: Time in the plots represents a combina-
tion of inference time (the time it takes to process each sample
during simulation) and training time (time per epoch during
model training). This combination provides an overall measure
of computational efficiency for each feature variant.

Local information calculation: Local information is calcu-
lated by measuring how much of the immediate track around
the agent is captured within a 20m radius. For each variant,
the number of track borders (points where the track meets
its boundary) falling inside this radius during a lap was



counted. Variants with more local detail will show higher local
information values.

Global information calculation: Global information rep-
resents how much of the track ahead is captured in the image.
For each feature variant, the total number of track borders
visible in the image was counted. Variants with wider coverage
of the track ahead (including borders and curves) yield higher
global information values.

Smoothness adjustment:

Both local and global information are adjusted based on the
smoothness of the image transitions. This was measured using
the Farneback optic flow algorithm, which computes pixel
displacements between consecutive images by approximating
local neighborhoods with quadratic polynomials. The optic
flow field f(z,y) = (u(zx,y),v(x,y)) represents the flow
vector at each pixel (z,y), where u(z,y) and v(z,y) denote
the horizontal and vertical displacements, respectively. The
magnitude of the flow is calculated as:

] = Vu(z,y)? + v(z,y)?

Larger magnitudes indicate more abrupt changes between
consecutive frames, meaning less smooth transitions. To pe-
nalize this, the average optic flow magnitude |f| was computed
for each method, and the penalty was applied based on the
formula:

f] )

max flow

Variants with larger average optic flow magnitudes, such
as IM_FZoom, were penalized more, reducing their overall
local and global information scores. This penalty reflects the
fact that smoother transitions are preferred in image-based
decision-making, where abrupt visual changes may mislead
the model.

Adjusted information = Information x (1 —

Conclusion: trade-offs in time, local & global information

The main trade-offs between these feature variants, as
illustrated in the plots, revolve around the balance between
local information, global information, time complexity, and
smoothness. IM_ALA stands out as a well-rounded variant
that balances local detail with minimal cropping but faces
challenges in global visibility, particularly around corners.

The TLA variants (TLA_time and TLA_distance) dynami-
cally adjust the lookahead based on speed and track curvature.
While these methods provide flexibility, they come with the
drawback of occasionally cropping parts of the track that lie
outside their scope (the cropping is dependent on keeping the
track distance in the image, not every trackborder specifically).
Despite this, their behavior closely mimics human driving,
where the focus shifts depending on speed and maneuvers,
making them strong contenders for tasks that require general-
ization across various tracks.

IM_FZoom does well in providing comprehensive global
information, as it ensures that all track borders between the car
and the focus point are included. However, this comes at the
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Fig. 21. 3D plot showing the parameters taken into account for the trade-off
to determine the image feature design: global information, local information
and total time.

cost of smoothness due to frequent image distortions and high
computational complexity, making it less feasible for real-time
applications.

From a time complexity perspective, IM_ALA is the least
computationally expensive, making it optimal for fast offline
simulations and real-time applications. In contrast, IM_FZoom
incurs the highest computational cost due to its extensive cov-
erage of track borders, making it more suitable for scenarios
where detailed global information is critical and computational
resources are less constrained.

Finally, the velocity effect plays a crucial role in the TLA
variants. TLA_time adjusts its resolution based on speed,
providing more local detail at slower speeds. Meanwhile,
TLA_distance uses track curvature to adjust the lookahead,
maintaining focus on relevant track sections. Both methods of-
fer dynamic behavior, but at the cost of occasionally cropping
information, as they do not track borders as comprehensively
as IM_FZoom.

The appendix plots illustrate these trade-offs in detail, focus-
ing on the interplay between time, local, and global informa-
tion, as well as the smoothness penalty applied to each variant.
In conclusion, IM_ALA provides the best balance between all
factors for the purposes of this thesis, offering sufficient local
and global coverage with minimal time complexity, making it
the preferred method for real-time simulation in racecar driver
modeling.

APPENDIX C: ADDITIONAL RESULTS

This section provides an overview of the additional results
on the training and testing data.

C.1: Performance Results BP agent & image agent on training
data

The training performance of both feature sets, BP agent and
image agent, was measured using a combination of learning
curves and open-loop evaluation across multiple laps.
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1) Learning Curves: The learning curves for both BP agent
and image agent show the reduction in loss across training
epochs. Figure 23 demonstrates that both models successfully
converge, with image agent reaching a slightly lower loss at
the end of training, indicating indicating better fitting to the
training data compared to BP agent. Specifically, the final loss
for image agent is 0.0060, whereas BP agent ends with a loss
of 0.0096. While both agents show a similar trend in learning,
the rate at which BP agent decreases early on indicates that
it may adapt faster initially, but ultimately fails to achieve the
lower loss of image agent.

This behavior could be attributed to the different architec-
tures and regularization techniques employed in the models.
For instance, image agent, which incorporates more advanced
feature processing (e.g., higher-order feature extraction), might
be better at capturing finer distinctions between track states,
leading to a more refined convergence.

2) Open-Loop Evaluation: For open-loop evaluation, both
models were tested on a single lap on track B, as shown in
Figure 24. The predicted actions for steering, braking, and
acceleration are overlaid against the expert data to assess
how well the models handle real-time decision-making without
feedback correction (i.e., open-loop).

The image agent model shows a closer alignment with
expert actions in the critical regions of the track, particularly
during braking and mid-corner transitions, where accurate
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Fig. 24. Actions of the image agent, BP agent and expert in an open-loop
simulation for a lap on track B

predictions are essential for maintaining stability and optimal
driving trajectories. In contrast, BP agent exhibits greater
deviations, particularly in the mid-corner sections, where its
braking and steering predictions lag behind or overshoot
the expert data, leading to potential understeer or oversteer
scenarios.

However, both models demonstrate some level of difficulty
with acceleration transitions, particularly in sharp turns and
exit points. While image agent is generally more consistent.

3) RMSE Analysis Across Gates: Table VI provides a
detailed breakdown of the RMSE for steering, braking, and
acceleration across various ‘gates’ or track segments on track
B, which represent specific driving scenarios like cornering,
mid-corner, and entry/exit transitions.

o Steering: Both the BP agent and the image agent show
similar performance across most gates, but the image
agent consistently performs slightly better. For example,
in the cornering gate, image agent achieves an RMSE
of 0.0320, compared to BP agent’s 0.0412. This sug-
gests that image agent has better control and prediction
accuracy during sharp turns, likely due to its enhanced
handling of complex track geometries.

o Braking: There is a more substantial difference in brak-
ing performance. In gates like ‘brake’ and ‘entry’ , the
image agent outperforms the BP agent significantly, with
RMSE values of 0.0327 and 0.0313, respectively, versus
0.0308 and 0.0316 for the BP agent. This indicates
that the image agent is better at predicting when and
how much braking force to apply, which is critical in
minimizing braking distances and improving corner entry
performance.

e Acceleration: For acceleration, image agent generally
outperforms the BP agent in most gates, showing lower
RMSE values in crucial segments such as ‘entry’ and
‘cornering’ . For example, in the ‘entry’ gate, image
agent has an RMSE of 0.0095 compared to the BP
agent’s 0.0244. Similarly, in the ‘cornering’ gate, image
agent achieves an RMSE of 0.0315, while the BP agent



TABLE VI
EVALUATION TRACK B FOR 12 LAPS IN SPECIFIED GATES

TABLE VII
EVALUATION TRACK C FOR 12 LAPS ON SPECIFIED GATES

Model Gate RMSE Model Gate RMSE

Steering | Braking | Accelerating Steering | Braking | Accelerating

BP agent Full lap 0.0321 0.0263 0.0409 BP agent Full lap 0.098 0.062 0.129

Brake 0.0331 0.0308 0.0363 Brake 0.080 0.104 0.156

Drive 0.0321 0.0082 0.0441 Drive 0.093 0.019 0.115

Entry 0.0341 0.0316 0.0244 Entry 0.065 0.115 0.131

Midcorner 0.0412 0.0148 0.0550 Midcorner | 0.204 0.050 0.199

Exit 0.0451 0.0091 0.0569 Exit 0.109 0.023 0.136

Cornering 0.0412 0.0218 0.0464 Cornering | 0.138 0.095 0.162

Image agent Full lap 0.0316 0.0223 0.0337 Image agent | Full lap 0.037 0.046 0.042

Brake 0.0321 0.0327 0.0234 Brake 0.042 0.079 0.041

Drive 0.0298 0.0083 0.0398 Drive 0.033 0.009 0.047

Entry 0.0331 0.0313 0.0095 Entry 0.041 0.084 0.018

Midcorner 0.0409 0.0138 0.0388 Midcorner | 0.063 0.024 0.062

Exit 0.0385 0.0076 0.0531 Exit 0.050 0.007 0.050

Cornering 0.0320 0.0167 0.0315 Cornering | 0.051 0.067 0.041

lags behind with 0.0464. This indicates that the image
agent provides more consistent and accurate predictions
during acceleration transitions, particularly in challenging
sections of the track.

In conclusion, the image agent generally outperforms the
BP agent, particularly in critical driving actions like steering,
braking, and acceleration, which are essential for maintaining
smooth and safe driving trajectories. The results suggest that
the design choices in image agent allow it to handle complex
driving scenarios better, especially when it comes to accurately
predicting actions during cornering and braking. The BP
agent, while competitive in some acceleration transitions, is
ultimately surpassed by image agent in overall performance.

C.2: Additional Performance Results BP agent & Image agent
on testing data

In Table VII, I provide an additional performance compari-
son between the BP agent (consisting of Boundary Points, ve-
hicle states, and path planning features) and image agent (con-
sisting of images, vehicle states, and path planning features),
tested over 12 laps on track C. The Root Mean Square Error
(RMSE) was measured for steering, braking, and acceleration
actions across various driving gates, including the full lap,
‘brake’ , ‘drive’, ‘entry’ , ‘midcorner’, ‘exit’, and ‘cornering’ .
The results demonstrate that image agent consistently achieves
lower RMSE across all gates, particularly excelling in ‘brake’
and ‘drive’, indicating superior generalization and decision-
making capabilities compared to the BP agent

APPENDIX D: ARCHITECTURAL COMPARISONS OF CNN
MODELS
Architectural Options Explored

In the initial stages of model selection, three CNN architec-
tures were evaluated for their ability to generalize to unseen

tracks: AlexNet, Nature CNN, and Nature CNN with an
Additional Layer.

o AlexNet:

— Designed for image classification tasks, AlexNet
features deep convolutional layers capable of extract-
ing complex features. However, its computational
demands and propensity for overfitting made it less
suitable for this task.

— Strengths: Robust feature extraction for high-
dimensional inputs.

— Weaknesses: Inefficient for reinforcement learning
(needs to be future-proof), overfits easily, and has
high computational costs.

e Nature CNN:

— A lightweight architecture commonly used in rein-
forcement learning tasks, Nature CNN focuses on
simplicity and efficiency, making it well-suited for
generalization tasks in motorsport simulations.

— Strengths: Balances computational efficiency with
generalization performance.

— Weaknesses: Limited capacity for highly complex
image features compared to deeper architectures.

o Nature CNN with an additional layer:

— By adding an extra convolutional or dense layer,
this variant enhances the capacity to model nuanced
spatial and contextual information. However, the
added complexity increases the risk of overfitting.

— Strengths: Improved feature extraction and capacity
for complex tasks.

— Weaknesses: Higher computational demands and
greater risk of overfitting, particularly with limited
training data.



TABLE VIII
TRAINING LOSS, VALIDATION LOSS, AND GENERALIZATION GAP FOR
EACH ARCHITECTURE (LOSS IN MSE)

Architecture Training Loss | Validation Loss
AlexNet 0.00062 0.0105
Nature CNN 0.00082 0.0034
Nature CNN (+ 1) 0.00078 0.0093

Results and Selection

As can be seen in Table VIII, testing revealed that AlexNet,
while achieving the lowest training loss (0.0062), indicated
significant overfitting to the training data. Its computational
inefficiency and lack of suitability for reinforcement learning
further reduced its viability.

Nature CNN, by contrast, demonstrated the best overall
balance between generalization and efficiency, with a training
loss of 0.0082 and a validation loss of 0.0034. This resulted in
the smallest generalization gap, reflecting robust performance
on unseen tracks. Its lightweight architecture and scalability
for reinforcement learning made it the optimal choice.

Nature CNN with an Additional Layer showed slightly
improved training loss (0.0078), but the increased complexity
introduced a higher validation loss (0.0093), making it less
efficient for generalization tasks.

Conclusion

Based on these results, the Nature CNN was selected as
the final architecture for its ability to generalize effectively
while maintaining computational efficiency. This architecture
balances simplicity with robust performance, making it well-
suited for real-time simulations and reinforcement learning
extensions in motorsport driver modeling.

Effects of MaxPooling and Batch Normalization

To evaluate the impact of architectural enhancements, vari-
ations of the Nature CNN were tested with and without
MaxPooling and Batch Normalization (BatchNorm). These
techniques are commonly used to improve feature extraction,
stabilization during training, and generalization performance.

a) MaxPooling: MaxPooling layers reduce the spatial
dimensions of feature maps by selecting the maximum value
within a region. This operation emphasizes dominant features,
reduces computational load, and introduces invariance to small
translations in the input. However, excessive pooling can
lead to the loss of fine-grained details, which are critical in
motorsport simulations where precise spatial information is
required.

b) Batch Normalization: BatchNorm normalizes the in-
puts to each layer by adjusting the mean and variance, reducing
internal covariate shift. This improves training stability, allows
for higher learning rates, and serves as an implicit regularizer,
mitigating overfitting. By normalizing intermediate feature dis-
tributions, BatchNorm accelerates convergence and enhances
generalization.

TABLE IX
VALIDATION LOSS FOR NATURE CNN VARIANTS WITH MAXPOOLING
AND BATCHNORM (LOSS IN MSE)

Variant MaxPooling | BatchNorm | Val Loss
Baseline None None 0.0034
MaxPooling Only Yes None 0.003
BatchNorm Only None Yes 0.0021
MaxPooling + BatchNorm Yes Yes 0.0019

Results and Selection
Testing revealed the following trends (as seen in Table IX):

o MaxPooling Only: Adding MaxPooling improved vali-
dation loss from 0.0034 (baseline) to 0.003 by emphasiz-
ing dominant features and reducing computational load.
However, the lack of stabilization led to less efficient
generalization compared to BatchNorm.

« BatchNorm Only: BatchNorm significantly reduced val-
idation loss to 0.0021 by normalizing intermediate acti-
vations, improving training stability and generalization.

o MaxPooling + BatchNorm: Combining MaxPooling and
BatchNorm achieved the best validation loss (0.0019).
This configuration benefited from efficient feature ex-
traction and training stabilization, minimizing overfitting
while retaining fine-grained spatial details.

Conclusion

The combination of MaxPooling and BatchNorm was
selected as the final configuration for the Nature CNN. This
setup ensures robust feature extraction and training stabiliza-
tion, achieving optimal generalization for motorsport simula-
tions while maintaining computational efficiency.



