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Modeling of planar germaniumhole qubits
in electric and magnetic fields
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Chien-AnWang 1, H. Ekmel Ercan 2, Mark F. Gyure2,3, Giordano Scappucci 1, Menno Veldhorst 1 &
Maximilian Rimbach-Russ 1

Hole-based spin qubits in strained planar germanium quantum wells have received considerable
attention due to their favorable properties and remarkable experimental progress. The sizeable
spin-orbit interaction in this structure allows for efficient qubit operations with electric fields.
However, it also couples the qubit to electrical noise. In this work, we perform simulations of a
heterostructure hosting these hole spin qubits. We solve the effectivemass equations for a realistic
heterostructure, provide a set of analytical basis wavefunctions, and compute the effective g-factor
of the heavy-hole ground state. Our investigations reveal a strong impact of highly excited light-hole
states located outside the quantum well on the g-factor. We find that sweet spots, points of
operations that are least susceptible to charge noise, for out-of-planemagnetic fields are shifted to
impractically large electric fields. However, for magnetic fields close to in-plane alignment, partial
sweet spots at low electric fields are recovered. Furthermore, sweet spots with respect to multiple
fluctuating charge traps can be found under certain circumstances for different magnetic field
alignments. This work will be helpful in understanding and improving the coherence of germanium
hole spin qubits.

Hole spins in germanium quantum dots constitute a compelling platform
for quantum computation1,2. Holes in germanium benefit from the strong
spin-orbit interaction (SOI), absence of valley degeneracy and large heavy-
hole and light-hole splitting3, small in-plane effective mass4, and the for-
mation of ohmic contacts with metals4–6. These properties allowed rapid
development of planar germanium spin qubits from quantum dots4, single-
and two-qubitmanipulation7, singlet-triplet qubits8, to a 2×2qubit array9 as
well as high-fidelity operations10, and rudimentary error correction
circuits11.

The challenge for hole spin qubits is to overcome decoherence
due to charge noise coupling through the spin-orbit interaction12–14.
Current dephasing times are T?

2 = 100 ns − 10 μs, which could be
extended to T2 = 1000 μs using dynamical decoupling10,15. The pos-
sibility of extended coherence times in germanium hole qubits is
studied in several theoretical works for nanowire16–19 and planar
systems20–23. The coherence time can be greatly extended by operating
at optimal operation points, so-called sweet spots, where the qubit
resonance frequency has a vanishing derivative with respect to elec-
tric fields. Interestingly, it is predicted that at such sweet spots, the
electric dipole spin resonance (EDSR) driving is also the most

efficient24. In this work, we investigate the existence of sweet spots in
detail. We model the system based on recent experiments, con-
sidering a realistic potential profile resulting from a SiGe/Ge/SiGe
heterostructure25. We show that many basis wavefunctions are
required for predicting the susceptibility of the g-factor to electric
fields26–28, shifting predictions for sweet spots in out-of-plane mag-
netic fields to experimentally inaccessible electric field values. How-
ever, we also show that sweet spots with respect to electric fields in
arbitrary directions can exist, when the magnetic field is applied with
angle θ≲ arctanðgk=g?Þ=3 ¼ 0:2°, where g∥ (g⊥) is the bare in-plane
(out-of-plane) g-factor of the heavy-hole state.

Results
In this work, we describe a single hole confined vertically in a strained SiO2/
Si0.2Ge0.8/Ge/Si0.2Ge0.8 planar heterostructure using an electrostatic
potential through metallic gates. Figure 1 shows a sketch of the modeled
device. The full Hamiltonian describing the hole reads

H ¼ Hkin þ V?ðzÞ þ Vkðx; yÞ þ HZeeman; ð1Þ
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where Hkin is the kinetic energy operator, V⊥(z) and V∥(x, y) describe the
vertical and planar confinement, and HZeeman describes the interaction of
the spin and the magnetic field.

Effective mass theory for strained germanium
Since our quantum dot structures are large compared to the inter-atom
distances and operated at low densities ρ ~ 1010 cm−2 (single-hole regime),
the wavefunctions are localized close to the Γ point at k = 0. In this regime
and within the effective mass approximation, the kinetic energy is well-
described by the 6 × 6 Luttinger-Kohn Hamiltonian. Additionally, in ger-
manium, the split-off band is far separated in energy by ΔSO = 0.29 eV and
thus negligible for the low-energy dynamics. This allows us to reduce our
investigation to the standard 4 × 4 Luttinger-Kohn Hamiltonian. On the
basis of total angular momentum eigenstates ∣j;mji ¼
f∣ 32 ; 32

�
; ∣ 32 ;� 3

2

�
; ∣ 32 ;

1
2

�
; ∣ 32 ;� 1

2

�g the Luttinger-Kohn Hamiltonian reads

Hkin ¼ HLK ¼

P þ Q 0 S R

0 P þ Q Ry �Sy

Sy R P � Q 0

Ry �S 0 P � Q

0
BBB@

1
CCCA: ð2Þ

The upper-left block P+Q describes the kinetic energy of the spin-32 heavy-
hole state, the lower-right block P − Q describes the kinetic energy of the
spin-12 light-hole state, S describes the heavy-light-hole coupling with same
spin, and R describes the heavy-light-hole coupling with opposite spin

direction. The operators are described by

P ¼ _2

2m0
γ1ðk2x þ k2y þ k2zÞ; ð3Þ

Q ¼ _2

2m0
γ2ðk2x þ k2y � 2k2z Þ; ð4Þ

R ¼
ffiffiffi
3

p _2

2m0
�γ2ðk2x � k2yÞ þ iγ3kxky þ iγ3kykx
h i

; ð5Þ

S ¼ �
ffiffiffi
3

p _2

2m0
γ3 ðkx � ikyÞkz þ kzðkx � ikyÞ
h i

; ð6Þ

where ℏkξ =−iℏ∂ξ is the momentum operator in ξ = x, y, z direction, ℏ the
reduced Planck constant, m0 the bare electron mass, and γ1 = 13.38, γ2 =
4.24, and γ3 = 5.69 the Luttinger parameters for Ge3. Hamiltonian (2) also
defines the vertical effective mass mHðLÞ

? ¼ m0=ðγ1∓2γ2Þ and in-plane
effective massmHðLÞ

k ¼ m0=ðγ1 ± γ2Þ. The spin quantization is given by the
growthdirection [001]corresponding toout-of-plane z-direction.The effect
of an externalmagneticfield is includedby substituting themomentumwith
the generalized momentum p → p + eA, where A ¼
ð2zBy � yBz;�2zBx þ xBz; 0ÞT=2 is the electromagnetic vector potential
in the Landau gauge29 and e is the electron charge.

The effect of strain in theGewell in between the SiGe layers is described
by the Bir-Pikus Hamiltonian (see “Methods”). We assume uniaxial strain
(ϵxy = ϵxz = ϵyz = 0), such that the strain operators become a constant in the
different materials. This allows us to describe the effect of strain and an
applied electric field in the z-direction using the following potential

V?ðzÞ ¼ �eFz z �
0; 0<z<di
Ul; �dw<z<0

0; z<� dw

8><
>: : ð7Þ

Here, dw = 18 nm is the thickness of the strained-Ge quantum well, di =
60 nm is the thickness of the Si0.2Ge0.8 top layer, Fz is the out-of-plane
electric field necessary for hole accumulation, andUl is the band offset of the
heavy-hole (l = HH) and light-hole (l = LH) for the strained Ge layer (see
“Methods”). The SiGe/Ge/SiGe heterostructure is capped by a SiO2 top
interface, modeled as an infinite potential with appropriate boundary
conditions Ψ(z = di) = 0. An illustration is shown in Fig. 2A. The in-plane

Si0.2Ge0.8

Si0.2Ge0.8

Ge dw

60 nm

0 nm
di

θ

z

xy

B

Fz

Metal gate

-18 nm

dox

Fig. 1 | Schematics of a gate-defined quantum dot in a planar germanium het-
erostructure. The quantum dot is confined in the z-direction by the SiGe-Ge-SiGe
layers, and theGe quantumwell haswidth dw=18 nm.The insulating oxide layer has
width dox = 5 nm. The in-plane confinement is created by the electrostatic gates,
which are located at the top of the heterostructure. Our model assumes a uniform
electric field in the z-direction and a parabolic potential in the xy-plane. The
potential profile along the dashed line is plotted in Fig. 2A. The illustration of the
accumulated hole wave function is colored in green.

Fig. 2 | Wavefunctions and energies of the hole sub-bands. A The potential of the
heterostructure along the growth direction and the nth sub-band of the heavy (light)
hole levels HHn (LHn). For this plot, the electric field strength is Fz = 0.5MV/m.

B,CThe energy levels of the nth heavy-hole sub-bands and the light-hole sub-bands.
The levels with negative slope are located in the quantum well, while levels with a
positive slope spread outside the quantum well.
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confinement is modeled as a displaced harmonic potential Vkðx; yÞ ¼
1
2m

HðLÞ
k ω2

0;HðLÞðx2 þ y2Þ þ eFx þ eFy with in-plane masses mHðLÞ
k and

strength of the harmonic potential mHðLÞ
k ω2

0;HðLÞ � γ1þγ2
m0

_2

a40
with a0 =

50 nm. In-plane electric fields, Fx and Fy, are centered and have average
Fx

� � ¼ hFyi ¼ 0. The magnetic field has a magnitude of B = 0.1 T for the
simulations presented in this work if notmentioned explicitly and is applied
in the x-z-plane with an angle θ between the field direction and the x-axis.

The last term in Eq. (1)HZeeman ¼ 2μBκ J � Bþ 2μBqðJ3xBx þ J3yBy þ
J3zBzÞ describes the interaction between the hole spin and themagneticfield,
where μB = eℏ/(2m0) is Bohr’s magneton, B ¼ ðBx;By;BzÞT the magnetic

field, J ¼ ðJx; Jy; JzÞT the vector consisting of the spin-32 matrices, and κ =
3.41 and q = 0.067 the isotropic and an-isotropic Zeeman coefficients
for Ge30.

Simulation of g-factor of the ground state
The total Hamiltonian Eq. (2) is projected on a set of basis states and
then diagonalized numerically. The basis vectors in our simulations

consist of product states ΨHðLÞ
j;k ðx; y; zÞ ¼ ϕHðLÞ

j ðx; yÞψHðLÞ
k ðzÞ, which are

given by independently solving the in-plane and out-of-plane effective
mass Schrödinger equation for the heavy-hole and light-hole bands.
The in-plane orbital wavefunctions are Fock-Darwin states, labeled as
∣n; li. The z-direction sub-bands of heavy (light) holes HHn (LHn) have
the form of piece-wise Airy functions31,32 with Ben-Daniel-Duke
boundary conditions (see “Methods”)ψp(z= a) =ψq(z= a) and ∂zψp(z=
a) = ∂zψq(z = a) with (p, q) = (Si0.2Ge0.8, Ge), (Ge, Si0.2Ge0.8) and a = 0,
−dw. Calculations involving higher orbital states in realistic hetero-
structures are computationally expensive. As the first attempt to
simulate sweet spots in the realistic systems, we only considered the
effective potentials created in the region of Si0.2Ge0.8 and Ge, while
neglecting the difference of other material parameters such as
the Luttinger parameters and Zeeman coefficients. Figure 2 shows the
lowest sub-band states in the heterostructure. The wavefunctions of
the sub-bands can be separated into states that are localized inside the
quantum well, localized at the triangular potential at the surface, or
delocalized between well and top interface. For electric fields Fz <
3.5 MV/m, there are five heavy-hole states and two light-hole states
completely localized inside the quantum well, as indicated by the
spectrum in Fig. 2B, C.We note that with increasing electric fields, first
the light-hole states and then the heavy states “leak" out of the quantum
well. The heavy-hole ground state is confined in the quantum well for
the electric field lower than Fz ≈ 2.5 MV/m, which marks the upper
limit of electric field in this work. We consider three heavy-hole sub-
bands and 1 to 57 light-hole sub-bands to simulate the Zeeman split-
tings of the heavy-hole ground state, which we justify as a sufficient set
due to convergence with increasing states. The effective g-factor g(Fz) is
then the ratio between Zeeman splitting and the magnetic field
strength.

Simulation of the dephasing time
In order to estimate the performance of the planar hole qubits, we also
compute the effective dephasing times in the presence of charge noise. We
first model charge noise as random fluctuations of the electric field. For the
electric field fluctuations, we assume that the noise follows a Sðf Þ ¼ A2

ξ=f
spectral density9,33 with ξ = x, y, z. To efficiently model the dynamics due to
charge noise, wemake the following additional assumptions. First, the noise
is coupled to the qubit linearly34,35, second, there are no spatial noise cor-
relations, and third, we assume noise in x and y directions to be identical.
However, note that these assumptions may break in the presence of alloy
disorder, stray strain from metallic gates36, or extremely close fluctuating
charge traps21. Using these assumptions, the pure dephasing time is then

given by

T?
2ðFξÞ ¼

_

μB
ffiffiffiffiffiffiffiffiffiffiffi
logðrÞ

p
Aξ ∣

∂gðFξ Þ
∂Fξ

B∣
: ð8Þ

Here, g(Fξ) is the effective g-factor of the ground state, and the bandwidth r=
1.68 × 109 is the ratio of the lower and higher frequency cutoff. First-order

sweet spots are defined by a vanishing linear noise coupling
∂gðFξ Þ
∂Fξ

¼ 0, thus

giving rise to exceptionally long dephasing times. Because of the finite
numbers of basis states included in our simulations and thefinite step size in
electric field, the g-factor is not completely a smooth function, which gives

rise to local variations that overshadow the general trendof ∂gðFz Þ
∂Fz

. Since these

local variations aremostly an artifact of our simulations and our interest lies
in the general trend, the interpolated g-factor g(Fz) is fitted to a fourth-order
polynomial.

The fluctuation strength of the linear out-of-plane electric field noise is
estimated to beAz = 3.5 kV/m inside the quantumwell, based on the charge
noise estimation37 from plunger gate fluctuations and Schrödinger-Poisson
simulation that includes metal/dielectrics gate layers and the germanium
heterostructure38, but on the larger side of estimations based onmicroscopic
3D charge noise simulations39 in silicon. Since the g-factor is independent
under translation in the xy-plane, fluctuating linear in-plane electric fields
do not cause any dephasing. However, the hole spin can still be strongly
affected by higher-order coupling terms23.

To provide a realistic comparison, we followRef. 39 and investigate the
impact of randomly distributed fluctuating charge traps located at the
interface between SiGe and the oxide40. Assuming a continuousmetal above
the oxide, the potential of a fluctuating charge trap can be well-described by

δVj ¼
Fc

jrj þ δrjj
� Fc

jrjj
� Fc

jrj þ δrj þ rmj
þ Fc

jrj þ rmj

 !
: ð9Þ

Here, rj= (xj, yj, di) is the location of the charge trap, δrjwith ∣δrj∣= 0.1 nm is
the displacement vector between the two metastable charge states of the
fluctuating trap, rm ¼ ð0; 0; 2doxÞT is the vector pointing to its mirror
charge, and Fc = e/(4πϵ0ϵm) is the coupling strength from the Coulomb
interaction with ϵ0 and ϵm = 14.67 being the vacuum and material per-
mittivity of SiGe. Tomatch a surface charge density of 1.2 × 10−10 cm2 39, we
generate 11 randomly positioned fluctuating charge traps in a 300 × 300 nm
areawith a randomorientation of the displacement vector. In linear order of
coupling strength (see “Methods”), the total dephasing time is then given in
the quasistatic noise limit by21,39,41

T?
2;tlf ¼

ffiffiffi
2

p
_

σδE
� � ð10Þ

where σδE is the standard deviation of the energy shifts of the individual
fluctuators for a given configuration and �h i denotes the average over dif-
ferent configurations. Since the dephasing time as well as the qubit reso-
nance frequency is strongly dependent on the magnitude of the applied
magnetic field due to the strong g-factor anisotropy, a comparison of T?

2
with fixed magnetic field significantly favors small g-factors. To provide a
fair comparisonofT?

2 betweendifferentmagneticfield angles (seeFig. 5), we
rescale the magnetic field in T?

2 such that for different magnetic field angles
the qubit resonance frequencies are equal.

Simulation of the Rabi frequency
Single-qubit gates can be implemented by periodic modulation of gate
voltages in proximity of the quantum dot, giving rise to time-dependent
electric fields Fξ ! Fξ þ Fξ;ac sinð2πf restÞ using the cubic Rashba
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interaction3,42. The speed of the operation, the Rabi frequency, can be esti-
mated by (see “Simulation of Rabi frequency” in “Methods”)

Ωξ;Rabi ¼
1
h
∣eFξ;ac 0h ∣ξ̂∣1i∣; ð11Þ

where ξ̂ ¼ x̂; ŷ; ẑ is the position operator and ∣0i and ∣1i are the eigen-
vectors of the qubit states. To provide a fair comparison, we also rescale
Ωξ,Rabi such that for different magnetic field angles the qubit resonance
frequency are equal.

Out-of-plane g-factor and convergence behavior
The out-of-plane g-factor strongly depends on the electric field, as shown in
Fig. 3A. The g-factor and its derivative change significantly with the choice
of the light-hole states. Ifweonly consider the states in the quantumwell, the
g-factor is monotonically increasing with respect to the electric field. By
incorporating the highly excited light-hole states (up to the 56th excited state
in this work), the g-factor changes and is monotonically decreasing with
respect to electric field. The zero-derivative point, i.e., the sweet spot, is not
observed in the range of electric fields considered here. Applying larger
electric fields would result in a ground state that is not located in the
quantumwell and therefore not considered. Our simulated g-factors match
qualitatively with experiments using Hall-Bar measurements at low
density6,43.

We investigate the dependence of the choice of the energy-sorted light-
hole levels in Fig. 3B.The g-factor converges slowly, indicating that thehigh-

energy light-hole states are not negligible for the estimation of the g-factor.
Large steps in convergence originate from a light-hole state that is localized
inside the quantum well, states localized at the top interfaces have minimal
impact, and the small steps at larger number originate from delocalized
states.We remark that the full 6-bandmodel including the split-off-band (or
evenmore bands)may have to be considered to achieve a higher accuracy of
the g-factor.

In-plane g-factor
The in-plane g-factor is plotted in Fig. 4A. Compared to the out-of-plane g-
factor, the in-plane g-factor is much smaller, and it has weaker dependence
on the electric field. The g-factor ismonotonically increasingwith respect to
the electric field in both choice of light-hole states, as shown in the dashed
and solid curves in Fig. 4A. The g-factor dependence of the light-hole levels
is plotted inFig. 4B.Our simulation resultsmatch themeasuredg-factors g=
0.2 ± 0.1 in devices using the same heterostructure9, where the large spread
can be attributed to non-circular confinement8. The slow convergence is
qualitatively similar to the g-factor dependence for out-of-plane magnetic
fields. In general, operating planar hole qubits in in-plane magnetic field
direction will result in a longer coherence time than operation in out-of-
plane magnetic fields.

Optimal magnetic field angle for out-of-plane electric field noise
The opposite dependence of the g-factor on electric field for in-plane and
out-of-plane magnetic fields shown in Figs. 3A and 4A suggest that an
optimal field angle exists where the g-factor is first-order insensitive to
changes in the out-of-plane electric field. In earlier works, an optimal angle
for silicon nanowires was predicted close to θ ¼ arctanðgk=g?Þ18. Here, we
expect the optimal magnetic field angle close to θ ¼ arctanðgk=g?Þ=3 (see
“Methods”). We therefore investigate the angle dependence, shown in
Fig. 5A. The g-factor as a function of electric field becomes very flat for
angles θ = 0. 2° − 0.25°. For certain magnetic field angles, the Zeeman
splitting becomes insensitive to electric field fluctuations over a wide range
of electric field values, which leads to enhancement of the spin coherence
times. Figure 5B shows the estimated dephasing time T?

2;? as a function of
electric field, considering fluctuations in Fz at various magnetic field angles.
From the plot, we find sweet spots at an optimal magnetic field angle of θ =
0.22° if we operate the hole spin qubit at electric fields around Fz = 1MV/m.
The optimal field angle is decreased if we operate the qubit at lower electric
field. We note that current vector magnets already satisfy the required
subdegree precision. In a large-scale germanium quantum processor, each
qubit may be brought to its own sweet spot by tuning the electric field to
compensate local variations.

Optimal magnetic field angle for fluctuating charge traps
In Fig. 5C we show the dephasing time T?

2;tlf originating from randomly
positioned two-level fluctuators (TLFs) averaged over 200 configurations
andnormalizedwith respect to the Lamor frequency.Our results showT?

2;tlf
in the range 200–500 ns for ∣θ∣ < 0.25°, and T?

2;tlf >1 μs for out-of-plane
magnetic fields. While a few individual configurations show the emergence
of sweet spots in the operation window 0.5MV/m ≤ Fz ≤ 2.5MV/m that
greatly enhance the noise protection (see Fig. 6 in “Methods”), the averaged
results do not show such a feature. In contrast to out-of-plane electric
fluctuations, for suppressing fluctuating charge traps out-of-planemagnetic
field directions are beneficial. We also see an approximately linear rela-
tionship between out-of-plane electric field and T?

2;tlf for all investigated
magnetic fields, indicating a strong impact of higher-order multipole
moments. This is in agreement with recent findings that non-separable
confinementwith respect to in- andout-of-plane can strongly enhance spin-
orbit coupling, thus, the susceptibility to charge noise44.

Total optimal magnetic field angle
The optimal point of operation is then given by the relative strengths of the
different sources of fluctuations and their corresponding dephasing times.

Fig. 3 | The out-of-plane g-factor of a single hole. A The out-of-plane g-factor of
the ground state as a function of electric field. The solid curve is the g-factor obtained
by including nLH,saturated = 57 light-hole states in the simulation. The dashed curve is
the g-factor obtained by simulating the light-hole states located in the germanium
quantumwell.BThe g-factor as a function of light-hole level numbersnLH. Curves in
different colors are the results taken at different electric field.

Fig. 4 | The in-plane g-factor of a single hole. AThe in-plane g-factor of the ground
state as a function of electric field. The solid curve is the g-factor obtained by
including nLH,saturated = 57 light-hole states in the simulation. The dashed curve is the
g-factor obtained by simulating the light-hole states located in the germanium
quantumwell.BThe g-factor as a function of light-hole level numbersnLH. Curves in
different colors are the results taken at different electric field.
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For uncorrelated noise, the total dephasing time due to charge noise is
given by

1
T?
2;tot

 !2

¼ 1
T?
2;?

 !2

þ 1
T?
2;tlf

 !2

: ð12Þ

Since both contributions are of similar order, T?
2;? ’ T?

2;tlf , the global
optimumdependson the exact configurationof thefluctuating charges, thus
be device dependent45. We note that since sweet spots for single charge
fluctuators21,24 or gate electrodes45 canbe found, a partial sweet spotmight be
recovered through careful gate calibrations and requires further investiga-
tions. Furthermore, for hole qubits in natural Ge quantumwells, dephasing
caused by fluctuations of the nuclear spin bath severely limits coherence15,46.

A qubit’s quality factor is determined by the number of coherent
oscillations within its decoherence time. Therefore, it is also important to
consider how the frequency of coherent oscillations responds to magnetic
field angles that yield sweet spots. Figure 5D shows the Rabi frequency for
in-plane driving caused by the cubic Rashba spin-orbit interaction3,23. We
note that faster Rabi frequencies are accessible using a non-circular in-plane
confinement23, a non-separable confinement44, and local strain variations47.
Since we do not see a significant drop in Rabi frequency at small angles, the
sweet spot allows for fast qubit operations combined with long coherence
times. The ability to calibrate each qubit into its own sweet spot with local
electric fields can allow compensating local variations through disorder,
opening the possibility of a scalable architecture.

Conclusion
In conclusion, we simulated the effective g-factor of hole spins in planar
germanium heterostructures and studied its dependence on the electric
field, the magnetic field orientation, and the light-hole level numbers. We
observed that the excited light-hole levels that are not confined by the
quantum well have non-negligible contribution to the g-factor and its
derivative with respect to the electric field.When including those light-hole
levels, we find a tunable sweet spot of the g-factor with respect to out-of-
plane electricfield if themagneticfield is oriented close to in-planedirection.
We note that recent experimental work reporting a sweet spot for holes in
silicon FDSOI supports the opportunity for sweet spots for holes in planar
germanium45. Decoherence is currently a bottleneck for scaling planar
germanium hole qubits9; thus, operating at (scalable) sweet spots may
therefore enable the next step in advancing to larger quantum circuits.

We presented proof-of-principle simulation results by including
higher levels and a realistic heterostructure potential. Our model can be
extended to study the response of hole qubits to decoherence from time-

dependent charge noise, g-factor variability from realistic electrostatic and
mechanical potentials.

Methods
Derivation of the vertical confinement potential from strain ten-
sor, band offset, and electric field
The vertical confinement V⊥(z) of the quantum dot consists of two con-
tributions; alignment of the Fermi-energy of the heterostructure giving rise
to a band offset and strain in the quantumwell. The band offset is a constant
for the different materials and can be experimentally measured or theore-
tically computed48. Strain is, in general, a 3 × 3 strain tensor ϵ for each band,
and its effect on the hole states is described by the Bir-Pikusr Hamiltonian.
For simplifications, we only consider in this paper the effect of hydrostatic
strain anduniaxial strain and ignore all shear-strain components (ϵxy= ϵxz=
ϵyz = 0). Consequently, the Bir-Pikus Hamiltonian becomes diagonal in the
heavy-hole and light-hole basis ∣j;mji ¼ f∣ 32 ; 32

�
; ∣ 32 ;� 3

2

�
; ∣ 32 ;

1
2

�
; ∣ 32 ;� 1

2

�g
HPB ¼ diag ðPϵ þQϵ;Pϵ þ Qϵ;Pϵ � Qϵ;Pϵ �QϵÞ ð13Þ

with the coefficients

Pϵ ¼ �aV ðϵxx þ ϵyy þ ϵzzÞ; ð14Þ

Qϵ ¼ � bV
2
ðϵxx þ ϵyy � 2ϵzzÞ; ð15Þ

where aV and bV are the deformation potentials, which strongly depend on
the silicon concentration x in the SixGe1−x layer of the heterostructure. For
x = 20%, we use aV = 2.0 eV and bV = −2.16 eV3.

Since strain is only present in the quantum well and only depends on
the band j ¼ 1

2 ;
3
2 and not the sign of the spin, we can rewrite the effect of the

band offset and strain as an effective potential of the form

V?ðzÞ ¼ �
0; 0<z<di
Ul; �dw<z<0

0; z<� dw

8><
>: ; ð16Þ

where l = HH, LH denotes the band. Note, that solely due to the uniaxial
strain components, the heavy and light-hole degeneracy is lifted inside the
quantumwell. For our simulations, we use the following parametersUHH =
150meV andULH = 100meV extracted from ref. 48 and coincides with the
values from ref. 3. By adding a global electric potential −eFzz originating
from the metallic plunger gate on top, we end up with expression (7) in the
main text.

Fig. 5 | Dephasing time and Rabi frequency of the hole spin qubit. A The g-factor
of the ground state as a function of out-of-plane electric field with different magnetic
field anglewhen consideringnLH= 57 light-hole levels.BDephasing timeT?

2;? due to
out-of-plane electric field noise with amplitude Az = 3.5 kV/m, plotted as a function
of electric field at differentmagnetic field angle and strength.CDephasing timeT?

2;tlf

originating from 11 randomly positioned two-level fluctuators (TLFs) in the
quantum dot vicinity averaged over 200 configurations and as a function of electric

field at different magnetic field angle. The shaded regions represent standard
deviations over the simulated configurations estimated through bootstrapping.
D Rabi frequency as a function of electric field at different magnetic field angle and
strength. The EDSR driving is at in-plane direction with the magnitude Fx = 10 kV/
m.All four curves are almost overlapping. In plots (B–D), themagneticfield strength
is chosen such that for each angle, the Zeeman splittings are equal (2.5 GHz).
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Derivation of the analytical wavefunctions and numerical
simulation
The total Hamiltonian Eq. (1) is projected on a set of basis states and then
diagonalizednumerically. The basis states for theheavy-hole (light-hole) are
product states of in-plane Fock-Darwin wavefunctions ϕHðLÞ

j ðx; yÞ and the
derivedwavefunctions in z-direction consisting of piece-wiseAiry functions

ΨHðLÞ
j;k ðx; y; zÞ ¼ ϕHðLÞ

j ðx; yÞψHðLÞ
k ðzÞ; ð17Þ

with

Here, Ai and Bi are the conventional Airy functions, ζHðLÞ
0 ¼

ð_2=ð2mLðHÞeFzÞÞ
1
3 and EHðLÞ

tri ¼ _2=ð2mHðLÞζ
HðLÞ
0 Þ are the effective con-

finement length and energy of the triangular potential,uHðLÞ ¼ UHðLÞ=E
HðLÞ
tri

is the effective potential barrier, and ϵHðLÞ
k ¼ EHðLÞ

k =EHðLÞ
tri is the effective

eigenenergy of the heavy-hole (light-hole) sub-band k. The weighting

factors cHðLÞ
k;n are defined via the Ben-Daniel-Duke boundary conditions31,32

ψp(z=a) =ψq(z=a) and 1
mHðLÞ

?;p

∂zψpðz ¼ aÞ ¼ 1
mHðLÞ

?;q

∂zψqðz ¼ aÞwith (p,q) =
(Si0.2Ge0.8, Ge), (Ge, Si0.2Ge0.8) and a = 0,−dw. Assuming that the effective
masses of the heavy-hole (light-hole) in SiGe are identical to theGe effective

masses, i.e., mHðLÞ
?;Ge ¼ mHðLÞ

?;SiGe and mHðLÞ
k;Ge ¼ mHðLÞ

k;SiGe, the boundary condi-
tions become independent of the effective mass, and we arrive at the
expressions in themain text.We notice that this assumption causes an error
of 5% inmH

?, 15% inmL
? andmH

k , and 11% inmL
k outside the quantumwell.

We find the eigenenergies EHðLÞ
k of the heavy-hole (light-hole) band via the

boundary conditions in Eq. (7) following Ref. 32 but translate it to a
computational task of finding roots of a fifth-order polynomial of the Airy
functions. The roots are solved numerically using the Reduce function in
Mathematica. Afterward, we check and add missing roots using a bisection
algorithm.

The in-plane orbital wavefunctions are the solution of a 2D harmonic
confinement in the presence of a magnetic field. The general solutions are
the Fock-Darwin states

ϕHðLÞ
j¼ðn;lÞðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
πl2

n!
ðnþjljÞ!

q
exp x2þy2

2a2B;HðLÞ

� �

× x2þy2

a2B;HðLÞ

� �jlj
2

Ljlj
n

x2þy2

a2B;HðLÞ

� �
× expð�i l arctanðy=xÞÞ;

ð19Þ

where Ljlj
n ðξÞ are the generalized Laguerre polynomials, aB,H = 50 nm and

aB,L = 42.6 nm are the Bohr radii, and j labels the eigenenergies in
ascending order.

For both heavy-hole and light-hole, we use a fixed number of 78 in-
plane orbital wavefunctions. The expression and the integrals between the
in-plane orbits are computed analytically. In z-direction, we consider nHH

heavy-hole sub-bands and nLH light-hole sub-bands. We observe that the
g-factors change with nLH and saturates as nLH increases. The largest nLH
we consider is 57. Contrarily, the number of heavy-hole sub-bands has a
significant smaller impact on the g-factor. The largest nHH we consider
is 4. The numbers of basis states are 78 × nHH and 78 × nLH for heavy-hole

and light-hole. The total dimension of the projected Hamiltonian is then
given by ntot = 156 × (nHH + nLH).

We consequently compute the effective g-factor, the ratio of Zeeman
splitting to the magnetic field strength, of the heavy-hole ground state by
diagonalizing the projected Hamiltonian

g ¼ ðE1 � E0Þ=ðμBBÞ; ð20Þ

where Ei are the energy-sorted eigenvalues.

To find the electric field dependence of the g-factor, the above proce-
dure is repeated for values of electric field in the interval Fz = 0.5− 3.5MV/
mwith a step size of ΔFz = 5 × 10−3 MV/m. For each electric field value, we
compute the z-direction sub-bands of the heavy-hole and light-hole, con-
struct the basis states, compute the projected total Hamiltonian Eq. (1),
diagonalize the matrix, obtain the eigenvalues and eigenstates, and finally
compute the effective g-factor from the eigenvalues.

To keep the simulation tractable, we truncate the Hilbert space and
limit the number of basis wavefunctions ψH(L). However, due to the dense
energy structure of the heavy and light-hole bands with multiple anti-
crossings at higher energies (Fig. 2), our choice of truncationsmightmiss the
respective partner eigenstate at an energy anti-crossing. Together with a
finite step size and numerical precision, this leads to small and local fluc-
tuations in the resulting g-factor. While these simulations are not visible in
the plots of the g-factors, these fluctuations can affect the derivative dg(Fz)/
dFz and consequently the dephasing time. To avoid these artifacts in our
results, we fit the resulting g-factor g(Fz) to a polynomial in Fz up to fourth
order before taking the derivative. We note that the results are well-
approximated by the fitting.

Simulation of Rabi frequency
Single-qubit operations for hole qubits can be implemented by applying an
oscillating electric field, Fξ ! Fξ þ Fξ;ac sinð2πf restÞ with ξ = x, y, z,
matching the resonance frequency of the qubit
f res ¼ 2μBgðFx; Fy; FzÞB=ð2π_Þ. The dynamics of the driven system can be
best estimated in the adiabatic frame of Hamiltonian (1)49

Hadiabatic ¼ UyHU � i_Uy dU
dt

ð21Þ

¼ Hdiag � 2πi_f reseFξ;ac sinð2πf restÞUy dU
dFξ

; ð22Þ

where U†HU ≡ Hdiag contains only diagonal entries. From the first to the

second line, we used dU
dt ¼

dFξ
dt

dU
dFξ

with
dFξ

dt ¼ 2πf resFξ;ac sinð2πf restÞ
assuming a linear response and ignoring higher-order terms. The resonant
transition amplitude between the qubit states ∣0i and ∣1i is then given in the
rotating frame by

0h ∣Hadiabatic∣1i ¼ πf reseFξ;acð1þ e4πif restÞ 0h ∣Uy ∂U
∂Fξ

∣1i: ð23Þ

By ignoring the counter-rotating term, the so-called rotating wave
approximation, we end up with expression (11) of the main text.

ψHðLÞ
k ðzÞ ¼

cHðLÞ
k;1 Ai uHðLÞ � ϵHðLÞ

k � z=ζHðLÞ
0

� �
þ cHðLÞ

k;2 Bi uHðLÞ � ϵHðLÞ
k � z=ζHðLÞ

0

� �
; 0<z<di

cHðLÞ
k;3 Ai �ϵHðLÞ

k � z=ζHðLÞ
0

� �
þ cHðLÞ

k;4 Bi �ϵHðLÞ
k � z=ζHðLÞ

0

� �
; �dw<z<0

cHðLÞ
k;5 Ai uHðLÞ � ϵHðLÞ

k � z=ζHðLÞ
0

� �
; z<� dw

8>>>><
>>>>:

: ð18Þ
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Conveniently, this method requires only knowledge about the instanta-
neous eigenvectors of the qubit space. The Rabi frequency is then given by

Ωξ;Rabi ¼
2
h
j 0h ∣Hadiabatic∣1ij: ð24Þ

If we further use the linearity of the driving, i.e.,
Htot ¼ H þ eFξ;ac sinð2πf restÞx, the above expression can be recast into the
more familiar expression

Ωξ;Rabi ¼
1
h
jeFξ;ac 0h ∣ξ̂∣1ij; ð25Þ

where ξ̂ ¼ x̂; ŷ; ẑ is the corresponding position operator.

Optimal magnetic field angle for out-of-plane fluctuations
The emergence of an optimal magnetic field angle can be derived from
Hamiltonian (1) of the main text. While this derivation can be easily gen-
eralized to arbitrary magnetic fields, we pursue a magnetic field in the xz-
plane B ¼ ðB cosðθÞ; 0; B sinðθÞÞT. To diagonalize the heavy-hole state
sector, we apply the unitary rotation U ¼ e�iϕσy=2 with σy being the Pauli
matrix acting only on the heavy-hole space and

ϕ ¼ arctan
4κþ 9q

2q
tanðθÞ

� �
¼ arctan

g?
gk

tanðθÞ
 !

: ð26Þ

Here, κ and q are the isotropic and an-isotropic Zeeman coefficients, and
g⊥ = 6κ+ 27q/2 and g∥ = 3q are the out-of-plane and in-plane pure heavy-
hole g-factors.While the angle θ describes the rotation of themagnetic field,
the angle ϕ describes the rotation of the heavy-hole quantization axis.
Minimal variation of the g-factor is then expected to be close to ϕ = 45°
where the orbital contributions from in-plane and out-of-plane magnetic
fields compensate each other18. From our simulations, we can see that the

ratio of the slopes ∂gðFz Þ∂Fz
normalized to equal qubit frequencies for θ=90° and

θ = 0° are not equal, therefore we end up with θopt � arctanðgk=g?Þ=3.

Optimal magnetic field angle for fluctuating charge traps
Thepotential causedby a single charge trap approximatedas point-charge is
given by the Coulomb potential. The potential difference of a two-level
fluctuator (TLF) subject to screening from themetal gates (here assumed to
be continuous) is given by

δVj ¼
Fc

jrj þ δrjj
� Fc

jrjj
� Fc

jrj þ δrj þ rmj
þ Fc

jrj þ rmj

 !
: ð27Þ

The first two terms are the potentials caused by the two metastable states of
the two-level fluctuator, with the remaining terms being their image charges.
Here, rj = (xj, yj, di) is the location of the charge trap, δrjwith ∣δrj∣ = 0.1 nm is
the displacement vector between the two metastable charge states of the
fluctuating trap, rm ¼ ð0; 0; 2doxÞT is the vectorpointing to itsmirror charge,
and Fc = e/(4πϵ0ϵm) is the coupling strength from the Coulomb interaction
with ϵ and ϵm = 14.67 being the vacuum and material permittivity of SiGe.

We consider 11 randomly positioned charge traps that serve as two-
level fluctuators (TLFs) in a 300 × 300 nm area drawn from a uniform
distribution. We furthermore draw the vector connecting the two meta-
stable states of the fluctuator δrj from a uniform 3D vector with fixed length
∣δrj∣ = 0.1 nm. The corresponding potential for a given configuration reads

Vb ¼
X11
j¼1

δVj∣
δrj!bjδrj

: ð28Þ

Here b is a binary vector indicating the current state of each TLF, i.e., 0 for
not displaced and 1 for displaced. For example, (0, ⋯ , 0)T represents all
charge traps in their original position. To get the average fluctuations, we
compute for each state of the TLFs the corresponding qubit energy shift

δEbk
¼ 0h ∣Vbk

∣0i � 1h ∣Vbk
∣1i; ð29Þ

where ∣0i and ∣1i are the qubit states. To speed up the computation, we use
instead a series expansion of the upper expression up to 6th order in x and y
and up to second order in z. In our simulations, we make use of our
analytical expressions and compute the matrix elements from a general
polynomial and substitute later the actual values.

The totalfluctuations causedby theTLFs are consequently givenby the
root-mean-square with respect to the TLF states

σ2δE ¼ 1
N2

X
k

δE2
bk
; ð30Þ

where N is the number of TLF states. In our simulations, we linearize the
problem and neglect TLF states with more than one excitation. This is a
good approximation39,41 and becomes exact if δE(⋯ , 1, ⋯ , 1⋯ ) = δE(⋯ , 1, ⋯ ,

0⋯ ) + δE(⋯ , 0, ⋯ , 1⋯ ) and if there is no correlation between the TLFs.
As a final step, we repeat the steps mentioned above for 200 config-

urations of the 11 TLFs and average over them.

Optimal magnetic field angle for selected individual fluctuating
charge traps
Figure 6 shows the dephasing time caused by a few selected TLF config-
urations as a function of out-of-plane electric field for different magnetic
field angles.Dependingon theTLFconfiguration, sweet spots canappear for
small angles θ (Fig. 6A), just outside the window of investigation (Fig. 6B),
and also for θ = 90° (Fig. 6C).

Fig. 6 | The qubit dephasing time caused by three different TLF configurations. It
is simulated as a function of out-of-plane electric field andwith differentmagneticfield
angles.A Emergence of a sweet spot for magnetic fields with small θ. The sweet spot is

robust against small changes inmagnetic field orientation.B Emergence of incomplete
sweet spot features that are highly sensitive tomagneticfield orientations.CEmergence
for a sweet spot for out-of-plane magnetic field similar to the one reported in Ref. 21.
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Simulation software and data analysis scripts supporting this work are
available at https://doi.org/10.5281/zenodo.6949625.
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