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PREFACE
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I want to thank my graduation committee for guiding me through the process of a thesis and introducing me
to the fascinating world of composite laminates.
I also want to thank my friends and family for their support and their coffee cards.

I hope you enjoy reading this thesis as much as I enjoyed writing it.

W. Steenstra
Delft, January 2015
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1
INTRODUCTION

1.1. Background
Composite laminates are widely applied as a structural material (e.g. in aircraft industries). Since the pre-
diction of the reliability of composite structures is difficult, the use of these materials leads to high safety
factors and/or extensive testing. A typical large airframe, for example, requires ∼ 104 tests to achieve safety
certification [1]. Therefore, research is still ongoing to predict failure of composite laminates using numerical
models.

Plies

Laminate

Fiber
Matrix

Figure 1.1: Layup of a composite laminate. Microlevel (left) and mesolevel (right).

The main difficulty in modeling composite laminate failure is the different failure processes that may
occur due to the configuration of the high performance material. As shown in Figure 1.1, a laminate is a
layered material, and composite in this case means that each layer in turn is composed of two materials:
fibers (e.g. glass or carbon) and matrix material (e.g. epoxy). Failure processes that are typically distinguished
are fiber rupture, fiber kinking, matrix cracking, fiber-matrix debonding and delamination. Even though
the individual processes occur on a small scale, a combination can eventually lead to ultimate failure of the
structure. See for instance Figure 1.2, where inter-fiber failure in the mid ply is followed by delamination and
local buckling of the outer plies.

Delamination Matrix crack

Figure 1.2: Schematic illustration of transverse compressive fracture causing delamination and local buckling.
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1. INTRODUCTION

Figure 1.3: Deformed mesh from open hole analysis by Van der Meer’s 3D model. Multiple cracks per ply are modeled using XFEM.

Recent work by Van der Meer has resulted in a computational model for analysis of laminate failure [2].
The scale of observation of this model is the mesolevel. Plies are modeled separately, using a single layer of
elements per ply. This way, a distinction is easily made between delamination and ply failure. Delamination
is taken into account, using interlaminar interface elements as described by Turon [3]. Since Van Der Meer
and Sluys showed that a continuum damage model does not always lead to a correct representation of inter-
fiber cracks [4], a discontinuous approach is preferred to model ply failure. In a discontinuous model, matrix
cracks can be represented by predefined interface elements. The crack topology and propagation then has
to be incorporated in the mesh. This results in laborious meshing when several laminate configurations are
analyzed, especially if multiple cracks per ply are considered in 3D (see for instance Figure 1.3). Therefore, a
better option is to use the eXtended Finite Element Method (XFEM) [5]. With this method, cracks can occur
at arbitrary locations and the direction of the crack is independent of the mesh. The phantom node method
is a variation on XFEM. The discontinuous approaches are described in section 1.4 and used throughout this
work.

0

τ21

σ22

σ22

1

Mode A
α= 0o

τ12

1

Mode B
α= 0oτL

τT

σn τ12

σ22

α Fibre orientation

1

Mode C
α 6= 0o

Figure 1.4: Fracture envelope for combined (σ22, τ21) stresses with fracture modes A, B, C and fracture angle α.

Since ply failure in compression differs significantly from ply failure in tension, Van Der Meer’s model is
limited to tensile load cases. As shown in Figure 1.4, inter-fiber failure can occur in three different modes.
When a tensile stress acts on the laminate (σ22 > 0), Mode A occurs with a fracture plane α perpendicular
to the mid plane of the ply (α = 0). In compression load cases with a relatively high shear force τ21, mode
B occurs where the fracture plane is still perpendicular to the mid plane of the ply (σ22 < 0, α = 0). For
compressive load cases with a relatively highσ22/τ21-ratio, mode C occurs where the fractue plane is inclined
with respect to the mid plane of the ply (σ22 < 0,α 6= 0). Puck and Schürmann found that for pure compressive
loading (σ22 < 0, τ21 = 0), the fracture plane tends to be inclined with respect to the load direction with an
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1.2. PROBLEM STATEMENT

angle α0 = 53o [6].
For Van Der Meer’s model to be good enough for predictive simulation of the complete failure process

in laminates, the compressive behavior has to be included. Besides the before-mentioned disadvantages of
interface elements, predefining the fracture plane with interface elements would mean that the failure mode
has to be known in advance. It is possible to account for the angle of the fracture plane explicitly with XFEM.
However, in 3D, the complexity of the algorithms that deal with the intersection of the finite elements by the
crack plane increases significantly when the crack plane is no longer perpendicular to the mid-plane of the
ply. Therefore, an efficient approach is needed to model compressive failure of composite laminates using a
vertical crack plane. When the crack topology remains vertical, an inclined crack can only be approximated
by a modification in the constitutive law. For the discontinuous approaches used in Van Der Meer’s model,
this constitutive law is a cohesive law related to the discontinuous displacement field.

1.2. Problem Statement
The difficulty of including compressive behavior in a complete laminate failure model, as described in the
previous section leads to the following problem statement:

Can the compressive behavior of composite laminate failure be approximated by changing the cohesive law
instead of the crack topology?

The idea is to use a transformation in the cohesive law such that vertical mesh elements act as if the
fracture plane has an inclination. Interpenetration of neighboring elements is typically prevented by stiffness
recovery for compressive loading in the normal direction of an interface. With a transformation of the local
reference frame just before the cohesive law is applied, stiffness recovery will be applied along an inclined
axis. As a result, elements near the crack path will slide over each other when a certain failure criterion is
reached (see Figure 1.5, below).

Figure 1.5: Schematic illustration of compressive failure (above) and the approximation of it, using a vertical crack plane (below).

1.3. Outline
Using the model for full-laminate tensile failure as a framework, several extensions need to be implemented.
In order to keep the model clear and simple, the idea is to work step by step towards a final failure model
for compressively loaded laminates. In the same chronological order, the model description and results are
presented in this thesis.

To approximate compressive failure using a transformation in the cohesive law, a reference model is
needed for verification. In the reference model, predefined interface elements are used to simulate the in-
clined fracture plane. This so called ‘inclined interface model’ is introduced in Chapter 2. The need for large
displacement, material properties and limitations to the model are discussed.

In order to simulate the inclined fracture plane using vertical elements, a transformation to the cohesive
law needs to e applied. In 2D, this is done with vertical interface elements. The so called ‘transformed in-
terface model’ is introduced in Chapter 3. The method of transformation in the cohesive law is explained
and first verified for a compressively loaded single ply. Second, the effect of the transformation on model-
ing transverse compressive matrix cracking followed by delamination is assessed with the analysis of a [0/90]
laminate.

Finally, a three dimensional stress state is analyzed in Chapter 4. The direction of the crack propagation is
set according to the fiber orientation in the cracked ply using the phantom node method. The transformation

3



1. INTRODUCTION

is applied to the cohesive law related to the segments introduced by the phantom node method. The influ-
ence of a varying fiber orientation and a varying fracture plane angle, depending on the stress state at onset
of fracture, are discussed in more detail.

1.4. Discontinuous Approach for the Modeling of Cracks
In a discontinuous approach, cracks are modeled by inserting a discontinuity in the displacement field. Be-
sides the constitutive law for the continuum, an extra constitutive law has to be introduced to apply cohesive
forces on the crack surface (Barenblatt [7]). This cohesive law is described in section 1.4.1 for a relatively
simple uncoupled model. Section 1.4.2 describes the methodology of interface elements in 2D. The phantom
node method is explained in section 1.4.3 for a 3D situation.

1.4.1. Cohesive Law
The cohesive law relates the cohesive traction t, applied to the crack surface, to the size of the displacement
jump j:

t = t(j) (1.1)

The cohesive law ensures that elements initially approximate rigid behavior until a certain failure cri-
terion is reached. This failure criterion is obtained in a local reference system. After onset of fracture, the
relative displacement is the vectorial sum of a traction/compression mode I and a sliding mode II. For pure
tension/compression and pure shear, the constitutive relationships are shown in Figure 1.6. The subscribts o
and f indicate onset and failure.

tII

jII

− j f ,II

j f ,II

− jo,II

−to,II

jo,II

to,II

tI

jI
j f ,Ijo,I

to,I

Figure 1.6: Constitutive relationships for pure mode I (left) and pure mode II (right).

For this uncoupled model, the analytical expressions of the cohesive law for mode i are bilinear, one-
dimensional relationships as described by Alfano [8]. Using the notation si [x] for mode i :

si [x] =
{〈x〉 if i = 1
|x| if i = 2

(1.2)

where 〈x〉 = 1
2 (x +|x|)

ti =



Ki ji if (si [ ji ])max ≤ jo,i or
(i = I and ji < 0)

Ki ji

[
1−

(
(si [ ji ])max− jo,i

(si [ ji ])max

)(
j f ,i

j f ,i− jo,i

)]
if jo,i < (si [ ji ])max < j f ,i and

(i 6= I or ji ≥ 0)
0 if (si [ ji ])max ≥ j f ,i and

(i 6= I or ji ≥ 0)

(1.3)

where (si [ ji ])max is the maximum value attained by (1.2) to take into account the irreversibility of the interface
damage. Ki is a dummy stiffness to approximate initially rigid behavior. Figure 1.6 and equation (1.3) show
that interpenetration is limited to a certain tolerance depending on the dummy stiffness KI.

When the interaction of two modes is taken into account, a mixed-mode damage law by Turon can be
used [3]. Van der Meer formulated a phantom node formulation with the mixed-mode cohesive law [9].
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1.4. DISCONTINUOUS APPROACH FOR THE MODELING OF CRACKS

1.4.2. Interface Elements
Using duplicated nodes along the crack path, the discontinuity in the displacement field can be modeled
with interface elements. The nodes of an interface element initially coincide, but they may be driven apart
mechanically as shown in Figure 1.7. The displacement jump is defined as the difference between the dis-
placement fields of the two lines.

j = Na (1.4)

With the shape function matrix

N =
[

N1 0 . . . Nn 0 −N1 0 . . . −Nn 0
0 N1 . . . 0 Nn 0 −N1 . . . 0 −Nn

]
(1.5)

and

aT = {a1x , a1y , . . . , a2nx , a2ny } (1.6)

Where n is the number of nodes per element and ai the displacements of node i .

y

x

s n

ni

ni+n

φ

Figure 1.7: Interface element with local {n, s}-frame in a global {x, y}-frame.

The displacement jump j in the local coordinate system is transformed to j in the local {n, s}-frame system
within a standard finite element program. For every integration point, this is done by the rotation matrix Rφ

that maps the global coordinates to the local coordinates. In 2D, it holds:

Rφj =
[

cos(φ) sin(φ)
−sin(φ) cos(φ)

][
jx

jy

]
=

[
jn

js

]
= j (1.7)

In the local coordinate system, the cohesive law (1.1) is applied to obtain the traction vector t and its
linearization with respect to the displacement jump T = δt/δj. t and T are transformed back into the global
{x, y} coordinate system with the transposed rotation matrix RT

φ:

RT
φt =

[
cos(φ) −sin(φ)
sin(φ) cos(φ)

][
tn

ts

]
=

[
tx

ty

]
= t (1.8)

RT
φTRφ =

[
cos(φ) −sin(φ)
sin(φ) cos(φ)

]
T

[
cos(φ) sin(φ)
−sin(φ) cos(φ)

]
= T (1.9)

The element force vector felem and the element stiffness matrix Kelem are then defined by an integral over
the interface surface Γi

5



1. INTRODUCTION

felem =
∫
Γi

NTt dΓ (1.10)

Kelem =
∫
Γi

NTTN dΓ (1.11)

Interface elements are an effective solution to model cracks in relatively simple cases. However, since the
discontinuity is defined between elements, this method is not very flexible. For different material configura-
tions, different crack paths need to be predefined in the mesh. Especially in a 3D situation, this can result in
laborious meshing.

1.4.3. The Phantom Node Method
With the phantom node version of XFEM, cohesive cracking can be modeled with partially active overlapping
elements with independent displacement fields ([10], [11] and [12]). The connectivity and active parts of two
overlapping elements are shown in Figure 1.8.

n1

n2n3

n4

ΩA ΩB

θ

Γc

t

n

s

z y

x

n4

n3

n1

n2

ñ1

ñ2

ñ3

ñ4

Figure 1.8: Connectivity and active parts of two overlapping elements in phantom node method.

Due to the micro structure of an unidirectional composite laminate, the crack in a ply will propagate in
the direction of the fiber orientation. This is taken into account by specifying the angle θ. The displacement
jump j over the crack is defined as the difference between the displacement fields of the two initially over-
lapping elements A and B . The displacement jump is transformed to an orthonormal frame that is aligned
with the crack by the rotation matrix Rθ. With the t-axis parallel to the z-axis, the transformation from the
displacement jump in the local {n, s, t }-frame is related to the displacement jump in the global {x, y, z}-frame
by

Rθj =
sin(θ) −cos(θ) 0

cos(θ) sin(θ) 0
0 0 1

 jx

jy

jz

=
 jn

js

jt

= j (1.12)

In the local coordinate system, the cohesive law (1.1) is applied to obtain the traction vector t and its
linearization with respect to the displacement jump T = δt/δj. t and T are transformed back into the global
{x, y, z} coordinate system with the transposed rotation matrix RT

θ
:

RT
θt = t (1.13)

RT
θTRθ = T (1.14)

With the standard finite element shape functions N(x) and the strain nodal displacement matrix B, the
contribution to the internal force vector on the degrees of freedom corresponding with element A and B are
defined as

6



1.4. DISCONTINUOUS APPROACH FOR THE MODELING OF CRACKS

fint
A =

∫
ΩA

BTσdΩ+
∫
Γc

NtdΓ (1.15)

and

fint
B =

∫
ΩB

BTσdΩ−
∫
Γc

NtdΓ (1.16)

The contribution to the global tangent matrix is

K =
[

KA 0
0 KB

]
+

[
Kj −Kj

−Kj Kj

]
(1.17)

with

Ki =
∫
Ωi

BTDBdΩ, i = A,B (1.18)

Kj =
∫
Γc

NTTNdΓ (1.19)

where D = ∂σ/∂ε.
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2
REFERENCE MODEL

In this Chapter, a model is introduced where the compressive crack is modeled with predefined interface
elements. The so called ‘inclined interface model’ is shown in Figure 2.1. The model is discussed in more
detail in the following sections. It will serve as a reference model in a later stage, for a similar model where the
fracture plane angle α is included as a transformation in the cohesive law of vertical interface elements. The
need for including large displacements is shown in section 2.1. Material properties are discussed in section
2.2. Limitations to the model regarding length/thickness are discussed in section 2.3 for buckling and the
influence of the boundary conditions in section 2.4.

y

x

touter

tmid

touter

L

α

interface elements

Figure 2.1: Schematic representation of modeling inclined compressive crack in a two-sided clamped [0/90]s laminate using interface
elements.

2.1. Large Displacements
In the considered case, delamination is followed by local buckling of the outer plies. Therefore, the assump-
tion of small displacements is not valid. For the bulk material, the Green-Lagrange strain tensor is used:

γ= 1

2

(
FTF− I

)
(2.1)

With I, the identity matrix and F, the deformation gradient tensor that relates the deformed configuration
(x1, x2) to the undeformed configuration (ξ1, ξ2):

F = ∂x

∂ξ
(2.2)

The deformed configuration of the interface elements is limited to a rotation of the element. In 2D, the
rotation of the normal vector of a line is relatively simple while in 3D the interface element being a plane
makes rotation more difficult. As Figure 2.2 shows, taking into account only large displacements in the bulk
material already results in the desired snapback behavior. When large displacements are taken into account
in the interface elements as well, the load-displacement diagram shows the same snapback behavior, though
convergence is still reached when the crack starts to open. In the remainder of this thesis, large displacements
are assumed in the bulk material while small rotations are assumed in the interface elements.

9



2. REFERENCE MODEL

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
0

100

200

300

400

displacement [mm]

fo
rc

e
[N

]

small displacements
large displacements (bulk)
large displacements (bulk + interface)

Figure 2.2: Load-displacement diagrams for large and small displacements. L = 15 mm, tmi d = 2touter = 0.5 mm. Material: E-glass/913.

2.2. Material Properties
Figures 2.4 and 2.5 show the load-displacement diagram for a two-sided clamped [0/90]s laminate E-glass/913
and IM7/8552 carbon/epoxy respectively. The material properties are listed in Table 2.1 and 2.2. The fine
mesh is shown in Figure 2.3 and has a length of 15 mm and a height of 1 mm. The middle ply is twice as thick
as the outer plies. As will be shown in a later section, global buckling will not occur and the critical load at the
peak of the diagram is not influenced by the boundary conditions.

Figure 2.3: 2D Laminate mesh containing 5116 elements.

The laminate acts linear-elastically until the horizontal interface elements start damaging (point A in Fig-
ure 2.4 and 2.5). When delamination continues, the failure load is reached (point B in Figure 2.4 and 2.5).
When the inclined interface elements are totally damaged, it becomes harder to reach convergence in follow-
ing iterations (point C in Figure 2.4 and 2.5). See figure 2.6 for the corresponding displacements. Note that
the interface elements in the inclined crack are not yet completely damaged when the failure load is reached.
The tractions and displacements corresponding to points B and C in Figure 2.4 are shown in Figure 2.7, for
the material E-glass/913.

Elasticity Failure
E1 43.9 GPa F2t 75.0 MPa
E2 15.4 GPa F12 43.3 MPa
G12 4.34 GPa G I c,m 0.25 N/mm
ν12 0.3 - G I I c,m 1.08 N/mm
ν23 0.4 - η 1.0 -

Table 2.1: Material properties for Hexcel E-glass/913 from [13]
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
0

100
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300

400

A) it = 11

B) it = 29

C) it = 63

displacement [mm]
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inclined interface model
iteration (it)

Figure 2.4: Load-displacement diagram. ±5000 elements, L = 15 mm tmid = 2touter = 0.5 mm. Material: E-glass/913.
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Figure 2.5: Load-displacement diagram. ±5000 elements, L = 15 mm tmid = 2touter = 0.5 mm. Material: IM7/8552 carbon/epoxy.

Elasticity Failure
E1 161.0 GPa F2t 60.0 MPa
E2 11.38 GPa F12 45.0 MPa
G12 5.17 GPa G I c,m 0.2 N/mm
ν12 0.32 - G I I c,m 1.0 N/mm
ν23 0.4 - η 1.0 -

Table 2.2: Material properties for IM7/8552 carbon/epoxy from [14]
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uy [mm]

 

 

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

 

 

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

 

 

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

Figure 2.6: Displacements perpendicular to the load direction for the reference model corresponding to point A (above), B (middle) and
C (below) in figure 2.4 (Scale factor = 5).
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Figure 2.7: Tractions and jump in upper interface elements, corresponding to point C in Figure 2.4. L = 15 mm tmid = 2touter = 0.5 mm.
Material: E-glass/913.
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2. REFERENCE MODEL

2.3. Buckling Length
Since the reference model in 2D is a relatively slender structure, global buckling may occur if the buckling
load is reached before delamination started. On the other hand, due to the symmetric mesh without imper-
fections, the model may fail in delamination while the failure load exceeds the buckling load. While the first
situation does not provide the wanted failure load due to delamination, the second situation gives unreliable
results. Therefore, the length of the laminate has to be limited to make sure that the buckling load is not
exceeded when delamination occurs. In this section, an approximation for the buckling load of a two-sided
clamped [0/90]s laminate E-glass/913 is investigated for varying dimensions to find these limitations.

For a high span-to-thickness ratio, the laminate can be considered slender. The failure load is found by
the Euler buckling load for a clamped-clamped structure:

FEuler =
π2E Ieff

l 2
buc

(2.3)

In which lbuc = l /2 is the Euler buckling length for a two sided clamped structure and E Ieff is the effective
flexural stiffness for a symmetric laminate with unit width. When the assumption of a high span-to-thickness
ratio is not valid, a finite shear rigidity has to be taken into account. Using a weighted average of the shear
stiffness, G , and an approximation of the effective area Ashear = 5

6 A as it is for rectangular isotropic cross-
sections, the Timoshenko failure load FTimoshenko becomes:

FTimoshenko =G Ashear (2.4)

The Timoshenko failure load and the Euler failure load for a clamped beam are related by the standard solu-
tion [15]:

1

Fcritical
= 1

FEuler
+ 1

FTimoshenko
(2.5)

Numerical results for the buckling load are obtained by a mesh without interface elements where a small
imperfection as shown in Figure 2.10 is added to the middle elements to trigger buckling. The load-displacement
diagrams in Figure 2.8 are cut off after 50 iterations. The sudden change in slope of the diagram indicates
global buckling. From the Figure and Table 2.3, it becomes clear that (2.5) leads to a better prediction of the
buckling load then (2.3). Note that the maximum load of the numerical model that includes buckling is not
necessarily a better approximation of the buckling load, since the applied force can still increase after global
buckling occurred.

L/h 10 15 20

FEuler [N] 1380 613.5 345.1
Fcritical [N] 1033 533.6 318.3
Fnumerical [N] 1034 533.7 318.8

Table 2.3: Buckling load for varying length. tmid = 2touter = 0.5 m. Material: E-glass/913.

tmid [mm] 0.2 0.3 0.4 0.5 0.6 0.7 0.8
touter [mm] 0.4 0.35 0.3 0.25 0.2 0.15 0.1

Fcritical [N] 562.3 558.9 550.0 533.6 507.7 469.7 416.9

Table 2.4: Analytical buckling load for several ply-thickness ratios. L = 15 mm. Material: E-glass/913.

Figure 2.9 and Table 2.4 present the analytical buckling load for several ply thickness ratios, L/h = 15 and
material properties from Table 2.1. The buckling mode is shown in Figure 2.10. Future simulations in 2D in
this work will have similar dimensions. The obtained failure load will be compared to these results to make
sure that global buckling does not occur before the failure load is reached.
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Figure 2.8: Load-displacement diagrams for varying length. tmid = 2touter = 0.5 mm. Material: E-glass/913.
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Figure 2.9: Global buckling for several ply-thickness ratios. L = 15 mm. Material: E-glass/913.
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Figure 2.10: Mesh imperfection to trigger buckling (left) and buckling mode corresponding to point A in Figure 2.9 (right).
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2.4. Boundary Conditions
The boundary conditions to simulate an infinitely long laminate are shown in Figure 2.11. If the actual length
of the model is too short, these assumptions may have an influence on the failure mechanism. Figure 2.12
shows an extreme situation where the crack opens due to the influence of reaction forces of the boundaries,
working on the outer plies.

Figure 2.11: Boundary conditions to simulate an infinitely long laminate.
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Figure 2.12: Failure mechanism influenced by boundary conditions. L = 5 mm, tmid = 2touter = 0.5 mm. Material: E-glass/913.

Although no strict values are considered as limitations, visual inspection of the tractions in the horizontal
interface elements in future simulations are carried out to make sure that the influence of the boundary
conditions on the failure mechanism is negligible.
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3
TRANSFORMED INTERFACE MODEL

To model the compressive laminate failure using a vertical crack plane, a transformation has to be applied in
the cohesive law to account for the actual angle of the fracture plane. This so called ‘transformed interface
model’ is shown in Figure 3.1 and is discussed in more detail in this section. Section 3.1 explains how this
transformation is applied in 2D. In section 3.2, the transformed model is applied to a single ply under com-
pressive loading. Since this is a relatively simple model and the failure mechanism is not influenced by inter-
ference with outer plies, the influence of the transformation on the behavior of the crack interface elements
can be verified. Subsequently, the transformed model is applied to a two-sided clamped [0/90]s laminate in
section 3.3. By looking into tractions and damage evolution in more detail, the model is compared to the
reference model from Chapter 2.

y

x

interface elements

transformed interface elements

Figure 3.1: Schematic representation of modeling inclined compressive crack in a two-sided clamped [0/90]s laminate using transformed
interface elements.

3.1. Model Description
The method of applying a transformation to the cohesive law of an interface element, referred to as the ‘trans-
formed interface model’, is explained in this section for a 2D plane strain situation. An elementary ply as
shown in Figure 3.2 is considered. The fiber orientation is perpendicular to the load direction, which means
that the material is isotropic in the analysis plane. For pure compressive loading, the fracture plane α can be
considered a material property α0 = 53o .

Interface elements with the mixed mode damage law from Turon [3] serve as a basis for the transformed
interface model. By using vertical interface elements for an inclined crack, the cohesive law (1.1) is applied
in the inclined fracture plane rather than the local {n, s}-frame. Instead of adjusting the angle of the original
rotation matrix, an extra rotation is added to the model. This way the transformation can be implemented
as a wrapper around an existing cohesive law code. The transformation of the displacement jump j from the
local {n, s}-frame to j

∗
in the inclined {n∗, s∗}-frame as shown in Figure 3.4 is done by the rotation matrix Rα:

Rαj =
[

cos(α) sin(α)
−sin(α) cos(α)

][
jn

js

]
=

[
j∗n
j∗s

]
= j

∗
(3.1)

17
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h∗Interface element

h

L

α

α

Figure 3.2: Model of compressive transverse cracking in an elementary ply.

In the {n∗, s∗}-frame, the cohesive law (1.1) is applied and the obtained traction vector t
∗

and its lineariza-
tion with respect to the displacement jump T

∗ = δt
∗

/δj
∗

are transformed back into the local {n, s}-frame.

RT
αt

∗ =
[

cos(α) −sin(α)
sin(α) cos(α)

][
t∗n
t∗s

]
=

[
tn

ts

]
= t (3.2)

RT
αT

∗
Rα =

[
cos(α) −sin(α)
sin(α) cos(α)

]
T
∗
[

cos(α) sin(α)
−sin(α) cos(α)

]
= T (3.3)

t and T are then transformed in the global coordinates with (1.8) and (1.9). Since the element force vector
and the element stiffness matrix in (1.10) and (1.11) are defined by an integral over the interface surface,
the difference in length of the interface elements h and h∗ in Figure 3.2 has to be taken into account with a
length-scale factor.

felem = h∗

h

∫
Γi

NTt dΓ= 1

cos(α)

∫
Γi

NTt dΓ (3.4)

Kelem = h∗

h

∫
Γi

NTTN dΓ= 1

cos(α)

∫
Γi

NTTN dΓ (3.5)

The position of the transformations in the algorithm for an interface element is shown in figure 3.3. Note
that the transformation is independent of the cohesive law used.
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Figure 3.3: Schematic representation of interface model (black) and transformed interface model (red).
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Figure 3.4: Interface element with local {n, s}-frame and inclined {n∗, s∗}-frame.
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3. TRANSFORMED INTERFACE MODEL

3.2. Single Ply
For a transformed interface model of a single ply, the same material properties are used as described in sec-
tion 2.2 albeit with an increased energy release rate to illustrate the cohesive behavior after crack initiation.
To verify the model, a reference model as described in chapter 2 is used with a single ply. The inclined crack
in the reference model is predefined by the topology of an interface element while the inclination is applied
as a transformation in the cohesive law of a vertical interface element in the transformed model. As shown in
Figure 3.5, 3.6 and Table 3.1, both models act the same, with a negligible difference of 0.0003 N in the failure
load. The displacement of the center point of the laminate is shown in Figure 3.7.
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Figure 3.5: Vertical displacement in a single ply correpoinding to iteration 200 in Figure 3.6. Inclined interface model (above) and trans-
formed interface model (below).
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Figure 3.6: Load-displacement diagram for a single ply, inclined and transformed model. L = 15 mm, h = 1 mm. Material: E-glass 913.

Inclined interface Transformed interface

Ffailure [N] 45.0187 45.0188

Table 3.1: Failure load for inclined and transformed interface model. L = 15 mn. Material properties from Table 3.2.
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3.3. LAMINATE ANALYSIS

Elasticity Failure
E1 43.9 GPa F2t 75.0 MPa
E2 15.4 GPa F12 43.3 MPa
G12 4.34 GPa G I c,m 2.5 N/mm
ν12 0.3 - G I I c,m 10.8 N/mm
ν23 0.4 - η 1.0 -

Table 3.2: Material properties for Hexcel E-glass/913 from [13] with increased energy release rate.
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Figure 3.7: Displacement of center point of laminate in x- and y-direction for inclined and transformed model. L = 15 mm, h = 1 mm.
Material: E-glass 913.

3.3. Laminate Analysis
The effect of the transformation in the cohesive law of interface elements in a ply on modeling transverse
compressive matrix cracking followed by delamination is assessed with the analysis of a [0/90]s laminate.
Results obtained with the transformed cohesive law are compared to results from a model where the crack
topology is predefined in the mesh. A mesh refinement study is done in section 3.3.1. In section 3.3.2, the be-
havior of the model is investigated by looking closer into the tractions and damage in the interface elements.
The model is verified for varying ply thickness ratios in section 3.3.3.

Interface elements

to

tm

to

L

α

Figure 3.8: Model of compressive transverse cracking in a middle ply, followed by delamination.

A layup of three plies is considered as in Figure 3.8. The orientation of the fibers in the outer plies is in
the load direction while the fibers in the middle ply are perpendicular to the load direction. Therefore, the
material of the outer plies is anisotropic in the analysis plane with the material properties from Table 2.1.
The vertical interface elements represent a matrix crack while the horizontal interface elements account for
delamination. For pure compression, the fracture plane angle α of the matrix crack is set to a constant value

21



3. TRANSFORMED INTERFACE MODEL

α0 = 53o . Using a damage based cohesive law for the interlaminar interface elements, snapback behavior is
obtained for both the transformed interface model and the inclined interface model where the crack topology
is predefined. Initially, both models act linearly. As the compressive stress in the plies increases, the failure
criterion in the interfece elements in the middle ply is reached. These elements start to be damaged and the
system becomes nonlinear. A wedge-shaped failure mechanism as obtained for a single ply in the previous
section (Figure 3.5) is prevented by the outer plies. This results in an increasing tensile stress in the inter-
laminar interface elements. When the failure criterion in these elements is met, they start to be damaged
and delamination can be observed. Even before the interface elements in the middle ply are fully damaged,
total damage occurs in the interlaminar interface elements near the crack. The outer plies can no longer deal
with the outward pushing force, so the failure load is reached. Post peak, delamination continues until the
interface elements in the middle ply are also fully damaged. The displacements of both models are shown in
Figure 3.9.
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Figure 3.9: Vertical displacement in a [0/90]s laminate at failure. Inclined interface model (above) and transformed interface model
(below) (scale factor = 10).

3.3.1. Mesh Refinement
So far, a single layer of elements per middle ply is used. Implicitly, the stresses and strains are assumed to
be linearly distributed over the ply thickness. Since the stresses and strains might vary nonlinearly in the
reference model, this could account for a difference in the failure load. In Figure 3.10 the load-displacement
curves for one or more layers of elements per middle ply are compared. A dense mesh is still applied along
the length of the ply to make sure that the cohesive model is a good approximation for delamination. The
obtained failure loads are shown in Table 3.4. The failure load corresponding to the reference model with 20
layers of elements per middle ply is considered to be the most realistic value.

Elements through ply thickness 1 5 20

Ffailure, inclined [N] 411.5 383.7 378.7
Ffailure, transformed [N] 419.9 416.0 416.1
difference (%) 2.0 8.4 9.9

Table 3.3: Failure loads for varying amount of elements through ply thickness. L = 15 mm, tmid = 2touter = 0.5 mm. Material: E-glass/913.

The behavior of an inclined interface model with two or more layers of elements per ply, differs signifi-
cantly from the behavior of a model with a single layer of elements per ply. This is not the case for the trans-
formed interface model. By looking into the stress and strains of the interface elements and surrounding
elements, this behavior is investigated in more detail in section 3.3.2.
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Figure 3.10: Load-displacement curves for varying amount of elements through ply thickness. L = 15 mm, tmid = 2touter = 0.5 mm.
Material: E-glass/913.

3.3.2. Tractions in Interface Elements
By plotting the stress σy y using a single and multiple layers of elements per middle ply (Figure 3.12 and
3.14), it becomes clear that the stresses vary nonlinearly throughout the thickness of the ply. The resulting
tractions in the horizontal interface elements are plotted in Figure 3.15 and 3.13 after the ninth iteration
(point A in Figure 3.11). The blue arrows represent the size and direction of the traction. For simplicity, small
displacement and rotations are assumed.
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Figure 3.11: Load-displacement curves for both the incined and the transformed interface model using multiple layers of elements per
ply. L = 15 mm, tmid = 2touter = 0.5 mm. Material: E-glass/913.

The resulting force on the outer plies is initially the same for both models, while the distribution of the
force is different. This results in more rapidly increasing damage in the interlaminar interface elements in
the inclined interface model than in the transformed interface model as shown in Figure 3.16, leading to a
lower failure load. For a complete laminate failure model not to be too expensive, a single layer of elements
per ply is preferred. In that case, the distribution of the force on the outer plies in the transformed interface
model equals the distribution of the force on the outer plies in the inclined interface model. Because of this,
the failure load of a compressive loaded laminate with a single layer of elements per ply can be modeled well
with a vertical crack plane and a transformation in the cohesive law.
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Figure 3.12: Stress σy y in a [0/90]s laminate at failure using a single layer of elements per middle ply. Inclined interface model (above)
and transformed interface model (below) (Scale factor = 10).

Figure 3.13: Tractions in interlaminar interface elements (left: inclined, right: transformed), using a single layer of elements per ply at
the same load step.
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Figure 3.14: Stress σy y in a [0/90]s laminate at failure using multiple layers of elements per middle ply. Inclined interface model (above)
and transformed interface model (below) (Scale factor = 10).

Figure 3.15: Tractions in interlaminar interface elements (left: inclined, right: transformed), using a multiple layers of elements per ply
at the same load step (iteration 9 in Figure 3.11).
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Figure 3.16: Traction and damage in interlaminar interface elements. x = 0 refers to the intersection of the matrix crack with the inter-
laminar interface elements.

25



3. TRANSFORMED INTERFACE MODEL

3.3.3. Ply Thickness Ratio
Typical snapback behavior is shown in the load-displacement curves for several ply thickness ratios in Figure
3.17. The difference in failure load as described in the previous section can be observed.
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Figure 3.17: Load-displacement curves for varying ply thickness ratio using multiple layers of elements per ply. L = 15 mm, ttotal = 1
mm. Material: E-glass/913.

tmid [mm] 0.4 0.5 0.6 0.7 0.8
touter [mm] 0.3 0.25 0.2 0.15 0.1

Ffailure, inclined [N] 476.4 381.2 307.5 245.6 190.2
Ffailure, transformed [N] 514.9 416.0 335.3 265.1 203.1
difference (%) 8.1 9.2 9.0 7.9 6.8

Table 3.4: Failure loads for varying ply thickness ratio using multiple layers of elements per ply. L = 15 mm, ttotal = 1 mm. Material:
E-glass/913.

When a linear stress distribution is assumed, the transformed interface model is a good approximation
of the inclined interface model. This can be seen in Figure 3.18 and Table 3.5 where the load displacement
curves for several ply thickness are shown, using a single layer of elements in the middle ply. The difference
in failure load is merely 2% and decreases when the influence of the outer plies on the failure load decreases.

tmid [mm] 0.4 0.5 0.6 0.7 0.8
touter [mm] 0.3 0.25 0.2 0.15 0.1

Ffailure, inclined [N] 511.8 411.7 332.2 264.3 203.9
Ffailure, transformed [N] 522.1 419.9 336.6 265.8 204.1
difference (%) 2.0 2.0 1.3 0.6 0.1

Table 3.5: Failure loads for varying ply thickness ratio using a single layer of elements per ply. L = 15 mm, ttotal = 1 mm. Material:
E-glass/913.
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Figure 3.18: Load-displacement curves for varying ply thickness ratio using a single layer of elements per ply. L = 15 mm, ttotal = 1 mm.
Material: E-glass/913.

3.3.4. Conclusion
From the laminate analysis, it becomes clear that the transformation in the cohesive law is a good approx-
imation of the compressive behavior of a laminate. The difference in the crack geometry when a vertical
crack plane is used compared to a reference model where the inclined crack topology is predefined, result in
a slightly higher failure load. This difference increases for an increasing influence of the outer plies on the
failure load. Still, for relatively thick outer plies and a thin cracked middle ply, the difference in failure load is
only a few percent.

Above holds when a single layer of elements per ply is used. Implicitly, a linear stress distribution through
the thickness is thereby assumed. When the non-linear stress distribution is investigated in 2D, it is observed
that the actual distribution of the stress in the plies in the transformed model is different compared to the
reference model where the crack topology is predefined. A 3D model would become too expensive with mul-
tiple layers of elements per ply, especially when a crack runs through the elements. Therefore, in the following
chapter the transformed method is restricted to failure models with a single layer of elements per ply.
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4
3D ANALYSIS

A transformation in the cohesive law of an interface as tested in Chapter 3 will be implemented in a 3D model
in this Chapter. The crack propagation is modeled with the phantom node method wherein the fiber orien-
tation determines the direction of the crack propagation. Section 4.1 describes how the fracture plane angle
is computed within the algorithm of the phantom node method and how thereafter a transformation to the
constitutive law of the cohesive segment is applied. A mesh refinement study is done and the results are ver-
ified with a [0/90]s 2D model from Chapter 3. Furthermore, the influence of a varying fiber direction θ and
fracture plane α are investigated in section 4.2.2 and 4.2.3 respectively.

4.1. Model Description

z y
x

θ

τL

τT

σn

τ21

σ22

α Fiber orientation

Figure 4.1: Fracture of a unidirectional lamina subjected to transverse compression and in-plane shear.

The laminate failure model by Van der Meer [2] serves as a basis of the so called ‘transformed 3D model’.
In Van der Meer’s model, inter-fiber cracks are dealt with by the phantom node method as described in the
introduction (section 1.4.3). Once a certain failure criterion is reached, a crack starts at a predefined location
in the ply and propagates in the direction of the fiber orientation. This is taken into account by the angle θ
that is input to the model. The fiber orientation θ and therewith the orientation of the fracture plane results in
a combined compressive and shear stress in the cracked interface as shown in Figure 4.1. The fracture plane
angle α for a combined compressive and shear stress is dependent on the actual σ22/τ21-ratio. Therefore,
the fracture plane angle α has to be found and initialized for every element that is crossed by the crack path
before the cohesive law is applied in the phantom node method. This is schematically represented in the
global algorithm in Figure 4.2.

The failure criterion LaRC03#1 by Davila [16] is used for the initiation of a new crack segment as well as for
determining the fracture plane angle. The failure index FI is related to the longitudinal and transverse shear
strength SL and ST and the effective shear stresses τL

eff and τT
eff.
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Figure 4.2: Position initialization α and transformations (red) and crack growth model in global algorithm.

FIM =
(
τT

eff

ST

)2

+
(
τT

eff

SL
is

)2

≤ 1 (4.1)

The subscript M indicates matrix failure. With α, τL , τT , σn , τ21 and σ22 as shown in Figure 4.1, the effective
shear strengths τL

eff and τT
eff are defined as:

τT
eff = 〈|τT |+ηTσn〉 = 〈−σ22 cosα

(
sinα−ηT cosα

)〉 (4.2)

τL
eff = 〈|τL |+ηLσn〉 = 〈cosα

(|τ21|+ηL cos22 cosα
)〉 (4.3)

where the terms ηT and ηL are referred to as coefficients of transverse and longitudinal influence, respectively,
and the operand 〈x〉 = 1

2 (x+|x|). It is assumed that the longitudinal shear strength equals the transverse shear
strength to be consistent with the cohesive model, which has only one shear strength parameter.

ST = SL (4.4)

The compressive strength Y C and the coefficients of transverse and longitudinal influence can then be
found using the fracture plane angle α0 for pure compression:

Y C = S

cosα0

(
sinα0 + cosα0

tan2α0

) (4.5)

ηT = −1

tan2α0
(4.6)
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ηL =− SL cos2α0

Y C cos2α0
(4.7)

According to Puck [6], the fracture plane for pure compression α0 is assumed to be 53 degrees according
to Puck [6]. For other σ22/τ21-ratios, the correct angle of the fracture plane is the one that maximizes the
failure index (FI). As done by Davila [16], this angle is obtained by searching for the maximum of the FI within
a loop over the range of possible fracture angles: 0 < α < α0. A graphical representation of matrix failure
envelopes at various fracture angles is shown in Figure 4.3.
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Figure 4.3: Matrix failure envelopes for E-glass/913 lamina subjected to in-plane transverse compression and shear loading.

Once the fracture plane angle α is initialized for a certain integration point, a transformation is applied
to the displacement jump in that point in the local reference frame, similar as done in 2D (Chapter 3) by the
rotation matrix Rα:

Rαj =
 cos(α) 0 sin(α)

0 1 0
−sin(α) 0 cos(α)

 jn

js

jt

=
 j∗n

j∗s
j∗t

= j
∗

(4.8)

In the {n∗, s∗, t∗}-frame, the cohesive law (1.1) is applied and the obtained traction vector t
∗

and its lin-
earization with respect to the displacement jump T

∗ = δt
∗

/δj
∗

are transformed back into the local {n, s, t }-
frame.

RT
αt

∗ =
cos(α) 0 −sin(α)

0 1 0
sin(α) 0 cos(α)

t∗n
t∗s
t∗t

=
tn

ts

tt

= t (4.9)

RT
αT

∗
Rα =

cos(α) 0 −sin(α)
0 1 0

sin(α) 0 cos(α)

T
∗
 cos(α) 0 sin(α)

0 1 0
−sin(α) 0 cos(α)

= T (4.10)
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t and T are then transformed in the global coordinates with (1.13) and (1.14). Note that the transformation
from the displacement jump in the global {x, y, z} coordinates to the inclined fracture plane {n∗, s∗, t∗} is
basically described by two separate rotations: A rotation θ over the z-axis and a rotation α over the s-axis:

RαRθj = j
∗

(4.11)

Since the element force vector and the element stiffness matrix in (1.15), (1.16) and (4.14) are defined by
an integral over the fracture plane, the difference in length of the fracture surface in s and s∗-direction of the
fracture surface has to be taken into account by a length-scale factor.

fint
A =

∫
ΩA

BTσdΩ+ 1

cos(α)

∫
Γc

NtdΓ (4.12)

fint
B =

∫
ΩB

BTσdΩ− 1

cos(α)

∫
Γc

NtdΓ (4.13)

K =
[

KA 0
0 KB

]
+ 1

cos(α)

[
Kj −Kj

−Kj Kj

]
(4.14)

4.2. Laminate Analysis
The effect of the transformation in the constitutive law of cohesive segments in a 3D model is assessed with
the analysis of several [0/θ]s laminates with different fiber directions θ in the middle ply. The model is veri-
fied for θ = 90o with the transformed interface model from Chapter 3 and a mesh refinement study is done
in section 4.2.1. The influence of varying fiber directions is discussed in section 4.2.2 and the influence of
different fracture plane angles is discussed in section 4.2.3.

× ×
× ×

Figure 4.4: 6-noded wedge element with 2×2 Gauss integration in the cohesive segment (left) as used in the 3D laminate mesh (right).

When a [0/90]s laminate in 3D is considered with a mesh as shown in Figure 4.4, a similar failure mech-
anism is obtained as described in Chapter 3. The orientation of the fibers in the outer plies is in the load
direction while the fibers in the middle ply are placed under an angle θ = 90o with the load direction. There-
fore, the material of the outer plies is anisotropic in the analysis plane with the material properties from Table
2.1. The phantom node method is used for inter-fiber fracture, while horizontal interface elements account
for delamination. The fracture planeα of the matrix crack is computed per integration point whenever a new
crack segment is introduced. Using a damage based cohesive law for the interlaminar interface elements,
snapback behavior is obtained for the transformed 3D model. Initially, the model acts linearly. As the com-
pressive stress in the plies increases, the failure criterion in the middle ply is reached and a cohesive segment
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is introduced. Within a few iterations, the complete crack is created. The cohesive segments are damaged
and the system becomes nonlinear. A wedge-shaped failure mechanism is prevented by the outer plies. This
results in an increasing tensile stress in the interlaminar interface elements. When the failure criteria in these
elements is met, they start to be damaged and delamination can be observed. When total damage occurs
in the interlaminar interface elements near the crack, the outer plies can no longer deal with the outward
pushing force and the failure load is reached. Post-peak, delamination continues.

4.2.1. Mesh Refinement
The transformed 3D model is verified with the 2D transformed interface model from Chapter 3 and mesh
refinement is applied. If a plane stress condition is assumed in the 2D model, both models initially have the
same stiffness. The failure load differs 1.52% if 2610 elements are used in the 3D model and 0.62% if 10412
elements are used. The load-displacement curves are shown in Figure 4.5. With 600 elements in 2D, the
amount of elements along the length of a single ply is 200. That is the same as in the fine 3D mesh and twice
as much as in the course 3D mesh.
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Figure 4.5: Load-displacement curves for 2D and 3D model. L = 10 mm, tmi d = 2touter = 0.5 mm. Material: E-glass/913.

4.2.2. Fiber Direction
Within the phantom node method, the orientation of the crack path θ is initialized per new cohesive seg-
ment according to the fiber orientation θ. A top view of the longitudinal displacement d x of the middle plies
for three laminates [0/90]s , [0/50]s and [0/30]s in Figure 4.6 shows that the varying fracture plane α that is
initialized at the same time, does not influence the direction of the crack propagation.

With different fiber directions, diferent σ22/τ21-ratios are obtained, resulting in different failure modes.
For the [0/90]s laminate, mode C occurs with a fracture planeα0 = 53o as in the 2D situation (Figure 4.7). The
shear stress τ21 is unequal to zero in the [0/50]s laminate, but as shown in Figure 4.8, still mode C occurs with
α> 0. For the [0/30]s laminate, α= 0 and mode B occurs (Figure 4.9). The initialization of the fracture plane
is discussed in more detail in section 4.2.3.
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[0/90]s

[0/50]s

[0/30]s

Figure 4.6: Displacement d x of middle ply, E-glass/913 lamina at failure (scale factor = 10).

Figure 4.7: [0/90]s E-glass/913 laminate. α=α0 = 53o (scale factor = 10).
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Figure 4.8: [0/50]s E-glass/913 laminate. α≈ 45o (scale factor = 10).

Figure 4.9: [0/30]s E-glass/913 laminate. α= 0o (scale factor = 10).
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4.2.3. Fracture Plane Angle
Within the 3D model, the fracture plane is initialized for every integration point of a new created cohesive
segment by the phantom node method. With an accuracy of 0.1 forα, the difference ofα for two neighboring
integration points in an element as shown in Figure 4.4 happens to be smaller than 0.1. For neighboring
elements, the difference can be much bigger, depending on the σ22/τ21-ratio in that point and the failure
criterion used. This is shown for several laminates in Figure 4.10. For relatively small τ21 values (mode C), the
oscillation ofα along the crack path is also small. For a relatively high τ21 (mode B),α is zero for all integration
points. When the σ22/τ21-ratio oscillates between mode B and C (see Figure 4.3), a huge difference of α in
neighboring elements can be observed. See for instance the peak for a [0/40]s laminate in Figure 4.10.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

20

40

crack length [mm]

α
[o

]

[0/30]s

[0/40]s

[0/50]s

[0/60]s

[0/70]s

Figure 4.10: Fracture plane α along crack path of several [0/θ]s laminates (2610 elements per laminate).

For a fine mesh (10412 elements), α is plotted per element on the crack path of a [0/50]s laminate. The
oscillation does not vanish with mesh refinement, but it can also be seen that even when a mode switch
occurs, it does not influence the performance of the model.
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Figure 4.11: Fracture plane α along crack path of a [0/50]s laminate (10412 elements).
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The fracture plane of a transverse compressive loaded laminate is typically not perpendicular to the load
direction. In this thesis, this compressive behavior is approximated with a vertical crack plane by applying a
transformation in the cohesive law. In 2D, this is done with interface elements and a constant fracture plane
angle. In 3D, the transformation is applied to the cohesive segments, created with the phantom node method
where the fracture plane angle depends on the stress state in the crack tip.

Compared to a reference model with predefined crack topology by interface elements, the method of
transformation in the cohesive law results in the same forces acting on the crack plane for a compressive
loaded single ply. The transformation allows elements near the cracked surface to slide over a transformed
axis. Therefore, interpenetration of the elements is not longer prevented and the relative displacements of
the nodes along the crack are exactly the same as in the reference model.

Outer plies in a laminate initially prevent the wedge-shaped failure mechanism of a cracked middle ply. In
the extreme case of relatively thick outer plies and a thin cracked middle ply, the difference in failure load of
the transformation in the cohesive law is only a few percent compared to a reference model with predefined
crack topology. A single layer of elements per ply is considered in this thesis, for a 3D model not to be too
expensive. The linear stress distribution throughout the ply thickness that is implicitly assumed is similar for
both the transformed model and the reference model. It is shown in 2D that the actual non-linear distribution
for both models is different.

The transformation is basically a wrapper function around the cohesive law. Therefore, it is easily imple-
mented in existing finite element programs. This is done for a 3D laminate failure model where the crack
propagation is modeled with cohesive segments, introduced by the phantom node method. The actual frac-
ture plane angle is dependent on the stress state in the crack tip. The angle can be computed and initialized
whenever the stress state in the crack tip is evaluated. And so, the transformation can be applied to the con-
stitutive law of the cohesive segment, even when the fracture plane angle is not known a priori. This results
in a good approximation of compressive behavior in a 3D compressive loaded laminate, without the need to
predefine the crack topology and without complex algorithms that deal with the crack plane in the extended
finite element method.

Where possible, the method of transformation in the cohesive law is verified with a reference model with
predefined interface elements for the crack topology. In 3D, it is difficult to define a reference model where
the crack topology is predefined, hence the need for an approximative method. In this case, experimental
results of transverse compressive loaded laminates are needed to verify the model. Unfortunately, these ex-
perimental results are not widely available yet. Nevertheless, this is the first laminate failure model that takes
compressive failure into account.

In this work, one crack in the laminate is considered. In a compressive loaded laminate, typically multiple
cracks occur before the ultimate failure load is reached. The actual algorithm that deals with the transfor-
mation in the cohesive law is relatively simple. This is particularly useful with many cracks in one model. It
would be interesting for future work to investigate the possibilities and limitations when multiple cracks are
considered.
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