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Uncertainty in spatial average undrained shear strength with a site-specific
transformation model
M. G. van der Krogt a,b, T. Schweckendiek a,b and M. Koka

aFaculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands; bGeo Engineering Unit, Deltares, Delft, The
Netherlands

ABSTRACT
Transformation models are used to infer geotechnical properties from indirect measurements. A
site-specific transformation model can be calibrated with direct and indirect measurements from
a site. When such a model is used, then spatial variability, measurement errors and statistical
uncertainty propagate into the uncertainty of the spatial average, which is the variable of
interest in most geotechnical analyses. This research shows how all components enter the total
uncertainty of a transformation model for undrained shear strength from cone resistance. A
method is proposed to estimate the uncertainty in the spatial average undrained shear strength,
particularly focusing on the role of averaging of all spatially variable error components. The main
finding is that if a considerable share of the measurement and transformation errors is random
or spatially variable, the uncertainty estimates can be considerably lower compared to methods
proposed earlier, and hence, characteristic values can be considerably higher.
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1. Introduction

Soil properties are variable in space, because of various
processes during the formation process (e.g. Lumb
1966). This spatial variability can be described by random
fields with the statistical properties mean, variance and
scale of fluctuation (Vanmarcke 1977, 1983). The impact
of spatial variability on geotechnical engineering pro-
blems is widely recognised (see, e.g. Fenton and Griffiths
2002; Griffiths, Huang, and Fenton 2009; Cho 2007;Hicks
and Samy 2002; Ahmed and Soubra 2012). Besides spatial
variability, geotechnical parameters are also uncertain
because of measurement uncertainty, statistical uncer-
tainty and transformation uncertainty, see Figure 1
(Phoon andKulhawy 1999a, 1999b; Baecher andChristan
2003; Uzielli 2008; Cao, Wang, and Li 2017).

According to, among others, Phoon and Kulhawy
(1999a, 1999b), the total uncertainty is a combination
of the uncertainties from the various sources. Since geo-
technical failure modes usually involve a volume of soil,
we are in reliability-based design interested in the (total)
uncertainty in the spatial average of the geotechnical par-
ameter (e.g. shear strength), involving both spatial varia-
bility and epistemic uncertainties. Phoon and Kulhawy
(1999b) propose to apply variance reduction as proposed
by Vanmarcke (1977) to the variance related to spatial

variability (s2
spatial), and add the remaining variances to

determine the total uncertainty:

s2 = G2 · s2
spatial + s2

measurement + s2
statistical

+ s2
transformation (1)

Essentially, determining the total variance as in Equation
(1) implies the assumption that measurement uncer-
tainty, statistical uncertainty and transformation uncer-
tainty relate to systematic errors, which are not subject
to (spatial) averaging. While this assumption is certainly
conservative in the sense that it will lead to a high uncer-
tainty estimate in engineering applications, the question
is whether we should consider these error terms as
entirely systematic and not subject to spatial averaging
and what difference it would make in terms of prob-
ability distributions and characteristic values, if we fol-
lowed a more differentiated approach. In this paper, we
will investigate these questions for the example of site-
specific transformation models.

To estimate geotechnical parameters from indirect
measurements (e.g. CPTs) we often use transformation
models. Instead of using a generic transformation model
from literature, we can calibrate a site-specific transform-
ation model using direct measurements of a soil property

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

CONTACT M. G. van der Krogt m.g.vanderkrogt@tudelft.nl Faculty of Civil Engineering and Geosciences, Delft University of Technology, Postbox 5048,
2600 GA Delft, The Netherlands; Geo Engineering Unit, Deltares, Delft, The Netherlands

GEORISK
https://doi.org/10.1080/17499518.2018.1554820

http://crossmark.crossref.org/dialog/?doi=10.1080/17499518.2018.1554820&domain=pdf
http://orcid.org/0000-0001-5352-2986
http://orcid.org/0000-0002-8292-595X
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:m.g.vanderkrogt@tudelft.nl
http://www.tandfonline.com


(e.g. laboratory results) and indirect measurements (e.g.
cone resistance) at the same location, across the site of
interest. Such a site-specific transformation model can
then be used to estimate the geotechnical parameter of
interest using less costly indirect measurements. In
Dutch dike design, for example, a site-specific transform-
ation model is often used to estimate the depth-average
undrained shear strength (ratio) from normalised cone
resistance. Because of all errorsmentioned above, the pre-
diction by such an empirical transformation model
is uncertain. In practice, it remains challenging to prop-
erly quantify this uncertainty, in particular the distinction
between spatially variable components and random
errors which are subject to spatial averaging and systema-
tic errors which are not.

In Sections 2 and 3, we analyse how the different error
terms propagate into the uncertainty in the estimated (de-
trended) spatial average using a site-specific transform-
ation model for undrained shear strength from cone
resistance, for a synthetic random field example. We par-
ticularly focus on the distinction between random and
systematic errors, and how this affects the uncertainty in
the spatial average of the undrained shear strength. Ulti-
mately, we propose a method to estimate the uncertainty
in the spatial average at locations of interest with a CPT in
Section 4, accounting for the averaging of random errors
and accounting for systematic errors. We also propose a
method to estimate the spatial average and the uncertainty
in the spatial average at other locations in the same stat-
istically homogeneous deposit, based on the observed
variability of multiple CPTs.

2. Characterisation of the spatial average
parameter using CPTs

2.1. Introduction

In line infrastructure projects, we often want to estimate
the depth-average of the geotechnical parameter in a
statistically homogenous layer, since failure mechanisms
typically involve a vertical zone of influence which is
much larger than the vertical scale of fluctuation, for

instance, shear planes crossing a soil layer by several
metres vertically. Usually, this concerns a geological
deposit that is present over a site of about 1–10 km, at
least for long linear infrastructures such as dikes, roads
or railways. We use CPTs to estimate the undrained
strength at locations where a CPT is available. The esti-
mated depth-average shear strength at a cross-section is
then representative for a section shorter than the hori-
zontal scale of fluctuation. At cross-sections without a
CPT, the depth-average can be estimated based on the
average of the entire site and the variability of the spatial
averages across the site.

In both occasions, we need to estimate the uncertainty
in the estimated spatial average. For the remainder of this
article, the term spatial average refers to the depth-aver-
age. In this section, we propose how to estimate the
uncertainty in the spatial average at cross-sections with
a CPT and cross-sections without a CPT, based on
known or estimated error statistics, particularly focuss-
ing on the difference between random and systematic
errors. The observed variability is compared with the
estimated uncertainty in the spatial average, using a syn-
thetic random field with known values and an assumed
perfect transformation model.

2.2. Uncertainty in the spatial average

The undrained shear strength at a cross-section where a
CPT is available, can be estimated using a transformation
model, see Equation (2). Here, sIu is the indirectly
measured undrained shear strength, qnet the normalised
cone resistance1 and Nkt the transformation model par-
ameter. The depth-average (denoted by a bar) parameter
�sIu can be estimated by the numerical mean of all CPT
measurements N (typically every 2 cm), see Equation
(3) and Figure 2.

sIu =
qnet
Nkt

(2)

�sIu =
1
N

∑i=N

i=1

sIu,i (3)

Figure 1. Overview of geotechnical uncertainties (Cao, Wang, and Li 2017; adapted from Phoon and Kulhawy 1999a).
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We can estimate the spatial average at the cross-section
accurately, because a CPT measurement is almost con-
tinuous. The observed data scatter around the spatial aver-
age stems from small-scale vertical spatial variability and
random errors (white noise). The spatial variability
around the spatial average can be estimated from the
total point variance if we assume that the total point var-
iance of the site (s2) is the linear sum of vertical fluctu-
ation (s2

f ) and fluctuation of the spatial average (s2
av).

When we substitute the definition of the variance
reduction function (Vanmarcke 1977) (G = sav/s) into
this, we obtain an expression for the expected variance
around the spatial average in a CPT: s2

f = (1− G2) · s2.
The observed data scatter stems also from random
measurement error (1qnet ), which is an independent
error source and typically modelled as multiplicative
error. Hence, we write the total observed scatter in
terms of coefficient of variation (CoV), see Equation (4).

ssIu,j
= �sIu ·

����������������������������������
(1− G2) · CoV2

spat + CoV2
1qnet

( )√
(4)

In line with Phoon and Kulhawy (1999b), the total uncer-
tainty in the spatial average is the linear sum of spatial varia-
bility, statistical uncertainty, systematic measurement error
(bias) and transformation error, where the error terms are
assumed to be independent, see Equation (5). The statistical
uncertainty in the spatial average is dependent on the num-
ber of measurementsNj and the observed variance in CPT j
(s2

sIu,j
), from Equation (4). For the remainder of this article,

we will use the term random error for white noise in the
individual measurements and systematic error for a bias
in a CPT or for the entire field (i.e. site).

s2
�sIu,j

= 1
Nj

· s2
sIu,j

+ s2
meas,sys + s2

trans (5)

In a statistically homogeneous layer, our best estimate
for the spatial average at a cross-section without a CPT, is
the mean value of the spatial averages fromM CPTs across
the site, see Equation (6) and Figure 2. We can estimate the
uncertainty in the spatial average at a cross-section without
a CPT from the variance of the spatial averages from mul-
tiple CPTs, accounting for statistical uncertainty, see
Equation (7).

The goal of this paper is to investigate the effect of
random errors in contrast with the assumption of only
systematic errors. To have a clear comparison, we base
ourselves on the same assumptions as Phoon and Kul-
hawy (1999b): a linear combination of spatial variability
and error terms, see Equation (8).

m�sIu
= 1

M

∑j=M

j=1

�sIu,j (6)

s2
�sIu
= 1+ 1

M

( )
· 1
M − 1

∑j=M

j=1

(�sIu,j − m�sIu
)2 (7)

s2
�sIu
= G2 · s2

spat + s2
meas,sys + s2

trans + s2
stat (8)

2.3. Example

We evaluate the uncertainty estimation according to
Equation (5) with a synthetic random field example
with known values for the undrained shear strength su
and errors. For the sake of a good comparison, we use
synthetic data for which we generate the true but sub-
sequently unknown values. To this end, we generate a
stationary Gaussian random field of 200×2000(v:h)
cells, representing a site with a 2 m thick soil layer
over 2 km length, with Circulant Embedding (Kroese
and Botev 2015). The field size and resolution are
expected to be large enough to sample enough indepen-
dent samples and small enough to be computationally
efficient. The soil property in the synthetic true field is
normally distributed with mean value msu = 20 kPa and
standard deviation ssu = 4 kPa. In this example, it is
ignored that most geotechnical parameters are non-
negative and therefore other probability distributions
might be more suitable. The assumption of a statistically
homogeneous random field with constant mean is jus-
tified if the field data is de-trended. A squared exponen-
tial correlation function is applied with a horizontal and
vertical correlation length of respectively 25 and 0.25 m
(equivalent with dh = 44 m and dv = 0.44 m), consistent
with literature (among others, Phoon and Kulhawy
1999a). From the true known field su, the measured
field for the indirect measurement qnet is generated,

Figure 2. Schematic overview of a 2D site (length and depth).
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according to Equation (9).

qnet = su · Nkt · 1qnet (9)

This example considers a perfect transformation model
with a deterministic value of Nkt = 20. The multiplicative
random measurement error 1qnet � N(1, CoV1qnet

) is var-
ied. We estimate the depth-average shear strength �sIu,j at
a location with a CPT, according to Equation (2) and
estimate the uncertainty in the spatial average at this
CPT, based on the observed data scatter, using Equation
(5). The analysis is done for a layer thickness of 0.2, 1.0
and 2.0 m and a measurement interval of 2 cm, such that
Nj= [10,50,100]. We compare the estimated uncertainty
(according to Equation (5)) with the modelled uncer-
tainty in this synthetic example: the difference between
the estimated and the true known spatial average
s�sIu,j = �sIu,j −�su,j. When there is only a random measure-
ment error, the estimated uncertainty coincides quite
well with modelled uncertainty, see Figure 3. As the ran-
dom error increases, it dominates over the statistical
uncertainty which is causing the difference between the
true and estimated uncertainty (only 1000 simulations
are done).

3. Uncertainty in the site-specific
transformation model

3.1. Introduction

We have shown how to estimate the spatial average and
the uncertainty in the local spatial average based on a
CPT or based on the variability of multiple CPTs. In
the example in Section 2.3, we assumed a perfect

transformation model, which is unrealistic but served
the purpose of clarification. When we use a “generic”
transformation model from literature it is likely that the
empirical model is biased for the entire site (Ching,
Phoon, and Wu 2016). This systematic transformation
uncertainty should be accounted for in the estimated
spatial average parameter, see Equation (5). For trans-
formation models calibrated and used at a specific site,
we do not expect a systematic bias for the entire site. How-
ever, locally the transformation model parameter may
deviate from the site-average, since the transformation
model error is most certainly spatially variable, because
it is, at least to some degree, due to missing factors that
are spatially variable, such as over consolidation ratio,
water content and plasticity index. Since the stress state
(e.g. loading history) is constant in a vertical profile, we
assume that the transformation error is largely systematic
per CPT, but independent from one location to the other,
if the distance between two locations is larger than the
scale of fluctuation. Ching, Phoon, andWu (2016) showed
that the vertical scale of fluctuation of the transformation
error is relatively large, compared to the layer thickness.
Hence we can justify the assumption that the transform-
ation error is fully correlated in depth, and independent
per CPT, at least for practical engineering purposes.

Fundamentally, transformation uncertainty is a
model uncertainty. In principle, model error is meant
to cover the model prediction errors for perfectly
known model inputs. In practical terms it is, however,
impossible to determine model uncertainty in a clean
fashion, nor transformation uncertainty for that matter,
because such perfect conditions are not available. It is,
for instance, practically impossible to calibrate a site-
specific transformation model where two paired
measurements are at exactly the same location. There-
fore, spatial variability causes additional error in the
transformation uncertainty estimate. Moreover, there is
measurement error in both CPT and laboratory
measurements, which will have random and systematic
components. This section analyses the propagation of
these extraneous errors into the uncertainty in the trans-
formation model parameter, as the question to be
answered is to what degree transformation error is ulti-
mately random or systematic. Subsequently, we will
use this information to assess which components even-
tually matter for the uncertainty in the spatial average.

3.2. Calibration of the transformation model

The empirical transformation model used to estimate the
undrained shear strength sIu from the normalised cone
tip resistance has been presented in Equation (2). After
pairing measured cone resistance with direct

Figure 3. Modelled uncertainty versus estimated uncertainty in
the indirectly estimated spatial average from a CPT.
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(laboratory) measurements from (nearly) the same
location (qnet,i ; sDu,i), we perform a linear regression
analysis on n pairs from different locations within the
same site (and deposit) to obtain an estimate for the
transformation model parameter N̂kt and the variability
in sIu, represented by the residuals. Note that because of
soil mechanical considerations, the regression line is
forced through the origin.

Two regression methods are compared: minimising
the standard deviation (SD) and minimising the coeffi-
cient of variation (CoV), see Equations (10) and (11),
respectively. If the variability around the regression line
is constant, minimising the standard deviation is the
expected correct regression method; if the scatter around
the regression line increases with the mean, minimising
the coefficient of variation is expected to be the better
option.

ssIu =
�������������������������������
1

n− 1
·
∑i=n

i=1

(sDu,i − qnet,i/N̂kt)
2

√√√√ (10)

CoVsIu =

���������������������������������
1

n− 1
·
∑i=n

i=1

sDu,i − qnet,i/N̂kt

qnet,i/N̂kt

( )2
√√√√ (11)

3.3. Example

The calibration of the site-specific transformation model
is demonstrated for the synthetic random field example

as in Section 2.3. From the random field with true
known values for the undrained shear strength su we
sample fields for the direct measurement sDu and the
indirect measurement qnet , by adding random measure-
ment errors (e.g. sample disturbance) and model errors
to the samples, according to Equations (12) and (13).
Then we select n locations where we couple a measured
shear strength to a measured cone resistance and per-
form a regression analysis to obtain the estimate for
the transformation model parameter, see Figure 4.

sDu = su · 1sDu (12)

qnet = (su · (Nkt · 1t)) · 1qnet (13)

First, we consider an ideal transformation model with a
deterministic value of Nkt = 20 and perfect measurements
(CoV1qnet

= CoV1sDu
= CoV1t = 0). The transformation

model for the site is calibrated with 25 CPTs (minimum
spacing 50 m) and 25 laboratory test at arbitrary depths
(see Figure 5). We estimate the transformation model par-
ameter from the slope of the regression (Figure 6): N̂kt=1/
0.05 = 20. The scatter in the regression is zero due to the
absence of measurement and transformation errors.

3.4. Error propagation into the transformation
model parameter

In this section, we will analyse how spatial variability,
measurement errors and transformation errors

Figure 5. Direct and indirect measurements (circles and crosses, respectively) from synthetic random fields.

Figure 4. Schematic representation of the simulated random fields and transformations.
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propagate into the transformation model. From the
regression analysis, we obtain the variability in the
indirectly measured undrained shear strength CoVsIu . If
the CoV is constant, then total uncertainty in the trans-
formation model parameter CoVNkt = CoVsIu . We
assume the errors to be independent and therefore the
uncertainty in the transformation model parameter Nkt

can be written as

CoV2
Nkt

= CoV2
spat + CoV2

1sDu
+ CoV2

1qnet
+ CoV2

1t
(14)

There will always be a non-zero distance between direct
and indirect measurements. Therefore, the underlying
true values of undrained shear strength will not exactly
be the same, but strongly correlated if close together.
We can use the semi-variogram to estimate the contri-
bution of (true) spatial variability between the measured
values to the uncertainty in the transformation model
parameter:

CoVspat =
������������������������������
2 · CoV2

su · (1− r(Dx, Dy))
√

(15)

For the measurement and transformation errors, we
expect that only random errors and spatially variable
errors lead to variability of the indirectly measured
undrained shear strength. Therefore, CoV2

1su
, CoV2

1qnet
and CoV2

1t
in Equation (14) relate to the random and

spatially variable errors. For errors in the independent
variable (cone resistance), we also expect a bias due to
the nature of the regression analysis, see, e.g. Greene
(2002).

Systematic measurement errors in the CPT measure-
ments do not add to the variability in the transformation
model but will lead to a higher or lower value of the

transformation model parameter. However, the
measurements are still correlated to the correct direct
measurements and therefore, systematic measurement
errors in the CPT measurements cancel out if we use
equally biased measurements with a biased transform-
ation model. Systematic measurement errors in the
direct measurement, however, are problematic, because
those lead to a non-quantifiable bias in the transform-
ation model.

3.5. Results

We use the example from Section 3.3 to investigate the
effect of the above-mentioned errors on the calibrated
transformationmodel parameter N̂kt and the uncertainty.
To that end, we assume a horizontal and vertical distance
between direct and indirect measurements of respectively
1.0 m and 0.10 m and the following (model) error
assumptions:

. random measurement error direct measurement
CoV1sDu

=10%; such that 1sDu � N(1, 0.1)
. random measurement error indirect measurement

CoV1qnet
=10%; such that 1qnet � N(1, 0.1)

. spatially variable transformation error CoV1t=10%;
such that 1t � N(1, 0.1)

The results of a simulation are shown in Figure 7.
The uncertainty in the transformation model parameter
(and variability in the indirectly measured undrained
shear strength) is estimated to be: CoVNkt

=�����������������������������
0.112 + 0.12 + 0.12 + 0.12

√ = 0.21.

Figure 6. Calibration of the transformation model parameter
without uncertainty.

Figure 7. Calibration of the transformation model parameter
with extraneous uncertainty. The dashed lines indicate the 90%
confidence bounds.
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Note, that the total scatter is relatively large, com-
pared to the spatial variability in sIu itself, which is
quite common in geotechnical engineering. Figure 8
shows the results for N̂kt and CoVNkt for 1000 random
fields. On average, the transformation model parameter
is biased for both regression methods. This bias is caused
by the scatter due to spatial variability, randommeasure-
ment error in the cone resistance and transformation
error. Random measurement errors in the shear strength
from laboratory tests lead to scatter, but do not contrib-
ute to the bias. Compared to the statistical uncertainty,
regression with minimising SD is virtually unbiased for
a Gaussian (normally distributed values) field, see Figure
8. The results for N̂kt and CoV with different values of the
CoV of the error terms are shown in Table 1.

It is found that the variability in indirectly
measured undrained shear strength (or uncertainty
in the transformation model parameter) obtained by
minimising SD, is on average slightly higher than
what was expected based on the modelled errors.

The difference increases with increasing variability
and can likely be attributed to additional model error
due to the regression method.

The statistical uncertainty in N̂kt is a systematic error
and depends only on the number of independent
measurement pairs. For this example, the uncertainty
is CoVtrans,stat = CoVNkt/

��
n

√
. Note, that multiple

measurement pairs in one CPT can be not fully indepen-
dent, because they can have a correlated error.

If the soil property in the random field is assumed to
be lognormally distributed, it is found that both methods
are equally biased. In this case, there is no preference for
one of the two regression methods.

4. Uncertainty in the spatial average

4.1. Introduction

We showed that a virtually unbiased transformation
model parameter can be obtained for a site with the

Table 1. Average results for 1000 times repeated calibration of the transformation model parameter and uncertainty, for different
combinations of errors and using two different regression methods.

Modelled extraneous errors Regression method Expected uncertainty
Error term CoV Δx = 1m Min. CoV Min. SD

1sDu [-] 1qnet [-] 1t [-] Δy [m] Nkt CoVNkt Nkt CoVNkt CoVNkt
Case 1 0 0 0 0 20.0 0.01 20.0 0.01 0.01
Case 2 0.05 0.05 0.05 0.05 19.6 0.11 20.1 0.11 0.10
Case 3 0.10 0.10 0.10 0.10 18.7 0.21 20.6 0.23 0.21
Case 4 0.15 0.15 0.15 0.15 17.1 0.31 21.2 0.39 0.30
Case 5 0.20 0.20 0.20 0.20 15.3 0.40 22.1 0.59 0.40

Figure 8. Results of the 1000 times repeated calibration of the transformation model parameter, using two different regression
methods.
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described method minimising the SD, except for the
statistical uncertainty. We have seen that, besides
transformation error, also extraneous sources of
uncertainty propagate into the uncertainty of the
transformation model parameter obtained by
regression analysis.

The considerations so far have been about estimat-
ing point values, whereas for most geotechnical pro-
blems we are interested in spatial averages, for
example, along a shear plane. The approaches pro-
posed in literature in this respect consider only the
averaging of the true spatial variability (Vanmarcke
1977; Phoon and Kulhawy 1999a, 1999b), whereas
also other random (i.e. non-systematic) errors are sub-
ject to averaging, at least when multiple measurements
are available. Applying Equation (1) straightforwardly
would therefore lead to an overestimation of the total
uncertainty. Therefore, the systematic error com-
ponent of the transformation uncertainty, arguably,
is the uncertainty we are actually faced with when
executing a geotechnical analysis based on indirect
measurements.

We propose two methods to estimate this systema-
tic uncertainty in the transformation model par-
ameter. We investigate the appropriateness of these
uncertainty estimates by analysing the difference
between the indirectly estimated spatial average and
the true known value, while paying special attention
to the difference between random, systematic and
spatially variable errors. We differentiate between
cross-sections where a CPT is present and cross-sec-
tions without.

4.2. Proposed method

As argued above, only the systematic part of the transform-
ation model parameter constitutes the uncertainty in the
spatial average. To estimate this systematic part, we assume
that the total variance in the transformation model par-
ameter consists of a random and a systematic part:
CoV2

Nkt
= CoV2

Nkt ,sys
+ CoV2

Nkt ,rand
. We introduce the ratio

of random variability and total point variability:
r = CoV2

Nkt ,rand
/CoV2

Nkt
, such that the systematic com-

ponent in the transformation uncertainty can be estimated
as follows: CoV2

Nkt ,sys
= (1− r) · CoV2

Nkt
. The random and

total part in the variability follow from Equation (14):

r =
CoV2

spat + CoV2
1su

+ CoV2
1qnet

CoV2
Nkt

(16)

The systematic part of the transformation uncertainty in
the indirectly estimated spatial average can be estimated
using Equation (17), while accounting for statistical

uncertainty, as concluded in Section 3.5.

strans = m�sIu
·

������������������������
CoV2

Nkt ,sys + CoV2
Nkt ,stat

√

= m�sIu
·

�������������
1
n
+ (1− r)

√
· CoVNkt (17)

However, in practice, we often do not have this quan-
titative information on the random (and systematic)
error. Therefore, we propose an approach that is based
on the observed variability of the indirectly measured
undrained shear strength. We can write the total point
variability of the indirectly measured undrained shear
strength of the entire site as the summation of random
and a systematic variance, i.e. fluctuations around the
spatial average in CPT j and fluctuations of the spatial
average: s2

sIu
= s2

sIu,j
+ s2

�sIu
, see Figure 2. Then, the ratio

r can then be rewritten as follows:

r ≈
s2
sIu,j

s2
sIu

(18)

This estimation for the share of random and systematic
uncertainty in the transformation model parameter is
dependent on the spatial variability, through the total
uncertainty (Equations (4) and (5)) and hence, the esti-
mated value according to Equation (18) may deviate
from the definition in Equation (16). However, when
epistemic uncertainty is dominant in the total uncer-
tainty (which is often the case in geotechnical engineer-
ing, see, e.g. Nadim (2015)), then the expected difference
is small.

Including the estimated systematic transformation
uncertainty in the uncertainty estimate of the spatial
average for a cross-section with a CPT (Equation (5))
leads to:

s2
�sIu,j

= 1
Nj

· s2
sIu,j

+ s2
meas,sys

+ m�sIu
·

�������������
1
n
+ (1− r)

√
· CoVNkt

( )2

(19)

The uncertainty in the spatial average at cross-sections
without a CPT is estimated by Equation (7). Since this
uncertainty is based on the spatial average (of indirect
measurements), it includes the averaging of random
errors and true spatial variability already.

4.3. Example

The appropriateness of the proposed approach is shown
for the synthetic random field in Section 3.5. We use the
calibrated transformation model factor from the 1000
random fields to estimate the spatial average undrained
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shear strength at cross-sections with and without a CPT.
The histogram of the uncertainty in the spatial average
from a CPT (�sIu,j −�su,j) is shown in Figure 9(a).

The total uncertainty is, indeed, bigger than only stat-
istical uncertainty in the transformation model (blue
solid line), because of the systematic part in the trans-
formation uncertainty. In this example, we determine
the systematic part of the transformation uncertainty
based on the imposed random errors (values in Table
1) using Equation (14): r = (0.112 + 0.12 + 0.12)/
(0.112 + 0.12 + 0.12 + 0.12)2 = 0.76. The factor r
based on the variability of the indirect measurements:
r ≈ s2

sIu,j
/s2

sIu
= 0.80. The estimated value is higher than

the value obtained by Equation (16), because the ratio
of local point variance and total point variance com-
prises, besides averaging of random errors, also aver-
aging of true spatial variability. Therefore, the
systematic part in the transformation uncertainty is in
this case underestimated. In this numerical example
where epistemic uncertainty is dominant, the effect on
the uncertainty is negligible, demonstrated by the green
and black solid lines in Figure 9(a). Both lines match
quite well, except a small shift that represents the bias
in the transformation model parameter caused by the
regression method.

Figure 9(b) shows the variability of the indirectly esti-
mated spatial averages for 1000 random fields. It
includes both variability of the spatial average and the
systematic part of the epistemic uncertainties as
described in Equation (8), depicted by the green and
black line. The magenta line shows the estimated uncer-
tainty according to Equation (7) based on the observed
variability, which substantiates the appropriateness of
the proposed approach.

5. Practical implications

The presented method appropriately accounts for aver-
aging of both spatial variability and random errors in
the uncertainty estimate of the spatial average from
indirect CPT measurements. The present example has
contemplated one end of the spectrum in the sense
that measurement errors have been assumed entirely
random (i.e. white noise). On the other hand, assuming
these errors entirely systematic as done in Phoon and
Kulhawy (1999b) is quite conservative. The comparison
in Figure 10, in terms of 5%-quantile characteristic
values, su,kar , shows that there is considerable margin
between these two assumptions. Even with half of the
measurement error being systematic and half random,
it is still likely that a substantial part of the

(a) (b)

Figure 9. Uncertainty (a) and variability (b) of the spatial average estimated using indirect measurements.

Figure 10. Comparison presented method with established
method.
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transformation uncertainty is random, because of spatial
variability in the transformation model.

6. Conclusions and recommendations

We showed that we can use direct measurements (e.g.
laboratory tests) and indirect measurements (e.g.
CPTs) from a site to calibrate a site-specific transform-
ation model. This site-specific transformation model
can be used to estimate the spatial average of the soil par-
ameter of interest using indirect measurements, which
are often cheaper and provide better spatial coverage.
On average a virtually unbiased transformation model
for a site can be obtained by linear regression with proper
choices, contrary to generic transformation models,
which can be biased for the entire site.

We demonstrated that the uncertainty in the trans-
formation model parameter contains random errors,
which are subject to averaging in the estimation of the
spatial average. Therefore, we should not only account
for spatial averaging of the actual soil heterogeneity,
but also for averaging of random measurement errors.
The remaining component in the uncertainty in an
indirectly estimated spatial average is, hence, the (locally
unknown) systematic bias in the transformation model.

This systematic component of the uncertainty in the
site-specific transformation model can be estimated
using information on estimates of the random and sys-
tematic errors involved, or based on the ratio local versus
total (site) point variance. Therefore, we should not only
focus our site investigation on estimating the heterogen-
eity of the subsoil, but also on differentiating between
systematic and random errors, e.g. by repetitive labora-
tory measurements or analysing the spatial variability
of the transformation error.

The considerations and results in this article imply
that there are several possibilities to reduce the uncer-
tainty in the indirect estimate of the undrained shear
strength (or any other parameters obtained in a similar
manner). One option is to minimise the distance
between a direct and indirect measurements, as spatial
variability propagates into transformation uncertainty.
Because the transformation model error is expected to
be at least to some degree systematic in a vertical, it is
recommended to add direct measurements at different
CPTs/boreholes, rather than at different depths in the
same vertical. The notion that reducing measurement
error helps, too, is trivial, yet we have shown that bias
in direct measurements is to be avoided particularly.

The advantage of the method proposed in this article
is that it is suitable for practical application, since only
basic knowledge of statistics is required. The method
can be used to determine the soil property and

uncertainty at cross-sections with a CPT and cross-sec-
tions without a CPT. In addition, we could also use the
method as a starting point for more sophisticated analy-
sis, such as Kriging, or to establish priors for Bayesian
analysis, see for example the proposed method by
Yang, Xu, and Wang (2017). Such methods require
expert knowledge of Bayesian theory or random fields,
which is not always mastered by practicing engineers.

Note

1. CPT cone tip resistance (qc) corrected for pore water press-
ures (u2) through the cone factor (a) andnormalized for the
in situ vertical stress (sv0): qnet = qc + u2 · (1− a)− sv0.
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