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Abstract. Fatigue assessment in offshore wind turbine support structures 

requires the monitoring of strains below the mudline, where the highest bending 

moments occur. However, direct measurement of these strains is generally 

impractical.  This paper presents the validation of a virtual sensing technique 

based on the Gaussian process latent force model for dynamic strain monitoring. 

The dataset, taken from an operating near-shore turbine in the Westermeerwind 

Park in the Netherlands, provides a unique opportunity for validation of strain 

estimates at locations below the mudline using strain gauges embedded within 

the monopile foundation.   

Keywords: Offshore wind turbines, virtual sensing, Bayesian inference, 

Gaussian process. 

 

Introduction 
 

Fatigue assessment of offshore wind turbines (OWT) is necessary for 

evaluating the remaining useful life of existing offshore wind farms and validating the 

design modifications of larger turbines with greater power generation capacity. The 

support structures of OWT are highly susceptible to fatigue damage, particularly at 

points below the mudline, due to cyclic wind and wave loading as well as potential 

resonance effects between the tower’s structural frequencies and the turbine’s rotor 

frequencies. In the absence of direct strain measurements, virtual sensing provides a 

means to extrapolate the dynamic response at unmeasured locations using a limited set 

of vibration measurements at accessible locations of the structure. Various inverse 

techniques have been proposed for virtual sensing, including a modal decomposition 

and expansion method which relies on a well-calibrated finite element model and 

corresponding mode shapes to extrapolate response [1]. However, this approach does 

not consider the load history to evaluate the influence of environmental and operating 

conditions. Other techniques use Kalman filtering for stochastic joint input-state 

estimation [2-3], where the time evolution of the loads (“input”) is concurrently 

predicted with that of the strains (“states”). However, many of these methods idealize 



the input as a white noise process, an assumption which may not hold in real-life 

applications. Moreover, their accuracy depends on prior tuning of covariance matrices 

for the input and stochastic noise, which is generally conducted by a trial-and-error 

process, raising questions as to their robustness.  

 This work proposes to use the Gaussian process latent force model (GPLFM) [4,5] 

for the continuous monitoring of strain time histories below the mudline of an operating 

OWT. Unlike other Kalman filtering methods, this approach models the input as a 

Gaussian process driven by a chosen covariance function, offering flexibility in 

incorporating prior information on its time-varying behavior [4,5]. The GPLFM has 

been demonstrated to improve upon other joint input-state estimators in numerical 

studies [4]. This study evaluates the performance of the GPLFM by using vibration data 

from an operating wind turbine in the Netherlands.  The results are validated using 

strain data recorded along the depth of the monopile foundation.  

 

1 Mathematical Formulation 

The goal of joint input-state estimation is to reconstruct the time series of unknown 

inputs and dynamic response – together, referred to as the “latent states” – when 

provided with a limited set of acceleration measurements. An abbreviated discussion 

of the GPLFM methodology is provided; for more details, the reader is referred to [4-

7]. 

 

1.1 System model 

Let the mechanical model of the structural system be represented by the following 

modally reduced-order model, in which only a subset of dominant modes is retained to 

represent the dynamics of the system: 

 

     �̃��̈�(𝑡) + �̃��̇�(𝑡) +  �̃�𝐫(𝑡) = 𝐟(𝑡)                                       (1) 

 

𝐫(𝑡) ∈ ℝ𝑛m is the modal state vector for a system truncated to 𝑛m modes, related to the 

original displacement states 𝐮(𝑡) ∈ ℝ𝑛u by 𝐫(𝑡) = 𝚽T𝐮(𝑡), where 𝚽 ∈ ℝ𝑛u×𝑛m is the 

matrix of 𝑛m mass-normalized mode shapes. Modal forces are given as 𝐟(𝑡) =

[𝑓1(t)T ⋯ 𝑓𝑛m
(𝑡)T]

T
= 𝚽T𝐒𝐩𝐩(𝑡), where the excitation 𝐩(𝑡) ∈ ℝ𝑛p acting at the 

degrees of freedom indicated by 𝐒p ∈ ℝ𝑛u×𝑛p are cast into modal coordinates by 𝚽. 

The generalized system matrices are defined as follows: �̃� = 𝚽T𝐌𝚽 = 𝐈 ∈ ℝ𝑛m×𝑛m, 

�̃� = 𝚽T𝐂𝚽 = 𝚪 ∈ ℝ𝑛m×𝑛m = 𝑑𝑖𝑎𝑔(2𝜉𝑗𝜔𝑗
2), �̃� = 𝚽T𝐊𝚽 = 𝛀2 ∈ ℝ𝑛m×𝑛m =

𝑑𝑖𝑎𝑔(𝜔𝑗
2), where 𝜉𝑗 and 𝜔𝑗 are the damping ratio and natural frequency of the 𝑗th 

mode.  

 Defining the modal state vector 𝐱(𝑡) = [𝐫(𝑡)T �̇�(𝑡)T]T, the continuous-time state-

space forms of Equation 1 and the measurement model are given as: 
 

 �̇�(𝑡) = 𝐀c𝐱(𝑡) + 𝐁c𝐟(𝑡)                          (2) 

 𝐲(𝑡) = 𝐆c𝐱(𝑡) + 𝐉c𝐟(𝑡)                             (3) 



 

      𝐀c = [
𝟎 𝐈

−𝛀2 −𝚪
],    𝐁c = [

𝟎
𝐈

],    𝐆c = [−𝐒a𝚽𝛀2 −𝐒a𝚽𝚪],   𝐉c = [𝐒a𝚽]      (4) 

 

where the selection matrix 𝐒a ∈ ℝ𝑛y×𝑛u indicates the degrees of freedom where 

acceleration measurements are available, e. g. 𝐲(𝑡) = 𝐒a�̈�(𝑡). 

 
1.2 Input model 

In the Gaussian process latent force model, each 𝑗th modal force is assumed to take the 

form of a temporal Gaussian process (GP) defined by a mean function and covariance 

function: 𝑓𝑗(𝑡) ~ 𝐺𝑃 (𝜇𝑗(𝑡), 𝜅𝑗(𝑡, 𝑡′; 𝛉)) [4,5]. The covariance function 𝜅𝑗(𝑡, 𝑡′; 𝛉) is 

chosen a priori based on knowledge of the time-varying behavior of the input (i. e. 

periodicity, discontinuity), with properties determined by a set of hyperparameters 𝛉. 

In the following work, the formulation of a state-space model for a GP with a Matérn 

covariance function using the smoothing parameter 𝜈 = 5/2 is presented; for the 

generic formulation, the reader is referred to [4,5].  

A GP 𝑓𝑗(𝑡) with the Matérn 𝜈 = 5/2 covariance function in Equation 5 can be 

expressed as a realization of the 3rd-order linear time-invariant stochastic differential 

equation given by Equation 6:  

 

    𝜅𝑗(𝜏; 𝛼, 𝑙𝑠) = 𝛼2 (1 +
√5𝜏

𝑙𝑠
+

5𝜏2

3𝑙𝑠
2) exp (−

√5𝜏

𝑙𝑠
)          (5) 

 

   
𝑑3𝑓𝑗(𝑡)

𝑑𝑡3 + 3𝜆
𝑑2𝑓𝑗(𝑡)

𝑑𝑡2 + 3𝜆2 𝑑𝑓𝑗(𝑡)

𝑑𝑡
+ 𝜆3𝑓𝑗(𝑡) = 𝑤(𝑡)                 (6) 

 

where 𝜏 = 𝑡 − 𝑡′, hyperparameters 𝛉 = [𝛼, 𝑙𝑠], 𝜆 = √5/𝑙𝑠, and 𝑤(𝑡) is a white noise 

process with spectral density 𝑆𝑤(𝜔) = 𝜎𝑤 . Equation 6 can be reformulated in state-

space by constructing the vector 𝐳𝑗(𝑡) = [𝑓𝑗(𝑡)  
𝑑𝑓𝑗(𝑡)

𝑑𝑡
 

𝑑2𝑓𝑗(𝑡)

𝑑𝑡2 ]
T

: 

 

�̇�𝑗(𝑡) = 𝐅c,𝑗𝐳𝑗(𝑡) + 𝐋c,𝑗𝑤(𝑡)              (7) 

                 𝑓𝑗(𝑡) = 𝐇c,𝑗𝐳𝑗(𝑡)               (8) 

   𝐅c,𝑗 = [
0 1 0
0 0 1

−𝜆3 −3𝜆2 −3𝜆
],   𝐋c,𝑗 = [

0
0
1

],   𝐇c,𝑗 = [1 0 0]              (9) 

 

Because the covariance function is stationary, its Fourier transform is related to the 

spectral density of the process 𝑓𝑗(𝑡): ℱ[𝜅𝑗(𝜏)] = 𝑆𝑓𝑗
(𝜔). The Matérn covariance 

function belongs to a class of kernels which produce a rational form for 𝑆𝑓𝑗
(𝜔), such 

that it can be spectrally factorized as 𝑆𝑓𝑗
(𝜔) = 𝐻(𝑖𝜔)𝜎𝑤𝐻(𝑖𝜔), where 𝐻(𝑖𝜔) is the 

stable rational transfer function. The spectral density of 𝑤(𝑡) is then 𝜎𝑤 =
400√5𝛼2

3𝑙5 . 



 In the reduced-order formulation, 𝑛m modal forces are represented by the 

following block-diagonal state-space system, where 𝐳(𝑡) = [𝐳1(𝑡)T ⋯ 𝐳𝑛m
(𝑡)T]

T
. This 

study assumes the modal forces are characterized by the same covariance function 

controlled by a single set of hyperparameters 𝛉 = [𝛼, 𝑙𝑠]; 𝜅1(𝜏) = ⋯ = 𝜅𝑛m
(𝜏) =

𝜅(𝜏). 

 

�̇�(𝑡) = 𝐅c𝐳(𝑡) + 𝐋c𝑤(𝑡)                      (10) 
                  𝐟(𝑡) = 𝐇c𝐳(𝑡)                  (11) 

 𝐅c = [

𝐅c,1 ⋯ 0

⋮ ⋱ ⋯
0 ⋯ 𝐅c,𝑛m

],   𝐋c = [

𝐋c,1 ⋯ 0

⋮ ⋱ ⋯
0 ⋯ 𝐋c,𝑛m

],   𝐇c = [

𝐇c,1 ⋯ 0

⋮ ⋱ ⋯
0 ⋯ 𝐇c,𝑛m

]       (12) 

 

The covariance function of the GP encodes prior information on the variability of 

𝐳(𝑡). In this case, 𝐳(𝑡) is a steady-state process because 𝜅(𝜏) is stationary. For 

𝐳(𝑡)~𝑁(𝟎, 𝐏(𝑡)), the steady-state covariance matrix 𝐏∞ is the solution to the Lyapunov 

equation enforcing the steady-state assumption 𝐏(𝑡) → 𝐏∞, �̇�(𝑡) → 0: 
 

       �̇�(𝑡) = 𝐅c𝐏(𝑡) + 𝐏(𝑡)𝐅c
T + 𝐐c = 𝐅c𝐏∞ + 𝐏∞𝐅c

T + 𝐐c = 0   (13) 
 

where 𝐐c is the spectral density of the process noise term 𝐋c𝑤(𝑡), 𝐐c = 𝐋c𝜎𝑤𝐋c
T. From 

this expression, it is clear that the hyperparameters 𝛉 chosen to construct the system 

matrices in Equation 12 define the prior joint distribution assumed for the states 𝐳(𝑡). 

Optimal values for the hyperparameters are solved for by fitting the covariance 

observed in the measurement data, typically by maximum likelihood estimation [5,7].  

 
1.3 Latent force model 

The latent force model is assembled from the continuous state-space equations of the 

mechanical system model and stochastic input model. Defining the augmented vector 

of latent states 𝐳𝑎(𝑡) = [𝐱(𝑡)T 𝐳(𝑡)T]T, the GPLFM is given as: 

 

�̇�𝑎(𝑡) = 𝐅c
𝑎𝐳𝑎(𝑡) + 𝐰c

𝑎(𝑡)                        (14) 
                  𝐲(𝑡) = 𝐇c

𝑎𝐳𝑎(𝑡)                      (15)  

    𝐅c
𝑎 = [

𝐀c 𝐁c𝐇c

𝟎 𝐅c
],  𝐰c

𝑎(𝑡) = [
𝟎

𝐋c𝑤(𝑡)] , 𝐇c
𝑎 = [𝐆c 𝐉c𝐇c],  𝐐c

𝑎 = [
𝟎 𝟎
𝟎 𝐐c

]       (16) 

 

where 𝐐c
𝑎 is the spectral density of the continuous-time process noise 𝐰c

𝑎(𝑡). By 

converting the continuous-time state-space model in Equations 14-16 to discrete-time, 

the joint posterior inference of latent states is performed recursively using Kalman 

filtering/RTS smoothing [5]. This methodology is equivalent to performing Gaussian 

process regression of the acceleration data 𝐲(𝑡), where the time evolution of the latent 

states is reconstructed through their joint distribution with acceleration states defined 

in the augmented model. The discrete-time matrices are computed as 𝐅d
𝑎 = 𝑒𝑥𝑝(𝐅c

𝑎∆𝑡),  

𝐇d
𝑎 = 𝐇c

𝑎. Whereas the covariance 𝐐d
𝑎 of the discrete form of 𝐰c

𝑎(𝑡) can be solved for 



by matrix fraction decomposition of an integral of  𝐐c
𝑎 (details in [7]). An alternative is 

to solve for the steady-state covariance 𝐏∞
𝑎  from the continuous-time Lyapunov 

equation in the augmented case (Equation 17), then for 𝐐d
𝑎 by enforcing the steady-state 

assumption in the Kalman filter prediction equation (Equation 18). By analogy to 

Equation 13, the assumed characteristics of the input inherently define its joint 

distribution with response states, allowing for a fully stochastic representation of the 

system’s dynamic response. 

 

                                                    𝟎 = 𝐅c
𝑎𝐏∞

𝑎 + 𝐏∞
𝑎 (𝐅c

𝑎)𝑇 + 𝐐c
𝑎        (17) 

                                                        𝐏∞
𝑎 = 𝐅d

𝑎𝐏∞
𝑎 (𝐅d

𝑎)𝑇 + 𝐐d
𝑎         (18)  

2 In-Situ Validation 

2.1 Measurement setup and data processing 

The dataset used in this study is taken from the W27 turbine, located in the near-shore 

Westermeerwind wind farm in the IJsselmeer Lake of the Netherlands. The dataset 

consists of (a) SCADA data collected from the rotor-nacelle assembly (RNA) at 95.0m 

above the mean water level (NAP), which includes wind speed, rotor speed, nacelle 

yaw angle, and acceleration in the fore-aft (FA) and side-side (SS) directions of the 

turbine; (b) acceleration data, from one accelerometer measuring along the 39.4-219.4 

line (from North) at +42.5m NAP and two orthogonally positioned accelerometers at 

+4.5m NAP, measuring in the North-South and East-West directions respectively; and 

(c) vertical strain data, from a total of eight rings each containing four strain gauges, 

labeled A-D. Six of the rings are embedded in the pile below the mudline, concentrated 

in the region where the highest bending moments are expected to occur, and two rings  

Fig. 1. Position of strain gauges, accelerometers, and SCADA system, from [8]. 



are located on the support structure above NAP. The layout and orientation of the 

sensors are illustrated in Figure 1. Ring 1 is not included because the strain gauges were 

damaged during pile installation. 

The data is recorded continuously in 10-minute periods and synchronized to a 

sampling frequency of 50 Hz. Since only dynamic strains are considered in this work, 

the data is detrended to be zero-mean and processed with a bandpass Chebyshev Type 

II filter with stopband frequencies of 0.15 Hz and 5.0 Hz. 

 
2.2 System model 

To develop a system model of the support structure, a finite element (FE) model is 

constructed based on known geometric and material properties of the W27 turbine. The 

FE model consists of 100 Timoshenko beam elements with pipe cross sections, with 

variable diameters to represent the tapered profile of the tower. The monopile and tower 

are made of structural steel with E=210 GPa, v=0.3, and mass density of 7850 kg/m3. 

External components such as the RNA, platform, and power unit are modeled as 

concentrated masses. To model the soil foundation, first a mass density of 1500 kg/m3 

representing the soil plug is added to the elements located below the mudline [8]. Then, 

a stiffness profile derived from [8] is added to the lateral stiffness of the elements below 

the mudline. The stiffness profile is a high-fidelity model of the soil-structure system, 

as it is developed from dynamic experiments conducted at the site of the W27 turbine 

prior to installation of the support structure.  

The FE model is then updated to match the modal parameters of the structure 

identified by the SSI-Cov [9,10] operational modal analysis (OMA) method. The data 

samples used for OMA are carefully selected based on the sensor setup to allow for 

accurate identification of the FA and SS modes. Because accelerometer 3 at +42.50m 

NAP is uniaxial and cannot provide full measurements of two-dimensional motion, the 

samples chosen are ones where the OWT is oriented such that the RNA aligns with the 

axis of accelerometer 3 and the measurement corresponds directly to the FA or SS 

motion. Only samples where the OWT is idling are used for OMA, as the ambient 

loading in this condition most closely matches the assumption of white noise input in 

the SSI-Cov method [9]. A comparison of the mode shapes identified by OMA and 

those corresponding to the final FE model is illustrated in Figure 2. Table I shows good 

agreement between the measured and computed modal parameters for the first five 

modes of the OWT.  

 

Table 1. Error statistics on modal properties. 

No. Mode 𝒇𝒊𝐝 (Hz) 𝒇𝐟𝐞𝐦 (Hz) 𝝃𝒊𝐝 (%) MAC 

1 1st FA bending 0.296 0.296 1.932 0.999 

2 1st SS bending 0.290 0.296 3.011 0.995 

3 2nd FA bending 1.869 1.873 2.379 0.999 

4 2nd SS bending 1.885 1.873 2.887 0.927 

5 3rd SS bending 4.563 5.207 2.604 0.870 

 



Fig. 2. First five displacement mode shapes, identified by OMA (solid blue) and fitted with 

FEM (dashed red). 

 
2.3 Results 

The performance of the GPLFM is validated with data in the FA direction of the OWT 

in its power production state, with an ambient wind speed of 22 m/s.  

As discussed earlier, the fit of the latent force model depends on (a) the covariance 

function and its corresponding hyperparameters used to represent the unknown input, 

which governs the prior belief placed on all augmented states; and (b) the accuracy of 

the FE model in capturing the mode shapes of the system. The predicted acceleration 

response is compared with the measurements in Figure 3 as a “diagnostic tool” for 

checking the fit of the model. In the left-most column of Figure 3, the dashed black 

lines indicate the empirical variance of each acceleration channel, shown as confidence 

bounds of ±3 standard deviations, computed directly from the measurement history. 

The dashed red lines indicate the prior variance placed on acceleration states based on 

the stochastic augmented model, where the covariance matrix is computed as 

�̂�0
ü = 𝐇c

𝑎𝐏∞
𝑎 (𝐇c

𝑎)T. The excellent match in variances indicates that the properties 

assumed for input are an appropriate fit to the data. This result is apparent in the strong 

match between the measured and predicted acceleration time series, with a mean 

correlation coefficient of 0.974 and mean relative error of 2.3% across the three 

channels. In the frequency domain, there are small discrepancies observed at the level 

of accelerometer 1-2 and 3. The error occurs at frequencies across the PSD which are 

less excited relative to the first and second modal frequencies of the system (at 0.296 

Hz and 1.869 Hz, respectively), which consistently dominate the response over time.   

Figure 4 shows that the strain response is overestimated in the time domain. This 

discrepancy is reflected by a higher mean relative error of 6.0% across all eight strain 

gauge channels. Difficulties in estimating the strain magnitude are associated with 

uncertainty in the modeled soil stiffness, particularly at lower depths along the 

monopile foundation where greater error is observed. However, a good match in the 

frequency content is indicated by a high mean correlation coefficient of 0.956. Even 

though the strain response is dominated by the first mode, higher frequency strain 

response is estimated well due to the high accuracy in the estimated acceleration 

response of the system.  

 



Fig. 3. The 10-minute time series, close-up view of the time series, and frequency spectrum of 

the true (black) and predicted (red) accelerations for the three sensor channels. ±3𝜎 confidence 

bounds on the prediction are shown in shaded red.  

 

 

Fig. 4. The 10-minute time series, close-up view of the time series, and frequency spectrum of 

the true (black) and predicted (red) strains at sensor channels 3, 5, and 7. ±3𝜎 confidence 

bounds on the prediction are shown in shaded red. 

 



3 Concluding Remarks  

The GPLFM is implemented for virtual sensing of an offshore wind turbine in the 

Netherlands, where the strain estimation is validated using measurements below the 

mudline. It is demonstrated that the GPLFM offers a data-driven approach to deriving 

the covariance of the latent states, leading to high overall accuracy. Strong results for 

acceleration estimation are presented; however, the method displays an overestimation 

of the dynamic strain magnitude. In future work, the robustness of the GPLFM will be 

tested using multiple data samples of the OWT in various operating conditions, as well 

as its sensitivity to uncertainty in the foundation model.  
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