
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Master Thesis
Simplicial Unrolling ElasticNet for Edge Flow Signal
Reconstruction

Chengen Liu

Master Thesis
Simplicial Unrolling ElasticNet for Edge Flow

Signal Reconstruction

by

Chengen Liu

Student Name Student Number

Chengen Liu 5512646

Supervisor: G. Leus
Daily supervisor: E. Isufi
Committee member: R. Taormina
Project Duration: November, 2022 - July, 2023
Faculty: Faculty of Electrical Engineering, Mathematics and Computer Science

Acknowledgments

The two years I spent studying for my master’s degree at Delft University of Technology
were a valuable experience for me.

I would like to thank my supervisors, Prof.Geert Leus and Dr.Elvin Isufi, who are
always willing to help me with their guidance and patience.

I would also like to thank my friend Tianyi Li. He was there to support me dur-
ing my most difficult time spiritually.

Last but not least, I would like to thank my parents. They have been my strongest
support since I was a child. I hope they will always be healthy and happy.

Chengen Liu
Delft, July 2023

i

Abstract

The edge flow reconstruction task improves the integrity and accuracy of edge
flow data by recovering corrupted or incomplete signals. This can be solved by a
regularized optimization problem, and the corresponding regularizers are chosen
based on prior knowledge. However, obtaining prior information is challenging in
some fields. Thus, we consider exploiting the learning ability of neural networks to
acquire prior knowledge. In this paper, we propose a new optimization problem for the
simplicial edge flow reconstruction task, the simplicial ElasticNet, which is a regularized
optimization problem that combines the advantages of the ℓ1 and ℓ2 norm. It is solved
iteratively by the multi-block ADMM algorithm, and the convergence conditions are
illustrated. By unrolling the simplicial ElasticNet’s iterative steps, we propose a neural
network with high interpretability and low requirement for the number of training data
for the reconstruction task of simplicial edge flows. The unrolling network replaces
the fixed parameters in the iterative algorithm with the learnable weights in the neural
networks, thus exploiting the neural network’s learning capability while preserving
the iterative algorithm’s interpretability. The core component of this unrolling network
is simplicial convolutional filters with learnable weights to aggregate information
from the edge flow neighbors, thus enhancing the learning and expressive ability of
the network. We conduct extensive experiments on real-world and artificial datasets
to validate the proposed approach. It is demonstrated that the simplicial unrolling
network is significantly more advantageous than the traditional iterative algorithms
and standard non-model-based neural networks in the case of limited training data.

ii

Contents

Acknowledgments i

Abstract ii

1 Introduction 1
1.1 Motivation . 1
1.2 Scope of the research . 3
1.3 Research statement . 4
1.4 Contributions of this research . 5

2 Background 6
2.1 Higher-order networks . 6

2.1.1 Related works . 6
2.1.2 Simplicial complexes . 8
2.1.3 Incidence matrix . 9
2.1.4 Hodge Laplacians . 10

2.2 Simplicial signal processing . 10
2.2.1 Simplicial signals . 10
2.2.2 Spectral of simplicial complexes 10
2.2.3 Hodge decomposition . 11
2.2.4 Simplicial Convolutional Filters 12

2.3 ADMM algorithm . 13
2.4 Unrolling networks . 14
2.5 Graph unrolling networks . 16

2.5.1 Related works . 16
2.5.2 Graph unrolling network via trend filtering 17

2.6 Summary . 19

3 Problem formulation 20
3.1 Denoising simplicial edge flow . 20
3.2 Interpolation for simplicial edge flow . 21

4 Methodology 22
4.1 Simplicial ElasticNet Problem . 22

4.1.1 Special case 1: Tikhonov regularizer 23
4.1.2 Special case 2: Simplicial trend filtering 23

4.2 ADMM Solution for Simplicial ElasticNet 24
4.3 Simplicial unrolling networks . 25

iii

Contents iv

4.3.1 Simplicial Unrolling Network For ElasticNet 25
4.3.2 Convergence Analysis of Variant 1 27

4.4 Summary . 29

5 Experimental results 30
5.1 Datasets . 30

5.1.1 Foreign Currency Exchange (Forex) dataset 30
5.1.2 Lastfm dataset . 31
5.1.3 Chicago road network . 31

5.2 Experimental Setup . 31
5.2.1 Models . 31
5.2.2 Noise and sampling models . 32
5.2.3 Evaluation metrics . 34
5.2.4 Denoising and Interpolation Performance 34
5.2.5 Convergence Results . 37
5.2.6 Effect of simplicial convolutional filters 38

5.3 Summary . 39

6 Conclusion 40
6.1 Summary . 40
6.2 Future work . 41

A Proof of the Proposition 1 42

B Proof of the Proposition 2 43

C ADMM and unrolling network for trend filtering 46

References 48

1
Introduction

1.1. Motivation
Data plays a vital role in our lives as various activities generate large amounts of data.
The information contained in the data needs to be processed before it can be accessed
and utilized by humans. Common data include time series, as shown in Figure 1.1(a),
and images, as in Figure 1.1(c). For example, stock price changes are time-series data.
Photos are image data. Time series and images are essentially regular domain data
because they have a regular structure. Different time instants in the time series and
pixels in the image can be modeled as nodes of a graph and adjacently connected to
each other. Values of time series and pixels can be modeled as data on nodes, as shown
in Figure 1.1(b) and Figure 1.1(d). Thus, regular data can be processed by standard
machine learning techniques such as convolutional or recurrent neural networks [28]
[32].

(a) Time-series. (b) Structure of time-series.

(c) Image. (d) Structure of image.

Figure 1.1: Examples of regular data.

1

1.1. Motivation 2

However, regular data form only a small part of the vast amount of data we collect,
which is irregular and cannot be processed by the aforementioned techniques. Many
real-world systems can be modeled as graphs generate graph-based data [38] [46]
[58], such as human social relationship networks, transportation networks, protein
molecular structures, and literature citation relationship networks. For example, people
in social networks can be modeled as nodes in a graph, and their relationships can be
modeled as edges between them, as shown in Figure 1.2(a). Their personal information
can be modeled as data on nodes, such as height, weight, etc., as shown in Figure
1.2(b).

(a) Social networks. (b) Graph data for social networks.

Figure 1.2: Examples of graph data.

There are many methods that can be applied to process graph data, such as graph
signal processing (GSP) or graph neural networks (GNNs). GSP contains tools that can
process graph data on the nodes, such as graph filters [21]. GNNs are a class of neural
network models that have achieved promising results in practical applications [20].

However, the expressive ability of graphs is limited since they can only capture pairwise
relationships [6]. For example, a graph can model a molecular structure where each
atom is modeled as a node in the graph, and the molecular bonds between atoms can
be modeled as an edge. However, the relationship between atomic groups cannot be
described by low-order networks such as graphs [2]. Therefore, higher-order networks,
such as simplicial complexes, need to be applied to model more complex relationships,
as shown in Figure 1.3(a). Data can be defined on nodes, edges, triangles, tetrahedrons,
and so on, as shown in Figure 1.3(b), and are also known as simplicial signals. Currently,
edge flows are one of the most widely studied areas with a practical interest in traffic
flow prediction in a road network [48] and currency exchange rate analysis [22].

There exist various tools available to process simplicial signals. For instance, the
topological signal processing (TSP) [2] extends the concepts in signal processing (SP)
[40] and graph signal processing (GSP) [38] to simplicial signals, such as simplicial
convolutional filters [38] and simplicial Fourier transforms [47]. In addition, machine
learning methods have led to various applications of higher-order network data, such

1.2. Scope of the research 3

(a) Simplicial complexes. (b) Simplicial signals.

Figure 1.3: Examples of higher-order network data

as recommendation systems [57], point clouds [50], finance [54], and biochemistry [4].

Therefore, this paper focuses on the data defined on simplicial complexes. The task is
to reconstruct the edge flow signal of simplicial complexes.

1.2. Scope of the research
Reconstructing signals from noisy or partial measurements is a long-lasting challenge
in signal processing. This task requires exploiting particular behavior of the signal
w.r.t. the underlying medium. One of the most common approaches is based on the
regularized optimization [45]. Regularizers introduce a bias between the solution
and the actual value, and various regularizers possess distinct characteristics. For
example, in graph signal processing (GSP) [38], where the data is defined on the nodes
of graphs, the Tikhonov regularizer is often used to recover the graph signals based on
the assumption that connected nodes have similar values. When the graph signal is
piece-wise smooth, graph trend filtering [55] with ℓ1 norm regularizer is more effective
as it promotes sparsity in the signal difference of connected nodes.

Graphs can only model pair-wise relationships [1]. However, in many cases, we
are interested in signals defined on edges or multi-way relationships. For simplicial
edge flows, the reconstruction task can also be solved by regularized methods. The
papers in [48] and [22] use the Tikhonov regularizer in the denoising and interpolation
tasks of simplicial edge flow, which can reduce the curl and divergence of the edge
flow. However, Tikhonov regularizers can only reduce the divergence and curl of the
reconstructed signal globally but cannot reconstruct the divergence-free and curl-free
edge flow exactly. The divergence- or curl-free properties are important because
many edge flows in reality possess these properties. Therefore, this thesis proposes a
simplicial ElasticNet that combines the Tikhonov regularizer with the ℓ1 regularizer to
solve the reconstruction task.

The regularizers and their coefficients are determined based on prior knowledge.

1.3. Research statement 4

This prior knowledge can often be challenging to obtain [33]. Therefore, it is a viable
scheme to use neural networks to learn the prior. This thesis combines the learning
ability of neural networks with conventional iterative algorithms to develop an un-
rolling network on simplicial complexes for edge flow reconstruction. The unrolling
network is a model-based neural network and has been successfully applied in several
fields such as medical imaging [51], smart power grid [64], remote sensing [31]. Paper
[8] proposes a graph unrolling network for the graph signal denoising task.

The core idea of the unrolling technique is to map each iteration of optimization
algorithms into a layer of the unrolling networks. On the one hand, we consider the
simplicial ElasticNet, which is a convex optimization problem and can be solved by
various standard iterative algorithms such as ADMM [5]. On the other hand, we replace
the fixed parameters in the iterations with trainable weights in the unrolling networks,
map each iteration into a network layer, and stack multiple layers sequentially to form
the complete unrolling network [15] [63]. There are many different parameterization
strategies for trainable weights. This thesis replaces a portion of the fixed parameters
with learnable simplicial convolutional filters which allows to aggregate information
from the neighbors of the edge flow [62], thus improving the expressive ability of
the unrolling network. Using the ADMM to build an unrolling network, we give a
more tailored neural network solution for edge flow reconstruction. There have been
many attempts to develop neural networks on simplicial complexes, such as simplicial
neural networks (SNNs) [9], simplicial convolutional neural networks (SCNNs) [61],
and simplicial complexes convolutional neural networks (SCCNNs) [60]. These models
were developed to accomplish simplex prediction, trajectory prediction, and imputing
citations on a coauthorship complex. However, these standard models are entirely
data-driven and require a large amount of training data, limiting their ability because
the cost of acquiring training data is high. In the edge flow reconstruction task, we often
have access to limited data. Due to the special structure of the unrolling networks, its
trainable parameters are a few. Therefore, learning tasks with fewer training samples
can be accomplished. We validate the advantages of unrolling networks for simplicial
edge flow reconstruction tasks with one-shot learning.

1.3. Research statement
In this thesis work, we focus on the following challenging situations:

• Existing edge flow reconstruction tasks are often formulated based on regular-
ized optimization problems. The regularizers often affect the solution of the
optimization problem. Finding out the appropriate regularizers for a particular
problem is a challenge.

• Solving regularized optimization problems using traditional iterative algorithms
requires the use of existing prior knowledge, e.g., the choice of regularizer coeffi-
cients. However, obtaining this prior knowledge often requires a combination of

1.4. Contributions of this research 5

relevant domain expertise, which is sometimes difficult.

Based on these two challenges, the following two research questions are proposed:

• How to choose the proper regularizer for the edge flow reconstruction task?
• How to reduce our reliance on a priori knowledge?

1.4. Contributions of this research
The main contributions of this thesis are:

• We propose an ElasticNet problem for the simplicial edge flow reconstruction task.
This is based on both the ℓ1 and ℓ2 norm, which generalizes existing regularization
approaches.

• We solve the simplicial ElasticNet and trend filtering problem by multi-block
ADMM algorithm and build the corresponding simplicial unrolling network for
them.

• We prove the convergence of this simplicial unrolling network under some weak
assumptions and conduct corresponding experiments to corroborate the proof.

• We conduct numerical experiments on synthetic and real datasets to corroborate
the proposed method and show its superior performance not only to simplicial-
based regularizers but also to neural network solutions under the one-shot
learning setting.

2
Background

Signals defined on higher-order networks have similarities with graph signals but
have a stronger expressiveness. Among them, simplicial complexes are a classical
higher-order network and the object of this paper. In this chapter, section 2.1 defines the
concepts related to the topology of the simplicial complexes. Section 2.2 describes the
simplicial signal. Section 2.3 introduces the ADMM algorithm. Section 2.4 introduces
the concepts related to unrolling networks. Section 2.5 analyzes a graph unrolling
network as an example. Section 2.6 summarizes the chapter.

2.1. Higher-order networks
2.1.1. Related works
A topological space is a set that defines discrete elements and neighborhood relation-
ships. The graph data is a typical example of topological spaces. The graph encodes
pairwise relations in the form of edges. However, many relationships in the real world
cannot be modeled as pairwise relationships but should be modeled as multiway
relationships. For example, many chemical reactions involve more than one reactant
and product [25], which makes it impossible to express such relationships using graphs.
Likewise, in natural language processing (NLP), the meaning of a sentence is often
related to the combination of many vocabularies. Therefore, it should not be simply
modeled as the relationship between pairs of words. Multilayer graphs were proposed
to model more complex relationships [3]. However, multilayer graphs are still modeling
pairwise relationships. To upgrade from pairwise relation to multiway relation, a
framework utilizing topological tools to obtain valuable information from data called
Topological Data Analysis (TDA) is proposed [6]. In TDA, simplicial complexes are a
representative research direction. Its rich algebraic structure facilitates the modeling
of higher-order interactions.

TDA studies the properties of simplicial complexes. To analyze signals defined on

6

2.1. Higher-order networks 7

topological spaces, topological signal processing (TSP) is proposed [43]. GSP can
be counted as a particular case of TSP. Relationships in higher-order networks, such
as simplicial complexes, can be represented by matrices or tensors. GSP focuses on
signals defined on graphs, i.e., signals at nodes and edges. In contrast, TSP focuses on
signals on simplicial complexes, i.e., nodes, edges, triangles, tetrahedra, etc. Signals
defined on edges include blood flow data [18], communication flow data, and traffic
network data [26]. Signals defined on a triangle include co-author networks [39], etc.
Among them, considerable research is on the signal defined on edges, the 1-simplicial
signal. Paper [11] studies the signal on edge based on the line graph. In this way, the
edge signals can be converted into node signals, and then the signal can be processed
by the method in GSP. However, modeling edge signals with line graphs is not the
best option. Paper [48] points out that in the edge flow signal denoising task, the
regularizer based on the line graph Laplacian matrix has worse denoising performance
than the edge-space filter. Paper [35] extends the random walk algorithm to simplicial
complexes. These papers complete the theory of TSP.

TSP also inherits some concepts from classical signal processing. In paper [2], the
concept of the simplicial Fourier transform is defined. Similar to GSP, the concept of
filtering is also defined in TSP. Some works use regularization to filter simplicial signals.
For example, [48], [49] perform regularization optimization based on Hodge-Laplacian
matrices to obtain signals with conservation of edge flow. The paper [62] proposes
a simplicial convolutional filter. This filter mainly comprises the polynomial of the
upper Hodge Laplacian matrix and the lower Hodge Laplacian matrix. The paper
proves that simplicial convolutional filters have several important properties, including
linearity, shift-invariance, and permutation and orientation equivariance. Similar to
GNNs, neural networks for simplicial complexes have been proposed. The paper [9]
proposes the Simplicial Neural Network (SNN). The convolutional layer of the SNN
consists of a primary simplicial filter and a nonlinear activation function. Inspired by
Convolutional Neural Networks (CNN), Simplicial Convolutional Neural Networks
(SCNN) are proposed [61]. A SCNN is more flexible than a SNN in exploiting simplicial
upper and lower neighborhoods. The SNN can be regarded as a particular form of the
SCNN.

Simplicial complexes have applications in control engineering [34], statistical ranking
[23], tumor progression data decomposition [44], harmonic clustering [10], brain
network analysis [13], neuronal morphology [24], co-authorship networks [39] and
collaboration networks [41]. Paper [34] analyzes the Laplacian flow on the simplicial
complex and points out that the stability of some dynamical systems is related to the
structural properties of the simplicial complexes. Paper [23] proposes a technique
called HodgeRank to rank data. The authors model pairwise rankings as flows at the
edges of the graph. The 1-simplicial signal can explain this, and the global ordering of
the dataset by the Hodge decomposition makes sense. Paper [44] is the application of

2.1. Higher-order networks 8

simplicial complexes in bioinformatics. Many different factors influence the evolution
of tumors. Mixed cell populations have different effects on tumors. Paper [44] applies
simplicial complexes to model this mixed modeling problem. Inspired by graph spec-
tral clustering, paper [10] proposes a simplicial complexes-based clustering algorithm.
A simplicial complexes clustering algorithm is used to study the feature extraction of
topological data. In past research, neural networks in the brain are often modeled
using graphs. However, such modeling requires the assumption that the basic unit of
the brain is a dyad that contains two neurons and their connections. The expressive
power of this way of modeling with graphs is limited. To solve this problem, the
paper [13] uses simplicial complexes to model the brain neural network. The simplicial
complexes framework can potentially replace graphs for brain neural network analysis
research.

2.1.2. Simplicial complexes
Given a finite set of vertices 𝒱, a k-simplex 𝒮𝑘 is a subset of 𝒱 with cardinality
k + 1. A simplicial complex of order K, 𝒳𝐾, is a finite collection of k-simplices 𝒮𝑘
for k = 0, 1, ...,K satisfying the inclusion property: for any 𝒮𝑘 ∈ 𝒳, all of its subsets
𝒮𝑘−1 ⊂ 𝒮𝑘 satisfy 𝒮𝑘−1 ∈ 𝒳. The number of k-simplices in a simplicial complex is
denoted by N𝑘 . For example, a node is a 0-simplex, an edge is a 1-simplex, and a
(filled) triangle is a 2-simplex, as shown in Fig.1. A graph is, therefore, a simplicial
complex of order one where its nodes are 0-simplices, and its edges are 1-simplices. A
face of simplex 𝒮𝑘 is defined as a subset with cardinality k. A coface of 𝒮𝑘 is defined as
a (k+1)-simplex which contains 𝒮𝑘 . Two simplices are lower adjacent if they have a
common face and upper adjacent if they have a common coface. For example, if two
edges share a node, they are lower adjacent, and if two edges share a (filled) triangle,
they are upper adjacent.

(a) Simplicial complex. (b) Simplicial complex. (c) Simplicial signals on edges.

Figure 2.1: Simplicial complexes and simplicial signals

Take Figure 2.1(a) as an example to illustrate these concepts. Figure 2.1(a) is a simplicial

2.1. Higher-order networks 9

complex of order two, which contains seven 0-simplices (nodes), ten 1-simplices (edges),
and three 2-simplices (filled triangles). The faces of the edge {3, 4} are node {3} and
node {4}. The faces of the triangle {1, 3, 4} are edge {1, 4}, edge {1, 3} and edge {3, 4}.
Edges {3, 4} and {1, 3} share a common face, the node {3} and a common coface, the
triangle {1, 3, 4}. Thus, they are both lower neighbors and upper neighbors. Edge
{3, 4} and {3, 6} share a common face, the node {3} but they do not have a common
coface. Thus, they are lower neighbors but not upper neighbors. It is worth noting that
only filled triangles are 2-simplices. For example, in Figure 2.1(b), triangle {1, 3, 4} is a
2-simplex which is filled but triangle {3, 4, 6} is not a 2-simplex because it is empty.

2.1.3. Incidence matrix
The incidence matrix of a graph can be used to evaluate the connectivity between
different nodes. A similar relationship exists between simplices of different orders.
Incidence matrix B𝑘 ∈ R𝑁𝑘−1×𝑁𝑘 can also be used to represent the relationship between
(k-1)-simplices and k-simplices. If there is a simplex𝒮𝑘−1

𝑗
⊂ 𝒮𝑘

𝑖
, we can use𝒮𝑘−1

𝑗
∼ 𝒮𝑘

𝑖
to

denote that their orientations are consistent. And if their orientations are not consistent,
𝒮𝑘−1
𝑗
/ 𝒮𝑘

𝑖
. The definition of the incidence matrix is as follows:

B𝑘(𝑖 , 𝑗) =


0, if 𝒮𝑘−1

𝑖 ⊄ 𝒮𝑘𝑗
1, if 𝒮𝑘−1

𝑖 ⊂ 𝒮𝑘𝑗 and 𝒮𝑘−1
𝑖 ∼ 𝒮𝑘𝑗

−1, if 𝒮𝑘−1
𝑖 ⊂ 𝒮𝑘𝑗 and 𝒮𝑘−1

𝑖 / 𝒮𝑘𝑗 .
(2.1)

The topology of a simplicial complex can be entirely described by B𝑘 for 𝑘 = 1, ..., 𝐾. B1
is the node-to-edge incidence matrix which is used in GSP, and B2 is the edge-to-triangle
incidence matrix. For example, the incidence matrices of the simplicial complexes
presented in Figure 2.1(a) is shown as follows:

B1 =

(1, 2) (1, 3) (1, 4) (2, 3) (3, 4) (3, 6) (4, 5) (5, 6) (5, 7) (6, 7)
1
2
3
4
5
6
7

©­­­­­­­­«

−1 −1 −1 0 0 0 0 0 0 0
1 0 0 −1 0 0 0 0 0 0
0 1 0 1 −1 −1 0 0 0 0
0 0 1 0 1 0 −1 0 0 0
0 0 0 0 0 0 1 −1 −1 0
0 0 0 0 0 1 0 1 0 −1
0 0 0 0 0 0 0 0 1 1

ª®®®®®®®®¬
B2 =

(1, 3, 4)(1, 2, 3)(5, 6, 7)
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(3, 4)
(3, 6)
(4, 5)
(5, 6)
(5, 7)
(6, 7)

©­­­­­­­­­­­­­«

0 1 0
1 −1 0
−1 0 0
0 1 0
1 0 0
0 0 0
0 0 0
0 0 1
0 0 −1
0 0 1

ª®®®®®®®®®®®®®¬
(2.2)

Each row of B2 represents an edge (1-simplex) in the simplicial complex, and each
column represents a filled triangle (2-simplex). The orientations of the 2-simplex
{1, 3, 4} and its faces are given in Figure 1(a). It has three faces {1, 3}, {1, 4} and
{3, 4}. Therefore, the first column of B2 has three non-zero elements, which are in rows
two, three, and five. The orientations of {1, 3} and {1, 4} are coherent with {1, 3, 4}.
Therefore, the corresponding elements in B2 are 1. The orientation of {3, 4} is not
coherent with {1, 3, 4}. Thus, the corresponding element is −1.

2.2. Simplicial signal processing 10

2.1.4. Hodge Laplacians
The whole simplicial complexes structure can be represented by the Hodge Laplacian
matrices

L0 = B1B⊤1
L𝑘 = B⊤𝑘 B𝑘 + B𝑘+1B⊤𝑘+1, 𝑘 = 1, . . . , 𝐾 − 1
L𝐾 = B⊤𝐾B𝐾

(2.3)

Except for L0 and L𝐾, all other Hodge-Laplacian matrices can be decomposed into
the sum of two terms: the first term L𝑘,ℓ = B⊤

𝑘
B𝑘 is the lower Laplacian and the second

term L𝑘,𝑢 = B𝑘+1B𝑇
𝑘+1 is the upper Laplacian. The lower Laplacian represents the lower

adjacencies of k-simplices (e.g., how two edges are adjacent via a common node), while
the upper Laplacian represents the upper adjacencies (e.g., how two edges are adjacent
by being the faces of the same triangle). From the definition of the incidence matrix,
an important property is:

B𝑘B𝑘+1 = 0. (2.4)

2.2. Simplicial signal processing
2.2.1. Simplicial signals
A 𝑘−simplicial signal, for short 𝑘−signal, is a mapping from the 𝑘−simplex to the set of
real numbers. We collect the 𝑘−signal into the vector s𝑘 =

[
𝑠𝑘1 , . . . , 𝑠

𝑘
𝑁𝑘

]⊤
∈ R𝑁𝑘 where

entry 𝑠𝑘
𝑖

corresponds to ith k-simplex. In this thesis, we will be mostly interested in
processing edge flows; hence we will deal with simplicial complexes of order 𝐾 = 2.
In this setting, we denote the 0-signal as v := s0 = [𝑣1, . . . , 𝑣𝑁0]⊤ ∈ R𝑁0 , the 1-signal
as f := s1 = [𝑓1, . . . , 𝑓𝑁1]⊤ ∈ R𝑁1 , and the 2-signal as t := s2 = [𝑡1, . . . , 𝑡𝑁2]⊤ ∈ R𝑁2 . For
processing purposes, we define an arbitrary reference orientation of each simplex
and follow the lexicographical ordering of the vertices. A simplex can only have two
orientations. The orientations of the edges in the graph are set based on the labeling of
vertices. If the value of the edge signal is positive, the set orientations are consistent
with the real situation. If it is negative, the set orientation is opposite to the real one.
This definition also holds for higher-order simplicial complexes. The 1-simplicial signal
in Figure 2.1(c) is [0.44,−0.57,−0.53,−0.40,−1.47, 0.72, 0.16,−0.38, 0.69,−0.86].

2.2.2. Spectral of simplicial complexes
In GSP, the graph Fourier transform performs the eigenvalue decomposition of the
graph Laplacian matrix as:

L0 = U0𝚲0U𝑇
0 (2.5)

where U0 contains the eigenvectors of L0 and 𝚲0 the eigenvalues. Then the eigenvectors
of L0 can be used to represent the graph signal as:

s0 = U0 𝒔̂
0 (2.6)

2.2. Simplicial signal processing 11

where 𝒔̂0 is the projection of the graph signal in the space that is spanned by the
eigenvectors of L0 as:

𝒔̂0
= U𝑇

0 𝒔
0 (2.7)

These concepts can be extended to simplicial complexes. The simplicial signal can also
be represented by the eigenvectors of L𝑘 . Given the eigendecomposition of L𝑘 ,

L𝑘 = U𝑘𝚲𝑘U𝑇
𝑘

(2.8)

the k-simplicial signal can be projected onto the space spanned by the eigenvectors of
L𝑘 as:

𝒔̂𝑘 = U𝑇
𝑘
𝒔𝑘 . (2.9)

The k-simplicial signal can also be represented by its GFT coefficients 𝒔̂𝑘 as:

𝒔𝑘 = U𝑘 𝒔̂
𝑘
. (2.10)

Four properties hold for Laplacian matrices L𝑘 : 1) the eigenvectors of L𝑘,ℓ corresponding
to non-zero eigenvalues are orthogonal to the eigenvectors of L𝑘,u corresponding to
non-zero eigenvalues; 2) if 𝒗 is an eigenvector of L𝑘−1,u corresponding to eigenvalue
𝜆, B𝑇

𝑘
𝒗 is also an eigenvector of L𝑘,ℓ with eigenvalue 𝜆; 3) the eigenvectors of L𝑘

with non-zero eigenvalue 𝜆 are either the eigenvectors of L𝑘,ℓ or L𝑘,u; 4) the non-zero
eigenvalues of L𝑘 are either the eigenvalues of L𝑘,ℓ or L𝑘,u.

2.2.3. Hodge decomposition
The space of a simplicial signalR𝑁𝑘 can be decomposed into three orthogonal subspaces

R𝑁𝑘 ≡ im
(
B⊤𝑘

)
⊕ ker (L𝑘) ⊕ im (B𝑘+1) (2.11)

where im(·) and ker(·) are the image and kernel spaces of a matrix and ⊕ is the direct
sum. That is, for any simplicial signal 𝒔𝑘 of order k, there exists three simplicial signals
of orders 𝑘 − 1, 𝑘, and 𝑘 + 1 so that we can decompose 𝒔𝑘 as

𝒔𝑘 = B⊤𝑘 𝒔
𝑘−1 + 𝒔𝑘H + B𝑘+1𝒔𝑘+1. (2.12)

This Hodge decomposition expresses the relationship between different orders of
simplicial signals. For edge flow signals, the Hodge decomposition carries the following
specific intuition. The edge flow f ∈ R𝑁1 can be written as a sum of three edge flows as
f = fG + fC + fH, where the fG ∈ im

(
B⊤1

)
is the gradient component, fH ∈ ker (L1) the

harmonic component, and fC ∈ im (B2) the curl component (see also Figure 2.2) with
the following explanation:

• Gradient component: fG = B⊤1 v is an edge flow induced by taking the difference
between the two node signals at the extremities of the edge. Operator B⊤1 is
referred to as the gradient operator, and likewise, the space im (B⊤1) is referred to
as the gradient space.

2.2. Simplicial signal processing 12

(a) Edge flow f. (b) fG. (c) fC. (d) fH.

Figure 2.2: Decomposition of the edge flow.

• Curl component: f𝐶 = B2t is a curl flow locally circling along the edges of triangles
induced by a triangle signal t. Operator B2 is the curl adjoint. The space im (B2)
is the curl space.

• Harmonic component: fH is the part of the edge flow that satisfies L1fH = 0. The
space ker (L1) is called the harmonic space.

In addition, we also define the following two operators:

• Curl operator: The curl operator is defined as curl(f) = B⊤2 f which measures the
curl of an edge flow. The ith element corresponds to the sum of the flow of each
edge forming the ith triangle. If the curl of an edge flow is zero at each triangle,
it is curl-free. The gradient component fG and the harmonic component fH are
curl-free by definition [2].

• Divergence operator: The divergence operator is defined as div(f) = B1f, which
measures the divergence of an edge flow. The ith element corresponds to the flow
passing through the ith node. If the divergence of an edge flow is zero at each
node, it is divergence-free. The curl component f𝐶 and harmonic component fH
are divergence-free by definition [2].

2.2.4. Simplicial Convolutional Filters
The simplicial convolution is defined as follows:

y𝑘 =

(
𝐿1∑
𝑙1=0

𝛼𝑙1L
𝑙1
𝑘,ℓ
+

𝐿2∑
𝑙2=0

𝛽𝑙2L
𝑙2
𝑘,𝑢

)
s𝑘 (2.13)

where the s𝑘 is a k-simplicial signal, L𝑘,ℓ is the lower Laplacian, L𝑘,𝑢 is the upper
Laplacian. 𝐿1 and 𝐿2 are the convolutional orders. The simplicial convolutional filter is
defined as follows:

H𝑘 :=

(
𝐿1∑
𝑙1=0

𝛼𝑙1L
𝑙1
𝑘,ℓ
+

𝐿2∑
𝑙2=0

𝛽𝑙2L
𝑙2
𝑘,𝑢

)
(2.14)

2.3. ADMM algorithm 13

It can be decomposed into two terms. The first term gathers the information from
lower-adjacencies, and the second term gathers the information from upper-adjacencies.
The simplicial convolutional filter has some important properties. The first one is that
they are linear operators as follows:

H𝑘

(
𝑎s𝑘1 + 𝑏s

𝑘
2

)
= 𝑎H𝑘s𝑘1 + 𝑏H𝑘s𝑘2 (2.15)

The second property is shift invariance as follows:

L𝑘,ℓ
(
H𝑘s𝑘

)
= H𝑘

(
L𝑘,ℓs𝑘

)
L𝑘,u

(
H𝑘s𝑘

)
= H𝑘

(
L𝑘,us𝑘

) (2.16)

The third and fourth properties are permutation equivariance and orientation equiv-
ariance, respectively, which means that the output will not be influenced by labeling
order and reference orientation [62].

2.3. ADMM algorithm
The Alternating Direction Multiplier Method (ADMM) is a convex optimization
algorithm. It is a primary method for solving separable convex optimization problems.
The ADMM decomposes a large global problem into multiple smaller and easier-
to-solve local sub-problems through Decomposition-Coordination and obtains the
solution of the large global problem by coordinating the solution of the sub-problems.
ADMM was first proposed by Glowinski, Marrocco [14], and Gabay, Mercier [12] in
1975 and 1976, respectively, and was reviewed by Boyd et al. in 2011 [5] and proved
that it is suitable for large-scale distributed optimization problems.

The classic ADMM can solve the optimization problem with equality constraints of the
form:

min 𝑓 (x) + 𝑔(z)
s.t. Ax + Bz = c (2.17)

where x ∈ R𝑛 , z ∈ R𝑚 ,A ∈ R𝑑×𝑛 ,B ∈ R𝑑×𝑚 , c ∈ R𝑑. To solve this optimization problem,
the first step is to introduce the augmented Lagrangian function defined as:

𝐿𝑐(x, z;𝝀) = 𝑓 (x) + 𝑔(z) + 𝝀⊤(Ax + Bz − c) +
𝜌

2 ∥Ax + Bz − c∥22 (2.18)

where 𝝀 ∈ R𝑑 is the Lagrange multiplier and 𝜌 is a penalty parameter. After adding
the latter quadratic term 𝜌

2 ∥Ax+Bz− c∥22, we no longer need to assume that 𝑓 is strictly
convex or bounded. For example, even if 𝑓 is linear, we can calculate the extreme value.
And it makes our solving process more smooth, making the iterative process more
robust and performing better on convergence. Adding this item will not change the
primal problem because the constraints of the problem constrain it and finally get the

2.4. Unrolling networks 14

solution that satisfies Ax + Bz = c. Therefore, it is equivalent to the primal problem.
The iteration steps of ADMM can be described as:

x𝑘+1 = argminx 𝐿𝑐

(
x, z𝑘 , 𝝀𝑘

)
z𝑘+1 = argminz 𝐿𝑐

(
x𝑘+1, z, 𝝀𝑘

)
𝝀𝑘+1 = 𝝀𝑘 + 𝜌(Ax + Bz − c).

(2.19)

Sometimes, the objective function should be divided into 𝑁(𝑁 > 2) blocks, and the
corresponding optimization problem is as follows:

min 𝑓1 (x1) + 𝑓2 (x2) + · · · + 𝑓𝑁 (x𝑁)
s.t. A1x1 +A2x2 + · · · +A𝑁x𝑁 = c

x𝑖 ∈ 𝒳𝑖 , 𝑖 = 1, . . . , 𝑁
(2.20)

where A𝑖 ∈ R𝑑×𝑛𝑖 , c ∈ R𝑑 , and 𝒳𝑖 ⊂ R𝑛𝑖 . The multi-block ADMM algorithm for solving
this optimization problem is also based on the augmented Lagrangian function, which
is defined as:

𝐿𝑐 (x1, . . . , x𝑁 ;𝝀) :=
𝑁∑
𝑗=1

𝑓𝑗
(
x𝑗

)
−

〈
𝝀,

𝑁∑
𝑗=1

A𝑗x𝑗 − c

〉
+

𝜌

2

 𝑁∑
𝑗=1

A𝑗x𝑗 − c

2

2

, (2.21)

where ⟨, ⟩ is the inner product between two vectors. The standard multi-block ADMM
algorithm iteration steps for solving this problem can be described as follows:

x𝑘+1
1 := argminx1∈𝒳1

𝐿𝑐

(
x1, x𝑘2 , . . . , x

𝑘
𝑁 ;𝝀𝑘

)
x𝑘+1

2 := argminx2∈𝒳2
𝐿𝑐

(
x𝑘+1

1 , x2, x𝑘3 , . . . , x
𝑘
𝑁 ;𝝀𝑘

)
...

x𝑘+1
𝑁 := argminx𝑁∈𝒳𝑁 𝐿𝑐

(
x𝑘+1

1 , x𝑘+1
2 , . . . , x𝑘+1

𝑁−1, x𝑁 ;𝝀𝑘
)

𝝀𝑘+1 := 𝝀𝑘 − 𝜌
©­«
𝑁∑
𝑗=1

A𝑗x𝑘+1
𝑗 − cª®¬

(2.22)

Standard ADMM minimizes the augmented Lagrangian function with respect to
x1, . . . , x𝑁 alternately. When 𝑁 = 2, it degenerates into the 2-block ADMM and has
been extensively studied. The convergence property of 2-block ADMM has been shown
in [5]. However, the convergence of multi-block ADMM needs to be discussed case
by case. For example, paper [16] shows that if the functions 𝑓1, 𝑓2,..., 𝑓𝑁 are strongly
convex, the multi-block ADMM algorithm converges.

2.4. Unrolling networks
Deep learning is a data-driven technology, which means that the performance of
an algorithm is directly dependent on the quantity and quality of the training data.

2.4. Unrolling networks 15

The deep learning network has many layers, which can theoretically be mapped to
any function. Therefore, it can solve many highly complex problems. In general,
deep learning algorithms will perform better if the data is more significant and of
better quality. These advantages make deep learning widely used in more and more
fields. However, deep learning algorithms also have some flaws. First, they often
lack interpretability. The black-box nature of deep networks makes it impossible for
researchers to know how their internal structure relates to the problem they need to
solve. This characteristic is not conducive to designing effective deep neural networks
and makes most neural network designs based on experience and trial and error.
Second, the algorithm’s generalization needs to be improved. Deep learning algorithms
are purely data-driven; without high-quality data, the algorithm’s performance can
be significantly reduced. For example, high-quality data is often lacking in medical
imaging [19] and 3D reconstruction [37] tasks. Data sets for medical imaging tasks often
involve patient privacy, making obtaining a large amount of training data challenging.
This results in poor performance of deep learning algorithms in these fields, even
inferior to traditional algorithms sometimes.

Compared with deep learning algorithms, conventional iterative algorithms tend
to have higher interpretability because they often acquire prior knowledge of the
problem. However, not all prior knowledge can be obtained easily. To get this prior
knowledge, we often need to combine relevant knowledge in specific fields, which
generally requires professional expertise. However, some prior knowledge is even
unknown, which makes the conventional iterative algorithms challenging. The recent
rise of unrolling networks combines traditional iterative algorithms with deep learning.
The unrolling network combines the learning ability of deep networks and the high
interpretability of iterative algorithms. Gregor and LeCun [15] first formally proposed
the concept of unrolling networks and combined iterative algorithms for sparse coding
with neural networks. Since then, more research on unrolling networks has been
explored, covering areas such as speech processing [17], computational imaging [56],
vision and recognition [30], medical imaging [51], smart power grid [64], and remote
sensing [31].

Paper [17] designs an unrolling network based on a nonnegative matrix factorization
algorithm. Experimental results on speech enhancement tasks show that unrolling
networks with fewer parameters still produce results close to traditional neural
networks. Paper [56] builds an unrolling network based on sparse coding for image
super-resolution. The proposed cascade of sparse coding based network model has
higher accuracy, faster computation speed, and a more compact model structure in
solving super-resolution problems. In [30], the unrolling network is applied to solve the
problem of semantic image segmentation. Liu et al. unroll the Markov Random Field
algorithm into a deep network called Deep Parsing Network (DPN). DPN achieves the
best performance on benchmark datasets, cityscape, CamVid, etc. Paper [51] proposes

2.5. Graph unrolling networks 16

an unrolling network that combines the robust principle component analysis algorithm
with deep learning. This unrolling network is applied to preprocess the signal in a
super-resolution ultrasound problem. The experimental results show that compared
with the fast iterative shrinkage algorithm and the data-driven deep network, the
unrolling network achieves speedier convergence and more accurate results. In paper
[64], Zhang et al. apply the unrolling algorithm to power system state estimation. The
proposed model in this paper, prox-linear nets, is based on double-loop prox–linear
iterations. Its performance on the IEEE 118-bus system is better than nearly all its
competitors, including the Gauss–Newton solver.

The core of the unrolling network is an iterative algorithm, and different iterative
algorithms often produce various unrolling networks. Frequently used iterative
algorithms include nonnegative matrix factorization (NMF), coupled sparse coding
with the ISTA, ADMM, primal-dual hybrid gradient, proximal gradient descent,
half-quadratic splitting, and projected gradient descent. Specifically, the unrolling
network converts each iteration in the iterative algorithm into a one-layer unrolling
network. The parameters appearing in the iterative algorithm are converted into
learnable parameters. The unrolling network thus constructed can also be trained
using backpropagation, thereby optimizing the parameters in the network. In addition
to higher interpretability, another advantage of unrolling the network is the higher
computational efficiency. They tend to have fewer parameters than traditional neural
networks, which makes their training more efficient and requires relatively less training
data.

2.5. Graph unrolling networks
2.5.1. Related works
Recently, unrolling algorithms have been applied to graph signal processing. The
paper in [8] applies the unrolling network to the task of graph signal denoising.
They solve the graph sparse coding and graph trend filtering problems. After giving
the underlying iterative algorithm, the authors replace the fixed parameters in the
iterative algorithm with learnable parameters. To train the constructed unrolling
network, this paper adopts an unsupervised training method to update the parameters
in the network. The unrolling network can achieve a better denoising effect than
conventional iterative algorithms and standard graph neural networks. The paper in
[7] designs a graph unrolling network for the inpainting task of time-varying graph
signals. Each layer corresponds to one iteration of the original iterative algorithm. The
regularization term is replaced with a trainable function. This paper moves away from
the manual selection of graph signal priors, a classic example of adaptive learning
of priors. Paper [53] models the image denoising problem from a graph perspective
and constructs a graph unrolling network. It minimizes the graph’s total variation to
denoise the signal. They give an analytical solution to this optimization problem while

2.5. Graph unrolling networks 17

replacing the fixed parameters in the iterative algorithm with trainable parameters
in the unrolling network. The experimental results show that this method is close
to the state-of-the-art DnCNN. However, the required parameters are 80% less than
DnCNN. This dramatically saves computing resources. In [36], the authors apply the
ADMM algorithm and Plug-and-Play ADMM (PnP-ADMM) algorithm to restore the
graph signal. Based on these two algorithms, they construct the corresponding graph
unrolling network. The unrolling network is then trained in a supervised manner.

2.5.2. Graph unrolling network via trend filtering
Consider a graph 𝐺 = (𝑉, 𝐸,A) with vertices 𝑉 = {𝑣𝑛}𝑁𝑛=1, and undirected edges
𝐸 = {𝑒𝑚}𝑀𝑚=1. Let A ∈ R𝑁×𝑁 be the adjacency matrix of this graph. A graph signal is
a vector x = [𝑥1, 𝑥2, ..., 𝑥𝑁]⊤ and the 𝑛th element 𝑥𝑛 is indexed by the vertex 𝑣𝑛 . The
univariate trend filtering problem provides an effective idea for solving the problem of
graph signal smoothing. Consider a graph signal with noise

t = x + n (2.23)

where x is the ground truth graph signal, n is the noise and t is the measurement.
Graph signal denoising aims to recover the x from t. It should first be assumed that
part of the prior information of the real graph signal is available. The penalty term
makes the recovered signal as close to the prior knowledge as possible. This problem
can be formulated as an optimization problem, and the 𝑘th order graph trend filtering
estimate is defined as [55]:

x̂ = arg min
x∈R𝑁

1
2 ∥x − t∥22 + 𝛼∥B(𝑘+1)x∥1 (2.24)

where B is the oriented graph incidence matrix. If 𝑒𝑙 = (𝑖 , 𝑗), the 𝑙th row of B is defined
as

B𝑙 = (0, ...−1
↑
𝑖

, ... 1
↑
𝑗

, ...0) (2.25)

When 𝑘 = 0, the penalty term is the first-order graph difference operator, which is the
optimization problem:

min
x∈R𝑁

1
2 ∥t − x∥22 + 𝛼∥y∥1

subject to y = Bx
(2.26)

The regularization term is the sum of the absolute difference between connected node
pairs which encourages the recovered graph signal to be piecewise-linear [52]. When
𝑘 ≥ 1, the higher order graph difference operator can be defined in a recursive way

B(𝑘+1) =

{
(B)⊤B(𝑘) = L 𝑘+1

2 for odd k
BB(𝑘) = B(1)L 𝑘

2 for even k
(2.27)

2.5. Graph unrolling networks 18

where L is the unnormalized Laplacian matrix.The penalty function of the optimization
problem (2.26) is

𝐽 =
1
2 ∥t − x∥22 + 𝛼∥y∥1 +

𝜇

2 ∥y − Bx∥22 (2.28)

The update equation obtained by the method of alternating minimization based on the
half-quadratic splitting algorithm is [27]{

x(𝑘+1) = (𝐼 + 𝜇B⊤B)−1(t + 𝜇B⊤y(𝑘))
y(𝑘+1) = arg min 𝜇

2 ∥y − Bx(𝑘+1)∥22 + 𝛼∥y∥1
(2.29)

To build an unrolling network, the iterative parameters in (2.29) are replaced with
the trainable graph convolution. Notice that the 𝒚-update in (2.29) has an analytical
solution. The 𝑙th layer of the corresponding unrolling network for (2.29) can be
computed as {

X(𝑙+1) = H1T +H2(B⊤Y(𝑙))
Y(𝑙+1) = 𝑆𝛿(BX(𝑙+1)) (2.30)

where T ∈ R𝑁×𝐾 is the measurements matrix and H1 and H2 are graph convolution
operators with trainable coefficients. The learnable parameters of the graph convolution
can be shared or be independent between layers. We set the parameters to be shared,
which helps to reduce the computational complexity. 𝑆𝛿(·) is a soft-thresholding
function which is defined as [5]

𝑆𝛿(𝑎) =

𝑎 − 𝛿 if 𝑎 > −𝛿
0 if − 𝛿 ≤ 𝑎 ≤ 𝛿
𝑎 + 𝛿 if 𝑎 < −𝛿

(2.31)

Consider each iteration as a layer in the unrolling network. The overall graph unrolling
trend filtering algorithm is shown in Table 2.1.

Table 2.1: algorithm of graph unrolling trend filtering

Algorithm Graph Unrolling Networks via Trend Filtering

Parameters T ∈ R𝑁×𝐾 : Original measurements
X0 ∈ R𝑁×𝐾 : Clean signal
A ∈ R𝑁×𝑁 : Adjacency matrix
𝐿: Number of unrolling layers
𝛿: Thresholding value
B ∈ R𝑀×𝑁 : Oriented incidence matrix

Estimation X ∈ R𝑁×𝐾 : The denoised graph signal
Function GUTF(T,A,𝐿,B)

X(0) ← 0
for 𝑙 = 1 : 𝐿

Y(𝑙) ← 𝑆𝛿(B𝑿 (𝑙−1))
X(𝑙) ← H1T +H2(B⊤Y(𝑙−1))

end
X← X(𝐿)

minimize ∥X − X0∥2𝐹 and update all weights
Return X

2.6. Summary 19

For the graph signal denoising problem, the smoothness assumption is normally
considered to hold. This means that signals on connected nodes tend to have close
values. When this assumption does not hold, graph trend filtering and its corresponding
unrolling network will no longer fit this denoising problem.

2.6. Summary
This chapter provides a comprehensive introduction and definition of the background
concepts needed for this topic. The object of study is the simplicial complexes, a
higher-order network. Specifically, this thesis studies higher-order signals defined on
simplicial complexes. The algorithms used in this paper include the ADMM algorithm
and the unrolling algorithm.

3
Problem formulation

Consider the edge flow reconstruction task from noisy or partial measurements y.
The goal is to estimate an edge flow signal f̂ from measurements y by leveraging
particular prior of the edge flows w.r.t. the underlying simplex such as curl-free or
divergence-free. This can be framed as a regularized optimization problem

argmin
f̂∈R𝑁1

∥f̂ − y∥22 +
∑𝑛
𝑖=1 𝑟𝑖(f̂,𝒮)

subject to Pf̂ = Py

(3.1)

where ∥f̂ − y∥22 is the data-fitting term that forces the recovered signal to be close
to the measurements. The terms 𝑟𝑖(f̂,𝒮) are the regularizers, which are monotone
non-decreasing functions penalizing particular behavior of the edge flows w.r.t. the
1-simplex. All regularizers are designed based on the prior knowledge of the edge
flow, such as the properties of curl-free or divergence-free. Pf̂ = Py adds particular
constraints on the observed signal and the reconstructed ones. We will detail problem
(3.1) to two particular settings: i) signal denoising when all edge flows are observed,
but the measurements are noisy; ii) signal reconstruction, when the edge flows are
observed noiseless on a subset of edges.

3.1. Denoising simplicial edge flow
For the denoising task, we can assume a noisy model as y = f0 + n, where f0 is the real
edge flow and n is the additive Gaussian noise. When P = 0 and y is a noisy edge flow,
this is an optimization problem for the denoising task. The goal is to recover the real f0
from the noisy measurements y.

20

3.2. Interpolation for simplicial edge flow 21

3.2. Interpolation for simplicial edge flow
When P ∈ {0, 1}𝑀×𝑁1 is the sampling matrix, and y is the edge flow with 𝑀 sampled
non-zero values, and 𝑁1 − 𝑀 missing values, (3.1) is an optimization problem for
interpolation. It is worth noting that (3.1) is an accurate optimization problem for
denoising, while it is an approximation for interpolation. The reason is that the
interpolation does not require the data-fitting term. To make the interpolation and
denoising formally uniform, we keep the data-fitting term in the interpolation and
adapt it to the interpolation by adjusting the coefficients of regularizers. When the
coefficients of the regularizers are much larger than the coefficient of the data-fitting
term, the influence of the data-fitting term on this optimization problem can be ignored.

4
Methodology

The regularizer in an optimization problem can affect the quality of the solution.
Different regularizers generate solutions with different properties. The innovation
of this paper is to combine ℓ1 and ℓ2 based regularizers to design a more flexible
optimization problem, which is an ElasticNet problem. This ElasticNet problem is
solved by a multi-block ADMM iterative algorithm.

4.1. Simplicial ElasticNet Problem
To regularize problem (3.1) with simplicial prior, we consider an ElasticNet principle
w.r.t. the three signal components in (2.12), which has both ℓ1 and ℓ2 norm regularizers
as follows

argmin
f̂∈R𝑁1

∥f̂ − y∥22 + 𝛼1∥B1f̂∥1 + 𝛼2∥B1f̂∥22 + 𝛽1∥B⊤2 f̂∥1

+ 𝛽2∥B⊤2 f̂∥22 + 𝛾1∥f̂∥1 + 𝛾2∥f̂∥22

subject to Pf̂ = Py

(4.1)

where 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛾1, 𝛾2 are all positive constants. There are three tuples of ElasticNet
regularizers in (4.1) that are reminiscent of the Hodge decomposition in (2.12):

• The first tuple 𝛼1∥B1f̂∥1 + 𝛼2∥B1f̂∥22 regularizes the divergence component of the
edge flows by promoting a sparse divergence via the ℓ1 norm and a low-energy
divergence via the ℓ2 norm.

• The second tuple 𝛽1∥B⊤2 f̂∥1 + 𝛽2∥B⊤2 f̂∥22 regularizes the curl component of the
edge flows. The ℓ1 norm promotes the sparsity of the curl on the triangles: that
is, it forces the recovered signal to have more triangles with zero curls. The ℓ2
norm reduces the total curl of recovered signal globally.

22

4.1. Simplicial ElasticNet Problem 23

• The last tuple 𝛾1∥f̂∥1 + 𝛾2∥f̂∥22 are additional regularizers that guarantee the
completeness of the optimization problem. In some tasks, these two terms are
redundant. In this case, 𝛾1 and 𝛾2 can be set to zero.

Scalars 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛾1, and 𝛾2 control the trade-off between the fidelity, divergence,
and curl of the recovered signals. For example, when 𝛼1 and 𝛼2 are large, the denoised
edge flow tends to be divergence-free, and when 𝛽1 and 𝛽2 are large, the denoised
edge flow tends to be curl-free. Problem (4.1) generalizes two existing edge flow
reconstruction problems.

4.1.1. Special case 1: Tikhonov regularizer
When the parameters 𝛼1 = 𝛽1 = 𝛾1 = 𝛾2 = 0, a common optimization problem for the
edge flow recovery becomes

argmin
f̂∈R𝑁1

∥f̂ − y∥22 + 𝛼2∥B1f̂∥22 + 𝛽2∥B⊤2 f̂∥22

subject to Pf̂ = Py

(4.2)

where the regularizers force the recovered signal to have a low divergence and curl.
Regularizers ∥B1f̂∥22 represents the total squared divergence penalty of the nodes. The
second regularization term ∥B⊤2 f̂∥22 represents the total squared curl penalty of the
triangles. Thus, the recovered signal obtained by this optimal solution tends to be
divergence-free or curl-free. However, the properties of the ℓ2 norm regularizers are
suboptimal for some tasks as they can only reduce the divergence and curl of the
reconstructed signal globally but cannot reconstruct the divergence-free and curl-free
signal exactly.

4.1.2. Special case 2: Simplicial trend filtering
When we consider only the sparsity of divergence and curl of the edge flow, the ℓ1
norm regularizer should be considered. Setting 𝛼2 = 𝛽2 = 𝛾1 = 𝛾2 = 0, the simplicial
ElasticNet reduces to the simplicial trend filtering problem

argmin
f̂∈R𝑁1

∥f̂ − y∥22 + 𝛼1∥B1f̂∥1 + 𝛽1∥B⊤2 f̂∥1

subject to Pf̂ = Py

(4.3)

When the prior knowledge curl-free or divergence-free is explicit, simplicial trend
filtering is more advantageous compared to Tikhonov regularization. The properties
of the ℓ2 norm regularizers are suboptimal for some tasks because they can only reduce
the divergence and curl of the reconstructed signal globally but cannot reconstruct the
divergence-free and curl-free edge flow exactly.

4.2. ADMM Solution for Simplicial ElasticNet 24

The ElasticNet takes the benefit of both regularizers, and it is of interest when:
(i) the data are approximately curl-free or divergence-free; (ii) the noise level is compa-
rable to that of the clean signal; and (iii) excessive flows that are missing. The reason is
that the ElasticNet makes a trade between the ℓ1 norm and ℓ2 norm of the regularizers.

4.2. ADMM Solution for Simplicial ElasticNet
Optimization problem (4.1) is a convex problem and there are several separable blocks
in its objective function. This optimization problem can be solved by a multi-block
ADMM algorithm. Consider the auxiliary variables z1 = B1f̂, z2 = B⊤2 f̂ and z3 = f̂ for
the regularizers so that to reformulate problem (4.1) as

argmin
f̂∈R𝑁1

∥f̂ − y∥22 + 𝛼1∥z1∥1 + 𝛼2∥z1∥22 + 𝛽1∥z2∥1

+ 𝛽2∥z2∥22 + 𝛾1∥z3∥1 + 𝛾2∥z3∥22

subject to B1f̂ = z1,B⊤2 f̂ = z2, f̂ = z3, Pf̂ = Py.

(4.4)

The corresponding augmented Lagrangian function is defined as

𝐿 =∥f̂ − y∥22 + 𝛼1∥z1∥1 + 𝛼2∥z1∥22 + 𝛽1∥z2∥1 + 𝛽2∥z2∥22
+ 𝛾1∥z3∥1 + 𝛾2∥z3∥22 − 𝝀

⊤
1 (B1f̂ − z1) − 𝝀⊤2 (B⊤2 f̂ − z2)

− 𝝀⊤3 (f̂ − z3) − 𝝀⊤4 (Pf̂ − Py) + 𝜌

2 ∥B1f̂ − z1∥22

+
𝜌

2 ∥B
⊤
2 f̂ − z2∥22 +

𝜌

2 ∥f̂ − z3∥22 +
𝜌

2 ∥Pf̂ − Py∥22

(4.5)

where 𝝀1 ∈ R𝑁0 , 𝝀2 ∈ R𝑁2 , 𝝀3 ∈ R𝑁1 and 𝝀4 ∈ R𝑀 are the Lagrangian multipliers
and 𝜌 is the penalty parameter. There are four blocks in this problem: ∥f̂ − y∥22;
𝛼1∥z1∥1 + 𝛼2∥z1∥22; 𝛽1∥z2∥1 + 𝛽2∥z2∥22 and 𝛾1∥z3∥1 + 𝛾2∥z3∥22. The iterative steps of

4.3. Simplicial unrolling networks 25

four-block ADMM comprise

f̂(𝑘+1) =(2I + 𝜌B⊤1 B1 + 𝜌B2B⊤2 + 𝜌I + 𝜌P⊤P)−1

(2y + B⊤1 𝝀
(𝑘)
1 + B2𝝀

(𝑘)
2 + 𝝀

(𝑘)
3 + P⊤𝝀(𝑘)4

+ 𝜌B⊤1 z(𝑘)1 + 𝜌B2z(𝑘)2 + 𝜌z(𝑘)3 + 𝜌P⊤Py)

z(𝑘+1)
1 =𝑆 𝛼1

2𝛼2+𝜌

(
1

2𝛼2 + 𝜌
(𝜌B1f(𝑘+1) − 𝝀(𝑘)1)

)
z(𝑘+1)

2 =𝑆 𝛽1
2𝛽2+𝜌

(
1

2𝛽2 + 𝜌
(𝜌2B⊤2 f(𝑘+1) − 𝝀(𝑘)2)

)
z(𝑘+1)

3 =𝑆 𝛾1
2𝛾2+𝜌

(
1

2𝛾2 + 𝜌
(𝜌3f(𝑘+1) − 𝝀(𝑘)3)

)
𝝀(𝑘+1)

1 =𝝀(𝑘)1 − 𝜌(B1f(𝑘+1) − z(𝑘+1)
1)

𝝀(𝑘+1)
2 =𝝀(𝑘)2 − 𝜌(B⊤2 f(𝑘+1) − z(𝑘+1)

2)
𝝀(𝑘+1)

3 =𝝀(𝑘)3 − 𝜌(f(𝑘+1) − z(𝑘+1)
3)

𝝀(𝑘+1)
4 =𝝀(𝑘)4 − 𝜌(Pf(𝑘+1) − Py)

(4.6)

where 𝑆𝛿(·) is the element-wise soft-thresholding function with threshold 𝛿. The
following proposition provides a sufficient condition for the convergence of the four-
block ADMM.
Proposition 1 (convergence): Given that each block in the cost function is a strongly
convex function and that its constants are 𝜇𝑖 satisfies 𝜇1 = 2, 𝜇2 = 2𝛼2, 𝜇3 = 2𝛽2, 𝜇4 =

2𝛾2. Consider also the matrices A𝑖 for equality constraints of (4.4) defined as

A1 =
[
B1,B⊤2 , I, P

]
∈ R(𝑁0+𝑁1+𝑁2+𝑀)×𝑁1 (4.7a)

A2 = [−I, 0, 0, 0] ∈ R(𝑁0+𝑁1+𝑁2+𝑀)×𝑁0 (4.7b)
A3 = [0, −I, 0, 0] ∈ R(𝑁0+𝑁1+𝑁2+𝑀)×𝑁2 (4.7c)
A4 = [0, 0, −I, 0] ∈ R(𝑁0+𝑁1+𝑁2+𝑀)×𝑁1 . (4.7d)

If the penalty parameter 𝜌 satisfies

0 < 𝜌 < min
1≤𝑖≤4

{
2𝜇𝑖

9∥A𝑖 ∥22

}
, (4.8)

the four-block ADMM iterative steps converge to the optimal solution of the problem
(4.1).

Proof. See Appendix A.

4.3. Simplicial unrolling networks
4.3.1. Simplicial Unrolling Network For ElasticNet
Choosing an appropriate regularization coefficient is critical to achieving a satisfactory
performance by solving the problem (4.1). However, in practice, such prior knowledge

4.3. Simplicial unrolling networks 26

may be unavailable or unclear to be framed as an explicit regularizer. The core idea
of building an unrolling network is to map each iteration of the iterative algorithm
into one neural network layer and replace the fixed parameters with learnable ones
[33]. Therefore, the unrolling network leads to a specific architecture that is tailored
to the problem at hand; hence, it restricts the degrees of freedom compared with a
conventional solution and, ultimately, demands less training data. We here propose
two variants in this report.

Variant 1. The core idea of constructing the unrolling network is to replace some of
the steps in the original iterative algorithm with trainable parameters. If we replace
the f̂-update, z-update and 𝝀𝑖-update steps in (4.6), we obtain:

f̂(𝑙+1) =(2I/𝜌 + B⊤1 B1 + B2B⊤2 + I + P⊤P)−1

(2y/𝜌 + B⊤1 q(𝑙)1 + B2q(𝑙)2 + q(𝑙)3 + P⊤q(𝑙)4

+ B⊤1 z(𝑙)1 + B2z(𝑙)2 + z(𝑙)3 + P⊤Py)
z(𝑙+1)

1 =𝑆1(B1f̂(𝑙+1) − q(𝑙)1 ;𝜃1)
z(𝑙+1)

2 =𝑆2(B⊤2 f̂(𝑙+1) − q(𝑙)2 ;𝜃2)
z(𝑙+1)

3 =𝑆3(f̂(𝑙+1) − q(𝑙)3 ;𝜃3)
q(𝑙+1)

1 =q(𝑙)1 − (B1f(𝑙+1) − z(𝑙+1)
1)

q(𝑙+1)
2 =q(𝑙)2 − (B

⊤
2 f(𝑙+1) − z(𝑙+1)

2)
q(𝑙+1)

3 =q(𝑙)3 − (f
(𝑙+1) − z(𝑙+1)

3)
q(𝑙+1)

4 =q(𝑙)4 − (Pf(𝑙+1) − Py)

(4.9)

where 𝑆𝑖 are the soft-thresholding functions with learnable parameters 𝜃𝑖 and q𝑖 = 𝝀𝑖/𝜌
is an auxiliary variable formulates the iterative steps in a more organized way. Then we
set the parameter 𝜌 to be a function of layer 𝑙 as 𝜌(𝑙). The overall learning framework
of the four-block ADMM is given in Algorithm 1.

Variant 2. Algorithm 1 fixes the parameter 𝜌(𝑙) as a function of layer 𝑙. We can also
set the 𝜌 to be learnable weights. For instance, another straightforward way is to
directly replace the fixed parameters 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛾1, 𝛾2 and 𝜌 with trainable param-
eters 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2, 𝑟1, 𝑟2, 𝑟3, 𝑟4 which can be updated through the backpropagation.

Unrolling networks formed by replacing fixed iterative parameters with scalar learnable
weights preserve the interpretability of the iterative algorithm to the greatest extent
but have limited expressive power and need to compute the inverse of matrices. A
more expressive unrolling network can be obtained by replacing the fixed iteration
parameters with simplicial convolutional filters to aggregate the information of adjacent
edge flows. Therefore, this unrolling network is more flexible and expressive. The
corresponding 𝑙th layer of the simplicial unrolling network for ElasticNet (SUEN)

4.3. Simplicial unrolling networks 27

Algorithm 1: Learning framework of the four-block ADMM for Simplicial
ElasticNet

Input :P, y, f0, 𝐿
Output : f(𝐿)

1 Function SUEN (P, y, f0, 𝐿);
2 Initialize f(0), z(0)1 , z(0)2 , z(0)3 , q(0)1 , q(0)2 , q(0)3 , q(0)4 ;
3 for b = 1 : 𝐿 do
4 update f̂(𝑙+1) by (4.9).;
5 update z(𝑙+1)

𝑖
by (4.9) for 𝑖 = 1, 2, 3;

6 update q(𝑙+1)
𝑖

by (4.9) for 𝑖 = 1, 2, 3, 4.;
7 end
8 Minimize ∥f(𝐿) − f0∥22 and update all weights;
9 Return f(𝐿)

consists of: 

f̂(𝑙+1) =H1y +H2B⊤1 𝝀
(𝑙)
1 +H3B2𝝀

(𝑙)
2 +H4𝝀

(𝑙)
3 +H5P⊤𝝀(𝑙)4

+H6B⊤1 z(𝑙)1 +H7B2z(𝑙)2 +H8z(𝑙)3 +H9P⊤Py

z(𝑙+1)
1 =𝑆 𝑎1

2𝑎2+𝑟1

(
1

2𝑎2 + 𝑟1
(𝑟1B1f(𝑙+1) − 𝝀(𝑙)1)

)
z(𝑙+1)

2 =𝑆 𝑏1
2𝑏2+𝑟2

(
1

2𝑏2 + 𝑟2
(𝑟2B⊤2 f(𝑙+1) − 𝝀(𝑙)2)

)
z(𝑙+1)

3 =𝑆 𝑐1
2𝑐2+𝑟3

(
1

2𝑐2 + 𝑟3
(𝑟3f(𝑙+1) − 𝝀(𝑙)3)

)
𝝀(𝑙+1)

1 =𝝀(𝑙)1 − 𝑟1(B1f(𝑙+1) − z(𝑙+1)
1)

𝝀(𝑙+1)
2 =𝝀(𝑙)2 − 𝑟2(B

⊤
2 f(𝑙+1) − z(𝑙+1)

2)
𝝀(𝑙+1)

3 =𝝀(𝑙)3 − 𝑟3(f
(𝑙+1) − z(𝑙+1)

3)
𝝀(𝑙+1)

4 =𝝀(𝑙)4 − 𝑟4(Pf(𝑙+1) − Py)

(4.10)

where H𝑖 are simplicial convolutional filters defined in (2.13), which contain some
trainable parameters. In contrast to variant 1, this variant replaces the update step of f̂
with a polynomial containing simplicial filters and replaces 𝜌 at different positions with
four different trainable parameters 𝑟1, 𝑟2, 𝑟3, and 𝑟4. There are 1 + 𝐿1 + 𝐿2 coefficients
for each simplicial filter. Variant 2 has 13+ 3𝐿1+ 3𝐿2 trainable parameters while variant
1 just has 6. Thus, variant 2 is more flexible and expressive than variant 1.

4.3.2. Convergence Analysis of Variant 1
Although the unrolling neural networks are designed based on optimization algo-
rithms which often have a theoretical guarantee of convergence, the dynamic nature of
their internal trainable parameters still complicates the convergence of their generated

4.3. Simplicial unrolling networks 28

sequences. We show that the sequences generated by variant 1 of the simplicial un-
rolling network for ElasticNet are globally convergent under the following conventional
assumptions.

Assumption 1. For any given input x, the soft-thresholding functions Φ𝑖 with learnable
parameters should satisfy ∥𝑆𝑖(x) − x∥2 ≤ 𝐶𝑖/𝜌, where 𝐶𝑖 > 0 are universal constants
for 𝑖 = 1, 2, 3.

This is an assumption on the bound. The common linear and nonlinear opera-
tions in deep neural networks are basically consistent with this assumption [29]. This
also holds true for ADMM-based unrolling networks [59].

Assumption 2. The following four inequalities hold:

∥B1f̂(𝑙+1) − (z(𝑙)1 + q(𝑙)1)∥2 ≤ 𝑅1/𝜌 (4.11a)

∥B⊤2 f̂(𝑙+1) − (z(𝑙)2 + q(𝑙)2)∥2 ≤ 𝑅2/𝜌 (4.11b)

∥f̂(𝑙+1) − (z(𝑙)3 + q(𝑙)3)∥2 ≤ 𝑅3/𝜌 (4.11c)

∥Pf̂(𝑙+1) − (Py + q(𝑙)4)∥2 ≤ 𝑅4/𝜌 (4.11d)

where 0 < 𝑅𝑖 < ∞ for 𝑖 = 1, 2, 3, 4.

This assumption assumes the difference between edge flow f̂ and generated sequences
z𝑖 and q𝑖 is limited and bounded.

Assumption 3. The fixed parameter 𝜌(𝑙) should satisfy that 𝜌(𝑙) → ∞ when the depth
of unrolling network 𝑙 →∞.

When the penlty parameter 𝜌 is set as 𝜌 = 𝜌0𝑟
𝑙
0 where 𝑟0 > 1, Assumption 3 can

be satisfied.

Proposition 2. Variant 1 of simplicial unrolling network for ElasticNet (SUEN) in
Algorithm 1 converges when Assumptions 1, 2, and 3 are satisfied. That is, {(f(𝑙), z(𝑙)1 ,
z(𝑙)2 , z(𝑙)3 , q(𝑙)1 , q(𝑙)2 , q(𝑙)3 , q(𝑙)4)} generated by SUEN is globally converges to a fixed-point.

Proof. See Appendix B.

This proposition indicates that if we check the NMSE or Pearson coefficient of the
output at each layer of the trained unrolling network, the curves converge.

4.4. Summary 29

4.4. Summary
This chapter proposes a new optimization problem, ElasticNet, for the denoising and
interpolation task of simplicial signals. The corresponding iterative solution is given
based on the ADMM algorithm, and the corresponding simplicial unrolling network
is constructed. The convergence of the proposed unrolling network SUEN is explored
to prove the convergence of the network under some assumptions. This provides us
with ideas for settings unrolling network parameters.

5
Experimental results

This section evaluates the proposed simplicial unrolling networks on the simplicial
edge flows recovery tasks. In this chapter, section 5.1 introduces the datasets we used;
section 5.2 explains the experimental setup; section 5.3 is the ablation study.

5.1. Datasets
5.1.1. Foreign Currency Exchange (Forex) dataset
We consider pairwise currency exchanges between 25 different currencies. This can
be modeled as a network where the edge flow is the logarithm of the exchange rate.
An essential rule in the exchange rate market is that the exchange rate value must
guarantee the no-arbitrage condition. I.e., the rate difference and income cannot be
obtained through repeated exchange between currency pairs. For currencies A and B,
the exchange rate consists of represented by 𝑟A/B and the no-arbitrage condition can be
𝑟A/B𝑟B/C = 𝑟A/C. When this condition is met, the two paths of trading from currency A
by using currency B as intermediate, trading to currency C, and directly trading from
currency A to currency C are equivalent. If we use the logarithm to describe the edge
flow, we obtain f[𝐴,𝐵] = log

(
𝑟A/B

)
and the no-arbitrage condition means that the edge

flow is curl-free as shown in Figure 5.1. Therefore, an arbitrage free exchange setting
satisfies

B⊤2 f

1 = 0 or

B⊤2 f

2
2 = 0. We model the dataset as a simplicial complex with

25 nodes, 300 edges, and 2300 triangles. Our goal task here is to recover exchange rates
under the arbitrary free condition, which is relevant in noisy fluctuation settings or
when anomalies may be present.

30

5.2. Experimental Setup 31

Figure 5.1: Exchange rate modeled by simplicial complexes. The edge flow, composed directly of the
exchange rate, is not curl-free (left). Moreover, the edge flow after taking the logarithm of the exchange

rate can be considered approximately curl-free (right).

5.1.2. Lastfm dataset
The Lastfm dataset records the process of users switching artists while playing music.
Each distinct artist can be modeled as a node, and an edge models the switch between
two adjacent artists. When the user switches from artist A to artist B, we add a unit on
the edge flow from A to B. Edge flows modeled in this way should be approximately
divergence-free. Since only the nodes where the user starts and ends have nonzero
divergence, whereas the rest of the nodes are divergence-free. Therefore, we can
constrain the edge flow to satisfy

B⊤2 f

1 = 0 or

B⊤2 f

2
2 = 0. The Lastfam dataset can be

modeled as a simplicial complex with 657 nodes, 1997 edges, and 1276 triangles. We use
the topology of the Lastfm dataset is used and generate synthetic divergence-free edge
flows. The task consists of recovering edge flows from noisy or partial measurements,
which are typical when the information of users is inaccurate.

5.1.3. Chicago road network
This is the network of the city of Chicago and contains 546 nodes, 1088 edges, and 112
triangles [62]. Junctions on traffic roads are modeled as nodes, roads as edges, and
the area enclosed by three roads as triangles. Based on this topology, we artificially
generate divergence-free edge flows. Specifically, we perform random walks on the
topology and record the number of walks on each edge to simulate the flow on
the traffic road. The edge flow constructed in this way is roughly divergence-free.
Gaussian noise or sampling is then added to corrupt the original edge-flow signal and
to complete the corresponding signal reconstruction task. The task here consists of
estimating the edge flows from noisy and partial measurements, which could be of
relevance for traffic monitoring from a few sensors.

5.2. Experimental Setup
5.2.1. Models
We compare different iterative models, including:

• ADMM-SEN: ADMM for simplicial ElasticNet in (4.6).
• ADMM-STF: ADMM for simplicial trend filtering in (C.1).

5.2. Experimental Setup 32

Table 5.1: Parameters of ADMM-SEN

Dataset 𝛼1 𝛼2 𝛽1 𝛽2 𝛾1 𝛾2

Forex 0.01 0.01 1 1 0.01 0.01
Lastfm 1 1 0.01 0.01 0.01 0.01
Chicago 1 1 0.01 0.01 0.01 0.01

• SUEN: Simplicial unrolling network for ElasticNet in (4.10).
• SUTF: Simplicial unrolling network for trend filtering in (C.2).
• MLP [42]: Multilayer perceptrons are a fully connected neural network that has

black-box nature.
• SNN [9]: Simplicial neural networks are developed for processing simplicial

signals, and it is a non-model-based neural network.
• GUTF [8]: Graph unrolling network for trend filtering as a baseline. We build

a line graph [48] where edges become nodes and vice versa and consider the
edge flows as node signals. Then we deploy the approach of [8] to show the
reconstruction performance.

The coefficients of the regularizers in the ADMM-SEN are set in Table 5.1. For the
divergence-free dataset, we set the regularizer coefficients associated with divergence
much larger than that associated with curl. The opposite is true for the curl-free
dataset. The coefficients of the regularizers in the ADMM-STF, the parameters are
set as (i)𝛼 = 0.01, 𝛽 = 1 (ii)𝛼 = 1, 𝛽 = 0.01 (iii)𝛼 = 1, 𝛽 = 0.01 for Forex, Lastfm and
Chicago dataset, respectively. Hyperparameters such as the number of layers are
shown in Tables 5.2 and 5.3. We ran it till we got the best performance that we reported.
The number of layers in MLP is 5, and the number of neurons in each layer is 16,
128, 128, 16, 1. The number of layers of SNN is 3, and the number of features output
from each layer is 2, 2, and 1, respectively. Adam optimizer is used in all experiments
comparing neural networks. All neural networks are trained using one-shot learning.

5.2.2. Noise and sampling models
We add zero mean Gaussian noise with SNRs ranging from 0dB to 10 dB. For the
interpolation task, we sample the edge flows randomly with a sampling rate from 20%
to 90%. We evaluate the denoising performance via the normalized mean squared
error (NMSE) and the interpolation performance via the Pearson correlation coefficient
between the recovered and clean true signal as in [22]. The curl-free and divergence-free
property of the original signal is destroyed after adding noise, as shown in Figure 5.2.

5.2. Experimental Setup 33

(a) Curl of Forex after adding noise or sampling

(b) Divergence of Lastfm after adding noise or sampling

(c) Divergence of Chicago after adding noise or sampling

Figure 5.2: Property of datasets. The top, middle, and bottom figures show the curl on Forex,
divergence on the Lastfm, and divergence on Chicago datasets, respectively. For the denoising task, the
curl of all triangles and the divergence of all nodes become larger after adding Gaussian noise. For the
interpolation task, some of the triangles’ curl and some of the nodes’ divergence become larger after

sampling, and some of the triangles’ and nodes’ properties remain the same.

5.2. Experimental Setup 34

5.2.3. Evaluation metrics
For the denoising task, the normalized mean square error

𝑁𝑀𝑆𝐸 = ∥f̂ − f0∥22/∥f0∥22 (5.1)

is used to evaluate the performance. Here f̂ is the denoised edge flow signal, and f0 is
the actual edge flow signal. The smaller the value of NMSE, the closer the denoised
signal is to the actual signal; that is, the better the denoising effect. For the interpolation
task, the Pearson correlation coefficient between f̂ and f0 is as follows

𝑟f̂f0
=

∑𝑛
𝑖=1

(
f̂𝑖 − ¯̂f

) (
f0 𝑖 − f̄0

)√∑𝑛
𝑖=1

(
f̂𝑖 − ¯̂f

)2√∑𝑛
𝑖=1

(
f0 𝑖 − f̄0

)2
(5.2)

are used to evaluate performance. In the interpolation task, the Pearson correlation
coefficient between the recovered and original signals represents the interpolation
performance. The closer it is to 1, the better the interpolation performance, i.e., the
closer it is to the original edge-flow signal. The closer it is to 0, the more significant the
difference between the recovered edge-flow signal and the original signal.

5.2.4. Denoising and Interpolation Performance
Table 5.2 shows the NMSE of the edge flow denoising task. On the Forex dataset,
the unrolling network achieves comparable performance in NMSE to the iterative
algorithm ADMM-STF. In contrast, the non-model-based neural networks MLPs and
SNNs produce substandard results. On the Lastfm and Chicago datasets, the unrolling
network SUEN with SUTF outperforms all other models in NMSE. This is because
the unrolling network learns more accurate prior knowledge in these two datasets.
The advantage of the unrolling network is more apparent when the SNR is close to
zero. This is because the unrolling network can capture the patterns in the signal more
accurately when the noise is significant.

Table 5.3 shows the Pearson correlation coefficients for the edge flow interpolation
task. The performance of the SUEN and SUTF is close to that of ADMM on the Forex
dataset. In contrast, on the Lastfm and Chicago datasets, SUEN and SUTF interpolate
significantly better than all other models.

A significant difference in the performance of the iterative algorithm for the sig-
nal recovery task on these three datasets can be noticed, with the iterative algorithm
performing better on the Forex dataset. The reason is that the curl-free property of the
Forex dataset provides more practical information than the divergence-free property
of the Lastfm and Chicago dataset. Curl-free is defined for triangles in simplicial
complexes; thus, when there are more triangles in simplicial complexes, the curl-free
property provides more information. Furthermore, the topology of the Forex dataset

5.2. Experimental Setup 35

Table 5.2: NMSE of denoising task

FOREX Parameter 0dB 2dB 4dB 6dB 8dB 10dB

Original 0.99 0.63 0.39 0.24 0.15 0.09
MLP[42] 𝐿 = 5 0.70 0.48 0.34 0.21 0.15 0.10
SNN[9] 𝐿 = 3,𝑘 = 1 0.50 0.41 0.31 0.20 0.14 0.09
GUTF[8] 𝐿 = 2 0.47 0.36 0.28 0.19 0.14 0.09
ADMM-STF 𝐾 = 500 0.10 0.06 0.04 0.02 0.01 0.01
ADMM-SEN 𝐾 = 500 0.11 0.09 0.07 0.06 0.05 0.05
SUEN 𝐿 = 4 0.09 0.06 0.04 0.02 0.01 0.01
SUTF 𝐿 = 6 0.09 0.06 0.04 0.02 0.01 0.01

LASTFM Parameter 0dB 2dB 4dB 6dB 8dB 10dB

Original 0.99 0.62 0.39 0.24 0.15 0.09
MLP[42] 𝐿 = 5 0.39 0.30 0.22 0.16 0.11 0.07
SNN[9] 𝐿 = 3,𝑘 = 1 0.28 0.21 0.15 0.11 0.09 0.07
GUTF[8] 𝐿 = 2 0.87 0.87 0.87 0.87 0.87 0.86
ADMM-STF 𝐾 = 200 0.94 0.59 0.36 0.22 0.14 0.08
ADMM-SEN 𝐾 = 200 0.70 0.44 0.28 0.18 0.12 0.07
SUEN 𝐿 = 2 0.09 0.08 0.07 0.06 0.04 0.04
SUTF 𝐿 = 6 0.09 0.08 0.08 0.05 0.04 0.03

CHICAGO Parameter 0dB 2dB 4dB 6dB 8dB 10dB

Original 1.01 0.64 0.40 0.25 0.16 0.10
MLP[42] 𝐿 = 5 0.56 0.43 0.32 0.22 0.15 0.09
SNN[9] 𝐿 = 3,𝑘 = 1 0.47 0.35 0.27 0.19 0.14 0.10
GUTF[8] 𝐿 = 2 0.79 0.73 0.68 0.63 0.59 0.57
ADMM-STF 𝐾 = 500 0.96 0.59 0.37 0.22 0.14 0.08
ADMM-SEN 𝐾 = 500 0.53 0.34 0.21 0.13 0.08 0.05
SUEN 𝐿 = 6 0.37 0.26 0.18 0.12 0.08 0.05
SUTF 𝐿 = 8 0.37 0.26 0.18 0.12 0.08 0.05

is a completed simplicial complex, meaning a filled triangle exists among any three
nodes. Therefore, the curl-free is a solid prior for the Forex dataset.

Overall, the traditional iterative algorithm ADMM and the neural networks can
perform the signal recovery task. The difference between them is that the traditional
iterative algorithm needs to have excellent prior knowledge to perform better. The
regularizers and coefficients in the optimization problem, as well as the coefficients
in the ADMM algorithm, need to be chosen based on the dataset’s priori. For in-
stance, in our experiments, we know that Forex, Lastfm, and Chicago dataset are curl-
and divergence-free, respectively. Thus, six different regularizers are purposefully
designed, and all coefficients are given, as shown in Table 5.1. However, this specific
prior knowledge is often challenging to obtain in practice.

Therefore, considering neural networks to learn this prior knowledge is a poten-
tial strategy. However, obtaining a large amount of training data for neural networks
is formidable because of the cost of labeled data. This leads to the fact that standard
neural networks such as SNNs and MLPs often need more training data to achieve
satisfactory results. However, the unrolling networks designed on the mathematical
models can achieve considerable performance despite the one training sample. The

5.2. Experimental Setup 36

Table 5.3: Pearson correlation coefficient of interpolation task

FOREX Parameter 20% 30% 40% 50% 60% 70% 80% 90%

Original 0.47 0.56 0.62 0.71 0.75 0.82 0.86 0.91
MLP[42] 𝐿 = 5 0.48 0.56 0.63 0.71 0.75 0.82 0.87 0.91
SNN[9] 𝐿 = 3,𝑘 = 1 0.48 0.56 0.62 0.71 0.75 0.82 0.86 0.91
GUTF[8] 𝐿 = 2 0.53 0.61 0.66 0.74 0.77 0.82 0.87 0.91
ADMM-STF 𝐾 = 2500 0.93 0.96 0.99 0.99 0.99 0.99 0.99 0.99
ADMM-SEN 𝐾 = 1500 0.96 0.98 0.99 0.99 0.99 0.99 0.99 0.99
SUEN 𝐿 = 2 0.96 0.97 0.99 0.99 0.99 0.99 0.98 0.99
SUTF 𝐿 = 8 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

LASTFM Parameters 20% 30% 40% 50% 60% 70% 80% 90%

Original 0.39 0.53 0.62 0.68 0.74 0.82 0.86 0.93
MLP[42] 𝐿 = 5 0.39 0.54 0.63 0.69 0.75 0.82 0.86 0.93
SNN[9] 𝐿 = 3,𝑘 = 1 0.45 0.58 0.68 0.73 0.76 0.83 0.87 0.93
GUTF[8] 𝐿 = 2 0.16 0.20 0.23 0.23 0.24 0.25 0.25 0.26
ADMM-STF 𝐾 = 2000 0.39 0.54 0.63 0.69 0.75 0.82 0.87 0.93
ADMM-SEN 𝐾 = 500 0.41 0.56 0.65 0.72 0.78 0.85 0.90 0.96
SUEN 𝐿 = 2 0.93 0.94 0.95 0.96 0.97 0.97 0.98 0.99
SUTF 𝐿 = 6 0.94 0.95 0.96 0.96 0.97 0.97 0.98 0.99

CHICAGO Parameters 20% 30% 40% 50% 60% 70% 80% 90%

Original 0.45 0.55 0.64 0.73 0.79 0.86 0.90 0.96
MLP[42] 𝐿 = 5 0.45 0.55 0.64 0.73 0.78 0.86 0.90 0.96
SNN[9] 𝐿 = 3,𝑘 = 1 0.53 0.63 0.73 0.82 0.84 0.92 0.92 0.96
GUTF[8] 𝐿 = 2 0.28 0.34 0.42 0.49 0.52 0.58 0.63 0.66
ADMM-STF 𝐾 = 250 0.47 0.56 0.65 0.74 0.80 0.87 0.91 0.96
ADMM-SEN 𝐾 = 1000 0.60 0.71 0.80 0.88 0.93 0.96 0.98 0.99
SUEN 𝐿 = 12 0.63 0.73 0.82 0.91 0.95 0.98 0.99 0.99
SUTF 𝐿 = 8 0.61 0.72 0.81 0.89 0.93 0.96 0.98 0.99

reason is that unrolling networks make full use of limited prior knowledge, and their
underlying structure is based on iterative steps. Thus the number of trainable weights
is notably less than that of standard non-model-based neural networks. This indicates
that the unrolling networks will search a much smaller function space than other
neural networks for an optimal solution. Non-model-based neural networks, such as
SNNs and MLPs, are a more general type of neural network, and their structure can
be similar for distinct tasks. This is advantageous when the available training data is
sufficient because it implies a more powerful expressive ability. However, when the
training data is limited, this generality can increase the training burden. In contrast,
the structure of unrolling networks needs to be designed for specific tasks. This results
in a lower generality, which has a higher interpretability and training efficiency.

GUTF experiments in table 5.2 and 5.3 transform the edge flow signals in the simplicial
complexes into node signals in the corresponding line graph and uses the graph
unrolling network of trend filtering (GUTF) to complete the edge flow reconstruction
task. The experimental results show that the graph-based unrolling network cannot
achieve satisfactory results. This is because the structure of GUTF is designed based on
the graph signal reconstruction task, and the underlying optimization problem is the
graph trend filtering problem without utilizing the topology of simplicial complexes.

5.2. Experimental Setup 37

Graph trend filtering forces the differences of the recovered graph signals between
connected nodes to be sparse, which implies that the reconstructed neighboring edge
flows are close, which is not realistic. Real-world edge flows tend to be curl-free
or divergence-free. Therefore, although GUTF has a similar number of trainable
parameters as SUEN and SUTF, it still cannot achieve good results in one-shot learning.
This indicates that the unrolling network is a model-based neural network, and the
degree of matching between the underlying model and the solved task will directly
affect the training effect of the unrolling network.

5.2.5. Convergence Results
We test the convergence of the multi-block ADMM algorithm with the penalty pa-
rameter 𝜌 varying from 0.1 to 0.4. The experimental results are shown in Figure 5.3,
where the multi-block ADMM algorithm is always guaranteed to converge as 𝜌 varies.
The larger the 𝜌 value, the faster the convergence of the algorithm. As for variant 1 of
SUEN, we check the output of each layer of the unrolling network, and the number of
layers is gradually increased from 1 layer to up to 14 layers. To satisfy Assumption 3, 𝜌
in SUEN is set to 𝜌 = 1.01𝑙𝜌0, which is a non-learnable parameter that varies with the
number of layers. The results of the convergence experiments of SUEN are shown in
Figure 5.3. The NMSE and the Pearson correlation coefficients of the recovered edge
flow generated by the trained SUEN network converge gradually as the number of
layers is gradually increased.

5.2. Experimental Setup 38

Figure 5.3: Convergence property of multi-block ADMM and unrolling network. The figures on the top
are the convergence performance of the 4-block ADMM. As 𝜌 changes from small to large, the ADMM
algorithm is converging. The figures on the bottom are the convergence performance of the simplicial

unrolling network. We can observe that the network converges as the depth becomes deeper.

5.2.6. Effect of simplicial convolutional filters
We verify the contribution of adding trainable simplicial convolutional filters by
ablation study. Figure 5.4 show the effect of trainable filters on the NMSE and Pearson
correlation coefficients in the denoising and interpolation tasks, respectively. The
introduction of the simplicial convolutional filters in the unrolling network structure
improves the learning ability of the network, resulting in better performance in the edge
flow reconstruction task. This is because the network with the simplicial convolutional
filters aggregates the information of the edge flow and its neighbors at each layer, thus
giving the network a stronger learning and representation capability. Furthermore,
the interpretability of the network is highest when the fixed parameters in the iterative
algorithm are directly replaced with trainable scalar parameters. In this case, each
trainable parameter in the network directly corresponds to a component in the iterative
algorithm, which allows us to interpret the network parameters after training based on
the iterative algorithm. However, this replacement strategy does not make full use of
the information from the edge flow neighbors and overall reduces the learning ability
of the unrolling network.

5.3. Summary 39

Figure 5.4: Reconstruction performance of different parametric strategies. SNR for denoising tasks
ranges from 0 dB to 10 dB. The sampling rate for the interpolation task is ranging from 20% to 90%.
’SUEN’ and ’SUTF’ are unrolling networks containing simplicial convolutional filters, while ’SUEN

without convolution’ and ’SUTF without convolution’ employs scalar weights. The left figures
correspond to the result of the denoising task and the right to the interpolation task. The top, middle,
and bottom figures show the performance on the Forex, Lastfm, and Chicago datasets, respectively.

5.3. Summary
This chapter conducts experiments on real-world as well as artificial datasets. The
experiments verify that the simplicial unrolling network has advantages over traditional
iterative algorithms as well as non-model-based neural networks in simplicial signal
recovery tasks when the training sample is limited. We verify the importance of
simplicial filters in unrolling networks. It aggregates the information of the edge
flow and its neighbors at each layer, thus giving the network a stronger learning and
representation capability.

6
Conclusion

6.1. Summary
We propose a highly interpretable and easily trainable simplicial unrolling network for
the reconstruction task of simplicial edge flows. The core of this unrolling network is
trainable simplicial convolutional filters that collect information from the neighbors
of the edge flows and adjusts the filter parameters according to the input data, thus
improving the learning and expression capabilities of the network. Then, we design the
corresponding unrolling networks SUEN and SUTF for the simplicial ElasticNet and
the simplicial trend filtering, respectively. Under some mild conditions, we prove the
convergence of this simplicial unrolling network. Through experiments on real-world
and semi-artificial datasets, we verify that the simplicial unrolling network can achieve
better reconstruction results than non-model-based neural networks and traditional
iterative algorithms with limited training data. Here, we recall the questions proposed
in the introduction:

• How to choose the proper regularizer for the edge flow reconstruction task?
• How to reduce our reliance on a priori knowledge?

The answer is:

• When dealing with curl- or divergence-free edge flow, the simplicial ElasticNet
optimization problem is proposed. Its regularizers contain two different types of
regularizers, which are ℓ1 and ℓ2 norm regularizers. The ℓ1 norm regularizers
promote the sparsity of the divergence or curl of the recovered edge flow, and the
ℓ2 norm regularizers keep the value of divergence or curl to be as low as possible.

• Based on the traditional iterative algorithm, the corresponding unrolling network
is constructed. We can learn the potential prior knowledge in the data in a
data-driven manner. This avoids the errors caused by empirically determined
prior.

40

6.2. Future work 41

6.2. Future work
In future research, this project can be improved from the following perspectives. First,
this project only considers the simplicial signal at a certain moment, but not the time-
varying signal. In future research, the dimension of time can be added. This means
that we need to solve new regularized optimization problems. Secondly, this project
only considers ADMM as an iterative optimization algorithm. In future research, other
algorithms can be used to construct the corresponding unrolling networks, which
may give better performance. Finally, this project only considers the interaction of
nodes, edges, and signals on triangles in simplexes but does not design for higher
order signals. In future research, the inclusion of tetrahedral signals or even higher
dimensional signals can be considered.

A
Proof of the Proposition 1

Before the proof, we recall this useful lemma from [16].
Lemma 1. If all the blocks in the multi-block ADMM algorithm are strongly convex
functions, the convergence of multi-block ADMM is guaranteed if the penalty parameter
𝜌 in augmented Lagrangian function satisfies the condition

0 < 𝜌 < min
1≤𝑖≤𝑚

{
2𝜇𝑖

3(𝑚 − 1)∥A𝑖 ∥22

}
(A.1)

where 𝜇𝑖 is the strongly convex constant of each block, 𝑚 is the number blocks and A𝑖

is the coefficient matrix for equality constraints.

The optimization problem (4.4) can be written as follow

argmin
f̂∈R𝑁1

∥f̂ − y∥22 + 𝛼1∥z1∥1 + 𝛼2∥z1∥22 + 𝛽1∥z2∥1

+ 𝛽2∥z2∥22 + 𝛾1∥z3∥1 + 𝛾2∥z3∥22

subject to A1f̂ +A2z1 +A3z2 +A4z3 = c

(A.2)

where A𝑖 are defined in (4.7a) - (4.7d) and matrix c is

c = [0, 0, 0, Py] ∈ R(𝑁0+𝑁1+𝑁2+𝑀)×1 (A.3)

There are four different blocks for multi-block ADMM: ∥f̂ − y∥22; 𝛼1∥z1∥1 + 𝛼2∥z1∥22;
𝛽1∥z2∥1 + 𝛽2∥z2∥22 and 𝛾1∥z3∥1 + 𝛾2∥z3∥22. These four components are all strongly
convex functions, and their constants are 𝜇1 = 2, 𝜇2 = 2𝛼2, 𝜇3 = 2𝛽2, 𝜇4 = 2𝛾2. This
brings us to the setting of Lemma 1, which under the conditions in (A.1), completes
the proof.

42

B
Proof of the Proposition 2

Define z̃(𝑙)1 = B1f̂(𝑙+1) − 𝝀(𝑙)1 /𝜌, z̃(𝑙)2 = B⊤2 f̂(𝑙+1) − 𝝀(𝑙)2 /𝜌, z̃(𝑙)3 = f̂(𝑙+1) − 𝝀(𝑙)3 /𝜌 and according
to (4.9) then we have

∥z(𝑙+1)
1 − z̃(𝑙)1 ∥2 = ∥𝑆1(̃z(𝑙)1) − z̃(𝑙)1 ∥2 ≤ 𝐶1/𝜌(𝑙) (B.1)

According to (B.1) and (4.11a), we can show

∥z(𝑙+1)
1 − z(𝑙)1 ∥2 ≤ ∥z

(𝑙+1)
1 − z̃(𝑙)1 ∥2 + ∥z̃

(𝑙)
1 − z(𝑙)1 ∥2

≤ 𝐶1/𝜌(𝑙) + ∥B1f̂(𝑙+1) − (z(𝑙)1 + q(𝑙)1)∥2
≤ 𝐶1/𝜌(𝑙) + 𝑅1/𝜌(𝑙)

(B.2)

As for z2, we have

∥z(𝑙+1)
2 − z̃(𝑙)2 ∥2 = ∥𝑆2(̃z(𝑙)2) − z̃(𝑙)2 ∥2 ≤ 𝐶2/𝜌(𝑙) (B.3)

According to (B.3) and (4.11b), we can show

∥z(𝑙+1)
2 − z(𝑙)2 ∥2 ≤ ∥z

(𝑙+1)
2 − z̃(𝑙)2 ∥2 + ∥z̃

(𝑙)
2 − z(𝑙)2 ∥2

≤ 𝐶2/𝜌(𝑙) + ∥B⊤2 f̂(𝑙+1) − (z(𝑙)2 + q(𝑙)2)∥2
≤ 𝐶2/𝜌(𝑙) + 𝑅2/𝜌(𝑙)

(B.4)

As for z3, we have

∥z(𝑙+1)
3 − z̃(𝑙)3 ∥2 = ∥𝑆3(̃z(𝑙)3) − z̃(𝑙)3 ∥2 ≤ 𝐶3/𝜌(𝑙) (B.5)

According to (B.5) and (4.11c), we can show

∥z(𝑙+1)
3 − z(𝑙)3 ∥2 ≤ ∥z

(𝑙+1)
3 − z̃(𝑙)3 ∥2 + ∥z̃

(𝑙)
3 − z(𝑙)3 ∥2

≤ 𝐶3/𝜌(𝑙) + ∥f̂(𝑙+1) − (z(𝑙)3 + q(𝑙)3)∥2
≤ 𝐶3/𝜌(𝑙) + 𝑅3/𝜌(𝑙)

(B.6)

43

44

As for q(𝑙)1 , according to (4.9) and Assumption 1, we have

∥q(𝑙+1)
1 ∥2 = ∥q(𝑙)1 − (B1f(𝑙+1) − z(𝑙+1)

1)∥2
= ∥z(𝑙+1)

1 − (B1f(𝑙+1) − q(𝑙)1)∥2
= ∥𝑆1(̃z(𝑙)1) − z̃(𝑙)1 ∥2 ≤ 𝐶1/𝜌(𝑙)

(B.7)

then, we can show

∥q(𝑙+1)
1 − q(𝑙)1 ∥2 ≤ ∥q

(𝑙+1)
1 ∥2 + ∥q(𝑙)1 ∥2

≤ 𝐶1/𝜌(𝑙) + 𝐶1/𝜌(𝑙 − 1)
(B.8)

As for q(𝑙)2 , according to (4.9) and Assumption 1, we have

∥q(𝑙+1)
2 ∥2 = ∥q(𝑙)2 − (B

⊤
2 f(𝑙+1) − z(𝑙+1)

2)∥2
= ∥z(𝑙+1)

2 − (B⊤2 f(𝑙+1) − q(𝑙)2)∥2
= ∥𝑆2(̃z(𝑙)2) − z̃(𝑙)2 ∥2 ≤ 𝐶2/𝜌(𝑙)

(B.9)

then, we can show

∥q(𝑙+1)
2 − q(𝑙)2 ∥2 ≤ ∥q

(𝑙+1)
2 ∥2 + ∥q(𝑙)2 ∥2

≤ 𝐶2/𝜌(𝑙) + 𝐶2/𝜌(𝑙 − 1)
(B.10)

As for q(𝑙)3 , according to (4.9) and Assumption 1, we have

∥q(𝑙+1)
3 ∥2 = ∥q(𝑙)3 − (f

(𝑙+1) − z(𝑙+1)
3)∥2

= ∥z(𝑙+1)
3 − (f(𝑙+1) − q(𝑙)3)∥2

= ∥𝑆3(̃z(𝑙)3) − z̃(𝑙)3 ∥2 ≤ 𝐶3/𝜌(𝑙)

(B.11)

then, we can show

∥q(𝑙+1)
3 − q(𝑙)3 ∥2 ≤ ∥q

(𝑙+1)
3 ∥2 + ∥q(𝑙)3 ∥2

≤ 𝐶3/𝜌(𝑙) + 𝐶3/𝜌(𝑙 − 1)
(B.12)

As for q(𝑙)4 , according to (4.9) and Assumption 2, we have

∥q(𝑙+1)
4 ∥2 = ∥q(𝑙)4 − (Pf(𝑙+1) − Py)∥2

= ∥Pf(𝑙+1) − (Py + q(𝑙)4)∥2
≤ 𝑅4/𝜌(𝑙)

(B.13)

then, we can show

∥q(𝑙+1)
4 − q(𝑙)4 ∥2 ≤ ∥q

(𝑙+1)
4 ∥2 + ∥q(𝑙)4 ∥2

≤ 𝑅4/𝜌(𝑙) + 𝑅4/𝜌(𝑙 − 1)
(B.14)

45

As for f̂, according to q3-update in (4.9), we have

∥f(𝑙+1) − f(𝑙)∥2
= ∥(q(𝑙)3 − q(𝑙+1)

3 + z(𝑙+1)
3) − (q(𝑙−1)

3 − q(𝑙)3 + z(𝑙)3)∥2
≤ ∥q(𝑙+1)

3 − q(𝑙)3 ∥2 + q(𝑙)3 − q(𝑙−1)
3 ∥2 + ∥z(𝑙+1)

3 − z(𝑙)3 ∥2
≤ (𝐶3 + 𝐶1 + 𝑅1)/𝜌(𝑙) + 2𝐶3/𝜌(𝑙 − 1) + 𝐶3/𝜌(𝑙 − 2)

(B.15)

Therefore, according to (B.2), (B.4), (B.6), (B.8), (B.10), (B.12), (B.14), (B.15) and
Assumption 3, {(f(𝑙), z(𝑙)1 , z(𝑙)2 , z(𝑙)3 , q(𝑙)1 , q(𝑙)2 , q(𝑙)3 , q(𝑙)4)} generated by SUEN is a Cauchy
sequence and there exists a fixed-point {(f∗, z∗1, z∗2, z∗3, q∗1, q∗2, q∗3, q∗4)} such that {(f(𝑙),
z(𝑙)1 , z(𝑙)2 , z(𝑙)3 , q(𝑙)1 , q(𝑙)2 , q(𝑙)3 , q(𝑙)4)}→{(f∗, z∗1, z∗2, z∗3, q∗1, q∗2, q∗3, q∗4)} if the depth of unrolling
network 𝑙 →∞, which completes the proof.

C
ADMM and unrolling network for

trend filtering

The iteration steps of three-block ADMM for the reconstruction task can be described
as follows 

f̂(𝑘+1) :=(2I + 𝜌B⊤1 B1 + 𝜌B2B⊤2 + 𝜌P⊤P)−1

(2y + B⊤1 𝝀
(𝑘)
1 + B2𝝀

(𝑘)
2 + P⊤𝝀(𝑘)3 + 𝜌B⊤1 z(𝑘)1

+ 𝜌B2z(𝑘)2 + 𝜌P⊤Py)

z(𝑘+1)
1 :=𝑆 𝛼1

𝜌
(1
𝜌
(𝜌B1f(𝑘+1) − 𝝀(𝑘)1))

z(𝑘+1)
2 :=𝑆 𝛽1

𝜌
(1
𝜌
(𝜌B⊤2 f(𝑘+1) − 𝝀(𝑘)2))

𝝀(𝑘+1)
1 :=𝝀(𝑘)1 − 𝜌(B1f(𝑘+1) − z(𝑘+1)

1)
𝝀(𝑘+1)

2 :=𝝀(𝑘)2 − 𝜌(B⊤2 f(𝑘+1) − z(𝑘+1)
2)

𝝀(𝑘+1)
3 :=𝝀(𝑘)3 − 𝜌(Pf(𝑘+1) − Py)

(C.1)

To construct a simplicial unrolling network for trend filtering (SUTF), certain
iterative parameters should also be substituted with trainable parameters. The first
method is replacing the fixed parameters 𝛼1, 𝛽1 and 𝜌 in trend filtering and ADMM
directly by learnable parameters 𝑎1, 𝑏1, 𝑟1 and 𝑟2. By substituting the fixed parameters

46

47

with simplicial convolutional filters, the 𝑙th layer of SUTF can be represented as follows

f̂(𝑙+1) :=H1y +H2B⊤1 𝝀
(𝑙)
1 +H3B2𝝀

(𝑙)
2 +H4P⊤𝝀(𝑙)3

+H5B⊤1 z(𝑙)1 +H6B2z(𝑙)2 +H7P⊤Py

z(𝑙+1)
1 :=𝑆 𝑎1

𝑟1
(1
𝑟1
(𝑟1B1f(𝑙) − 𝝀(𝑙)1))

z(𝑙+1)
2 :=𝑆 𝑏1

𝑟2
(1
𝑟2
(𝑟2B⊤2 f(𝑙) − 𝝀(𝑙)2))

𝝀(𝑙+1)
1 :=𝝀(𝑙)1 − 𝑟1(B1f(𝑙+1) − z(𝑙+1)

1)
𝝀(𝑙+1)

2 :=𝝀(𝑙)2 − 𝑟2(B
⊤
2 f(𝑙+1) − z(𝑙+1)

2)
𝝀(𝑙+1)

3 :=𝝀(𝑙)3 − 𝑟3(Pf(𝑙+1) − Py)

(C.2)

Where H𝑖 are simplicial convolutional filters that contain some trainable parameters.
Unlike SUEN, SUTF has fewer learnable parameters and only constrains the curl and
divergence, but not the regularizers that constrain the signal’s sparsity.

References

[1] Sergio Barbarossa and Stefania Sardellitti. “Topological signal processing: Making
sense of data building on multiway relations”. In: IEEE Signal Processing Magazine
37.6 (2020), pp. 174–183.

[2] Sergio Barbarossa and Stefania Sardellitti. “Topological signal processing over
simplicial complexes”. In: IEEE Transactions on Signal Processing 68 (2020),
pp. 2992–3007.

[3] Ginestra Bianconi. Multilayer networks: structure and function. Oxford university
press, 2018.

[4] Pasquale Bove et al. “Prediction of Dynamical Properties of Biochemical Pathways
with Graph Neural Networks.” In: Bioinformatics. 2020, pp. 32–43.

[5] Stephen Boyd et al. “Distributed optimization and statistical learning via the
alternating direction method of multipliers”. In: Foundations and Trends® in
Machine learning 3.1 (2011), pp. 1–122.

[6] Gunnar Carlsson. “Topology and data”. In: Bulletin of the American Mathematical
Society 46.2 (2009), pp. 255–308.

[7] Siheng Chen and Yonina C Eldar. “Time-Varying Graph Signal Inpainting Via
Unrolling Networks”. In: ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2021, pp. 8092–8097.

[8] Siheng Chen, Yonina C Eldar, and Lingxiao Zhao. “Graph unrolling networks:
Interpretable neural networks for graph signal denoising”. In: IEEE Transactions
on Signal Processing 69 (2021), pp. 3699–3713.

[9] Stefania Ebli, Michaël Defferrard, and Gard Spreemann. “Simplicial neural
networks”. In: arXiv preprint arXiv:2010.03633 (2020).

[10] Stefania Ebli and Gard Spreemann. “A notion of harmonic clustering in simplicial
complexes”. In: 2019 18th IEEE International Conference On Machine Learning And
Applications (ICMLA). IEEE. 2019, pp. 1083–1090.

[11] Tim S Evans and Renaud Lambiotte. “Line graphs, link partitions, and overlap-
ping communities”. In: Physical Review E 80.1 (2009), p. 016105.

[12] Daniel Gabay and Bertrand Mercier. “A dual algorithm for the solution of
nonlinear variational problems via finite element approximation”. In: Computers
& mathematics with applications 2.1 (1976), pp. 17–40.

[13] Chad Giusti, Robert Ghrist, and Danielle S Bassett. “Two’s company, three (or
more) is a simplex”. In: Journal of computational neuroscience 41.1 (2016), pp. 1–14.

48

References 49

[14] R Glowinski and A Marrocco. Approximation par éléments finis d’ordre un et
résolution par pénalisation-dualité d’une classe de problèmes non linéaires. RAIRO.
Rech. Opér. 1975.

[15] Karol Gregor and Yann LeCun. “Learning fast approximations of sparse coding”.
In: Proceedings of the 27th international conference on international conference on
machine learning. 2010, pp. 399–406.

[16] Deren Han and Xiaoming Yuan. “A note on the alternating direction method
of multipliers”. In: Journal of Optimization Theory and Applications 155.1 (2012),
pp. 227–238.

[17] John R Hershey, Jonathan Le Roux, and Felix Weninger. “Deep unfolding: Model-
based inspiration of novel deep architectures”. In: arXiv preprint arXiv:1409.2574
(2014).

[18] Weiyu Huang et al. “A graph signal processing perspective on functional brain
imaging”. In: Proceedings of the IEEE 106.5 (2018), pp. 868–885.

[19] Nabil Ibtehaz and M Sohel Rahman. “MultiResUNet: Rethinking the U-Net
architecture for multimodal biomedical image segmentation”. In: Neural networks
121 (2020), pp. 74–87.

[20] Elvin Isufi, Fernando Gama, and Alejandro Ribeiro. “EdgeNets: Edge varying
graph neural networks”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 44.11 (2021), pp. 7457–7473.

[21] Elvin Isufi, Geert Leus, and Paolo Banelli. “2-dimensional finite impulse response
graph-temporal filters”. In: 2016 IEEE Global Conference on Signal and Information
Processing (GlobalSIP). IEEE. 2016, pp. 405–409.

[22] Junteng Jia et al. “Graph-based semi-supervised & active learning for edge flows”.
In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2019, pp. 761–771.

[23] Xiaoye Jiang et al. “Statistical ranking and combinatorial Hodge theory”. In:
Mathematical Programming 127.1 (2011), pp. 203–244.

[24] Lida Kanari et al. “A topological representation of branching neuronal mor-
phologies”. In: Neuroinformatics 16.1 (2018), pp. 3–13.

[25] Steffen Klamt, Utz-Uwe Haus, and Fabian Theis. “Hypergraphs and cellular
networks”. In: PLoS computational biology 5.5 (2009), e1000385.

[26] Kin K Leung, William A Massey, and Ward Whitt. “Traffic models for wireless
communication networks”. In: IEEE Journal on selected areas in Communications
12.8 (1994), pp. 1353–1364.

[27] Yuelong Li et al. “An algorithm unrolling approach to deep image deblurring”.
In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE. 2019, pp. 7675–7679.

References 50

[28] Zewen Li et al. “A survey of convolutional neural networks: analysis, applications,
and prospects”. In: IEEE transactions on neural networks and learning systems (2021).

[29] Risheng Liu et al. “Knowledge-driven deep unrolling for robust image layer
separation”. In: IEEE transactions on neural networks and learning systems 31.5
(2019), pp. 1653–1666.

[30] Ziwei Liu et al. “Deep learning markov random field for semantic segmentation”.
In: IEEE transactions on pattern analysis and machine intelligence 40.8 (2017), pp. 1814–
1828.

[31] Suhas Lohit et al. “Unrolled projected gradient descent for multi-spectral image
fusion”. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE. 2019, pp. 7725–7729.

[32] Larry R Medsker and LC Jain. “Recurrent neural networks”. In: Design and
Applications 5 (2001), pp. 64–67.

[33] Vishal Monga, Yuelong Li, and Yonina C Eldar. “Algorithm unrolling: Inter-
pretable, efficient deep learning for signal and image processing”. In: IEEE Signal
Processing Magazine 38.2 (2021), pp. 18–44.

[34] Abubakr Muhammad and Magnus Egerstedt. “Control using higher order
Laplacians in network topologies”. In: Proc. of 17th International Symposium on
Mathematical Theory of Networks and Systems. Citeseer. 2006, pp. 1024–1038.

[35] Sayan Mukherjee and John Steenbergen. “Random walks on simplicial complexes
and harmonics”. In: Random structures & algorithms 49.2 (2016), pp. 379–405.

[36] Masatoshi Nagahama et al. “Graph signal restoration using nested deep algorithm
unrolling”. In: IEEE Transactions on Signal Processing 70 (2022), pp. 3296–3311.

[37] Gen Nishida, Adrien Bousseau, and Daniel G Aliaga. “Procedural modeling of
a building from a single image”. In: Computer graphics forum. Vol. 37. 2. Wiley
Online Library. 2018, pp. 415–429.

[38] Antonio Ortega et al. “Graph signal processing: Overview, challenges, and
applications”. In: Proceedings of the IEEE 106.5 (2018), pp. 808–828.

[39] Alice Patania, Giovanni Petri, and Francesco Vaccarino. “The shape of collabora-
tions”. In: EPJ Data Science 6 (2017), pp. 1–16.

[40] Lawrence R Rabiner and Bernard Gold. “Theory and application of digital signal
processing”. In: Englewood Cliffs: Prentice-Hall (1975).

[41] R Ramanathan et al. “Beyond graphs: Capturing groups in networks”. In: 2011
IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).
IEEE. 2011, pp. 870–875.

[42] Herbert Robbins and Sutton Monro. “A stochastic approximation method”. In:
The annals of mathematical statistics (1951), pp. 400–407.

[43] Michael Robinson. Topological signal processing. Vol. 81. Springer, 2014.

References 51

[44] Theodore Roman et al. “A simplicial complex-based approach to unmixing
tumor progression data”. In: BMC bioinformatics 16.1 (2015), pp. 1–17.

[45] Leonid I Rudin, Stanley Osher, and Emad Fatemi. “Nonlinear total variation
based noise removal algorithms”. In: Physica D: nonlinear phenomena 60.1-4 (1992),
pp. 259–268.

[46] Aliaksei Sandryhaila and José MF Moura. “Discrete signal processing on graphs”.
In: IEEE transactions on signal processing 61.7 (2013), pp. 1644–1656.

[47] Aliaksei Sandryhaila and José MF Moura. “Discrete signal processing on graphs:
Graph Fourier transform”. In: 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing. IEEE. 2013, pp. 6167–6170.

[48] Michael T Schaub and Santiago Segarra. “Flow smoothing and denoising: Graph
signal processing in the edge-space”. In: 2018 IEEE Global Conference on Signal
and Information Processing (GlobalSIP). IEEE. 2018, pp. 735–739.

[49] Michael T Schaub et al. “Signal processing on higher-order networks: Livin’on
the edge... and beyond”. In: Signal Processing 187 (2021), p. 108149.

[50] Weĳing Shi and Raj Rajkumar. “Point-gnn: Graph neural network for 3d object
detection in a point cloud”. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2020, pp. 1711–1719.

[51] Oren Solomon et al. “Deep unfolded robust PCA with application to clutter
suppression in ultrasound”. In: IEEE transactions on medical imaging 39.4 (2019),
pp. 1051–1063.

[52] Rohan Varma et al. “Vector-valued graph trend filtering with non-convex penal-
ties”. In: IEEE transactions on signal and information processing over networks 6
(2019), pp. 48–62.

[53] Huy Vu, Gene Cheung, and Yonina C Eldar. “Unrolling of deep graph total
variation for image denoising”. In: ICASSP 2021-2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2021, pp. 2050–2054.

[54] Jianian Wang et al. “A review on graph neural network methods in financial
applications”. In: arXiv preprint arXiv:2111.15367 (2021).

[55] Yu-Xiang Wang et al. “Trend filtering on graphs”. In: Artificial Intelligence and
Statistics. PMLR. 2015, pp. 1042–1050.

[56] Zhaowen Wang et al. “Deep networks for image super-resolution with sparse
prior”. In: Proceedings of the IEEE international conference on computer vision. 2015,
pp. 370–378.

[57] Shiwen Wu et al. “Graph neural networks in recommender systems: a survey”.
In: ACM Computing Surveys (CSUR) (2020).

[58] Zonghan Wu et al. “A comprehensive survey on graph neural networks”. In:
IEEE transactions on neural networks and learning systems 32.1 (2020), pp. 4–24.

References 52

[59] Liu Yang, Haifeng Wang, and Hua Qian. “An ADMM-ResNet for data recovery
in wireless sensor networks with guaranteed convergence”. In: Digital Signal
Processing 111 (2021), p. 102956.

[60] Maosheng Yang and Elvin Isufi. “Convolutional Learning on Simplicial Com-
plexes”. In: arXiv preprint arXiv:2301.11163 (2023).

[61] Maosheng Yang, Elvin Isufi, and Geert Leus. “Simplicial convolutional neural
networks”. In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE. 2022, pp. 8847–8851.

[62] Maosheng Yang et al. “Simplicial Convolutional Filters”. In: arXiv preprint
arXiv:2201.11720 (2022).

[63] Yan Yang et al. “ADMM-CSNet: A deep learning approach for image compressive
sensing”. In: IEEE transactions on pattern analysis and machine intelligence 42.3
(2018), pp. 521–538.

[64] Liang Zhang, Gang Wang, and Georgios B Giannakis. “Real-time power system
state estimation and forecasting via deep unrolled neural networks”. In: IEEE
Transactions on Signal Processing 67.15 (2019), pp. 4069–4077.

	Acknowledgments
	Abstract
	Introduction
	Motivation
	Scope of the research
	Research statement
	Contributions of this research

	Background
	Higher-order networks
	Related works
	Simplicial complexes
	Incidence matrix
	Hodge Laplacians

	Simplicial signal processing
	Simplicial signals
	Spectral of simplicial complexes
	Hodge decomposition
	Simplicial Convolutional Filters

	ADMM algorithm
	Unrolling networks
	Graph unrolling networks
	Related works
	Graph unrolling network via trend filtering

	Summary

	Problem formulation
	Denoising simplicial edge flow
	Interpolation for simplicial edge flow

	Methodology
	Simplicial ElasticNet Problem
	Special case 1: Tikhonov regularizer
	Special case 2: Simplicial trend filtering

	ADMM Solution for Simplicial ElasticNet
	Simplicial unrolling networks
	Simplicial Unrolling Network For ElasticNet
	Convergence Analysis of Variant 1

	Summary

	Experimental results
	Datasets
	Foreign Currency Exchange (Forex) dataset
	Lastfm dataset
	Chicago road network

	Experimental Setup
	Models
	Noise and sampling models
	Evaluation metrics
	Denoising and Interpolation Performance
	Convergence Results
	Effect of simplicial convolutional filters

	Summary

	Conclusion
	Summary
	Future work

	Proof of the Proposition 1
	Proof of the Proposition 2
	ADMM and unrolling network for trend filtering
	References

