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Abstract. Statistical body shape modeling (SBSM) is a well-known technique
to map out the variability of body shapes and is commonly used in 3D
anthropometric analyses. In this paper, a new approach to integrate movement
acquired by a motion capture system with a body shape is proposed. This was
done by selecting landmarks on a body shape model, and predicting a body
shape based on features. Then, a virtual skeleton was generated relative to those
landmarks. This skeleton was parented to a body shape, allowing to modify its
pose and to add pre-recorded motion to different body shapes in a realistic way.

Keywords: Statistical body shape model �Motion capturing � Shape prediction

1 Introduction

Statistical body shape modeling (SBSM) is a well-known technique to map out the
variability of body shapes and is commonly used in 3D anthropometric analyses.
Statistical body shape models (SBSMs) can describe the variability of body shapes for
a population of individuals. By adapting the parameters of the SBSM, a new realistic
shape can be formed. Product developers may exploit SBSMs to design virtual design
mannequins and explore the body shapes belonging to a specific percentile of a target
group, allowing to visualize extreme shapes. Moreover, an SBSM allows to simulate a
specific 3D body shape [1], which is useful for customization.

Nowadays, inertial motion tracking sensors (IMU) allow capturing human motion
and acquiring the kinematic of the subject during a physical task. This information is
translated as a skeletal animation as a Biovision Hierarchy (BVH) character animation
file. In this study, we acquired the subject’s motions with a real-time inertial motion
tracking system (Yost Labs 3-Space Sensor).

This is especially relevant for people who have to perform physically demanding
tasks in non-ideal circumstances. Their gear must have an optimal fit, to reduce the

© Springer International Publishing AG, part of Springer Nature 2019
D. N. Cassenti (Ed.): AHFE 2018, AISC 780, pp. 170–178, 2019.
https://doi.org/10.1007/978-3-319-94223-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94223-0_16&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94223-0_16&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94223-0_16&amp;domain=pdf


impact on their body. For example, reachability tests in vehicles or testing the freedom
of movement when wearing their equipment or heavy backpacks [2, 3].

Unfortunately, to date, there is no framework available to generate body shapes in
motion where both body shape as articulation is adaptable. Another possibility is to add
motion to a specific body scan. We propose a new approach to integrate the movement
acquired by an inertial motion capture system with the statistical body shape. This
allows product developers to validate their designs for multiple poses and movements.

2 Methods

In this section, a framework to create moving SBSMs is described. First, a SBSM is
built from a population of 3D human body shapes [4]. Next, the method to generate a
body shape based on features is explained [1]. Finally, modification of a motion file and
adding motion to a specific body shape is discussed.

2.1 Building a Statistical Shape Model

First, a reference surface, a digitally modeled body shape [5] with n uniformly dis-
tributed vertices, is registered in a marker-less way to N input surfaces to obtain a
homologous point-to-point correspondence. All input surfaces were corrected for
posture, in a way that every shape was standing in the average posture, determined
from a population of 700 scans from the CAESAR database [4]. Then, a statistical
shape model is built using principal component analysis of the population of N posture
normalized corresponded surfaces. In an SBSM, the mean shape �x 2 R

3n and the main
shape modes, or the principal component (PC) modes of the SBSM P 2 R

3n� N�1ð Þ, are
incorporated. This means that a new shape y 2 R

3n can be formed by a linear com-
bination of the PCs:

y ¼ �xþPb; ð1Þ

with b the vector containing the SBSM parameters.
A specific feature of a person’s shape, such as height, can be adapted by adding a

linear combination of principal components to the person’s shape vector. The weights
for this linear combination are computed via multiple linear regression of the PC

weights on the body features f ¼ f1 f2 f3 � � � ff 1
� �T2 R

f þ 1 (such as height, weight,
gender,…) for the population of individuals. Every feature is defined by a scalar value.
A mapping matrix M 2 R

N�1� f þ 1ð Þ describing the relationship between the biometric
features F ¼ f1 f2 f3 � � � fN½ � 2 R

f þ 1ð Þ�N of every input shape and the principal com-
ponent weights of every input shape B 2 R

N�1ð Þ�N is calculated using multivariate
regression, by

M ¼ BF þ ; ð2Þ

with F þ the pseudoinverse of F.
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By multiplying M with a given feature vector f , new principal component weights
b 2 R

N�1 can be generated:

b ¼ Mf : ð3Þ

From these principal component weights, a new body shape y can be built.

2.2 Skeleton Generation

The BHV file format is a way to provide skeleton hierarchy information in addition to
the motion data. The skeleton is typically in T-pose. In such a BVH file, the skeleton is
represented as a tree structure set of 18 joints, relative to each other. This is shown in
Fig. 1. In most cases, the pelvis is the root of the skeleton. Every other joint is defined
by an offset from the previous joint.

Forty-one landmarks available in the CAESAR database, such as olecranon,
humeral epicondyle lateral, substernal are selected on the average body shape. Because
of the correspondences, every vertex will remain at anatomically the same location,
independent of shape.

A new skeleton of a Biovision Hierarchy (BVH) character animation file [6] was
generated by calculating the optimal joint locations relative to these landmarks. Next,
the skeleton is parented to the body shape by calculating skinning weights [7]. As a

Fig. 1. Schematic visualization of the skeleton.
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result, the pose of that body shape can be adapted. This means it can be adapted
manually or a pre-defined movement can be executed.

2.3 Modification of Movement File

Motion is defined per frame, by a rotation offset per joint from the original skeleton.
The body shapes available in the CAESAR database are standing in A-pose, as shown
in Fig. 2. Therefore, the BVH files have to be adapted from T-pose to A-pose, as
shown in Fig. 2. It is not sufficient to only convert the rest pose, as the motion is
defined as rotation of the joints in rest pose. To solve this problem, we wrote Python
code that can be run in Blender [8]. This code allows one to change the rest pose to the
current adapted pose in Blender and to copy the original joint position to the new
skeleton per frame.

A skeleton S 2 R
3�j is defined as a set of j joints J 2 R

3, whereas every joint per
frame contains a rotation matrix R 2 R

3�3 from the rest pose to the pose of the current
frame.

S ¼ J1 J2 J3. . .Jj
� � ð4Þ

R ¼
m00 m01 m02

m10 m11 m12

m20 m21 m22

2
4

3
5 ð5Þ

The workflow is as follows: first, the original skeleton SO 2 R
3�j is manually put in

A-pose by rotating the joints, by a transformation T , resulting in a transformed skeleton
ST 2 R

3�j. The new pose is applied as rest pose of the skeleton:

Fig. 2. The skeleton in rest pose. Left: T-pose, right: A-pose.
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ST ¼ T � So ð6Þ

The following step is to update the actions per frame, as the movement is defined
by rotation of the joints in rest pose. As a first step, the skeleton ST is translated in a
way so the root joints, in this case the pelvis, are on the same location. The copied
joints are rotated to match the orientation of the target joints. This is done by inverting
the rest pose matrix and multiplying this with the rotation matrix of the current inverse
of the rotation matrix of the parent joint and the rotation matrix of the parent joint in
resting position. The resulting rotation matrix has to be applied to the specific frame of
the skeleton in A-pose as resting pose:

R
0
T ¼ R�1

T � parent RT ;rest
� �� parent RTð Þ�1�RO ð7Þ

3 Experiments and Results

3.1 Building a Statistical Shape Model

A statistical shape model was built from the CAESAR database [9]. We selected 57
soldier-like (male, height 1m52–2m10, age 18y–35y, BMI 18.5–25) body shapes to
build our model. The shapes were registered using the same template surface mesh, a
digitally modeled body consisting of 100k uniformly distributed vertices. The average
soldier, shown in Fig. 3, has a height of 1:84� 0:07m, a BMI of 22:4� 1:7 and is
27:9� 4:5 years old. From these meshes, posture variances were removed and a sta-
tistical shape model was built. In Fig. 4, the first three modes of variance of the SBSM
are shown.

Fig. 3. Average soldier (male, height: 1.84 m, weight: 76.4 kg, age: 27.9 years, waist
circumference: 846 mm, chest circumference: 951 mm, hip circumference: 990 mm, arm length:
654 mm, crotch height: 873 mm, knee height: 570 mm, shoulder breadth: 466 mm, sitting
height: 953 mm, thigh circumference: 568 mm, BMI: 22.4).
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-3 +3average

mode 1

mode 2

mode 3

Fig. 4. The first three eigenmodes of the soldier SBSM plus and minus three standard deviations
(r) and the average body shape. The first mode mainly describes stature, the second mode mainly
describes BMI, and the third mode mainly describes muscularity.
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3.2 Shape Prediction and Skeleton Generation

A user interface was designed in which the following values can be specified: height,
weight, age, waist circumference, chest circumference, hip circumference, arm length,
crotch height, knee height, shoulder breadth, sitting height, and thigh circumference.
We acquired the movement of a walking soldier using an inertial motion tracking
system. After the shape had been generated, a new skeleton with associated movement
was calculated. A screenshot of our implemented tool is shown in Fig. 5. This means
that this feature will not be taken into account for shape prediction and the most
plausible shape using the remaining values will be calculated.

Fig. 5. Screenshot of body shape prediction and skeleton generation tool. The most plausible
body shape of a male soldier with height 2.017 m, weight 103 kg, age 31, waist 100.5 cm, chest
110.4 cm, and shoulder breadth 50.1 cm is generated. The remaining values were unknown, so
these values were not taken into account.
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3.3 Adding Movement

The generated mesh and associated skeleton were imported in Blender, where the
skeleton was parented to the mesh using automatic weights [7]. This approach resulted
in a realistic body shape in motion, as can be seen in Fig. 6.

1m60 – 70 kg

Average soldier

2m00 – 70 kg

Fig. 6. Examples of walking soldiers with different body shapes.
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4 Conclusion

We proposed an automatic technique to rig a statistical body shape model, allowing to
simulate movement on a whole range of body shapes. Results show that our framework
leads to detailed, realistic body shapes, moving in a natural way. This is especially
useful for accessibility testing, e.g. when designing a vehicle, where the driver has to be
able to perform specific movements to operate it in a correct way, while space is
limited, or when optimizing comfort in wearing gear. Furthermore, static pose is
adaptable by manipulating the armature, which is useful for designing near body
products that require the body to be in a pose that is difficult to scan.
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