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Summary

Laser Doppler vibrometer (LDV) is a vibration-detecting instrument for noncontact and

nondestrutive measurement. It is superior to classic contact transducers in terms of the wide

frequency range and high measurement resolution. LDV on moving platforms (LDVom)

is one of the LDV measurement technology to one-way scan the vibrating surface, so

that it is applicable in large-scale measurement like railway tracks. Speckle noise is a

significant signal issue for LDV technologies, especially for LDVom. It distorts the local

vibration signal dramatically and reduces the overall signal-to-noise ratio to a quite low

level. The one-way scanning nature of LDVom makes it impossible to simply average the

signals for noise removal. In view of the speckle noise issue of LDVom, the goal of this

dissertation is to acquire new understanding of the problem and proposed there upon-based

de-speckling solutions. Three aspects are investigated to achieve the research goal: 1)

numerical simulation of speckle noise and characterization of noise behaviors. It can

provide insight into behaviour changes of speckle noise in response to some variables and

possible tools for minimizing noise strength; 2) the theoretical Fourier spectrum of speckle

noise series. The resulted frequency domain characteristics can help design the de-noise

signal filter accordingly; 3) development of classic approach-based and newly designed

de-speckling algorithms.

The first aspect focuses on the numerical simulation and characterization of LDVom

speckle noise. Since the speckle noise originates from the variation of speckle patterns, the

statistical distribution of speckle patterns is firstly investigated. The derived distribution

of speckle pattern phasors is then used in the simulation of the measurement surface,

and with the movement of focusing spot on the surface, speckle noise is numerically

generated. The proposed numerical simulation approach for speckle noise is more realistic

than those reported in the literature, by considering two important additional variables,

the surface roughness and scanning speed. Surface roughness determines the reflection

phases of laser and further affects the speckle pattern generated by the laser beam. The

scanning speed influences the variation of the speckle pattern, and the phasor variation

determines the speckle noise. Agreement has been achieved between numerical simulation

and physical experiments in terms of time-series, fast Fourier spectra and amplitude

distribution. Afterwards, both the numerically generated and experimentally acquired

speckle noise are used for characterization. It shows that the speckle noise amplitude

increases with the surface roughness to a critical value. With increasing scanning speed,

the average speckle noise amplitude increases, while the signal drop-outs decreases in

terms of the amplitude and density. The numerical simulation and the characterization of

speckle noise provide great insights into possible strategies in reducing the noise effect.

The second aspect focuses on the Fourier spectrum of speckle noise and the there upon-

based despeckling approaches. Fourier transform is theoretically conducted on the speckle

noise series. By assuming an infinite LDV scanning surface, the trend of the oscillating

frequency spectrum can be derived. The benefit of analyzing the Fourier spectrum is that
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band-pass filters can be designed to mitigate the speckle noise. A periodic oscillation has

been discovered in the Fourier spectra of the LDVom speckle noise, and the first frequency

peak of this oscillation is proportional to the scanning speed. Based on this property, two

depseckling strategies are proposed: 1) with large scanning speed, the vibration frequency

is far lower that the first frequency peak of the noise, and therefore a low-pass filter can

remove the most speckle noise; 2) by removing the trend of the oscillating frequency

spectrum from the Fourier spectrum, the most speckle noise can be eliminated. These two

strategies have been demonstrated effective through physical experiments.

The third aspect focuses on the algorithms to eliminate the speckle noise, based on

either the classic signal-processing approach or a newly developed method. Firstly, a classic

signal processing approach, named ensemble empirical mode decomposition (EEMD), is

investigated to develop a two-step despeckling algorithm: 1) adaptively cutting off the

signal drop-outs with moving root-mean square envelopes; and 2) removing the first few

intrinsic mode functions (IMFs) related to the speckle noise. EEMD also provides the benefit

of using Hilbert-Huang spectra for vibration analysis. The numerically simulated LDVom

speckle noise is added to different non-linear signals with different signal-to-noise ratio,

in order to investigate the effectiveness of the approaches. Signals from two experiments

on a steel strip and a downscale V-Track test rig are also studied. The results indicate

the effectiveness of EEMD-based approach in eliminating speckle noise. Secondly, an

adaptive denoising and signal decomposition (ADSD) approach is proposed to eliminate

the speckle noise and decompose the signal to different vibration modes. This approach

can facilitate vibration analysis from LDVom signals. It consists of three steps. In the

first step, the signal series is divided to 𝑛 segments, on each we assume that the vibration

is continuous along the scanning direction. In the second step, the Fourier spectrum is

adaptively segmented, with each spectrum segment containing one vibration mode. In

the third step, a mathematical optimization is conducted to extract each vibration mode.

The results from numerical simulation and physical experiments indicate the despeckling

effectiveness.

Overall, the major contribution of this dissertation includes a better understanding of

the LDVom speckle noise and four proposed approaches: 1) an approach for realistically

numerically simulate the LDVom speckle noise, which provides insight into the speckle

noise behaviors; 2) a despeckling approach based on Fourier analysis of the speckle noise,

which handling the speckle noise in the frequency domain; 3) an EEMD based approach

and 4) an ADSD approach, which handle the speckle noise in the time domain and can

facilitate vibration analysis from LDVom signals.
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Samenvatting

Een Laser Doppler-vibrometer (LDV) is een instrument voor het detecteren van trillingen

via contactloze en niet-destructieve metingen. Het is superieur aan klassieke contact-

transducers wat betreft het brede frequentiebereik en de hoge meetresolutie. LDV op

bewegende platforms (LDVom) is een van de LDV-meettechnologieën om het trillende

oppervlak in één richting te scannen, zodat het toepasbaar is bij grootschalige metingen zo-

als spoorwegen. Speckle-ruis is een aanzienlijk signaalprobleem voor LDV-technologieën,

vooral voor LDVom. Het vervormt het lokale trillingssignaal aanzienlijk en verlaagt de

algehele signaal-ruisverhouding tot een vrij laag niveau. De eenrichtingsscantechniek

van LDVom maakt het onmogelijk om de signalen eenvoudigweg te middelen om ruis te

verwijderen. Het doel van dit proefschrift is om een nieuw begrip te verkrijgen op het

probleem van speckle-ruis bij LDVom en daarop gebaseerde de-speckling oplossingen

voor te stellen. Drie aspecten worden onderzocht om het onderzoeksdoel te bereiken: 1)

numerieke simulatie van speckle-ruis en karakterisering van ruisgedrag. Dit kan inzicht

bieden in gedragsveranderingen van speckle-ruis als reactie op variabelen en mogelijke

tools om de sterkte van ruis te minimaliseren; 2) de theoretische Fourier-spectrum van

speckle-ruisseries. De resulterende frequentiedomeinkarakteristieken kunnen helpen bij

het ontwerpen van het ontruis signaalfilter; 3) ontwikkeling van op klassieke benaderingen

gebaseerde en nieuw ontworpen de-speckling-algoritmes.

Het eerste aspect richt zich op de numerieke simulatie en karakterisering van speckle-

ruis bij LDVom. Aangezien speckle-ruis voortkomt uit variaties in speckle-patronen, wordt

allereerst de statistische verdeling van speckle-patronen onderzocht. De afgeleide verdeling

van speckle-patroonfasoren wordt vervolgens gebruikt bij de simulatie van het meetopper-

vlak, en met de beweging van de focusvlek op het oppervlak wordt speckle-ruis numeriek

gegenereerd. De voorgestelde numerieke simulatie aanpak voor speckle-ruis is realistischer

dan die welke in de literatuur zijn voorgesteld, omdat hierbij twee extra variabelen worden

beschouwd: de oppervlakteruwheid en de scansnelheid. De oppervlakteruwheid bepaalt de

faseverschuivingen van de laserreflectie en heeft vervolgens invloed op het speckle-patroon

dat wordt gegenereerd door de laserstraal. De scansnelheid beïnvloedt de variatie van het

speckle-patroon en de variatie van de fasoren bepaalt de speckle-ruis. Overeenstemming is

bereikt tussen de numerieke simulatie en fysieke experimenten wat betreft tijdsreeksen,

snelle Fourier-spectra en amplitudedistributie. Vervolgens worden zowel de numeriek ge-

genereerde als experimenteel verkregen speckle-ruis gebruikt voor karakterisering. Hieruit

blijkt dat de amplitude van de speckle-ruis toeneemt met de oppervlakteruwheid tot een

kritische waarde. Bij toenemende scansnelheid neemt de gemiddelde amplitude van de

speckle-ruis toe, terwijl het aantal signaaluitvallen afneemt in termen van amplitude en

dichtheid. De numerieke simulatie en karakterisering van speckle-ruis bieden waardevolle

inzichten in mogelijke strategieën om het effect van ruis te verminderen.

Het tweede aspect richt zich op het Fourier-spectrum van speckle-ruis en de daarop

gebaseerde de-speckling-methodes. De Fourier-transformatie wordt theoretisch toegepast
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op de speckle-ruisreeks. Door uit te gaan van een oneindig LDV-scanoppervlak kan de trend

van het oscillerende frequentiespectrum worden afgeleid. Het voordeel van het analyseren

van het Fourier-spectrum is dat er banddoorlaatfilters kunnen worden ontworpen om de

speckle-ruis te verminderen. Er is een periodieke oscillatie ontdekt in de Fourier-spectra

van het LDVom speckle-ruis, en de eerste frequentiepiek van deze oscillatie is evenredig

met de scansnelheid. Op basis van deze eigenschap worden twee de-speckling-strategieën

voorgesteld: 1) bij een hoge scansnelheid ligt de trillingsfrequentie veel lager dan de eerste

frequentiepiek van het ruis, en daarom kan een laagdoorlaatfilter de meeste speckle-ruis

verwijderen; 2) door de trend van het oscillerende frequentiespectrum uit het Fourier-

spectrum te verwijderen, kan de meeste speckle-ruis geëlimineerd worden. Deze twee

strategieën zijn succesvol gedemonstreerd in fysische experimenten.

Het derde aspect richt zich op de algoritmes om speckle-ruis te elimineren, geba-

seerd op zowel de klassieke signaalverwerking als een nieuw ontwikkelde methode. Ten

eerste wordt een klassieke signaalverwerkingsmethode, genaamd ensemble-empirische

modusdecompositie (EEMD), onderzocht om een de-speckling algoritme te ontwikkelen

bestaande uit twee stappen: 1) adaptief afsnijden van signaaluitval met behulp van be-

wegende rms-envelope; en 2) verwijderen van de eerste paar intrinsieke modusfuncties

(IMF’s) die verband houden met de speckle-ruis. EEMD biedt ook het voordeel van het ge-

bruik van Hilbert-Huang-spectra voor trillingsanalyse. De numeriek gesimuleerde LDVom

speckle-ruis wordt toegevoegd aan verschillende niet-lineaire signalen met verschillende

signaal-ruisverhoudingen, om de effectiviteit van de methodes te onderzoeken. Signalen

van twee experimenten op een stalen strip en het schaalmodel V-Track-testopstelling

worden ook bestudeerd. De resultaten geven aan dat de op EEMD gebaseerde benadering

effectief is in het elimineren van speckle-ruis. Ten tweede wordt een adaptieve ontruizing

en signaaldecompositie (ADSD) benadering voorgesteld om speckle-ruis te elimineren en

het signaal te decomponeren in verschillende trillingsmodi. Deze benadering vergemakke-

lijkt trillingsanalyse van LDVom-signalen. Het bestaat uit drie stappen. In de eerste stap

wordt de signaalreeks verdeeld in n segmenten, waarbij wordt verondersteld dat de trilling

continu is langs de scanrichting. In de tweede stap wordt het Fourier-spectrum adaptief

gesegmenteerd, waarbij elk spectrumsegment één trillingsmodus bevat. In de derde stap

wordt een wiskundige optimalisatie uitgevoerd om elke trillingsmodus te extraheren. De

resultaten van numerieke simulatie en fysische experimenten geven de effectiviteit van de

de-speckling aan.

De belangrijkste bijdrage van dit proefschrift omvat een beter begrip van speckle-ruis

bij LDVom alsmede de vier voorgestelde methodes: 1) een benadering voor realistische

numerieke simulatie van speckle-ruis bij LDVom, die inzicht biedt in het gedrag van

speckle-ruis; 2) een de-speckling-benadering gebaseerd op Fourier-analyse van speckle-

ruis, die de speckle-ruis behandelt in het frequentiedomein; 3) een op EEMD gebaseerde

benadering; en 4) een ADSD-benadering, die de speckle-ruis behandelt in het tijdsdomein

en trillingsanalyse van LDVom-signalen vergemakkelijkt.
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1.1 Laser Doppler Vibrometer on Moving Platforms
(LDVom)

1.1.1 LDV development
A laser Doppler vibrometer (LDV) is a vibration detector based on the principle of Doppler

frequency shift [1, 2, 3]. The instrument transmits a laser beam directly onto the vibration

surface, and the frequency of the reflected laser beam is changed by the vibration. This

frequency shift is proportional to the vibration velocity, and can be acquired from the

interference between the reflected laser beam and the coherent reference beam. However,

such configuration of the light path cannot identify the vibration direction, as only the

absolute value of the frequency shift is obtained [2]. Therefore, an acousto-optic modulator

named Bragg cell is implemented for the reference beam, which shifts the laser frequency

much larger than the Doppler shift. The modulated frequency is then always positive,

and the increase and decrease represents two different directions respectively. Figure 1.1

presents the simplified diagram of LDV [4].

𝑓0

𝑓0

𝑓0

𝑓0 + 𝑓𝑑

𝑓0 + 𝑓𝑑

𝑓0 + 𝑓𝑏

Figure 1.1: A simplified diagram of LDV light path

The advantages of LDV for structural monitoring is the noncontact sensing nature

and the broad frequency range [5, 6]. It avoids mass-loading from traditional contact

transducers, as the additional masses can change the vibration modes. Besides, for the

surface unable to attach a transducer (e.g., high-temperature surface), an LDV is effective

to monitor the vibration. For the frequency range, current technology has practically reach

over 2 GHz [7], which is superior to contact transducers.

The LDV technologies for specific applications evolved during the last decades, includ-

ing the single-point LDV, scanning LDV (SLDV), 3D-SLDV, and continuously scanning

LDV (CSLDV). These technologies differ in their application scenarios [2]. A single-point

LDV is the simplest one, which uses an LDV focusing on only one vibration point [8]. This
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is suitable to monitor the crucial structural node. Since monitoring multiple structural

nodes is required to analyze the vibration modes, the SLDV is developed by adding the

2-dimensional rotating mirrors [9, 10, 11, 12]. The structural surface is divided into ele-

ments, with nodes monitored by an LDV step by step. At each node, sufficient vibration is

acquired, and during the monitoring process, the exciting source should not be changed.

3D-SLDV is applied when the vibration along three directions is required for analysis [13,

14]. However, the pointwise measurement is time-consuming for the large structures. An

CSLDV can continuously scan the vibration surface along the preset scanning path [15, 16,

17, 18, 19]. It requires multiple reciprocating or cyclical scans for modal analysis, while

specific algorithms can reconstruct the modal shape. However, the reciprocating or cyclical

scanning is not applicable in large-scale structural monitoring.

1.1.2 LDVom
The concept of LDVom is first proposed by Li and Rixen [20]. An LDVom was designed

to one-way scan the vibrating surface, so that it is applicable in large-scale measurement

like railway tracks. Figure 1.2 presents an example LDVom installed on a down-scaled

railway system. The advantages of this technology include that: 1) the reciprocating

scanning is unnecessary for LDVom (saving measurement time); and 2) the exciting source

is unnecessary to remained invariant (realistic vibration). These conditions are more

realistic for monitoring real-world in-service structures. The development of LDVom may

encounter multiple issues, including the signal quality and the response interpretation.

Besides, since the LDV is mounted on moving platforms, the vibration spread from the

platform would generate LDV vibrations. Among these, speckle noise is the essential signal

issue handled in this dissertation.

Figure 1.2: An LDVom installed on a down-scaled railway system.
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1.2 LDV speckle noise
Speckle noise is a general issue of many wave-related technologies, for example, the

synthetic aperture radar [21], medical ultrasound [22] and optical coherence tomography

[23]. Different from environmental noise, speckle noise is internally produced by the

wave reflection and interference. When the speckle affect the measurement precision

adversely, it becomes noisy. However, there are some situations that the speckle is a useful

measurement feature, e.g., measuring displacement from digital image correlation [24]. For

LDV technologies, the speckle noise is troublesome as it buries signal features in the time

domain and generate pseudo frequency peaks in the frequency domain [2]. Therefore, a

systematic understanding of this noise is required for LDV development.

1.2.1 Mechanism of speckle noise
The source of speckle noise is called speckle patterns [2, 25, 26], which are produced by

the diffuse reflections of waves on a rough surface. From a theoretically absolute smooth

surface, the wavelets of the emitted beam will be reflected with the same phasors, so that

the wavelets will not interfere with each other and the beam remains invariant during

transmission. However, most target surfaces are significantly rough on the wavelength scale

[27]. The wavelets of the emitted beam are reflected in different directions with different

phases, and they will interfere with others. The destructive and constructive interference

produces dark and bright illumination, called speckle patterns, observed from the detector.

This phenomenon is extremely severe with the coherent wave, as the speckle pattern

generated with single wavelength cannot be eliminated by averaging. For technologies

used for image detection, the speckle patterns directly affect the imaging quality. The noise

issue is more complicated for LDV as it applies Doppler effect for vibration detection. The

effect of the speckle pattern is transformed to an additional phase for the inference beam in

photodetector. This additional phase will not produce any error unless the speckle pattern

changes. Therefore, the variation of the speckle pattern (or visibly, the motion of the laser

focusing spot) is the source of LDV speckle noise.

According to the current LDV technologies, the translation of the focusing spot is

most common to produce the speckle noise. There are two scenarios of the translation:

1) for single-point LDV and SLDV, the structure at the monitoring point has vibration

momentum perpendicular to the incident laser; 2) for CSLDV and LDVom, the focusing spot

continuously moves along the scanning path. Another motion type of the focusing spot

is deformation, as the spot diameter can be enlarged or reduced. However, this scenario

occurs rarely.

In the literature, there are two different types of speckle noise, signal drop-outs and

normal speckle noise [2]. The signal drop-outs refer to the sudden dramatic increase and

decrease of the signal amplitudes. Other speckle noise with normal amplitudes appears

like pseudo vibration. Some researches owe the speckle noise to amplitude modulation

and phase modulation from the inference laser beam, respectively. However, LDV only

uses typical interferometry method to obtain the wavelength of the inference laser beam,

which is phase-related. It seems that the dark speckle pattern dramatically drops the laser

intensity compared with the bright speckle pattern, but it also dramatically changes the

laser phase. Therefore, signal drop-outs are also phase-related speckle noise, not the light
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amplitude-related.

1.2.2 Simulation of speckle noise
The simulation of the LDV speckle noise relies on two different factors, the properties

of speckle patterns and the LDV measurement strategy. The real phasors of speckle

patterns distributed on the target surface are difficult to acquire, especially for large-scale

measurement. Therefore, a better understanding of the statistical properties is crucial

for the simulation. Since 1960s, the statistical properties of speckle patterns have been

investigated. The first systematical work to understand the speckle pattern properties

was conducted by Goodman [27], who theoretically derived different orders of speckle

pattern statistics. Based on the assumption that the surface roughness is considerable

on the wavelength scale, Goodman [27] concluded for the first-order property that the

light intensity of the speckle pattern obeys an exponential distribution and the light phase

obeys an even distribution. This property has been the foundation of many speckle-related

researches. In later researches, Fujii and Asakura [28] started considering different surface

roughness, especially on the wavelength scale. They experimentally investigated the

statistical distribution, with results showing that the speckle pattern varies much with the

surface roughness. Ohtsubo and Asakura [29] also had the same observations through their

theoretical derivation. And a similar investigation of the speckle pattern dependency on the

surface roughness has also been conducted recently [30]. However, the light phase of the

speckle pattern is rarely investigated in terms of the dependency on the surface roughness,

as most technologies apply light intensity. According to the mechanism of speckle noise,

the phase of the speckle pattern is the determine factor to generate speckle noise, which

needs further investigation. This research gap will be the focus in this dissertation.

The second factor of simulation is about the LDV measurement strategy. In the La-

grangian coordinate system centered at one point of the target surface, the variation of the

speckle pattern determines the speckle noise. Therefore, different features change during

the variation of the speckle pattern, including the shape, size and location of the focusing

spot. For example, while using a single-point LDV, the vibrating point moves towards

and away from the LDV, and therefore the focusing spot size changes with the distance.

Besides, due to bending deflection during vibration, the focusing spot moves around a

vibrating point. For the CSLDV and LDVom, the focusing spot moves along the scanning

path. These kinds of variation lead to the speckle noise.

There are different ways of simulating speckle noise in research investigations. For

example, to simulate speckle noise in image signals, Bolter et al. [31] applied Gaussian white

noise, which is too general and far different from the real speckle noise. Perreault & Auclair-

Fortier [32] and Yamaguchi [33] simulated the laser intensities based on the statistical

properties of speckle patterns. Similar simulations based on the statistical properties was

conducted by Martino et al. [34], who applied the K-distribution and uniform distribution

for the light intensity and phase, respectively. In the research of investigating the CSLDV

speckle noise occurrence [25], the phase of the speckle pattern was assumed a sine function

with multiple order harmonics centered at the scanning frequency, which simplified the

noise much. In the previous investigation of simulating LDV speckle noise [35], the

statistical properties investigated by Goodman are also the foundations. This approach

divides the surface to unaligned elements and assigns the phasor randomly to each element.
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The scanning strategy is to use a rectangular photodetector focusing on multiple elements

and then moving at a constant speed. However, this approach is less realistic as the

important factors of speckle patterns and the focusing spot are all not considered, which

requires further investigation.

1.2.3 Conseqences of LDV speckle noise
The consequences of LDV speckle noise depend on the measurement strategies, including

the single-point LDV, SLDV, CSLDV and LDVom.

The single-point LDV acquires enough vibration signals from one target point. As

aforementioned, the vibrating point moves towards and away from the LDV, and therefore

the focusing spot size changes with the distance. Besides, due to bending deflection during

vibration, the focusing spot moves around a vibrating point. However, these two mentioned

variations of speckle patterns are small, and therefore the speckle noise is easy to handle.

In addition, as the vibration of one point is mostly periodic, the frequency spectrum of the

speckle noise will center at the vibration frequency and present multiple-order harmonics.

As a result, the vibration mode is visible from the frequency spectrum.

The SLDV is an ensemble of the single-point LDV, as it acquires enough signals at

one point and then moves to another. Therefore, the effect of speckle noise is similar to

the single-point LDV [9]. The excitation is necessarily invariant during measurement for

modal analysis. However, the speckle noise will not bury the vibration signal.

Severe speckle noise appears in the CSLDV. The CSLDV continuously scans along the

vibrating surface, so that the speckle patterns vary rapidly, which would produce intense

speckle noise. However, since the CSLDV requires multiple reciprocating or cyclical scans

for modal analysis, the speckle noise is averaged on the scanning period. The averaged

signal [36] can reduce most speckle noise and reveal the vibration modes.

Since continuously scanning produces intense speckle noise, the LDVom becomes the

worst victim without multiple-scanning signals for averaging. According to experimental

observations, the noise amplitude can exceed 30 times the true vibration, which entirely

bury the real vibration. The signal-to-noise ratio of an LDVom can even fall below -15 db

affected by the speckle noise. For this recently emerging technology LDVom, mitigating

the speckle noise to improve signal quality is crucial [37].

1.2.4 Mitigation of speckle noise
Mitigation of LDV speckle noise has mainly concerned the CSLDV recently. The first basic

strategy is to avoid the speckle noise. As the speckle pattern is generated from the rough

surface, polishing the scanning surface can reduce surface roughness and therefore the

speckle patterns become bright [38]. The speckle noise significantly drops with bright

speckle patterns. However, this strategy becomes less applicable (time-consuming and

laborious) in the large-scale measurements, especially for those long structures like railway

tracks.

The second strategy is to avoid using the waveforms [39, 40]. As the speckle noise

mainly buries the waveforms in the time series, it is applicable to avoid handling the

speckle noise by calculating the vibration energy. This approach is suitable for some

specific applications, e.g., identifying the defect location.
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The third strategy is to average the vibration signals over the scanning period [36].

The exciting source is constant, so that the vibration modes remain invariant during the

measurement. Therefore, the averaging strategy will not affect the modal analysis, but has

a great effect on eliminating the speckle noise.

The fourth strategy is mainly focusing on the signal drop-outs [41, 42], which are the

most troublesome speckle noise. Special algorithms were developed to either identify the

signal drop-outs or mitigate the adverse effect.

A recent research handling the LDVom speckle noise is conducted by Zeng et al. [43],

which developed a signal-processing framework to mitigate speckle noise. Comprehensive

approaches were applied to detect and remove the signal drop-outs and then recover the

time series. This approach has been validated on an LDVom mounted on a down-scale

railway system.

1.3 Researchqestions
In view of the speckle noise issue of LDVom and the literature review, we attempt in

this thesis to acquire new understanding of the problem and proposed there upon-based

solutions. The main research question is:

What are the characteristics and mitigation approaches of LDVom speckle
noise?

It is divided into the following sub-questions:

Q1. The speckle noise should be characterized based on numerical simulation and

physical experiments. How to perform a realistic simulation of the LDVom speckle noise

and acquire a deep understanding of its characteristics?

Q2. Based on the characteristics of the LDVom speckle noise shown in the Fourier

spectrum, how to mitigate the speckle noise from the frequency domain?

Q3. How does the adaptive approach, ensemble empirical mode decomposition (EEMD),

which processes signals from the time domain, perform on handling speckle noise?

Q4. How to develop a signal processing approach for mitigating speckle noise, as well

as decomposing signals to frequency bands for vibration analysis?

To which answers are provided in Chapter 2-5.

1.4 Dissertation Outline
This dissertation answers the main research question step by step, from characterizing

the LDVom speckle noise to mitigation approaches. A comprehensive understanding of

speckle noise is crucial for solving the noise issue, and numerical simulation and physical

experiments are effective tools to acquire such insights. In step 1 (Chapter 2), an approach to

realistically numerically simulate the LDVom speckle noise is proposed, with the physical

experiments for evaluation. Consequently, speckle noise is characterized in different

aspects, including amplitude distribution and the relationships with other parameters.

This numerical simulation method can also generate noise series for evaluating later the

despeckling approaches. Since signal processing approaches are usually proposed in time

and frequency domains, considering the LDVom speckle noise in these two domains for

developing related solutions is crucial. In step 2 (Chapter 3), a further characterization of
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speckle noise in the frequency domain is conducted using Fourier analysis, and the related

despeckling methods are proposed based on the Fourier power spectrum. Meanwhile in

step 3 (Chapter 4), an EEMD-based signal processing approach, which processes signals

from the time domain, is investigated to eliminate speckle noise. In order to facilitate

vibration analysis from LDVom signals, a signal processing approach for despeckling and

at the same time decomposing signals to frequency bands is required, which is proposed in

step 4 (Chapter 5). In more details:

Chapter 2 answers the research sub-question Q1. The numerical simulation considers

two variables that affect speckle patterns: surface roughness and the scanning speed. This

simulation is evaluated by comparing with experimentally acquired noise. The amplitude

distribution and frequency distribution of the speckle noise, as well as the relationship

between speckle noise and the aforementioned two variables, are investigated using nu-

merically generated and experimentally acquired speckle noise.

Chapter 3 answers the research sub-question Q2. The speckle noise characteristic in
the frequency domain is further investigated using Fourier analysis. Based on the finding

that constant intervals appear between frequency peaks in power spectrum, two strategies

have been proposed to eliminate speckle noise from frequency domain.

Chapter 4 answers the research sub-question Q3. A despeckling algorithm is developed

using the adaptive signal processing approach, EEMD, which processes signals from the

time domain. It is then compared with several other classic signal processing approaches.

This research provides an insight into the performance of previous approaches to eliminate

speckle noise and gives a despeckling solution through redesigning the classic approaches

Chapter 5 answers the research sub-question Q4. As clean signals are usually decom-

posed to certain frequency bands for vibration analysis, a signal processing approach for

despeckling and at the same time decomposing signals is proposed. This approach is based

on the assumption of a continuous structure along the scanning path. The signal features

from both time and frequency domains are considered. This proposed method is evaluated

with physical experiments and compared with other classic signal processing approaches.

In Chapter 6, the major conclusions of this dissertation work and the recommendations

for future work are presented.

Chapter 7 and 8 in the Appendices are additional researches that investigate the theories

and fast implementation of the classic signal approach empirical mode decomposition

(EMD). These two researches attempt to bridge the theory gap of EMD and its time-

consuming issue.

References
[1] AB Stanbridge and DJ Ewins. “Modal testing using a scanning laser Doppler vibrom-

eter”. In: Mechanical systems and signal processing 13.2 (1999), pp. 255–270.

[2] SJ Rothberg, MS Allen, P Castellini, D Di Maio, JJJ Dirckx, DJ Ewins, Ben J Halkon,

P Muyshondt, N Paone, T Ryan, et al. “An international review of laser Doppler

vibrometry: Making light work of vibration measurement”. In: Optics and Lasers in
Engineering 99 (2017), pp. 11–22.

[3] EP Tomasini and P Castellini. Laser Doppler Vibrometry. Springer, 2020.



References

1

9

[4] Laser Doppler Vibrometer, howpublished = https://www.polytec.com/
eu/ vibrometry/ technology/ laser- doppler- vibrometry ,
note = Accessed: 2023-05-18.

[5] P Castellini, M Martarelli, and EP Tomasini. “Laser Doppler Vibrometry: Devel-

opment of advanced solutions answering to technology’s needs”. In: Mechanical
systems and signal processing 20.6 (2006), pp. 1265–1285. doi:10.1016/j.ymssp.
2005.11.015. url: https://www.sciencedirect.com/science/
article/pii/S0888327005002220.

[6] L Chen, D Zhang, Y Zhou, C Liu, and S Che. “Design of a high-precision and non-

contact dynamic angular displacement measurement with dual-Laser Doppler Vi-

brometers”. In: Scientific reports 8.1 (2018), pp. 1–11. doi: 10.1038/s41598-
018-27410-4.url:https://www.nature.com/articles/s41598-
018-27410-4.

[7] https://www.polytec.com/int/vibrometry/technology/
laser-doppler-vibrometry. Accessed: 2023-02-08.

[8] O Nishizawa, T Satoh, X Lei, and Y Kuwahara. “Laboratory studies of seismic wave

propagation in inhomogeneous media using a laser Doppler vibrometer”. In: Bulletin
of the Seismological Society of America 87.4 (1997), pp. 809–823.

[9] P Sriram, JI Craig, and S Hanagud. “A scanning laser Doppler vibrometer for modal

testing”. In: International Journal of Analytical and Experimental Modal Analysis 5
(1990), pp. 155–167.

[10] AB Stanbridge and DJ Ewins. “Measurement of translational and angular vibration

using a scanning laser Doppler vibrometer”. In: Shock and Vibration 3.2 (1996),

pp. 141–152.

[11] R Akamatsu, T Sugimoto, N Utagawa, and K Katakura. “Proposal of non contact

inspectionmethod for concrete structures using high-power directional sound source

and scanning laser doppler vibrometer”. In: Japanese Journal of Applied Physics 52.7S
(2013), 07HC12.

[12] C Liu, C Zang, and B Zhou. “A novel algorithm for determining the pose of a

scanning laser Doppler vibrometer”. In: Measurement Science and Technology 31.2

(2019), p. 025202.

[13] M Maguire and I Sever. “Full-field strain measurements on turbomachinery compo-

nents using 3D SLDV technology”. In: AIP Conference Proceedings. Vol. 1740. 1. AIP
Publishing LLC. 2016, p. 080001.

[14] B Witt, D Rohe, and T Schoenherr. “Full-field strain shape estimation from 3D

SLDV”. In: Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6:
Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics
2019. Springer. 2019, pp. 31–45.

[15] MS Allen and MW Sracic. “A new method for processing impact excited continuous-

scan laser Doppler vibrometer measurements”. In: Mechanical Systems and Signal
Processing 24.3 (2010), pp. 721–735.

https://www.polytec.com/eu/vibrometry/technology/laser-doppler-vibrometry
https://www.polytec.com/eu/vibrometry/technology/laser-doppler-vibrometry
https://doi.org/10.1016/j.ymssp.2005.11.015
https://doi.org/10.1016/j.ymssp.2005.11.015
https://www.sciencedirect.com/science/article/pii/S0888327005002220
https://www.sciencedirect.com/science/article/pii/S0888327005002220
https://doi.org/10.1038/s41598-018-27410-4
https://doi.org/10.1038/s41598-018-27410-4
https://www.nature.com/articles/s41598-018-27410-4
https://www.nature.com/articles/s41598-018-27410-4
https://www.polytec.com/int/vibrometry/technology/laser-doppler-vibrometry
https://www.polytec.com/int/vibrometry/technology/laser-doppler-vibrometry


1

10 1 Introduction

[16] YF Xu, DM Chen, and WD Zhu. “Damage identification of beam structures using

free response shapes obtained by use of a continuously scanning laser Doppler

vibrometer system”. In: Mechanical Systems and Signal Processing 92 (2017), pp. 226–

247.

[17] DM Chen, YF Xu, and WD Zhu. “Identification of damage in plates using full-field

measurement with a continuously scanning laser Doppler vibrometer system”. In:

Journal of Sound and Vibration 422 (2018), pp. 542–567.

[18] Z Huang and C Zang. “Fast modal rotation measurement using a dual sinusoidal-

scan continuously scanning laser Doppler vibrometer”. In: Measurement Science and
Technology 31.8 (2020), p. 085201.

[19] D Di Maio, P Castellini, M Martarelli, S Rothberg, MS Allen, WD Zhu, and DJ Ewins.

“Continuous Scanning Laser Vibrometry: A raison d’être and applications to vibration

measurements”. In: Mechanical Systems and Signal Processing 156 (2021), p. 107573.

[20] Li Z. and Rixen D. Method for detection of a flaw or flaws in a railway track, and a
rail vehicle to be used in such a method. NL 2007315. 2011.

[21] JS Lee, L Jurkevich, P Dewaele, P Wambacq, and A Oosterlinck. “Speckle filtering of

synthetic aperture radar images: A review”. In: Remote sensing reviews 8.4 (1994),
pp. 313–340.

[22] PS Hiremath, PT Akkasaligar, S Badiger, and G Gunarathne. “Speckle noise reduction

in medical ultrasound images”. In: Advancements and breakthroughs in ultrasound
imaging 1.8 (2013), pp. 1–8.

[23] M Szkulmowski, I Gorczynska, D Szlag, M Sylwestrzak, A Kowalczyk, and M Wo-

jtkowski. “Efficient reduction of speckle noise in Optical Coherence Tomography”.

In: Optics express 20.2 (2012), pp. 1337–1359.

[24] D Lecompte, ASHJD Smits, S Bossuyt, H Sol, J Vantomme, Da Van Hemelrijck, and

AM Habraken. “Quality assessment of speckle patterns for digital image correlation”.

In: Optics and lasers in Engineering 44.11 (2006), pp. 1132–1145.

[25] M Martarelli and DJ Ewins. “Continuous scanning laser Doppler vibrometry and

speckle noise occurrence”. In: Mechanical Systems and Signal Processing 20.8 (2006),

pp. 2277–2289.

[26] P Martin and S Rothberg. “Introducing speckle noise maps for laser vibrometry”. In:

Optics and Lasers in Engineering 47.3-4 (2009), pp. 431–442.

[27] JW Goodman. Statistical properties of laser sparkle patterns. Tech. rep. STANFORD
UNIV CA STANFORD ELECTRONICS LABS, 1963.

[28] H Fujii and T Asakura. “Effect of surface roughness on the statistical distribution of

image speckle intensity”. In: Optics communications 11.1 (1974), pp. 35–38.

[29] J Ohtsubo and T Asakura. “Statistical properties of speckle patterns produced by

coherent light at the image and defocus planes”. In: Optik 45.1 (1976), pp. 65–72.

[30] NA Mansour, AM Abd-Rabou, AE Elmahdy, RM El-Agmy, and MM El-Nicklawy.

“Dependence of speckle contrast on the light spectral broadening and the roughness

root mean square”. In: Optik 133 (2017), pp. 140–149.



References

1

11

[31] R Bolter, M Gelautz, and F Leberl. “SAR speckle simulation”. In: International archives
of photogrammetry and remote sensing 31 (1996), pp. 20–25.

[32] C Perreault and MF Auclair-Fortier. “Speckle simulation based on B-mode echo-

graphic image acquisition model”. In: Fourth Canadian Conference on Computer and
Robot Vision (CRV’07). IEEE. 2007, pp. 379–386.

[33] I Yamaguchi. “Digital simulation of speckle patterns”. In: Speckle 2018: VII Interna-
tional Conference on Speckle Metrology. Vol. 10834. International Society for Optics

and Photonics. 2018, p. 1083409.

[34] G Di Martino, A Iodice, D Riccio, and G Ruello. “A physical approach for SAR speckle

simulation: First results”. In: European Journal of Remote Sensing 46.1 (2013), pp. 823–
836.

[35] S Rothberg. “Numerical simulation of speckle noise in laser vibrometry”. In: Applied
Optics 45.19 (2006), pp. 4523–4533.

[36] J Zhu, Y Li, and R Baets. “Mitigation of speckle noise in laser Doppler vibrometry by

using a scanning average method”. In: Optics letters 44.7 (2019), pp. 1860–1863.

[37] S Rahimi, Z Li, and RDollevoet. “Measuringwith laser Doppler vibrometer onmoving

frame (LDVMF)”. In: AIP Conference Proceedings. Vol. 1600. American Institute of

Physics. 2014, pp. 274–286.

[38] YF Xu, DM Chen, and WD Zhu. “Modal parameter estimation using free response

measured by a continuously scanning laser Doppler vibrometer system with appli-

cation to structural damage identification”. In: Journal of Sound and Vibration 485

(2020), p. 115536.

[39] P Chiariotti, M Martarelli, and GM Revel. “Delamination detection by multi-level

wavelet processing of continuous scanning laser Doppler vibrometry data”. In: Optics
and Lasers in Engineering 99 (2017), pp. 66–79.

[40] Ł Pieczonka, Ł Ambroziński, WJ Staszewski, D Barnoncel, and P Pérès. “Damage

detection in composite panels based on mode-converted Lamb waves sensed using

3D laser scanning vibrometer”. In: Optics and lasers in engineering 99 (2017), pp. 80–

87.

[41] J Vass, R Šmıd, RB Randall, P Sovka, C Cristalli, and B Torcianti. “Avoidance of speckle

noise in laser vibrometry by the use of kurtosis ratio: Application to mechanical fault

diagnostics”. In: Mechanical Systems and Signal Processing 22.3 (2008), pp. 647–671.

[42] P Hosek. “Algorithm for signal drop-out recognition in IC engine valve kinematics

signal measured by laser Doppler vibrometer”. In: Optics & Laser Technology 44.4

(2012), pp. 1101–1112.

[43] Y Zeng, A Nunez, and Z Li. “Speckle noise reduction for structural vibration measure-

ment with laser Doppler vibrometer on moving platform”. In: Mechanical Systems
and Signal Processing 178 (2022), p. 109196.





2

13

2
Numerical simulation and

characterization of speckle
noise for laser Doppler
vibrometer on moving

platforms (LDVom)

Laser Doppler Vibrometer (LDV) is extensively applied in remote and precise vibration mea-
surements for structural monitoring. Speckle noise is a severe signal issue restricting LDV
applications, mainly when an LDV scans from moving platforms. Realistic simulations and
thorough characterizations of speckle noise can support the despeckle procedure. A novel
approach to numerically simulate speckle noise is proposed based on the statistical properties
of speckle patterns. Surface roughness and other affecting factors are thoroughly studied. The
simulated distributions agree well with the literature when investigating speckle properties.
Single-point and continuously scanning speckle noise are both numerically generated and
experimentally acquired. Their corresponding time-series and fast Fourier spectra present
good agreement. In addition, similar amplitude distributions, approximating a Gaussian
distribution, are achieved. Speckle noise is different from Gaussian white noise because of the
varying frequency distribution. The speckle noise grows with increasing surface roughness
to a critical value. When simulating and acquiring the scanning speckle noise, the noise
energy increases with the scanning speed, but the signal drop-outs decrease in intensity and
density. These promising results demonstrate the simulation accuracy and can further support
despeckle procedures.

This chapter is based on the paper: Jin, Y., Dollevoet, R., & Li, Z. (2022). Numerical simulation and characterization

of speckle noise for laser Doppler vibrometer on moving platforms (LDVom). Optics and Lasers in Engineering,

158, 107135.
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2 Numerical simulation and characterization of speckle noise for laser Doppler vibrometer on

moving platforms (LDVom)

2.1 Introduction
Laser Doppler Vibrometer (LDV) is a noncontact and nondestructive instrument for precise

vibration measurement [1]. It has been extensively used in structural health monitoring

(e.g., [2, 3]) as an alternative to traditional contacting transducers. Its physical mechanism

is the Doppler effect, as the target movement can cause the frequency shift of lasers. LDV

is technically superior to attached sensors, acquiring vibrations remotely and continuously

(e.g., measuring very long structures such as railway tracks at high speeds) and avoiding

mass loading that possibly changes vibration modes [4]. In addition, the instrument has a

measuring frequency over 1 GHz and a vibration velocity resolution of 1 mm/s, suitable for

scenarios requiring high-frequency and high-spatial-resolution analysis. In recent decades,

the LDV measurement technique has evolved from single-point measurement to pointwise

measurement (scanning LDV (SLDV)) and then to the continuous scanning technique

(continuous SLDV (CSLDV)) [1]. The pointwise measurement is a set of single-point

measurements, and the SLDV acquires sufficient signals at each point. This technique is

time-consuming. The CSLDV avoids this issue, but it requires multiple reciprocating scans

(e.g., [4, 5, 6]) for modal testing and noise removal. The signal integrated by those from

numerous reciprocating cycles derives the structural mode shapes. Thus, the excitation

source and the structural conditions should be constant during one CSLDV measurement.

An LDV on moving platforms (LDVom) [7] is proposed for one-way continuously scanning

vibrating surfaces, especially for long or large structures where multiple reciprocating

scans are inapplicable. The instantaneous mode shape is acquired, and either the excitation

source or the structural conditions could be time-variant. However, a significant signal

issue, speckle noise [1, 8], becomes extremely troublesome for the LDVom since the noise

effect cannot be averaged without multiple scanning.

Speckle noise is a significant issue that distorts the acquired vibration, adversely af-

fecting signal interpretation. The noise is attributed to an optical phenomenon, namely

speckle patterns, as coherent laser scattering from an optically rough surface alters the

phases [9]. The laser wavelets interfere constructively or destructively and thus produce a

speckle pattern with bright and dark spots. The signal outputs are phasor summations of

the reflected wavelets, and thereby speckle variation, including translation and deformation

of the focusing spot, results in signal fluctuations, namely speckle noise. According to

the aforementioned scanning techniques, translation of the focusing spot occurs in two

cases: (1) the structure at the focusing spot vibrates or (2) the laser continuously scans

over the structure. In physical experiments, the noise amplitude reaches over 30 times the

true vibration, and the signal-to-noise ratio falls below -15 db [10]. Several approaches

have been developed in recent studies to reduce adverse effects, but these approaches are

either poorly effective or applicability-limited. For example, Vass et al. [11] and Hosek

[12] developed algorithms to eliminate signal drop-outs, but dominant speckle noise with

normal amplitudes remained; Chiariotti et al. [13] and Pieczonka et al. [14] overlooked

time-frequency information and only calculated the energy distribution for defect identifi-

cation. These studies lack a comprehensive analysis of speckle noise, while knowing the

noise characteristics can support the despeckle procedure. Others mitigated speckle noise

according to the noise features, e.g., averaging signals over the cyclical measurement [15]

and attaching retroreflective tapes to enhance the reflections [16]. Still, these approaches

are not applicable in field measurements including railway inspection. Therefore, the real-
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istic simulation and thorough characterization of speckle noise for better a understanding

of the issue should be studied.

Noise simulation and characterization require accurate phasor calculation over the

speckle patterns and proper simulation of the LDVom scanning procedure. The surface

roughness dominantly affects the speckle pattern [17, 18], while the scanning procedure is

influenced by the focusing spot, the scanning speed and the sampling frequency. Some

studies have investigated the properties of speckle patterns but lack a thorough considera-

tion of surface roughness. Goodman [19] systematically derived the statistical properties

of laser speckle patterns, but he assumed large surface roughness beyond the laser wave-

length; Ohtsubo and Asakura [20] derived the intensity distribution but not the phase

distribution that is significant for LDV signals; Fujii and Asakura [21] experimentally in-

vestigated the statistical distribution of the speckle intensity but not of the phase. Recently,

the simulation of speckle patterns in image signals was considered. Bolter [22] adopted

Gaussian white noise, which is significantly different from speckle noise. Perreault et al.

[23] and Yamaguchi [24] simulated the laser intensities but ignored the phases. Martino

et al. [25] adopted the K-distribution for the light intensity and uniform distribution for

the light phase, but their assumption simplified the contribution of surface roughness. To

the best of our knowledge, the sole study for simulating the speckle noise in LDV signals

was conducted by Rothberg [26]. The speckle noise simulated in [26], where a surface

passes through a stationary laser beam with a constant speed, is similar to that in LDVom.

However, the noise should be affected by surface roughness and the aforementioned factors

in the LDVom scanning procedure, which have not been considered. In other research,

Martin and Rothberg [9] experimentally investigated the relationship between the speckle

noise and the focusing spot, while other scanning factors were not included. Therefore,

the speckle-noise simulation and characterization that thoroughly consider the related

factors remain to be investigated, and such a study is significant for speckle mitigation and

avoidance.

In this paper, we propose a novel approach to numerically simulate the speckle noise

in LDVom signals, and then characterize the noise for a better understanding of the issue.

Speckle noise from the single-point vibration is also characterized since sometimes impor-

tant structural nodes need constant monitoring. When analyzing the statistical properties,

we consider the surface roughness thoroughly and derive the complex distribution of laser

phases. Then, the speckle noise is simulated in different situations by varying the scanning

speed and the surface roughness. Pure speckle noise is experimentally acquired to evaluate

the simulation accuracy. The remainder of this paper is organized as follows: Section

2.2 derives the statistical properties and describes the simulation approach; Section ??
evaluates the simulation accuracy by comparing with the experimental results and then

characterizes the speckle noise in different situations; Section ?? discusses the possible
effect of the commercial demodulation system on our experimental results; and Section ??
concludes this paper.
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moving platforms (LDVom)

2.2 Methodology
2.2.1 Statistical properties of speckle patterns
Since there are numerous cases of microscopic structure of the scanning surface, a better

understanding of the statistical properties is necessary. The monochromatic wave equation

[27] to present the field incident at (𝑥,𝑦,𝑧) is

𝑢(𝑥,𝑦,𝑧; 𝑡) = 𝐴(𝑥,𝑦,𝑧)𝑒𝑖2𝜋𝜈𝑡 =∣ 𝐴(𝑥,𝑦,𝑧) ∣ 𝑒𝑖𝜃(𝑥,𝑦,𝑧)𝑒𝑖2𝜋𝜈𝑡 (2.1)

where, 𝑡 is the transmission time, 𝜈 is the optical frequency, and 𝐴(𝑥,𝑦,𝑧) represents a
complex phasor with the phase 𝜃(𝑥,𝑦,𝑧). Then the light intensity of the field (𝑥,𝑦,𝑧) can
be calculated as

𝐼 (𝑥,𝑦,𝑧) = lim
𝑇→∞

1
𝑇 ∫

𝑇 /2

−𝑇 /2
∣ 𝑢(𝑥,𝑦,𝑧; 𝑡) ∣2 𝑑𝑡 =∣ 𝐴(𝑥,𝑦,𝑧) ∣2 (2.2)

Considering that the complex amplitude 𝐴(𝑥,𝑦,𝑧) results from the summation of the

laser wavelets illuminating a speckle pattern [27], the phasor amplitude can be represented

by

𝐴(𝑥,𝑦,𝑧) =
𝑛
∑
𝑘=1

∣ 𝑎𝑘 ∣ 𝑒𝑖𝜙𝑘 (2.3)

where, ∣ 𝑎𝑘 ∣ and 𝜙𝑘 represent the amplitude and phase of the 𝑘th wavelet respectively,

and 𝑛 is the wavelet number in the speckle pattern ([20] and [28] provide the estimator

of 𝑛). According to Equations (2.2) & (2.3), the wavelet amplitude ∣ 𝑎𝑘 ∣ equals
√
𝐼0
𝑛 (𝐼0

is the incident light intensity). Without loss of generality, we can set the incident light

intensity 𝐼0 = 1. The phase 𝜙𝑘 of the reflected wavelet is proportional to the height of the

irregularities of the rough surface [29, 30, 31]

𝜙𝑘 =
4𝜋
𝜆
ℎ𝑘 (2.4)

where ℎ𝑘 is the departure of the surface height from its mean value and 𝜆 is the optical

wavelength. According to Equation (2.4), we can derive the statistical relationships between

the speckle pattern and the surface roughness

𝜇𝜙 =
4𝜋
𝜆
𝑅𝑎

𝜎𝜙 =
4𝜋
𝜆
𝑅𝑞

(2.5)

where, 𝜇𝜙 and 𝜎𝜙 represent the mean and standard deviation of the phases respectively, and

𝑅𝑎 and 𝑅𝑞 represent the mean roughness and root-mean-square roughness of the surface

respectively. The phase 𝜙𝑘 becomes a random variable that is determined by the random

variable ℎ𝑘 . According to Equation (2.3), we can obtain that

𝐴(𝑥,𝑦,𝑧) =
1
𝑛

𝑛
∑
𝑘=1

𝑒𝑖𝜙𝑘 =
1
𝑛

𝑛
∑
𝑘=1

𝑐𝑜𝑠𝜙𝑘 + 𝑖
1
𝑛

𝑛
∑
𝑘=1

𝑠𝑖𝑛𝜙𝑘 = 𝐴1 + 𝑖𝐴2 (2.6)
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where 𝐴1 = 1
𝑛 ∑

𝑛
𝑘=1 𝑐𝑜𝑠𝜙𝑘 is the real component of the phasor and 𝐴2 = 1

𝑛 ∑
𝑛
𝑘=1 𝑠𝑖𝑛𝜙𝑘 is the

imaginary component. When 𝑛 is a large positive integer, according to the central limit

theorem (Lindeberg-Levy Theorem), we can obtain that

𝜖1 =
𝐴1 − 𝜇1
𝜎1/

√
𝑛
∼ 𝑁 (0,1) ; 𝜖2 =

𝐴2 − 𝜇2
𝜎2/

√
𝑛
∼ 𝑁 (0,1) (2.7)

where, 𝜇1 and 𝜎1 are the mean and standard deviation of 𝑐𝑜𝑠𝜙𝑘 , 𝜇2 and 𝜎2 are the mean and

standard deviation of 𝑠𝑖𝑛𝜙𝑘 , and 𝑁 (0,1) represents the standard normal distribution. On

this basis, the joint probability density function of 𝐴1 and 𝐴2 is yielded as follows

𝑓𝐴(𝐴1,𝐴2) =
𝑛

2𝜋𝜎1𝜎2
𝑒−

(𝐴1−𝜇1)2

𝜎21
+ (𝐴2−𝜇2)

2

𝜎22
2/𝑛 (2.8)

According to Equations (2.2) and (2.6), the intensity 𝐼 and phase 𝜑 of a speckle pattern

can be expressed as

𝐼 = 𝐼 (𝑥,𝑦,𝑧) = ∣ 𝐴(𝑥,𝑦,𝑧) ∣2= 𝐴2
1 +𝐴

2
2

𝑡𝑎𝑛𝜑 =
𝐴2

𝐴1

(2.9)

Considering Equation (2.8), we can obtain the joint probability density function of 𝐼
and 𝜑

𝑓𝐼 ,𝜑(𝐼 ,𝜑) =∣ 𝐽 ∣ 𝑓𝐴(𝐴1,𝐴2) =
𝑛

4𝜋𝜎1𝜎2
𝑒−

(
√
𝐼 𝑐𝑜𝑠𝜑−𝜇1)2

𝜎21
+ (

√
𝐼 𝑠𝑖𝑛𝜑−𝜇2)2

𝜎22
2/𝑛 (2.10)

where 𝐽 is the Jacobi conversion matrix. Therefore, the independent distributions of 𝐼 and
𝜑 can be acquired by integrating Equation (2.10) separately.

However, the integration to calculate the phase 𝜑 distribution is very troublesome.

According to Equation (2.9), 𝑡𝑎𝑛𝜑 is a variable generated by the ratio of two independent

normal variables, thus obeying the distribution derived from a known probability density

function in [32].

𝑓𝜑(𝑡𝑎𝑛𝜑) =
𝑛𝑏𝑑√

2𝜋𝑎3𝜎1𝜎2 [
Φ(

𝑏
𝑎
) −Φ(−

𝑏
𝑎
)]+

1
𝜋𝑎3𝜎1𝜎2

𝑒−𝑐/2

𝑎 =
√
(𝑡𝑎𝑛𝜑)2/𝜎2

2 +1/𝜎2
1

𝑏 = 𝜇2𝑡𝑎𝑛𝜑/𝜎2
2 + 𝜇1/𝜎

2
1

𝑐 = 𝜇22/𝜎
2
2 + 𝜇

2
1/𝜎

2
1

𝑑 = 𝑒
𝑏2−𝑐𝑎2
2𝑎2

(2.11)

where the function Φ is the cumulative density function of the standard Gaussian distri-

bution. Since 𝜇1, 𝜇2, 𝜎1, and 𝜎2 are determined by 𝜇𝜙 and 𝜎𝜙 , the relationship between the

variables 𝐼 and 𝜑 and the surface roughness is established. This expression is suitable for

applications with wide-range surface roughness.
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In addition, the expressions of Equations (2.10) and (2.11) also cover those in the

literature. For example, when 𝜎1/
√
𝑛 = 𝜎2/

√
𝑛 = 𝜎 and 𝜇1 = 𝜇2 = 0, we can obtain the same

expression as in [19, 26] that the variable 𝐼 follows an exponential distribution and 𝜑
follows an even distribution.

2.2.2 LDV speckle noise
LDV utilizes the Doppler frequency shift produced by the relative motions to detect the

vibrations. The signal received by the photodetector is the summation vector of the target

and reference laser beams, and the intensity scalar can be expressed as [33]:

𝐼𝑑 = 𝐼𝑅 + 𝐼𝑇 +2
√
𝐼𝑅𝐼𝑇 𝑐𝑜𝑠[2𝜋𝑓𝑅𝑡 −

4𝜋
𝜆 ∫ 𝑣𝑑𝑡 + (𝜑𝑅 −𝜑𝑇 )] (2.12)

where, 𝐼𝑑 is the detected intensity, 𝐼𝑅 and 𝜑𝑅 are the intensity and phase of the reference

beam, 𝐼𝑇 and 𝜑𝑇 are the intensity and phase of the target beam respectively, 𝑓𝑅 is the

frequency of the reference beam, 𝜆 is the incident wavelength, and 𝑣 is the vibration

velocity of the target. Therefore, the frequency shift of the target beam is

𝑓𝑏𝑒𝑎𝑡 − 𝑓𝑅 = −
2
𝜆
𝑣 +

1
2𝜋

𝑑(𝜑𝑅 −𝜑𝑇 )
𝑑𝑡

(2.13)

Considering that the target beam illuminates 𝑃 speckle patterns (each with phase

𝜑𝑇𝑝 and intensity 𝐼𝑇𝑝) and the reference beam illuminates 𝑄 speckle patterns (each with

phase 𝜑𝑅𝑞 and intensity 𝐼𝑅𝑞), the resultant intensity 𝐼𝑟𝑒𝑠 and phase 𝜑𝑟𝑒𝑠 are related to the

summations incident on the photodetector [26]

𝐼𝑟𝑒𝑠 = 2
√
𝐼𝑅𝐼𝑇 =

1
𝐴
{[

𝑄

∑
𝑞=1

𝑃
∑
𝑝=1

𝐴𝑝𝑞
√
𝐼𝑅𝑞𝐼𝑇𝑝𝑠𝑖𝑛(𝜑𝑅𝑞 −𝜑𝑇𝑝)]2

+ [
𝑄

∑
𝑞=1

𝑃
∑
𝑝=1

𝐴𝑝𝑞
√
𝐼𝑅𝑞𝐼𝑇𝑝𝑐𝑜𝑠(𝜑𝑅𝑞 −𝜑𝑇𝑝)]2}1/2

(2.14)

𝑡𝑎𝑛𝜑𝑟𝑒𝑠 = 𝑡𝑎𝑛(𝜑𝑅 −𝜑𝑇 )

=
∑𝑄

𝑞=1∑
𝑃
𝑝=1𝐴𝑝𝑞

√
𝐼𝑅𝑞𝐼𝑇𝑝𝑠𝑖𝑛(𝜑𝑅𝑞 −𝜑𝑇𝑝)

∑𝑄
𝑞=1∑

𝑃
𝑝=1𝐴𝑝𝑞

√
𝐼𝑅𝑞𝐼𝑇𝑝𝑐𝑜𝑠(𝜑𝑅𝑞 −𝜑𝑇𝑝)

(2.15)

where, 𝐴𝑝𝑞 is the overlapping area of the 𝑝th target and 𝑞th reference speckle patterns.

Phase variation dominantly contributes to the speckle noise even when the laser intensity

is adequate. According to Equation (2.13), the measured vibration 𝑉𝑚 is the true vibration

𝑣 polluted by a noisy component.

𝑉𝑚 =
𝜆
2
(𝑓𝑅 − 𝑓𝑏𝑒𝑎𝑡 ) = 𝑣 −

𝜆
4𝜋

𝑑(𝜑𝑟𝑒𝑠)
𝑑𝑡

= 𝑣 −
𝜆
4𝜋

⋅
1

1+ 𝑡𝑎𝑛2(𝜑𝑟𝑒𝑠)
𝑑(𝑡𝑎𝑛(𝜑𝑟𝑒𝑠))

𝑑𝑡
(2.16)

where − 𝜆
4𝜋

𝑑(𝜑𝑟𝑒𝑠 )
𝑑𝑡 is the so-called speckle noise or ‘pseudo vibration’, and the expression

is rewritten with the deviation of 𝑡𝑎𝑛(𝜑𝑟𝑒𝑠). Sharp variations of the phase 𝜑𝑟𝑒𝑠 generate
LDV speckle noise, adding unwanted fluctuations in the vibration signal. Therefore, the
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intensity and phase distributions of speckle patterns on the scanning surface affect the LDV

signals. The statistical properties in subsection 2.2.1 can be utilized for the speckle-noise

simulation.

Assuming the speckle patterns are rectangular and densely distributed as in [26], the

scanning surface is divided into 𝑒 × 𝑓 speckle elements, as shown in Fig. 2.1. The size of each

speckle element should ensure that sufficient laser wavelets will transmit onto a speckle

and the sharp variation of the surface roughness can be characterized. Hereafter, since

the true surface outliers ℎ𝑘 in Equation (2.4) are difficult to acquire, we use the roughness

parameters 𝑅𝑎 & 𝑅𝑞 to assign intensities and phases to the speckle elements according to

Equations (2.10) & (2.11).

The target beam illuminates a particular area with 𝛼 speckles × 𝛽 speckles (the red

rectangle in Fig. 2.1) on the scanning surface. The intensities and phases of speckles inside

the focusing spot (the red rectangle) constitute the contribution of the target beam. The

edges of the focusing spot would cut the speckle elements, and thus the overlapping area

𝐴𝑝𝑞 that each speckle has inside the focusing spot should also be calculated. Since the

reference beam is relatively stationary during scanning, its contribution can be simulated

as the expectation values of variables 𝐼𝑇𝑝 and 𝜑𝑇𝑝 [26]. Therefore, the resultant phase of
the target and reference beams can be determined by Equation (2.15).

𝑓 speckles

𝑒 speckles 𝛽 speckles

𝛼 speckles

𝐴𝑝𝑞

Figure 2.1: Example of the divided scanning surface and the focusing spot (red rectangle)

2.2.3 Single-point noise
First, we concern about speckle noise with a single-point measurement. The vibration at

a single-point can cause bending, stretching and twisting deformations of the vibrating

structure. These cause relative motion between the laser and the target surface even if

the laser is stationary. If the vibration is periodical, the focusing spot will move with the

vibration period (the yellow arrows in Fig. 2.2 show an example). For the time-neighboring

samples in a signal, the displacement Δ𝑥 of the focusing spot in a time increment is equal

to the vibration velocity 𝑣 divided by the sampling frequency 𝑓𝑠 .

Δ𝑥 =
𝑣
𝑓𝑠

(2.17)
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Figure 2.2: Example schematic of generating single-point noise. The focusing spot (red rectangle) moves with the

vibration period.

Then the algorithm for simulating the single-point speckle noise is proposed as follows:

Algorithm 1 Simulation of the single-point speckle noise

Input: the surface roughness parameters, the surface size, the vibration of the focusing

node, and the sampling frequency;

1. Divide the surface into 𝑒 × 𝑓 speckle elements, and locate the initial focusing spot;

2. Assign the intensities and phases to the speckle elements according to Equations (2.10)

& (2.11);

3. Calculate the resultant phase according to Equation (2.15), and move the focusing spot

according to Equation (2.17) to acquire the time series of 𝑡𝑎𝑛(𝜑𝑟𝑒𝑠);
4. Calculate the speckle noise according to Equation (2.16);

Output: the time series of speckle noise.

2.2.4 Continuously scanning speckle noise

Second, we are concerned about the measurement strategy of capturing the instantaneous

vibrations by continuous scanning. When an LDVom continuously scans the target sur-

face, the focusing spot moves along the scanning direction, and the variation inside the

photodetector produces the scanning speckle noise. The scanning speed (SS) 𝑣𝑠 and the

sampling frequency (SF) 𝑓𝑠 are two significant factors for simulating speckle noise, as

they determine the moving rates of the focusing spot. If the SS-to-SF ratio (SFR) is large,

the time-neighboring sampled positions will depart from each other with no overlapping

speckle patterns, which results in sharp speckle noise. Otherwise, the noise amplitudes

become relatively small.
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Figure 2.3: Example scheme of scanning the vibration surface. The focusing spot (red rectangle) moves along the

scanning direction.

During the scanning period, the displacement of the focusing spot between two time-

neighboring sampled positions can be expressed as

Δ𝑥 = 𝑆𝐹𝑅 =
𝑣𝑠
𝑓𝑠

(2.18)

Since the target laser focuses the area 𝛼 speckles × 𝛽 speckles at a time instant, the

number of overlapped speckle patterns between time-neighboring sampled positions is

calculated as follows:

𝑁𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝛽(𝛼 −
Δ𝑥
𝑑
) = 𝛽(𝛼 −

𝑣𝑠
𝑑𝑓𝑠

), 𝛼 >
𝑣𝑠
𝑑𝑓𝑠

0, 𝛼 ≤
𝑣𝑠
𝑑𝑓𝑠

(2.19)

where 𝑑 is the length of a speckle pattern. With the increase in 𝑁𝑜𝑣𝑒𝑟𝑙𝑎𝑝 , the difference

between neighboring positions decreases, and thus the speckle noise attenuates. The

algorithm for simulating the scanning speckle noise is proposed as follows:

Algorithm 2 Simulation of continuously scanning speckle noise

Input: the surface roughness parameters, the surface size, the scanning speed, and the

sampling frequency;

1. Divide the surface into 𝑒 × 𝑓 speckle elements, and locate the initial focusing spot;

2. Assign the intensities and phases to the speckle elements according to Equations (2.10)

& (2.11);

3. Calculate the resultant phase according to Equation (2.15), and move the focusing spot

along the scanning direction according to Equation (2.18) to acquire the time series of

𝑡𝑎𝑛(𝜑𝑟𝑒𝑠);
4. Calculate the speckle noise according to Equation (2.16);

Output: the time series of speckle noise.

2.3 Simulation results
In this section, we demonstrate the validity of the simulation approach by comparing

with physical experiments. In order to evaluate our derivation of statistical properties, the



2

22

2 Numerical simulation and characterization of speckle noise for laser Doppler vibrometer on

moving platforms (LDVom)

phasor distributions of speckle patterns are compared with the experimental work in [20].

Then, to evaluate the simulation of speckle noise, the time series, fast Fourier transform

(FFT) spectra, and noise amplitude distribution are compared with the experimental results.

Generally, the time series and FFT spectra can roughly compare the similarities between

simulation and experiments. Due to the periodical property, the FFT spectra of single-point

speckle noise can quantify the noise [34]. The twice-FFT curve of scanning speckle noise

can show some similarities although it has no known physical meaning. The probability

density function of all magnitudes in the noise series is an effective tool to evaluate the

simulation results. After evaluating our simulation approach, several properties of speckle

noise are investigated.

2.3.1 Evaluating the statistical properties
The statistical properties of the speckle patterns constitute the foundation of numerical

simulations, thereby requiring appropriate evaluations of the derived distributions. The

experimental work in [20] revealed the distribution of the intensity 𝐼 for rough surfaces

(with 𝑅𝑞 = 0.14, 0.07, 0.047, 0.04 𝜇m) illuminated by the He-Ne laser (with wavelength

0.6328 𝜇m). These parameters are utilized in our simulation to acquire comparison results.

Since the microscopic structure of the rough surface is unprovided, a Gaussian distribution

is adopted to generate ℎ𝑘 randomly. The probability density function of 𝐼 /⟨𝐼⟩ (⟨𝐼⟩ is the
mean of 𝐼 ) is illustrated in Fig. 2.4. Our simulated results demonstrate good agreement with

the experimental results in [20]. With the decrease in the surface roughness, the probability

curves vary from a negative exponential distribution (which agrees with Goodman’s results

[19]) to a Gaussian distribution centered at 𝐼 /⟨𝐼⟩ = 1. These results indicate the accuracy
of simulating the statistical properties.
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Figure 2.4: (a) The simulated probability density function of 𝐼 /⟨𝐼⟩; (b) The experimental results reproduced from

[20]. The laser wavelength is 0.6328 𝜇m.

To investigate the relationship between phase 𝜑 and the surface roughness, the proba-

bility density function of 𝜑 is presented in Figure 2.5a. The phase curves are symmetric by

0. When the surface is sufficiently smooth, the speckle phases mostly appear at 0, which
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indicates that the specular laser wavelets vary little from the incident light. With increasing

surface roughness, the phase 𝜑 becomes uniformly distributed, agreeing with Goodman’s

results [19]. Considering the effect of laser wavelength, the relationship between the

speckle contrast 𝜎𝐼 /⟨𝐼⟩ and surface roughness 𝑅𝑞 is shown in Fig. 2.5b. With a smooth

surface, the speckle pattern is almost bright and thus the contrast 𝜎𝐼 /⟨𝐼⟩ is nearly 0. With

the increasing surface roughness, the speckle pattern becomes dark and bright, and thus

its contrast increases. This increasing trend ends at a critical value 𝑅𝑞𝑐 of the surface

roughness. These curves agree with the results in [18] & [21]. The critical value 𝑅𝑞𝑐 is
positively correlated to the incident wavelength since the wavelength determines the laser

resolution to the surface roughness.
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Figure 2.5: (a) The simulated probability density function of 𝜑 (with laser wavelength of 0.6328 𝜇m); (b) The
relationship between the speckle contrast and surface roughness.

2.3.2 Experimental setup

Physical experiments are conducted in the laboratory to evaluate the simulation results. Fig.

2.6 presents the experimental setup that measures a cantilever strip of length 540 mm. The

LDV transmits a laser beam deflected by a rotating mirror to the target surface. (1) When

acquiring the single-point speckle noise, the focused node of the strip slightly vibrates at

500 Hz excited by a shaker. Then the LDV acquires the 500 Hz vibration and the speckle

noise. (2) When the mirror rotates, the laser continuously scans the steel strip at a constant

speed along the scanning direction (Fig. 2.6a). The laser beam only scans the sample once,

not repeatedly or periodically, which satisfies the basic concept of an LDVom. The scanning

speed is adjustable. There are no vibrations of the target, and thus the LDVom acquires

pure speckle noise. The sampling frequency is 102400 Hz.
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LDV Rotating 
mirror

Sample One-way 
scanning 
direction

(a)

LDV Scanning 
mirror

(b)

Figure 2.6: (a) Scheme of the physical experiments; (b) experimental set-up for acquiring speckle noise.

2.3.3 Single-point simulation
First, the single-point speckle noise is simulated according to the algorithm in subsection

2.2.3, since sometimes important structural nodes need constant monitoring. The frequency

of the single-point vibration is simulated as 512 Hz. The simulated frequency of 512 Hz

has a small difference from the experimental frequency of 500 Hz, to identify whether the

speckle noise is vibration-related. In [34], the peak intervals in the FFT spectra of speckle

noise are equaling to motion frequency. We also want to evaluate if the peak intervals

change with the vibration frequency. The simulated focusing spot is set 700×700 𝜇m2
and

the laser wavelength is 1.55 𝜇m. These parameters are the same as the LDV. The size of the

speckle element is 5×5 𝜇m2
, and the sampling frequency is 102400 Hz.

Figure 2.7 presents the time series of the numerically simulated (with 𝑅𝑎 = 0 and

𝑅𝑞 =0.47𝜇m) and experimentally acquired speckle noise (the single-point vibrations have

been removed by subtracting from the LDV signals the vibration input), as well as the FFT

spectra. The simulated series of speckle noise presents cyclical fluctuations arising from the

512 Hz vibration, and thus the noise period is 1/512 s. The experimental noise also presents a

period of 0.002 s due to the 500 Hz vibration. A good agreement is visible in the FFT spectra.
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The intervals between frequency spikes in the simulated spectrum are constant (512 Hz),

and those in the experimental spectrum are also constant (500 Hz). Actually, these intervals

equal the frequency of the spot motion [34] and thus equal the vibration frequency in this

scenario. These well-agreed results demonstrate that the proposed approach is effective in

simulating single-point speckle noise. However, the true vibration mixed with the speckle

noise at the vibration frequency (512 Hz in the simulation and 500 Hz in the experiment).

Although a bandpass filter is effective to remove other harmonics, the vibration energy

would be enlarged or underestimated.
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Figure 2.7: (a) The simulated speckle noise with 𝑅𝑎 = 0 and 𝑅𝑞 =0.47𝜇m; (b) The FFT spectrum of a; (c) The
experimental speckle noise; (d) The FFT spectrum of c.

Fig. 2.8 illustrates the probability density function (PDF) of the noise amplitude, as

well as a Gaussian distribution. The simulated noise presents a similar distribution to the

experimental noise, which indicates the accuracy of our simulation. The speckle noise

amplitude approximately obeys a Gaussian distribution. However, the speckle noise is

different from Gaussian white noise since the power spectrum is not uniformly distributed

(Fig. 2.7).
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Figure 2.8: The probability density function of simulated and experimental noise, as well as a Gaussian distribution.

Fig. 2.9 presents the relationship between the surface roughness 𝑅𝑞 and the root-mean-

square (RMS) of the noise amplitude. The noise energy increases with the surface roughness

when 𝑅𝑞 ≤ 𝑅′
𝑞𝑐 , and fluctuates around a constant when 𝑅𝑞 > 𝑅′

𝑞𝑐 (the critical value 𝑅′
𝑏𝑐 is

related to the laser wavelength). The increasing noise energy is related to the increasing

variance of phase (e.g., Fig. 2.5a). Therefore, reducing the surface roughness (e.g., by

polishing the surface) in small-scale measurement will significantly mitigate speckle noise.
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Figure 2.9: The relationship between the surface roughness 𝑅𝑞 and RMS of the noise amplitude.

2.3.4 Continuously scanning simulation
Second, we simulate the LDVom speckle noise in continuous scanning, utilizing the algo-

rithm in subsection 2.2.4. The simulation parameters are the same as those in subsection

2.3.3. The scanning surface is 40×540 mm
2
divided into 8000×108000 rectangle elements.

The sampling frequency is 102400 Hz.

Fig. 2.10 shows the time series as well as the FFT spectra of both numerically simulated

(with 𝑅𝑎 = 0 and 𝑅𝑞 =0.47𝜇m) and experimentally acquired speckle noise. The scanning

speed is 𝑣𝑠 =0.1 m/s. The speckle noise appears in two forms [1], the signal drop-outs with

extremely large magnitudes and the normal dominant noise with small magnitudes. For
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both time series, the dominant noise energy is within magnitudes ≤ 0.005, and the signal

drop-outs with large magnitudes occasionally appear. Good agreement is achieved between

the FFT spectra, as the noise energy increases in the frequency domain and both spectrum

curves present similar fluctuations. Different from the FFT spectra of the single-point noise,

the intervals between the spikes are nonconstant since the scanning is not cyclical.
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Figure 2.10: (a) Simulated scanning speckle noise with 𝑅𝑎 = 0 and 𝑅𝑞 =0.47𝜇m; (b) FFT spectrum of a; c) Experi-
mental speckle noise (zoom-in between 3 s and 4 s); (d) FFT spectrum of c. The scanning speed is 𝑣𝑠 =0.1 m/s.

To further visualize the simulation accuracy, we conduct FFT on the frequency spectrum

in Fig. 2.10, with the results presented in Fig. 2.11. The curves decrease exponentially

with the increasing 𝜏 . The intervals between curve peaks are constant, 6.81 × 10−3 s and
6.78×10−3 s for the simulated and experimental results, respectively. These results present

good agreement and thus demonstrate the accuracy of our simulation.
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Figure 2.11: FFT on the (a) simulated frequency spectrum; (b) experimental frequency spectrum.

The PDF of the noise amplitude and a Gaussian distribution are illustrated in Fig.

2.12. The PDF curves of the simulated and experimental noise are almost identical. The

scanning noise approximately obeys a Gaussian distribution, similar to the single-point

noise. However, the speckle noise is different from Gaussian white noise since the power

spectrum is not uniformly distributed.
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Figure 2.12: The probability density function of simulated and experimental scanning noise, as well as Gaussian

distribution.
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To investigate the effect of the scanning speed, we assign the parameters 𝑣𝑠 = 1, 3, 10 m/s

(𝑓𝑠 = 102400 Hz, 𝑅𝑎 = 0 and 𝑅𝑞 =0.47𝜇m) in both numerical simulations and experiments,

with the speckle noise shown in Fig. 2.13. The simulated noise presents good agreement

with the experimental results. The dominant noise magnitudes increase with increasing

scanning speed, but the signal drop-outs decrease in intensity and density. The magnitudes

of the signal drop-outs become smaller and the signal drop-outs appear less frequently.

This result is also visible in the RMS curve illustrated in Fig. 2.14, as the simulated noise

energy presents an increasing trend despite fluctuations. Therefore, reducing the scanning

speed can effectively mitigate the speckle-noise energy.
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Figure 2.13: (a) Simulated scanning speckle noise with 𝑣𝑠 =1 m/s; (b) Experimental scanning speckle noise with

𝑣𝑠 =1 m/s; (c) Simulated scanning speckle noise with 𝑣𝑠 =3 m/s; (d) Experimental scanning speckle noise with

𝑣𝑠 =3 m/s; (e) Simulated scanning speckle noise with 𝑣𝑠 =10 m/s; (f) Experimental scanning speckle noise with

𝑣𝑠 =10 m/s.
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Figure 2.14: The relationship between the scanning speed 𝑣𝑠 and RMS of the noise amplitude.

Further simulations are intended to investigate the relationship between the noise

amplitude RMS and the surface roughness, as shown in Fig. 2.15. Similar to the single-point

noise, the scanning noise energy increases with the surface roughness when 𝑅𝑞 ≤ 𝑅′
𝑞𝑐 , and

fluctuates around a constant when 𝑅𝑞 > 𝑅′
𝑞𝑐 . Therefore when additional operations on the

scanning surface are convenient, reducing the surface roughness, such as polishing the

surface, is an effective strategy to mitigate speckle noise.
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Figure 2.15: The relationship between the surface roughness 𝑅𝑞 and RMS of the scanning noise amplitude.

2.4 Discussion
In this paper, we use a commercial LDV from Polytec (model No. RSV-150) to conduct the

experiments. It could be a significant issue of our noise analysis if the demodulation system

of RSV-150 alters the original signal. Therefore, we discuss some evidences regarding the

outputs of the RSV-150 LDV.

Firstly, the LDV header acquires the modulation frequency according to equation (2.12).

The polytec system uses an acousto-optic modulator to shift the laser frequency by a carrier

frequency of 40 MHz (add 40 MHz to the modulation frequency), in order to distinguish
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between movements away from and towards the detector [35, 36]. The demodulator is a

PM or FM demodulator which is necessary for any LDV to acquire the Doppler frequency

shift [37]. The carrier frequency and the demodulator are required for any general LDV,

not only the polytec system, and these two components cannot alter the output of the

Doppler frequency shift [38]. Therefore, the speckle noise output from RSV-150 is original

according to equation (2.13).

Secondly, the promising consistence between our theoretical and experimental results

indicate that the speckle noise output from RSV-150 is original. In both single-point and

continuously scanning results, the numerically simulated and experimentally acquired

speckle noise presents similar amplitude distributions, FFT spectra and energy trends. The

agreement indicates that RSV-150 does not alter the original signal.

2.5 Conclusion
In this paper, we propose a novel approach for numerically simulating the speckle noise

in LDVom signals, and then characterize this noise for a better understanding of the

signal issue. Single-point speckle noise is also characterized since sometimes important

structural nodes need constant monitoring. When investigating the statistical properties,

we thoroughly consider the related factors, including the surface roughness. The complex

distribution of the speckle phases is then derived. The distributions of the speckle intensity

and phase agree well with the experimental results in the literature. These promising

statistical properties constitute the foundation of simulating speckle noise.

The single-point and continuously scanning speckle noise are both numerically simu-

lated and experimentally acquired, and their corresponding time-series and FFT spectra

present good agreement. For the single-point speckle noise, the intervals of frequency

peaks in the FFT spectra are constant and equal to the vibration frequency. The cyclical

motion of the laser spot arises from the vibration, and thus the speckle noise presents the

same period as the vibration. The simulated noise amplitude presents a similar distribution

to the experimental result, approximating a Gaussian distribution. The noise energy in-

creases with the surface roughness when 𝑅𝑞 ≤ 𝑅𝑞𝑐 , and fluctuates around a constant when

𝑅𝑞 > 𝑅𝑞𝑐 . These amplitude and energy properties are also visible for continuously scanning

speckle noise. In addition, the energy of the continuously scanning speckle noise increases

with the scanning speed, but the signal drop-outs decrease in intensity and density. These

results demonstrate the simulation accuracy, and the characteristics of the speckle noise

can contribute to future research concerning despeckling procedures or noise avoidance.

Some strategies for mitigating speckle noise are supported by noise characteristics and

should be investigated in future research:

i. For single-point speckle noise, the frequency spectra present harmonics that are

multiples of the vibration frequency. Therefore, the true vibration is mixed with the

speckle noise at the vibration frequency. Although a bandpass filter is effective in re-

moving other harmonics, the vibration energy would be enlarged or underestimated;

ii. During continuously scanning, the noise energy increases with the scanning speed.

Therefore, reducing the scanning speed can effectively mitigate speckle noise;
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iii. The speckle noise energy increases with surface roughness; thus, reducing the

surface roughness, such as polishing the surface, is an effective strategy to mitigate

speckle noise. However, it is effective in experimental investigation but not in field

measurement.
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3
Mitigating speckle noise in
laser Doppler vibrometer

using Fourier analysis

We propose two strategies for eliminating the speckle noise in the laser Doppler vibrometer
according to Fourier analysis. Fourier transform is theoretically conducted on the speckle
pattern phases, whose variation dominantly contributes to the speckle noise. The calculated
and experimental frequency spectrum of speckle noise both present oscillations of the frequency
series (frequency peaks have constant intervals). (1) A low-pass filter can remove the noise if
the vibration frequency is far lower than the first frequency peak of the noise. (2) The vibration
energy can be revealed by removing the oscillating frequency trend. The physical experiments
demonstrate the effectiveness of both despeckling strategies.

3.1 Introduction
A laser Doppler Vibrometer (LDV) is an optical instrument extensively applied for non-

contact vibration measurement [1, 2, 3]. Superior to attaching transducers, the LDV offers

remote vibrometry (e.g., from a high-temperature surface) and avoids mass-loading unde-

sired for light structures [4]. Precise measurements in time and frequency domains are

available [5], as an LDV achieves the measuring frequency of 1 GHz and spatial resolution

of 1 mm/s. In addition, the LDV on moving platforms (LDVom) [6] can one-way continu-

ously scan the vibrating surface and monitoring the structures, especially those large or

long like railway tracks.

A significantly concerned issue, speckle noise [7, 8], that continuously buries the

vibration signals becomes extremely troublesome in LDVom signals. The signal drop-

outs can exceed 40 times the vibration amplitude, and the dominant noise reduces the

signal-to-noise ratio (SNR) to -15 db [9]. With periodic scanning, the speckle noise becomes

This chapter is based on the paper: Jin, Y., & Li, Z. (2022). Mitigating speckle noise in a laser Doppler vibrometer

using Fourier analysis. Optics Letters, 47(18), 4742-4745.
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pseudo-random, as its components centralize at the scanning frequency and distribute in the

relevant harmonics [10]. This situation is convenient to handle by avoiding the coincidence

of the scanning and vibration frequencies [11]. The difficulty in noise removal increases by

one-way scanning, as the noise randomly distributes in time and frequency domains. Thus

classic signal processing approaches, such as band-pass filters and wavelet transform, lose

their denoising effects without additional strategies. Numerous methods for eliminating the

speckle noise have been developed in recent researches; however, they are inappropriate

to handle LDVom signals. For example, calculating the vibration energy can average the

noise effect and identify defect locations [12, 13], but disregards the waveforms crucial to

the modal analysis. The moving average approach developed in [14] requires a scanning

frequency much larger than the vibration frequency. Enhancing the surface reflection can

mitigate the speckle noise [15] but is inapplicable in large-scale measurements. Physical

characteristics of the speckle noise can instruct despeckling procedures and thus should

arouse research concerns.

An optical phenomenon, laser speckle patterns produced by the coherent laser beams

scattering from an optically rough surface, is the origin of the LDV speckle noise [10].

The surface deviations at the laser-wavelength scale induce the variant phases of inci-

dent wavelets. The reflected wavelets interfere constructively or destructively, producing

bright or dark spots that constitute a speckle pattern. It generates intense noise when the

photodetector translates or deforms. Statistical analysis and Fourier analysis have been

utilized to characterize the speckle patterns [16, 17, 18, 19]; but to our best knowledge,

most former researches concentrate on the light intensity, contrast and relationships with

surface roughness. The variation of the resultant phase in the photodetector dominantly

contributes to the speckle noise, but the relevant theoretical analysis stagnates in the

simplified statistical properties. Fourier analysis can characterize the noise spectrum and

promote corresponding de-speckle approaches, which should be subjected to researches.

In this letter, we propose two novel strategies for eliminating the speckle noise in the

LDVom signals according to Fourier properties. Fourier analysis is theoretically conducted

on the variation of the speckle phases. The despeckling approaches are developed according

to the derived frequency spectrum and then evaluated with physical experiments.

3.2 Method
An LDV acquires the surface vibration according to the Doppler frequency shift. The

principal optical element of an LDV is an electronic interferometer, where the reference

laser beam is coherent with that diffusely reflected from the rough surface. The differ-

ence between the detected and reference laser frequencies (𝑓𝑑 & 𝑓𝑟 ) derives the measured

vibration velocity 𝑣𝑚 [20].

𝑣𝑚 =
𝜆
2
(𝑓𝑟 − 𝑓𝑑 ) =

𝜆
4𝜋

(2𝜋𝑓𝑟 −
𝑑𝜑𝑑
𝑑𝑡

) = 𝑣 −
𝜆
4𝜋

𝑑𝜑𝑟𝑒𝑠
𝑑𝑡

(3.1)

where 𝜑𝑑 = 2𝜋 (𝑓𝑟 𝑡 −2𝑣𝑡/𝜆+𝜑𝑟𝑒𝑠/2𝜋 ) is the detected laser phase and 𝜆 is the laser wavelength.
The acquired vibration 𝑣𝑚 deforms from the true vibration 𝑣 by the phase variation

−𝜆𝑑𝜑𝑟𝑒𝑠/(4𝜋𝑑𝑡), namely the LDV speckle noise. The resultant phase 𝜑𝑟𝑒𝑠 arises from the

laser speckle patterns illuminated inside the photodetector. Therefore, the variation of

speckle patterns relevant to photodetector translation produces unwanted speckle noise.
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A speckle pattern  is the phasor summation of the coherent wavelets reflected from a

rough surface [20]

 =
𝑁
∑
𝑛=1

𝑎𝑛𝑒𝑗𝜙𝑛 =+ 𝑗 (3.2)

where 𝑁 is the number of scattered wavelets, 𝑎𝑛 is the wavelet amplitude, 𝜙𝑛 is the wavelet
phase, 𝑗 represents the imaginary unit, and  and  represent the real and imaginary

parts respectively. The phase 𝜑 = 𝑡𝑎𝑛−1/ and intensity 𝐼 = 2 + 2
of the speckle

pattern approximately obey the uniform and exponential distributions, respectively [20].

Considering that the transmission laser illuminates 𝜅 speckle patterns (each with the phase

𝜑𝑠(𝛼,𝛽) and intensity 𝐼𝑠(𝛼,𝛽), (𝛼,𝛽) is the coordinate) and the reference beam retains the

original phasor, the resultant phase 𝜑𝑟𝑒𝑠 can be expressed as [20]

𝑡𝑎𝑛𝜑𝑟𝑒𝑠 =
∑𝛼 ∑𝛽

√
𝐼𝑠(𝛼,𝛽)𝑠𝑖𝑛(𝜑𝑠(𝛼,𝛽) −𝜑𝑟 )

∑𝛼 ∑𝛽
√
𝐼𝑠(𝛼,𝛽)𝑐𝑜𝑠(𝜑𝑠(𝛼,𝛽) −𝜑𝑟 )

(3.3)

where 𝜑𝑟 is the phase of the reference beam. Fourier analysis provides the frequency

spectrum for characterizing the signals and mitigating the noise. The Fourier transform on

the speckle noise can be conducted as

𝐹 (𝜔) =  (−
𝜆
4𝜋

𝑑𝜑𝑟𝑒𝑠
𝑑𝑡

) = −𝑗
𝜆𝜔
4𝜋

 (𝜑𝑟𝑒𝑠) = −𝑗
𝜆𝜔
4𝜋

 (𝑠𝑖𝑛−1(𝑥))

= −𝑗
𝜆𝜔
4𝜋

 (
∞
∑
0

(2𝑛−1)!!
(2𝑛)!!

𝑥2𝑛+1

2𝑛+1
)

(3.4)

where 𝐹 (𝜔) is the frequency function, 𝑥 = 𝑠𝑖𝑛𝜑𝑟𝑒𝑠 is derived from Eq. (3.3),  represents

Fourier transform, 𝜔 = 2𝜋𝑓 /𝑓𝑠 is the angular frequency, 𝑓 is the ordinary frequency, and 𝑓𝑠
is the sampling frequency. The last expression in Eq. (3.4) uses the Maclaurin series. The

module |𝐹 (𝜔)| represents the frequency spectrum with its calculation related to the autocor-

relation function. During LDV scanning, the neighbouring-sampled spots share numerous

overlapped speckle patterns, which enhance the autocorrelation property. Assuming an

infinite scanning series with random speckle patterns, the autocorrelation function of

𝑠𝑖𝑛−1(𝑥) is written as
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𝑅𝜑,𝜑(𝑡) =𝑅𝜑,𝜑[
∞
∑
0

(2𝑛−1)!!
(2𝑛)!!

𝑥2𝑛+1

2𝑛+1
]

=∑
𝑝,𝑞

𝐶𝑝,𝑞
1

𝐼𝑠
𝑝+𝑞 𝐸((∑ 𝑠𝑖𝑛(𝜑𝑠(𝛼,𝛽) −𝜑𝑟 ))𝑝

× (∑ 𝑠𝑖𝑛(𝜑𝑠(𝛼 +𝑣𝑠𝑡, 𝛽) −𝜑𝑟 ))𝑞)

=∑
𝑝,𝑞

𝐶𝑝,𝑞
1

𝐼𝑠
𝑝+𝑞 (𝐸(∑

𝑘
𝑠𝑖𝑛𝑝+𝑞(𝜑𝑠𝑘 −𝜑𝑟 ))

+𝐸(∑
𝑒

𝑝+𝑞

∏
𝑏=1

𝑠𝑖𝑛(𝜑𝑠𝑒,𝑏 −𝜑𝑟 )))

=∑
𝑝,𝑞

𝐶𝑝,𝑞
1

(2𝐼𝑠)𝑝+𝑞(
𝑝 +𝑞

(𝑝 +𝑞)/2)
𝜅
𝜋𝐿2

× (2𝐿2𝑐𝑜𝑠−1(
𝑣𝑠𝑡
𝐿

) − 2
√
𝑣2
𝑠 𝑡2(𝐿2 −𝑣2

𝑠 𝑡2))

(3.5)

where 𝐼𝑠 is the 𝐼𝑠 average, 𝑣𝑠 is the scanning speed (the speed of the focusing spot moving on

the target surface; assumed along the direction of 𝛼), 𝐸(⋅) calculates the statistical expected
value,∑𝑘 ⋅ represents the summation on overlapped speckles between the positions of (𝛼,𝛽)
and (𝛼 +𝑣𝑠𝑡, 𝛽),∑𝑒 ⋅ represents the other summations, 𝐿 is the diameter of the focusing spot,

𝐶𝑝,𝑞 = ((𝑝 −2)!!(𝑞 −2)!!)/(𝑝𝑞(𝑝 −1)!!(𝑞 −1)!!), and 𝑝,𝑞 are odd. The component 𝐸(∑𝑒∏𝑏 ⋅)
equals to 0 for an infinite time-series according to the uniform distribution of 𝜑𝑠 , while the
component 𝐸(∑𝑘 ⋅) is proportional to the overlapped spot area between time 0 and 𝑡 . The
last expression of equation (3.5) is based on 𝑡 ≤ 𝐿/𝑣𝑠 , and 𝑅𝜑,𝜑(𝑡) equals to 0 with 𝑡 > 𝐿/𝑣𝑠
because of none overlapped speckle patterns. Therefore, the frequency spectrum can be

written as

|𝐹 (𝜔)| =
𝜆𝜔
4𝜋

√
| (𝑅𝜑,𝜑(𝑡))|

=
𝜆𝜅𝜔
4𝜋2𝐿2

√

𝜉 | (2𝐿2𝑐𝑜𝑠−1(
𝑣𝑠𝑡
𝐿

) − 2𝐿2
√
(
𝑣𝑠𝑡
𝐿

)2(1− (
𝑣𝑠𝑡
𝐿

)2))|

𝜉 =∑
𝑝,𝑞

𝐶𝑝,𝑞
1

(2𝐼𝑠)𝑝+𝑞(
𝑝 +𝑞

(𝑝 +𝑞)/2)
, 𝑝,𝑞 are odd

(3.6)

Equation (3.6) provides the significant curve trend of the speckle-noise spectrum, and

the actual spectrum should contain fluctuations owing to the finite scanning series. Fig. 3.1

illustrates both the theoretical and the experimental trends of the frequency spectrum. The

frequency curve calculated by equation (3.6) oscillates with constant intervals (1024 Hz)

between frequency peaks. With the physical experiments, the trend of the frequency curve

also presents constant intervals (820 Hz) between the frequency peaks. The experimental

spectrum does not present an increasing trend because of the residual low-frequency

vibration of the structure. The interval between frequency peaks is theoretically 𝑣𝑠/𝐿 in

(3.6), but the physical meaning of this value still needs investigation. According to this

property, two strategies can be developed to mitigate the speckle noise: (1) a low-pass
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filter (LPF) is enough if the vibration frequency is far lower than the first frequency peak

𝑣𝑠/2𝐿, and (2) adaptively removing the oscillation trend from the frequency spectrum can

reveal the actual vibration energy. The trend of the frequency curve in a short window

𝑓 ∈ [𝑓𝜏 − 𝑓0, 𝑓𝜏 + 𝑓0] approximates a sinusoid; thus, Eq. (3.7) provides an optimization method

to pointwisely fit the trend of the frequency curve with the oscillation period 𝑣𝑠/𝐿.

𝑚𝑖𝑛
𝑎0 ,𝑏0 ,𝜑

(𝑦𝑡 (𝑓 ) −𝑦(𝑓 ))2

𝑠.𝑡. 𝑦𝑡 (𝑓 ) = 𝑎0𝑒𝑏0𝑓 𝑠𝑖𝑛(
𝑣𝑠
𝐿
𝑓 +𝜑)

𝑎0, 𝑏0 ∈ [−∞,∞], 𝜑 ∈ [0,2𝜋], 𝑓 ∈ [𝑓𝜏 − 𝑓0, 𝑓𝜏 + 𝑓0]
Output: 𝑦𝑡 (𝑓𝜏 )

(3.7)

where, 𝑦𝑡 (𝑓 ) is the optimized curve trend in the moving window 𝑓 ∈ [𝑓𝜏 − 𝑓0, 𝑓𝜏 + 𝑓0], 2𝑓0
is the window length, and the frequency curve trend at each point 𝑓𝜏 is acquired by this

optimization.

(a)

(b)

Figure 3.1: (a) The frequency spectrum trend of the speckle noise calculated by equation (3.6). (b) The frequency

spectrum trend of the experimental speckle noise.

3.3 Results
Two experiments are conducted to evaluate the two de-speckle strategies, respectively.

Fig. 3.2 presents the experimental scheme. An LDV transmits laser beams deflected by the

rotating mirror onto the surface of a steel strip. By controlling the mirror, the focusing spot

moves along the scanning direction, and we keep the basic concept of LDVom, one-way

continuously scanning for one time. The steel strip is mounted as a cantilever beamwith the
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end excited by a shaker. The artificial excitation is predefined as a 500 Hz sinusoidal wave

for conveniently evaluating the despeckling result. The first experiment is intended to test

the LPF when the vibration frequency is lower than 𝑣𝑠/2𝐿. Three scanning speeds of 20 m/s,

10m/s and 0.1 m/s are compared, with 𝑣𝑠/2𝐿 = 15 kHz, 7.5 kHz and 75 Hz respectively. The

sampling frequency is 102,400 Hz.

LDV
Mirror

Shaker

Steel strip

Figure 3.2: The scheme of experiments.

Figure 3.3 illustrates the original vibration signals and the despeckling results. The

noise intensely fluctuates to distort the vibrations, and numerous signal drop-outs appear.

As aforementioned, we feed the signals into a LPF with the cutoff frequency of 700 Hz.

With 𝑣𝑠 = 20 m/s and 10 m/s, the despeckling result has revealed the vibration around

500 Hz with time-variant amplitudes. The vibration curve visibly agrees well with the

original signal trend, and the SNR increases 21.25 db and 16.75 db respectively. These

indicate the de-speckle effectiveness. However, with 𝑣𝑠 = 0.1 m/s, the LPF result preserves

numerous distortions (marked with blue circles) arising from the speckle noise, and the

SNR only increases 10.81 db. Therefore, the LPF is effective to eliminate the speckle noise

if we control the scanning speed 𝑣𝑠 > 2𝐿𝑓𝑣 in the experiments, where 𝑓𝑣 is the vibration

frequency.

The second experiment is designed to evaluate the other despeckling strategy, first

extracting the oscillation trend (Eq. (3.7)) of the frequency curve and then removing

this trend to acquire the actual vibration energy. The scanning speed is 0.1 m/s, and the

sampling frequency is 102400 Hz. The calculated frequency-peak interval of the Fourier

spectrum is 𝑣𝑠/𝐿 = 150 Hz. Two signal segments with weak and extremely weak vibrations

are analyzed by the proposed approach.

Figure 3.4 illustrates the signals with vibration amplitudes around 0.05 and the corre-

sponding Fourier spectrum. The vibration mode is visible in the Fourier spectrum. The

original signal between 5.25 s and 5.3 s contains intense noise which nearly buries the

vibrations. The LPF has poor performance in this situation as the intense noise results in

large amplitude distortions (Fig. 3.3 (c)). First we calculate the spectrum trend according

to Eq. (3.7). Despite the intensive fluctuations, the spectrum fits well with the approxi-

mated trend (Fig. 3.4 (a)). Then, we cut off the spectrum with the trend and calculate the

500 Hz amplitude equalling 0.0481. If the spectrum is not cut off, the 500 Hz amplitude is

0.0514 with a 7% error, which would affect precise measurements. The signal time series is
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(a)

(e)

(b)

(f)

(c) (d)

Figure 3.3: (a) The original and despeckled signals with 𝑣𝑠 = 20 m/s. (b) The corresponding power spectrum of (a).

(c) The original and despeckled signals with 𝑣𝑠 = 10 m/s. (d) The corresponding power spectrum of (c). (e) The

original and despeckled signals with 𝑣𝑠 = 0.1 m/s. (f) The corresponding power spectrum of (e).
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then reconstructed with the initial phase and the revealed amplitude. It has revealed the

vibration around 500 Hz, indicating the effectiveness in eliminating the speckle noise.

(b)

(a)

0.0514

0.0481

Figure 3.4: (a) Fourier spectrum and the trend. (b) The original signal and the despeckling result between 5.25 s

and 5.3 s.

Figure 3.5 illustrates the signals with extremely weak vibrations (amplitudes around

0.004) and the corresponding Fourier spectrum. The original signal between 4 s and 4.05 s

contains intense noise. Similar to the aforementioned, the frequency curve presents the

trend with frequency-peak intervals of 150 Hz. The 500 Hz amplitude after cutting off the

spectrum trend remains 0.00397. If the spectrum is not cut off, the 500 Hz amplitude is

0.00498 with a 25% error, which is unacceptable. The reconstructed time series reveals

the 500 Hz vibration, which fits well with the acquired signals. Therefore, the second

despeckling strategy is effective regardless of the vibration intensity.
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(b)

(a)

0.00498

0.00397

Figure 3.5: (a) Fourier spectrum and the trend. (b) The original signal and the despeckling result between 4 s and

4.05 s.

3.4 Conclusion
In summary, two novel despeckling strategies have been proposed in this letter according

to Fourier properties. By theoretically conducting Fourier transform on the variation of

the speckle phases, the frequency spectrum of the speckle noise presents oscillations with

constant frequency-peak intervals. This agrees well with the experimental spectrum trend.

Therefore, (1) a LPF can remove the noise if the vibration frequency is far lower than the

first frequency peak of the speckle noise, and (2) the vibration energy can be revealed by

removing the oscillating frequency trend. The corresponding experiments have indicated

that the two strategies based on Fourier analysis are effective in eliminating the speckle

noise.

For the first strategy, the scanning speed should be the largest possible one according

to Fig. 3.1, so that the noise level at 𝑓𝑣 is lowest. However, the scanning speed is also

limited by the equipment ability, the scanning resolution required (e.g., if the resolution

is 0.1 mm and the sampling frequency is 0.1 MHz, then the maximum scanning speed is

10 m/s) and so on. Therefore, the scanning speed is carefully chosen in real applications.

Future development of digital equipment can improve the scanning ability.

We also want to mention that an infinite scanning series with random speckle patterns

is assumed in theoretical analysis. This assumption would not affect the first strategy

since the noise level is quite low with the frequency less than 𝑣𝑠/2𝐿. However, in the real

situation with small-scale measurement, more fluctua- tions will appear in addition to the

oscillating Fourier spectrum of speckle noise (Fig. 3.1). Thus the second strategy, which

only remove the oscillating spectrum, will be affected.

In the future applications, a LPF unit can be installed between the LDV and the signal
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acquisition instrument with fast scanning 𝑣𝑠 > 2𝐿𝑓𝑣 . If the scanning speed limited by the

equipment is improved, this strategy is more effective due to the simple LPF unit and

possible realization of real-time despeckling. With 𝑣𝑠 ≤ 2𝐿𝑓𝑣 , the second strategy can

complement the despeckling procedure in post-processing. However, this strategy is less

effec- tive with short time series or too many vibration modes. A more applicable strategy

for short time series and many vibration modes should be investigated in future work.
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4
Removing speckle noise from

the signals of a laser
Doppler vibrometer on

moving platforms (LDVom) by
ensemble empirical mode

decomposition

With increasing requirements for structural stability and durability, effective monitoring
strategies for existing and potential damage are necessary. A laser Doppler vibrometer on
moving platforms (LDVom) can remotely capture large-scale structural vibrations, but speckle
noise, a significant signal issue mainly when one-way continuously scanning from moving
platforms, restricts its applications. A novel approach based on ensemble empirical mode
decomposition (EEMD) is proposed to eliminate speckle noise. Moving root-mean-square
(MRMS) thresholds are used to cut off signal drop-outs. With both numerically simulated
and experimentally acquired signals, the proposed EEMD-based approach reveals the true
vibrations despite the low initial signal-to-noise ratio (SNR). Other methods fail to eliminate
the speckle noise. In physical experiments, the despeckled signal energy is concentrated at
defect locations in the Hilbert-Huang spectrum. The identified damage locations agree well
with the actual damage locations. Therefore, the developed approach demonstrates advantages
and robustness of eliminating speckle noise in LDVom signals for damage inspection.

This chapter is based on the paper: Jin, Y., Dollevoet, R., & Li, Z. (2022). Removing speckle noise from the

signals of a laser Doppler vibrometer on moving platforms (LDVom) by ensemble empirical mode decomposition.

Measurement Science and Technology, 33(12), 125205.
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(LDVom) by ensemble empirical mode decomposition

4.1 Introduction
Structures deteriorate owing to mechanical loading and the consequent damage [1]. Al-

though the evolution of materials [2] and construction technologies [3] has improved

durability, long-term fatigue inevitably results in material defects threatening safe opera-

tion [4]. Therefore, an effective monitoring strategy is necessary for discovering damage,

especially in the early stages. Modal analysis of structures under excitation is extensively

applied to characterize the damage [5] [6], promoting the development of the needed

instruments. Mainstream contact-measurement techniques, including contact sensors and

ultrasound detectors, have been successful in scientific research and industrial applications

[7] [8], but the drawbacks of adding unnecessary masses and thus possibly changing modes

have aroused numerous concerns. In addition, the contact sensors are inconvenient for

measuring locations that are difficult to reach and scanning very long structures such as

railway tracks at high speed. Therefore, noncontact technologies for acquiring vibration

signals have been the subject of recent research.

A laser Doppler vibrometer (LDV) is a noncontact and nondestructive instrument for

capturing the vibration velocity of object surfaces [9]. This instrument is based on Doppler

effect, as the target vibration results in a frequency shift between the emitted and reflected

laser beams [10]. It is worth noting that an LDV is appropriate for high-frequency and

high-precision analysis, as its measuring frequency can be over 1 GHz and the geometric

resolution of the vibration velocity can reach 1 mm/s. Recently, the LDV measurement

systems have been demonstrated to be effective in laboratory experiments for vibration

analysis (e.g., [11] [12]). However, the researches hardly applied LDV systems in monitor-

ing large-scale structures, e.g., railway tracks, owing to the limitations of measurement

techniques and signal quality [10] [13].

Major LDV measurement techniques includes a single-point LDV, a scanning LDV

(SLDV), and a continuous SLDV (CSLDV), which are summarized in [10], but these tech-

niques are not suitable for large-scale measurement. A single-point LDV [14] only acquires

vibrations at one point, and the setup should move when measuring another point. The

SLDV measurement [15, 16, 17, 18] is an ensemble of single-point measurements with

the setup simplified by rotating mirrors. However, it requires long-time acquisition at

each point, which is time-consuming. A CSLDV continuously scans the vibrating surface,

but it requires multiple reciprocating or cyclical scans for modal analysis [19, 20, 21, 22,

23]. In addition, SLDV and CSLDV need cyclical excitation, and thus the mode would

not change during measurement. However, reciprocating or cyclical scans and cyclical

artificial excitation cannot be realized in large-scale measurements. In contrast, an LDV

on moving platforms (LDVom) [24] can one-way continuously scan the sample surface,

especially those long structures like railway tracks. This technique is totally different

from the previous ones (compared in Table 4.1) and provides the possibility for large-scale

measurements. However, improving signal quality becomes a primary task for the LDVom

[24].

Speckle noise is a significant issue polluting the signals, which should be a priority in

signal processing [10] [13] [25]. This noise is physically generated by the variation of laser

speckle patterns, as introduced in subsection 4.2.1. Therefore, the variation rate affected by

measurement techniques and the laser speckle patterns affected by laser wavelength and

surface roughness [26] are the all influencing factors of speckle noise. This is not a noise
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generated by the instrumental units but by the laser beams [27]. For the single-point LDV or

SLDV, speckle noise is extremely weak [9] since the variation rate of laser speckle patterns

is nearly 0. In CSLDV measurements, the noise level increases, but the noise becomes

pseudo-random since the signal spectrum consists of harmonic sidebands centering at the

vibration frequency and spacing by the scanning frequency [10, 25]. Some strategies, such

as the energy-based approaches [28], a scanning-average method [29], and polishing the

vibrating surface [30],are effective in mitigating CSLDV speckle noise.

However, the aforementioned strategies are unsuitable to handle LDVom speckle noise:

(1) with one-way measurement, the time series becomes crucial in addition to the energy

spectrum. This is because only one measuring sample containing the vibration amplitude

and phase at each point is acquired; (2) the scanning-average method can only be used to

handle cyclical measurements like the CSLDV. LDVom signals cannot be averaged since

the signals only contain the instantaneous vibration at each measuring point; (3) polishing

the vibrating surface is unsuitable in large-scale measurement (e.g., the railway tracks over

1,000 km). Besides, in physical experiments, the noise amplitudes can exceed 30 times that

of the true vibration, and the signal-to-noise ratio (SNR) can drop below -15 dB [31]. To

handle the severe noise and improve the signal quality, an effective approach for removing

LDVom speckle noise remains to be found.

Empirical mode decomposition (EMD) is a self-adaptive approach proposed by Huang

et al. [32] for nonlinear and nonstationary signal analysis. It decomposes signals into

multiple intrinsic mode functions (IMFs) containing instantaneous frequency information,

and thus, the corresponding Hilbert transform has physical meaning. Differing from the

wavelet transform and bandpass filters (BPFs) with certain bandwidths, the bandwidth of

EMD is naturally determined by the signal itself. Since IMFs correspond to local modal

responses, the decomposition results and Hilbert-Huang spectrum can highlight the ab-

normal local modes for defect inspection [33] [34]. In addition, EMD has the potential

to eliminate distortions by noise and to preserve the actual oscillations, since each IMF

presents continuity of the instantaneous frequencies. Numerous studies have developed

EMD-based approaches for eliminating the environmental and instrumental noise of, e.g.,

lidar signals [35], electrocardiography signals [36] and seismic signals [37]. Nonetheless,

speckle noise is much more complicated, as frequent signal drop-outs exceed multiple times

normal amplitudes and dominant noise components continuously distort actual oscillations.

To the best of our knowledge, no research has utilized EMD for LDV speckle noise removal.

Mode mixing is a significant issue affecting IMF components when applying EMD, and thus

Wu & Huang [38] developed ensemble empirical mode decomposition (EEMD) assisted by

white noise to address this problem.

In this paper, we propose an EEMD-based approach for speckle noise removal in

LDVom signals. The despeckling effect is evaluated in both numerically synthesized and

experimentally acquired signals. The remainder of this paper is organized as follows: section

4.2 introduces the LDV system and the despeckling algorithm; section 4.3 investigates the

applicability of the developed approach in simulated signal analysis; section 4.4 analyzes

the experimentally acquired signals for defect inspection; and section 4.5 discusses and

concludes this paper.
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Table 4.1: Comparson between different LDV measurement techniques

LDV

technique

Measurement

strategy

Excitation

source

Noise

level

De-noise

approach

Single-point single-point No requirement weak No need

SLDV pointwise cyclical weak No need

CSLDV

cyclical

continuous scan

cyclical medium

Energy-based,

averaging,

polishing surface

LDVom

one-way

continuous scan

No requirement intense Not applicable

4.2 Methodology
4.2.1 Speckle noise and its simulation
Speckle noise, or ‘pseudo vibration’ [39], is LDV measurement noise produced by an optical

phenomenon called speckle patterns. When an optically rough surface is illuminated

by a coherent laser beam, the incident wavelets are reflected in diverse directions; thus,

their phases vary according to the surface deviations. The wavelets of the scattered laser

interfere destructively or constructively, generating disorderly distributed dark-bright

spots, namely, speckle patterns. Since the LDV photodetector focuses on the spot portion

of the object surface, the signal output is generally the phasor summation of the interfered

laser wavelets. When scanning from moving frames, the translation and deformation of

the focusing spot result in significant speckle noise, as the light intensities and phases are

dramatically altered over the variant speckle patterns. Specifically, signal drop-outs are

extreme speckle noise produced by sharply varying speckle patterns.

The detected intensity, 𝐼 , acquired by the photodetector is the combination of transmis-

sion and reference laser beams, and it can be expressed as [40]

𝐼 = 𝐼𝑅 + 𝐼𝑇 +2
√
𝐼𝑅𝐼𝑇 𝑐𝑜𝑠[2𝜋𝑓𝑅𝑡 −

4𝜋
𝜆 ∫ 𝑣𝑑𝑡 + (𝜑𝑅 −𝜑𝑇 )] (4.1)

where, 𝐼𝑇 & 𝐼𝑅 are intensities of the transmission and reference beams respectively, 𝑓𝑅
is the frequency shift of the reference beam, 𝜆 is the laser wavelength, 𝑣 is the vibration

velocity of the targeted surface, and 𝜑𝑇 & 𝜑𝑅 are the phases of the transmission and

reference beams respectively. According to equation 4.1, the beat frequency that the LDV

system acquires is

𝑓𝑏𝑒𝑎𝑡 = 𝑓𝑅 −
2
𝜆
𝑣 +

1
2𝜋

𝑑(𝜑𝑅 −𝜑𝑇 )
𝑑𝑡

(4.2)

Considering the focusing spot 𝐴 illuminated by the transmission beam with 𝑃 wavelets

(each with the phase 𝜙𝑇𝑝 and intensity 𝐼𝑇𝑝) and the reference beam with 𝑄 wavelets (each

with the phase 𝜙𝑅𝑞 and intensity 𝐼𝑅𝑞), the resultant intensities and phases of speckles can

be calculated by the following equations [27]:

𝐼𝑟𝑒𝑠 = 2
√
𝐼𝑅𝐼𝑇 =

1
𝐴
{[

𝑄

∑
𝑞=1

𝑃
∑
𝑝=1

𝐴𝑝𝑞
√
𝐼𝑅𝑞𝐼𝑇𝑝𝑠𝑖𝑛(𝜙𝑅𝑞 −𝜙𝑇𝑝)]2 (4.3)
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+[
𝑄

∑
𝑞=1

𝑃
∑
𝑝=1

𝐴𝑝𝑞
√
𝐼𝑅𝑞𝐼𝑇𝑝𝑐𝑜𝑠(𝜙𝑅𝑞 −𝜙𝑇𝑝)]2}1/2

𝑡𝑎𝑛𝜙𝑟𝑒𝑠 = 𝑡𝑎𝑛(𝜑𝑅 −𝜑𝑇 ) =
∑𝑄

𝑞=1∑
𝑃
𝑝=1𝐴𝑝𝑞

√
𝐼𝑅𝑞𝐼𝑇𝑝𝑠𝑖𝑛(𝜙𝑅𝑞 −𝜙𝑇𝑝)

∑𝑄
𝑞=1∑

𝑃
𝑝=1𝐴𝑝𝑞

√
𝐼𝑅𝑞𝐼𝑇𝑝𝑐𝑜𝑠(𝜙𝑅𝑞 −𝜙𝑇𝑝)

(4.4)

where, 𝐼𝑟𝑒𝑠 & 𝜙𝑟𝑒𝑠 are the time-varying resultant intensity and phase of the Doppler

signal respectively, and the area 𝐴𝑝𝑞 overlaps the 𝑝th transmission wavelet and the 𝑞th
reference wavelet. For the modulated Doppler signal, the measured velocity 𝑉𝑚 becomes

the combination of the actual vibration velocity 𝑣 and the phasor variation (speckle noise).

𝑉𝑚 =
𝜆
2
(𝑓𝑅 − 𝑓𝑏𝑒𝑎𝑡 ) = 𝑣 −

𝜆
4𝜋

𝑑(𝜑𝑅 −𝜑𝑇 )
𝑑𝑡

(4.5)

According to equations (4.4) and (4.5), significant changes in 𝜙𝑟𝑒𝑠 can result in large

velocity distortion, and the noise is basically produced by the intensity and phase distribu-

tions of speckle patterns. Considering these optical factors as stochastic variables, Rothberg

[27] developed an approach for numerically simulating speckle noise that presented good

agreement with experimental results.

Rothberg [27] assumed that speckles are rectangular and densely distributed, and

divided the scanning surface into unaligned speckles, as shown in Fig. 4.1. These speckles

are assigned different intensities and phases. The intensities satisfy a negative exponential

probability distribution (equation (4.6)) and the phases are generated using a series of

random numbers in the range of 0 to 2𝜋 [27, 26].

𝐼𝑇𝑝 = −𝐼 𝑙𝑛[1−
𝑥𝑝

1+ (10−10)
] (4.6)

where 𝐼 is the mean intensity and 𝑥𝑝 is a random number satisfying 0 ≤ 𝑥𝑝 ≤ 1.

scanning direction

Figure 4.1: Speckle elements discretizing the object surface, as well as the photodetector along the scanning

direction.

The photodetector (the red rectangle in Fig. 4.1) focuses on the scanning surface to

acquire the transmission beam reflected from an area of 𝑚0 × 𝑛0 speckle elements, and the

focusing position moves along the scanning direction. The size of each speckle element is

40×40𝜇m2
in this paper. Since only fractions of some speckles are inside the photodetector,

the overlapping area 𝐴𝑝𝑞 is calculated for each speckle. The contribution of the reference

beam can be simulated as a stationary speckle pattern with a certain intensity and phase.
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As the properties of both transmission and reference beams are defined, the speckle noise

polluting the actual vibration can be determined by equations (4.3), (4.4) and (4.5). Fig. 4.2

illustrates simulated speckle noise with a sampling frequency of 102,400 Hz.
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Figure 4.2: Simulated 0.2 s speckle noise with a sampling frequency of 102,400 Hz.

4.2.2 EEMD and the Hilbert-Huang spectrum
The EMD approach was originally proposed by Huang et al. [32] to self-adaptively de-

compose signals within natural bandwidths. Since numerous systems are nonlinear and

nonstationary, the instantaneous frequency in the IMFs and Hilbert-Huang spectrum con-

tains more physical meaning than the Fourier frequency spectrum. The LDV scanning

signal represents the instantaneous vibration velocity, whose characteristics can be ana-

lyzed by the IMFs. Specific definitions were developed to acquire ideal IMFs: for an IMF,

(1) the number difference between extrema and zero-cross points should be no more than

1 and (2) the envelopes determined by the extrema should on average be 0. The EMD

algorithm is described as follows:

Algorithm 3 Pseudo codes of EMD

Input: original signal 𝑣(𝑡), maximum number of IMFs 𝑁𝑓 , and the decomposition threshold

𝑆𝐷;
𝑟1 = 𝑣(𝑡);
for 𝑘 = 1; 𝑘 ≤ 𝑁𝑓 ; 𝑘 = 𝑘 +1 do:

ℎ𝑘,1 = 𝑟𝑘 ;
for 𝑗 = 1; 𝑗 = 𝑗 +1 do:

Find the upper and lower envelopes (𝑈𝑗 , 𝐿𝑗 ) 𝑚𝑗 = (𝑈𝑗 +𝐿𝑗 )/2
Remove the envelope mean from the residual signal ℎ𝑘,𝑗+1 = ℎ𝑘,𝑗 −𝑚𝑗

Stop when ∑𝑗
𝑘=1

𝑚2
𝑘

ℎ2𝑖,𝑗
< 𝑆𝐷

𝐶𝑘(𝑡) = ℎ𝑘,𝑗+1
𝑟𝑘+1(𝑡) = 𝑟𝑘(𝑡) −𝐶𝑘(𝑡)

Ouput: the 𝑘th IMF 𝐶𝑘(𝑡) (𝑘 = 1,2, ...) and the residual 𝑟𝑁𝑓 +1(𝑡)

However, the significant issue of mode mixing, as more than one oscillation appears

in the local waveform of IMFs, has aroused research concerns. A white-noise-assisted

decomposition approach, namely EEMD, was developed by Wu & Huang [38] to handle

this issue. The EEMD algorithm is summarized as follows [38]:
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Algorithm 4 Pseudo codes of EEMD

Input: original signal 𝑣(𝑡), maximum number of IMFs 𝑁𝑓 , trials number 𝑛, and standard

deviation of added noise 𝜎𝑤 ;
for 𝑘 = 1; 𝑘 ≤ 𝑛; 𝑘 = 𝑘 +1 do:

Generate random Gaussian white noise 𝑛𝑜𝑖𝑠𝑒𝑘(𝑡) with the standard deviation 𝜎𝑤
𝑣′(𝑡) = 𝑣(𝑡) +𝑛𝑜𝑖𝑠𝑒𝑘(𝑡)

Decompose 𝑣′(𝑡) by EMD [32] to obtain the 𝑖th IMFs 𝐶𝑘,𝑖(𝑡) and residual 𝑟𝑘(𝑡)
𝐶𝑖(𝑡) =∑𝑛

𝑘=1𝐶𝑘,𝑖(𝑡)/𝑛
𝑟(𝑡) =∑𝑛

𝑘=1 𝑟𝑘(𝑡)/𝑛
Ouput: the final 𝑖th IMF 𝐶𝑖(𝑡) (𝑖 = 1,2, ...) and the ultimate residual 𝑟(𝑡)

To effectively apply EEMD in signal analysis, it is significant to determine the standard

deviation 𝜎𝑤 of added noise and the trials number 𝑛 of EMD. As mentioned in [38] and

[33], setting 𝜎𝑤 to 0.2 times the standard deviation of the original signal and 𝑛 to several

hundred is a good practice.

The Hilbert transform considers the signal as the projection of a spiral curve and

calculates the complex conjugate pair of the signal. With the specific definitions, the

Hilbert transform of any IMF has physical meanings that can be expressed as [32]

𝐶′
𝑖 (𝑡) =

1
𝜋
𝑃𝑐 ∫

∞

−∞

𝐶𝑖(𝜏 )
𝑡 − 𝜏

𝑑𝜏 (4.7)

where, 𝑃𝑐 is the Cauchy principal value and 𝐶𝑖(𝜏 ) represents any IMF. Therefore, the

analytical signal of any IMF can be expressed as

𝑍𝑖(𝑡) = 𝐶𝑖(𝑡) + 𝐣𝐶′
𝑖 (𝑡) = 𝑎𝑖(𝑡)𝑒𝐣𝜃𝑖 (𝑡) (4.8)

where, 𝑎𝑖(𝑡) =
√
𝐶2
𝑖 (𝑡) +𝐶′2

𝑖 (𝑡) is the signal amplitude, 𝜃𝑖(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛(𝐶
′
𝑖 (𝑡)

𝐶𝑖 (𝑡) ) is the signal
phase, and j represents the imaginary unit. Through the application of the Hilbert transform

to all IMFs, the analytical signal of the original data can be obtained [32].

𝑌 (𝑡) =
𝑁𝑓

∑
𝑖=1

𝑎𝑖(𝑡)𝑒𝐣∫ 𝜔𝑖 (𝑡)𝑑𝑡
(4.9)

where 𝜔𝑖(𝑡) represents the instantaneous frequency. Therefore, the analytical ampli-

tudes are represented as functions of instantaneous frequency and time, and the Hilbert-

Huang spectrum can be illustrated simply as amplitudes in the frequency-time domain.

Indeed, the amplitude in an IMF corresponds to the operating deflection shape inside a

specific frequency band, and thus the Hilbert-Huang spectrum has potential for vibration

analysis using the LDVom signals.

4.2.3 Proposed despeckling algorithm
As the amplitudes of signal drop-outs are considerably larger than the actual vibration,

they dramatically can distort local waveforms. The moving root-mean-square (MRMS)

thresholds are used for cutting off the outliers to reduce this effect.
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𝑇𝑢(𝑡) =𝑀(𝑡) + 2

√
𝑣2(𝑡)⨂𝑒𝑁

𝑁
(4.10)

𝑇𝑙 (𝑡) =𝑀(𝑡) − 2

√
𝑣2(𝑡)⨂𝑒𝑁

𝑁

where, 𝑇𝑢(𝑡) & 𝑇𝑙 (𝑡) are upper and lower thresholds respectively; 𝑀(𝑡) is the moving

signal average; 𝑣(𝑡) is the original signal;⨂ represents the convolution calculation; 𝑁 is

the window length of MRMS; and 𝑒𝑁 is the all-one vector with length 𝑁 . Hence, the signal

amplitudes outside the thresholds are replaced by values on the thresholds. This proce-

dure has two potential effects, reducing drop-out amplitudes and generating oscillation

discontinuities that represent noise locations.

The following is the algorithm developed in this paper for eliminating speckle noise:

Algorithm 5 Removing speckle noise

Input: original signal 𝑣(𝑡)
1. Apply MRMS thresholds to cut off signal drop-outs and obtain 𝑦0(𝑡)
2. Decompose 𝑦0(𝑡) by EEMD and obtain all IMFs 𝐶𝑖(𝑡) and the residual 𝑟(𝑡)
3. Discard the first few IMFs related to noise

4. Calculate the despeckled signal 𝑉 (𝑡) by summing the remaining IMFs and the residual

Ouput: despeckled signal 𝑉 (𝑡)

4.3 Simulated signal analysis
4.3.1 Simulated signal construction
Three simulated signals polluted by speckle noise with different signal-to-noise ratios

(SNRs) are constructed hereafter to evaluate the despeckling effects. All simulated signals

are sampled at frequencies of 𝑓𝑠 =102,400 Hz.

The first signal 𝑣1(𝑡) consists of two harmonic vibrations and randomly simulated

speckle noise. A multiplication parameter 𝜌 is utilized to adjust the SNR. Fig. 4.3 illustrates

the polluted signal with SNR = −10 dB (usually, SNR < 0 in practical cases). The actual

vibration component is almost invisible in Fig. 4.3a, and the noise dramatically distorts the

waveforms in the magnified signal (Fig. 4.3b).

𝑣1(𝑡) = 0.005[𝑐𝑜𝑠(2𝜋 ×2000𝑡) + 𝑠𝑖𝑛(2𝜋 ×1200𝑡)] +𝜌 ⋅𝑛𝑜𝑖𝑠𝑒 (4.11)
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Figure 4.3: (a) 𝑣1(𝑡) with SNR=−10 dB; (b) magnified signal of (a).

The signal 𝑣2(𝑡) is produced by adding speckle noise to the data taken from [41]. Fig.

4.4 presents the polluted signals with SNR = −10 dB. Similar to the signal 𝑣1(𝑡), the speckle
noise dramatically distorts the actual waveforms.

𝑣2(𝑡) =
1

200(1.2+ 𝑐𝑜𝑠(100𝜋𝑡))
+
𝑐𝑜𝑠(160𝜋𝑡 +0.2𝑐𝑜𝑠(320𝜋𝑡))

200(1.5+ 𝑠𝑖𝑛(100𝜋𝑡))
+𝜌 ⋅𝑛𝑜𝑖𝑠𝑒 (4.12)
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Figure 4.4: (a) 𝑣2(𝑡) with SNR=-10 dB; (b) magnified signal of (a).

The signal 𝑣3(𝑡) is produced by adding speckle noise to the data taken from [42]. This

signal is an unusual one without physical meanings. We only evaluate the despeckle effect

on this signal. Fig. 4.5a presents the polluted signals with SNR = −10 dB.

𝑣3(𝑡) = 𝑣3𝑎(𝑡) +𝜌 ⋅𝑛𝑜𝑖𝑠𝑒 (4.13)
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Figure 4.5: (a) The actual vibration 𝑣3𝑎(𝑡); (b) 𝑣3(𝑡) with SNR=-10 dB.

4.3.2 Despeckling results

Two criteria, the SNR after despeckling processing and correlation coefficient 𝛿 (equation

4.14) between the actual vibrations and despeckled signals, are used to evaluate the de-

veloped approach. Three different noise conditions with initial SNR = -10 dB, -5 dB &

-15 dB are considered by modifying the parameter 𝜌. Other signal processing approaches
including the BPF [43] and the discrete wavelet transform (DWT) [44] are utilized for

comparison.

𝛿(𝑣,𝑣𝑎) =
𝐶𝑜𝑣(𝑣,𝑣𝑎)√
𝑉𝑎𝑟(𝑣)𝑉𝑎𝑟(𝑣𝑎)

(4.14)

where 𝑣 & 𝑣𝑎 represent the noisy and despeckled signals, respectively, 𝐶𝑜𝑣() calculates
the covariance, and 𝑉𝑎𝑟() calculates the variance.
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Figure 4.6: (a) The MRMS thresholds of 𝑣1(𝑡) (magnified signal); (b) the summation of IMF1 to IMF7.

First, the simulated signal 𝑣1(𝑡) with SNR = -10 dB is processed by the despeckling

algorithm in section 4.2. Fig. 4.6a presents the MRMS thresholds, which cut off the

signal drop-outs but preserve the dominant speckle-noise energy, and we get the cut-off

signal 𝑣′
1(𝑡). Using 𝑣′

1(𝑡) minus the summation of IMF1 to IMF7 (Fig. 4.6b), the remaining

component agrees well with the actual vibration, as shown in Fig. 4.7a. The post SNR

increases to 12.48 dB, and the correlation coefficient is 𝛿 = 0.9728, which means that the

processed signal is almost the same as the true vibration. However, the BPF and DWT

methods fail to achieve comparable results, as numerous visible distortions remain in Fig.

4.7b & 4.7c. We use the cut-off frequency of 600 Hz for the BPF and 4 frequency bands for

the DWT with ’db4’ wavelets. These choices are best in our trials but not the optimized

one. The post SNRs of the BPF and DWT results are 5.53 dB and 0.23 dB, respectively,

while their correlation coefficients are only 0.8597 and 0.7478.



4.3 Simulated signal analysis

4

59

0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08

time (s)

-0.02

-0.01

0

0.01

0.02

v
ib

ra
ti
o

n
 (

m
/s

)

Ture vibration

Despeckled signal

(a)

0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08

time (s)

-0.02

-0.01

0

0.01

0.02

v
ib

ra
ti
o

n
 (

m
/s

)

Ture vibration

BPF results

(b)

0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08

time (s)

-0.02

-0.01

0

0.01

0.02

v
ib

ra
ti
o

n
 (

m
/s

)

Ture vibration

DWT results

(c)

Figure 4.7: The despeckling results of (a) the proposed approach, (b) BPF, and (c) DWT. The signals are magnified

between 0.04 s and 0.08 s.

Second, the simulated signals 𝑣2(𝑡) & 𝑣3(𝑡) are processed to remove speckle noise, with

the results presented in Fig. 4.8. The EEMD-based approach effectively eliminates the

speckle noise, as shown in Fig. 4.8a & Fig. 4.8b. The post SNRs increase to 18.71 dB for the

signal 𝑣2(𝑡) and 25.69 dB for the signal 𝑣3(𝑡), and their correlation coefficients are 0.9872

and 0.9868, respectively. However, the BPF and DWT approaches preserve numerous

distortions. Both their post SNRs and correlation coefficients are far lower than those of the

EEMD-based results (seen in Table 4.2). Therefore, our proposed algorithm demonstrates

advantages in removing speckle noise.
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Figure 4.8: The despeckling results for (a) 𝑣2(𝑡) by the proposed approach, (b) 𝑣3(𝑡) by the proposed approach, (c)
𝑣2(𝑡) by the BPF, (d) 𝑣3(𝑡) by the BPF, (e) 𝑣2(𝑡) by the DWT, and (f) 𝑣3(𝑡) by the DWT. The signals have been

magnified.

To evaluate the robustness of the EEMD-based approach, we modify the initial SNRs,

with the results shown in Table 4.2. Generally, all three approaches perform better with

increasing initial SNR. When the initial SNR is −5 dB, the proposed approach outperforms

the others, although the BPF and DWT achieve acceptable despeckling results (with

correlation coefficients over 0.89). When the initial SNR decreases to −15 dB, the BPF

and DWT methods fail to eliminate speckle noise with correlation coefficients below

0.71. Nonetheless, the EEMD-based approach achieves correlation coefficients over 0.93,

which means that the processed signals are almost the same as the true vibrations. These

promising results regardless of the noise intensity indicate the advantages and robustness

of our developed method.
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Table 4.2: Post SNRs and correlation coefficients of the despeckling results

𝑣1(𝑡) initial SNR -10 dB -5 dB -15 dB

Proposed approach

post SNR 12.48 dB 13.11 dB 8.87 dB

correlation 0.9728 0.9754 0.9403

BPF

post SNR 5.53 dB 9.41 dB 0.96 dB

correlation 0.8597 0.9413 0.6887

DWT

post SNR 0.23 dB 9.71 dB -0.30 dB

correlation 0.7478 0.9488 0.6709

𝑣2(𝑡) initial SNR -10 dB -5 dB -15 dB

Proposed approach

post SNR 18.71 dB 22.61 dB 15.21 dB

correlation 0.9872 0.9947 0.9708

BPF

post SNR 6.97 dB 12.55 dB 2.78 dB

correlation 0.8481 0.9492 0.7069

DWT

post SNR 4.50 dB 9.66 dB 0.44 dB

correlation 0.8169 0.9382 0.6613

𝑣3(𝑡) initial SNR -10 dB -5 dB -15 dB

Proposed approach

post SNR 25.69 dB 30.33 dB 18.99 dB

correlation 0.9868 0.9954 0.9350

BPF

post SNR 13.86 dB 17.98 dB 9.14 dB

correlation 0.8100 0.9176 0.6023

DWT

post SNR 9.91 dB 16.28 dB 6.29 dB

correlation 0.7418 0.8972 0.5131

4.4 Experimental investigation
4.4.1 First scenario
First, we use a small-scale setup to evaluate the despeckling approach for LDVom measure-

ments. Although the setup is similar to some SLDV and CSLDV research (e.g., [20]), the

conditions of using the LDVom are held: one-way scanning and unable to enhance the sur-

face reflection. Fig. 4.9 illustrates its schematic, and the experimental setup with multiple

instruments is presented in Fig. 4.11. An artificially excited steel strip with defected surface

is monitored by the LDVom. This steel strip (length 540 mm) has three artificial defects

(with a profile of 6× 4 mm at different locations 40 mm, 220 mm, and 450 mm) through the

strip width, as shown in Fig. 4.10. We firmly mount the steel strip as a cantilever beam

over the base. The left end of the strip is excited by a shaker with a 500 Hz sinusoidal

wave. During the scanning progress, the rotating mirror first deflects the transmission

laser beam onto the left end and then scans the strip surface at a constant speed around

0.85 m/s. The sampling frequency is 102,400 Hz. A high sampling frequency is chosen to

avoid mixing the vibration frequency with the signal drop-outs. If the sampling frequency

is low, the signal drop-outs will appear in low-frequency bands and make the vibration

confusing. The LDV used is ‘RSV-150’ made by ‘Polytec’ and the measurement resolution

used is 100 mm/s/V. It should be noticed that adjusting the measurement range cannot
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change speckle noise, since the noise is produced by the laser but not by the instrument

units [10].

Shaker

LDV

Scanning mirror

Scanning line

Laser

Rotating control 
system

Data acquisition and 
shaker control 

system

Figure 4.9: A schematic of an LDVom scanning a beam.

Figure 4.10: Steel strip with three artificial defects.

LDV
Scanning 
mirror

Shaker

Figure 4.11: Experimental setup for scanning the steel strip.

Fig. 4.12 shows the original vibration signal acquired by the LDVom. The speckle noise

is extremely intense as the actual vibration (marked inside the red rectangle) is nearly

invisible. The amplitudes of the signal drop-outs reach approximately 3 m/s, over 60 times

the true vibration at approximately 500 Hz. Fig. 4.12b presents the magnified signal between

1.5 s and 1.7 s. The speckle noise covers numerous local oscillations, increasing difficulties

in local modal analysis. The fast Fourier transform (FFT) spectrum of the original signal

is presented in Fig. 4.13, which also shows the vibration frequency is 500 Hz. Since the

LDVom measurement is one-way, the spectrum has no sideband harmonics that appear in

CSLDV signal spectrum.



4.4 Experimental investigation

4

63

0 1 2 3 4 5 6

time (s)

-4

-2

0

2

4

v
ib

ra
ti
o

n
 (

m
/s

)

(a)

1.5 1.52 1.54 1.56 1.58 1.6 1.62 1.64 1.66 1.68 1.7

time (s)

-0.05

0

0.05

v
ib

ra
ti
o

n
 (

m
/s

)

(b)

Figure 4.12: (a) The original signal; (b) magnified signal between 1.5 s and 1.7 s.
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Figure 4.13: The FFT spectrum of the original signal.

Since the EEMD-based approach is time- and memory-consuming in processing com-

plicated signals, we divide the data into multiple 0.1 s time series to remove the speckle

noise and then merge the processed series. With IMF1 to IMF8 discarded, the despeckling

results are presented in Fig. 4.14. The vibration amplitudes are recovered to normal levels,

and the energy distribution becomes visible. The initial SNR is estimated to be -14.63 dB

by regarding the despeckled signal as the actual vibrations. This also means the speckle

noise is extremely intense, similar to the simulated cases in section 4.3.
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Figure 4.14: The despeckled signal obtained by the proposed EEMD-based approach.

Fig. 4.15 shows the magnified despeckled signal between 0.8 s and 0.9 s. The developed

approach reveals the true vibration surrounding 500 Hz, especially from oscillations pol-

luted by intense speckle noise (marked with black circles). At the locations covered by

continuously intense speckle noise (marked with a black rectangle), the processed results

approximately recover the true waveforms. However, speckle noise significantly distorts

the BPF and DWT results, especially at approximately 0.86 s.
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Figure 4.15: The despeckling results of (a) the proposed approach, (b) BPF, and (c) DWT. Signals are magnified

between 0.8 s and 0.9 s.

Fig. 4.16 shows the magnified despeckled signal where the initial SNR is estimated

to be -27.79 dB and the actual vibration amplitudes are 1/5 to 1/10 of those in Fig. 4.15.

Although the vibration responses are extremely weak, signals covered by intense noise

(marked with a black rectangle) are approximately revealed. However, the results of BPF

and DWT are unpromising, containing significant distortions at intense speckle locations.

Therefore, the developed EEMD-based approach demonstrates advantages in processing

signals to eliminate speckle noise.
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Figure 4.16: The despeckling results of (a) the proposed approach, (b) BPF, and (c) DWT. The signal segment with

an estimated SNR of -27.79 dB is magnified.
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For further vibration analysis and damage inspection, the Hilbert-Huang spectrum

has potential for signal interpretation, as illustrated in Fig. 4.17. The despeckled signal in

Fig. 4.14 contains three bulbous segments corresponding to three defects. In the Hilbert

spectrum, the signal frequency varies around the central frequency of 500 Hz. The actual

vibration is not an absolute sinusoidal wave, thus causing instantaneous variant frequencies.

It is noticeable that the vibration energy at the defect locations is larger than that in other

areas. Therefore, we identify the local maximum energy locations as defect locations. In

this case, we estimate defect centers at 0.4931 s, 2.748 s and 5.477 s from the Hilbert-Huang

spectrum, corresponding to 41.4 mm, 230.6 mm and 459.7 mm. Thus, the Hilbert-Huang

spectrum can reveal the damage locations from the despeckled signal despite approximately

1 cm errors.

Figure 4.17: The Hilbert-Huang spectrum of the despeckled signal.

4.4.2 Second scenario

Second, we mount the LDVom on a downscaled running railway system [45] (as shown

in Fig. 4.18) to acquire the vibrations excited by wheel-rail contact. The laser is deflected

by a fixed mirror to focus on the rail surface. With the running system, the LDVom

continuously scans the rail surface. The running speed is 10 km/h and the sampling

frequency is 102,400 Hz.
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Joint

LDVMirror

Figure 4.18: The experimental setup of the running railway system.

Here, we take the signal segment when the wheel passes the joint for analysis, with

the signal illustrated in Fig. 4.19. The noise is intense with frequent signal drop-outs to

cover the vibrations. Therefore, the waveform when wheel hits the joint (marked with

the blue circle) becomes indistinguishable in the original signal. Using the EEMD-based

approach and discarding the first 8 IMFs, the depseckled signal has revealed the trend of the

original one, as shown in Fig. 4.19a. The despeckling process does not change or mitigate

the vibration modes, as the vibration frequency peaks (marked in the black circles) in

FFT spectra (Fig. 4.20) remains invariant between original and despeckling signals. These

frequency peaks are not related to the speckle noise since the measurement is not cyclical.

The dominant noise energy has attenuates sharply (marked in the red circle). However,

the EEMD-based approach is different from a low-pass filter, as the low-frequency energy

(which may related to speckle noise) also alters (e.g., marked in the red rectangle).
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Figure 4.19: (a) The original and the despeckled signals when the wheel passing the joint; (b) The IMF10 achieved

by EEMD.
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Figure 4.20: The FFT spectra of (a) the original signal and (b) the despeckled signal.

The waveform at the joint location becomes visible, and we can also use an IMF to locate

the joint, e.g., IMF10. As illustrated in Fig. 4.19b, the IMF10 presents a sharp amplitude

at around 0.225 s, corresponding to the wheel hitting the joint. The amplitude of an IMF

is corresponding to the operating deflection shape, and thus can be used for vibration

analysis. Hilbert-Huang spectrum also has potential for vibration analysis, with that of

IMF10 shown in Fig. 4.21. Only one spike energy appears around 0.225 s, agreeing well

with the joint location. Therefore, our proposed approach can eliminate the speckle noise

and reveal the signals for vibration analysis.
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Figure 4.21: The Hilbert-Huang spectrum of the IMF10.

4.5 Conclusion and Discussions
In this paper, we propose an EEMD-based approach for eliminating speckle noise in LDVom

signals. LDVom is a one-way continuously scanning technique especially used for large-

scale structural monitoring, e.g., railway tracks, different from SLDV and CSLDV. Speckle

noise, originating from phase variation of speckle patterns, is a significant issue when

scanning from moving platforms. The noise amplitudes can exceed 30 times the true

vibration, and the SNR can drop below -15 dB. The EEMD approach can acquire IMFs

containing the instantaneous frequency, which relates to the instantaneous vibration

velocity captured by the LDVom. The related Hilbert-Huang spectrum has the potential to

highlight the damage locations. Since the instantaneous frequency in an IMF is continuous,

the EEMD approach can restore the actual oscillations affected by intense speckle noise.

MRMS thresholds are used for cutting off the outliers, which can reduce drop-out amplitudes

and generate noise discontinuities that EEMD can identify properly. The proposed method

is evaluated regarding processing numerically simulated and experimental acquired signals.

In the numerical simulation, randomly generated speckle noise is added to three differ-

ent time series, including a stationary signal, a time-varying signal and an abnormal signal

with oscillation discontinuities. When the initial SNR is -10 dB, our proposed approach can

reveal the true vibrations, with post SNRs = 12.48 dB, 18.71 dB & 25.69 dB and correlation

coefficients over 0.97. The BPF and DWT methods for comparison remove only part of

the speckle noise and reserve numerous distortions. Generally, all three approaches per-

form better with increasing initial SNR. The EEMD-based approach can achieve promising

results even with initial SNR = -15 dB, and the correlation coefficients remain over 0.93.

However, the BPF and DWT results are unacceptable in such intensely noisy situations.

Therefore, these results indicate the advantages and robustness of our proposed approach

in eliminating speckle noise.

In the first physical experiment, a steel strip with three artificial defects is excited

at 500 Hz. The speckle noise is intense as the noise amplitudes can reach 35 times the

vibrations, and the estimated initial SNR is -14.63 dB. After IMF1 to IMF8 are discarded, the

actual vibration is revealed with energy concentrating on the defect locations. Generally,

the EEMD-based approach can restore the vibrations surrounding 500 Hz regardless of the

speckle intensities, even at the locations where the actual vibrations are extremely weak

and the initial SNR is estimated to be -27.79 dB. However, both the BPF and DWT methods



4

72

4 Removing speckle noise from the signals of a laser Doppler vibrometer on moving platforms

(LDVom) by ensemble empirical mode decomposition

preserve amplitude distortions resulting from intense speckle noise. The Hilbert-Huang

spectrum is illustrated to identify defect centers. The estimated damage locations are at

41.4 mm, 230.6 mm and 459.7 mm, corresponding well with the actual locations of 40 mm,

220 mm and 450 mm.

In the second physical experiment, a downscaled running railway system excited by

wheel-rail contact is under detection. The speckle noise is intense to cover the vibration,

especially the waveform at the joint location. The proposed approach successfully mitigates

the speckle noise. The joint location is identified in both an IMF and the Hilbert-Huang

spectrum. Therefore, our proposed approach is applicable to eliminating speckle noise and

the despeckled signal can be used for damage inspection.

We want to mention that the simulated signals are much more challenging than the

experimental signal of 500 Hz, and we want to evaluate the effect on these challenging

signals. That is reason for the difference between the simulated ones and the experimental

ones. Besides, the despeckling effect seems more visible in removing the signal drop-

outs, which is a specific characteristic within the speckle noise resulting from large phase

change. It is difficult to visibly evaluate the effect on other frequencies, and therefore we

use ’signal-to-noise ratio’ to evaluate the despeckling effect.

There are two issues when applying EEMD, which should be investigated in future

research. First, EEMD has increased the computational burden since it repeats EMD several

hundred times. This issue may be solved by paralleling computation for the hundred times

of EMD. Second, the choice of IMFs for despeckled signals is dependent on the operating

experience. Future research will develop automatic approaches to distinguish between the

IMFs for noise and vibration.

Future research should also concern the despeckling effect in different scenarios. The

experimental parameters like the vibration frequency, the sampling frequency and the

scanning speed would change the signals, and the despeckling effect that changes with

these parameters should be further investigated. Besides, the despeckling effect on the

impulsive signal is unknown, which should also be investigated in the future research.

We also want to mention that using Hilbert-Huang transform is potential for vibration

analysis. However, different strategies can present different analyzing effects. Since the

issue of signal quality has been solved, the strategies to interpret LDVom signals can be

developed in future research.
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5
An adaptive despeckling and

signal decomposition
approach for vibration

analysis using Laser Doppler
Vibrometer

A laser Doppler Vibrometer (LDV) is a nondestructive vibration detector extensively applied
in structural health monitoring. A significant signal issue, namely speckle noise, mainly
from the LDV on moving platforms (LDVom) has prevailed as an analyzing obstacle. In this
paper, a novel adaptive despeckling and signal decomposition (ADSD) approach is proposed
for analyzing LDVom signals. The Fourier spectrum is naturally segmented with the identified
vibration frequencies. The mode functions are basically derived from the wave equation and
pointwisely calculated through optimization in a moving window. In the numerical simulation,
the ADSD approach extracts the mode functions that agree well with the vibration components.
The despeckling result reveals the true vibrations regardless of the initial signal-to-noise ratio
(SNR). The proposed approach outperforms others from the literature. With experimentally
acquired signals, the ADSD approach reveals the actual vibrations despite the intense speckle
noise. Defect locations are identified from the despeckled signal or Hilbert spectrum. Therefore,
the ADSD approach is effective and robust in eliminating the speckle noise and extracting the
vibrations.

5.1 Introduction
Recently, vibration detection has become increasingly crucial to structural monitoring and

mechanical damage inspection [1, 2, 3], promoting the evolution of relevant measurement

This chapter is based on the paper: Jin, Y., & Li, Z. An adaptive despeckling and signal decomposition approach

for vibration analysis using Laser Doppler Vibrometer (to be submitted to a journal).
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technologies. A laser Doppler Vibrometer (LDV) is a nondestructive detector for remotely

measuring vibrations by laser beams [4]. It claims particular advantages over contact

transducers, such as avoiding the difficulties of attaching to hot or rotating structures

and avoiding mass loading that changes the structural dynamic of light objects [5]. This

advanced instrument provides the benefits of high-precision and high-frequency measure-

ment, as the spatial resolution of vibration velocity can reach 1 mm/s and the measuring

frequency can reach 1 GHz. An LDV on moving platforms (LDVom) [6] can continuously

scan the structural surface, thus solving the issue of intermittent measurement positions of

the attached transducers. Different from the continuously scanning LDV (CSLDV) that

requires multiple reciprocating scanning (e.g., [7, 8]), the LDVom one-way continuously

scans the structures, especially those large or long like railway tracks. Besides, the LDVom

does not require the constant excitation and structural conditions for the CSLDV mea-

surement. However, a significant signal issue, speckle noise [5, 9, 10], becomes extremely

troublesome for the LDVom without averaging the multiple measurements.

Speckle noise, or ‘pseudo vibration’, has prevailed as the obstacle of the LDV applica-

tions (e.g., [11, 12]). An optical phenomenon, namely speckle patterns, is the noise source

produced by the coherent laser wavelets scattering over an optically rough surface. The

dephased laser components interfere constructively and destructively; thus, the intensity

and phase of speckle patterns are altered [13, 14]. Mainly when an LDVom scans, the phasor

variation inside the photodetector results in signal fluctuations that constitute speckle noise.

This noise occurs in two forms, including the signal drop-outs with amplitudes exceeding

30 times those of actual vibrations and the dominant noise with normal amplitudes. The

signal-to-noise ratio (SNR) drops to -15 db in physical experiments [15]; thereby, the speckle

noise significantly affects the signal quality and restricts the LDVom development. Some

studies have quantified the pseudo-vibration sensitivities of commercial instruments in

different scenarios [16] and provided evidence for experimentally reducing the noise [17],

but without a proper solution to the speckle issue. Although several studies have reduced

the adverse effect of signal drop-outs (e.g., [11, 18]), dominant noise remains uncontrolled.

The frequency content of speckle noise comprises higher-order harmonics surrounding

a fundamental frequency in periodic motions [19]. According to this pseudo-random

property, [20] applied a scanning average method for mitigating the noise; but it requires a

vibration period far larger than the scanning period. Others developed strategies to avoid

noise [21] or to calculate signal energy [22, 23], but either inapplicable in large-scale mea-

surements or overlooking the signal waveform. Therefore, a proper approach to eliminate

speckle noise should be a subject of researches.

Time-frequency analysis is an effective strategy to represent nonstationary signals

and extract mode functions [24]. It decomposes signals to several frequency bands and

acquires the energy distribution in the time-frequency domain. Mechanical damages

are usually visible at strong-signal positions with characteristic frequencies (e.g., [25,

26]). The short-time Fourier transform [27] and wavelet transform [28] are primary

approaches for time-frequency analysis, but they fail to optimize the time-frequency

resolution because of their certain bandwidths. Digital band-pass filters (BPF) can also

acquire mode functions [29] but are limited by the certain bandwidth and the energy

attenuation at fringe frequencies. Speckle noise produces spike energies varying in the

frequency domain, different from the uniformly distributed white noise; thereby, certain-
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bandwidth approaches usually become inapplicable. Adaptive analysis approaches can

adjust relevant parameters to determine the bandwidths naturally [24]. The consequent

time-frequency resolution is optimized according to signal characteristics, and thereby

the decomposed mode functions can better present local mode features. A representative

adaptive method, namely empirical wavelet transform (EWT) [30], has been extensively

applied in extracting signal features and eliminating noise. The SNR dramatically increases

in the recent despeckling application [15]. The shortcoming is that the local waveform,

especially the weak vibration signal, at positions with consistent signal drop-outs remains

distorted. Local waveform distortion affects the energy distribution in the time-frequency

domain and further the defect identification. Therefore, an adaptive signal-processing

approach that can restore local waveform against speckle noise should be developed.

In this paper, we propose a novel adaptive despeckling and signal decomposition

(ADSD) approach for analyzing the LDVom signals. Fourier spectrum is utilized to identify

possible vibration modes and adaptively segment frequency bands. The mode functions are

basically derived from the wave equation and pointwisely calculated through optimization

in a moving window. Numerically generated and experimentally acquired signals are

analyzed to evaluate the despeckling and the signal decomposition effects. The remainder

of this paper is organized as follows: section 5.2 describes the proposed adaptive approach;

section 5.3 evaluates the despeckling effect in numerically simulated signals; section 5.4

investigates in physical experiments the applicability to despeckling and vibration analysis;

and section 5.5 discusses and concludes this paper.

5.2 Methodology
5.2.1 Segment Fourier spectrum
Fourier spectrum presents the energy distribution of vibration and noise in the frequency

domain. From the Fourier point of view, adaptive signal decomposition is equivalent

to extracting mode functions through adaptively determined bandwidths. Therefore, the

segmentation of the Fourier spectrum according to signal natures is significant for providing

adaptability. The Fourier transform on a time-series can be expressed as:

𝑌 (𝜔) = ∫
𝑇

0
𝑦(𝑡) ⋅ 𝑒−𝑖𝜔𝑡𝑑𝑡 (5.1)

where, 𝜔 = 2𝜋𝑓 /𝑓𝑠 , 𝑓 is the frequency, 𝑓𝑠 is the sampling frequency, 𝑦(𝑡) represents the
time-series, 𝑇 is the signal duration, and 𝑖 represents the imaginary unit. The distribution

of the module |𝑌 (𝜔)| constitutes the Fourier spectrum, and thereby the oscillations at

approximately a certain frequency are represented as a spike in the spectrum.

The segmentation of the Fourier spectrum should avoid the dominant noise bands.

Indeed, the speckle noise in higher-frequency bands is difficult to handle (e.g., the continu-

ous signal drop-outs). Therefore, we preset the measuring frequency larger than 20 times

the vibration frequency and only consider the Fourier spectrum within 𝜔 ∈ [0, 𝜋20 ]. Each
𝜔 segment should surround the frequency spikes that occupy the dominant oscillation

energy. The spectrum segmentation algorithm in this paper is proposed as Algorithm 0.
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Algorithm 6 Segment Fourier spectrum

Input: the original signal 𝑦(𝑡) and the segment number 𝑛
1. Calculate the Fourier spectrum |𝑌 (𝜔)| of the signal 𝑦(𝑡)
2. Find the local frequency maxima inside 𝜔 ∈ [0, 𝜋20 ], and preserve the first 𝑛 maxima 𝜔𝑘
with large amplitudes, 𝑘 = 1,2, ..., 𝑛
3. Calculate the medium frequency between neighbouring selected maxima

4. Determine the spectrum segments, Ω1 = [0, 𝜔1+𝜔22 ], Ω𝑛 = [𝜔𝑛−1+𝜔𝑛2 , 𝜋20 ], Ω𝑛+1 = [ 𝜋20 ,𝜋],
Ω𝑘 = [𝜔𝑘−1+𝜔𝑘2 , 𝜔𝑘+𝜔𝑘+12 ], 𝑘 = 2,3, ..., 𝑛−1
Ouput: The spectrum segments Ω𝑘 , 𝑘 = 1,2, ..., 𝑛+1

Figure 5.1 presents an example of spectrum segmentation.
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Figure 5.1: An example of spectrum segmentation by the proposed algorithm.

5.2.2 Signal decomposition
Signal decomposition is a crucial procedure after spectrum segmentation. Classic ap-

proaches, including the BPF and wavelet transform, calculate the convolution results with

the original signal to acquire mode functions. These are general methods for signal pro-

cessing, but the properties of structural waves are not considered. In our approach, we

consider the waves propagating in structures for signal decomposition and despeckling.

On a short scanning line, the vibration velocity approximately obeys the one-dimensional

wave equation [31]:

𝜕2𝑢(𝑥, 𝑡)
𝜕𝑡2

= 𝑐2
𝜕2𝑢(𝑥, 𝑡)
𝜕𝑥2

(5.2)

where, 𝑢(𝑥, 𝑡) represents the vibration velocity at the time 𝑡 and transmission location

𝑥 , and 𝑐 is the propagation speed. Since the one-dimensional wave equation is linear, the

vibration behaviour arising from numerous elastic waves obeys the superposition principle.

The d’Alembert’s formula [31] provides the general solution of equation (5.2).
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𝑢(𝑥, 𝑡) =
𝑓 (𝑥 − 𝑐𝑡) + 𝑓 (𝑥 + 𝑐𝑡)

2
+

1
2𝑐 ∫

𝑥+𝑐𝑡

𝑥−𝑐𝑡
𝑔(𝑠)𝑑𝑠 (5.3)

where, 𝑓 (𝑥) = 𝑢(𝑥,0) and 𝑔(𝑥) = 𝜕𝑢
𝜕𝑡 (𝑥,0) are initial conditions. The solutions considering

specific harmonic components for stationary and nonstationary waves are derived to

equations (5.4) and (5.5) respectively.

𝑢𝑠(𝑥, 𝑡) = 𝐴0𝑐𝑜𝑠(𝜔𝑡 +𝜑1)𝑠𝑖𝑛(
2𝜋
𝜆
𝑥 +𝜑2) (5.4)

𝑢𝑛(𝑥, 𝑡) = 𝐴(𝑥, 𝑡)𝑠𝑖𝑛(𝜔𝑡 −
2𝜋
𝜆
𝑥 +𝜑0) (5.5)

where, 𝐴0 & 𝐴(𝑥, 𝑡) are wave amplitudes without and with modulation respectively, 𝜆
is the wavelength, and 𝜑0, 𝜑1 & 𝜑2 represent the initial phases. When an LDVom scans the

vibrating surface, the scanning speed 𝑣𝑠 is usually far lower than the propagation speed 𝑐
of elastic waves, thereby producing the following approximation:

2𝜋
𝜆
𝑥 =

𝜔𝑣𝑠
𝑐

𝑡 ≈ 0 (5.6)

Therefore, the stationary and nonstationary waves during LDVom scanning can be

expressed as:

𝑢𝑠(𝑣𝑠𝑡, 𝑡) = 𝐴0𝑐𝑜𝑠(𝜔𝑡 +𝜑1)𝑠𝑖𝑛(𝜑2) (5.7)

𝑢𝑛(𝑣𝑠𝑡, 𝑡) = 𝐴(𝑣𝑠𝑡, 𝑡)𝑠𝑖𝑛(𝜔𝑡 +𝜑0) (5.8)

The elastic waves propagating in structures usually consist of both stationary and

nonstationary components. Since equations (5.7) & (5.8) have similar expression, the

vibration can be derived according to the superposition principle.

𝑦(𝑡) =∑𝑦𝜔(𝑡) =∑𝑎𝜔(𝑡)𝑠𝑖𝑛(𝜔𝑡 +𝜑) (5.9)

where, 𝑦𝜔(𝑡) represents the specific harmonic of the vibration 𝑦(𝑡), 𝑎𝜔(𝑡) is the mod-

ulated amplitudes, and 𝜑 is the initial phase. According to equation (5.9), the vibration

acquired by an LDVom can be decomposed to the mode functions represented by modulated

sine waves. This is the basis for further extracting mode functions.

The modulated amplitude 𝑎𝜔(𝑡) is the deformation shape produced by the 𝜔 harmonic

component, which determines the wave distribution in the corresponding mode function.

Deriving the exact expression of 𝑎𝜔(𝑡) often requires specific structural mechanics analysis,

which is complicated and time-consuming. From the signal point of view, a specific function

can approximate 𝑎𝜔(𝑡) in a short-time window. The function coefficients vary when the

window moves, so that 𝑎𝜔(𝑡) can be appropriately approximated in the time domain. Here

we use the exponential function for energy attenuation, as expressed in equation (5.10).

𝑎𝜔(𝑡) = 𝑎0(𝜏 )𝑒𝑏0(𝜏 )𝑡 , 𝑡 ∈ [𝜏 − 𝜏0, 𝜏 + 𝜏0] (5.10)
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where, 𝑎0(𝜏 )& 𝑏0(𝜏 ) are coefficients only varyingwith themovingwindow [𝜏 −𝜏0, 𝜏 +𝜏0],
2𝜏0 is the window length, and 𝑏0(𝜏 ) ∈ [−∞,∞] because of wave attenuation in all directions.

Therefore, the oscillations with specific harmonic 𝜔 inside the short-time window are the

optimized mode function 𝑦𝜔(𝑡) well-fitting the acquired signal.

𝑚𝑖𝑛
𝑎0 ,𝑏0 ,𝜔,𝜑

(𝑦𝜔(𝑡) −𝑦(𝑡))2

𝑠.𝑡. 𝑦𝜔(𝑡) = 𝑎0𝑒𝑏0𝑡 𝑠𝑖𝑛(𝜔𝑡 +𝜑)
𝑎0, 𝑏0 ∈ [−∞,∞], 𝜑 ∈ [0,2𝜋], 𝑡 ∈ [𝜏 − 𝜏0, 𝜏 + 𝜏0]
𝜔 ∈ Ω𝑘 , 𝑘 = 1,2, ..., 𝑛

(5.11)

where, 𝑦(𝑡) is the original signal, and Ω𝑘 is the segment of Fourier spectrum in sub-

section 5.2.1. Here we utilize the least squares method for optimization. The initial

direct-current signal in instruments or the long-wavelength structural shape can slightly

migrate the output with low-frequency trends. A quartic polynomial function is optimized

to extract this signal trend.

𝑚𝑖𝑛
𝛼1 ,𝛼2 ,𝛼3 ,𝛼4 ,𝛼5

(𝑦0(𝑡) −𝑦(𝑡))2

𝑠.𝑡. 𝑦0(𝑡) = 𝛼1𝑡4 +𝛼2𝑡3 +𝛼3𝑡2 +𝛼4𝑡 +𝛼5
𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5 ∈ [−∞,∞]

(5.12)

where 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5 are quartic polynomial coefficients, and this optimization is

conducted in the whole time domain instead of the short-time window. Equations (5.11)

& (5.12) can extract the mode functions. In order to extract the instantaneous vibration

to mode functions, the optimization in equation (5.11) is pointwisely conducted with a

pointwise-moving window.

Since low-frequency components contain the most energy that affects the extraction of

high-frequency components, we optimize the mode function in the low-frequency segment

first. The algorithm to extract vibration mode functions is proposed as follows:
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Algorithm 7 Pseudo codes of extracting vibration mode functions

Input: original signal 𝑦(𝑡), the signal length 𝑁 , and the segment number 𝑛 of Fourier

spectrum;

Segment the Fourier spectrum to Ω𝑘 adaptively according to Algorithm 0, 𝑘 = 1,2, ..., 𝑛+1;
Extract the low-frequency signal trend 𝑦0(𝑡) according to equation (5.12);

𝑟𝑒𝑠0(𝑡) = 𝑦(𝑡) −𝑦0(𝑡);
for 𝑘 = 1; 𝑘 ≤ 𝑛; 𝑘 = 𝑘 +1 do:

𝜏0 = 𝜂 2𝜋
𝜔𝑘 𝑓𝑠

, 𝜂 ∈ [2,5];
𝜔 ∈ Ω𝑘 ;

for 𝑗 = 1; 𝑗 ≤ 𝑁 ; 𝑗 = 𝑗 +1 do:
𝜏𝑗 is the time corresponding to the signal point 𝑗;
Optimize the mode function 𝑦𝜔(𝑡) inside the short-time window 𝑡 ∈ [𝜏𝑗 − 𝜏0, 𝜏𝑗 + 𝜏0],

and obtain the point result 𝑦𝜔(𝜏𝑗 );
𝑦Ω𝑘 (𝑡) = {𝑦𝜔(𝜏𝑗 ) ∣ 𝑗 = 1,2, ...,𝑁};
𝑟𝑒𝑠𝑘(𝑡) = 𝑟𝑒𝑠𝑘−1(𝑡) −𝑦Ω𝑘 (𝑡);

Ouput: all mode functions 𝑦Ω𝑘 (𝑡), 𝑘 = 0,1,2, ..., 𝑛, and the ultimate residual 𝑟𝑒𝑠𝑛(𝑡)

𝑦(𝑡) =
𝑛
∑
𝑘=0

𝑦Ω𝑘 (𝑡) + 𝑟𝑒𝑠𝑛(𝑡); (5.13)

This algorithm is also intended to eliminate the speckle noise, as the summation of

mode functions represents the actual vibration and the residual component 𝑟𝑒𝑠𝑛(𝑡) consists
of the unwanted speckle noise. Thus,Algorithm 0 is the proposed ADSD approach in this

paper.

5.3 Simulation results
5.3.1 Simulated signals
Numerical simulation of LDVom scanning signals is based on the Doppler frequency shift,

as expressed in equation (5.14). The summation of the true vibration 𝑣 and speckle noise

− 𝜆𝑙
4𝜋

𝑑𝜙
𝑑𝑡 generates the LDVom signal 𝑉𝑚 .

𝑉𝑚 =
𝜆𝑙
2
(𝑓𝑅 − 𝑓𝑏𝑒𝑎𝑡 ) = 𝑣 −

𝜆𝑙
4𝜋

𝑑𝜙
𝑑𝑡

(5.14)

where, 𝑓𝑅 − 𝑓𝑏𝑒𝑎𝑡 represents the frequency shift, 𝜆𝑙 is the laser wavelength, and 𝜙 is the

resultant laser phase.

The speckle noise is numerically simulated by the approach developed in [32], which

achieves good agreement with the experimentally acquired noise. Fig. 5.2 illustrates

simulated 0.2 s speckle noise. The signal drop-outs and dominant noise fluctuate intensely.

The true vibrations are simulated hereafter using three artificial signals. The first signal

𝑦𝑠1 (𝑡) is taken from [30], consisting of two harmonics and a linear trend.
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Figure 5.2: Simulated speckle noise with a sampling frequency of 102400 Hz.

𝑦𝑠1 (𝑡) = 𝑦𝑠1 ,1(𝑡) +𝑦𝑠1 ,2(𝑡) +𝑦𝑠1 ,3(𝑡), 0 ≤ 𝑡 ≤ 0.2
𝑦𝑠1 ,1(𝑡) = 6𝑡
𝑦𝑠1 ,2(𝑡) = 𝑐𝑜𝑠(400𝜋𝑡)
𝑦𝑠1 ,3(𝑡) = 0.5𝑐𝑜𝑠(2000𝜋𝑡)

(5.15)

The second signal 𝑦𝑠2 (𝑡) is taken from [33], consisting of a time-frequency variant series,

two splicing harmonics and a low-frequency trend.

𝑦𝑠2 (𝑡) = 𝑦𝑠2 ,1(𝑡) +𝑦𝑠2 ,2(𝑡) +𝑦𝑠2 ,3(𝑡), 0 ≤ 𝑡 ≤ 0.2

𝑦𝑠2 ,1(𝑡) = 6𝑡2

𝑦𝑠2 ,2(𝑡) = 𝑐𝑜𝑠(100𝜋𝑡 +500𝜋𝑡2)

𝑦𝑠2 ,3(𝑡) =
{
𝑐𝑜𝑠(2000𝜋𝑡 −50𝜋 ), 0 ≤ 𝑡 ≤ 0.1
𝑐𝑜𝑠(1500𝜋𝑡), 0.1 < 𝑡 ≤ 0.2

(5.16)

The third signal 𝑦𝑠3 (𝑡) is also taken from [33], consisting of a time-frequency variant

series and a low-frequency trend.

𝑦𝑠3 (𝑡) = 𝑦𝑠3 ,1(𝑡) +𝑦𝑠3 ,2(𝑡), 0 ≤ 𝑡 ≤ 0.2

𝑦𝑠3 ,1(𝑡) =
1

1.2+ 𝑐𝑜𝑠(10𝜋𝑡)

𝑦𝑠3 ,2(𝑡) =
𝑐𝑜𝑠(160𝜋𝑡 + 𝑐𝑜𝑠(320𝜋𝑡))

1.5+ 𝑠𝑖𝑛(10𝜋𝑡)

(5.17)

To consider different initial SNRs, an adjustable parameter 𝛽 is used to change the true

vibration amplitudes, as expressed in equation (5.18).

𝑦(𝑡) = 𝛽𝑦𝑠𝑖 (𝑡) +𝑛𝑜𝑖𝑠𝑒, 𝑖 = 1,2,3 (5.18)

Figure 5.3 presents the simulated signals 𝑦𝑠𝑖 (𝑡), 𝑖 = 1,2,3, including the true vibrations

and corresponding polluted signals, with initial SNR= −10 db. The true vibrations are

nearly invisible in the polluted signals with such intense speckle noise.
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Figure 5.3: (a) The simulated signal 𝑦𝑠1 (𝑡), (b) the corresponding polluted signal of a, (c) the simulated signal

𝑦𝑠2 (𝑡), (d) the corresponding polluted signal of c, (e) the simulated signal 𝑦𝑠3 (𝑡), and (f) the corresponding polluted
signal of e. SNR= −10 db.

5.3.2 Despeckle and vibration extraction
Firstly, the initial SNR is set −10 db to investigate the despeckling effects. To quantitatively

evaluate the proposed approach, the post SNR and the correlation coefficient between

𝑦𝑠𝑖 (𝑡), 𝑖 = 1,2,3 and the despeckling results are calculated. The extracted vibration mode

functions are compared with the simulated vibration components.

Figure 5.4 presents the despeckling and signal decomposition results of 𝛽𝑦𝑠1 . Signals are
magnified between 0.04 s and 0.08 s for oscillation details. The decomposed mode functions

𝑦Ω1 & 𝑦Ω2 agree well with the signal components 𝛽𝑦𝑠1 ,2 & 𝛽𝑦𝑠1 ,3, respectively, as shown in

Figs. 5.4b & 5.4c. These results indicate that the proposed ADSD approach can extract the

vibration components. The despeckling result is the summation of the mode functions and

low-frequency oscillation, presenting a good agreement with the true vibration 𝛽𝑦𝑠1 (Fig.
5.4a). The correlation coefficient is 0.9965 and the post SNR is 23.13 db, which indicates the

effectiveness in eliminating the speckle noise and reconstructing the true vibrations. The

EWT approach also achieves good despeckling results with correlation coefficient = 0.9567,
but some distortions from the speckle noise remain (Fig. 5.4d). The BPF method fails to

eliminate the speckle noise as sharp distortions from the noise remain.
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Figure 5.4: (a) The despeckling results of 𝛽𝑦𝑠1 (𝑡) polluted by speckle noise, (b) the extracted mode function 𝑦Ω1 ,

(c) the extracted mode function 𝑦Ω2 , (d) and the despeckling results of BPF & EWT. Signals are magnified between

0.04 s and 0.08 s.

The ADSD results of the simulated signal 𝛽𝑦𝑠2 are shown in Fig. 5.5. Good agree-

ments between the extracted mode functions and signal components are visible in the

illustrations. The mode function 𝑦Ω1 reconstructs the time-frequency variant component

𝛽𝑦𝑠2 ,2, demonstrating the effectiveness in extracting wide-band vibrations. The segmented

component 𝛽𝑦𝑠2 ,3 has been decomposed into 𝑦Ω2 and 𝑦Ω3 , each extending tiny oscillations
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in the time domain. The despeckling result achieves a correlation coefficient of 0.9985 and

a post SNR of 25.12 db. The EWT and BPF results both present large distortions although

EWT achieves a correlation coefficient = 0.9629. The large local distortions would affect

vibration analysis especially for locating the damages.

The ADSD results of the simulated signal 𝛽𝑦𝑠3 are similarly promising, as shown in

Fig. 5.6. The mode function 𝑦Ω1 agrees well with the vibration component 𝛽𝑦𝑠3 ,2. The
despeckling result achieves a correlation coefficient of 0.9979 and a post SNR of 25.29 db,

demonstrating the effectiveness in eliminating the speckle noise. BPF fails to mitigate

the distortions, while EWT also reveals the true vibration with post SNR = 16.94 db and
correlation coefficient = 0.9782. Our proposed ADSD approach outperforms the BPF and

EWT methods in eliminating the speckle noise and extracting the vibrations.

To evaluate the despeckling robustness, the initial SNR are altered to −15 db, −10 db
and −5 db. Table 8.1 summaries the results of correlation coefficients and post SNRs. These

evaluation parameters decrease when reducing the initial SNR. Nonetheless, the ADSD

approach effectively eliminates the speckle noise regardless of the initial SNR, as the post

SNRs reach over 16 db and the correlation coefficients are almost over 0.99. However, the

BPF method fails to eliminate the noise especially when the initial SNR drops to −15 db.
Although the EWT approach preforms well in mitigating the speckle noise, it preserves

local distortions as in Fig. 5.5f. Therefore, our proposed approach outperforms others and

demonstrates the robustness in eliminating the speckle noise.

Table 5.1: Post SNRs and correlation coefficients of despeckling results

Initial SNR

Post SNR Correlation

𝛽𝑦𝑠1 𝛽𝑦𝑠2 𝛽𝑦𝑠3 𝛽𝑦𝑠1 𝛽𝑦𝑠2 𝛽𝑦𝑠3
Proposed

ADSD

-5 db 28.24 db 28.62 db 28.30 db 0.9993 0.9992 0.9992

-10 db 23.13 db 25.12 db 25.29 db 0.9965 0.9985 0.9979

-15 db 19.93 db 16.73 db 22.81 db 0.9949 0.9870 0.9953

BPF

-5 db 10.16 db 8.74 db 12.28 db 0.9350 0.9382 0.9548

-10 db 7.43 db 4.93 db 6.97 db 0.8854 0.8697 0.8524

-15 db 0.61 db 0.17 db 4.19 db 0.6617 0.7276 0.7852

EWT

-5 db 16.89 db 15.49 db 15.18 db 0.9848 0.9858 0.9884

-10 db 12.16 db 11.26 db 14.94 db 0.9567 0.9629 0.9782

-15 db 9.78 db 8.72 db 12.21 db 0.9267 0.9352 0.9473
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Figure 5.5: (a) The despeckling results of 𝛽𝑦𝑠2 (𝑡) polluted by speckle noise, (b) the extracted mode function 𝑦Ω1 ,

(c) the extracted mode function 𝑦Ω2 +𝑦Ω3 , (d) the extracted mode function 𝑦Ω2 , (e) the extracted mode function

𝑦Ω3 , and (f) the despeckling results of BPF & EWT. Signals except b are magnified between 0.09 s and 0.11 s.
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Figure 5.6: (a) The despeckling results of 𝛽𝑦𝑠3 (𝑡) polluted by speckle noise, (b) the extracted mode function 𝑦Ω1 .
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5.4 Experimental results
5.4.1 First scenario
Three scenarios of physical experiments are considered to acquire LDVom signals and

evaluate the ADSD approach. Firstly, a 540 mm steel strip, with three artificial defects

(profile of 6 × 4 mm
2
) at the positions of 40 mm, 220 mm, and 450 mm, is scanned by an

LDVom, as shown in Fig. 5.7. The LDV transmits a laser beam deflected by the mirror

to the vibrating surface. When the mirror rotates, the laser beam continuously scans the

targets. The strip is mounted as a cantilever beam with the left side excited by a shaker.

The input signal to the shaker is a stationary sinusoidal wave at 500 Hz. The scanning

speed is approximately 0.085 m/s and the sampling frequency is 102400 Hz.

LDV

Scanning 
mirror

Shaker

Figure 5.7: The experimental setup for scanning a steel strip.

The original signal contains intensely fluctuating speckle noise, as illustrated in Fig.

5.8. The amplitude of the actual vibration around 500 Hz varies below 0.05 (marked with

a red rectangle), while the signal drop-outs exceed 40 times the vibration. The initial

SNR is estimated approximately -14 db, indicating the poor signal quality. Continuously

intense noise covers the 500 Hz oscillations especially at weak vibration positions (Fig.

5.8b), increasing the difficulty in extracting mode functions.

Figure 5.9 presents the despeckling results concerning strong vibrations (with ampli-

tudes around 0.05). The BPF and EWT methods are adopted for comparison. The ADSD

approach has revealed the 500 Hz vibration against the intense speckle noise (Fig. 5.9a). The

EWT method reveals the vibration but distorts the amplitudes especially at intense-noise

positions (marked with blue circles in Fig. 5.9c). BPF performs even worse as significant

distortions (marked with blue circles) by speckle noise occupy many locations (Fig. 5.9b).

Figure 5.10 presents the despeckling result concerning weak vibrations (with amplitudes

below 0.005), where the initial SNR is estimated -24 db. Although intense noise has covered

the weak 500 Hz vibrations, our proposed approach properly revealed the actual vibration

that fits the original signal well. However, the BPF results preserve significant distortions

(Fig. 5.10b) and the EWT results lose weak oscillations (marked with blue circles in Fig.

5.10c). Therefore, the proposed approach outperforms others and demonstrates applicability
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Figure 5.8: (a) The scanning signal from a steel strip, (b) and the magnified signal between 1.5 s and 1.7 s.

to eliminating the speckle noise and extracting the vibrations regardless of the noise and

vibration intensity.

To further identify the defect locations, we conduct Hilbert transform on the extracted

mode functions, with the spectrum illustrated in Fig. 5.11. The three artificial defects center

at strong-energy locations that are identified at 39.16 mm, 226.23 mm and 455.73 mm.

These identified defect locations agree well with the actual ones, which indicates the proper

applications in damage inspection.
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5.4.2 Second scenario
Secondly, a railway track sample is scanned by the LDVom, as shown in Fig. 5.12. To

evaluate the applicability to extracting high-frequency vibrations, ultrasound generators

are utilized to transmit a 0.5 MHz sinusoidal wave with 10 waveforms. The LDVom scans

between the generators and acquires the resulted 0.5 MHz rail surface vibrations. The

sampling frequency is 5 MHz.

Figure 5.13 presents the original scanning signal. The 0.5 MHz ultrasound wave appears

at approximately 1.6×10−4 s, and other positions are severely polluted by speckle noise.

Figure 5.14 provides the extracted 0.5MHzmode function. The continuous 10-waveform

ultrasound wave has been revealed. Other positions also contain 0.5 MHz weak signals,

which may arise from the residual ultrasound energy during transmission or the artefacts

by the optimization calculation. Nonetheless, the proposed approach can eliminate the

speckle noise and extract the wanted mode functions.

5.4.3 Third scenario
Thirdly, the LDVom scans the rail surface on a running railway system in the laboratory,

as shown in Fig. 5.15. The laser beam is also deflected by a mirror onto the rail surface for

scanning. The excitation is naturally produced by the wheel-rail contact and the running

speed is 10km/h. The signal sampling frequency is 102400 Hz. The LDVom acquires the

vibration signals during a wheel passing the rail joint.

Figure 5.16 illustrates the original signal and the despeckling result acquired by our

ADSD approach. The original signal contains intense speckle noise as frequent signal

drop-outs hide the actual vibration amplitudes. The dominant mode function acquired after

despeckling fits the trend of the noisy signal. The mode excited by the wheel-rail contact

is mainly at around 120 Hz. When the wheel approaches the joint, the vibration energy

decreases; and when passing the joint, the wheel excites strong oscillations. The joint

location is identified at approximately 0.175 s. Therefore, the proposed ADSD approach

is applicable to eliminating the speckle noise and extracting the vibration for damage

inspection.
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Figure 5.9: The despeckling results of (a) the ADSD approach, (b) BPF approach, and (c) EWT approach. Signals

are magnified between 5.75 s and 5.85 s.
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Figure 5.10: The de-speckle results of (a) the ADSD approach, (b) BPF approach, and (c) EWT approach. Signals

are magnified between 1.5 s and 1.7 s.
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Figure 5.11: The Hilbert spectrum of the despeckled signal.

Utrasound generator

Figure 5.12: A railway track sample scanned by the LDVom.
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Figure 5.13: The scanning signal from a railway track sample.
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Figure 5.15: The LDVom scans from a running railway system in the laboratory.
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Figure 5.16: The original signal and the extracted vibration scanning from the running railway system.
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5.5 Discussion and conclusion
In this paper, we propose a novel ADSD approach for analyzing LDVom signals. Speckle

noise significantly distorts the vibration signal, as the signal drop-outs exceed 40 times the

actual vibration and initial SNR drops to -14 db in physical experiments. This adaptive ap-

proach naturally determines the bandwidths of mode functions for time-frequency analysis.

The Fourier spectrum is adaptively segmented with the identified vibration frequencies.

The mode functions are basically derived from the wave equation and pointwisely cal-

culated through optimization in a moving window. Since initial direct-current signals in

instruments or the long-wavelength structural shape can migrate the outputs slightly with

low-frequency trends, a quartic polynomial function is optimized to first extract these

trends.

In the numerical simulation, three artificially produced signals (either stationary or

nonstationary) are regarded as actual vibrations. The simulated speckle noise pollutes the

signals with initial SNR controlled. When the initial SNR is -10 db, the ADSD approach

extracts the mode functions that agree well with the signal components. A good agreement

is also visible between the despeckled signal and true vibration. However, The BPF and

EWT methods preserve numerous signal distortions by the speckle noise. When the initial

SNR drops to -15 db, the ADSD results still achieve correlation coefficients almost over 0.99

and post SNRs over 16 db. The proposed approach outperforms the others and demonstrates

the effectiveness and robustness in eliminating the speckle noise and extracting vibration

mode functions.

Three physical experiments are conducted to acquire LDVom signals and evaluate the

ADSD approach. In different scenarios with targets either artificially or naturally excited,

the ADSD approach reveals the actual vibration against the intense speckle noise. The

extracted mode function well fits the original signal regardless of the noise and signal

intensity. The other methods preserve the distortions, especially when the waveform is

covered by continuously intense noise. By analyzing the time series or Hilbert spectrum, the

defect locations are properly identified. These promising results indicate the applicability

to eliminating the speckle noise and extracting the vibrations. Future research will apply

the ADSD results for modal analysis and damage inspection using an LDVom.
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6.1 Conclusions
Speckle noise is a significant issue of LDV technology, especially the LDVom due to the

one-way continuously scanning nature. The main research question of this thesis is: What

are the characteristics and mitigation approaches of LDVom speckle noise? This thesis

focuses on the following three aspects to better understand the formation and behaviours

of LDV speckle noise and develop solutions for its mitigation. They are 1) numerical

simulation of the speckle noise considering two variables, surface roughness and scanning

speed. It provides insight into behaviour changes of speckle noise in response to the two

variables and possible tools for minimizing noise strength (Chapter 2); 2) investigation of the

theoretical Fourier spectrum of speckle noise series, as the frequency domain characteristics

help design the de-noise signal filter accordingly (Chapter 3); 3) investigation of the effect

of classic signal processing approaches for de-noising and develop an adaptive approach

based on vibration mechanisms (Chapter 4 and 5). Experiments on the steel strip and the

downscale V-Track test rig validate the proposed approaches. Four research sub-questions

defined in Chapter 1 are addressed accordingly in Chapter 2-5.

Q1: The speckle noise should be characterized based on numerical simulation and physical
experiments. How to perform a realistic simulation of the LDVom speckle noise and acquire a
deep understanding of its characteristics?

Chapter 2 addresses the research question Q1. The only previous research on simulating

the LDV speckle noise was conducted by Rothberg [1], where two important variables were

not considered: surface roughness and the scanning speed. Surface roughness determines

the reflection phases of laser and further affects the speckle pattern generated by the laser

beam. The scanning speed influences the variation of the speckle pattern, and the phasor

variation determines the speckle noise. In Chapter 2, a method is proposed to simulate

the LDVom speckle noise numerically, considering surface roughness and the scanning

speed. The simulated noise series are then characterized based on the changes of these

two variables. The main conclusions are as follows:

• The amplitude distributions of the simulated speckle noise and the experimental

one are similar, approximately a Gaussian distribution. The simulation approach is

reliable according to the similarities between the simulated and experimental speckle

noises.

• When the laser focuses on a single vibration point, the frequency spectra of speckle

noise present constant intervals of frequency peaks. The frequency interval, as well

as the noise period, is the same as the cyclical motion period of the focused vibration

spot.

• The speckle noise energy increases with the surface roughness below a specific value

and after that, fluctuates around a constant.

• For LDVom speckle noise, the energy increases with the scanning speed but the

signal drop-outs reduces in intensity and density.



6.1 Conclusions

6

103

The characteristics discovered provide some evidences for future mitigation of the

speckle noise:

• A bandpass filter would be effective to remove single-point speckle noise, but the

speckle noise would increase or reduce the vibration energy at the vibration fre-

quency.

• Using low scanning speed for LDVom can drop the speckle noise energy;

• Keeping the scanning surface smooth can reduce the speckle noise energy.

Q2: Based on the characteristics of the LDVom speckle noise shown in the Fourier spectrum,
how to mitigate the speckle noise from the frequency domain?

Chapter 3 provides the answer to the research question Q2. Fourier transform is theo-

retically conducted on the speckle noise series to investigate the frequency domain features.

Two de-noise approaches are proposed accordingly, with their advantages and limitations

discussed. The effectiveness of the proposed approaches is evaluated by experiments of

LDVom scanning a steel strip. The major conclusions are:

• A periodic oscillation has been discovered in the Fourier spectra of the LDVom

speckle noise. The first frequency peak of this oscillation equals to 𝑣𝑠/2𝐿, and the

frequency peak intervals equal to 𝑣𝑠/𝐿, where 𝑣𝑠 is the scanning speed and 𝐿 is the

diameter of LDV focusing spot.

• When the maximum target vibration frequency is much smaller than the first fre-

quency peak 𝑣𝑠/2𝐿, the noise energy at the vibration frequency will be small. There-

fore, a low-pass filter can mitigate most speckle noise and recover the vibration

signal. This low-pass filter can be implemented as an equipment unit for the real-

time de-speckling process. According to this finding, the LDVom scanning speed

should be as large as possible to mitigate the speckle noise. However, fast scanning

also means low measurement resolution and the scanning speed is limited by the

optical equipment used.

• When the target vibration frequency is close to or larger than the first frequency peak

𝑣𝑠/2𝐿, the vibration energy can be obtained by removing the oscillation trend of the

frequency spectra. However, due to our assumption of infinite speckle noise series

when conducting Fourier transform, this strategy is less effective with short signal

series. In addition, effectiveness drops while handling many vibration frequencies.

Q3: How does the adaptive approach, ensemble empirical mode decomposition (EEMD),
which processes signals from the time domain, perform on handling speckle noise?

Chapter 4 answers the research question Q3. Three signal processing approaches,

including the discrete wavelet transform, the band-pass filter and the ensemble empirical

mode decomposition (EEMD), are compared on their de-speckling effect. An algorithm is
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proposed based on EEMD with two steps: 1) adaptively cut off the signal drop-outs with

moving root-mean square envelopes; and 2) remove the first few intrinsic mode functions

(IMFs) related to the speckle noise. In addition, the resulted Hilbert-Huang spectra can

present the vibration features. The numerically simulated LDVom speckle noise is added

to different non-linear signals with different signal-to-noise ratio, in order to investigate

the effectiveness of the approaches. Signals from two experiments on the steel strip and

the downscale V-Track test rig are also studied. The major conclusions are:

• The classic discrete wavelet transform and band-pass filter keeps large distortions

produced by the speckle noise, especially when the original signal-to-noise ratio is

low.

• The proposed EEMD-based approach is effective to eliminate the speckle noise. It

achieves high correlation coefficient between noisy and processed signals, as well as

high post signal-to-noise ratio.

• The damage locations present highest local vibration energy in the Hilbert-Huang

spectrum.

• There are two issues of the EEMD-based approach. 1) It costs much computational

resources. 2) The selection of IMFs is dependent on operating experience, which

needs future investigation for automation.

Q4: How to develop a signal processing approach for mitigating speckle noise, as well as
decomposing signals to frequency bands for vibration analysis?

Chapter 5 aims to answer the research question Q4. In this chapter, an adaptive denosing

and signal decomposition (ADSD) approach is proposed to eliminate the speckle noise

and decompose the signal to different vibration modes. This approach consists of three

steps. In the first step, the signal series is divided to 𝑛 segments, on each we assume that

the vibration is continuous along the scanning direction. In the second step, the Fourier

spectrum is adaptively segmented, with each spectrum segment containing one vibration

mode. In the third step, a mathematical optimization is conducted to extract each vibration

mode. The numerically simulated LDVom speckle noise is added to different non-linear

signals with different signal-to-noise ratio, in order to investigate the effectiveness of the

approaches. Signals from three experiments on a steel strip, a fixed rail and the downscale

V-Track test rig are also studied. The major conclusions are:

• The proposed ADSD approach is effective to eliminate the speckle noise. It achieves

high correlation coefficient between noisy and processed signals, as well as high

post signal-to-noise ratio.

• The damage locations present highest local vibration energy in the Hilbert-Huang

spectrum.

• The LDVom and ADSD approach are applicable to scanning the rail and acquiring

high-frequency ultrasound vibrations.

• The ADSD approach still costs much computational resources.
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6.2 Applications of the research findings
There are multiple approaches proposed in this dissertation to simulate andmitigate LDVom

speckle noise. These approaches improve the signal quality of LDVom, so that LDVom

becomes feasible in filed applications. The following potential applications are proposed

accordingly:

• Based on the proposed approach to simulate speckle noise, it is convenient to char-

acterize many aspects of speckle noise and evaluate any de-speckling approaches for

LDVom. This numerical simulation is also flexible to change with different scanning

strategy, and therefore evaluating the noise level of new LDV scanning technology

is possible.

• Based on the Fourier analysis of speckle noise series, high scanning speed becomes

an advantage in mitigating speckle noise. Therefore, LDVom mounted on the vehicle

is suitable for railway scanning. With 30m/s running speed, the vibration with

frequency under 20 kHz is possible to be revealed. However, other field issues may

appear.

• With the EEMD-based and ADSD approaches, the signal quality has been improved.

These two approaches can be applied to eliminate speckle noise in many LDV

applications.

• Supported by our de-speckling strategies, LDVom technology can be applied in

monitoring large field structures, especially those requires to monitor the continuous

vibration responses.

6.3 Recommendations for future research
This dissertation provides an insight into the characteristics and the eliminating strategies

of LDVom speckle noise. The following are recommended for future research to extend

the current work.

• For the simulation of speckle noise, randomly distributed phasors from a Gaussian

distribution were chosen to simulate the speckle elements on the rough surface.

Measured distributions from rough surfaces should be adopted in the simulation.

Besides, the effect of focusing spot size is worth investigating.

• The proposed signal processing approaches for mitigating speckle noises are compu-

tationally heavy. Future research can also concern fast but accurate algorithms.

• The investigation of LDVom field applications should be the next step to further

develop this technology.
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7
Appendix I: A Theoretical
Framework for A Succinct

Empirical Mode
Decomposition

Empirical mode decomposition (EMD) lacks a strong theoretical support although extensively
applied. We propose a theoretical framework for a succinct EMD in this work, with the
assumption of invariant extrema locations for one IMF extraction. We define the envelope
mean filter (EMF) and prove that the filter matrix satisfies five properties. The sifting matrix
is convergent to an idempotent matrix. An IMF is the projection of the input signal on the
generalized eigenspace of the EMF matrix. An IMF is orthogonal to the residual signal, but
different IMFs have no orthogonality. With numerical experiments on different signals, our
framework achieves similar results to the classic EMD.

7.1 Introduction
Empirical mode decomposition (EMD) [1] is an adaptive time-frequency analysis technique

for processing nonstationary and nonlinear signals. It has evolved in algorithms [2, 3, 4,

5] and presented superior performances in extensive applications [6, 7, 8]. The intrinsic

mode functions (IMFs) acquired within naturally determined bandwidths represent the

oscillation modes and have physical meanings for Hilbert transform. An IMF should satisfy

that: (1) the numbers of extrema and zero-crossings differ by 0 or 1, and (2) the local mean

determined by envelopes is 0. For a discrete signal 𝑦(𝑡), Huang et al. [1] developed the

following sifting process to extract an IMF:

1. Identify the local extrema of the input signal ℎ𝑖(𝑡), where ℎ0(𝑡) = 𝑦(𝑡);

This chapter is based on the paper: Jin, Y., & Li, Z. Theoretical Framework for A Succinct Empirical Mode

Decomposition. IEEE signal processing letters (accepted).
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2. Calculates the upper and lower envelopes using the extrema and then calculate the

envelope mean 𝑀(𝑡);

3. Update ℎ𝑖+1(𝑡) = ℎ𝑖(𝑡) −𝑀(𝑡);

4. Repeat the upper steps with 𝑖 = 0,1,2, ... until ℎ𝑖+1(𝑡) becomes an IMF.

Although EMD is proposed on the basis of the Hilbert transform, its data-driven

algorithm lacks strong theoretical support. This is a significant issue of EMD. The primary

research decomposing the fractional Gaussian noise [9] revealed the filter characteristic of

EMD experimentally, with similar findings in [10, 11, 12, 13]. Yang et al. [14] demonstrated

that the cubic B-spline interpolation to formulate the local envelopes is a low-pass filter.

Indeed, the cubic spline filter constitutes a time-varying signal processing system [15],

and the bandwidth narrows with iteration [16]. An alternative approach, namely partial

differential equation [17, 18, 19], for calculating the envelope-mean provides an analytical

expression of EMD. However, these researches only concerned the expression of envelopes

and altering the envelope approach [20, 21, 22] did not promote the theory further. To our

best knowledge, a theoretical framework that interprets the sifting process and IMFs and

proves multiple properties (e.g., convergence and orthogonality) of EMD remains to be

developed.

In our work, we propose a theoretical framework for a succinct EMD. The difference

with classic EMD is our assumption that the locations of the extrema in the time domain

are invariant when extracting one IMF. The cubic spline interpolation is discussed and

several properties of the envelope mean are proved. The convergence of the sifting process

and the orthogonality of IMFs are investigated. In numerical experiments, we compare the

decomposition results under our framework with those of classic EMD.

7.2 Theory
7.2.1 Envelope mean
A time-varying filter bank consists of the decimator, filters and expander with their pa-

rameters altering with time [23, 24, 25]. The envelope mean calculated from cubic spline

interpolation is demonstrated as a time-varying filter [15]. Indeed, there are multiple

approaches (e.g., [5, 20]) to construct envelopes that present similar time-varying filter

properties, and thus we define the envelope-mean filter (EMF) for EMD.

Definition 1: For a time series (𝑡𝑚, 𝑦𝑚), 𝑚 = 1,2, ...,𝑁 , the signal envelopes are cal-

culated by interpolating with all maxima (𝑡𝑢𝑘 , 𝑦𝑢𝑘 ) (𝑘 = 1,2, ...,𝑁𝑢) and minima (𝑡𝑣𝑙 , 𝑦𝑣𝑙 )
(𝑙 = 1,2, ...,𝑁𝑣). The EMF is a time-varying filter by averaging the envelopes and the filter

matrix 𝑄 should satisfy the following properties:

1.1 Only the columns 𝑢𝑘 and 𝑣𝑙 contain non-zero values;

1.2 The summation of each row equals 1;

1.3 All entries 𝑞𝑖,𝑗 , 𝑖, 𝑗 = 1,2, ...,𝑁 are dependent on 𝑡𝑚, 𝑢𝑘 and 𝑣𝑙 , and independent on

any 𝑦𝑚;

1.4 The geometric multiplicity of eigenvalue 0 is at least 𝑁 −𝑁𝑢 −𝑁𝑣 +1;
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1.5 All eigenvalues 𝜆 ∈ [0,1].

The cubic spline envelopes construct such an EMF, and the proof requires the expression

of matrix 𝑄. First, we consider the upper envelopes using the maxima. Extracting the

maxima (𝑡𝑢𝑘 , 𝑦𝑢𝑘 ) from the signal (𝑡𝑚, 𝑦𝑚) is a time-varying multirate decimator [14, 15].

The general expression of natural cubic spline interpolation [26, 27, 28] on (𝑡𝑢𝑘 , 𝑦𝑢𝑘 ) is

𝑆𝑘(𝑡) =
𝑡 − 𝑡𝑢𝑘
Δ𝑡𝑢𝑘

𝑦𝑢𝑘+1 + (
(𝑡 − 𝑡𝑢𝑘 )

3

6Δ𝑡𝑢𝑘
−
Δ𝑡𝑢𝑘 (𝑡 − 𝑡𝑢𝑘 )

6
)𝑧𝑢𝑘+1

+
𝑡𝑢𝑘+1 − 𝑡
Δ𝑡𝑢𝑘

𝑦𝑢𝑘 + (
(𝑡𝑢𝑘+1 − 𝑡)

3

6Δ𝑡𝑢𝑘
−
Δ𝑡𝑢𝑘 (𝑡𝑢𝑘+1 − 𝑡)

6
)𝑧𝑢𝑘

(7.1)

Δ𝑡𝑢𝑘−1
6

𝑧𝑢𝑘−1 +
Δ𝑡𝑢𝑘−1 +Δ𝑡𝑢𝑘

3
𝑧𝑢𝑘 +

Δ𝑡𝑢𝑘
6

𝑧𝑢𝑘+1

=
1

Δ𝑡𝑢𝑘−1
𝑦𝑢𝑘−1 − (

1
Δ𝑡𝑢𝑘−1

+
1

Δ𝑡𝑢𝑘
)𝑦𝑢𝑘 +

1
Δ𝑡𝑢𝑘

𝑦𝑢𝑘+1
(7.2)

where, 𝑆𝑘(𝑡) is the interpolating function with 𝑡𝑢𝑘 ≤ 𝑡 ≤ 𝑡𝑢𝑘+1 , 𝑧𝑢𝑘 are the coefficients, Δ𝑡𝑢𝑘 =
𝑡𝑢𝑘+1 − 𝑡𝑢𝑘 , and 𝑧𝑢1 = 𝑧𝑢𝑁𝑢 = 0. Considering vectors 𝑌𝑢 = {𝑦𝑢𝑘 ∣ 𝑘 = 1,2, ...,𝑁𝑢}, 𝑍𝑢 = {𝑧𝑢𝑘 ∣
𝑘 = 1,2, ...,𝑁𝑢} and 𝑆 = {𝑆𝑘 𝑡𝑚 ∣𝑚 = 1,2, ...,𝑁 }, Equations (7.1) and (7.2) are rewritten in the

matrix form.

𝑆† = 𝐴1𝑌 †
𝑢 +𝐵𝑍†

𝑢

𝐶𝑍†
𝑢 = 𝐷𝑌 †

𝑢
(7.3)

where † represents the transpose of matrices or vectors. 𝐴1 (Eq. (7.4)) is a𝑁 ×𝑁𝑢 matrix with

entries �̂�𝑚,𝑘 =
𝑡𝑢𝑘+1−𝑡𝑚
Δ𝑡𝑢𝑘

, �̂�𝑚,𝑘+1 =
𝑡𝑚−𝑡𝑢𝑘
Δ𝑡𝑢𝑘

(𝑚 ∈ [𝑢𝑘 ,𝑢𝑘+1], 𝑘 = 1,2, ...,𝑁𝑢 −1) and others equaling

0. 𝐵 is a 𝑁 ×𝑁𝑢 matrix with entries �̂�𝑚,𝑘 = (𝑡𝑢𝑘+1−𝑡𝑚)
3

6Δ𝑡𝑢𝑘
− Δ𝑡𝑢𝑘 (𝑡𝑢𝑘+1−𝑡𝑚)

6 , �̂�𝑚,𝑘+1 =
(𝑡𝑚−𝑡𝑢𝑘 )

3

6Δ𝑡𝑢𝑘
−

Δ𝑡𝑢𝑘 (𝑡𝑚−𝑡𝑢𝑘 )
6 (𝑚 ∈ [𝑢𝑘 ,𝑢𝑘+1], 𝑘 = 1,2, ...,𝑁𝑢 −1) and others equaling 0. 𝐶 is a𝑁𝑢 ×𝑁𝑢 matrix with

entries 𝑐1,1 = 𝑐𝑁𝑢 ,𝑁𝑢 = 1, 𝑐𝑘,𝑘−1 =
Δ𝑡𝑢𝑘−1

6 , 𝑐𝑘,𝑘 =
Δ𝑡𝑢𝑘−1+Δ𝑡𝑢𝑘

3 , 𝑐𝑘,𝑘+1 =
Δ𝑡𝑢𝑘
6 and others equaling

0. 𝐷 is a 𝑁𝑢 ×𝑁𝑢 matrix with entries 𝑑1,1 = 𝑑𝑁𝑢 ,𝑁𝑢 = 0, 𝑑𝑘,𝑘−1 = 1
Δ𝑡𝑢𝑘−1

, 𝑑𝑘,𝑘 = −( 1
Δ𝑡𝑢𝑘−1

+ 1
Δ𝑡𝑢𝑘

),
𝑑𝑘,𝑘+1 = 1

Δ𝑡𝑢𝑘
and others equaling 0.

𝐴1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋱ ⋮ ⋮ ⋱

⋯ 𝑡𝑢𝑘+1−𝑡𝑚
Δ𝑡𝑢𝑘

𝑡𝑚−𝑡𝑢𝑘
Δ𝑡𝑢𝑘

⋯

⋯ 𝑡𝑢𝑘+1−𝑡𝑚+1
Δ𝑡𝑢𝑘

𝑡𝑚+1−𝑡𝑢𝑘
Δ𝑡𝑢𝑘

⋯

⋱ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7.4)

Matrix 𝐶 is strictly diagonally dominant and is thereby invertible [29, 30, 31]. Let 𝑒𝑛
represent an all ones vector with length 𝑛, and �⃗�𝑛 represent a zero vector with length

𝑛. Since the summation of each row from matrix 𝐷 equals 0, 𝑒𝑁𝑢 is the eigenvector of 𝐷
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corresponding to the eigenvalue 0. Considering the 𝑁 ×𝑁𝑢 matrix 𝐴2 = 𝐵𝐶−1𝐷, we can
obtain that

𝐴2𝑒†𝑁𝑢
= 𝐵𝐶−1𝐷𝑒†𝑁𝑢

= �⃗�†𝑁 (7.5)

𝑆† = (𝐴1 +𝐴2)𝑌 †
𝑢 (7.6)

According to Eq. (7.5), the summation of each row from matrix 𝐴2 equals 0. The next

step is upsampling the maxima 𝑌𝑢 to the signal 𝑌 , where vector 𝑌 = {𝑦𝑚 ∣𝑚 = 1,2, ...,𝑁 }.
Correspondingly, the matrices 𝐴1 and 𝐴2 are zero-padded with 𝑢𝑘+1 − 𝑢𝑘 − 1 columns

between the column 𝑘 and 𝑘 +1, 𝑘 = 1,2, ...,𝑁𝑢 −1 to achieve the 𝑁 ×𝑁 matrices 𝐴1 and 𝐴2.

Eq. 7.7 shows the zero-padding of 𝐴1.

𝐴1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋱ ⋮ 0 ⋯ 0 ⋮ ⋱

⋯ 𝑡𝑢𝑘+1−𝑡𝑚
Δ𝑡𝑢𝑘

0 ⋯ 0 𝑡𝑚−𝑡𝑢𝑘
Δ𝑡𝑢𝑘

⋯

⋯ 𝑡𝑢𝑘+1−𝑡𝑚+1
Δ𝑡𝑢𝑘

0 ⋯ 0 𝑡𝑚+1−𝑡𝑢𝑘
Δ𝑡𝑢𝑘

⋯

⋱ ⋮ 0 ⋯ 0 ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7.7)

We obtain the upper envelope interpolation matrix 𝐴𝑢 =𝐴1+𝐴2 and the upper envelope

𝑆 as

𝑆† = 𝐴𝑢𝑌 †
(7.8)

Therefore, (1) according to the zero-padding process, only the columns 𝑢𝑘 of 𝐴1 and 𝐴2
contain non-zero value and so for the matrix 𝐴𝑢 . (2) Since the summation of each row of

𝐴1 equals 1 and that of 𝐴2 equals 0, the summation of each row of 𝐴 equals 1. (3) Since

the entries of 𝐴1 and 𝐴2 are only dependent on 𝑡𝑚 and 𝑡𝑢𝑘 and the zero-padding process is

only dependent on 𝑢𝑘 , 𝐴𝑢 is only dependent on 𝑡𝑚 and 𝑢𝑘 .
Similarly, we can achieve the lower envelope matrix 𝐴𝑣 that satisfies: (1) only the

columns 𝑣𝑙 contain non-zero value; (2) the summation of each row equals 1; and (3) all

entries are only dependent on 𝑡𝑚 and 𝑣𝑙 . Therefore, the EMF matrix 𝑄 = (𝐴𝑢 +𝐴𝑣)/2 meets

the first three properties of our definition.

Since𝑁 −𝑁𝑢−𝑁𝑣 columns of𝑄 are all zero, thematrix rank of𝑄 is at largest𝑁𝑢+𝑁𝑣 . The

eigenspace for eigenvalue 0 contains at least 𝑁 −𝑁𝑢 −𝑁𝑣 linear-independent eigenvectors,

which are 𝑋𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, ..., 𝑥𝑖,𝑗 , ..., 𝑥𝑖,𝑁 ) with 𝑥𝑖,𝑖 = 1 and 𝑥𝑖,𝑗 = 0 (𝑗 ≠ 𝑖), 𝑖 ≠ 𝑢𝑘 ,𝑣𝑙 . We consider

the vectors 𝑃1 = (𝑝1,1, ..., 𝑝1,𝑗 , ..., 𝑝1,𝑁 ) with 𝑝1,𝑗 = 1 (𝑗 = 𝑢1,𝑢2, ...,𝑢𝑁𝑢 ) and others equaling 0,

and 𝑃2 = (𝑝2,1, ..., 𝑝2,𝑗 , ..., 𝑝2,𝑁 ) with 𝑝2,𝑗 = 1 (𝑗 = 𝑣1,𝑣2, ...,𝑣𝑁𝑣 ) and others equaling 0. Since the

summation of each row of 𝐴𝑢 or 𝐴𝑣 equals 1, we can obtain

𝐴𝑢𝑃†
2 = 𝐴𝑣𝑃†

1 = 𝐴𝑢𝑃†
1 = 𝐴𝑣𝑃†

2 = 𝑒†𝑁 (7.9)

Therefore, 𝑄 has another eigenvector 𝑋 = 𝑃1 −𝑃2 corresponding to eigenvalue 0. The

geometric multiplicity of eigenvalue 0 is at least 𝑁 −𝑁𝑢 −𝑁𝑣 +1.
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The last property is to determine the range of all eigenvalues. We consider the (𝑁𝑢 +𝑁𝑣)2
matrix 𝑄 that only contains the rows and columns 𝑢𝑘 ∪𝑣𝑙 of 𝑄. According to property

1.1, except eigenvectors 𝑋𝑖 of eigenvalue 0, the eigenvalue 𝜆 of 𝑄 is also that of 𝑄 and the

corresponding eigenvetor of 𝑄 is decimated at 𝑢𝑘 ∪𝑣𝑙 to that of 𝑄. First, 𝑄 has eigenvector

𝑒𝑁𝑢+𝑁𝑣 corresponding to eigenvalue 1. For any other eigenvector 𝑃 = {𝑝𝑖 ∣ 𝑖 = 1,2, ...,𝑁𝑢 +𝑁𝑣}
of 𝑄 (𝑄𝑃† = 𝜆𝑃†

), it should have the first local maximum 𝑝𝑠1 and minimum 𝑝𝑠2 . Since 𝑄
calculates the mean of interpolations 𝑓 (𝑝) for {𝑝2𝑖−1 ∣ 𝑖 = 1,2, ...} and �̂�(𝑝) for {𝑝2𝑖 ∣ 𝑖 = 1,2, ...},
we have the following relationships

𝑝𝑠1 −𝑄𝑃
† ∣𝑠1= (1−𝜆)𝑝𝑠1 > 0

𝑝𝑠2 −𝑄𝑃
† ∣𝑠2= (1−𝜆)𝑝𝑠2 < 0

𝑝𝑠1 > 𝑝𝑠2

(7.10)

Therefore, we can obtain 𝜆 < 1. Considering the entry 𝑝 of 𝑃 with maximum absolute

value and 𝑝 ∈ {𝑝2𝑖−1 ∣ 𝑖 = 1,2, ...} without loss of generality, we can obtain

∣ �̂�(𝑝) ∣≤∣ 𝑝2𝑖 ∣𝑚𝑎𝑥≤∣ 𝑝 ∣ (7.11)

Thus, we can derive that

𝜆𝑝2 = (
�̂�(𝑝) +𝑝

2
)𝑝 ≥ 0 (7.12)

Therefore, we can obtain 𝜆 ≥ 0. In addition, we can use mathematical induction to

prove that 𝜆 of 𝑄 are all real. Considering all the aforementioned, 0 ≤ 𝜆 ≤ 1 for matrix 𝑄 as

well as for matrix 𝑄.

7.2.2 Sifting process
Huang et al. [1] developed the sifting process to extract an IMF.We assume that the extrema

locations 𝑢𝑘 ,𝑣𝑙 are invariant when extracting one IMF. This is an approximation because

the extrema locations only moves a little surrounding the initial ones during sifting process.

Since 𝑄 is dependent on 𝑡𝑚, 𝑢𝑘 and 𝑣𝑙 and independent on any 𝑦𝑚, 𝑄 becomes invariant

when extracting one IMF. Therefore, the sifting process can be expressed as

𝜉† = lim
𝛽→+∞

(𝐼𝑁 −𝑄)𝛽𝑌 † = 𝐺𝑌 †
(7.13)

where, 𝜉 is an IMF, 𝑌 is the input signal, and 𝐼𝑁 is the 𝑁 2
identity matrix. 𝐺 = lim𝛽→+∞(𝐼𝑁 −

𝑄)𝛽 is the sifting matrix and the convergence of 𝐺 should be determined.

Considering the unit linear-independent generalized eigenvectors [32] 𝜚𝑖 of 𝑄 and their

corresponding eigenvalues 𝜆𝑖 (𝑖 = 1,2, ...,𝑁 ), the eigenvalues of 𝑅 = 𝐼𝑁 −𝑄 are 𝜇𝑖 = 1− 𝜆𝑖 .
Thus we have

(𝑅 − 𝜇𝑖𝐼𝑁 )𝜏𝜚†𝑖 = �⃗�†𝑁 , ∃ 𝜏 ∈ℕ+ & 𝜏 < 𝑁 (7.14)
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𝑅𝛽 − 𝜇𝛽𝑖 𝐼𝑁 = (𝑅 − 𝜇𝑖𝐼𝑁 )(
𝛽−1

∑
𝑗=0

𝜇𝑗𝑖𝑅
𝛽−1−𝑗 )

= (
𝛽−1

∑
𝑗=0

𝜇𝑗𝑖𝑅
𝛽−1−𝑗 )(𝑅 − 𝜇𝑖𝐼𝑁 )

(7.15)

Therefore, we can obtain

(𝑅𝛽 − 𝜇𝛽𝑖 𝐼𝑁 )
𝜏𝜚†𝑖

= (
𝛽−1

∑
𝑗=0

𝜇𝑗𝑖𝑅
𝛽−1−𝑗 )𝜏 (𝑅 − 𝜇𝑖𝐼𝑁 )𝜏𝜚†𝑖 = �⃗�†𝑁

(7.16)

Therefore, 𝜚𝑖 are the linear-independent generalized eigenvectors for eigenvalues 𝜇𝛽𝑖 of

𝑅𝛽
. Since 𝜇𝑖 ∈ [0,1], 𝐺 = lim𝛽→+∞𝑅𝛽

only has eigenvalues 0 and 1. Matrix 𝐺 is similar to a

Jordan normal form [33] with all diagonal entries of 0 and 1, and thus 𝐺 is convergent. We

also have

𝐺2 = lim
𝛽→+∞

𝑅2𝛽 = 𝐺 (7.17)

Therefore, 𝐺 is an idempotent matrix [34] and all the generalized eigenvectors 𝜚𝑖 are
indeed eigenvectors.

7.2.3 Intrinsic mode functions
Eq. (7.13) is used to calculate an IMF. Considering the input signal 𝑌 represented by the

unit linear-independent eigenvectors 𝜚𝑖 , we can obtain

𝜉† = 𝐺𝑌 † = 𝐺
𝑁
∑
𝑖=0

𝛼𝑖𝜚†𝑖 = ∑
𝜇𝑖=1

𝛼𝑖𝜚†𝑖 (7.18)

where 𝛼𝑖 are the projection scalar of 𝑌 on 𝜚𝑖 . Thus an IMF is indeed the projection of input

signal 𝑌 on the generalized eigenspace for eigenvalue 0 of EMF 𝑄, which corresponds to a

high-pass filtering process.

The ℂ𝑁
Euclidean space 𝑊 is the direct sum of two invariant eigenspaces 𝑊0 and 𝑊1

corresponding to the eigenvalues 0 and 1 of 𝐺, and𝑊0 ⟂𝑊1. Since 𝜉 ∈𝑊1 and 𝑌 − 𝜉 ∈𝑊0,

we have 𝜉 ⟂ (𝑌 − 𝜉 ). Therefore, the sifting process to extract one IMF is an orthogonal

decomposition.

Considering two IMFs 𝜉†1 = 𝐺1𝑌 †
and 𝜉†2 = 𝐺2(𝑌 − 𝜉1)†, for any 𝑌 , 𝜉1 ⟂ 𝜉2 is equivalent

to (𝐼𝑁 −𝐺†
1 )𝐺

†
2 𝐺1 is an anti-symmetric matrix with all 0 diagonals. However, different 𝑄

mostly do not satisfy this condition. The classic EMD using cubic spline interpolation does

not provide orthogonality between IMFs.
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Figure 7.1: Top panel: FFT spectra of IMFs by projection on the generalized eigenspace for eigenvalue 0 of 𝑄.
Bottom panel: FFT spectra of IMFs by the classic EMD.

7.3 Numerical experiments
7.3.1 Filter bandwidth
First, we decompose Gaussian white noise by classic EMD procedures and by projection on

the generalized eigenspace for eigenvalue 0 of 𝑄. The sifting process iterates 100 times for

the classic EMD procedures. The sampling frequency is 10 kHz and the length is 1 s for the

Gaussian white noise. Fig. 7.1 illustrates the fast Fourier spectra of IMFs to demonstrate

the filter bandwidths. Both FFT spectra present similar bandwidths for the corresponding

IMFs. EMD works as overlapped bandpass filters on the time series [9]. The corresponding

low-frequency IMFs with two decomposition procedures present different energy, which

may arise from our assumption of invariant extrema locations and the finite iteration times

of classic EMD.

7.3.2 Decomposition results
Second, a numerically generated signal 𝑌 consisting of a time-varying and a stationary

components (Eq. (7.19)) is decomposed using the classic EMD and our framework. The

sampling frequency is 10 kHz and the duration is 1 s.
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Figure 7.2: IMF1 and IMF2 achieved by projection on the generalized eigenspace for eigenvalue 0 of 𝑄.
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Figure 7.3: IMF1 and IMF2 achieved by the classic EMD.

𝑌1 =
𝑐𝑜𝑠(32𝜋𝑡 + 𝑐𝑜𝑠(64𝜋𝑡))

1.5+ 𝑠𝑖𝑛(2𝜋𝑡)
𝑌2 = 𝑠𝑖𝑛(200𝜋𝑡)
𝑌 = 𝑌1 +𝑌2

(7.19)

Fig. 7.2 illustrates the IMFs achieved by projection on the generalized eigenspace for

eigenvalue 0 of 𝑄. IMF1 and IMF2 agree well with 𝑌1 and 𝑌2, respectively. This indicates
the decomposition accuracy of our EMD framework. The classic EMD also achieves similar

results, as shown in Fig. 7.3.

Third, we decompose a seismic signal taken from [35], as shown in Fig. 7.4. Fig. 7.5

presents the Hilbert spectra by our EMD framework and the classic EMD. The spectra

demonstrate similar distribution, e.g., large energy concentration at three close locations

marked with the circles. The little decomposition difference may arise from our assumption

of invariant extrema locations and the finite iteration times of classic EMD.
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Figure 7.5: Top panel: Hilbert spectrum of IMFs by projection on the generalized eigenspace for eigenvalue 0 of

𝑄. Bottom panel: Hilbert spectrum of IMFs by the classic EMD.
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7.4 Conclusion
We propose a theoretical framework for EMD in this letter. The cubic spline interpolation

works as an EMF with the filter matrix satisfying five properties. The sifting process

matrix is convergent to an idempotent matrix only with eigenvalues 0 and 1. An IMF is

the projection of the input signal on the generalized eigenspace of EMF matrix 𝑄, which
corresponds to a high-pass filtering process. Numerical experiments demonstrate that our

framework achieves similar results to the classic EMD, although difference may result from

the assumption of invariant extrema locations and the finite iteration times of classic EMD.

However, different IMFs are not orthogonal. Future work will concern the construc-

tion of the EMF matrix for IMF orthogonality. In addition, experiments should consider

decomposing complicated signals and compare more EMD algorithms in the future work.
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8
Appendix II: A Fast Empirical

Mode Decomposition

Although empirical mode decomposition (EMD) is extensively investigated and widely applied,
its algorithm is time-consuming. We propose a fast EMD (FEMD) based on the newly developed
theoretical framework. In our expression, the sifting process is a linear transform and only
works on signal extrema. The theoretical time complexity dramatically decreases with FEMD,
especially when requiring considerable iterations. Numerical experiments on white noise
demonstrate the high time efficiency of FEMD. FEMD only costs 1/10 time of ‘emd.m’ in
MATLAB when iterating 1,000 times. Other experiments on simulated and real signals indicate
that FEMD can capture signal features with promising decomposition results.

8.1 Introduction
Empirical mode decomposition (EMD) is an adaptive signal processing approach for ana-

lyzing non-linear and non-stationary signals [1]. Although it works similar to filter banks

[1] [2], its bandwidth changes over time to obtain instantaneous frequencies, different from

Fourier transform and wavelet transform having certain bandwidths. The decomposition

results represent the natural modes determined by the signal itself, not only the modes

inside the preset frequency bands. Since proposed, this self-driven method [3] has been

successfully applied for extracting signal features in wide-range areas, including medical

and biological research [4] [5], analysing climate time-series [6] [7], identifying the me-

chanical faults [8] [9] and multi-dimension analysis [10] [11]. Many researches have also

complemented EMD [12] [13] and handled the issues including mode mixing [14] and end

effects [15]. In addition, a theoretical framework of EMD has been proposed recently to

support the decomposition algorithm [16], which will be the foundation of this paper.

Low computational efficiency restricts the application extent, especially in real-time

signal analysis and online mechanical system monitoring. Although showing better results,

it took around 70 minutes to process complicated signals with 30 thousand points, 500 times

This chapter is based on the paper: Jin, Y., & Li, Z. A Fast Empirical Mode Decomposition. (to be submitted to a

journal).
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slower than the wavelet transform [17]. Wang et al. [18] demonstrated that the theoretical

computational complexity of EMD is 41𝑆 ⋅𝑛𝑙𝑜𝑔2(𝑛), comparable to that of the fast Fourier

transform 𝑂(𝑛𝑙𝑜𝑔(𝑛)), where 𝑆 is the maximum iteration times and 𝑛 is the signal length;

However, they overlooked sifting iterations that may repeat thousands of times when

the signals are complicated [19]. Some researches focused on hardware acceleration to

reduce the consumed time (e.g. [20, 21, 22]), but the accelerations would still be limited

by the theoretical computational complexity. Developing a fast EMD (FEMD) algorithm is

required for improving time efficiency.

Some novel approaches have complemented the fast algorithm of EMD. Most of them

[23, 24, 25, 26] concentrated on the fast bidimensional and multivariate EMD algorithm,

but they improved time efficiency in multi-dimension interaction instead of the basic EMD

algorithm. An order-statistics filter was used in [27] [28], but the iteration times was

reduced to decrease the decomposition time. Other approaches were not evaluated with

signal-decomposition experiments [29] [30]. An effective FEMD algorithm remains to be

developed.

In this work, we propose a novel FEMD approach based on the recently developed

theoretical framework. Sifting process on the entire signal can be replaced by that on

the extrema. The accuracy and time efficiency of FEMD are evaluated with numerical

experiments.

8.2 Theory

8.2.1 Empirical mode decomposition

EMD decomposes the signals into intrinsic mode functions (IMFs) containing instantaneous

frequency information, with local means equal to 0. IMFs are signal functions satisfying

that (i) the number of extrema differs no more than 1 from that of zero-crossing points,

and (ii) the averages of upper and lower envelopes determined by the extrema should be 0.

The sifting process was designed to acquire IMFs using the following algorithm [1]:
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Algorithm 8 Pseudo codes of EMD

1: Input: original signal 𝑦(𝑥), maximum iteration times 𝑆, number of IMFs 𝑎𝑓 , original
residual 𝑟𝑒𝑠0(𝑥) = 𝑦(𝑥), and stop criterion value 𝑐

2: for 𝑗 = 1; 𝑗 <= 𝑎𝑓 ; 𝑗 = 𝑗 +1 do
3: ℎ𝑗,0(𝑥) = 𝑟𝑒𝑠𝑗−1(𝑥)
4: for 𝑖 = 1; 𝑖 <= 𝑆; 𝑖 = 𝑖 +1 do
5: Search for extrema of ℎ𝑗,𝑖−1(𝑥) and calculate the upper and lower envelops

𝑈𝑖(𝑥) & 𝐿𝑖(𝑥)
6: 𝑚𝑖(𝑥) = (𝑈𝑖(𝑥) +𝐿𝑖(𝑥))/2
7: ℎ𝑗,𝑖(𝑥) = ℎ𝑗,𝑖−1(𝑥) −𝑚𝑖(𝑥)
8: 𝑆𝐷 =∑𝑁

𝑥=0
|(ℎ𝑗,𝑖−1(𝑥)−ℎ𝑗,𝑖 (𝑥))|2

ℎ2𝑗,𝑖−1(𝑥)
9: if 𝑆𝐷 < 𝑐 then
10: 𝐶𝑗 (𝑥) = ℎ𝑗,𝑖(𝑥)
11: 𝑟𝑒𝑠𝑗 (𝑥) = 𝑟𝑒𝑠𝑗−1(𝑥) −𝐶𝑗 (𝑥)
12: break
13: end if
14: end for
15: end for
16: Output: all IMFs 𝐶𝑗 (𝑥), and the ultimate residual 𝑟𝑒𝑠𝑎𝑓 (𝑥).

The envelope mean calculation with cubic spline interpolation was demonstrated as a

time-varying filter [31]. This envelope-mean filter (EMF) is a linear transform on the input

signal 𝑌 = (𝑦1, 𝑦2, ..., 𝑦𝑛), and the corresponding matrix 𝑄 provides convergence for sifting

process [16]. The sifting process is expressed as [16]:

𝜉† = lim
𝑠→+∞

(𝐼𝑛 −𝑄)𝑠𝑌 †
(8.1)

where, † represents the transpose of a vector, 𝜉 is an IMF, 𝑠 is the iteration times, 𝐼𝑛 is an
identity matrix.

8.2.2 Fast algorithm design
Taking extrema (𝑢𝑘 , 𝑦𝑢𝑘 ) (𝑘 = 1,2, ...,𝑁 ) and considering matrix 𝑃 that only contains the

rows and columns 𝑢𝑘 of 𝑄, 𝑃 is an EMF on the extrema. According to [16], matrix 𝑄 only

has non-zero entries at columns 𝑢𝑘 . Considering matrix 𝑃 with entries 𝑝𝑢𝑖 ,𝑢𝑗 = 𝑞𝑢𝑖 ,𝑢𝑗 (entries
of 𝑄) and others equaling 0 and matrix 𝐴 = 𝑄 −𝑃 , we can obtain

𝐴2 = 𝑂𝑛

𝑃𝐴 = 𝑂𝑛
(8.2)

where 𝑂𝑛 is a 𝑛2 zero matrix. Eq. (8.2) holds due to the entries 𝛼𝑢𝑖 ,𝑢𝑗 = 0 of 𝐴. Indeed, 𝑃
is obtained by zero-padding between 𝑢𝑖 and 𝑢𝑖+1 columns and rows of 𝑃 . Therefore, 𝑃
calculates the envelope mean at extrema and 𝐴 calculates the envelope mean at other

discrete signal points.
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Considering the sifting matrix 𝐺 = (𝐼𝑛 −𝑄)𝑠 and the matrix 𝑅 = 𝐼𝑛 −𝑃 and using Eq. (8.2),

we can obtain

𝐺 = (𝑅 +𝐴)𝑠 = 𝑅𝑠 −𝐴(𝑅𝑠−1 +𝑅𝑠−2 +⋯+𝑅 + 𝐼𝑛) (8.3)

𝑅𝑠
is the sifting process on extrema, and 𝐴 only works once on sifting values 𝑅𝑠−1 +

𝑅𝑠−2+⋯+𝑅+ 𝐼𝑛 of extrema. Therefore, the input signal can be divided using two decimators

for extrema and the other discrete signal points:

𝑌1 = 𝑌 ∣↓𝑒
𝑌2 = 𝑌 ∣↓𝑜
𝑌 = 𝑌1 ∣↑𝑒 +𝑌2 ∣↑𝑜

(8.4)

where, ↓ 𝑒 represents down-sampling to extrema, ↓ 𝑜 represents down-sampling to the

others, and ↑ 𝑒 & ↑ 𝑜 represent corresponding upsamling with zero-padding. Therefore, we

have

𝑅𝑌 †
1 ∣↑𝑒 = ((𝐼𝑁 −𝑃 )𝑌 †

1 ) ∣↑𝑒
𝑅𝑌 †

2 ∣↑𝑜 = 𝑌 †
2 ∣↑𝑜

𝑅𝑌 † = ((𝐼𝑁 −𝑃 )𝑌 †
1 ) ∣↑𝑒 +𝑌

†
2 ∣↑𝑜

𝐴𝑌 †
2 ∣↑𝑜 = 0⃗†𝑛

(8.5)

where, 0⃗†𝑛 is 𝑛th all zero vector. According to Eqs. (8.3) and (8.5) and considering 𝑅 = 𝐼𝑁 −𝑃 ,
we can obtain

𝐺𝑌 † = (𝑅𝑠𝑌 †
1 ) ∣↑𝑒 +𝑌

†
2 ∣↑𝑜 −𝐴(

𝑠−1
∑
𝑖=0

(𝑅𝑖𝑌 †
1 ) ∣↑𝑒) (8.6)

This expression dramatically reduces the calculation in Eq. (8.1). According to Eq. (8.6),

our FEMD algorithm is developed as follows:
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Algorithm 9 Pseudo codes of FEMD

1: Input: original signal 𝑦(𝑥), maximum iteration times 𝑆, number of IMFs 𝑎𝑓 , and
original residual 𝑟𝑒𝑠0(𝑥) = 𝑦(𝑥)

2: for 𝑗 = 1; 𝑗 <= 𝑎𝑓 ; 𝑗 = 𝑗 +1 do
3: 𝑌 = 𝑟𝑒𝑠0(𝑥), 𝑌1 = 𝑌 ∣↓𝑒 , 𝑌2 = 𝑌 ∣↓𝑜
4: Search for extrema of 𝑌 and construct matrices 𝑄, 𝐴 and 𝑅
5: ℎ = 𝑌1, 𝑔 = 0⃗𝑁
6: for 𝑖 = 1; 𝑖 <= 𝑆; 𝑖 = 𝑖 +1 do
7: 𝑔 = 𝑔 +ℎ
8: ℎ† = 𝑅ℎ†
9: end for
10: 𝐶𝑗 (𝑥)† = (ℎ†) ∣↑𝑒 +𝑌

†
2 ∣↑𝑜 −𝐴𝑔† ∣↑𝑒

11: 𝑟𝑒𝑠𝑗 (𝑥) = 𝑟𝑒𝑠𝑗−1(𝑥) −𝐶𝑗 (𝑥)
12: end for
13: Output: all IMFs 𝐶𝑗 (𝑥), and the ultimate residual 𝑟𝑒𝑠𝑎𝑓 (𝑥).

Since extrema far from the interpolation point would have little effect on the interpola-

tion value, we approximate matrix 𝑄 and thus 𝑃 & 𝐴 to reduce calculation. For any row

𝑖 ∈ [𝑢𝑘 ,𝑢𝑘+1), we replace the entries 𝑞𝑖,𝑗 with 𝑗 < 𝑢𝑘−5 or 𝑗 > 𝑢𝑘+5 in 𝑄 with 0, where 𝑢𝑘−5 = 0
with 𝑘 ≤ 5 and 𝑢𝑘+5 = 𝑛 with 𝑘 ≥ 𝑁 −4.

Considering that all calculations, e.g, multiplication, division, addition and comparison

have the same time complexity as in [18], the time complexity of the classic EMD is [18]:

𝑓𝑐 = 11𝑛
𝑎𝑓
∑
𝑗=1

𝑆𝑗 +30
𝑎𝑓
∑
𝑗=1

𝑆𝑗 ⋅𝑎𝑘𝑗 (8.7)

where, 𝑆𝑗 is the iteration times to extract 𝐶𝑗 (𝑥) and 𝑎𝑘𝑗 is the extrema number. Similarly

calculated, the time complexity of our FEMD is:

𝑓𝑜 = 14𝑛𝑎𝑓 +12𝑆
𝑎𝑓
∑
𝑗=1

𝑎𝑘𝑗 +10
𝑎𝑓
∑
𝑗=1

𝑎𝑘𝑗 (8.8)

where, when extracting an IMF, extrema decimator costs 2𝑛, cubic spline interpolation
and corresponding matrices cost 23𝑎𝑘𝑗 [18], calculating ℎ and 𝑔 costs 12𝑆𝑎𝑘𝑗 − 𝑎𝑘𝑗 , calcu-
lating 𝑌 †

2 ∣↑𝑜 −𝐴𝑔† ∣↑𝑒 costs 12(𝑛 − 𝑎𝑘𝑗 ). All matrix calculations use sparse matrix forms.

Considering 𝑆𝑗 = 𝑆 and ∑
𝑎𝑓
𝑗=1 𝑎𝑘𝑗 = 𝑎 ⋅𝑎𝑓 , we can have

𝑟𝑓 =
𝑓𝑜
𝑓𝑐

=
14𝑏 +10+12𝑆
11𝑏 ⋅ 𝑆 +30𝑆

(8.9)

where 𝑏 = 𝑛/𝑎 > 1. By comparison, 𝑓𝑜 is less than 𝑓𝑐 when each sifting process requires

2 or more iterations. With the increase of iteration times, their complexity ratio 𝑟𝑓 ∼ 12
11𝑏+30 .

Therefore, the time complexity of our FEMD algorithm is far smaller, which theoretically

demonstrates its time efficiency.
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Table 8.1: The computational time with different algorithms.

𝑓𝑠 iterations FEMD EMD in [16] emd.m

0.1 MHz

100 1.929 s 6.383 s 4.297 s

1000 5.238 s 32.208 s 45.342 s

1 MHz

100 20.561 s 62.348 s 58.125 s

1000 66.926 s 441.048 s 634.366 s

8.3 Numerical experiments
8.3.1 Time efficiency
First, a white noise series with duration 1 s and sampling frequency 𝑓𝑠 0.1 MHz or 1 MHz

to evaluate the time efficiency. The classic EMD with theoretical framework in [16] and

that with ‘emd.m’ function in MATLAB are used for comparison. The iteration times are

set 100 and 1000.

Table 8.1 summaries the computational time with different algorithms. The EMD

with theoretical framework in [16] and the optimized MATLAB function ‘emd.m’ present

similar computational complexity. Their computational time increases dramatically with

increasing iterations. Our FEMD algorithm outperforms the others. With 1000 iterations,

FEMD only costs around 1/10 time of ‘emd.m’. Therefore, the proposed FEMD demonstrates

high computational efficiency in decomposing signals.

8.3.2 Simulated signal analysis
Second, two simulated signals 𝑦𝑠1 (𝑡) and 𝑦𝑠2 (𝑡) (Eqs. (8.10) and (8.11)) taken from [32] are

decomposed to evaluate the decomposition accuracy. The sampling frequency is 10 kHz

and the duration is 1 s. The number of iterations is 1000.

𝑦𝑠1 = 6𝑡 + 𝑐𝑜𝑠(8𝜋𝑡) +
1
2
𝑐𝑜𝑠(40𝜋𝑡) (8.10)

𝑦1(𝑡) =
1

1.2+ 𝑐𝑜𝑠(2𝜋𝑡)

𝑦2(𝑡) =
1

1.5+ 𝑠𝑖𝑛(2𝜋𝑡)
𝑐𝑜𝑠(32𝜋𝑡 +0.2𝑐𝑜𝑠(64𝜋𝑡))

𝑦𝑠2 = 𝑦1(𝑡) +𝑦2(𝑡)

(8.11)

Figs. 8.1 and 8.2 illustrate the decomposition results of 𝑦𝑠1 . FEMD achieves similar IMFs

and residual signal to EMD. The IMFs reveal the signal components of 𝑦𝑠1 . End effects

appear in the IMFs, which is a common issue of EMD [1]. The computational time of EMD

is 1.075 s while that of our FEMD is 0.269 s.

The decomposition results of 𝑦𝑠2 are presented in Figs. 8.3 and 8.4. The two algorithms

also achieve identical results. The IMFs and residual signals reveal the original signal

components. The computational time of EMD is 0.199 s while that of our FEMD is 0.034 s.
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Figure 8.1: IMFs and residual signal of 𝑦𝑠1 achieved by FEMD.
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Figure 8.2: IMFs and residual signal of 𝑦𝑠1 achieved by the EMD in [16].
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Figure 8.3: IMF and residual signal of 𝑦𝑠2 achieved by FEMD.
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Figure 8.4: IMF and residual signal of 𝑦𝑠2 achieved by the EMD in [16].

8.3.3 Real signal analysis
Third, an electrocardiogram (ECG) signal taken from [33] and a seismic signal taken from

[34] (Fig. 8.5) are decomposed by FEMD. Figs. 8.6 and 8.7 illustrates the IMFs of the ECG

signal. The decomposition results of the two algorithms are identical, and the IMFs have

revealed the regular heartbeat energy. The computational time of EMD is 0.564 s while that

of our FEMD is 0.089 s. The decomposition results of the seismic signal are also promising,

and the IMFs reveal the first arrival and large energy locations. The computational time

of EMD is 0.436 s while that of our FEMD is 0.061 s. Our FEMD approach demonstrates

accuracy and time efficiency in decomposing signals.
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Figure 8.5: Top panel: an ECG signal. Bottom panel: a seismic signal.
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Figure 8.6: IMFs of the ECG signal achieved by FEMD.
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Figure 8.7: IMFs of the ECG signal achieved by the EMD in [16].
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Figure 8.8: IMFs of the seismic signal achieved by FEMD.
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Figure 8.9: IMFs of the seismic signal achieved by the EMD in [16].
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8.4 Conclusion
In this work, we propose a novel FEMD algorithm based on a recently developed theoretical

framework [16]. By derivation, the sifting process only works on signal extrema. Using

two decimators for extrema and the other discrete signal points, our FEMD dramatically

reduces the time complexity, especially when requiring considerable iterations.

With numerical experiments on the white noise, our FEMD outperforms the others.

The computational time reduces to 1/10 that of ‘emd.m’ in MATLAB. Other experiments

demonstrate that FEMD can capture signal features with promising decomposition results.
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