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Abstract: With changes in weather patterns and intensifying anthropogenic water use, there is
an increasing need for spatio-temporal information on water fluxes and stocks in river basins.
The assortment of satellite-derived open-access information sources on rainfall (P) and land use/land
cover (LULC) is currently being expanded with the application of actual evapotranspiration (ETact)
algorithms on the global scale. We demonstrate how global remotely sensed P and ETact datasets
can be merged to examine hydrological processes such as storage changes and streamflow prior to
applying a numerical simulation model. The study area is the Red River Basin in China in Vietnam,
a generally challenging basin for remotely sensed information due to frequent cloud cover. Over this
region, several satellite-based P and ETact products are compared, and performance is evaluated using
rain gauge records and longer-term averaged streamflow. A method is presented for fusing multiple
satellite-derived ETact estimates to generate an ensemble product that may be less susceptible, on a
global basis, to errors in individual modeling approaches. Subsequently, monthly satellite-derived
rainfall and ETact are combined to assess the water balance for individual subcatchments and types
of land use, defined using a global land use classification improved based on auxiliary satellite data.
It was found that a combination of TRMM rainfall and the ensemble ETact product is consistent
with streamflow records in both space and time. It is concluded that monthly storage changes,
multi-annual streamflow and water yield per LULC type in the Red River Basin can be successfully
assessed based on currently available global satellite-derived products.

Keywords: global satellite-derived data; intercomparison; evapotranspiration; Red River Basin;
hydrological modeling; water accounting

1. Introduction

Global surface and ground water resources are under increasing pressure from human water use
and climate change [1–3]. Well-informed decision-making on water management is essential for coping

Remote Sens. 2016, 8, 279; doi:10.3390/rs8040279 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2016, 8, 279 2 of 28

with tensions between water availability and water demand. This requires a feasible methodology
for quantifying the current state of water resources in terms of hydrological flows and connectivity,
as well as indicators of water use and reuse [4]. Once reasonable estimates of these quantities have
been established, simulation models can be used to examine the predicted consequences of different
scenarios related to policy adjustments, climate change, land use modifications, etc. (e.g., [5]).

The fundamental components of the water balance that need to be quantified include precipitated
water, consumed water, water withdrawals, and non-consumed water with varying definitions
and sub-classifications to be found in widely used water assessment frameworks such as Water
Footprint [6], Water Accounting Plus (WA+) [7], and System of Environmental-Economic Accounts for
Water (SEEA-Water) [8], among others. Relating precipitation and/or withdrawals to consumptive
use through evapotranspiration provides a basis for an assessment of weekly or monthly surplus
(i.e., groundwater recharge, drainage, surface runoff dynamics) or deficit (i.e., irrigation, inundation,
return flows and their reuse). The role of soil water storage changes is essential at smaller time scales
and should get sufficient attention [9].

Satellite-derived datasets have been increasingly put to use in the field of water resources
management at a range of different spatio-temporal scales. They provide valuable information
in poorly gauged or inhospitable areas and transcend political borders. By now, methodologies
for deriving precipitation (P) and actual evapotranspiration (ETact) from remotely sensed data are
well-established [10–12]. For purposes of water accounting, identification of management options and
relating water consumption to services and benefits, it is desirable to relate the quantified flows to
types of land use and land cover (LULC) within a river basin or, ideally, to individual water users.
This facilitates a description of water users in a river basin in terms of their dependency on water
from different sources, as well as the extent to which they “produce” water for potential downstream
reuse [4].

A number of global-scale satellite-derived data products (GSDPs) for P, ETact and LULC are
available. Many of these are already in the public domain or soon to be released, which makes
them a valuable and easily accessible resource for water management researchers, consultants and
policy makers. Scientific literature provides a substantial body of review work on these products and
their fundamental algorithms. Open-access rainfall GSDPs are extensively evaluated in scientific
literature for a variety of geographical areas across the globe, e.g., [13–18]. Existing GSDPs on
LULC and their validation are discussed for example by Mora et al. [19] and Tsendbazar et al. [20].
Conversely, global-scale ETact products based on remote sensing are relatively new. A wealth of
literature on satellite-based techniques for quantifying ETact is available [21] and the basic algorithms
are well-documented [22–26]. Many institutions are now taking the next step by developing and
distributing operational evapotranspiration products for the globe at spatial resolutions of ď5 km.
ETact GSDPs provide independent datasets for calibrating hydrological models and land surface
models. Comparative analyses of ETact models applied on the continental to global scales have recently
come available and typically compare two individual satellite-derived ETact products for specific
regions [27–31], some also including ETact outputs from global hydrological models and land surface
models [32]. Comprehensive evaluations of a larger number of satellite-derived ETact estimates, in the
style of the many P assessments that are available, have so far only sparsely been conducted [33,34].
This is related to the limited availability of these products in the public domain up to now, which is
currently changing rapidly.

Some recent papers have focused on integrating rainfall, ETact and LULC GSDPs and their
combined potential for assessments of water resources. Bastiaanssen et al. [35] successfully computed
the annual water balance of the Nile basin, including net withdrawals. Wang-Erlandsson et al. [36]
demonstrated how global P and ETact time series can be used to compute the storage capacity of the
root zone. The integrated use of satellite-derived P and ETact is a reality check on a pixel-by-pixel basis
and an opportunity to check data quality that goes beyond the comparison with individual rain gauges
or eddy covariance towers, which both cover very limited areas. If quality is found to be satisfactory,
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such data can be integrated in hydrological modeling procedures on the regional and global scale.
In addition, Hain et al. [37] demonstrated how ETact retrieved from energy balance can be combined with
an inferred local water balance to diagnose ancillary sources and sinks of moisture across landscapes,
e.g., due to intensive irrigation or agricultural drainage, or access to shallow water tables.

In this paper, we aim to: (1) demonstrate how integrating satellite-derived P, ETact and LULC
maps constitutes an important pre-analysis in the first stages of hydrological modeling; (2) show
that consistency between hydrological variables is a way to evaluate and compare individual earth
observation products, with a focus on five new global ETact products; and (3) evaluate the suitability
of global satellite-derived data products for assessing water resources in a basin with challenging
conditions for remote sensing. We present our case in the context of the transboundary Red River
Basin in Southeast Asia, traditionally a problematic region for remote sensing because of weather
patterns, but also a basin with pressing water management issues where limited international data
sharing hampers a comprehensive understanding of basin water use and hydrology.

2. Materials and Methods

2.1. Study Area

The Red River Basin (Figure 1) can be roughly divided in an upstream half situated in the province
of Yunnan in southern China and a downstream half in northern Vietnam, with a minor portion of less
than 1% located in Lao PDR. Its total surface area is approximately 164,000 km2. The Red River has two
main tributaries: Da River (Lixian in Chinese) and Lo River (Panlong). The upstream part of the basin
is largely forested, mountainous and sparsely populated. The delta of the Red River, downstream of
the confluence of the three major branches, is a densely populated area of great importance to Vietnam
for its agricultural productivity and economic activity.
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basin [41]. The resulting variability of river discharge in space and time, as well as population growth, 
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Figure 1. The Red River Basin. Elevation was obtained from the Shuttle Radiometer Topography
Mission (SRTM) data, and the main river network and catchment boundaries were derived from the
SRTM elevation map. The stream network downstream of Son Tay mainly consists of irrigation canals
and was provided by the Institute of Water Resource Planning (IWRP) in Vietnam.

Annual rainfall varies substantially across the Red River Basin, with values between 700 and
3000 mm found based on long-term station time series [38,39], while even local annual averages of
over 4000 mm/year are reported [40]. Approximately 80% of this rainfall occurs in the months May
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to October, which comprise the wet season for both the Vietnamese and the Chinese portion of the
basin [41]. The resulting variability of river discharge in space and time, as well as population growth,
lead to substantial challenges related to flood control and water stress, particularly in Vietnamese
territories [42]. Water management options across the basin have increased with the construction of
five large multi-purpose reservoirs in the Vietnamese Da River and tributaries of the Lo River, as well
as manifold smaller hydropower dams in both China and Vietnam. However, this has also increased
the need for spatiotemporal data on water availability to support reservoir management [43].

At the tail end of the basin, the Red River Delta has seen many centuries of human water
management, from the construction of hydraulic works for protection from floodwaters to the support
of irrigation by avoiding inflow of brackish water and enhancing land drainage, making use of tidal
influences if possible. Three zones can be distinguished: the lowlands, midlands, and highlands,
based on their elevation relative to the water table [44]. The spatial distribution of water resources
across the Delta is unequal, with some areas approaching the minimum level of water availability
required to “sustain life and agricultural production” [45]. Most of the surface area of the Delta is
characterized by rice paddies for a major part of the year. Typically, two rice seasons are observed,
an irrigation-dependent spring season and a rainfall-dependent summer season [46]. If irrigation
water availability allows, farmers grow a third “dry” crop such as vegetables or maize during the
October–February period, particularly in the highlands and midlands. Reuse of drainage water within
irrigation schemes is substantial [47]. Still, non-consumed irrigation water is one of the main sources
of aquifer recharge, and thus of industrial and domestic water supply [48]. The outflow from the
complex stream network of the Red River Delta into the Gulf of Tonkin occurs through nine different
outlets [49].

2.2. Land Use/Land Cover

The current application requires an accurate and recent LULC map covering northern
Vietnam/southern China with a sufficient level of spatial detail, validity for a year within the past
10–15 years and distinguishing between classes relevant for the nature of water use, including a class
for irrigated cropland. An overview of existing global LULC maps is provided by Mora et al. [19],
with spatial resolutions ranging from mid-resolution (300–500 m) to lower resolution (ě1 km)
products. In addition, the first high-resolution Landsat-based global LULC products are now also
available [50,51]. The number of classes of the available LULC maps varies from 9 to 37, and years of
coverage from 1992 to 2012. Based on the criteria mentioned above, in particular Globcover 2009 [52]
and GLCNMO2008 [53] were identified as potentially suitable inputs to this study.

Accuracies of global LULC products were previously found to be in the range of 69%–87% [12].
Ongoing initiatives such as the Global Observation for Forest Cover and Land Dynamics
(GOFC/GOLD) of ESA seek to enhance the quality of global LULC products. In the meantime,
auxiliary satellite images from the public domain are helpful to enhance LULC maps for a specific
region. We adopted an approach of deriving an optimized LULC map for the Red River Basin derived
from a combination of existing LULC GSDPs and time series of freely available MODerate resolution
Imaging Spectroradiometer (MODIS) satellite images [54] a proven methodology for improving
the accuracy of LULC maps [55,56]. Regional-scale improvement of global land cover products,
incorporating auxiliary data and a priori knowledge, leads to more accurate and actionable water
accounting information.

The 300 m Globcover 2009 map was taken as the basis for the new LULC map. Although the
spatial distribution of forested and shrubland classes seems in accordance with expert knowledge,
the original Globcover 2009 product largely contains rainfed cropland pixels for the Red River Delta.
This is erroneous when viewed against the abundant presence of irrigation infrastructure. However,
there is a blurred line between rainfed and irrigated agriculture in the region, as the wet-season is likely
rainfed in both classes, with water coming from rainfall or recession of seasonal floods [57]. The main
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distinctive feature between locations with a single, exclusively rainfed crop and multi-cropped areas
with at least one irrigated cycle is therefore the occurrence of a winter and/or spring crop [58].

According to the Globcover 2009 validation report [59], irrigated pixels are regularly misclassified
as other agricultural classes. Therefore, to correct the Globcover 2009 agricultural classes, first all cells
containing >50% cropland were merged into a single cropland class. MODIS Normalized Difference
Vegetation Index (NDVI) values within the merged cropland class during the spring season were
decisive in distinguishing irrigated from rainfed agriculture. Pixels covered by clouds, as indicated
by the MODIS pixel reliability layer, were omitted from this analysis. No gapfilling of individual
images was performed, in order to only include pixels directly sensed by MODIS with sufficient quality.
An average NDVI of at least 0.55 in the months March to May was used as a criterion for identifying
irrigation, in accordance with the typical Red River Delta spring cropping cycle. A different cropping
calendar was identified from NDVI time series analyses for the northern parts of the basin, with a
pronounced peak during January. For this reason, a second precondition of a minimum NDVI of at
least 0.55 in January was introduced to account for irrigation in the upstream portion of the basin.
The underlying assumption is that an NDVI of 0.55 for cropland in the Red River Basin cannot be
achieved in January or March–May by relying solely on rainwater.

In addition to the correction of the Globcover 2009 cropland classification, a visual assessment of
the original map against high-resolution satellite imagery indicated an underestimation of urban area
in the Red River basin. It was observed that the urban land use class of GLCNMO2008 is more realistic
and these cells were therefore introduced to represent built-up area in the improved LULC map. As a
final step, isolated pixels were filtered out using a GIS focal majority filter.

MODIS NDVI time series of three major classes in the final LULC map are displayed in Figure 2.
While some noise is apparent due to the different cloud masks applied to each of the individual images,
distinct temporal patterns are clearly identified. The second annual cropping season in the irrigated
class is clearly visible when compared to the rainfed cropland. A third, less pronounced peak of
irrigated NDVI values can be observed in the winter months. Year-to-year differences of winter and
spring crop NDVI are illustrative of varying water availability. As is to be expected, average NDVI of
the merged forested class remains relatively stable and high (>0.5) throughout the entire year.
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Figure 2. Normalized Difference Vegetation Index (NDVI time series of three main Land Use / Land
Cover (LULC) classes in 2000–2014 based on the 250 meter MODIS NDVI products MOD13Q2 and
MYD13Q2. “Forest” is comprised of all forested classes in the Globcover 2009 product.

The final, enhanced LULC map is depicted in Figure 3. Visual comparison with the recently
released IWMI map of irrigation in Asia [60], retrieved 19 November 2015) shows similar spatial
distributions of rainfed and irrigated land. As the Red River Delta has been the main focus area of
previous studies, availability of validation data is mainly limited to this area. The modifications to the
original Globcover 2009 yield a total irrigated area of 869,029 ha in the 10 provinces that together make
up the Red River Delta administrative region. Literature sources report irrigated acreages varying
from 670,000 to 850,000 ha, although the exact spatial and temporal scope of these figures is not
always specified in these studies [43,45,61–63]. These values are all somewhat lower than the acreage
found in a recent Advanced Synthetic Aperture Radar (ASAR)-based study, reporting 1,180,000 ha
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of double-cropped rice for 2007–2011 [58], so some uncertainty persists. Overall, the new LULC map
corresponds well with the majority of available information from other sources and suffices for the
current purpose.
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2.3. Rainfall

A spatially distributed monthly rainfall product is required which covers the Red River Basin
for the last 10–15 years. Existing rainfall GSDPs with over 10 years of data in the period 2000 to
present and a spatial resolution of ď0.25 degree were downloaded and evaluated: the Tropical Rainfall
Measurement Mission monthly best estimate (TRMM 3B43 v7), the global rainfall estimate based on
the CPC MORPHing technique (CMORPH) and the Climate Hazards Group InfraRed Precipitation
with Station dataset (CHIRPS v1.8). Since no readily available CMORPH monthly product exists,
three-hourly data were aggregated to obtain monthly values. Table 1 presents the main characteristics
of the rainfall GSDPs evaluated for the Red River Basin.

Table 1. Evaluated rainfall GSDPs for the Red River Basin. The basin-wide mean rainfall (µ) and
year-to-year standard deviation (σ) are reported for the overlapping period (January 2003–December
2014). April–September and October–March rainfall statistics are listed separately to reflect the regional
seasonality of rainfall.

Product
Temporal
Coverage

Original/Applied
Resolution

Key
References

Annual P
(mm)

Apr-Sep P
(mm)

Oct-Mar
Rainfall (mm)

µ σ µ σ µ σ

TRMM 3B43 v7 January 1998–
October 2015 0.25˝/25 km [64] 1545.7 121.8 1301.6 69.9 244.1 61.0

CHIRPS v1.8 January 1981–
present 0.05˝/5 km [65] 1403.2 115.2 1223.1 88.4 180.0 40.2

CMORPH December
2002– present 0.25˝/25 km [66] 1169.3 173.2 1070.8 150.8 98.5 39.5

In order to select the most accurate rainfall product for the target basin, the performance of
each of the GSDPs was assessed by means of ground observations. Daily rainfall station data were
purchased from the Vietnamese National Center for Hydro-Meteorological Forecasting (NCHMF) and
downloaded from the NOAA Global Summary of the Day (GSOD) database, as distributed by the
National Climatic Data Center (NCDC). In total, multiple years of rainfall data for 76 gauges were
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available for GSDP validation. Figure 1 indicates the location and amount of data available for each
station. A full list of all rain gauges can be found in Table A1. Data from 62% of these stations are
not provided in the public domain and are therefore particularly suitable for validation, since the
TRMM and CHIRPS algorithms incorporate a calibration procedure based on open-access rainfall
gauge measurements. Nevertheless, it was decided to also include public GSOD data in this validation
exercise as otherwise no validation data from Chinese territories would be available.

Figure 4 shows plots of satellite-derived monthly rainfall data against rain gauge measurements.
Of the three evaluated products, the TRMM regression line is closest to the line of 1:1 correspondence,
followed by CHIRPS and CMORPH respectively. A few outliers are clearly visible, where high gauged
rainfall amounts do not correspond with satellite-derived estimates. These were all recorded at the
Bac Quang station. It is unclear if this signifies a problem with the measurement station or the GSDPs.
However, as these 10 points make up only a minor portion of the total number of monthly rainfall
values evaluated (10,368), their impact on further analyses is negligible.
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Figure 4. Comparison of monthly rain gauge data with three satellite products for the overlapping
period January 2003–December 2014. The dashed line indicates a 1:1 correspondence and the red line
gives the linear regression best fit with 0 intercept.

The error in monthly rainfall estimates for each of the products is further evaluated in Figure 5.
With ´5.83 mm, CHIRPS has a slightly lower error than TRMM, while the mean error of CMORPH
monthly rainfall estimates are furthest from measured values. It is interesting to note that, although the
CHIRPS mean error is lower than the TRMM mean error, the standard deviation of the CHIRPS error
is higher as a result of the amount of months with large error values. Table 2 lists a number of other
commonly used validation statistics. These indicate a favorable performance of TRMM in terms of the
relationship between measured and estimated values (r), the relative mean absolute error (RMAE),
and the predictive power of the algorithm relative to the gauged mean (Nash–Sutcliffe coefficient).
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Table 2. Other pairwise validation statistics for three satellite products (S) based on all available station
records (G) during the overlapping period (January 2003–December 2014).

Indicator Formula CHIRPS TRMM CMORPH

Pearson correlation coefficient r (´) r “
ř

pG´ GqpS´ Sq
b

ř

pG´ Gq2
b

ř

pS´ Sq2
0.851 0.884 0.786

Relative Mean Absolute Error RMAE (´) RMAE “
1
n
˚

ř

|pS´ Gq|
G

0.327 0.296 0.427

Nash-Sutcliffe Model Efficiency
Coefficient NS (´)

NS “ 1´
ř

pS´ Gq2
ř

pG´ Gq2
0.721 0.777 0.585

Bias (´) Bias “
ř

pSq
ř

pGq
0.956 1.055 0.857

Based on the findings discussed above, TRMM was identified as the most suitable GSDP for
describing monthly rainfall in the Red River basin. This is in line with earlier findings that TRMM
is the most favorable option for satellite-derived rainfall on the monthly scale in an area in southern
China [67], and a successful application of TRMM precipitation in a modeling study in central
Vietnam [68]. Apparently, for the Red River Basin, the higher spatial resolution of the CHIRPS
product does not lead to a more accurate assessment of rainfall when compared to the point scale.
It should be noted that some of the GSOD stations used for validation may also have been part of the
TRMM and CHIRPS algorithms, whereas CMORPH is uncorrected for station values.

It is often decided to perform a bias-correction of rainfall GSDPs based on ground observations.
However, special attention should go to the issue of scale when comparing point measurements
of rainfall gauges to coarse pixels [69]. Naturally, a 25 km pixel can be quite heterogeneous
e.g., in terms of topography, and different rainfall rates may occur over short distances within a
grid cell. Vernimmen et al. [70] discuss in detail how the presence of multiple ground stations within
a grid cell enhances opportunities for validation. In the Red River Basin, five TRMM pixels were
identified containing two rainfall stations (Figure A1). The records of these gauges were averaged per
pixel and plotted against TRMM values. This resulted in a slope of the fitted line of 0.97 (Figure A2).
This increase relative to 0.93 (Figure 4) indicates that performance of TRMM seems satisfactory in
terms of representing intra-pixel variability. Although the sample size is insufficient to draw any
definitive conclusions, this brief analysis does not provide a reason for assuming that a point-based
bias correction would improve the 25-km TRMM rainfall estimate.

2.4. Actual Evapotranspiration

2.4.1. Available ETact Products

While the network of rain gauges in the Red River Basin is sufficient to arrive at a well-informed
choice of an optimal GSDP for precipitation, this is unfortunately not the case for evapotranspiration.
No network of ETact measurements is available for the Red River Basin, limiting the foundation for
selecting a single ETact GSDP. We therefore take an ensemble approach to defining ETact across the
basin, combining information from multiple GSDPs.

In this study, five ETact products were evaluated with a coverage of the Red River Basin at
a spatial resolution of ď5 km with a time series of over 10 years: the MODIS Global Terrestrial
Evapotranspiration Product (MOD16, [22]), the Operational Simplified Surface Energy Balance
(SSEBop, [23]), the revised Surface Energy Balance System (SEBS, [25]), CSIRO MODIS Reflectance
Scaling actual ET (CMRSET, [24]), and the Atmosphere-Land Exchange Inverse (ALEXI) water and
energy budget model [71]. Although these products all use MODIS satellite data to some extent,
their fundamental modeling strategies are markedly different. SSEBop and SEBS rely on MODIS land
surface temperature (LST) data for determination of the latent heat flux. ALEXI uses a similar approach
but integrates a range of different spaceborne data sources. CMRSET combines a vegetation index for
estimating photosynthetic activity with shortwave infrared reflections to estimate vegetation water



Remote Sens. 2016, 8, 279 9 of 28

content and presence of standing water. MOD16 follows the Penman–Monteith logic and relies on
visible and near-infrared data to account for Leaf Area Index (LAI) variability. The latter is currently the
only global product that has been tested and reviewed in a substantial number of scientific articles [29].
For a detailed description of each of the ETact algorithms, the reader is referred to the citations listed
in Table 3.

Table 3. Properties of evaluated ETact products for the Red River Basin. The basin-wide mean
ETact (µ) and year-to-year standard deviation (σ) are reported for the overlapping period (January
2003–December 2012). Temporal coverages indicate the time series of each product that were (made)
available for this study.

Product
Temporal
Coverage

Original/Applied
Resolution

Key
References

Annual ETact
2003–2012 (mm)

Apr-Sep
ETact (mm)

Oct-Mar
ETact (mm)

µ σ µ σ µ σ

MOD16(A2) January 2000–
December 2015 926 m/1 km [22,29] 1008.9 21.0 625.7 10.5 383.2 10.1

SSEBop January 2003–
December 2013 1 km/1 km [23,72] 885.8 36.8 613.9 11.4 271.9 25.1

SEBS January 2001–
December 2013 5 km/5 km [25] 1153.8 65.2 724.9 22.2 428.9 49.6

CMRSET January 2000–
December 2012 0.05˝/5 km [24] 960.2 47.2 564.5 23.1 395.7 26.8

ALEXI January 2003–
December 2014 0.05˝/5 km [71,73] 1103.5 33.4 709 12.8 394.5 25.5

ALEXI is the only model for which no preprocessed monthly product was available. Therefore
weekly values were aggregated to monthly maps, with ETact during weeks overlapping two months
being proportionally divided over these months. Maps of annually averaged ETact for the Red River
Basin in 2003–2012 retrieved from the five aforementioned methods can be found in Figure A3.

Table 3 lists the basin-averaged ETact according to the individual products. The annual average
ETact in 2003–2012 falls within a range of 268 mm, with SSEBop on the low end and SEBS on the high
end of the values. It is interesting to note that the standard deviation of seasonal sums in the dry
season is higher than in the wet season for all products. This reflects the different ways in which the
algorithms simulate evapotranspiration under stressed conditions; during the rainy season, ETact will
likely equal ETpot most of the time. None of the retrieved annual ETact amounts conflict with reported
values for reference evapotranspiration in the Red River Basin [39], or with the basin annual average
potential evapotranspiration (ETpot) of 1306 mm according to a 1 km global dataset on long-term
average monthly ETpot distributed by CGIAR [74].

Karimi and Bastiaanssen [12] report a mean absolute percentage error of 5.4% for remote
sensing-based ETact estimations. However, the range of values in Table 3 indicates that algorithms
developed for the global scale yield substantially different outlooks on the Red River Basin water
balance. This is also visible when comparing the spatial patterns in Figure A3. Specific locations
where ETact values of the different products correspond or contradict can be observed in Figure A4,
where a spatial depiction of the coefficient of variation (CV) in annual average ETact is provided per
pixel. The highest CV values are observed in areas with high elevation along some of the subbasin
boundaries, where especially SEBS deviates from the other GSDPs (see Figure A3). A high CV is also
found in the coastal zone, possibly caused by differing methodologies for dealing with standing water,
or differences in applied land/water masks.

Examining the monthly variability of ETact for different LULC classes against a priori knowledge
is a way to further evaluate the five models. Figure 6 shows how monthly ETact varies for three major
land use types: irrigated cropland, rainfed cropland and the merged forested classes. In general,
the different products agree reasonably well in terms of temporal patterns in monthly ETact, and no
clear discrepancies are observed in relation to known monthly rainfall patterns. The least temporal
variation is observed in CMRSET, and the highest in SEBS followed by SSEBop. Rainfed agriculture
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has generally the lowest ETact of these three LULC classes, according to all products. It is found that
all models compute a reduction in the difference between the rainfed and irrigated classes as the
wet season progresses. This is to be expected to a certain extent, as rainfed crops will have access to
sufficient water during this period. The difference remains the largest in SSEBop ETact, whereas almost
full convergence of the rainfed and irrigated CMRSET curves occurs from July onwards. MOD16 is
the only model that predicts ETact to be highest for the forest class throughout the year. ALEXI and
CMRSET predict a very similar time series for the forested and irrigated classes, which may seem
surprising as the physical conditions of these ecosystems are rather different. However, both forest
and irrigated crops have access to ancillary moisture unavailable to rainfed crops (the forests due to
deeper rooting depths), and with the current information it is difficult to determine which of the five
temporal curves for these LULC types are most realistic. Despite the differences between products,
Figure 6 does not provide sufficient basis for excluding any of the ETact models from further analyses.
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2.4.2. Solving the Water Balance to Evaluate ETact

As the information available for the Red River Basin is insufficient to verify the quality of the
ETact products independently from rainfall, TRMM data were used in combination with streamflow
records to check the closure of the water balance:

Q “ P´ ETact ´ ∆S (1)

where Q is measured river discharge and ∆S is the change in catchment storage. Fundamental
hydrological principles and the law of mass conservation dictate that, over a number of hydrological
years, the rainfall surplus (P ´ ETact) should equal Q at the downstream end of a catchment. In this
study, the storage change over a period of 10 years is assumed to be negligibly small. Time series
of daily river discharge were purchased from the NCHMF for the hydrological stations indicated in
Figure 1. Metadata of these stations are provided in Table A2. Using SRTM elevation data, upstream
catchments were derived for each of the available measurement stations. Bac Me, Muong Te and Lao
Cai are located in mountainous areas and all have a catchment located for the largest part in China.
Hoa Binh, Yen Bai and Vu Quang are located at downstream points in the Da, Thao and Lo subbasins,
respectively. The Son Tay station is located after of the confluence of the Da, Thao and Lo Rivers.
No streamflow time series is measured downstream from Son Tay [49,75].

First, a preliminary check of the reliability of these Q data was performed by checking the
consistency of temporal patterns between upstream and downstream stations in the same river
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branch (Figure A5). Although the upstream and downstream stations in the Da and Lo basins follow
approximately the same pattern, the time series for the Thao River are quite different. For the years 2004
and 2005, hardly any runoff seems to be generated in the largely forested area of 14,000 km2 between
Lao Cai and Yen Bai, while in 2003–2004 Q measurements downstream are even lower than upstream
(in other words, net consumption seems to occur), which is impossible given the size and dominant
LULC types of the area. As the Yen Bai discharge curve corresponds well with temporal patterns
observed at other stations, it was decided to eliminate Lao Cai from further analyses. Averaged over
the overlapping period of records, Yen Bai, Vu Quang and Hoa Binh, the three downstream stations in
the subbasins, measure 92.8% of the total runoff at Son Tay. This is according to expectations, with the
remaining 7.2% to be generated in the small intermediate area. In short, the analysis of streamflow
records yields sufficient confidence in all available measurement stations, with the exception of Lao Cai.

It was decided to use long-term streamflow at one downstream gauging station to assess the
area-averaged ETact. Son Tay is the obvious choice, as it is located downstream of the confluence of the
main tributaries and upstream of the Red River Delta, the main area of water demand. ETact upstream
from Son Tay was compared against TRMM rainfall and measured streamflow in Table 4. Hydrological
years were defined from 1 April until 31 March of the subsequent calendar year, in order to include
one full wet and dry season. Using this precipitation and streamflow dataset, SSEBop shows the best
performance over this basin in terms of accordance with the laws of mass conservation, overestimating
P minus Q by only 3.4%. For all other ETact products, values are found to exceed P minus Q with a
range of 14.0% (CMRSET) to 34.3% (SEBS).

Table 4. TRMM rainfall (P), measured streamflow at Son Tay (Q) and ETact from each of the products
for the overlapping period of hydrological years. Only the area upstream of the gauging station has
been considered.

Hydr. year P (mm) Q (mm) P ´ Q (mm)
ETact (mm)

MOD16 SSEBop SEBS ALEXI CMRSET

2003/2004 1401.0 604.3 796.7 1023.0 821.5 1084.1 1110.1 946.4
2004/2005 1590.3 703.0 887.3 984.4 860.7 1144.8 1059.1 911.5
2005/2006 1452.5 701.4 751.1 1023.4 836.3 1065.7 1094.1 916.1
2006/2007 1519.2 656.4 862.9 1006.5 826.9 1077.7 1124.7 918.8
2007/2008 1615.8 761.3 854.5 1018.3 883.4 1196.5 1028.6 870.0
2008/2009 1793.1 948.7 844.4 1017.1 884.8 1128.1 1067.8 1007.3
2009/2010 1386.4 674.6 711.8 1006.5 821.2 1024.7 1124.3 978.7
2010/2011 1482.5 594.8 887.7 970.0 917.0 1167.7 1065.5 986.3
2011/2012 1423.8 531.8 892.0 1005.8 891.7 1165.7 1152.4 1001.2
Average 1518.3 686.3 832.0 1006.1 860.4 1117.2 1091.8 948.5

It is important to realize that the aforementioned differences between P minus Q and ETact are
not only a product of uncertainties in satellite-derived P and ETact. A variety of factors cause a
potentially significant uncertainty in streamflow records, with errors of 10%–20% not uncommon
for single observations [76–78]. In the Red River Basin, local stage-discharge relations may become
outdated after a number of years, depending on geology, in-stream sand mining and changes in
erosion-sedimentation patterns due to reservoir construction. Specifically for the Son Tay gauging
station, a error of 10%–15% in streamflow values was reported in 2014 [49]. Since the SSEBop retrieval
of ETact falls well within this range of accuracy, we assume that it represents the upstream conditions
most accurately in terms of absolute ETact. Still, the outcomes of such assessments should be regarded
as comparative analyses, rather than absolute validation exercises.

2.4.3. Construction of an Ensemble ETact Product

While P minus Q comparisons provide a means for assessing general reasonability of ETact

retrievals at basin scales, they provide no information about the relative model accuracy in spatially
distributing ETact. Each of the algorithms incorporates different inputs, procedures and assumptions,
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leading to substantial differences in spatial patterns between models, which can be viewed in
Figures A3 and A4. Previous studies demonstrated that the performance of a certain ETact algorithm is
dependent on factors such as LULC type, climate and the presence of mountains [27–29,33,34], meaning
that the accuracy of ETact predictions will vary across a basin. An ensemble approach was taken toward
generating “best-guess” maps of ETact in the Red River Basin, under the assumption that spatial
errors between related yet differing mapping approaches will tend to cancel in the ensemble average.
A superior performance of different ETact ensemble products with respect to individual algorithms
was previously observed for the Nile Basin [79], where flux towers were available for validation.

To identify models that are spatially most similar, spatial patterns were analyzed in terms of the
Pearson correlation coefficient (r) at the pixel level (Table 5). A minimum value of 0.5 was assumed to
represent a sufficiently strong spatial correlation to warrant combination in an ensemble ETact product.
It was found that the correlation between all pair-wise combinations of ALEXI, MOD16 and SSEBop
was above this threshold, whereas CMRSET and SEBS do not achieve this level of correlation with any
of the products. Pixel values of monthly ETact for ALEXI, MOD16 and SSEBop were scaled around 1
(the average for each product upstream of Son Tay) and the resulting maps were averaged to create
a relative ETact map for each month. Finally, these relative values were multiplied with the SSEBop
ETact Son Tay catchment average. In this way, a final monthly ETact product was constructed that is
congruent with the basin water balance inferred from P minus Q, as well as with the spatial patterns
predicted by the majority of the available ETact GSDPs. The resulting annual ensemble ETact for the
Red River Basin is presented in Figure 7.

Table 5. Pearson correlation coefficient of annually averaged ETact pixel values in the entire Red River
basin. Bold values are higher than 0.5.

ALEXI CMRSET MOD16 SEBS SSEBop

ALEXI 0.249 0.679 0.181 0.714
CMRSET 0.249 0.095 0.408 0.419
MOD16 0.679 0.095 0.111 0.539

SEBS 0.181 0.408 0.111 0.383
SSEBop 0.714 0.419 0.539 0.383
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3. Results

In this section, the ensemble-averaged ETact is used to study the water budget of the Red River
basin. Long-term rainfall surplus is examined to determine the net production and consumption of
water resources across the basin, in wet vs. dry seasons, and per LULC class. Subsequently, monthly
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runoff patterns are investigated for each subcatchment and storage changes are expressed as a function
of rainfall surplus.

3.1. Rainfall Surplus

Rainfall surplus (Psur) can be viewed as the total water budget available for generating surface
runoff, replenishing aquifers, or recharging soil moisture stores. The partitioning of Psur among
different hydrological processes depends on factors such as soil type, slope, and intensity of
precipitation. For multi-annual time scales on which ∆S can be neglected, Psur equals the water
yield (P ´ ETact ´ ∆S), the comprehensive term that is transported downstream through surface and
sub-surface pathways to constitute river flow.

Figure 8 presents the rainfall surplus in the Red River Basin for 2003–2012. From this map it
can be concluded that the Red River Basin in a sense is an atypical river basin, with the upstream
part generating relatively little runoff. Particularly the forested areas of the northern portion of the
basin have a low Psur over this ten-year period. Rainfall is lower here than in other parts of the
basin, and forests likely grow deep roots to tap into aquifers. The highest Psur occurs in the central
part of the basin, a transitional area between the low-lying southeast and the mountainous north,
with peak values of up to 1300 mm/year. From the perspective of transboundary water management,
it is interesting to note that the majority of the average annual Psur occurs in Vietnamese territories
(825.4 mm, or ~73,000 km3), while only 390.3 mm (~30,000 km3) is produced in China.
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Figure 8 shows that the irrigated Red River Delta on average does not consume water on the
annual scale. This, however, is not the case when examining the irrigated spring rice season. Figure 9a
shows how Psur becomes negative due to water withdrawals during February–April 2010, when a net
water consumption of up to 100 mm is observed in the delta. In general, a negative Psur can be partially
related to changes of water storage in the unsaturated zone, but a negative value during elongated
periods is indicative of withdrawals. During the rainy summer season, Psur is high in the entire basin
(Figure 9b). Within the delta, Psur is observed to be highest in the western part, where drainage is the
most challenging due to the low relative altitude in relation to the water level [44].
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To evaluate water consumers and producers in the Red River Basin, the spatially distributed
Psur assessment was coupled with the improved LULC map (Figure 3). Table 6 provides an overview
of water consumption and production by the different LULC classes in the Red River Basin. It is
found that, on average, there is no net water-consuming LULC class on the annual scale. The largest
amount of water in the Red River basin is produced by the extensive forest and shrubland ecosystems
(an annual total of 62.3 km3). In total, 102.6 km3 (or 621 mm/year) of water is produced on average
per year, which can be viewed as an estimation of the total outflow of the complex stream network of
the Red River Delta.

Table 6. Overview of consumptive use and water production per LULC class in the Red River Basin
for the period 2003–2012.

LULC Class
Area
(km2)

P
(mm/Year)

P
(km3/Year)

ETact
(mm/Year)

ETact
(km3/Year)

µ Psur
(mm/Year)

σ Psur
(mm/Year)

Produced
(km3/Year)

Irrigated—double or
triple crop 22,655.8 1591.5 36.1 890.3 20.2 701.2 256.1 15.9

Rainfed—single crop 18,898.5 1175.1 22.2 736.8 13.9 438.4 261.2 8.3
Mosaic vegetation
(<50% cropland) 20,925.8 1586.4 33.2 886.5 18.6 699.9 304.7 14.6

Closed to open
broadleaved evergreen or

semi-deciduous forest
32,431.4 1601.6 51.9 948.7 30.8 652.9 345.1 21.2

Closed broadleaved
deciduous forest 1817.3 1534.1 2.8 860.2 1.6 674.0 363.6 1.2

Open broadleaved
deciduous

forest/woodland
4281.5 1411.3 6.0 880.6 3.8 530.7 349.3 2.3

Open needleleaved
deciduous or

evergreen forest
11,948.4 1477.5 17.7 857.6 10.2 620.0 347.9 7.4

Closed to open mixed
broadleaved and

needleleaved forest
3460.1 1327.7 4.6 839.4 2.9 488.3 299.2 1.7

Closed to open shrubland 46,406.2 1522.5 70.7 913.4 42.4 609.1 338.4 28.3
Closed to open

herbaceous vegetation 396.5 1633.3 0.6 958.1 0.4 675.2 180.7 0.3

Urban areas 593.6 1618.4 1.0 852.5 0.5 765.9 168.3 0.5
Total 165,178.1 249.1 146.4 102.6

One of the most striking findings from this analysis is that a relatively large amount of water is
produced by areas classified as irrigated cropland, while the opposite is found for the single-cropped
rainfed class. Although this may be counterintuitive, it is caused by the geographical concentration of
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single crop agriculture in areas with a relatively low annual rainfall (˘1000–1300 mm). It is observed
that the areas equipped with irrigation infrastructure (particularly the delta) are generally receiving
more rainfall from the Tonkin sea during the rainy season than the zones dominated by rainfed
agriculture further land inwards. Therefore, the observed higher ETact in double- or triple-cropped
systems (890.3 mm/year vs. 736.8 mm/year) does not lead to a lower rainfall surplus compared to
single crop agriculture. This very high summer rainfall in the delta is a known phenomenon, and the
different tributaries and canals essentially serve as drainage canals during this period [80].

3.2. Runoff Response Patterns and Storage Changes

When considering time scales of a single year or smaller, the change in storage ∆S becomes an
essential component of the water balance. By relating the measured Q from different gauging stations
to upstream Psur, it is possible to e.g., identify the locations within a river basin where most streamflow
originates, and the time periods when water stores in the soil profile and aquifers are replenished.

For different sections of the Red River Basin, measured streamflow and satellite-derived Psur are
compared in Figure 10. In the rainy season, streamflow from the catchments of all available stations
typically lags behind the increase in Psur by 1 to 2 months, while the decline in both parameters around
September occurs simultaneously. This is likely caused by water storage in aquifers and the soil profile,
occurring up to the point of saturation after which all Psur will be discharged as surface runoff. River
discharge in parts of the Red River Basin is largely managed, as several large man-made reservoirs are
present aimed at flood buffering and hydropower generation [81]. Dry season flow is highest at Hoa
Binh and Vu Quang, where artificial storage capacity in the upstream catchments is largest.
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Table 7 lists the long-term Q/Psur values for each of the catchments. Some values deviate
substantially from 100%, which indicates that the 2003–2012 ∆S term may not be negligible for these
areas. The low 10-year average of 80.9% for Muong Te can be explained by the construction of several
dams in the Chinese part of the Da basin. In previous work [82], at least nine hydropower reservoirs
were identified that were commissioned in the years 2007–2009. The filling of these reservoirs in
the preceding years has caused an average Q/Psur of 56.1% until March 2007, whereas for April
2007 till September 2012 a value of 99% is found, indicating an almost perfect closure of the water
balance by satellite-derived Psur. The total volume of water stored in the new Chinese reservoirs in
Da River and its tributaries between April 2003 and March 2007 is estimated at 22.7 km3. Another
interesting finding is that annual Q/Psur values for the Hoa Binh catchment continuously exceed
100%, whereas the opposite is observed for the adjacent Yen Bai catchment. In combination with
the satisfactory agreement between P, ETact and Q data in other catchments, and in the absence of
any notable interbasin transfers (to our knowledge), this phenomenon may be partly explained by
groundwater flow from the Thao basin to the Da basin.

Table 7. Comparison of streamflow Q and rainfall surplus Psur for each catchment, with slopes and R2

for linear relationships between monthly Q and upstream Psur. Also given are the values of Q/Psur

during the rainy season. All values represent the 2003–2012 period.

Station Q/Psur (%) Q/Psur Slope (´) R2
Monsoonal Q/Psur

May June July August September

Bac Me 98.4 0.60 0.66 0.37 0.55 1.07 1.78 1.68
Muong Te 80.9 0.49 0.61 0.15 0.28 0.61 0.80 1.03
Vu Quang 101.0 0.50 0.67 0.71 0.54 0.91 0.86 1.57

Yen Bai 87.2 0.33 0.65 0.52 0.43 0.45 0.61 1.39
Hoa Binh 125.9 0.65 0.72 0.59 0.71 0.94 0.98 2.21
Son Tay 107.2 0.43 0.71 0.74 0.56 0.71 0.79 1.43

To compare monthly Q and Psur, Table 7 lists the slope and R2 obtained from linear regression
between both variables. For the entire gauged portion of the Red River Basin (upstream of Son Tay),
43% of rainfall surplus is converted to surface runoff. The highest Q/Psur value of 0.65 is found for Hoa
Binh catchment, whereas only 33% of Psur contributes to surface runoff upstream of Yen Bai. A reason
for this difference is likely the catchment topography, with a lower average slope in the upstream
catchent of the latter station. In addition, average annual Psur is substantially higher in Hoa Binh
with 730 mm as opposed to 460 mm for Yen Bai, increasing the frequency of occurrence of saturated
conditions in the soil profile.

Although the multi-annual Q and Psur are congruent at the subcatchment scale, it is not obvious
that a correlation on the monthly scale should be expected. Especially in dry months when the
catchment storage is relatively empty, a low and stable Q is observed (likely driven by baseflow) that is
not significantly affected by variability in monthly Psur. During wet months, however, the progression
of the Q/Psur ratio is representative of the changing response of the catchment to rainfall. Table 7
lists average Q/Psur for each of the months in the rainy season. A similar pattern is observed for
all catchments, in which the ratio increases as the rainy season progresses and exceeds 1 at the end
of monsoon in September. This consistent increase of Q/Psur suggests that in the Red River Basin
saturation excess processes are dominant in runoff generation, rather than Hortonian runoff occurring
during high-intensity precipitation events [83,84]. Monthly Q/Psur values substantially higher than 1
could occur due to groundwater flow between catchments, or human actions; e.g. when large volumes
of water are released from the reservoirs. These releases occur in particular during the monsoonal
months, when flood buffering capacity is required and a maximum water level is maintained [85].
Although these management actions are expected to affect Q/Psur, the natural processes of streamflow
generation still appear clearly in the figures in Table 7.
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As correlation between Q and Psur is logically weak for specific months, it is not yet feasible
to predict Q for every month solely from remote sensing. This could change when ETact GSDPs
come available on a daily basis, which will enable a detailed investigation of the relation between
cumulative Psur from the start of the hydrological year and the Q/Psur term [84]. However, a clear
relation is observed between monthly Psur and ∆S, as the storage capacity of the Red River Basin is
not fully satisfied for the major part of the year. Therefore, it is possible to express volumetric ∆S
as a function of remotely sensed Psur. Figure 11 depicts a plot of monthly ∆S vs. Psur, upstream of
Son Tay. A clockwise hysteresis pattern can be observed. Linear models were derived that enable
the prediction of ∆S without the need for ground observations. From December until the start of the
rainy season in April, the slope of the models is near to 1 with a relatively stable intercept in the order
of 23–29 mm, which can be viewed as the contribution of groundwater to streamflow. The slope of
the model decreases as storage fills up and the contribution of Psur to Q increases. As Psur values
decrease in September and October due to declining rainfall, the low intercept is representative of the
rainwater from previous months that is now taken out of storage to contribute to streamflow. Errors in
the derived models for monsoonal months are partly caused by human interventions in Red River
water management, and this approach is expected to work even better in more “natural” river basins.
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4. Discussion

With the increasing availability of global actual evapotranspiration data in the public domain,
in addition to rainfall and land use/land cover, it is now possible to quantify the main components
of the water balance for river basins in a distributed manner. This paper shows that rainfall surplus
can be successfully computed from global satellite-derived data products for monthly, annual and
multi-annual time scales. The total annual water yield of 102.6 km3 computed for the entire Red River
Basin is an estimation of long-term river outflow, which is especially valuable because of the lack
of streamflow gauges in the Red River Delta [75]. In non-saturated conditions, spatially distributed
monthly Psur is strongly related to changes in storage, and monthly ∆S can thus be quantitatively
determined from satellite data. These findings demonstrate that assessments of rainfall surplus from
satellite-derived P and ETact potentially facilitate sound water accounting in ungauged river basins
that was previously impossible due to missing ground data.

It was found that the SSEBop ETact product succeeds in closing the water balance of the Red River
Basin with respect to TRMM rainfall and longer-term streamflow records, while the other products
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seem to have a tendency to overestimate ETact. The range of average annual ETact values according to
different products is found to be rather large (268 mm/year) and illustrates the need for a thorough
comparison. For areas with frequent cloud cover, a part of this range is likely attributed to the various
ways in which the ETact algorithms deal with cloud-covered skies and data gaps. The observed
difference between the individual models is somewhat inconsistent with the very low errors in
satellite-derived ETact that were found in the review by Karimi and Bastiaanssen [12], which illustrates
the current disparity between region-specific ETact estimate with opportunities for parameter-tuning
and extractions from global datasets. It was found that for the Red River Basin spatial patterns of
MOD16, SSEBop and ALEXI are similar, and this finding has been used to compute the areal ETact

patterns from these three ETact products with equal weight. The fundamental differences between
a relatively simple, largely LST-based model (SSEBop), an algorithm with more advanced physics
incorporating temporal LST variability and a separation between evaporation and transpiration
(ALEXI), and a method strongly reliant on LAI (MOD16), support the assumption that the selected
models complement each other in terms of performance over a heterogeneous terrain. The consistency
between satellite-derived Psur and measured Q in terms of both inter- and intra-annual variability,
as well as their agreement for individual subcatchments, put confidence in the constructed ensemble
ETact maps.

Previous studies in other basins have yielded differing outcomes regarding the relative
performance of the respective ETact algorithms. Therefore, the appropriate choice of models for
basin-scale normalization is expected to vary from basin to basin. In future studies, depending
on the properties of the river basin at hand, different types of ensemble products may be suitable.
It is advised that future research focuses on reviewing the strengths and weaknesses of the ETact

GSDPs with respect to different LULC types and climate zones, with the aim to achieve a reliable
satellite-derived ETact estimation on the global scale. When doing so, the uncertainties associated with
each of the components of the water balance, including streamflow records, should receive sufficient
attention. It should be noted that the ETact products applied in this research are in differing stages
of development and substantial progress is to be expected in the next few years. For example, future
versions of the ALEXI product will implement microwave-based LST [86] to provide estimates of ETact

over all-sky conditions which is particularly important over the Red River basin during persistently
cloudy periods. This use of microwave LST will help constrain estimates of ETact during such periods,
which currently rely on gap-filling techniques with high uncertainty and are likely responsible for
some of the overestimation of ETact seen in this study.

Analyses of global remote sensing products provide a valuable first outlook on the main
hydrological processes within a river basin, especially after verification against the longer term total
river outflow to ensure mass balance and consistency. Hydrological models are capable of providing
complementary information, for example on non-linear sub-soil flow processes that determine runoff,
infiltration, storage change, percolation and recharge. These processes govern the partitioning of
rainfall surplus into groundwater and surface water. Models also facilitate analyses on a daily time
scale, for which only a few ETact GSDPs are currently available. It is already common practice to use
satellite-derived information, in particular P and LULC, as inputs to hydrological models. However,
results of remote sensing-based quantifications of monthly ETact, Psur and ∆S, as well as multi-annual
Q can also be used to train and constrain hydrological models and water management decision tools.
Examples are already available in which remotely sensed ETact is used to constrain hydrological
models, or for calibration purposes [87–93]. P minus ETact appears to be highly correlated with
the root zone storage capacity [36]. By using satellite-derived information as a reality check, model
performance can be improved. This is in particular relevant in areas with abundant water withdrawals,
which require a lot of assumptions to simulate but are implicitly included in remotely sensed ETact [94].

Currently, much attention goes out to the development of global hydrological models (GHMs).
Several reviews of the current state of art were recently published [95–97]. There are even ongoing
attempts to create the first operational, hyper-resolution GHM [98]. Integration with remote sensing is
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identified as one of the promising trends in GHMs to reduce uncertainties [97]. The latest generation
of GHMs is capable of spatially explicit assessments of the consumed fraction of applied irrigation
water, thus no longer requiring an estimate of efficiencies as input [99,100]. However, these models still
quantify water withdrawals for irrigation by supplying water until optimal growing conditions are
achieved, an approach that is likely to lead to an overestimation of withdrawals [101]. Alternatively,
non-physically based statistical methods are used to quantify water withdrawals for different water
using sectors [102,103]. With ETact maps now readily available on the global scale, it is a logical next
step to start incorporating these products in GHMs, either as model constraints or in the calibration
procedure. This could lead to a more realistic representation of withdrawals [101,104,105], and therefore
of non-consumed water and reuse.

5. Conclusions

This paper demonstrates how an integration of readily available global satellite-derived data
products can shed light on river basin hydrology. With the availability of rainfall (P), land use/land
cover (LULC) and the newly available actual evapotranspiration (ETact) data on the global scale,
such analyses can now be performed for all river basins as pre-analyses to numerical hydrology
studies. The consistency between different P and ETact products and downstream river discharge
should first be evaluated by applying the law of mass conservation on the multi-annual scale. Even for
a challenging basin in terms of atmospheric conditions such as the Red River Basin, satisfactory and
meaningful conclusions were drawn. Based of 102.6 km3, of which only 29% is generated in China.
Forests are the main water producer, while also irrigated cropland does not consume water on the
annual scale. In addition, it proved possible to model monthly storage changes solely based on satellite
derived P and ETact. The ratio of streamflow (Q) over rainfall surplus (Psur) was found to increase
steadily during the rainy season, signifying the importance of saturation excess processes in runoff
generation. This is a first step into determining the partitioning between fast surface runoff and slow
groundwater runoff.

Although our comparison for the Red River shows that the range between values of individual
evapotranspiration products is still substantial, it is concluded that there is a large potential for
applying monthly remotely sensed ETact, Psur, storage changes and multi-annual Q to constrain or
calibrate hydrological models. This facilitates quantification of hydrological processes that take place
on the daily or weekly time scale, or processes that cannot be assessed by remote sensing alone,
such as withdrawals, non-consumed water and reuse. Further studies are required to examine the
performance of the ETact products for different geographical regions, climate zones and land use types,
in order to ultimately facilitate the coupling between these products and global hydrological models.
In the meantime, it is concluded that the proposed methodology based on spatial correlations among
individual ETact products and absolute calibration of longer-term P ´ Q works well for the conditions
encountered in the Red River basin.
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Appendix A. Rainfall Data

Table A1. Metadata of rainfall stations.

Station Name Latitude Longitude Country Elevation (m) Source

1 Ba Vi 21.10 105.43 Vietnam 20 NCHMF
2 Bac Can 22.15 105.83 Vietnam 176 GSOD
3 Bac Ha 22.53 104.28 Vietnam 107 NCHMF
4 Bac Me 22.73 105.37 Vietnam 380 NCHMF
5 Bac Quang 22.50 104.87 Vietnam NCHMF
6 Bac Yen 21.25 104.42 Vietnam 65 NCHMF
7 Ban Cung 20.75 105.05 Vietnam NCHMF
8 Bao Lac 22.95 105.67 Vietnam 283 NCHMF
9 Binh Lu 22.37 103.61 Vietnam 636 NCHMF
10 Bounneua 21.63 101.88 Lao PDR 923 GSOD
11 Cao Bang 22.67 106.25 Vietnam 260 GSOD
12 Chiem Hoa 22.15 105.27 Vietnam 56 NCHMF
13 Cho Ra 22.45 105.72 Vietnam 210 NCHMF
14 Chuxiong 25.02 101.52 China 1773 GSOD
15 Co Noi 21.13 104.15 Vietnam 704 NCHMF
16 Cuc Phuong 20.23 105.72 Vietnam NCHMF
17 Dali 25.70 100.18 China 1992 GSOD
18 Dien Bien 21.35 103.00 Vietnam NCHMF
19 Dinh Hoa 21.90 105.63 Vietnam NCHMF
20 Guangnan 24.07 105.07 China 1251 GSOD
21 Ha Dong 20.97 105.77 Vietnam 8 NCHMF
22 Ha Giang 22.82 104.97 Vietnam 113 NCHMF
23 Ha Noi 21.02 105.80 Vietnam 6 NCHMF
24 Ham Yen 22.07 105.03 Vietnam 54 NCHMF
25 Hoa Binh 20.82 105.33 Vietnam 23 NCHMF
26 Hoang Su Phi 22.75 104.68 Vietnam NCHMF
27 Jiangcheng 22.62 101.82 China 1121 GSOD
28 Lai Chau 22.05 103.15 Vietnam 244 NCHMF
29 Lang Son 21.83 106.77 Vietnam 258 GSOD
30 Lao Cai 22.50 103.97 Vietnam 112 NCHMF
31 Lincang 23.95 100.22 China 1503 GSOD
32 Longzhou 22.37 106.75 China 129 GSOD
33 Luy Cen 22.58 104.40 Vietnam 133 NCHMF
34 Mai Chau 20.65 105.05 Vietnam 160 NCHMF
35 Mengzi 23.38 103.38 China 1302 GSOD
36 Moc Chau 20.83 104.68 Vietnam 958 NCHMF
37 Mu Cang Chai 21.85 104.08 Vietnam 975 NCHMF
38 Muong Cha 21.97 102.87 Vietnam 487 NCHMF
39 Muong Nhe 22.18 102.45 Vietnam 500 NCHMF
40 Muong Te 22.37 102.83 Vietnam 310 NCHMF
41 Nam Dinh 20.43 106.15 Vietnam 3 NCHMF
42 Nam Giang 22.26 103.17 Vietnam NCHMF
43 Nam Muc 21.88 103.30 Vietnam 494 NCHMF
44 Napo 23.30 105.95 China 794 GSOD
45 Nguyen Binh 21.84 104.65 Vietnam NCHMF
46 Nho Quan 20.32 105.75 Vietnam 12 NCHMF
47 Ninh Binh 20.25 105.98 Vietnam 2 NCHMF
48 Phu Ho 21.45 105.23 Vietnam NCHMF
49 Phu Lien 20.80 106.63 Vietnam 119 GSOD
50 Phu Ly 20.52 105.92 Vietnam 3 NCHMF
51 Phu Yen 21.27 104.63 Vietnam 182 NCHMF
52 Quynh Nhai 21.85 103.57 Vietnam 802 NCHMF
53 Sam Neua 20.42 104.07 Lao PDR 1000 GSOD
54 Sapa 22.35 103.82 Vietnam 1570 NCHMF
55 Simao 22.77 100.98 China 1303 GSOD
56 Sin Ho 22.37 103.23 Vietnam 1529 NCHMF
57 Son La 21.33 103.90 Vietnam 676 NCHMF
58 Son Tay 21.13 105.50 Vietnam 15 NCHMF
59 Tam Dao 20.90 104.45 Vietnam NCHMF
60 Tam Duong 22.42 103.48 Vietnam 900 NCHMF
61 Thai Nguyen 21.60 105.83 Vietnam 32 GSOD
62 Than Uyen 21.95 103.88 Vietnam NCHMF
63 Thanh Hoa 19.80 105.78 Vietnam 7 GSOD
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Table A1. Cont.

Station Name Latitude Longitude Country Elevation (m) Source

64 Thanh Son 21.19 105.16 Vietnam 50 NCHMF
65 Thuan Chau 21.43 103.68 Vietnam 652 NCHMF
66 Tuan Giao 21.58 103.42 Vietnam 570 NCHMF
67 Tuyen Quang 21.82 105.22 Vietnam 81 NCHMF
68 Van Chan 22.05 104.15 Vietnam 257 NCHMF
69 Viengsay 20.42 104.23 Lao PDR 913 GSOD
70 Viet Tri 21.27 105.42 Vietnam 17 NCHMF
71 Vinh Yen 22.27 104.88 Vietnam NCHMF
72 Wujiaba 25.02 102.68 China 1892 GSOD
73 Yen Bai 21.70 104.87 Vietnam NCHMF
74 Yen Chau 21.07 104.27 Vietnam 59 NCHMF
75 Yuanjiang 23.60 101.98 China 398 GSOD
76 Yuanmou 25.73 101.87 China 1120 GSODRemote Sens. 2016, 8, 279 2 of 28 

 

Figure A1. Spatial distribution of TRMM pixels with one (red) or two (green) rainfall gauges. 

 

Figure A2. Comparison of TRMM data with measured monthly rainfall averaged per pixel for gauges 
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Appendix B. Maps of Annual ETact in the Red River Basin (2003–2012)
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