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Abstract

The STC-group is an educational institution that among other things provides
training in the maritime industry at their own simulator park. STC devel-
ops the Diomedea simulator in-house and also implements new vessels in the
simulator. To speed up the process of implementing the physics of a vessel
in the simulator, STC is looking for a different method to find the so-called
hydrodynamic coefficients of a vessel. To eventually be able to determine
the hydrodynamic coefficients from real ship data a method is developed to
find hydrodynamic coefficients from ship manoeuvring data.

Equations of motion in the horizontal plane are used. Assuming that the
only forces acting on the vessel are propeller forces, rudder forces and hy-
drodynamic forces, the hydrodynamic coefficients can be found when the
velocities, accelerations, propeller forces and rudder forces are known.

To determine the velocities and accelerations of the vessel from the position
data of a simulated track, numerical differentiation is used. The numerical
differentiation method used is a form of Richardson extrapolation based on
the central difference method. The propeller and rudder forces are estimated
using a simple model as described by Yasukawa and Yoshimura [63]. The
hydrodynamic forces are modelled after the coefficients derived from low
aspect ratio lift theory.

It is shown that using numerical differentiation and Singular Value Decom-
position, it is possible to find predefined sets of coefficients that are used
to simulate manoeuvres. It is concluded that sets of coefficients can be
found for manoeuvres in 1 degree of freedom, but also for manoeuvres with
3 degrees of freedom.

Finally the method is used on manoeuvres generated with the MMG method.
It is concluded that the method is able to find coefficient sets based on low as-
pect ratio lift theory. It is concluded that the sets of coefficients determined
using a zig-zag trial can recreate a turning circle and zig-zag trial accur-
ately. Decomposing the hydrodynamic forces in the contributions by every
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coefficient shows that some coefficients can not be determined accurately
by only looking at straight sailing, turning circle manoeuvres and zig-zag
trials. It is shown however that a set of coefficients can be found from posi-
tion data using singular value decomposition. It is also shown that a set of
coefficients based on low aspect ratio lift theory is sufficient for simulating
straight sailing, turning circle manoeuvres and zig-zag trials.
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Symbol Description Unit

vR Lateral component of inflow velocity
on rudder

m/s

v Lateral ship velocity m/s
wP0 Wake fraction when sailing straight -
wP Wake fraction -
w Vertical ship velocity m/s
x, y, z Ship fixed coordinates m
x0, y0, z0 Earth fixed coordinates m
xG, yG, zG Location of center of gravity in ship

fixed coordinate system
m

xP Longitudinal coordinate of the pro-
peller position

rad

xR, yR, zR Location of acting point of rudder force
in ship fixed coordinate system

m
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Acronyms

ABS American Bureau of Shipping.

CFD Computational Fluid Dynamics.
CMT Circular Motion Test.

DOF Degrees of Freedom.

ECDIS Electronic Chart Display and Information System.

FMB Full Mission Bridge.
FPSO Floating Production Storage and Offloading unit.

HBO Hoger Beroepsonderwijs (Higher Professional Education).

IMO International Maritime Organisation.

KVLCC2 KRISO Very Large Crude Carrier 2.

MARIN Maritime Research Institute Netherlands.
MBO Middelbaar Beroepsonderwijs (Senior Secondary Vocational

Education).
MMG Maneuvering Modeling Group.

NACA National Advisory Committee for Aeronautics.

OTT Oblique Towing Test.

PMM Planar Motion Mechanism.

RANS Reynolds Averaged Navier-Stokes.
RK4 Runge Kutta 4th order.

SMAP Ship Maneuvering Assessment Program.

xix



xx Acronyms

STC Scheepvaart en Transport College.
SVD Singular Value Decomposition.
SYMS Soft Yoke Mooring System.

ULCC Ultra Large Crude Carrier.

VLCC Very Large Crude Carrier.
VMBO Voorbereidend Middelbaar Beroepsonderwijs (Preparatory Vo-

cational Education).



Chapter 1

Introduction

In the present day, much training and education on the operation of vehicles
relies on the use of simulators. To have a good basis in the operation of a
real ship it is necessary to have a realistic and representative simulation.

The STC-group is an educational institution that among other things provides
training in the maritime industry at their own simulator park. STC devel-
ops the Diomedea simulator in-house and also implements new vessels in the
simulator. Although there are some methods known to make a prediction
about the manoeuvrability characteristics of a vessel based on generic ship
parameters, it can still be very time consuming to get a realistic result.

To speed up the process of implementing the physics of a vessel in the
simulator, STC is looking for a different method to find the so-called hy-
drodynamic coefficients of a vessel. Different methods have been proposed.
Measuring manoeuvres aboard the real vessel and using an algorithm to
find the coefficients as one of them. A method that finds the hydrodynamic
coefficients on the basis of real ship motions was not available however.

In this report, a method is presented to determine the hydrodynamic coef-
ficients for manoeuvring in real-time ship simulators using position data of
a manoeuvre of a vessel. In chapter 2 information about the STC-Group is
given followed by the problem description. In chapter 3 the objectives, lim-
itations, and research questions for this study will be formulated. Chapter 4
provides an overview of the literature available on the subjects of manoeuv-
ring an regression analysis. In chapter 5 the implementation and verification
of the used simulation program is discussed. Chapter 6 describes the devel-
opment of the method to find the hydrodynamic coefficients. In chapter 7
the verification of the predicion method is described and in chapter 8 the
method is validated. The final conclusions and recommendations can be
found in chapter 9.
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Chapter 2

Problem Description

2.1 The STC-Group

The STC-Group is a worldwide operating educational and research institu-
tion for the shipping, logistics, transport and process industries. The STC-
Group [52] consists of a private and a public part. The public part of STC-
Group offers Voorbereidend Middelbaar Beroepsonderwijs (Preparatory Vo-
cational Education) (VMBO), Middelbaar Beroepsonderwijs (Senior Sec-
ondary Vocational Education) (MBO), and Hoger Beroepsonderwijs (Higher
Professional Education) (HBO).The private part provides education and
training for different maritime related disciplines such as offshore, dredging
and shipping. STC-Group has the role of one of the largest contract training
institutes of the Netherlands and simulators play a large role in the training
and education at STC-Group. The the STC-Group has a variety of training
facilities, which consist of a simulator park, numerous training centres and
training vessels. The core of the simulator park are the Full Mission Bridge
(FMB) Simulators.

2.2 Diomedea simulator

The STC-Group is actively developing the Diomedea Simulator, which is
used at several locations on the world. Next to the in-house development of
the simulator, the visual databases and physical models are also developed
in-house. This offers maximum flexibility to the customers and users of the
simulator. The FMB Simulators are used for both training and research.
The bridge simulators were for example, used to simulate the coupling of a
Floating Production Storage and Offloading unit (FPSO) with a Soft Yoke
Mooring System (SYMS) Wang et al. [61]. The simulator consists more or
less of the following parts:

� Computers that run the simulation software.

3
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� A replica of a ship’s real bridge. To be able to simulate a full mission,
the bridge is equipped with all the hardware that can be found on a real
bridge such as steering equipment, radars, Electronic Chart Display
and Information System (ECDIS), communication etc. In figure 2.1
the inside of a FMB simulator of the STC-Group is shown.

� Projectors or screens that show the simulated world outside of the
bridge.

� Simulation software, that contains information about the appearance
of the vessels and the environment, so-called visuals, and contains
mathematical models to model the behaviour of the vessel, so-called
physics.

Figure 2.1: Photograph of the inside of a FMB simulator at STC. Obtained
from [26]

.

The physical implementation of the vessel consists of a large amount of coef-
ficients which all represent properties of the vessel. These properties vary
from mass of the vessel to the position of the rudder and also the manoeuv-
rability properties are implemented. The manoeuvrability properties are
implemented using so-called hydrodynamic coefficients that represent the
forces on the vessel due to the water it is sailing in.
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2.3 Determining the hydrodynamic coefficients

Determining the hydrodynamic coefficients starts with a reference model,
which is available in the database. In the past the STC-Group used a pro-
gram, Ship Maneuvering Assessment Program (SMAP), that calculated the
hydrodynamic coefficient based on generic ship parameters. As this proved
to be less optimal than selecting one of the existing ships which was similar
in size, one would often start with an other model as reference. With a
working reference model, the data obtained from different sea trials is used
to fine tune the model so that the ship is as close as possible to the real
ship. The ship model is then tested with the personnel of the real ship that
is familiar with the behaviour of the real ship. This often leads to small
changes in the hydrodynamic model.

To speed up the process of comparing the model with available sea trials,
an optimization algorithm was programmed. This program calculates the
manoeuvres as done during trials of a real vessel such as turning circle test,
zig-zag test, and acceleration test. The user of the program can specify which
coefficient will be iterated and in which interval, in general the first iteration
is done in an interval around the initial estimated value of the coefficient.
In each iteration the program will calculate the specified manoeuvres and
compares them to the trial data of the real vessel. In this way the best
value for the coefficient can be found. When this is done the manoeuvring
characteristics are tested again in the simulator together with people who
have real-life experience on the vessel.

The iteration method still has disadvantages though:

� The trial data of the real vessel has to be available, which is not always
the case.

� There could be no optimum in the specified interval. In this case the
program returns a value on the boundary of the interval as optimum, so
the interval has to be enlarged. When the best value for the coefficient
is far away from the initial estimated value this can still be very time
consuming.

� There could be more optima in the specified interval. Beforehand it
is not known if the specified interval contains multiple optima. This
means the program returns an optimum, but there might be a better
solution in the same interval.

� Two or more different coefficients could interfere with each other.
Every coefficient is an unknown in the same set of equations which
means that optimization of a coefficient for the turning circle test for
example could make the behaviour of the vessel in a zig-zag test worse.
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� When a ship has to be modelled that is not very similar to any of
the previously modelled vessels, the initial set of coefficients could be
very different from the real values, which means a lot of iterations are
needed to find an optimum value.

� From the iteration method it can not be concluded if a coefficient is
missing in the simulator. If this is the case the simulator might not
be able to simulate some manoeuvres that are requested by the user,
while every coefficient is optimised. The iteration method does not
show the absence of a coefficient.

The iteration method makes tuning of the coefficients faster because more
sets of coefficients can be tested automatically. Improvements can be made
however in the determination of the initial set of hydrodynamic coefficients.
A new method with a better theoretical background could provide this. In
an ideal situation, a set of hydrodynamic coefficients that gives the desired
realism can be found directly.



Chapter 3

Study Definition

In this chapter the objectives of the study are defined. When the objectives
are clarified the limitations of this study are discussed. Based on the object-
ives and limitations the research question will be formulated. The research
question together with the formulated sub-questions will be the basis for the
working plan which is discussed at the end of this chapter.

3.1 Objectives

This study has two main objectives, which are:

� Develop a method to determine the hydrodynamic coefficients which
are used in a real-time ship simulator,

� verify and validate the method using synthetic data obtained from
existing models.

The first objective is to develop a method for finding the hydrodynamic
coefficients of a vessel using a path completed by the vessel and data about
the controls of the vessel. Based on earlier work on ship manoeuvrability
found in literature a mathematical model will be formed. Propeller forces
and rudder forces will be implemented together with derived formulations
of the hydrodynamic forces.

The second objective is the verification and validation of method developed,
this will be done with generated synthetic data. This data will come from the
current manoeuvring models used in the Diomedea Simulators of the STC-
Group and an existing validated manoeuvring model. During the literature
study, the manoeuvring model which will be used for validation is chosen.

3.2 Limitations

The limitations in this study are:

7
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� Only ships with a conventional single propeller will be considered. This
limitation will exclude a lot of vessels from the method. If the method
works however, further research can be done to make the method also
applicable to vessels with different propulsion.

� Only ships with a single rudder will be considered. The majority of
all vessels with a single propeller will also have a single rudder, which
makes this a reasonable limitation.

� Only ships which are symmetric in longitudinal direction will be con-
sidered. Since the majority of all vessels is symmetric in longitudinal
direction this is a reasonable assumption.

� No forces due to wind will be taken into account. The hydrodynamic
forces are considered to be much larger than the aerodynamic forces.
For ships with a small lateral area above the waterline this assumption
is reasonable.

� Only motions in the horizontal plane will be considered, which means
only the motions surge, sway and yaw will be considered. In the case
where ships make a turn with relatively large speed and relatively
small turning radius, the vessel will get a roll angle due to centripetal
acceleration. This means there is some coupling between yaw and roll,
couplings like this will not be taken into account. For conventional
merchant ships this coupling is assumed to be negligible.

� No limitations in the waterway are taken into account. This means
canal width and water depth are neglected. When manoeuvring at
sea is simulated this should not have a large impact. However, for
simulations in smaller ports and inland waterways the influence of the
limitations in the waterway could be large.

� No ship-to-ship interactions will be included in the study. When two
ships sail close to each other, effects like suction between the vessels
or interaction of the wave patterns can influence the manoeuvrability
of the vessels. These effects are considered to be small in situations
where two ships have about the same size and are not too close to
each other. One could imagine situations where a vessel is assisted by
a tug and both conditions are not satisfied, these situations will not
be predicted accurately.

3.3 Research questions

Based on the objectives of the study a research question is formulated. The
main question to be answered in this study is:
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“How can a mathematical model, based on regression analysis, be made to
derive the hydrodynamic coefficients from a selected path completed by a
vessel to improve the accuracy of manoeuvring coefficients in a simulator?”

This question can be divided into sub-questions of which the answers will
lay a path to find the answer on the main research question. To begin
with, knowledge is needed on the subject of modelling of manoeuvring ships,
leading to the question:

“What methods for the prediction and modelling of ship manoeuvring are
available and which factors are most important?”

This question will be answered by doing a literature research on ship man-
oeuvring. The next sub-question relates to the regression analysis that will
be used to develop a new method.

“What regression methods are available and which method is suited best for
the application in a ship manoeuvring model?”

This question will be answered by doing literature research on regression
analysis. After answering the two previous questions it should be possible
to make a model which implements the important factors and the regression
method found. When this model is completed it has to be tested to find out
if the model really works. The question to be answered here is:

“What is the accuracy of a mathematical model based on manoeuvring models
and regression analysis to determine the hydrodynamic coefficients?”

This will be tested using synthetic data generated using a simple manoeuv-
ring model and an analytical solution. If this method proves to be accurate
coefficient sets can be determined and compared with manoeuvres obtained
from literature. The question to be answered here is:

“How do the results of the new method compare to the ship model obtained
from literature?”

When this question is answered it should be possible to answer the main
research question formulated at the top of this section.

3.4 Working Plan

Based on the research questions formulated a working plan is made, which
is discussed in this section.
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3.4.1 Literature study on ship manoeuvring

First a literature study on ship manoeuvring is carried out, in order to get
a good understanding of the topic, and to get an overview on the differ-
ent methods available. There is also some research done on the “known”
forces that act on the ship such as thrust and rudder forces. The focus in
this study will be on the modelling and calculation of hydrodynamic forces.
The theoretical physical framework of the new model will be based on this
literature study.

3.4.2 Literature study on regression methods

The next part of the study will consist of a literature study on regression
analysis. This will be done to get insight in the different methods available
and the advantages and disadvantages of each method. Also some insight
will be gained in the calculation of errors and uncertainties of different re-
gression methods. Based on this literature study the method most suitable
for the application in the ship manoeuvring model will be determined.

3.4.3 Development of a new method

With the theoretical framework of the first literature study and the chosen
regression method of the second literature study, a mathematical model
will be made to extract the hydrodynamic coefficients from a path and the
forces on rudder and propeller of a certain vessel. This part of the study
also involves the programming of a manoeuvring prediction method, found
during the literature study, which will later be used to generate synthetic
data. This manoeuvring model should give a dataset, which at least contains
the path of the vessel and information about rudder and propeller forces.

3.4.4 Validation and verification of the new method

When the new method is implemented it can be tested. This will be done
with the synthetic data generated by the known manoeuvring model and
with the data from the Diomedea Simulators owned by the STC-Group.
For the verification of the developed method an existing verified manoeuv-
ring model can be used. By using the predicted path of the manoeuvring
model together with propeller and rudder forces as an input the method can
be tested. When the method works, the output should be in the proximity
of the coefficients predicted by the verified method. This can also say some-
thing about the uncertainty of the developed method. The models used by
the simulators of STC-Group can also generate data sets, opposed to the
most existing manoeuvring models, the simulator can also generate data sets
for non-standard manoeuvres. This means that datasets generated by the
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simulators can be used to test if the method also works for non-standard
manoeuvres.
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Chapter 4

Literature study

In this chapter the findings of the literature study are discussed. During the
literature study the following subjects have been researched:

� manoeuvrability trials,

� establishing the equations of motions,

� rudder forces,

� propeller forces,

� hydrodynamic forces,

� influence of the environment on manoeuvring,

� regression analysis,

� validation cases.

4.1 Manoeuvrability trials

The manoeuvrability of a vessel is an important characteristic for the safety
of ships. Butt et al. [8] found that still a significant part of the shipping
accidents consists of collisions and groundings. Some of these incidents
could have been avoided if the ship had better manoeuvrability character-
istics. Because of the importance of manoeuvrability on the safety of ships
the International Maritime Organisation (IMO) defined some standard trial
manoeuvres to test if the manoeuvrability of the vessel is sufficient. These
tests are:

� turning circle manoeuvre,

� zig-zag test,

13
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� full astern stopping test.

To demonstrate compliance with the standards of IMO these manoeuvres
should be carried out during the trials. Because these trials are obligatory
for every vessel and have to be done in the same way, the data of these
manoeuvres is often used to develop empirical formulations, or to validate
manoeuvring models. These manoeuvres are currently also used to validate
the model ships that are implemented in the Diomedea simulator.

4.1.1 Turning circle manoeuvre

The turning circle manoeuvre is a test where the ship initially sails a steady
straight course, which means the ship does not yaw, at the test speed. IMO
[29] defines the test speed as a speed of at least 90% of the ship’s speed cor-
responding to 85% of the maximum engine output. When these conditions
are satisfied the helmsman gives 35◦ rudder angle. This will make the ship
turn in a circle as can be seen in figure 4.1.

From the trajectory of the vessel the tactical diameter (TD) and the ad-
vance (AD) can be determined. The advance is the distance travelled in
the direction of the original course, from the position at which the rudder
angle is given to the position where the heading has changed 90◦ from the
original course IMO [29]. The tactical diameter is the distance travelled
perpendicular to the original course, from the position the rudder angle is
given to the position where the heading has changed 90◦ from the original
course. The advance and tactical diameter are both displayed in figure 4.1.

The turning circle manoeuvre should be done for 35◦ to port and 35◦ to
starboard because the advance and tactical diameter can be different in
these two situations. IMO demands that the advance does not exceed 4.5
ship lengths and that the tactical diameter does not exceed 5 ship lengths.

4.1.2 Zig-zag test

The zig-zag manoeuvre is a test which is used to test the yaw abilities of a
vessel. First the vessel has to sail a straight steady course at the test speed.
When this is the case a rudder angle is ordered, 10◦ in case of the 10◦/10◦

zig-zag manoeuvre and 20◦ in case of the 20◦/20◦ zig-zag manoeuvre. When
the heading angle is the same as the rudder angle ordered, the rudder will
be ordered the same angle in opposite direction. This will be repeated and
result in a winding path of the vessel. The rudder angle and heading angle
can be plotted in a diagram as shown in figure 4.2. The overshoot angles as
defined by IMO are also displayed.

IMO restricts the size of the overshoot angles, the exact rules are outside
the scope of this research, but they can be found in IMO [29].
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Figure 4.1: Schematic drawing of the turning circle manoeuvre and the
distances used to determine manoeuvrability as defined by IMO. Obtained
from Quadvlieg and van Coevorden [48].



16 CHAPTER 4. LITERATURE STUDY

Figure 4.2: Plot of rudder and heading angle during zig-zag manoeuvre.
Obtained from American Bureau of Shipping [3].

4.1.3 Full astern stopping test

The full astern stopping test is done to determine the stopping ability of the
vessel. Here the vessel sails a steady straight course at the test speed and
then orders full astern. This will make the ship stop, and also turn because
of propeller effects. The ship will follow a path as sketched in figure 4.3.

The path length of the vessel is called the track reach IMO [29]. The track
reach is a measure of stopping ability. IMO specifies that the track reach
should not exceed 15 ship lengths.

4.2 Equations of Motions

Almost every manoeuvrability model is based on the equations of motion as
first derived by Euler [18], which are based on Newton’s laws. In this section
the equations of motion will be derived also using Newton’s laws, but first
the used coordinate systems will be defined.

4.2.1 Defining the Coordinate system

It is very convenient to define the velocities of a ship in a ship fixed coordin-
ate system. In general a Cartesian coordinate system is used of which the
origin is placed at the half length of the ship and half the beam of the vessel.
The height of the coordinate system is in the vertical position of the center
of gravity of the vessel. The x-axis is defined along the ship length with
positive value towards the bow. The y-axis is defined perpendicular to the
x-axis in the horizontal plane, with positive values towards starboard. The
z-axis is defined perpendicular to the horizontal plane, pointing downwards
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Figure 4.3: Schematic drawing of a full astern stopping test. Obtained from
American Bureau of Shipping [3].
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into the water. The coordinates x0, y0 and z0 define the earth fixed coordin-
ate system and the coordinates y, x and z define the ship fixed coordinate
system Pinkster [46]. The earth fixed reference frame is assumed to be an
inertial reference frame. A drawing of the coordinate system can be found
in figure 4.4.
At first the choice of the coordinate system seems odd, because the y0-axis
points in the opposite direction of what is most commonly used, because
the z0-axis is chosen to point downwards into the water it is a right-handed
coordinates system though. The reason for the choice of this coordinate
system is purely historical, because the x0, y0, z0 coordinate system now
corresponds to the geological north-east-down coordinates system, which is
used in navigation. This is convenient because heading and ship position
as used during navigation can be converted to the coordinate system of the
model without changes of sign.

x0

y0

x

y

X

Y

u
v

v

ψ

ψ̇ = r

Figure 4.4: Definition of coordinate systems used. x0,y0 and z0 are used
to denote the earth fixed coordinate system, whereas x,y and z are used to
denote the ship fixed coordinate system.

4.2.2 Inertia

The equations of motions are based on newton’s second law and angular
momentum. These laws result in the following equations

X = m(u̇− vr) (4.1)

Y = m(v̇ + ur) (4.2)
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N = Iz ṙ. (4.3)

The additional terms −vr and ur arise from the laws, because the velocities
u, v and r are defined in the ship fixed coordinate system. The derivations
of equations 4.1, 4.2 and 4.3 can be found in appendix C.

4.2.3 Rudder forces

Most ships make use of one or more rudders to steer, although more and
more ships are equipped with azimuthing thrusters. The rudder has two
functionalities, steering of the vessel and improving course-keeping stability.
When the rudder stays in the middle of the ship the cours-keeping stability
is improved, which is the same effect as the stabilizing effect of flights on a
dart. When the rudder is placed under an angle the rudder causes the ship to
turn [15], which is used to control the direction in which the ship is moving.
Davidson and Schiff [15] investigated the influence of the propeller, rudder
and fins on the course-keeping stability of a vessel. They also give a few
analytic solutions to the linearised equations of motion and some criteria
for the validity of these solutions. A rudder is a foil which is in general
mounted at the stern of the vessel. A schematic picture of a foil with the
forces exerted on it is presented in 4.5. The forces on a foil can be expressed

DR

LRPR

FN

αR UR

TR

Figure 4.5: Schematic drawing of the forces acting on a rudder. The total
force PR on the rudder in a flow with velocity UR is drawn, together with
two different ways of decomposing PR.
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2
ρU2
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In general the lift and drag generated by a foil are of high interests. In the
research on manoeuvring some methods use the normal force on the rudder
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instead of the lift. These forces though all are strongly related to the angle
of attack. According to Yasukawa and Yoshimura [63] the angle of attack of
the rudder can be expressed as

αR = δ − tan−1

(
vR
uR

)
. (4.8)

Lewandowski [38] directly relates the lift and drag forces to the rudder angle
for a as

LR =
1

2
ρU2

RARΛδ (4.9)

DR =
1

2
ρU2

RAR
Λ2δ2

πae
. (4.10)

Where Λ is the lift curve slope and ae is the effective aspect ratio of the rud-
der. According to Lewandowski [38], the rudder forces are in the standard
coordinate system equal to

XR = −DR (4.11)

YR = LR (4.12)

KR = −LRzR (4.13)

N = LRxR +DRyR. (4.14)

where xR , yR and zR is the location where the rudder forces act. In the
case where one rudder is considered in the middle behind the propeller, yR
becomes 0. In general half of the length between perpendiculars is a good
estimation for the longitudinal position of the rudder.
The normal force coefficent depends on the angle of attack α. Fuji and Tuda
[19] found the following relation between angle of attack and normal force
coefficient, which also depends on the aspect ratio of the rudder.

CN =
6.12λ

λ+ 2.25
sinαR (4.15)

Liu et al. [39] looked at this empirical formula using 2D Reynolds Averaged
Navier-Stokes (RANS) simulations of different symmetric National Advisory
Committee for Aeronautics (NACA) profiles and found that their results
where quite close to the results of the empirical formula.
Shiba [51] already investigated the influence of rudder area on the manoeuv-
rability of ships. He also did some research on the influence of the propeller
on the rudder forces and found that the normal force coefficient of the rudder
reduces when the slip on the propeller increases.
Badoe et al. [4] researched the influence of the drift angle on the interaction
between rudder hull and propeller. Badoe et al. [4] conclude that the drift
angle influences the place where the lift force acts on the rudder. This shift
is small compared to the ship length though.
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4.2.4 Propeller forces

The propeller provides a thrust force which makes the ship move. The thrust
force is generated by the blades of the propeller by generating a lift force. A
schematic of a blade section with the velocities, forces and angles is shown
in figure 4.6. The lift generated by the propeller blade depends on the angle

πDnP

VA
VR

Q
1
2D

TP

DP

LP

αP

θP

βH

Figure 4.6: Velocities and forces on a section of a propeller blade. The total
force P on the propeller blade section is drawn, together with two different
ways of decomposing P .

of attack. As can be seen in figure 4.6 the angle of attack depends on the
pitch angle θP and the hydrodynamic pitch angle βH . When the propeller
RPM is increased while the inflow velocity VA remains constant, the angle
of attack αP increases, this results in an increase in lift, and therefore an
increase in thrust. Notice that the lift is defined perpendicular to the flow
along the blade. This means also the direction of the lift changes, when
propeller RPM is increased. The thrust force can be made dimensionless in
the following way

KT =
T

ρn2
PD

4
. (4.16)

And the torque needed to drive the propeller can be made dimensionless as
well

KQ =
Q

ρn2
PD

5
. (4.17)

This means the thrust force can be written as

T = ρn2
PD

4KT . (4.18)

KT depends on the advance coefficient JP .

JP =
VA
nPD

(4.19)

Note that the advance coefficient differs from the tangent of VR by a factor
π. Because the inflow velocity of the propeller is not equal to the ship speed,
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the wake fraction wP is introduced, when the ship is sailing straight the wake
fraction is denoted as wP0. The wake fraction is defined as

wP =
VS − Va
VS

. (4.20)

Now the advance coefficient can be expressed in the longitudinal ship velocity

J =
VS(1− wP )

nPD
=
u(1− wP )

nPD
. (4.21)

Yasukawa and Yoshimura [63] use a second order polynomial to approximate
KT

KT (J) = k2J
2
P + k1JP + k0. (4.22)

Model tests are used to determine k2,k1 and k0. More extensive tests were
done by the Maritime Research Institute Netherlands (MARIN) with the
Wageningen B-series propellers. MARIN used a systematic variation of
number of blades, blade area ratio and pitch to find the influence on the
thrust coefficient, torque coefficient and efficiency van Lammeren et al. [59].
They found the thrust coefficient could be approximated very well by

KT =A0,0 +A0,1JP +A0,2J
2
P +A0,3J

3
P +A1,0

P

D
+A1,1

P

D
J3
P

+A2,1

(
P

D

)2

JP +A6,0

(
P

D

)6

+A6,1

(
P

D

)6

JP

(4.23)

where P
D is the pitch of the propeller. Barnitsas et al. [5] described the

relations between KT , KQ and the advance ratios of the Wageningen B
propeller series as polynomials. Barnitsas et al. [5] defined these polynomials
as

KT =
∑
s,t,u,v

CTs,t,u,vJ
s

(
P

D

)t(AE
A0

)u
Zv (4.24)

and

KQ =
∑
s,t,u,v

CQs,t,u,vJ
s

(
P

D

)t(AE
A0

)u
Zv. (4.25)

The values for c,s,t,u and v can be found in tables G.1 and G.2 in appendix
G. The polynomials for the Wageningen B propeller series are only valid if
the ship is moving forward and the propeller is generating a thrust force
that pushes the ship forward. During manoeuvring it can also happen that
the thrust and longitudinal velocity are not both the same direction. From
figure 4.6 it can be seen that this influences the angle βH . When this angle
βH is varied over a whole circle, a so-called four-quadrant measurement can
be made, as is done by MARIN. In these tests van Lammeren et al. [59] used
non dimensional thrust and torque coefficients

C∗T =
T

1
2ρ
(
V 2
A + (0.7πnPD)2

)
π
4D

2
(4.26)
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C∗Q =
Q

1
2ρ
(
V 2
A + (0.7πnPD)2

)
π
4D

3
(4.27)

Fourier analysis was used to find an expression of C∗T and C∗Q as a function
of hydrodynamic pitch angel βH . van Lammeren et al. [59] have found that
a fourier series of 20 terms already approximates the measured results very
well.

So far only methods for ships sailing forwards are considered, turning of
the vessel however influences the inflow velocity of the propeller. One of
the differences on the thrust generation between manoeuvring and sailing
straight is the occurrence of the flow straightening effect. When the ship is
sailing under a drift angle, the flow into the propeller is oblique to centreline
of the ship, and therefore has a different angle to the propeller shaft. The
propeller itself pushes the flow in axial direction, which results in a difference
between inflow angle and outflow angle. The definitions of the different
quantities involved are shown in figure 4.7. This difference in angle influences

Figure 4.7: Schematic of the quantities involved in the flow straightening
effect. Obtained from Molland and Turnock [41].

the direction of thrust and the amount of thrust generated. This means a
lateral component of the thrust force develops and also that the inflow angle
at the rudder is different. The difference in inflow at the rudder is considered
to be more important though.

The difference in magnitude of the thrust force is taken into account by the
change in wake of the hull. A few wake corrections are found in literature.
Inoue et al. [30] use

wP = wP0e
−4β2

P (4.28)

where βP is the geometrical inflow angle to the propeller, defined as

βP = β − x′P r′. (4.29)

This method was based on model tests, that where carried out to investigate
the flow straightening effect of propellers in oblique flows. Kose et al. [35]
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use

(1− wP )/(1− wP0) = 1 + C1(βP + C2βP |βP |)2. (4.30)

Where C1 and C2 are coefficients that have to be determined using regres-
sion, the physical meaning of C1 and C2 is not clear [63]. Yasukawa and
Yoshimura [63] came up with the following expression

(1− wP )/(1− wP0) = 1 + (1− exp(−C1|βP |))(C2 − 1). (4.31)

4.2.5 Hydrodynamic forces

For the calculation of the hydrodynamic forces, there are two different meth-
ods that are commonly used, the approximation of the forces by a Taylor
series and the approximation of the forces by considering the ship as a body
that generates lift. In this section these two approaches are explained.

Taylor series

To model the hydrodynamic forces, some methods such as the method of
Abkowitz [1] use a Taylor series expansion. A Taylor series expansion of a
function that depends on only one function can be expressed as

f(x) = f(0) +
d

dx
f(0)x+

1

2!

d2

dx2
f(0)x2 +

1

3!

d

dx
f(0)x3 + · · · (4.32)

Stewart [53]. The more terms from the Taylor polynomial are taken into
account the closer the polynomial approximates the original function around
the point where the function is approximated. Care must be taken, because
more terms can lead to a worse approximation further away from the point
where the function is evaluated. The hydrodynamic forces are a function of
velocities u and v, angular velocity r, accelerations u̇ and v̇, angular accel-
eration ṙ and rudder angle δ when planar motion is considered. Assuming
that the forces are continuously differentiable, and is infinitely differentiable,
a Taylor series expansion for multiple variables can be used to approximate
the forces around the initial value.

Because of symmetry some terms can be set equal to zero. This is shown
for the longitudinal force when a Taylor series up to second order is chosen.
When the hydrodynamic forceX is approximated by a Taylor series up to the
second order terms this results in equation 4.33. Because of port/starboard
symmetry the center of gravity is located at y = 0 and the fluid force X will
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not be depending on ṙ.

X(u, u̇, v, r, δ) = Xe +Xuu+Xu̇u̇+Xrr +Xδδ +Xvv

+Xuuu
2 +Xuvuv +Xurur +Xuδuδ +Xuu̇uu̇

+Xu̇u̇u̇
2 +Xu̇uu̇u+Xu̇vu̇v +Xu̇ru̇r +Xu̇δu̇δ

+Xvvv
2 +Xvuvu+Xvu̇vu̇+Xvrvr +Xvδvδ

+Xrrr
2 +Xruru+Xru̇ru̇+Xrvrv +Xrδrδ

+Xδδδ
2 +Xδuδu+Xδu̇δu̇+Xδvδv +Xδrδr

(4.33)

Because of three assumptions this expression can be simplified.

1. The first assumption, based on Newton’s second law, is that the force
is linear with acceleration. This means the second order acceleration
term (coloured brown) is zero.

2. The second assumption is that there is no coupling between velocities
and accelerations. So all the terms that invoke an acceleration and
velocity term (coloured red) are zero.

3. The third assumption is that the ship has port-starboard symmetry.
This leads to three conditions:

(a) X is a symmetric function of v when r = 0 and δ = 0. This
implies Xv = 0 ; Xvu = 0 and Xuv = 0.

(b) X is a symmetric function of r when v = 0 and δ = 0. This
implies Xr = 0 ; Xru = 0 and Xur = 0.

(c) X is a symmetric function of δ when v = 0 and r = 0. This
implies Xδ = 0 ; Xδu = 0 and Xuδ = 0.

These terms are all coloured blue

This means 4.33 simplifies to

X(u, u̇, v, r, δ) = Xe +Xuu+Xu̇u̇+Xuuu
2 +Xvvv

2

+Xvrvr +Xvδvδ +Xrrr
2 +Xrvrv +Xrδrδ

+Xδδδ
2 +Xδvδv +Xδrδr

(4.34)

The derivation for the force in lateral direction and the moment around the
z-axis is derived in appendix B.

According to Triantafyllou and Hover [58] the Taylor series expansions for
the hydrodynamic forces and moments up to third order terms become after
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simplification

X = Xe +Xu̇u̇+Xuu+Xuuu
2 +Xuuuu

3 +Xvvv
2

+Xrrr
2 +Xδδδ

2 +Xrvrv +Xrδrδ +Xvδvδ

+Xvvuv
2u+Xrrur

2u+Xδδuδ
2u+Xrδurδu

+Xrvurvu+Xvδuvδu+Xrvδrvδ

(4.35)

Y = Ye + Yuu+ Yuuu
2 + Yv̇v̇ + Yṙṙ + Yvv + Yrr

+ Yδδ + Yδuδu+ Yvuvu+ Yruru+ Yvuuvu
2

+ Yruuru
2 + Yδuuδu

2 + Yvvvv
3 + Yrrrr

3 + Yδδδδ
3

+ Yrrδr
2δ + Yrrvr

2v + Yvvrv
2r + Yvvδv

2δ + Yvrdvrd

+ Yδδrδ
2r + Yδδvδ

2v

(4.36)

N = Ne +Nuu+Nuuu
2 +Nv̇v̇ +Nṙṙ +Nvv +Nrr

+Nδδ +Nδuδu+Nvuvu+Nruru+Nvuuvu
2

+Nruuru
2 +Nδuuδu

2 +Nvvvv
3 +Nrrrr

3 +Nδδδδ
3

+Nrrδr
2δ +Nrrvr

2v +Nvvrv
2r +Nvvδv

2δ +Nvrdvrd

+Nδδrδ
2r +Nδδvδ

2v

(4.37)

Although the quadratic terms in the Taylor series of the Y force become
zero due to the symmetry of the vessel it is often argued that many of the
non-linear forces and moments arise from a transverse drag force on the
body and should be proportional to the square of the velocity Lewandowski
[38]. This is why some methods include “square absolute” terms such as

Y|v|v (4.38)

to have an anti-symmetric term that depends on the square of the velocity.
Hence v|v| has the same magnitude as v2 but the same sign as v. Note
that terms like these can never arise from a Taylor series expansion because
the absolute value function violates the condition that the function must be
infinitely differentiable to apply a Taylor series expansion.Gertler and Hagen
[22] implement 15 of these “square absolute” terms in their 6 equations
of motions for submarine simulation which can be found in appendix C.
Chislett and Strom-Tejsen [10] found that the port starboard symmetry
in v was a good fit to the experimental data. He also found that a good
representation of rudder forces and moments could be possible without even
terms in δ. Inoue et al. [31] find that the approximation using up to third
order terms is sufficiently accurate to analyse the ships manoeuvrability.
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Low-aspect-ratio lift theory

Toxopeus [56] states that the forces and moments can be split up in a linear
part and a non-linear part. The linear hull forces can be derived using
slender body lift, the non-linear contributions then can be estimated using
the cross-flow drag theory. Ross et al. [50] models the lift coefficient as
proportional to the sine of the drift angle

CL = CLβ sinβ. (4.39)

He then treats the lift force as a function of longitudinal position, by ex-
pressing the sine of the drift angle as a ratio in velocities

CL(x) = CLβ
v + xr

U(x)
. (4.40)

Where U(x) =
√
u2 + (v + xr)2 By decomposing the lift force using the

drift angle,Ross et al. [50] find the longitudinal force

XL(x) =
1

2
ρSCLβ(v + xr)2. (4.41)

By integrating over the length and taking together all the constants into
hydrodynamic coefficients Ross et al. [50] find

XL = Xvvv
2 +Xrvrv +Xrrr

2. (4.42)

In a similar way the expression for the lateral force is found

YL = Yuvuv + Yurur. (4.43)

Using the following expression for the drag coefficient Ross et al. [50]

CD(x) = CD0 + CDUU(x) + CDββ sin2(β(x)) (4.44)

find the total forces and moments

XLD = Xuuu
2 +Xuuuu

3 +Xvvv
2 +Xrrr

2 +Xvrvr +Xuvvuv
2

+Xrvurvu+Xurrur
2

(4.45)

YLD = Yuvuv + Yurur + Yuuru
2r + Yuuvu

2v + Yvvvv
3 + Yrrrr

3

+ Yrrvr
2v + Yvvrv

2r
(4.46)

NLD = YLDxcp = Nuvuv +Nurur +Nuuru
2r +Nuuvu

2v +Nvvvv
3

+Nrrrr
3 +Nrrvr

2v +Nvvrv
2r

(4.47)

The non-linear lift can be used to derive the induced drag on the vessel.
Norrbin [43] shows that the non-linear lateral force is approximately equal
to

Ycf = Y|v|v|v|v + Y|r|v|r|v + Y|v|r|v|r + Y|r|r|r|r (4.48)
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Ncf = N|v|v|v|v +N|r|v|r|v +N|v|r|v|r +N|r|r|r|r. (4.49)

By experiments the lift coefficient and cross-flow drag coefficients can be
determined, which provides an expression for the lateral force. Hooft [28]
states that it is possible to predict the cross-flow drag coefficient for every
drift angle when only the drag coefficient at β = 90◦ is known.

4.3 Determining the hydrodynamic coefficients

In the previous section are two different methods explained to express the
hydrodynamic forces as a sum of terms, all these terms are depending on
their own hydrodynamic coefficient. In this section will be explained what
different methods have been developed to determine these hydrodynamic
coefficients.

4.3.1 Trial Data

Nomoto [42] uses a set of linear equations of motion and derives some meth-
ods to estimate the manoeuvring indices K and T from full-scale zig-zag data
as proposed by Kempf [34]. Here K and T are coefficients that arise from
the linear equations of motion.Journeé [32] has developed a method based
on Nomoto’s work to make the difference between calculated and measured
data for yaw period and overshoot as small as possible.

4.3.2 Model tests

To find the hydrodynamic coefficients, often model tests are carried out.
In Japan Ogawa et al. [44] developed the Maneuvering Modeling Group
(MMG) standard method. This method uses a Taylor expansion up to the
fourth order terms to approximate the hydrodynamic forces. Model tests
are used to determine the unknown forces. Oblique Towing Test (OTT)
and Circular Motion Test (CMT) are used to determine the hydrodynamic
coefficients. Rudder force tests under different propeller loads, rudder force
test in oblique towing and rudder force test in steady turning conditions are
conducted to determine rudder forces. With this information the behaviour
of the full-scale vessel can be predicted.

Panel H-10 of the Society of Navel Architects and Marine Engineers [45] uses
a linear model and gives empirical formulas to estimate the hydrodynamic
derivatives for a typical Very Large Crude Carrier (VLCC) and Ultra Large
Crude Carrier (ULCC). The empirical formulations are based on typical
dimensions of the vessel and are expressed in their non-dimensional form as

Y ′v̇ = −π
(
d

L

)2
(

1.0 + 0.16Cb
B

d
− 5.1

(
B

L

)2
)

(4.50)
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Y ′ṙ = −π
(
d

L

)2
(

0.67
B

L
− 0.33

(
B

d

)2
)

(4.51)

N ′v̇ = −π
(
d

L

)2(
1.1

B

L
− 0.41

B

d

)
(4.52)

N ′ṙ = −π
(
d

L

)2( 1

12
+ 0.17Cb

B

d
− 0.33

B

L

)
(4.53)

Y ′v = −π
(

1.0 + 0.40Cb
B

d

)
(4.54)

Y ′r = −π
(
d

L

)2(
−0.5 + 2.2

B

L
− 0.08

B

d

)
(4.55)

N ′v = −π
(
d

L

)2(
0.5 + 2.40

d

L

)
(4.56)

N ′r = −π
(
d

L

)2(
0.25 + 0.039

B

d
− 0.56

B

L

)
. (4.57)

Inoue et al. [31] have expanded this method by formulating empirical formu-
las to correct for a difference in trim of the vessel. Although the empirical
formulas work, one must be cautious because the method is only tested for
VLCC’s and ULCC’s.

4.3.3 Computational Fluid Dynamics

Instead of using regression to find the coefficients from experimental data,
the hydrodynamic forces can also be calculated using Computational Fluid
Dynamics (CFD). Fureby et al. [20] calculated the hydrodynamic forces of
the KRISO Very Large Crude Carrier 2 (KVLCC2) for a drift angle of 0◦ ,
12◦ and 30◦ . Disadvantage of this method is that it takes a large amount
of computational time to calculate the forces in one situation, let alone,
calculate the forces for a large series of drift angles. According to Toxopeus
and Lee [55] the predictions using CFD were pretty disappointing when
compared to model tests.

4.4 Regression methods

When the equations of motions are known, position and velocity data of a
vessel at different points in time during a manoeuvre can be used to estim-
ate the hydrodynamic coefficients of the vessel using a regression method.
Multiple methods are available to carry out a regression analysis, part of
them are discussed here.
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Because the equation is linear in all of the coefficients, the system of equa-
tions can be written in the form

Ax = b. (4.58)

Here x is the vector with coefficients, A is a matrix with all the velocities and
accelerations that the hydrodynamic forces depend on, and b is a vector with
“known” forces. It is expected that this linear system of equations which has
to be solved to find the coefficients, can not be solved directly. This is very
likely since errors will occur in the measurements of the path, rudder angle
and rpm of the propeller. Therefore a regression method will be used to
find the coefficients that are closest to the solution. The regression methods
that are discussed in this section are

� least square method,

� singular value decomposition,

� ridge regression.

4.4.1 Least squares method

The least square method minimises the sum of the squares of the residuals.
The residuals are the distances between the observed values and the regres-
sion line. When a function f(x,β), where β is a vector with the adjustable
variables , has to be fitted on a set of data points (xi, yi) the residual can
be defined as

ri = yi − f(xi,β). (4.59)

The least square method then minimizes the sum of the squares of these
residuals

S =

n∑
i=1

r2
i =

n∑
i=1

(yi − f(xi,β))2. (4.60)

When a linear model function is chosen this can be written as [16]

S =

n∑
i=1

|yi −
n∑
j=1

xij β̂j |2 = ||y −Xβ||2. (4.61)

Minimizing S is the same as solving the normal equation

(XTX)β̂ = XTy (4.62)

in the case of linear function f(x,β). For the equation

Ax = b (4.63)
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the least squares solution is given by Lay [36]

x̂ = (ATA)−1ATb. (4.64)

The type of least squares method that is applied depends on the model
function f(x,β), when the model function is linear, for example, the linear
least squares method is applied. In the Taylor series expansion all the coef-
ficients could be considered as adjustable variables. For the hydrodynamic
forces the adjustable coefficients always occur as linear, so a linear least
squares method can be applied. This has the advantage that the linear
least square method has just one unique solution, while the non-linear least
squares method has multiple solutions. In the case of the example, only one
independent variable x is considered. When this method has to be applied
on the hydrodynamic forces, more independent variables have to be taken
into account.

4.4.2 Singular value decomposition

The problem of solving the linear least squares problem is the same as finding
the pseudo inverse of the matrix A and multiplying it with b.

A+ = (ATA)−1AT . (4.65)

One way to do this is by finding the singular value decomposition of A. The
singular value decomposition, is a method where the matrix is decomposed
in three different matrices

A = UΣV T . (4.66)

When A is a m × n matrix U is a m × m orthogonal matrix and V is
n× n orthogonal matrix and Σ is a m× n “diagonal” matrix Lay [36]. The
pseudoinverse now can be found by calculating

A+ = V Σ+UT . (4.67)

According to Lay [36], computing ATA should be avoided in practice , be-
cause errors in the entries of matrix A are squared in the entries of ATA.
The singular values and singular vectors of A can be calculated accurately
to many decimal places because of the existence of fast iterating algorithms.
This also increases the accuracy in computing the pseudoinverse of A.
According to Press [47] singular value decomposition can also be used when
the matrix A is singular or almost singular.

Condition number

To determine whether the problem is well-posed or ill-posed the condition
number of the matrix A can be calculated. This condition number can be
found using

κ(A) =
σmax(A)

σmin(A)
. (4.68)
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where σmax(A) is the largest singular value of A and σmin(A) is the smallest
singular value of A. When the condition number is infinite, the problem is
ill-posed, which means that no unique solution to the problem can be found.
When the condition number is large, the matrix is said to be ill-conditioned.
This means that the matrix A is not invertible and the problem does not
posses a unique well-defined solution [6]. According to Cheney and Kincaid
[9], the condition is a measurement of the transfer of error from A and b to
solution x, one can expect to lose at least k digits of precison in solving a
linear system when

κ(A) = 10k. (4.69)

4.4.3 Ridge regression

In the case of the use of an arbitrary path it could be the case that there are
more solutions to the same set of equations, it could be the case that differ-
ent sets of coefficients lead to the same manoeuvre. This means a so-called
ill-posed problem has to be solved. The linear least squares method is not
able to solve ill-posed problems. However ridge regression or Tikhonov reg-
ularization can be used to find a solution to an ill-posed problem. Tikhonov
regularization is very similar to ordinary least squares. To give preference
to certain solution a regulation term is added however Tikhonov et al. [54].
This means the minimum of

||Ax− b||2 + ||Γx||2 (4.70)

is sought. This leads to the solution

x̂ = (ATA+ ΓTΓ)−1ATb. (4.71)

For Ridge regression a regulation matrix Γ = kI is used where k ≤ 0 McDon-
ald [40]. Hoerl and Kennard [25] state that when ridge regression is used,
always a better estimate can be made than by using linear least squares,
because the mean square error is lower than for linear least squares. Con-
niffe and Stone [13] confirm this for the case k is known, but they are also
critical about the applicability of ridge regression because k is estimated.
To estimate the value of k Hoerl and Kennard [25] plot the solutions for
different values of k and choose a value of k if the signs of the coefficients
are correct, if the coefficients are reasonable, if the residual sum of squares
is not unreasonable and if the system stabilizes. Conniffe and Stone [13]
state these arguments are too vague to make an estimate of k and require
more knowledge about the system than is probably known by the researcher.
Conniffe and Stone [13] also state that when the matrix is ill-conditioned the
data may be inadequate, which can be solved by collecting more data points,
or the variables in the model are too dependent on each other which needs
revision of the model. Rong and Mou [49] used ridge regression to determine
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the manoeuvring indices for Nomoto’s first order model from AIS Data. Al-
though the AIS Data contain some errors they found a reliable method for
one reference ship. This shows ridge regression has its applications regarding
manoeuvring.

4.5 Validation Cases

The manoeuvring model has to be validated. This can be done using experi-
mental data or existing manoeuvring models. In this section these validation
cases will be discussed.

4.5.1 Experimental data

To validate a manoeuvring model, often experimental data is used. These
data can be obtained by performing model tests or by performing sea trials.
Not very much data on sea trials can be found in literature however.

Exceptions are the trials performed with the VLCC Esso Osaka that where
performed by Exxon international [14]. Trials performed where turning
circle manoeuvre, zig-zag test, spiral test and full astern stopping man-
oeuvre. Similar tests were done for the Esso Benicia [11], although these
data are not used as much as those of the Esso Osaka. Abkowitz [2] used
the trial data of the Esso Osaka to determine hydrodynamic coefficients.
The data of these trials can also be used to be compared with predicted
manoeuvres of a manoeuvring model, to validate the model.

Model tests that are used extensively, are the tests performed by INSEAN
on the KVLCC1 and KVLCC2 models. Toxopeus and Lee [55] used these
model test data to compare different manoeuvring prediction programs. The
KVLCC1 and KVLCC2 where also used to perform CFD calculations to
compare them with model test data. The KVLCC1 and KVLCC2 where
tested using the Planar Motion Mechanism (PMM) manoeuvring test. A
picture of the hull geometry of KVLCC2 can be found in 4.8. The main
dimensions of the KVLCC2 can be found in 4.1.

4.5.2 Manoeuvring model

The manoeuvring model can also be validated by comparing it with a man-
oeuvring model that is already validated. Yoshimura et al. [64] verified and
validated the MMG model, which is developed in Japan. This model was
validated by using the KVLCC2 model tests. The results of the prediction
method were compared with both full-scale and model-scale results. From
the validation process is it was concluded that the method can describe the
manoeuvring motions and is useful for manoeuvring predictions in full scale
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Figure 4.8: Render of the hull geometry of the KVLCC2. Obtained from
Fureby et al. [20].

Table 4.1: Main dimensions of the KVLCC2. Obtained from Toxopeus et al.
[57].

Descripton Symbol Magnitude Unit

Ship Model

Length between Lpp 320 7.00 m
perpendiculars
Moulded breadth B 58 1.269 m
Moulded draught d 20.8 0.455 m
Displacement volume ∆ 312635 3.237 m3

moulded
Wetted surface area bare hull Swa 27197 13.01 m2

Potition center of buoyancy xB 3.50 0.077 m
forward of midship
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[63]. A comparison between the results for the model and the prediction for
the turning circle test are shown in figure 4.9.

Figure 4.9: Comparison of the calculated and experimental turning circle
manoeuvres. Obtained from Yasukawa and Yoshimura [63].

The MMG method uses a polynomial upto the fourth order to estimate
the hydrodynamic forces, a second order polynomial to estimate the thrust
coefficient and estimates the rudder forces using the method of Fuji and Tuda
[19]. The MMG method also takes interaction between propeller and rudder
into account by correcting the inflow velocity. The difference in thrust due
to manoeuvring of the vessel is taken into account by correcting the wake
fraction.

An other model that predicts the manoeuvrability of ULCC’s and VLCC’s
is the model adopted by Panel H-10 of the Society of Navel Architects and
Marine Engineers [45]. This method is not validated for a very large range of
vessels, but the ships where it is validated for could be used to validate the
developed method. The coefficients that are calculated are only coefficients
for terms that are linear with acceleration and velocity. The expressions for
these coefficients can be found in section 4.3.2.

4.6 Conclusions drawn from literature

Based on the literature study a framework is defined in which the rest of
the study will be carried out. In this chapter a summary is given of the
conclusions based on the literature study.
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4.6.1 Modelling assumptions

To simplify the problem, the ship will be assumed to sail in “trial condi-
tions”. This implies that the vessel sails in conditions where the environ-
mental influences, such as wind, waves and current are negligible. When
the environmental influences are not negligible, the forces due to the envir-
onmental forces have to be estimated and added to the known forces in the
method.

Forces that will be taken into account are, rudder, propeller and hydro-
dynamic forces. The interaction forces between hull, propeller and rudder
will not be taken into account. The forces on the rudder are modelled after
the method of Yasukawa and Yoshimura [63].

The thrust force of the propeller will be implemented in the model by use
of the thrust coefficient. The thrust coefficient will be approximated by the
use of a quadratic approximation adapted from Yasukawa and Yoshimura
[63].

The modelling of the hydrodynamic forces is based on the low-aspect-ratio
lift theory, Ross et al. [50] found that the results of this method came closer
to the results of Planar Motion Mechanism tests than the results obtained
with a model based on a Taylor series. For this reason the set of coefficients
based on low-aspect-ratio lift theory will be implemented. Although the ap-
proach is totally different for both methods, it can be seen that both results
share a large part of the coefficients. The coefficients found with the low-
aspect-ratio lift theory are all based on physical principles, while the origin
of the coefficients obtained with a Taylor series is purely mathematical. The
Taylor series approach does also find coefficients that show dependency of
the accelerations, so-called added mass. Terms like this are expected to have
an influence as well, and are therefore also implemented in the model. The
coefficients that will be implemented are Xu̇, Xuu, Xuuu, Xvv, Xrr, Xvr,
Xuvv, Xrvu, Xurr, Yv̇, Yuv, Yur, Yuur, Yuuv, Yvvv, Yrrr, Yrrv, Yvvr, Y|v|v, Y|r|v,
Y|v|r, Y|r|r, Nṙ, Nuv, Nur, Nuur, Nuuv, Nvvv, Nrrr, Nrrv, Nvvr, N|v|v, N|r|v,
N|v|r, N|r|r.

The quantities that are input for the method are u̇, u, v̇, v, r, ṙ, np, δ.

4.6.2 Regression method

The model that is chosen is linear dependent on the coefficients that need to
be estimated. This means a linear regression method is suitable for this ap-
plication. When the matrix with data is ill-conditioned Hoerl and Kennard
[25] claim that the residual sum of squares is too large when ordinary linear
least squares method is used and ridge regression should be used. When
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using ridge regression, a regulation factor k is introduced which has to be
estimated. Conniffe and Stone [13] explained that an ill-conditioned matrix
could also indicate that too little data points are taken into account or that
the model has to be revised. To be sure that results can be found even when
the matrix is ill-conditioned, the linear least squares problem will be solved
by using singular value decomposition.

Table 4.2: Test scheme for validation using MMG model.

Input Predict

10/10 zig-zag 20/20 zig-zag
10/10 zig-zag turning circle
20/20 zig-zag 10/10 zig-zag
20/20 zig-zag turning circle
turning circle 10/10 zig-zag
turning circle 20/20 zig-zag

4.6.3 Validation

The model will be validated using the MMG model. The MMG method
will be used to find the hydrodynamic coefficients of the KVLCC2 with the
developed method. Then the hydrodynamic coefficients will be compared
with the hydrodynamic coefficients used in the MMG model. This can be
done for the turning circle manoeuvre and the zig-zag that are predicted
for the KVLCC2 in [63]. The MMG model is programmed in MATLAB,
this program is verified using the results of Yasukawa and Yoshimura [63],
to be sure that the program is working correctly. When this is done the
programmed MMG method can be used to generate the path of a vessel.
This will be the input to test the newly developed method. By predicting
a manoeuvre with the coefficients obtained from an other manoeuvre, the
extend to which the set of coefficients is able to mimic the behaviour of the
vessel can be determined. A overview of the different combinations for the
input and the predictions done using the determined coefficients is displayed
in table 4.2.
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Chapter 5

Implementing simulation
program

To generate test input for the developed model and for validation purposes,
a simulation program is implemented in MATLAB. The basis for the imple-
mentation is the paper of Yasukawa and Yoshimura [63], which discusses the
MMG method. In this chapter the theory behind the simulation program
and the MMG model will be explained and after that the implementation
in MATLAB will be discussed. The program is implemented in such a way
that different models for forces can be changed very easily.

5.1 Theory behind the MMG model

The MMG model is a model developed in Japan bij the MMG. One of the
most important assumptions made in this model is that the problem of man-
oeuvring is considered to be a quasi-steady problem. This means that the
longitudinal component of the velocity is considered to be almost constant
an only small differences in longitudinal velocity occur due to propeller and
rudder forces.

5.1.1 Equations of motion

The equations of motion used by Yasukawa and Yoshimura [63] are

(m+mx)u̇− (m+my)vmr − xGmr2 = X (5.1)

(m+my)v̇m + (m+mx)ur + xGmṙ = Y (5.2)

(IzG + x2
Gm+ Jz)ṙ + xGm(v̇m + ur) = Nm. (5.3)

The right-hand sides of equations 5.1, 5.2 and 5.3 consist of propeller forces,
rudder forces and hydrodynamic forces. Yasukawa and Yoshimura [63] ex-
press these right hand sides as

X = XH +XR +XP (5.4)

39
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Y = YH + YR (5.5)

Nm = NH +NR. (5.6)

Yasukawa and Yoshimura [63] non-dimensionalize the hydrodynamic forces
XH and YH by dividing by 1

2ρLppdU
2. The hydrodynamic moment NH

is non-dimensionalized by dividing by 1
2ρL

2
ppdU

2. Because Yasukawa and
Yoshimura [63] assume the forces acting on the vessel to be quasi-steady,
the hydrodynamic forces and moments are considered to be independent
of u. The lateral velocity vm and the angular velocity r can be non-
dimensionalized by dividing by U and U

Lpp
respectively. Non-dimensional

quantities are denoted with a prime ′.

5.1.2 Hydrodynamic forces

The hydrodynamic forces are modelled by Yasukawa and Yoshimura [63] as
nondimensional forces

X ′H = −R′0 +X ′vvv
′
m +X ′vrv

′
mr
′ +X ′rrr

′2 +X ′4vvvv (5.7)

Y ′H = Y ′vv
′
m + Y ′rr

′ + Y ′vvvv
′3
m + Y ′vvrv

′2
mr
′ + Y ′vrrv

′
mr
′2 + Y ′rrrr

′3 (5.8)

N ′H = N ′vv
′
m +N ′rr

′ +N ′vvvv
′3
m +N ′vvrv

′2
mr
′ +N ′vrrv

′
mr
′2 +N ′rrrr

′3. (5.9)

Note here that R′0 is a constant here, this is because u is assumed to be
almost constant due to the quasi-steady case. When u varies to much this
assumption is not valid any more and terms that are dependent on u have
to be included instead of R′0 .

5.1.3 Propeller forces

Yasukawa and Yoshimura [63] only take thrust force into account when con-
sidering propeller forces. Due to hull interaction, the force that the vessel
actually “feels” is less than the thrust generated by the propeller, this can
be taken into account with the thrust deduction factor tP

XP = (1− tP )T. (5.10)

Because of the quasi-steady assumption, the thrust deduction factor is as-
sumed to be constant. Propeller thrust force can be expressed as

T = ρn2
pD

4
4KT (JP ). (5.11)

Yasukawa and Yoshimura [63] approximate the KT characteristic as a poly-
nomial of second order of the advance ratio

KT (JP ) = k2J
2
P + k1JP + k0. (5.12)
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Th advance coefficient can be found using

JP =
(1− wP )u

nPDP
(5.13)

To correct the wake fraction wP for the manoeuvring motion of the vessel
Yasukawa and Yoshimura [63] use a formula based on the geometrical inflow
angle

βP = β − x′P r′. (5.14)

The correction formula is

1− wP
1− wP0

= 1 + (1− e−C1|βP |)(C2 − 1). (5.15)

Because of the asymmetric characteristic of of the wake, Yasukawa and
Yoshimura [63] use different values for C1 and C2 for different signs of βP .

5.1.4 Rudder forces

For the rudder forces, Yasukawa and Yoshimura [63] only take the normal
force on the rudder into account. The tangential influences are modeled as
a correction in the flow velocity. The normal force on the rudder can be
decomposed in a longitudinal and a lateral part, as is shown in figure 5.1.

x

y

δ

FN

FN cos δ

FN sin δ

Figure 5.1: Schematic drawing of a rudder and the decomposition of its
normal force.

Yasukawa and Yoshimura [63] correct these components of the normal force
for the interaction between hull and rudder. These correction factors are
measured during model tests. By measuring the hydrodynamic forces when
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the ship model is sailing straight with different rudder angles, these correc-
tion factors can be determined. The longitudinal component of the rudder
normal force is corrected by the steering resistance deduction factor tR which
is defined in a similar manner as the thrust deduction factor. This leads to
the expression for longitudinal component of the rudder force

XR = −(1− tR)FN sin δ (5.16)

as defined by Yasukawa and Yoshimura [63]. The lateral component of the
rudder normal force is corrected by the rudder force increase factor aH [63].
This factor represents the factor between total lateral force induced by a
rudder angle and the lateral component of the rudder normal force. Yas-
ukawa and Yoshimura [63] thus define the lateral component of the rudder
force as

YR = −(1 + aH)FN cos δ. (5.17)

The lateral component of the rudder also induces a moment on the vessel,
this moment is corrected for the position where the force acts with a factor
xH . Yasukawa and Yoshimura [63] define the moment induced by the rudder
as

NR = −(xR + aHxH)FN cos δ. (5.18)

Yasukawa and Yoshimura [63] calculate the normal force of the rudder using

FN =
1

2
ρARU

2
Rfα sinαR. (5.19)

where

fα =
6.13Λ

Λ + 2.25
(5.20)

as found by Fuji and Tuda [19]. The total velocity at the rudder can be
determined by using Pythagoras’ theorem

UR =
√
u2
R + v2

R. (5.21)

The angle of attack can be expressed as

αR = δ − tan−1

(
vR
uR

)
. (5.22)

5.1.5 Flow velocity at rudder position

The velocity of the water that reaches the rudder is influenced by a few
different factors however.

� hull of the ship

� acceleration by propeller



5.1. THEORY BEHIND THE MMG MODEL 43

� flow straightening effect of the propeller

� rotation of the hull.

Yasukawa and Yoshimura [63] suggest that the velocity at the rudder can be
considered to be an weighted averaged velocity between the velocity on the
part of the rudder that is in the slipstream of the propeller and the velocity
on the part of the rudder that is not in the slipstream. A schematic drawing
of the different velocities aft of the vessel is found in figure 5.2.

Figure 5.2: Schematic of the relation between ship velocity and inflow velo-
city on the rudder. Obtained from Yasukawa and Yoshimura [63].

The area of the rudder that is in the slipstream is denoted ARP , the area
of the rudder that is not in the slipstream is denoted AR0. Together they
make up the total rudder area

AR = AR0 +ARP . (5.23)

The weighted average of the longitudinal velocity at the rudder can now be
calculated as

uR =

√
ARP
AR

u2
RP +

AR0

AR
u2
R0 =

√
ηu2

RP + (1− η)u2
R0, (5.24)

where

η =
ARP
AR

. (5.25)

It is convenient to express both velocities in terms of the inflow velocity of
the propeller. For the flow velocity outside the slipstream of the propeller a
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factor similar to the wake fraction wR can be considered to express the flow
velocity in terms of the ship velocity

uR0 = (1− wR)u. (5.26)

Now by use of the wake fraction the velocity uR0 can be expressed in terms
of the propeller velocity

up = (1− wP )u (5.27)

uR0 =
1− wR
1− wP

uP . (5.28)

This ratio of wake fraction at propeller and rudder positions is denoted by
Yasukawa and Yoshimura [63] as

ε =
1− wR
1− wP

. (5.29)

According to [63] velocity at the part of the rudder that is inside of the
slipstream can be approximated by the velocity outside of the slipstream
plus a velocity increase due to the propeller

uRP = uR0 + kx∆u. (5.30)

The velocity increase due to the propeller is assumed to be proportional to
the increase in velocity obtained from actuator disk theory

∆u = u∞ − uP . (5.31)

From actuator disk theory the ratio between u∞ and uP can be derived

u∞
uP

=

√
1 +

8KT

πJ2
P

(5.32)

This derivation is carried out in appendix F. The velocity at the rudder in
the propeller slipstream can now be represented by

uRP = εuP + kx

(√
1 +

8KT

πJ2
P

− 1

)
uP (5.33)

uRP = εuP

(
1 + κ

(√
1 +

8KT

πJ2
P

− 1

))
, (5.34)

where

κ =
kx
ε
. (5.35)

Substitution in equation 5.24 of both ur0 and uRP results in

uR = εuP

√√√√η

(
1 + κ

(√
1 +

8KT

πJ2
P

− 1

))2

+ 1− η (5.36)
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which is equal to

uR = ε(1− wP )u

√√√√η

(
1 + κ

(√
1 +

8KT

πJ2
P

− 1

))2

+ 1− η. (5.37)

For the lateral component of the flow velocity at rudder position, a different
method is used.

5.1.6 Finding new velocities

After calculating all the forces these can be substituted in equations 5.1, 5.2
and 5.3. Now these equations can be solved for u̇, v̇ and ṙ, which yields

u̇ =
X + (m+my)vmr + xGmr

2

m+mx
(5.38)

v̇m =
Y − (m+mx)ur − xGmṙ

m+my
(5.39)

ṙ =
Nm − xGm(vm + ur)

IzG + x2
Gm+ Jz

. (5.40)

These accelerations can be integrated with respect to time to get to velocities

u =

∫
u̇ dt (5.41)

v =

∫
v̇ dt (5.42)

r =

∫
ṙ dt. (5.43)

5.2 Implementation of the MMG model

With the theoretical basis of the MMG model known, the model is imple-
mented in MATLAB. The input of for the MMG model consists of properties
of the vessel, in this case the KVLCC2. These properties consist of geometric
properties of the vessel and rudder, correction factors for rudder forces and
hydrodynamic coefficients. Other inputs that should be defined are the size
of integration time-step, the simulation time, rudder angles and propeller
RPM.

The calculations for all forces are defined in different subroutines, which are
used to calculate the accelerations using the equations of motion. For the
integration of the accelerations to update the velocity components, a numer-
ical integration method is used. The Euler method and Runge Kutta 4th
order (RK4) will be compared to determine which method is most suitable
for this situation. A schematic diagram of the working of the whole program
can be found in figure 5.3.
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Initialize
model
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U and β

Define
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propeller
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hydro-
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Stop

no
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Figure 5.3: Diagram of running the manoeuvring simulation.
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5.3 Verification Simulation

In this section the simulation program is verified. First the cases that are
used for verification will be defined.

5.3.1 Verification Cases

The different cases that are tested are displayed in table 5.1, the coefficients
used in the simulation are also displayed. The vessel used in the simulation
is the KVLCC2, which is also used to validate the MMG method. The mass
of the vessel is m = 320415000 kg. For verification 4 cases for straight sailing
are simulated. These cases differ in the external forces that are applied on
the vessel. The first case is a decelerating case as the result of constant
external force, in the second case also a sinusoidal force is added to the
constant force. In the third case the vessel accelerates due to application
of a constant force and in the last case a sinusoidal force is added to this
constant force.

Table 5.1: Verification Cases.

Case Xu̇ [kg] Xu [kg/s] F0 [N] FA [N]

1. -1000000 -200000 1000000 0
2. -1000000 -200000 1000000 700000
3. -1000000 -200000 10000000 0
4. -1000000 -200000 10000000 7000000

All four cases in table 5.1 only include the hydrodynamic coefficients Xu̇ and
Xu because this results in an equation of motion which can be solved ana-
lytically. The analytical solution can be used to compare with the numerical
integration methods to verify them.

5.3.2 Verifying numerical integration

The errors that occur in the coefficients can arise from numerical errors in the
simulation or they can be a result of the developed method. To differentiate
between these two kind of errors, the following case is considered. When
straight sailing is considered with only coefficients Xu and Xu̇, the equation
of motion becomes

(m−Xu̇)u̇−Xuu = Fext. (5.44)

When the external forces on the vessel are set to be equal to a constant force
and a sinusoidal force, the equation becomes

(m−Xu̇)u̇−Xuu = F0 + FA sinωt, (5.45)
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which has an analytic solution. This analytic solution is

u(t) = c1e
Xu

m−Xu̇
t − FAXu

(m−Xu̇)2ω2 +X2
u

sinωt

− (m−Xu̇)ωFA
(m−Xu̇)2ω2 +X2

u

cosωt− F0

Xu
.

(5.46)

The derivation of the analytic solution can be found in appendix H. The
simulation program solves the equation of motion numerically. Lewandowski
[38] gives the Euler integration method as the simplest method, the disad-
vantage of this method is that to increase accuracy a smaller time step is
needed, which increases the amount of calculations that has to be done. An-
other problem that Lewandowski [38] calls is that of numerical stability. The
Euler method becomes unstable when time steps are taken to large, which
also is a reason to reduce time steps. According to Lewandowski [38] a pop-
ular alternative is the RK4 method, which is more accurate and more stable
when a larger time step is used, a disadvantage however is that the acceler-
ation has to be evaluated 4 times during each time step. To verify whether
the Euler method is sufficiently accurate or not, the RK4, the Euler method
and the analytical solution are compared. According to Vuik et al. [60] the
stability range for the RK4 method is larger than for the Euler method. [60]
also mentions that the local truncation error for the euler method is of order
O(∆t) while the local truncation error for RK4 is of order O(∆t4). In figure
5.4 it can be seen that both integration methods approximate the analytical
result very well for the acceleration. In the velocity plot however, it can be
seen that the Euler method deviates much more from the analytical solution
than the 4th order Runge-Kutta method. In this case the known forces do
not depend on the velocity of the vessel. In the case when propeller force
and rudder force are used, the known forces do depend on the velocity of
the vessel and a deviation in the velocity is of much higher influence on the
solution in the next time step.

Error estimation numerical integration

Because the analytical solution is known, the global truncation error can be
calculated. In figure 5.5 the relative truncation error at t = 4000 is shown
for the 4 different verification cases. The time t = 4000 is chosen because
the length of the manoeuvres that later will be tested could be of the order
of an hour. The relative truncation error is defined as

εn+1 =
yn+1 − wn+1

yn+1
, (5.47)

where y is the analytical solution and w is the numerical solution. In figure
5.5a and 5.5c it can be seen that the error for the Euler method is linear with
respect to the step size, this is in accordance with the theory that states that
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Figure 5.4: Comparison of numerical integration methods.
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Figure 5.5: Relative global truncation error of longitudinal velocity for dif-
ferent time steps a t = 4000.



5.3. VERIFICATION SIMULATION 51

the Euler method has a truncation error of order O(∆t) [60]. In figure 5.5b
and 5.5d the Euler method does not show such a linear relation ship, this is
probably because of the sinusoidal behaviour of the solution, which lets the
local truncation error fluctuate over time. In all four plots it is shown that
the Runge-Kutta method converges much faster to the analytical solution as
∆t approaches zero than the Euler method. For this reason the Runge-Kutta
4th order method is implemented in the simulation program.
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Chapter 6

Development of the
prediction method

In this chapter the theoretical background for the method is formulated, and
the prediction method is set up. First is explained how based on literature
research, the equations of motions are set up and from these equations the
hydrodymanic coefficients can be found using singular value decomposition.
Secondly the method to derive velocities and accelerations from the position
of the vessel is explained. Lastly some implications of manoeuvres will
be discussed based on the mathematical model that is used to find the
coefficients.

6.1 From equations of motion to coefficients

In literature different sets of coefficients were found to model the hydro-
dynamic forces on the vessel. When these coefficients are known they can
be plugged into the equations of motion, which can be solved to find accel-
erations, velocities, position and heading. When the velocities and accelera-
tions of the vessel are known at different time steps however, together with
rudder and propeller forces, the hydrodynamic coefficients can be considered
as unknowns. The velocities and accelerations can be plugged in into the
three equations of motions. The three remaining equations are linear in
each coefficient and they are also uncoupled because every coefficient occurs
in only one equation of motion. These equations can now be solved using
Singular Value Decomposition (SVD) to find the least squares approxim-
ation of the coefficients. As discussed earlier, the set of coefficients based
on low-aspect-ratio lift theory will be used in the prediction method, this
results in the use of the following equations of motion

53
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In longitudinal direction the equation of motion becomes:

Xu̇u̇+Xuuu
2 +Xuuuu

3 +Xvvv
2 +Xrrr

2 +Xvrvr

+Xuvvuv
2 +Xrvurvu+Xurrur

2 +XP +XR = m(u̇− rv).
(6.1)

In lateral direction the equation of motion becomes:

Yv̇v̇ + Yuvuv + Yurur + Yuuru
2r + Yuuvu

2v + Yvvvv
3 + Yrrrr

3

+Yrrvr
2v + Yvvrv

2r + Y|v|v|v|v + Y|r|v|r|v + Y|v|r|v|r + Y|r|r|r|r
+YP + YR = m(v̇ + ru).

(6.2)

The equation of motion for rotation around the z-axis becomes:

Nṙṙ +Nuvuv +Nurur +Nuuru
2r + +Nuuvu

2v +Nvvvv
3 +Nrrrr

3

+Nrrvr
2v +Nvvrv

2r +N|v|v|v|v +N|r|v|r|v +N|v|r|v|r +N|r|r|r|r
+NP +NR = Iz ṙ

(6.3)

For simplicity, the following simple longitudinal equation of motion is con-
sidered as an example

Xu̇u̇+Xuuu
2 +XP +XR = m(u̇− rv). (6.4)

Note that when the total motion of the vessel needs to be solved, all three
coupled equations of motion are needed. When the velocities, accelerations,
propeller forces and rudder forces on n points in time are known, this can
be written as a set of n linear equations

Xu̇u̇i +Xuuu
2
i +XP,i +XR,i = m(u̇i − rivi) 1 ≥ i ≥ n. (6.5)

Putting all known forces at the right hand side and writing it in matrix form
yields 

u̇1 u2
1

...
...

...
...

u̇n u2
n


[
Xu̇

Xuu

]
=


m(u̇1 − r1v1)−XP,1 −XR,1

...

...
m(u̇n − rnvn)−XP,n −XR,n

 . (6.6)

This equation can be written shorter as

AXX = bX . (6.7)

Here we will call AX the velocity matrix for longitudinal direction, X the
longitudinal coefficient vector and bX the known forces vector for longit-
udinal direction. In the same way the equations for sway and yaw can be
rewritten. Despite the fact that the three equations are uncoupled, one
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could still write these three equations as one matrix equation, but solving
this one matrix equation involves inverting a matrix that is much larger,
which will require more computational effort.

A linear least square estimate of the solution can now be made to find using
singular value decomposition

X = V Σ+UTbX . (6.8)

In the same way this can be done for equations 6.1,6.2 and 6.3.

6.2 Finding velocities and accelerations

To find the hydrodynamic coefficients in the equation of motions, the ve-
locities and accelerations of the vessel need to be known. These quantities
need to be derived from the path that the vessel has sailed. The position of
the vessel is described by a x-coordinate, y-coordinate and a heading angle.
When these quantities are measured on a real vessel, the position will be
measured at different steps in time.

Consider two moments in time t1 and t2 for which the position and heading
of the vessel is known. This is illustrated in figure 6.1. The difference in
time between these moments can be defined as

∆t = t2 − t1. (6.9)

In the same way differences between heading, x-coordinate and y-coordinate
can be defined as

∆ψ = ψ2 − ψ1 (6.10)

∆x = x2 − x1 (6.11)

∆y = y2 − y1 (6.12)

From classical mechanics it is known that a velocity can be defined as a
derivative of position with respect to a certain reference frame

V = lim
∆t→0

∆s

∆t
. (6.13)

In the same way a velocity in the x-direction and the y-direction of the earth
fixed coordinate system can be defined

ẋ0 = lim
∆t→0

∆x

∆t
(6.14)

ẏ0 = lim
∆t→0

∆y

∆t
. (6.15)
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The angular velocity can be defined as

r = lim
∆t→0

∆ψ

∆t
. (6.16)

Using goniometric relations the velocities in the ship fixed reference frame
can be found

u = ẋ0 cosψ + ẏ0 sinψ (6.17)

v = −ẋ0 sinψ + ẏ0 cosψ (6.18)

r = ψ̇. (6.19)

x0

y0

u1

v1

ψ1

y1

x1

u2

v2

ψ2

y2

x2

Figure 6.1: Schematic display of a vessel during two different time steps.

Because the change in reference frame is only a change in the xy-plane, the
rotation r remains the same for the ship fixed reference frame. In a similar
manner the accelerations can be calculated, by differentiating the velocities

u̇ = ẍ0 cosψ − ẋ0r sinψ + ÿ0 sinψ + ẏ0r cosψ (6.20)

v̇ = −ẍ0 sinψ − ẋ0r cosψ + ÿ0 cosψ − ẏ0r sinψ (6.21)
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ṙ = ψ̈. (6.22)

In reality it is impossible to measure time en position continuously, so the
limit for ∆t → 0 can never be reached. Because of this it is needed to
approximate the derivative numerically.

6.2.1 Numerical Differentiation

Numerical differentiation uses function values to approximate the rate of
change of the function. Over the years many different methods of numerical
differentiation have been developed. The accuracy and stability of a method
does highly depend on the interval ∆t over which the rate of change is
determined. A so called truncation error of the differentiation method can
be estimated by using a Taylor series expansion. In most cases the truncation
error increases as the step size ∆t increases [60].

Finite difference methods

The easiest examples of numerical differentiation are the forward difference
and backward difference methods. These methods basically use the defini-
tion of the derivative, but use a finite difference instead of taking the limit
of the difference to zero. The forward difference method becomes

f ′(x) ≈ f(x+ h)− f(x)

h
for h > 0, (6.23)

and the backward difference method is

f ′(x) ≈ f(x)− f(x− h)

h
for h > 0. (6.24)

According to [21], the truncation error can be reduced to order O(h2) by
taking the average of both methods, which results in the central difference
method

f ′(x) ≈ f(x+ h)− f(x− h)

2h
. (6.25)

This corresponds to the slope of a straight line between the two adjacent
points, where the slope is evaluated, as drawn in figure 6.2. To derive the
accelerations of the vessel, it is necessary to differentiate the position of the
vessel twice. By introducing points at x+ h

2 and x− h
2 , the central difference

method can be applied twice to find

f ′′ ≈ f(x+ h)− 2f(x) + f(x− h)

h2
. (6.26)

The advantage of approximating the second derivative using the function
original function values, over differentiating the first derivative again is that
the error is smaller.
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y

x

f(x− h)

f(x)

f(x+ h)

x− h x x+ h

2h

Figure 6.2: Approximation of derivative in f(x) with central difference
method.

Richardson Extrapolation

According to Grasselli and Pelinovsky [23], the accuracy of the numerical dif-
ferentiation can be improved by a method called Richardson extrapolation.
Using Richardson extrapolation a better multipoint approximation can be
made by cancellation of the truncation error of previous multipoint approx-
imation. Using the central difference method as a basis in the Richardson
extrapolation, we find

f ′ ≈ −f(x+ 2h) + 8f(x+ h)− 8f(x− h)− f(x− 2h)

12h
, (6.27)

which has a truncation error of order O(h4). In a similar way, Richardson
extrapolation can be used to make a better approximation can be made of
the second derivative

f ′′ ≈ −f(x+ 2h) + 16f(x+ h)− 30f(x) + 16f(x− h)− f(x− 2h)

12h2
,

(6.28)
which also has a truncation error of order O(h4). The same principle can
be used for the forward and backwards difference methods. These methods
are slightly less accurate, but they can be used on the edge of the interval.
The expressions found are

f ′ ≈ f(x+ 4h)− 12f(x+ 2h) + 32f(x+ h)− 21f(x)

12h
(6.29)

f ′′ ≈ −f(x+ 4h) + 10f(x+ 2h)− 16f(x+ h) + 7f(x)

4h2
. (6.30)

Both approximations on the edge have truncation errors of O(h3).
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6.2.2 Moving-average filter

The data that is used to determine the accelerations and velocities may
contain noise and steps. To reduce the noise, and to be sure that a differ-
entiation can be carried out, a filter is used. Because steps in the data that
cause peaks in the derivatives are the main problem, a filter that smooths
the data is needed. For this purpose a moving average is used. The moving
average filter uses the data in a specified window to calculate the average
[12]. When the window is 5 for example, the moving average filtered data
become

g(x) =
f(x− 2) + f(x− 1) + f(x) + f(x+ 1) + f(x+ 2)

5
. (6.31)

6.3 Implications of certain paths

Although the method is able to find coefficients from a manoeuvre executed
by the vessel, not every manoeuvre is suitable to find all coefficients that
are sought after. This has to do with the implicit assumption that u̇, v̇,
ṙ, u,v and r all will vary during the executed manoeuvre. In this section
the implications of situation where this is not the case will be discussed.
Although not every situation is equally likely to occur, it is important to
realize that these situations can take place.

6.3.1 Longitudinal acceleration is zero

When the longitudinal acceleration u̇ is zero, the longitudinal velocity u is a
constant velocity u0. This means that no distinction can be made between
coefficients that only define a relation between longitudinal force and u.
When this situation is substituted in 6.1 this leads to

(Xuuu
2
0 +Xuuuu

3
0) + (Xvr +Xrvuu0)vr + (Xvv +Xuvvu0)v2

+(Xurru0 +Xrr)r
2 +XP +XR = −mvr.

(6.32)

Because the longitudinal velocity remains constant, the expressions between
brackets are constant as well. This means no distinction can be made
between the different coefficients between brackets. In this situation no
distinction can be made between Xuu and Xuuu, which means they can not
be determined in this situation. The same problem arises for Xvr and Xrvu,
Xvv and Xuvv and Xurr and Xrr. The added mass Xu̇ can not be determ-
ined because the acceleration u̇ is zero, which makes the term vanish from
the equation. When the same substitution is done for 6.2 this leads to

(Yuvu0 + Yuuvu
2
0)v + (Yuru0 + Yuuru

2
0)r + Yv̇v̇ + Yvvvv

3

+Yrrrr
3 + Yrrvr

2v + Yvvrv
2r + Y|v|v|v|v + Y|r|v|r|v + Y|v|r|v|r

+Y|r|r|r|r + Yp + YR = m(v̇ + ru0).

(6.33)
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In equation 6.33 it can be seen that no distinction can be made between Yuv
and Yuuv, the same applies to Yur and Yuur.

(Nuru0 +Nuuru
2
0)r + (Nuvu0 +Nuuv)v +Nṙṙ +Nvvvv

3

+Nrrrr
3 +Nrrvr

2v +Nvvrv
2r +N|v|v|v|v +N|r|v|r|v +N|v|r|v|r

+N|r|r|r|r +NP +NR = Iz ṙ

(6.34)

In the same way equation 6.34 can be found after substitution of u = u0 in
6.3. From this equation it can be concluded that Nuv and Nuuv indistin-
guishable, which is also the case for Nur and Nuur.

6.3.2 Lateral acceleration is zero

The lateral acceleration v̇ is zero when the lateral velocity v is constant.
When a constant velocity v0 is substituted in equation, this results in 6.1

Xu̇u̇+ (Xuu +Xuuvv0)u2 +Xvvv
2
0 +Xvrv0r +Xrvurv0u

+Xuuuu
3 +Xrrr

2 +Xurrur
2 +XP +XR = m(u̇− rv0).

(6.35)

In this case, due to the constant velocity, Xuu and Xuuv will not be distin-
guishable. When the constant lateral velocity v0 is substituted in equation
6.2, this will result in

Yuvuv0 + Yurur + Yuuru
2r + Yuuvu

2v0 + Yvvvv
3
0

+Yrrrr
3 + Yrrvv0r

2 + Yvvrv
2
0r + Y|v|v|v0|v0 + Y|r|v|r|v0 + Y|v|r|v0|r

+Y|r|r|r|r + YP + YR = mru.

(6.36)

The added mass term becomes zero, due to the acceleration being zero. The
rest of the coefficients can still be calculated as long as there are positive
and negative values of v and r during the path of the vessel, this is explained
in section 6.3.7. The equation of motion for the rotation about the z-axis in
this situation is

Nṙṙ +Nuvv0u+Nurur +Nuuru
2r +Nuuvu

2v0 +Nvvvv
3
0

+Nrrrr
3 +Nrrvv0r

2 +Nvvrv
2
0r +N|v|v|v0|v0 +N|r|v|r|v0 +N|v|r|v0|r

+N|r|r|r|r +NP +NR = Iz ṙ.

(6.37)

Because no terms show the same dependencies and no term depends on v̇,
all coefficients in this equation can be determined.

6.3.3 Rotational acceleration is zero

If the vessel is rotating with a constant angular velocity r0, the rotational ac-
celeration ṙ is zero. Substituting the constant angular velocity in equations
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6.1 en 6.2 yields

Xu̇u̇+Xuuu
2 +Xuuvvu

2 +Xvvv
2 +Xvrvr0 +Xrvur0vu

+Xuuuu
3 +Xrrr

2
0 +Xurrur

2
0 +XP +XR = m(u̇− r0v)

(6.38)

and

Yv̇v̇ + Yuvuv + Yurur0 + Yuuru
2r0 + Yuuvu

2v + Yvvvv
3

+Yrrrr
3
0 + Yrrvr

2
0v + Yvvrr0v

2 + Y|v|v|v|v + Y|r|v|r0|v + Y|v|r0 |v|r0

+Y|r|r|r0|r + YP + YR = m(v̇ + r0u).

(6.39)

From equation 6.38 it can be concluded that every coefficient for the hydro-
dynamic forces in x-direction can be determined if the rotational acceleration
is zero. Because the hydrodynamic forces in y-direction contains square ab-
solute terms, all coefficients of the hydrodynamic forces in y-direction can
only be determined when either r0 or v contains negative values, this is
explained in section 6.3.7. The equation of motion for rotation around the
z-axis becomes

Nuvvu+Nurur0 +Nuuru
2r0 +Nuuvu

2v +Nvvvv
3

+Nrrrr
3
0 +Nrrvr

2
0v +Nvvrv

2r0 +N|v|v|v|v +N|r|v|r0|v +N|v|r0 |v|r0

+N|r|r|r0|r +NP +NR = 0.

(6.40)

Because the angular velocity is zero, the added mass moment of inertia has
no influence and can not be determined. So Nṙ can not be found when the
rotational acceleration is zero.

6.3.4 Longitudinal velocity is zero

When not only the longitudinal acceleration is zero, but the longitudinal
velocity u is zero, a lot more terms cancel from the equation of motion in
x-direction:

Xvvv
2 +Xvrvr +Xrrr

2 +XP +XR = mrv. (6.41)

This means it is not possible to determine Xu̇, Xuu, Xuuu, Xuvv, Xrvu and
Xurr when u is zero. When u = 0 is substituted in equation 6.2, the equation
becomes

Yv̇v̇ + Yvvvv
3 + Yrrrr

3 + Yrrvr
2v + Yvvrv

2r + Y|v|v|v|v + Y|r|v|r|v
+Y|v|r|v|r + Y|r|r|r|r + YP + YR = mv̇.

(6.42)

Equation 6.42 shows less terms than the original equation, because the terms
involving u are cancelled. It can be concluded that the coefficients Yuv, Yur,
Yuur, Yuuv can not be obtained when the longitudinal velocity is zero. When
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a longitudinal velocity of zero is substituted in the moment equation around
the z-axis 6.3, the equation becomes

Nṙṙ +Nvvvv
3 +Nrrrr

3 +Nrrvr
2v +Nvvrv

2r +N|v|v|v|v +N|r|v|r|v
+N|v|r|v|r +N|r|r|r|r +NP +NR = Iz ṙ.

.

(6.43)

The terms Nuv, Nur, Nuur and Nuuv have dropped out of the equation,
which means they cannot be determined in this situation.

6.3.5 Lateral velocity is zero

When the lateral velocity v is zero equation 6.1 becomes

Xu̇u̇+Xuuu
2 +Xuuuu

3 +Xrrr
2 +Xurrur

2 +XP +XR = mu̇. (6.44)

The coefficients Xvv, Xvr, Xuuv and Xrvu cannot be determined, because
they dropped out of the equation.

Yurur + Yuuru
2r + Yrrrr

3 + Y|r|r|r|r + YP + YR = mru. (6.45)

Nṙṙ +Nurur +Nuuru
2r +Nrrrr

3 +N|r|r|r|r +NP +NR = Iz ṙ. (6.46)

6.3.6 Rotational velocity is zero

Xu̇u̇+Xuuu
2 +Xuuuu

3 +Xvvv
2 +Xuvvuv

2 +XP +XR = mu̇. (6.47)

Yv̇v̇ + Yuvuv + Yuuvu
2v + Yvvvv

3 + Y|v|v|v|v + YP + YR = mv̇. (6.48)

Nuvuv +Nuuvu
2v +Nvvvv

3 +N|v|v|v|v +NP +NR = 0. (6.49)

6.3.7 Lateral and Rotational velocity are both positive

Because some terms of the lateral force balance include square absolute
terms, no distinction can be made between some coefficients when both
lateral and rotational velocity remain constant along the entire path. When
this is the case, Y|r|v and Y|v|r will play the same role, because |v| = v
and |r| = r. This means the equation of motion in lateral direction in this
situation can be written as:

Yv̇v̇ + Yuvuv + Yurur + Yuuru
2r + Yuuvu

2v + Yvvvv
3 + Yrrrr

3

+Yrrvr
2v + Yvvrv

2r + Y|v|v|v|v + (Y|r|v + Y|v|r)vr + Y|r|r|r|r
+YP + YR = m(v̇ + ru)

. (6.50)

Nṙṙ +Nuvuv +Nurur +Nuuru
2r +Nuuvu

2v +Nvvvv
3 +Nrrrr

3

+Nrrvr
2v +Nvvrv

2r +N|v|v|v|v + (N|r|v +N|v|r)vr +N|r|r|r|r
+NP +NR = Iz ṙ.

(6.51)



Chapter 7

Verification prediction
method

To find out whether it is possible to find a set of manoeuvring coefficients
by using the method developed around singular value decomposition, it is
needed to verify the method. This means it is needed to test if the method
is able to return a set of coefficients that is already known. This can be
done in the following way:

� Select a known set of coefficients,

� Apply known external forces to simulate a track,

� Use the developed method to find the same set of coefficients,

� Determine the error of the found coefficients to verify the developed
method.

7.1 Verification plan

7.1.1 Known set of coefficients

To start verifying the method, a known set of coefficients has to be chosen.
To begin with, a small set of coefficients is preferable because it makes
computations and debugging less complex. The set also needs to be a valid
set of coefficients itself to be sure that the manoeuvres simulated are valid.
The coefficients are chosen form the set of coefficients derived from low-
aspect-ratio lift theory, these coefficients can be found in table 7.1. Because

7.1.2 Apply known forces to simulate a track

To move the vessel forces have to be applied on the ship. IN reality this
is done by the use of rudders and propellers. To be sure that errors in the
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Table 7.1: Coefficients derived from low-aspect-ratio lift theory.

X coefficients Y coefficients N coefficients

Xu̇ Yv̇ Nṙ

Xuu Yuv Nuv

Xuuu Yur Nur

Xvv Yuur Nuur

Xrr Yuuv Nuuv

Xvr Yvvv Nvvv

Xuvv Yrrr Nrrr

Xrvu Yrrv Nrrv

Xurr Yvvr Nvvr

Y|v|v N|v|v
Y|r|v N|r|v
Y|v|r N|v|r
Y|r|r N|r|r

method are not caused by errors in the propeller and rudder forces, known
forces and moments are applied. To start verification as easy as possible, it
is convenient to start with simulations of motions in 1 Degrees of Freedom
(DOF), which can be done by applying a force or moment in 1 DOF.

7.1.3 Determining the coefficients

Using the developed method and the selected tracks, the coefficients can be
determined. The known forces used to generate the manoeuvres are used
as known forces in this method as well. The coefficients that arise from the
method should be the same or close to the original set. To measure how
close the coefficients approximate the behaviour of the vessel, the variance
can be calculated. The sampling time can also be varied to research what
the influence is on the results and the condition number of the matrices that
need to be decomposed in the singular value decomposition. The condition
number can be used as a measure of the sensitivity of the solution to errors
in the entries of the matrix.

7.2 Verification of numerical differentiation

To verify whether the chosen numerical differentiation method based on
Richardson extrapolation is implemented correctly, the derivative can be
compared with the analytical solution. The error can also be estimated
to see if the order of the error is in accordance with the theory. To test
whether any complications arise in the numerical differentiation Vuik et al.
[60] advises to verify the order of the error. According to Vuik et al. [60],
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the order of the truncation error p can be estimated using

Q(2h)−Q(4h)

Q(h)−Q(2h)
= 2p. (7.1)

In this formula Q(h) is the numerical derivative found with a step size of
h. To use this method, the analytical solutions of the verification cases
described in table 5.1 are used. The analytical solution of the position
is then used as input to find the velocity and acceleration by numerical
differentiation. Because the analytical solution is known, the error can also
be calculated by calculating the difference between the numerical derivative
and the analytical derivative.

7.2.1 Numerical differentiation at edges of the interval

At the edges of the interval a form of Richardson extrapolation is used
that is based on the forward difference method at the left edge and the
backwards difference method at the right edge. The formula that is used
is displayed in equation 6.29. In figure 7.1 the truncation errors at t=0
are displayed that are determined by calculating the difference between the
numerical derivative and the analytical derivative. It can be seen that the
error converges to 0 as ∆t goes to 0 in all four cases, which means that
the method is stable. In figures 7.1b and 7.1d the error shows a different
behaviour for ∆t larger than 128 seconds, this is due to the fact that the time
step becomes too large to model the sinusoidal behaviour of the solution.

To estimate the order of the truncation error, the method of Vuik et al. [60]
is used, which is displayed in Equation 7.1, to find the order p. The results
are displayed in table 7.2. In table 7.2 it can be seen that for most cases the

Table 7.2: Estimation of the order of the truncation error for numerical
differentiation at the beginning of the interval.

∆t [s] p case 1 p case 2 p case 3 p case 4

125 2.936 -0.699 2.936 -0.062
62.5 2.973 0.943 - 4.532i 2.973 1.033 - 4.532i

31.25 2.987 2.906 2.987 2.905
15.625 2.994 3.691 2.994 3.702
7.8125 2.997 3.785 2.997 3.805
3.9063 2.999 3.701 2.999 3.732
1.9531 2.999 3.549 2.999 3.588
0.9766 3.000 3.381 3.001 3.419
0.4883 2.993 3.239 2.988 3.265

truncation error at the ends of the interval have a truncation error of order
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Figure 7.1: Truncation error at u(t = 0) due to numerical differentiation for
different step sizes using Richardson extrapolation.
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O(h3), this is in accordance with the theoretical order of the truncation
error, as mentioned in 6.2.1 which means that the method is verified. In
case 2 and 4, where a sinusoidal behaviour is differentiated, the p-value is
not 3 or even negative or complex for large step sizes. This behaviour occurs,
because the step size is too large to approximate the sinusoidal behaviour,
a phenomenon called aliasing.

7.2.2 Numerical differentiation in the middle of the interval

In the middle of the interval a form of Richardson extrapolation is used that
is based on the central difference method. The formula for this numerical
differentiation method can be found in equation 6.27. To test this method,
the same analytical solution is used, but now the situation at t = 2000 is
used. In figure 7.2 the errors in the numerical differentiation compared to
the analytical solution are displayed. In figure 7.2 it can be seen that the
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Figure 7.2: Truncation error at u(t = 2000) due to numerical differentiation
for different step sizes using Richardson extrapolation..

error converges to 0 when ∆t goes to 0. It can also be noticed that the errors
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are smaller compared to the errors for the differentiation method that is used
at the edges of the interval.

In table 7.3 the truncation error is displayed that is calculated using equation
7.1. It can be seen that the truncation error for most cases is of the order
O(h4), which also followed from theory. In case 2 and case 4, the order of the
error is less than 4 for ∆t =125, this is due to the sinusoidal behaviour of the
motion. In these 2 cases the time step is too large to model the sinusoidal
behaviour of the velocity. For the time steps smaller than 2 second, case 1
and 3 show errors smaller than the order of 4. This is because the truncation
errors are very small and are in the order of magnitude of the rounding error.

Table 7.3: Estimation of the truncation error for numerical differentiation
in the middle of the interval.

h [s] p case 1 p case 2 p case 3 p case 4

125 4.013 0.163 4.013 0.185
62.5 4.003 3.131 4.003 3.132

31.25 4.001 3.787 4.001 3.787
15.625 4.000 3.947 4.000 3.947
7.8125 4.000 3.987 4.000 3.987
3.9063 3.993 3.997 3.993 3.997
1.9531 4.703 3.999 4.703 3.999
0.9766 1.059 3.997 1.059 4.002
0.4883 -1.876 4.083 -1.876 3.977

It can be concluded that the Richardson Extrapolation is implemented cor-
rectly, because the method shows the truncation errors as expected from
theory.

7.3 Verifying SVD using Analytical solution

If the prediction method works it should be able to give back the coefficients
that where used to simulate the track in the first place. When an analytical
solution is used to generate a data set, this data set does not contain any
numerical errors. Every error that will occur in the predicted coefficients
thus has to be a result of the prediction method itself. To be sure that the
singular value decomposition is implemented correctly, the singular value
decomposition can be verified using the analytical solution to equation 5.45.
To do this, a dataset consisting of u,u̇ and the known force Fknown = F0 +
FA sinωt at different points in time is generated from the analytical solution.
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The equation that the single value decomposition needs to solve is
u̇1 u1
...

...
...

...
u̇n un


[
Xu̇

Xu

]
=


Fknown,1

...

...
Fknown,n

 . (7.2)

Because every data point in the dataset is part of the analytical solution
to the equation of motion, the singular value decomposition has to find
the exact same Xu̇ and Xu when implemented correctly, independently of
the amount of data points n. Using the verification cases displayed in 5.1,
the found values of Xu̇ and Xu indeed match the input values. From this
it can be concluded that the singular value decomposition is implemented
correctly.

7.4 Testing coefficient sets in straight sailing

In the prediction method it is needed to specify the set of coefficients that
need to be sought after. When the same set of coefficients is specified in the
prediction method as is used to simulate the manoeuvre, the method should
find the values of these coefficients with a slight error due to the truncation
error of numerical integration and numerical differentiation. To test whether
the combined method of differentiation and singular value decomposition is
able to find the coefficients, the situation is considered where the ship is
only sailing straight forward. For the motions pure sway and pure yaw, the
exact same method can be used. The results for sway and yaw can be found
in appendix J.

7.5 Testing the same set as used in simulation

The basis for this test is verification case 4, which includes only the hydro-
dynamic coefficients Xu̇ and Xu. This case will be tested and then more
coefficients will be added. The input values for the known forces are dis-
played in table 7.4.

Table 7.4: Input values for known forces in case 4.

F0 [N] FA [N] ω [rad/s] m [kg]

10000000 7000000 0.01 320415000

The initial conditions are displayed in table 7.5.

The sets that are tested go up to third order. Because only longitudinal
motion is considered, no coupling terms are included, because they would
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Table 7.5: Initial conditions used in the simulation.

u0 [m/s] v0 [m/s] r0 [rad/s]

7.9739 0 0

not have any influence. The sets of coefficients that are tested are displayed
in table 7.6.

Table 7.6: Values of the coefficients that are used for testing in straight
sailing.

Set Xu̇ [kg] Xu [kg/s] Xuu [kg/m] Xuuu [kg s/m2]

1 −1 000 000.00 −200 000.00 - -

2 −100 000.00 −20 000.00 −10 000.00 -

3 −100 000.00 −20 000.00 −8 000.00 −500.00

Note that the coefficients in sets 2 and 3 with dashes are not used in the
calculation. When the calculations are carried out, data sets are generated
that can be used to find the coefficients. For finding these coefficient different
time step sizes ∆t for differentiation can be used. In table 7.7 the coefficients
found with the prediction method for a differentiation time step of ∆t = 1
are displayed. The found coefficients are close to the original input values.
This can also be seen by calculating the relative errors, which are displayed
in table 7.8

Table 7.7: Predicted coefficients for differentiation time step ∆t = 1.

Set Xu̇ [kg] Xu [kg/s] Xuu [kg/m] Xuuu [kg s/m2]

1 −999 990.96 −199 999.99 - -

2 −99 982.29 −20 000.09 −1 000 0.00 -

3 −99 998.55 −19 998.83 −8 000.12 −500.00

From the error calculation it can be concluded that the error for the added
mass coefficient Xu̇ is small but much larger than for the other coefficients
calculated. This larger error is caused by rounding errors, because the accel-
eration is smaller than the velocity relatively more information is lost with
the same amount of decimal places. A time step of 1 second was used to be
sure that the truncation error is small. To show the influence of differen-
tiation time step, the coefficients are also calculated using a differentiation
time step of ∆t = 10. These coefficients are displayed in 7.9.

Table 7.10 shows the errors when a differentiation time step of 10 seconds is
used. It can be seen that the errors are much larger than when a timestep
of 1 second is used. This is due to the truncation error of the numerical
differentiation, which increases with increasing time steps.
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Table 7.8: Relative error of predicted coefficients for differentiation time
step ∆t = 1.

Set εXu̇ [%] εXu [%] εXuu [%] εXuuu [%]

1 −0.000 9 −4.266 7 · 10−06 - -

2 −0.017 7 0.000 5 −3.459 5 · 10−05 -

3 −0.001 4 −0.005 9 0.001 5 −0.000 6

Table 7.9: Predicted coefficients for differentiation time step ∆t = 10.

Set Xu̇ [kg] Xu [kg/s] Xuu [kg/m] Xuuu [kg s/m2]

1 −984 426.36 −199 990.94 - -

2 −74 497.08 −20 092.43 −9 996.50 -

3 −99 044.36 −18 473.14 −8 153.52 −496.18

In table 7.10 it shown that the relative errors can be up to 25 % when a
step size of 10 seconds is used. For this reason it can be concluded that it
is better to use a time step of 1 second.

7.5.1 Testing when coefficients are 0 in straight sailing

It is shown that the prediction method can find the coefficients that are used
to simulate a path of a ship, when the same set of coefficients is specified
in the prediction method. When a coefficient is not used for simulation
however, the prediction method should find that this coefficient has no in-
fluence and this coefficient should therefore be close to zero. To test if this
is the case, the prediction method is used on set 1 and 2 from table 7.6
while specifying larger sets of coefficients in the prediction method. The
coefficients predicted using data set 1 with different coefficients specified in
the prediction method can be found in table 7.11. Because only motion in
longitudinal direction is simulated, only coefficients that depend on u and u̇
are considered.

To create data set 1, only coefficients Xu̇ and Xu where used. In table 7.11
it can be seen that the other coefficients are indeed small and negligible
compared to the size of Xu̇ and Xu, while Xu̇ and Xu still have values close

Table 7.10: Relative error of predicted coefficients for differentiation time
step ∆t = 10.

Set εXu̇ [%] εXu [%] εXuu [%] εXuuu [%]

1 −1.557 4 −0.004 5 - -

2 −25.502 9 0.462 2 −0.035 0 -

3 −0.955 6 −7.634 3 1.919 0 −0.764 6
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Table 7.11: Coefficients predicted from data set 1 with different coefficient
sets.

Set Xu̇ [kg] Xu [kg/s] Xuu [kg/m] Xuuu [kg s/m2]

Constant −999 990.97 −199 999.99 - -

Quadratic −999 977.08 −200 000.09 0.00 -

Cubic −999 988.13 −199 999.76 −0.02 0.00

to the original coefficients. In table 7.12 the coefficients calculated using
data set 2 can be found.

Table 7.12: Coefficients predicted from data set 2 with different coefficient
sets.

Set Xu̇ [kg] Xu [kg/s] Xuu [kg/m] Xuuu [kg s/m2]

Quadratic −99 982.29 −20 000.09 −1 000 0.00 -

Cubic −99 990.06 −19 999.69 −10 000.03 0.00

In this case the values of the coefficients used for the simulation also remain
close to the original values, the added coefficient Xuuu is very small when
compared to the values of the original set.

From these tests it can be concluded that the singular value decomposi-
tion returns coefficients close to zero when they have no influence on the
manoeuvre.

7.6 Finding coefficients in 3 DOF

The prediction method is verified for straight sailing. Of course the goal
is to find the hydrodynamic coefficients for planar motion, which means
that coefficients for 3 DOF need to be found. To verify if the prediction
method works for planar motion the coefficients are split up in 2 types.
Hydrodynamic forces that depend on motions in another DOF than the
force acts, such as Xvv ,Yuvv and Nur are called coupled. Hydrodynamic
forces that only depend on motions in the same DOF as the force acts,
such as Xu, Yv and Nrr are called uncoupled. Note that the 3 equations of
motions are coupled, due to the inertial terms ur and vr in equation C.18.

7.6.1 Verification uncoupled coefficients in 3 DOF

First a set of uncoupled coefficients is tested. The initial conditions and the
known forces used for simulation are displayed in table 7.13. Coefficients up
to third order are used. The input values used for simulation are displayed
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in table 7.14 together with the predicted coefficients for a differentiation step
of 1 second.

Table 7.13: Initial conditions and known forces used for verification 3 DOF
prediction.

u0 7.9739 m/s

v0 0 m/s

r0 0.1 rad/s

u̇0 0 m/s2

v̇0 0 m/s2

ṙ0 0 rad/s2

x0 0 m

y0 0 m

ψ0 0 rad

ω 0.01 rad/s

X0 0 N

XA 0 N

Y0 0 N

YA 0 N

N0 100000000 Nm

NA 700000 Nm

dt 1 s

In table 7.14 the error of the predicted coefficients is displayed. The errors
are small compared to the size of the coefficients. This error is due to
the truncation error of the used numerical differentiation method. When
the quantity which needs to be multiplied with a coefficient is small, the
rounding error is relatively larger, this is why the errors of Xu̇, Yv̇, Nrr and
Nrrr is of a different order of magnitude.

In table 7.15 the predicted coefficients and relative errors for with a differ-
entiation time step of 10 seconds are displayed. The errors are much larger
compared to the values in table 7.14. This is in accordance with the theory,
which states that the truncation error of the differentiation method is of
order O(h4).

7.6.2 Verification coupled coefficients in 3 DOF

It has been showed that the method is able to find coefficients in the case the
only coupling between the DOF consists of the inertia term. From theory it is
also found that coupling exists due to the hydrodynamic forces. To test if the
method is able to find these coupled coefficients a set of coefficients based on
low aspect ratio lift theory is used. The input values for the simulation and
the output form the prediction method van be found in table 7.16 together
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Table 7.14: Input and output values of a set uncoupled coefficients, with
differentiation step ∆t=1 s.

Coefficients Input Output ε [%]

Xu̇ −100 000.00 −102 865.95 2.87

Xu −20 000.00 −20 163.55 0.82

Xuu −8 000.00 −7 999.97 0.00

Xuuu −500.00 −497.11 0.58

Yv̇ −100 000.00 −102 762.79 2.76

Yv −20 000.00 −20 068.92 0.34

Yvv −8 000.00 −7 994.59 0.07

Yvvv −500.00 −498.79 0.24

Nṙ −1.00 · 10+12 −1 0.00 · 10+11 0.00

Nr −10 000 000.00 −10 014 806.99 0.15

Nrr −8 000 000.00 −7 909 224.52 1.13

Nrrr −7 000 000.00 −7 179 149.01 2.56

Table 7.15: Input and output values of a set uncoupled coefficients, with
differentiation step ∆t=10 s.

Coefficients Input Output ε [%]

Xu̇ −100 000.00 −103 317.24 3.32

Xu −20 000.00 −48 350.61 141.75

Xuu −8 000.00 −6 606.73 17.42

Xuuu −500.00 231.14 146.23

Yv̇ −100 000.00 −157 989.72 57.99

Yv −20 000.00 −20 526.94 2.63

Yvv −8 000.00 −8 666.61 8.33

Yvvv −500.00 −526.27 5.25

Nṙ −1.00 · 10+12 −1.00 · 10+12 0.01

Nr −10 000 000.00 −9 927 675.65 0.72

Nrr −8 000 000.00 −8 532 645.62 6.66

Nrrr −7 000 000.00 −5 760 207.24 17.71
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with the calculated relative errors.

Table 7.16: Input and output values of a test in 3 DOF with coupled coef-
ficients.

Coefficients Input Output ε [%]

Xu̇ −100 000.00 −104 344.24 4.34

Xuu −20 000.00 −19 998.46 0.01

Xvv −8 000.00 −8 000.66 0.01

Xrr −500.00 27 685.77 5 637.15

Xvr −100 000.00 −95 714.82 4.29

Yv̇ −20 000.00 38 053.11 290.27

Yuv −8 000.00 −7 998.29 0.02

Yur −500.00 57 733.71 11 646.74

Yuur −2 000.00 −2 007.62 0.38

Yvvr −2 000.00 −2 001.71 0.09

Nṙ −1.00 · 10+12 −1.00 · 10+12 0.02

Nuv −10 000 000.00 −10 000 781.52 0.01

Nur −8 000 000.00 −8 016 022.25 0.20

Nuur −7 000 000.00 −6 996 731.38 0.05

Nvvr −7 000 000.00 −6 999 767.06 0.00

When looking at the errors in table 7.16 it is noticeable that the coeffi-
cients Xrr, Yv̇ and Yur have very large errors. The fact that the rest of
the coefficients are predicted pretty accurately shows that the influence of
the coefficients with large errors are small. Looking at Xrr it can be seen
that this coefficient is rather small in comparison to other coefficients that
express a longitudinal component of the hydrodynamic force. Note that also
the values for r are very small compared to u and v, which makes Xrrr

2 a
very small force. The fact that the coefficient has a small influence makes it
hard to predict the value of the coefficient. To verify that this is the case,
the same test is done again byt know the value of Xrr is increased. The
results of this test are displayed in table 7.17 The influence of Xrr is now
much larger, which makes it easier to find the value of the coefficient which
is why the error of Xrr is much smaller in this test.

7.7 Using multiple paths for coefficient prediction

When the results of section 7.4 and section 7.6.2 are compared it can be seen
that the errors of the coefficients are smaller in straight sailing. Because of
this the question arises if the determination of the coefficients can become
more accurate when more paths are used in the determination. This can be
done in two ways:
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Table 7.17: Input and output values of a test in 3 DOF with coupled coef-
ficients.

Coefficients Input Output ε [%]

Xu̇ −100 000.00 −95 496.00 4.50

Xuu −20 000.00 −20 002.00 0.01

Xvv −8 000.00 −8 004.00 0.05

Xrr −5 000 000.00 −4 975 715.00 0.49

Xvr −100 000.00 −104 720.00 4.72

Yv̇ −2 000 000.00 −1 684 443.00 15.78

Yuv −8 000.00 −7 992.00 0.10

Yur −500 000.00 −185 674.00 62.87

Yuur −2 000.00 −2 032.00 1.61

Yvvr −2 000.00 −2 011.00 0.56

Nṙ −1.00 · 10+12 −1.00 · 10+12 0.05

Nuv −10 000 000.00 −9 998 221.00 0.02

Nur −8 000 000.00 −7 973 915.00 0.33

Nuur −7 000 000.00 −7 006 357.00 0.09

Nvvr −7 000 000.00 −7 000 762.00 0.01

� Use one manoeuvre to predict a part of the set of coefficients and use
these as ’known’ forces when using the other manoeuvre.

� Create one dataset, which consists of both manoeuvres and use the
prediction method to find the coefficients.

7.7.1 Predict part of set

In this case the same set of coefficients is used as in table 7.17, but know 2
manoeuvres will be simulated. The same manoeuvre as used in section 7.6.2
will be simulated together with a straight path where the ship accelerates.
When sailing straight only the coefficients Xu̇ and Xuu have their influence,
which then can be predicted pretty accurately as showed in section 7.4.
With these coefficients known this part of the hydrodynamic forces can be
calculated and subtracted in the second manoeuvre. In this way it is possible
to increase the accuracy of Xu̇ and Xuu. Because Xvr is also an inertial
contribution just like Xu̇, the accuracy of this coefficient will increase too.

In table 7.18 the results are displayed when first a straight path is used to
predict Xu̇ and Xuu. It can be seen that the values for the coefficients in x-
direction are much closer to the original than the coefficients found in table
7.17. Especially the inertial coefficient Xu̇ is predicted better when only
straight sailing is considered, which also makes the predicted value of Xvr

much closer to the input value. To improve the values of the Y -coefficients
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Table 7.18: Input and output values of a test in 3 DOF with coupled coef-
ficients, where 2 paths are used.

Coefficients Input Output ε [%]

Xu̇ −100 000.00 −99 994.00 0.01

Xuu −20 000.00 −20 000.00 0.00

Xvv −8 000.00 −8 002.00 0.03

Xrr −5 000 000.00 −4 974 226.00 0.52

Xvr −100 000.00 −100 204.00 0.20

Yv̇ −2 000 000.00 −1 684 443.00 15.78

Yuv −8 000.00 −7 992.00 0.10

Yur −500 000.00 −185 674.00 62.87

Yuur −2 000.00 −2 032.00 1.61

Yvvr −2 000.00 −2 011.00 0.56

Nṙ −1.00 · 10+12 −999 458 929 786.00 0.05

Nuv −10 000 000.00 −9 998 221.00 0.02

Nur −8 000 000.00 −7 973 915.00 0.33

Nuur −7 000 000.00 −7 006 357.00 0.09

Nvvr −7 000 000.00 −7 000 762.00 0.01

a motion with only a v-component can be used, although it is much less
realistic to perform a manoeuvre with only sway.

7.7.2 Create data set from 2 manoeuvres

Instead of using the first manoeuvre to calculate more of the known forces,
the two manoeuvres can also be used in one dataset to get more points
for the coefficient determination. Notice that it is needed to differentiate
first and then join the two manoeuvres in one dataset, because the data
will be discontinuous at the boundary between the two manoeuvres. After
differentiation the velocity vectors, acceleration and force vectors of the two
manoeuvres are merged into 1 new set of velocity, acceleration and force
vectors. Now the singular value decomposition can be applied to find the
coefficients. The resulting set of found coefficients is displayed in table 7.19

It can be seen that the values for the coefficients in x-direction are much
closer to the original than the coefficients found in table 7.17. The coeffi-
cients predicted found in 7.18 are even closer though. The reason for this is
that data that is less suitable for predicting added mass, namely the 3 DOF
manoeuvre is also used for predicting added mass, which increases the error.
The reason that the 3 DOF manoeuvre is less suitable for finding the added
mass Xu̇ is the fact that the total inertial part of the equation of motion
in x-direction is: (m + Xu̇)u̇ + (−m + Xvr)vr. When a motion in 3 DOF
is considered, the term that depends on vr is not zero. This means that
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Table 7.19: Input and output values of a test in 3 DOF with coupled coef-
ficients, where 2 paths are used and merged into 1 dataset.

Coefficients Input Output ε [%]

Xu̇ −100 000.00 −99 653.00 0.35

Xuu −20 000.00 −20 000.00 0.00

Xvv −8 000.00 −8 003.00 0.03

Xrr −5 000 000.00 −4 975 058.00 0.50

Xvr −100 000.00 −100 546.00 0.55

Yv̇ −2 000 000.00 −1 684 443.00 15.78

Yuv −8 000.00 −7 992.00 0.10

Yur −500 000.00 −185 674.00 62.87

Yuur −2 000.00 −2 032.00 1.61

Yvvr −2 000.00 −2 011.00 0.56

Nṙ −1.00 · 10+12 −1.00 · 10+12 0.05

Nuv −10 000 000.00 −9 998 221.00 0.02

Nur −8 000 000.00 −7 973 915.00 0.33

Nuur −7 000 000.00 −7 006 357.00 0.09

Nvvr −7 000 000.00 −7 000 762.00 0.01

the error of both v and r cause an extra error in the coefficient Xu̇ which is
relatively large due to multiplication of both quantities.

From these tests it can be concluded that a more accurate result can be
obtained when more different manoeuvres are used. The best result can be
obtained by cleverly selecting multiple manoeuvres, such that a subset of the
total set of coefficients can be found accurately, this subset can then be used
to subtract part of the hydrodynamic forces in the other manoeuvre(s) which
increases the accuracy for the other coefficients. This method is shown to be
accurate for determining added mass. The method where multiple different
manoeuvres are used to create one data set is much faster however. A second
advantage of this method is that more manoeuvres can be used to determine
a set of coefficients, which may be needed when one manoeuvre does not
contain enough information to determine a (sub)set of coefficients.



Chapter 8

Model validation

In this chapter the validation of the prediction method is discussed. In the
first paragraph simulations using coefficient sets based on a single manoeuvre
are compared with results of the MMG method. In the second paragraph
the hydrodynamic forces during a simulated manoeuvre are discussed. In
the last paragraph the results of the prediction method are discussed when
more manoeuvres are used to find a set of coefficients.

8.1 Comparing manoeuvres with MMG data

To make sure that the results of the implemented method are valid, the
method needs to be validated. To determine whether the developed method
is able to give a set of manoeuvring coefficients which can reproduce the
manoeuvring behaviour of the vessel, the method is tested using manoeuvres
calculated with the MMG method. To validate the method, different man-
oeuvres are simulated using the MMG model, these manoeuvres are then
used to determine the manoeuvring coefficients. In this chapter the coef-
ficients are made non-dimensional to be able to compare them to MMG
results. The method of non-dimensionalization is given in appendix K,
dimension-full coefficients can be found in L. To check if the a valid solution
is found, the same manoeuvre is simulated using the found coefficients. To
check how much influence every single coefficient has, every component of
the hydrodynamic force can be plotted against time to give insight in the
magnitude of every component.

Because trial data are often available at STC when a ship model is im-
plemented, standard trials are used to validate the method. The sets of
manoeuvring coefficients found can then be used to simulate the same man-
oeuvre to find how close the behaviour is to that of the MMG model. The
found set can also be used tot predict a different manoeuvre. The total set
of validation cases can be found in table 8.1.
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Table 8.1: Test scheme for validation using MMG model.

Input Predict

straight sailing straight sailing
10/10 zig-zag 10/10 zig-zag
10/10 zig-zag 20/20 zig-zag
10/10 zig-zag turning circle
20/20 zig-zag 20/20 zig-zag
20/20 zig-zag 10/10 zig-zag
20/20 zig-zag turning circle
turning circle turning circle
turning circle 10/10 zig-zag
turning circle 20/20 zig-zag

8.1.1 Validation of resistance

First the predicted coefficients in straight sailing are validated. This is
equivalent to validation of the resistance. The coefficients found by the pre-
diction method are displayed in table L.1. These coefficients can be used
tot simulate the ship in straight sailing again. Note that a large part of the
coefficients is zero. These coefficients play no role in this manoeuvre and
therefore cannot be determined, the SVD algorithm sets these coefficients
equal to zero. When the condition numbers of the velocity matrices are
calculated, they are all three found to be equal to infinity. This means that
the problem is ill-posed and that the solution is not unique. This is caused
by the coefficients that cannot be determined because their corresponding
velocities and accerations are zero. Every coefficient that cannot be determ-
ined makes one of the singular values equal to zero. When the coefficients
that have no influence are excluded from the prediction method, exactly the
same values for Xu̇, Xuu and Xuuu are found, and the value for the condition
number is κ(AX) = 1464143.378, which is finite and thus a unique solution.

It should be noted that the coefficient Xu̇ in table 8.2 is very close to the
original value of the MMG method, which has a value of 0.022. From this it
can be concluded that accelerating in a straight line is a good manoeuvre to
determine the added mass accurately. In figure 8.1 the velocity of the vessel
using found coefficient is displayed together with the velocity found using
the MMG coefficients.

8.1.2 Validation using 10/10 zig-zag trial

One of the manoeuvres which is calculated using the MMG method is the
10/10 zig-zag manoeuvre. When the prediction method is used on this
manoeuvre, the coefficients in table 8.3 are found. Because this manoeuvre
involves motions in all 3 DOF considered, a value is found for all coefficients.
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Table 8.2: Table of al the dimensionless coefficients based on low aspect
ratio lift theory found in straight sailing.

X ′u̇ −0.022 001 Y ′v̇ 0.000 000 N ′ṙ 0.000 000
X ′uu −0.022 000 Y ′uv 0.000 000 N ′uv 0.000 000
X ′uuu −4.996 520 · 10−10 Y ′ur 0.000 000 N ′ur 0.000 000
X ′vv 0.000 000 Y ′uur 0.000 000 N ′uur 0.000 000
X ′rr 0.000 000 Y ′uuv 0.000 000 N ′uuv 0.000 000
X ′vr 0.000 000 Y ′vvv 0.000 000 N ′vvv 0.000 000
X ′uvv 0.000 000 Y ′rrr 0.000 000 N ′rrr 0.000 000
X ′rvu 0.000 000 Y ′rrv 0.000 000 N ′rrv 0.000 000
X ′urr 0.000 000 Y ′vvr 0.000 000 N ′vvr 0.000 000

Y ′v|v| 0.000 000 N ′v|v| 0.000 000

Y ′r|v| 0.000 000 N ′r|v| 0.000 000

Y ′v|r| 0.000 000 N ′v|r| 0.000 000

Y ′r|r| 0.000 000 N ′r|r| 0.000 000
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Figure 8.1: Plot of the velocity in straight sailing calculated with third order
coefficients.
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Because the ship is the same as when straight sailing was simulated, it is
expected that the coefficients involved in both manoeuvres should be the
same. It can be seen that the coefficients Xu̇ and Xuu are in the same order
of magnitude as found from straight sailing. Xuuu is approximately 2000
times bigger however.

Table 8.3: Table of al the dimensionless coefficients based on low aspect
ratio lift theory found with 10/10 zig-zag manoeuvre.

X ′u̇ −0.020 314 Y ′v̇ −0.254 329 N ′ṙ −0.012 812
X ′uu −0.022 361 Y ′uv −0.485 691 N ′uv −0.093 928
X ′uuu 0.000 001 Y ′ur 0.008 202 N ′ur −0.029 157
X ′vv −0.505 162 Y ′uur 0.027 523 N ′uur −0.009 919
X ′rr −0.055 075 Y ′uuv 0.077 980 N ′uuv −0.024 508
X ′vr −0.358 526 Y ′vvv 18.424 394 N ′vvv −7.618 022
X ′uvv 0.254 096 Y ′rrr 2.075 088 N ′rrr −0.807 732
X ′rvu 0.179 115 Y ′rrv 13.072 945 N ′rrv −5.075 244
X ′urr 0.026 726 Y ′vvr 28.343 265 N ′vvr −10.935 739

Y ′v|v| −0.249 748 N ′v|v| 0.079 871

Y ′r|v| 0.071 865 N ′r|v| −0.020 759

Y ′v|r| −0.056 236 N ′v|r| 0.016 771

Y ′r|r| 0.054 895 N ′r|r| −0.016 340

To compare the manoeuvring behaviour of the vessel, the predicted coef-
ficients are used to simulate a 10/10 zig-zag manoeuvre. To simulate the
manoeuvres the same external forces are used, as where used in the MMG
simulation. In figure 8.2 the track of the 10/10 zig-zag manoeuvre is dis-
played as simulated using the MMG coefficients and the low aspect ratio lift
coefficients as predicted from the MMG track.

The same coefficents can be used to simulate a 20/20 zig-zag trial, the
resulting track is displayed in figure 8.3 together with the 20/20 zig-zag
manoeuvre that is calculated using the MMG Model.

8.1.3 Validation using 20/20 zig-zag trial

In figure 8.5 the track of the 20/20 zig-zag manoeuvre is displayed as found
from the MMG method and the low aspect ratio lift coefficients.

The coefficient for lateral added mass Y ′v̇ in table 8.4 is close to the value
found in the MMG method which is equal to -0.223. The coefficient for
added mass moment of inertia is close to the value -0.011 found in MMG
method.

In figure 8.5 it can be seen that the coefficients derived from a zig-zag man-
oeuvre leads to a track that resembles the results of the MMG method.
From the picture it can also be concluded that the deviation from the ori-
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Figure 8.2: Plot of the position of the 10/10 zig-zag trial calculated with
Low aspect ratio lift coefficients. Every 100 seconds a contour of the ship is
plotted.
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Figure 8.3: Plot of the position of the 20/20 zig-zag trial calculated with
third order coefficients, predicted with a 10/10 zig-zag trial. Every 100
seconds a contour of the ship is plotted.
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Figure 8.4: Plot of the position of a turning circle manoeuvre calculated
with third order coefficients, predicted with a 10/10 zig-zag trial. Every 175
seconds a contour of the ship is plotted.

Table 8.4: Table of al the dimensionless coefficients based on low aspect
ratio lift theory found with 20/20 zig-zag manoeuvre.

X ′u̇ −0.017 133 Y ′v̇ −0.265 278 N ′ṙ −0.013 291
X ′uu −0.022 526 Y ′uv −0.751 567 N ′uv −0.039 710
X ′uuu 0.000 001 Y ′ur −0.066 293 N ′ur −0.014 690
X ′vv −2.060 707 Y ′uur 0.081 841 N ′uur −0.021 871
X ′rr −0.340 434 Y ′uuv 0.289 300 N ′uuv −0.070 054
X ′vr −1.719 814 Y ′vvv 7.560 649 N ′vvv −3.329 158
X ′uvv 1.743 434 Y ′rrr 0.897 192 N ′rrr −0.331 147
X ′rvu 1.461 417 Y ′rrv 5.470 483 N ′rrv −1.988 940
X ′urr 0.295 301 Y ′vvr 12.842 578 N ′vvr −4.623 796

Y ′v|v| −0.071 729 N ′v|v| 0.041 892

Y ′r|v| −0.007 264 N ′r|v| 0.014 482

Y ′v|r| 0.003 822 N ′v|r| 0.010 536

Y ′r|r| 0.011 647 N ′r|r| 0.000 826
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Figure 8.5: Plot of the position of the 20/20 zig-zag trial calculated with
third order coefficients predicted using 20/20 MMG zig-zag manoeuvre.
Every 100 seconds a contour of the ship is plotted.
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Figure 8.6: Plot of the position of the 10/10 zig-zag trial calculated with
third order coefficients, predicted with a 20/20 zig-zag trial. Every 100
seconds a contour of the ship is plotted.
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Figure 8.7: Plot of the position of the turning circle manoeuvre calculated
with third order coefficients, predicted with a 20/20 zig-zag trial. Every 175
seconds a contour of the ship is plotted.

ginal track increases over time. This is caused by the accumulation of errors
over time, which are caused by uncertainties in the predicted coefficients. In
figure 8.7 a turning circle is simulated using the coefficients obtained from
the 20/20 zig-zag manoeuvre. The figure shows that the tracks almost coin-
cide for the first 175 seconds, behind this point however the two tracks start
to deviate from each other, resulting in an underestimated tactical diameter.

8.1.4 Validation using Turning circle

In figure 8.8 the turning circle manoeuvre simulated with the coefficients in
table 8.5 is compared with the turning circle manoeuvre as simulated using
the MMG method. The manoeuvre calculated with low aspect ratio lift
theory is plotted till t = 206, because at this time the lateral velocity starts
to explode, eventually resulting in infinite velocities. This is caused by the
square absolute terms, which will be discussed further in sectio 8.2.

It can be concluded that that the set of coefficients based on low aspect ratio
lift theory determined with singular value decomposition is able to recreate
a zig-zag manoeuvre. In the case of a turning circle the method is only able
to recreate the beginning of the manoeuvre. The coefficients obtained from
a zig-zag manoeuvre however are able to recreate a turning circle manoeuvre
although the turning circle diameter is underestimated.
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Table 8.5: Table of al the dimensionless coefficients based on low aspect
ratio lift theory found with turning circle manoeuvre.

X ′u̇ -0.013386 Y ′v̇ -0.351591 N ′ṙ -0.018038
X ′uu -0.061373 Y ′uv 0.892320 N ′uv -0.258894
X ′uuu 0.000120 Y ′ur 2.701388 N ′ur -0.817982
X ′vv -1.626419 Y ′uur -3.666798 N ′uur 1.096488
X ′rr -0.371995 Y ′uuv -6.415128 N ′uuv 1.807939
X ′vr -1.775817 Y ′vvv 54.938818 N ′vvv -14.126234
X ′uvv 1.323957 Y ′rrr 1.617930 N ′rrr -0.491884
X ′rvu 1.470504 Y ′rrv 5.380216 N ′rrv -0.972883
X ′urr 0.312051 Y ′vvr 32.890340 N ′vvr -8.026087

Y ′v|v| -28.808766 N ′v|v| 8.327702

Y ′r|v| 12.624785 N ′r|v| -4.008834

Y ′v|r| -12.624785 N ′v|r| 4.008834

Y ′r|r| 3.303865 N ′r|r| -1.071149
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Figure 8.8: Plot of the position of the turning circle manoeuvre calculated
with Low aspect ratio lift coefficients. Every 50 seconds a contour of the
ship is plotted.
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8.2 Comparing coefficient influences

It is shown that the coefficients based on low aspect ratio can be used to
simulate straight sailing, zig-zag manoeuvres and turning circle manoeuvres.
In this section it will be shown which coefficients of the set are the most im-
portant for the simulation of these manoeuvres. Because the MMG-method
is only validated for turning circle and 20/20 zig/zag manoeuvres, only these
manoeuvres are discussed in this section.

8.2.1 Hydrodynamic force components during 20/20 zig-zag
manoeuvre

To get insight in the influence of each coefficient on the total hydrodynamic
force, the contribution to the total force of each coefficient is plotted together
with the total force.

Longitudinal hydrodynamic force

In figure 8.9 the contribution of each coefficient to the longitudinal hydro-
dynamic force is plotted.
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Figure 8.9: Comparison of longitudinal force components during 20◦/20◦

zig-zag trial.

In figure 8.9 it is noticable that the influence of Xuu only, approximates
the total longitudinal hydrodynamic force X already very well. Although
every single contribution of Xvv, Xrr, Xvr, Xuvv, Xrvu and Xurr is much
larger, they don’t seem to contribute much to the total longitudinal force
X. The contributions of these coefficients however almost cancel each other
out. This could be the result of the small longitudinal acceleration, which
could lead to approximately the same behaviour as caused by a longitudinal
acceleration of zero. In section 6.3.1 it is explained why no distinction can be
made when the longitudinal acceleration is zero. When this is indeed caused
by the effect described, we should find the following relationship between
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pairs of coefficients:

Xvv

Xuvv
≈ −u, Xrr

Xurr
≈ −u, Xvr

Xrvu
≈ −u. (8.1)

Using the coefficients found, which are displayed in table L.3, the ratios
become

Xvv

Xuvv
= −9.4249,

Xrr

Xurr
= −9.1929,

Xvr

Xrvu
= −9.3837. (8.2)

When these values are compared with the longitudinal velocity profile in
figure 8.11a, it can be seen that these values indeed approximate the longit-
udinal velocity during the zig-zag trial. Therefore it can be concluded that
the longitudinal velocity does not vary enough during a 20◦/20◦ zig-zag trial
to make a distinction between Xvr and Xrvu, Xvv and Xuvv and Xurr and
Xrr. In this case it might be better to fit the a set of coefficients without the
third order terms to get a better estimate of Xvr ,Xvv and Xrr. To determ-
ine the third order coefficients it could be better to use manoeuvre in which
the longitudinal velocity u varies more. The cancellation of components of
the hydrodynamic force show that a set consisting of less coefficients could
model the same behaviour.

In figure 8.9 it can also be seen that Xuuu almost doesn’t contribute to the
total longitudinal hydrodynamic force. This shows that the longitudinal
hydrodynamic force behaves mainly quadratic with respect to longitudinal
velocity as can be expected from the theory of resistance.

Lateral hydrodynamic force

In figure 8.10 the contributions of the coefficients to the lateral hydro-
dynamic force are plotted. It is noticeable that in this case there are sets
of components that seem to cancel the influence of each other on the total
force. The contributions of the coefficients Yur and Yuur almost cancel each
other because of the small changes in u, a more detailed explanation about
this phenomenon can be found in section 6.3.1. The coefficients in figure
8.10b also show a behaviour of cancellation, although this originates from a
different cause. In this case the cancellation of the coefficients is not caused a
velocity coefficient being so small that 2 coefficient can not be distinguished.
Still Yvvr and Yrvv almost cancel each other and also Yvvv and Yrrr seem to
cancel each other. The only way this can be the case is when there is a
linear relationship between v and r.
When v and r are compared for a 20◦/20◦ zig-zag trial, as is done in figure
8.11, it can be seen that v and r show an almost linear relationship. Because
of this the singular value decomposition results in a set of coefficients that
makes a good fit on the original track, by almost cancelling 2 large forces.
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Figure 8.10: Comparison of lateral force components during 20◦/20◦ zig-zag
trial.
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Figure 8.11: Velocities u, v and r during 20◦/20◦ zig-zag trial.
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The largest contribution to the total lateral hydrodynamic force is by the
coefficient Yuv which corresponds to part of the linear lift. Because the
moment around the z-axis is very much coupled with the lateral force, the
same applies for the N -coefficients for which the force contributions can be
found in figure 8.12.
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Figure 8.12: Comparison of vertical moment components during 20◦/20◦

zig-zag trial.

The cancellation of components of the hydrodynamic force show that a set
consisting of less coefficients could model the same behaviour.

8.2.2 Hydrodynamic force components during turning circle
manoeuvre

The coefficients found using the turning circle manoeuvre where not able to
reproduce the entire turning circle manoeuvre. This is caused by the ex-
ploding values of the hydrodynamic forces. Decomposing the hydrodynamic
forces can give insight in the coefficients that cause the hydrodynamic forces
to explode.

Longitudinal hydrodynamic force

In figure 8.13 the longitudinal force contributions are plotted. The longit-
udinal hydrodynamic force should be almost constant over time and close to
zero. This is expected because the longitudinal velocity is almost constant
during a turning circle. Due to the coefficients that represent the longitud-
inal force due to rotation and lateral motion the longitudinal hydrodynamic
force becomes negative which results in a deceleration of the longitudinal
velocity, this can be seen in figure 8.14a. The same cancelling behaviour can
be seen that is explained in section 8.2.1 for these coefficients. The forces do
not cancel entirely however, which results in the negative longitudinal force
and the decrease in velocity.
Figure 8.15 shows the components of the lateral hydrodynamic force. It
should be noted that in this case the total lateral hydrodynamic force is
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Figure 8.13: Comparison of lateral force components during turning circle
manoeuvre.
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Velocities u, v and r during turning circle manoeuvre.

almost an order of magnitude larger than the single components. This is
mostly caused by the contributions of Y|v|v,Y|r|v,Y|v|r and Y|r|r which all
cause a force in the same direction. This force causes a decrease in the
lateral velocity, which will increase the force again. The square absolute
terms are included because it is expected that the vessel shows the same
behaviour when moving in opposite directions. In the case of a turning circle
however, only motion in one direction of v en r is included, which makes
determination of the square absolute terms unreliable. A similar behaviour
happens with the moments around the z-axis which are displayed in 8.16.
These moments and the lateral force are strongly coupled. The contributions
of N|v|v,N|r|v,N|v|r and N|r|r act all in the same direction causing the angular
velocity of the vessel to increase in magnitude. When a closer look is taken
at 8.8 it can be seen that the path of the vessel simulated wit Low aspect
ratio lift coefficient follows the original track really well till around t=150
s. This corresponds to the increase in forces and moments which can be
seen in figures 8.15 and 8.16. This increase starts near t=100 s and becomes
significant at t=150 s.

Because the coefficients depending on the square absolute terms determined
from zig-zag manoeuvres show different signs this set is able to simulate a
turning circle manoeuvre. This change in sign is caused by the fact that v
and r become both positive and negative during a zig-zag manoeuvre, but
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Figure 8.15: Comparison of lateral force components during turning circle
manoeuvre.
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Figure 8.16: Comparison of lateral force components during turning circle
manoeuvre.
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have only positive or negative sign during the turning circle manoeuvre.

8.3 Validation using multiple manoeuvres

From the results of a single manoeuvre it is concluded that some manoeuvres
do not contain enough information about the behaviour of a vessel to pre-
dict a set of coefficients. In section 7.7 it is showed that the accuracy of the
prediction method can be increased by using more different manoeuvres.
Two methods were tested, the first method predicts a part of the set with
one manoeuvre, which can be done more accurately by selecting the right
manoeuvre. In this section the second method is used where multiple man-
oeuvres are merged into one dataset, this dataset is then used to predict
the coefficients. The second method is used because it can theoretically
use an unlimited amount of manoeuvres and is therefore suitable to create
information-rich datasets to determine coefficients.

8.3.1 Combining Turning circle and zig-zag manoeuvre

A few problems found during the single manoeuvre tests can already be
solved by combining them in one data set. When the 20/20 zig-zag man-
oeuvre and turning circle are combined, this should already partly eliminate
the problems with the square absolute terms found with only a turning
circle, because there are positive and negative values of v and r in the data-
set. The coefficients found when using both a 20/20 zig-zag manoeuvre and
a turning circle manoeuvre are displayed in table 8.6.
The square absolute terms in table 8.6 show lower values than when only
the turning circle manoeuvre was used to find the coefficients, also the signs
have changed. The coefficients for added mass are also closer to the original
values of the MMG method. In figure 8.17a the turning circle is plotted using
the coefficients from table 8.6 together with the turning circle manoeuvre
obtained from MMG results. Figure 8.17a shows that entire turning circle
can now be modelled, which was not possible with the coefficients obtained
from a turning circle only, which shows that the addition of information
solves the problems that where encountered with the coefficients found with
only a turning circle manoeuvre. The plot shows also better accordance
with the MMG results than the turning circle simulated with coefficients
obtained from a zig-zag manoeuvre. With the coefficients obtained from a
zig-zag manoeuvre the tactical diameter of the turning circle manoeuvre was
underestimated. In figure 8.17a it is shown that the coefficients determined
with both turning circle and 20/20 zig-zag manoeuvre can model a turning
circle manoeuvre that resembles the MMG results. In figure 8.18a a 20/20
zig-zag manoeuvre is plotted, simulated using the coefficients found with
zig-zag and turning circle manoeuvres. This manoeuvre is also closer to
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Table 8.6: Table of al the dimensionless coefficients based on low aspect
ratio lift theory found from combined 20/20 zig-zag and turning circle man-
oeuvres.

X ′u̇ −0.025 216 Y ′v̇ −0.293 555 N ′ṙ −0.014 254
X ′uu −0.016 979 Y ′uv −1.617 860 N ′uv 0.154 935
X ′uuu −1.353 870 · 10−05 Y ′ur −0.364 788 N ′ur 0.051 339
X ′vv −3.158 025 Y ′uur 0.317 701 N ′uur −0.078 193
X ′rr −0.551 138 Y ′uuv 1.071 340 N ′uuv −0.254 660
X ′vr −2.674 480 Y ′vvv 8.013 291 N ′vvv −3.262 525
X ′uvv 2.737 263 Y ′rrr 0.047 259 N ′rrr −0.110 029
X ′rvu 2.339 471 Y ′rrv 1.542 482 N ′rrv −0.917 181
X ′urr 0.489 609 Y ′vvr 7.116 089 N ′vvr −2.968 359

Y ′v|v| −1.346 012 N ′v|v| 0.341 845

Y ′r|v| −0.015 829 N ′r|v| 0.025 292

Y ′v|r| −0.427 689 N ′v|r| 0.114 723

Y ′r|r| 0.179 823 N ′r|r| −0.035 010
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Figure 8.17: Plot of the position of the turning circle and 20/20 zig-zag
manoeuvres calculated with third order coefficients, predicted with a 20/20
zig-zag trial and turning circle manoeuvre. Every 175 seconds a contour of
the ship is plotted.
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the MMG results than the zig-zag manoeuvres simulated with coefficients
obtained from a single manoeuvre.

It is shown that there is some improvement on the simulation of a turning
circle and 20/20 zig-zag manoeuvre when the coefficients are based on these
manoeuvres. When a 10/10 zig-zag manoeuvre is simulated however, the
simulation becomes worse, as is shown in figure 8.18a. In figure 8.18b, the
rudder angle and heading of the vessel are shown. It can be seen that
the timing of the rudder is right, but the overshoot angles are very large
and unrealistic. To get insight in the cause of the large overshoot angles,
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(a) 10/10 zig-zag manoeuvre.
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Figure 8.18: Plot of the position of a 10/10 zig-zag manoeuvre calculated
with third order coefficients, predicted with a 20/20 zig-zag trial and turning
circle manoeuvre. Every 175 seconds a contour of the ship is plotted.

the moments around the z-axis during the manoeuvre are plotted in figure
8.19. In figure 8.19a it can be seen that the moments that involve the
longitudinal component u account for the largest contribution to the total
vertical moment, this is not in accordance with the behaviour found when
looking at the 20/20 zig-zag test in section 8.2.1. When the coefficients
are compared, it can be seen that the coefficients for N that depend on u
are much larger than the coefficients found with a 20/20 zig-zag manoeuvre
only, the coefficients depending on r however have much less influence which
causes the rotational motion to have less damping. To improve the set of
coefficients, manoeuvres witch include more information about r can be
included.

8.3.2 Combining 4 different manoeuvres

The tests with coefficients based on two manoeuvres show that improve-
ments can be made on a set of coefficients by adding more manoeuvres to
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Figure 8.19: Comparison of vertical moment components during 10◦/10◦

zig-zag zig-zag manoeuvre calculated with third order coefficients, predicted
with a 20/20 zig-zag trial and turning circle manoeuvre.

the data set. The 10/10 zig-zag manoeuvre showed that the coefficients
do not improve the simulation of every manoeuvre. Adding more man-
oeuvres to the dataset however could also improve the behaviour during
other manouevres. During verification it was already shown that adding a
track of straight acceleration could improve the determination of the longit-
udinal added mass. Because the coefficients determined with a 20/20 zig-zag
and a turning circle manoeuvre show a less accurate value of longitudinal
added mass, a straight acceleration part is added to the dataset. To be able
to make a better prediction of the N coefficients dependent on u, a 10/10
zig-zag manoeuvre is added to the dataset. The total dataset now contains a
turning circle manoeuvre, a 20/20 zig-zag manoeuvre, straight acceleration
and a 10/10 zig-zag manoeuvre. The coefficients derived from this dataset
are displayed in table 8.7.
Compared to the coefficients found with only 2 manoeuvres the values of the
added mass have improved and are closer to the values given by the MMG
methods. It can also be seen that the N coefficients dependent on u are
smaller in comparison to the coefficients dependent on r, therefore this set
of coefficients should give better results for the 10/10 zig-zag manoeuvre. In
figure 8.20 the simulations of a turning circle and zig-zag manoeuvre using
the coefficients found with 4 manoeuvres are displayed. The manoeuvres
slow slightly more deviation from the MMG results than the manoeuvres
simulated using the coefficients found with two manoeuvres. The simulation
of a 10/10 zig-zag manoeuvre however, as shown in figure 8.21 shows a
much better result than the manoeuvre simulated with the coefficients found
with two manoeuvres. It can be concluded that a set of coefficients can be
improved by carefully selecting coefficients and adding them to the data set.
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Table 8.7: Table of al the dimensionless coefficients based on low aspect
ratio lift theory found from combined straight acceleration, 10/10 zig-zag,
20/20 zig-zag and turning circle manoeuvres.

X ′u̇ −0.023 980 Y ′v̇ −0.276 760 N ′ṙ −0.014 792
X ′uu −0.021 376 Y ′uv −0.496 231 N ′uv −0.053 891
X ′uuu −1.327 910 · 10−06 Y ′ur 0.153 734 N ′ur −0.048 632
X ′vv −0.173 163 Y ′uur −0.085 963 N ′uur 0.003 976
X ′rr −0.056 685 Y ′uuv 0.124 815 N ′uuv −0.066 317
X ′vr −0.263 868 Y ′vvv 26.515 867 N ′vvv −9.301 482
X ′uvv 0.054 208 Y ′rrr −0.096 957 N ′rrr −0.246 490
X ′rvu 0.169 259 Y ′rrv 2.325 957 N ′rrv −2.219 393
X ′urr 0.043 916 Y ′vvr 17.209 079 N ′vvr −7.748 912

Y ′v|v| −2.777 808 N ′v|v| 0.657 196

Y ′r|v| −0.634 247 N ′r|v| 0.180 410

Y ′v|r| −1.249 708 N ′v|r| 0.297 708

Y ′r|r| −0.024 239 N ′r|r| 0.016 639
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Figure 8.20: Plot of the position of the turning circle and 20/20 zig-zag
manoeuvres calculated with third order coefficients, predicted with 4 man-
oeuvres. Every 175 seconds a contour of the ship is plotted.
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Figure 8.21: Plot of the position of a 10/10 zig-zag manoeuvre calculated
with third order coefficients, predicted with 4 manoeuvres. Every 175
seconds a contour of the ship is plotted.
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Chapter 9

Conclusions and
Recommendations

In this chapter the results of the research are summarized, also some recom-
mendations for further research are given.

9.1 Conclusions

It is shown that a set of coefficients based on low aspect ratio is suitable for
simulation of straight sailing forward, zig-zag manoeuvres and turning circle
manoeuvres. This set consists of the following coefficients: Xu̇, Xuu, Xuuu,
Xvv, Xrr, Xvr, Xuvv, Xrvu, Xurr, Yv̇, Yuv, Yur, Yuur, Yuuv, Yvvv, Yrrr, Yrrv,
Yvvr, Y|v|v, Y|r|v, Y|v|r, Y|r|r, Nṙ, Nuv, Nur, Nuur, Nuuv, Nvvv, Nrrr, Nrrv,
Nvvr, N|v|v, N|r|v, N|v|r, N|r|r.

It can be concluded that the singular value decomposition is able to find
a set of hydrodynamic coefficients from a single path of a vessel that can
recreate a manoeuvre of a vessel when used in simulation. Care should be
taken however, because the set of coefficients is only able to recreate the
behaviour that was present in the manoeuvre(s) used to determine the set
of coefficients.

It is shown that coefficients can be determined more accurately when more
different manoeuvres are used. Accelerating in a straight line is a good man-
oeuvre to determine the added mass in longitudinal direction Xu̇ accurately,
especially when the acceleration varies over time. It was shown that a turn-
ing circle is a bad manoeuvre for determining Y|v|v, Y|r|v, Y|v|r, Y|r|r, N|v|v,
N|r|v, N|v|r and N|r|r because both r and v do not change sign during this
manoeuvre. It is shown that problems with the usage of a single manoeuvre
can be solved by using multiple manoeuvres. It can be concluded that the
method works better when the used dataset contains more information, this
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corresponds to more different accelerations, velocities and combinations of
velocities. Including more information in the dataset can be achieved by
including more different manoeuvres in the dataset.

The set of coefficients determined by a zig-zag manoeuvre was shown to
be able to recreate the zig-zag manoeuvre. This set however also showed
good results when used for simulation of straight sailing and turning circle
manoeuvres. It could be concluded however that a part of the total set
of coefficients could not be determined because the longitudinal velocity
did not vary enough. This means that a manoeuvre with more change in
longitudinal velocity could result in a more accurate set of coefficients. It
also means that the modelling of a zig-zag manoeuvre can be done with a
smaller set of coefficients. Instead of using an other manoeuvre with more
change in velocity, more zig-zag manoeuvres at different velocities can be
used to increase the amount of information in the data set.

9.2 Recommendations for further Research

When more research in done in the future on this subject there are a few
area’s in which it is recommended to look into.

The first area regards the information that is needed to find a set of coeffi-
cients using singular value decomposition. It was shown that the result of
the singular valued decomposition is highly dependent on two things: the
manoeuvre(s) that are used as input data and the set of coefficients that is
sought after. To make better use of this method more research should be
done on the set of coefficients that is needed to model a ship in a real-time
ship simulator. Also more research should be done on the manoeuvres that
are needed to provide enough information about the behaviour of the vessel
to find these coefficients. It should be noted that both the set of coefficients
and the amount of information in the manoeuvres have to be larger when
the behaviour of a vessel is more complex.

The second area concerns the practical use of the developed method. In this
research only theoretical cases where studied. When the method is used on
real ship data, more research should be done on the effect of errors in the
measuring of forces and position of the vessel on the final set of coefficients.
Also the environmental forces have to be taken into account when real ship
data is used in this method.

In this research some assumptions were made. Most of these assumptions
had something to do with the origin of the forces acting on the vessel. In the
future research could be done on expanding the method for ships that don’t



9.2. RECOMMENDATIONS FOR FURTHER RESEARCH 103

have a conventional single propeller and single rudder configuration, which
means that more complex rudder and propeller models are needed. Also the
environmental forces where not taken into account in this research, which
means that forces caused by wind, waves and current where considered to
be negligible. More research could be done on including these forces in the
method.

The last area that could be looked into is the used equations of motion in
this method. In this research only planar motion was concerned. In the
case of a very large crude carrier this assumption is valid. When smaller
and faster vessels are considered it might be needed to take roll in account
also and maybe even the full 3DOF equations. More research is needed to
determine what the boundaries of the method are with respect to different
ship types.
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Appendix A

Derivation of Euler’s
equation

The acceleration of an object in a rotating moving reference fram is shown
to be equal to

aO = aA + Ω× vA +
dΩ

dt
× rG + Ω× (Ω× rG). (A.1)

The velocity vector of the moving reference frame can be defined using the
velocities of the origin

vA =

uv
w

 . (A.2)

The accelerations of the origin are the derivatives of the velocities and the
acceleration vector is thus equal to

aA =

u̇v̇
ẇ

 . (A.3)

The rotation vector can be defined by the three rotations around the origin
p,q,r

Ω =

pq
r

 . (A.4)

Now the second term on the right hand side of the acceleration can be
calculated

Ω× vA =

pq
r

×
uv
w

 =

 qw − rv
−pw + ru
pv − qu

 . (A.5)
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The position of the center of gravity in the body fixed frame can be described
as

rG =

xGyG
zG

 (A.6)

Now the third term on the right hand side can be evaluated as

dΩ

dt
× rG =

ṗq̇
ṙ

×
xGyG
zG

 =

q̇zG − ṙyGṙxG − ṗzG
ṗyG − q̇xG

 . (A.7)

The last term on the right hand side is equal to

Ω× (Ω× rG) =

pq
r

×
pq

r

×
xGyG
zG

 =

pq
r

×
qzG − ryGrxG − pzG
pyG − qxG


=

q(pyG − qxG)− r(rxG − pzG)
r(qzG − ryG)− p(pyG − qxG)
p(rxG − pzG)− q(qzG − ryG)


=

pqyG + przG − q2xG − r2xG
pqxG + grzG − p2yG − r2yG
prxG + qryG − p2zG − q2zG


=

p(qyG + rzG)− xG(q2 + r2)
q(pxG + rzG)− yG(p2 + r2)
r(pxG + qyG)− zG(p2 + q2)

 .

(A.8)

Substituting A.3, A.5, A.7 and A.8 in A.1 yields

aO =

 u̇+ qw − rv + q̇zG − ṙyG + p(qyG + rzG)− xG(q2 + r2)
v̇ − pw + ru+ ṙxG − ṗzG + q(pxG + rzG)− yG(p2 + r2)
ẇ + pv − qu+ ṗyG − q̇xG + r(pxG + qyG)− zG(p2 + q2)

 (A.9)
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Taylor Series Expansion

B.1 Fluid force X

When the fluid force is approximated by a Taylor series up to the second
order terms this results in B.1. Because of port/starboard symmetry the
center of gravity is located at y = 0 and the fluid force X will not be
depending on ṙ.

X(u, u̇, v, r, δ) = Xe +Xuu+Xu̇u̇+Xrr +Xδδ +Xvv

+Xuuu
2 +Xuvuv +Xurur +Xuδuδ +Xuu̇uu̇

+Xu̇u̇u̇
2 +Xu̇uu̇u+Xu̇vu̇v +Xu̇ru̇r +Xu̇δu̇δ

+Xvvv
2 +Xvuvu+Xvu̇vu̇+Xvrvr +Xvδvδ

+Xrrr
2 +Xruru+Xru̇ru̇+Xrvrv +Xrδrδ

+Xδδδ
2 +Xδuδu+Xδu̇δu̇+Xδvδv +Xδrδr

(B.1)

Because of three assumptions this expression can be simplified.

1. The first assumption, based on Newton’s second law, is that the force
is linear with acceleration. This means the second order acceleration
term (coloured brown) is zero.

2. The second assumption is that there is no coupling between velocities
and accelerations. So all the terms that invoke an acceleration and
velocity term (coloured red) are zero.

3. The third assumption is that the ship has port-starboard symmetry.
This leads to three conditions:

(a) X is a symmetric function of v when r = 0 and δ = 0. This
implies Xv = 0 ; Xvu = 0 and Xuv = 0.

(b) X is a symmetric function of r when v = 0 and δ = 0. This
implies Xr = 0 ; Xru = 0 and Xur = 0.
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(c) X is a symmetric function of δ when v = 0 and r = 0. This
implies Xδ = 0 ; Xδu = 0 and Xuδ = 0.

These terms are all coloured blue

This means B.1 simplifies to

X(u, u̇, v, r, δ) = Xe +Xuu+Xu̇u̇+Xuuu
2 +Xvvv

2

+Xvrvr +Xvδvδ +Xrrr
2 +Xrvrv +Xrδrδ

+Xδδδ
2 +Xδvδv +Xδrδr

(B.2)

B.2 Fluid force Y

In the same way the Y force can be approximated by a taylor series of the
second order to find B.3.

Y (u, v, v̇, r, ṙ, δ) = Ye + Yuu+ Yvv + Yv̇v̇ + Yrr + Yṙṙ + Yδδ

+ Yuuu
2 + Yuvuv + Yuv̇uv̇ + Yurur + Yuṙuṙ + Yuδuδ

+ Yvvv
2 + Yvuvu+ Yvv̇vv̇ + Yvrvr + Yvṙvṙ + Yvδvδ

+ Yv̇v̇v̇
2 + Yv̇uv̇u+ Yv̇vv̇v + Yv̇rv̇r + Yv̇ṙv̇ṙ + Yv̇δ v̇δ

+ Yrrr
2 + Yruru+ Yrvrv + Yrv̇rv̇ + Yrṙrṙ + Yrδrδ

+ Yṙṙṙ
2 + Yṙuṙu+ Yṙv ṙv + Yṙv̇ ṙv̇ + Yṙrṙr + Yṙδ ṙδ

+ Yδδδ
2 + Yδuδu+ Yδvδv + Yδv̇δv̇ + Yδrδr + Yδṙδṙ

(B.3)

Because of three assumptions this expression can be simplified.

1. The first assumption, based on Newton’s second law, is that the force
is linear with acceleration. This means the second order acceleration
term (coloured brown) is zero.

2. The second assumption is that there is no coupling between velocities
and accelerations. So all the terms that invoke an acceleration and
velocity term (coloured red) are zero.

3. The third assumption is that the ship has port-starboard symmetry.
This leads to three conditions:

(a) Y is an ant-symmetric function of v when r = 0 and δ = 0. This
implies Yvv = 0.

(b) Y is an anti-symmetric function of r when v = 0 and δ = 0. This
implies Yrr = 0.

(c) Y is an anti-symmetric function of δ when v = 0 and r = 0. This
implies Yδδ = 0.
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These terms are all coloured blue

This means B.3 simplifies to

Y (u, v, v̇, r, ṙ, δ) = Ye + Yuu+ Yvv + Yv̇v̇ + Yrr + Yṙṙ + Yδδ

+ Yuuu
2 + Yuvuv + Yurur + Yuδuδ + Yvuvu+ Yvrvr

+ Yruru+ Yrvrv + Yrδrδ + Yδuδu+ Yδvδv + Yδrδr

(B.4)

B.3 Fluid moment N

The same trick applies for the moment caused by the fluid. This taylor
series up to second order yields B.5.

N(u, v, v̇, r, ṙ, δ) = Ne +Nuu+Nvv +Nv̇v̇ +Nrr +Nṙṙ +Nδδ

+Nuuu
2 +Nuvuv +Nuv̇uv̇ +Nurur +Nuṙuṙ +Nuδuδ

+Nvvv
2 +Nvuvu+Nvv̇vv̇ +Nvrvr +Nvṙvṙ +Nvδvδ

+Nv̇v̇v̇
2 +Nv̇uv̇u+Nv̇vv̇v +Nv̇rv̇r +Nv̇ṙv̇ṙ +Nv̇δ v̇δ

+Nrrr
2 +Nruru+Nrvrv +Nrv̇rv̇ +Nrṙrṙ +Nrδrδ

+Nṙṙṙ
2 +Nṙuṙu+Nṙv ṙv +Nṙv̇ ṙv̇ +Nṙrṙr +Nṙδ ṙδ

+Nδδδ
2 +Nδuδu+Nδvδv +Nδv̇δv̇ +Nδrδr +Nδṙδṙ

(B.5)

Because of three assumptions this expression can be simplified.

1. The first assumption, based on Newton’s second law, is that the force
is linear with acceleration. This means the second order acceleration
term (coloured brown) is zero.

2. The second assumption is that there is no coupling between velocities
and accelerations. So all the terms that invoke an acceleration and
velocity term (coloured red) are zero.

3. The third assumption is that the ship has port-starboard symmetry.
This leads to three conditions:

(a) N is an ant-symmetric function of v when r = 0 and δ = 0. This
implies Nvv = 0.

(b) N is an anti-symmetric function of r when v = 0 and δ = 0. This
implies Nrr = 0.

(c) N is an anti-symmetric of δ function when v = 0 and r = 0. This
implies Nδδ = 0.

These terms are all coloured blue
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This means B.5 simplifies to

N(u, v, v̇, r, ṙ, δ) = Ne +Nuu+Nvv +Nv̇v̇ +Nrr +Nṙṙ +Nδδ

+Nuuu
2 +Nuvuv +Nurur +Nuδuδ +Nvuvu+Nvrvr

+Nruru+Nrvrv +Nrδrδ +Nδuδu+Nδvδv +Nδrδr

(B.6)



Appendix C

Derivation of equations of
Motion

In this appendix the following equations are derived using classical mechan-
ics.

X = m(u̇− vr) (C.1)

Y = m(v̇ + ur) (C.2)

N = Iz ṙ (C.3)

Equations C.1 and C.2 are derived using newton’s second law. Equation C.3
is derived using angular momentum.

C.1 Applying Newton’s second law

To find the equations of motion Newton’s second law is applied. This law
relates the forces on the center of gravity of a body to the linear momentum
of the body.

F =
d

dt
(mv) . (C.4)

Because the mass of the ship is constant the mass can be taken outside of
the differentiation

F = m
dv

dt
= ma0 (C.5)

where v is the velocity and a0 is the acceleration in the earth fixed reference
frame. The ship fixed coordinate system however, is no inertial coordinate
system, because the ship can accelerate. So an expression of the acceleration
of the vessel in the earth fixed reference frame has to be found.

Consider an earth fixed inertial coordinate system x0, y0, z0 and another
arbitrary body fixed coordinate system x, y, z as drawn in figure C.1.
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y0

x0

z0

rA
z

y

x

rG

Figure C.1: Definition of the position vector of a rotating reference frame
in an inertial frame.

The position of the origin of this coordinate system can be defined by the
vector rA. The center of gravity of the body in the body fixed reference
frame can be defined by the vector rG. The location of the center of gravity
can now be determined for the inertial frame as

rO = rG + rA. (C.6)

When the body fixed coordinate system also has an angular velocity Ω the
velocity of the center of gravity with respect to the inertial frame can be
calculated as

vO =
drO
dt

+ Ω× rG (C.7)

Hibbeler and Fan [24]. By substituting C.6 this becomes

vO =
drG
dt

+
drA
dt

+ Ω× rG. (C.8)

Because the center of gravity is considered to be fixed in the body fixed
coordinate system drG

dt is zero which leads to

vO =
drA
dt

+ Ω× rG. (C.9)

The acceleration can now be found using

aO =
dvO

dt
+ Ω× vG. (C.10)

Which is equal to

aO =
d

dt
(vA + Ω× rG) + Ω× (Ω× rG). (C.11)
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aO = aA + Ω× vA +
dΩ

dt
× rG + Ω× (Ω× rG). (C.12)

Substituting

vA =

uv
w

 , aA =

u̇v̇
ẇ

 , Ω =

pq
r

 and rG =

xGyG
zG

 (C.13)

in C.12 yields

aO =

 u̇+ qw − rv + q̇zG − ṙyG + p(qyG + rzG)− xG(q2 + r2)
v̇ − pw + ru+ ṙxG − ṗzG + q(pxG + rzG)− yG(p2 + r2)
ẇ + pv − qu+ ṗyG − q̇xG + r(pxG + qyG)− zG(p2 + q2)

 . (C.14)

A detailed derivation of this equation can be found in appendix A. The
resultant forces X, Y and Z on the vessel are therefore equal toXY

Z

 = m

 u̇+ qw − rv + q̇zG − ṙyG + p(qyG + rzG)− xG(q2 + r2)
v̇ − pw + ru+ ṙxG − ṗzG + q(pxG + rzG)− yG(p2 + r2)
ẇ + pv − qu+ ṗyG − q̇xG + r(pxG + qyG)− zG(p2 + q2)

 .
(C.15)

When only motions in the horizontal plane are considered, hence the vertical
velocity w is zero and the angular velocities p and q are zero, this simplifies
to XY

Z

 = m

u̇− rv + ṙyG − xGr2

v̇ + ru+ ṙxG − yGr2

0

 . (C.16)

When a symmetric ship is assumed yG is zero so the equation reduces further
to XY

Z

 = m

u̇− rv − xGr2

v̇ + ru+ ṙxG
0

 . (C.17)

When the coordinate system is defined to have its origin in the center of
gravity of the vessel, the expression reduces even further toXY

Z

 = m

u̇− rvv̇ + ru
0

 . (C.18)

C.2 Applying Angular momentum

To find information about the rotations of a body the expression of angular
momentum can be used. When the body is considered to be consisting of
N particles, the equation for angular momentum becomes

N∑
i=1

(Mi + ri × Fi) =
N∑
i=1

ri ×
d

dt
(mivi) (C.19)
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N∑
i=1

(Mi + ri × Fi) =
N∑
i=1

miri ×
dvi
dt

(C.20)

From the case where linear momentum was considered we can fill in the
expression for dvi

dt , where it should be noted that ri is the position vector of
a particle relative to the point where it rotates around.

N∑
i=1

(Mi + ri × Fi) =

N∑
i=1

miri ×
(
∂vO

∂t
+ Ω× vO +

∂Ω

∂t
× ri + Ω× (Ω× ri)

)
=

N∑
i=1

miri ×
(
∂vO

∂t
+ Ω× vO

)
+

N∑
i=1

miri ×
(
∂Ω

∂t
× ri

)

+
N∑
i=1

miri × (Ω× (Ω× ri))

(C.21)

For the first term on the right hand side, the definition of center of gravity
can be used to get rid of the summation

N∑
i=1

miri ×
(
∂vO

∂t
+ Ω× vO

)
= mrG ×

(
∂vO

∂t
+ Ω× vO

)
. (C.22)

Substituting the position, velocity and angular velocity vectors yields

mrG ×
(
∂vO

∂t
+ Ω× vO

)
= m

yG(ẇ + pv − qu)− zG(v̇ − pw + ru)
zG(u̇+ qw − rv)− xG(ẇ + pv − qu)
xG(v̇ − pw + ru)− yG(u̇+ qw − rv)


(C.23)

For the second term on the right hand side, the triple product can be used

N∑
i=1

miri ×
(
∂Ω

∂t
× ri

)
=

N∑
i=1

mi

(
(ri · ri)

∂Ω

∂t
−
(
∂Ω

∂t
· ri
)

ri

)
(C.24)

Substituting the position, velocity and angular velocity vectors yields

N∑
i=1

miri ×
(
∂Ω

∂t
× ri

)
=

N∑
i=1

mi

ṗ(y2
i + z2

i )− xi(q̇yi + ṙzi)
q̇(x2

i + z2
i )− yi(ṗxi + ṙzi)

ṙ(x2
i + y2

i )− zi(ṗxi + q̇yi)

 (C.25)

Now the moments of inertia can be defined to be

Ixx =
N∑
i=1

mi(y
2
i + z2

i ) (C.26)
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Iyy =
N∑
i=1

mi(x
2
i + z2

i ) (C.27)

Izz =
N∑
i=1

mi(x
2
i + y2

i ) (C.28)

Ixy = Iyx = −
N∑
i=1

mixiyi (C.29)

Ixz = Izx = −
N∑
i=1

mixizi (C.30)

Iyz = Izy = −
N∑
i=1

miyizi (C.31)

which reduces the second term on the right hand side to

N∑
i=1

miri ×
(
∂Ω

∂t
× ri

)
=

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 ∂Ω

∂t

=

ṗIxx + q̇Ixy + ṙIxz
ṗIyx + q̇Iyy + ṙIyz
ṗIzx + q̇Izy + ṙIzz

 .
(C.32)

The third term can be rewritten using the triple product

N∑
i=1

miri × (Ω× (Ω× ri)) =

N∑
i=1

miri × ((Ω · ri)Ω− (Ω ·Ω)ri) (C.33)

Substituting the position, velocity and angular velocity vectors yields

N∑
i=1

miri × ((Ω · ri)Ω− (Ω ·Ω)ri) =

N∑
i=1

miri ×

(pxi + qyi + rzi)p− (p2 + q2 + r2)xi
(pxi + qyi + rzi)q − (p2 + q2 + r2)yi
(pxi + qyi + rzi)r − (p2 + q2 + r2)zi

 =

N∑
i=1

mi

r2yizi − q2yizi − pgxizi + prxiyi + qry2
i − qrz2

i

r2xizi − p2xizi − pgyizi + qrxiyi + prx2
i − rpz2

i

p2xiyi − q2xiyi − rqxizi + pryizi + pqy2
i − pqx2

i

 =

−(r2 − q2)Iyz + pqIxz − prIxy + qr(Izz − Iyy)
−(r2 − p2)Ixz + qrIxy − pqIyz + pr(Izz − Ixx)
−(p2 − q2)Ixy + prIyz − rqIxz + pq(Ixx − Iyy)



(C.34)
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This leads to the moment equation

K =m(yG(ẇ + pv − qu)− zG(v̇ − pw + rv)) + ṗIxx + q̇Ixy + ṙIxz

− (r2 − q2)Iyz + pqIxz − prIxy + qr(Izz − Iyy)
(C.35)

M =m(zG(u̇+ qw − rv)− xG(ẇ + pv − qu)) + ṗIyx + q̇Iyy + ṙIyz

− (r2 − p2)Ixz + qrIxy − pqIyz + pr(Izz − Ixx)
(C.36)

N =m(xG(v̇ − pw + rv)− yG(u̇+ qw − rv)) + ṗIzx + q̇Izy + ṙIzz

− (p2 − q2)Ixy + prIyz − rqIxz + pq(Ixx − Iyy)
(C.37)

When only motions in the horizontal plane are considered, hence the vertical
velocities w is zero and the angular velocities p and q are zero, this simplifies
to

K = −mzG(v̇ + ru) + ṙIxz − r2Iyz (C.38)

M = mzG(u̇− rv) + ṙIyz − r2Ixz (C.39)

N = m(xG(v̇ + ru)− yG(u̇− rv)) + ṙIzz. (C.40)

When a symmetric ship is considered, yG is zero, and ship the because the
coordinate system is placed at the height of the center of gravity zG is zero,
the equations then simplify to

K = −ṙIxz − r2Iyz (C.41)

M = ṙIyz − r2Ixz (C.42)

N = mxG(v̇ + rv) + ṙIzz. (C.43)

When the origin of the coordinate system is placed in the center of gravity
this reduces to

N = ṙIzz. (C.44)

The inertia terms in the equations of motion are know now, These inertia
terms should be equal to the forces that are acting on the vessel. These
forces are propeller thrust, the rudder forces, the resistance of the vessel
and the other hydrodynamic forces. The difference between manoeuvring
models arises from the way in which these forces are treated.



Appendix D

Derivation Low aspect ratio
lift theory

In this appendix, a more detailed derivation of the low aspect ratio lift
theory is given. The theory makes use of the assumption that a ship can be
modelled as a wing with a low aspect ratio.

D.1 Lift

When the ship is modelled as a low aspect ratio wing, the lift force on a
section of the vessel can be defined as

L =
1

2
ρU2SCL. (D.1)

The sectional lift coefficient is assumed to behave linear with the sine of the
drift angle

CL(x) = CLβ sinβ(x)

= CLβ
v + xr

U(x)
.

(D.2)

This means the lift force on every section of the vessel can be expressed as

L(x) =
1

2
ρU(x)2SCL(x)

=
1

2
ρU(x)2SCLβ

v + xr

U(x)

=
1

2
ρU(x)SCLβ(v + xr)

(D.3)
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The longitudinal component of the sectional lift force can be expressed as

XL(x) = L(x) sinβ(x)

=
1

2
ρU(x)SCLβ(v + xr)

v + xr

U(x)

=
1

2
ρSCLβ(v + xr)2

(D.4)

To get the total longitudinal force due to lift, the longitudinal component
of the sectional lift force is integrated over the length of the vessel

XL =

∫
1

2
ρSCLβ(v + xr)2 dx

=
1

2
ρSCLβ

∫
v2 + x2r2 + 2xvr dx

=
1

2
ρSCLβ

[
xv2 +

1

3
x3r2 + x2vr

]
.

(D.5)

Collecting all constants yields

XL = Xvvv
2 +Xrrr

2 +Xvrvr (D.6)

The lateral component of the sectional lift force can be expressed as

YL(x) = −L(x) cosβ(x)

= −1

2
ρU(x)SCLβ(v + xr)

u

U(x)

= −1

2
ρSCLβ(v + xr)u.

(D.7)

The total lateral force due to lift can be found by integration

YL =

∫
−1

2
ρSCLβ(v + xr)u dx

= −1

2
ρSCLβ

∫
uv + uxr dx

= −1

2
ρSCLβ

[
xuv +

1

2
x2ur

]
.

(D.8)

Collecting all constants results in

YL = Yuvuv + Yurur. (D.9)

D.2 Drag force

The drag force can be expressed as

D =
1

2
ρU2SCD. (D.10)
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The drag coefficient can be expressed as a quadratic function of side-slip
angle and a drag coefficient for drag at a drift angle of 0◦

CD(x) = CD0 + CDββ sin2(β(x)). (D.11)

Ross et al. [50] also include a term that is linear dependent on Reynolds
number and thus linear dependent on the velocity U .

CD(x) = CD0 + CDUU(x) + CDββ sin2(β(x)). (D.12)

Now the drag force on every section can be expressed as

D(x) =
1

2
ρSU2(x)CD(x)

=
1

2
ρSU2(x)

[
CD0 + CDUU(x) + CDββ sin2(β(x))

]
=

1

2
ρSU2(x)

[
CD0 + CDUU(x) + CDββ

(
v + xr

U(x)

)2
]

=
1

2
ρS
[
CD0U(x)2 + CDUU

3(x) + CDββ (v + xr)2
]
.

(D.13)

The longitudinal component of the drag force can be found by decomposing
the drag using the drift angle

XD(x) = −D(x) cosβ(x)

= −1

2
ρS
[
CD0U(x)2 + CDUU

3(x) + CDββ (v + xr)2
]

cosβ(x)

= −1

2
ρS
[
CD0U(x)2 + CDUU

3(x) + CDββ (v + xr)2
] u

U(x)

= −1

2
ρS

[
CD0U(x)u+ CDUU

2(x)u+ CDββ (v + xr)2 u

U(x)

]
.

(D.14)

Now the assumption is made that U(x)u ≈ u2. This assumption is valid
when u� (v + xr).

U(x)u =
√
u2 + (v + xr)2u ≈ u2. (D.15)

Now the longitudinal component of the drag force can be simplified to

XD(x) = −1

2
ρS
[
CD0u

2 + CDUU
2(x)u+ CDββ (v + xr)2

]
.

= −1

2
ρS[CD0u

2 + CDU (u2 + (v + xr)2)

+ CDββ(v2 + x2r2 + 2xvr)].

= −1

2
ρS[CD0u

2 + CDU (u3 + uv2 + x2ur2 + 2xuvr)

+ CDββ(v2 + x2r2 + 2xvr)].

(D.16)
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The total longitudinal force caused by drag can now be found by integrating
the longitudinal component of the sectional drag force.

XD =

∫
−1

2
ρS[CD0u

2 + CDU (u3 + uv2 + x2ur2 + 2xuvr)

+ CDββ(v2 + x2r2 + 2xvr)] dx

= −1

2
ρS[CD0xu

2 + CDU (xu3 + xuv2 +
1

3
x3ur2 + x2uvr)

+ CDββ(xv2 +
1

3
x3r2 + x2vr)].

(D.17)

Collecting all constants yields

XD =Xuuu
2 +Xuuuu

3Xuvvuv
2 +Xurrur

2 +Xrvurvu

+Xvvv
2 +Xrrr

2 +Xvrvr
(D.18)

The lateral component of the drag force can be calculated with

YD = −D sinβ (D.19)

YD(x) = −1

2
ρS
[
CD0U(x)2 + CDUU

3(x) + CDββ (v + xr)2
]

sinβ(x)

= −1

2
ρS
[
CD0U(x)2 + CDUU

3(x) + CDββ (v + xr)2
] v + xr

U(x)

= −1

2
ρS

[
CD0U(x)(v + xr) + CDUU

2(x)(v + xr) + CDββ
(v + xr)3

U(x)

]
(D.20)

When U(x) � (v + xr), it can be assumed that U(x) ≈ u. When U(x) �
(v + xr)3 the term with CDββ can be neglected. Using these assumptions
we find

YD(x) = −1

2
ρS
[
CD0u(v + xr) + CDU (u2 + (v + xr)2)(v + xr)

]
= −1

2
ρS
[
CD0(uv + uxr) + CDU (u2 + v2 + x2r2 + 2xrv)(v + xr)

]
= −1

2
ρS[CD0(uv + uxr) + CDU (vu2 + v3 + vx2r2 + 2xrv2+

xru2 + xrv2 + x3r3 + 2x2r2v)]

= −1

2
ρS[CD0(uv + uxr) + CDU (vu2 + v3 + 3vx2r2 + 3xrv2+

xru2 + x3r3)].

(D.21)
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Total lateral component of drag force can be found by integrating

YD =

∫
−1

2
ρS[CD0(uv + uxr) + CDU (vu2 + v3 + 3vx2r2 + 3xrv2+

xru2 + x3r3)] dx

= −1

2
ρS[CD0(xuv +

1

2
u2xr) + CDU (xvu2 + xv3 + vx3r2 +

3

2
x2rv2+

1

2
x2ru2 +

1

4
x4r3)].

(D.22)

Combining al constants results in

YD =Xuvuv +Xuuru
2r +Xuuvu

2v +Xvvvv
3

+Xvrrvr
2 +Xvvrv

2r +Xuuru
2r +Xrrrr

3.
(D.23)



128APPENDIX D. DERIVATION LOW ASPECT RATIO LIFT THEORY



Appendix E

Derivation of pseudo-inverse
using SVD

It was mentioned earlier that the calculation of the pseudo-inverse

A+ = (ATA)−1AT (E.1)

can be done faster and more accurate by using Singular Value Decomposi-
tion. In this Appendix it will be shown that

A+ = V Σ+UT . (E.2)

The Singular Value Decomposition for a m× n matrix A is defined as

A = UΣV T , (E.3)

where U is a m×m orthogonal matrix, V is a n× n orthogonal matrix and
Σ is a m × n “diagonal” matrix. The orthogonality of U and V yields the
properties

UUT = I = UTU (E.4)

and

V V T = I = V TV. (E.5)

This is the same statement as: The inverse of U and V are the same as the
transpose of U and V . Using the Singular Value Decomposition of A we can
derive the transpose of A to be equal to

AT = (U(ΣV T ))T = (ΣV T )TUT = V ΣTUT . (E.6)

Using the property of orthogonality from U we can now find ATA to be
equal to

ATA = V ΣTUTUΣV T = V ΣTΣV T (E.7)
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Then this can be inverted using orthogonality of V to get

(ATA)−1 = (V ΣTΣV T )−1 = V (ΣTΣ)−1V T . (E.8)

Multiplying by A now gives

(ATA)−1AT = V (ΣTΣ)−1V TV ΣTUT = V (ΣTΣ)−1ΣTUT . (E.9)

And by substituting the definition of the pseudo-inverse this can be written
as

A+ = V Σ+UT . (E.10)

The pseudo-inverse of the matrix Σ can be found by transposing Σ and
replacing all non-zero entries of Σ with there reciprocals.



Appendix F

Actuator Disk

Assume that the propeller is a disk that delivers a thrust force in the water.
Also assume a laminar flow around the disk, then the streamlines touching
the disk can be drawn, see Figure F.1.

p0, u0, A0

A
pe, ue, Ae

Figure F.1: Schematic drawing of an actuator disk and the streamlines of
the flow around it.

Around the actuator disk a control volume V with an infinitesimal width
can be drawn which is bounded in height by both streamlines. A control
volume like this is drawn in figure F.2. Now conservation of mass can be

p1, u1, A1Ap2, u2, A2

Figure F.2: Drawing of a control volume around the actuator disk.
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applied
∂

∂t

∫∫∫
V

ρ dV = −
∫∫
S

.ρu · n dS (F.1)

When the assumption that water is incompressible is made this reduces to

0 = −
∫∫
S

.ρu · n dS (F.2)

Evaluating this equation for the control volume yields

ρu1A1 = ρu2A2. (F.3)

When the width of the control volume goes to zero A1, A2 are equal to A,
which implies

u1 = u2. (F.4)

Now also conservation of momentum can be applied

∂

∂t

∫∫∫
V

ρu dV = −
∫∫

ρu · u · n dS +

∫∫
S

Tn dS +

∫∫∫
V

f dV. (F.5)

Because the flow is assumed to be steady, the left hand side of the equation
becomes 0.

0 = −
∫∫

ρu · u · n dS +

∫∫
S

Tn dS +

∫∫∫
V

f dV. (F.6)

Carrying out the integrals yields

0 = −ρAu2
1 + ρAu2

2 + p1A− p2A+ T. (F.7)

Because u1 and u2 are equal we find

T = (p2 − p1)A. (F.8)

Between the two streamlines Bernoulli’s principle can be applied. For the
suction side of the actuator disk this results in

1

2
ρu2

1 + p1 =
1

2
ρu2

0 + p0. (F.9)

For the pressure side of the actuator disk

1

2
ρu2

2 + p2 =
1

2
ρu2

e + p0 (F.10)

is found. To find the difference in pressure over the actuator disk, equation
F.9 can be subtracted from equation F.10, which yields

p2 − p1 =
1

2
ρ(u2

e − u2
0). (F.11)
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Substituting this expression in equation F.8 results in the following expres-
sion for the thrust.

T =
1

2
ρ(u2

e − u2
0)A (F.12)

This expression can be made non-dimensional by dividing by ρn2
PD

4.

T

ρn2
PD

4
=
ρ(u2

e − u2
0)A

2ρn2
PD

4
(F.13)

KT =
(u2
e − u2

0)A

2n2
PD

4
. (F.14)

Substituting A = π
4D

2 yields

KT =
(u2
e − u2

0)π4D
2

2n2
PD

4
. (F.15)

KT =
(u2
e − u2

0)π

8n2
PD

2
. (F.16)

The exit velocity can be expressed as

ue = ηu0. (F.17)

Substitution in F.16 yields

KT =
(η2u2

0 − u2
0)π

8n2
PD

2
(F.18)

KT =
π(η2 − 1)u2

0

8n2
PD

2
. (F.19)

Substituting the definition of advance ratio results in

KT =
π

8
(η2 − 1)J2

P . (F.20)

Solving for η gives

η =

√
1 +

8KT

πJ2
P

. (F.21)
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Appendix G

Wageningen B-series
coefficients

G.1 Thrust coefficient polynomials

Barnitsas et al. [5] used regression analysis to find polynomials for the KT -
curves of the Wageningen B-series propellers. These polynomials can be
found using

KT =
∑
s,t,u,v

CTs,t,u,vJ
s

(
P

D

)t(AE
A0

)u
Zv. (G.1)

The coefficients and powers that define these polynomials can be found in
table G.1.

Table G.1: Coefficients and exponents of polynomial of KT for Wageningen
B-series propellers. Taken from Barnitsas et al. [5].

CTs,t,u,v s t u v

0.008 804 96 0 0 0 0
−0.204 554 1 0 0 0

0.166 351 0 1 0 0
0.158 114 0 2 0 0
−0.147 581 2 0 1 0
−0.481 497 1 1 1 0

0.415 437 0 2 1 0
0.014 404 3 0 0 0 1
−0.053 005 4 2 0 0 1

0.014 348 1 0 1 0 1
0.060 682 6 1 1 0 1
−0.012 589 4 0 0 1 1

0.010 968 9 1 0 1 1
−0.133 698 0 3 0 0
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Table G.1: (continued)

CTs,t,u,v s t u v

0.006 384 07 0 6 0 0
−0.001 327 18 2 6 0 0

0.168 496 3 0 1 0
−0.050 721 4 0 0 2 0

0.085 455 9 2 0 2 0
−0.050 447 5 3 0 2 0

0.010 465 1 6 2 0
−0.006 482 72 2 6 2 0
−0.008 417 28 0 3 0 1

0.168 424 1 3 0 1
−0.001 022 96 3 3 0 1
−0.031 779 1 0 3 1 1

0.018 604 1 0 2 1
−0.004 107 98 0 2 2 1
−0.000 606 848 0 0 0 2
−0.004 981 9 1 0 0 2

0.002 598 3 2 0 0 2
−0.000 560 528 3 0 0 2

0.001 636 52 1 2 0 2
−0.000 328 787 1 6 0 2

0.000 116 502 2 6 0 2
0.000 690 904 0 0 1 2
0.004 217 49 0 3 1 2

5.652 29× 10−5 3 6 1 2
−0.001 465 64 0 3 2 2

G.2 Torque coefficient polynomials

In a similar manner as for the trust coefficients, Barnitsas et al. [5] defined
polynomials for the KQ-curves of the Wageningen B-series propellers. These
polynomials are defined as

KQ =
∑
s,t,u,v

CQs,t,u,vJ
s

(
P

D

)t(AE
A0

)u
Zv. (G.2)

The coefficients and powers that define these polynomials can be found in
table G.2.
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Table G.2: Coefficients and exponents of polynomial of KQ for Wageningen
B-series propellers. Taken from Barnitsas et al. [5].

CQs,t,u,v s t u v

0.003 793 68 0 0 0 0
0.008 865 23 2 0 0 0
−0.032 241 1 1 0 0

0.003 447 78 0 2 0 0
−0.040 881 1 0 1 1 0
−0.108 009 1 1 1 0
−0.088 538 1 2 1 1 0

0.188 561 0 2 1 0
−0.003 708 71 1 0 0 1

0.005 136 96 0 1 0 1
0.020 944 9 1 1 0 1
0.004 743 19 2 1 0 1
−0.007 234 08 2 0 1 1

0.004 383 88 1 1 1 1
−0.026 940 3 0 2 1 1

0.055 808 2 3 0 1 0
0.016 188 6 0 3 1 0
0.003 180 86 1 3 1 0
0.015 896 0 0 2 0
0.047 172 9 1 0 2 0
0.019 628 3 3 0 2 0
−0.050 278 2 0 1 2 0
−0.030 055 3 1 2 0

0.041 712 2 2 2 2 0
−0.039 772 2 0 3 2 0
−0.003 500 24 0 6 2 0
−0.010 685 4 3 0 0 1

0.001 109 03 3 3 0 1
−0.000 313 912 0 6 0 1

0.003 598 5 3 0 1 1
−0.001 421 21 0 6 1 1
−0.003 836 37 1 0 2 1

0.012 680 3 0 2 2 1
−0.003 182 78 2 3 2 1

0.003 342 68 0 6 2 1
−0.001 834 91 1 1 0 2

0.000 112 451 3 2 0 2
−2.972 28× 10−5 3 6 0 2

0.000 269 551 1 0 1 2
0.000 832 65 2 0 1 2
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Table G.2: (continued)

CQs,t,u,v s t u v

0.001 553 34 0 2 1 2
0.000 302 683 0 6 1 2
−0.000 184 3 0 0 2 2
−0.000 425 399 0 3 2 2
8.692 43× 10−5 3 3 2 2
−0.000 465 9 0 6 2 2
5.541 94× 10−5 1 6 2 2



Appendix H

Solution to Differential
equation

For verification purposes the equation of motion in x-direction was con-
sidered to be

(m−Xu̇)u̇−Xuu = F0 + FA sinωt. (H.1)

This is a first order linear differential equation which can be solved analyt-
ically. To find the solutions to this equation, first homogeneous differential
equation is considered

u̇− Xu

m−Xu̇
u = 0. (H.2)

It is known that u = cert satisfies this equation.

crert − cert Xu

m−Xu̇
= 0 (H.3)

r =
Xu

m−Xu̇
. (H.4)

So the homogeneous solution to the differential equation is

uh(t) = c1e
Xu

m−Xu̇
t
. (H.5)

To find the particular solution a solution of the form

u = A+B sinωt+ C cosωt (H.6)

is assumed. Substitution in the equation of motion yields

(Bω cosωt− Cω sinωt)− Xu

m−Xu̇
(A+B sinωt+ C cosωt)

=
F0

m−Xu̇
+

FA
m−Xu̇

sinωt.

(H.7)
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Bω − Xu

m−Xu̇
C

)
cosωt+

(
−Cω − Xu

m−Xu̇
B

)
sinωt−XuA

=
F0

m−Xu̇
+

FA
m−Xu̇

sinωt.

(H.8)

This leads to equations

− Xu

m−Xu̇
A =

F0

m−Xu̇
, (H.9)

Bω − Xu

m−Xu̇
C = 0, (H.10)

− Cω − Xu

m−Xu̇
B =

FA
m−Xu̇

. (H.11)

These equations can be solved to find

A = − F0

Xu
(H.12)

B = − FAXu

(m−Xu̇)2ω2 +X2
u

(H.13)

C = − (m−Xu̇)ωFA
(m−Xu̇)2ω2 +X2

u

. (H.14)

Together with the homogeneous solution, the total solution to the differential
equation becomes

u(t) = c1e
Xu

m−Xu̇
t − FAXu

(m−Xu̇)2ω2 +X2
u

sinωt

− (m−Xu̇)ωFA
(m−Xu̇)2ω2 +X2

u

cosωt− F0

Xu
.

(H.15)

The boundary condition is u(0) = u0, which yields

c1 = u0 +
(m−Xu̇)ωFA

(m−Xu̇)2ω2 +X2
u

+
F0

Xu
. (H.16)

Differentiation of u(t) gives the expression for the acceleration:

u̇(t) = c1
Xu

m−Xu̇
e

Xu
m−Xu̇

t − FAXuω

(m−Xu̇)2ω2 +X2
u

cosωt

+
(m−Xu̇)ω2FA

(m−Xu̇)2ω2 +X2
u

sinωt.

(H.17)

Integration of u(t) gives the expression for location:

x(t) = c1
m−Xu̇

Xu
e

Xu
m−Xu̇

t
+

FAXu

ω((m−Xu̇)2ω2 +X2
u)

cosωt

− (m−Xu̇)FA
(m−Xu̇)2ω2 +X2

u

sinωt− F0

Xu
t+ c2.

(H.18)
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The boundary condition is x(0) = x0, which yields

c2 = x0 − c1
m−Xu̇

Xu
− FAXu

ω((m−Xu̇)2ω2 +X2
u)
. (H.19)
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Appendix I

Richardson Extrapolation

I.1 Right end of interval

De basis of the method is the backwards difference method:

R1(h) =
y(x)− y(x− h)

h
(I.1)

R1(2h) =
y(x)− y(x− 2h)

2h
(I.2)

Now a Taylor series expansion can be used to approximate y(x − h) and
y(x− 2h)

y(x− h) = y(x)− hf ′(x0) +
1

2
h2f ′′(x0)− 1

6
h3f ′′′(x0) +O(h4) (I.3)

y(x− 2h) = y(x)− 2hf ′(x0) + 2h2f ′′(x0)− 8

6
h3f ′′′(x0) +O(h4). (I.4)

substitution in I.1 and I.2 yields

R1(h) =
hf ′(x0)− 1

2h
2f ′′(x0) +O(h3)

h

= f ′(x0)− 1

2
hf ′′(x0) +O(h2)

(I.5)

R1(2h) =
2hf ′(x0)− 2h2f ′′(x0) +O(h3)

2h
= f ′(x0)− hf ′′(x0) +O(h2)

(I.6)

To cancel the second term a combination of these solutions can be used

R2(h) = 2R1(h)−R1(2h) = 2
y(x)− y(x− h)

h
− y(x)− y(x− 2h)

2h

=
3y(x)− 4y(x− h) + y(x− 2h)

2h
.

(I.7)
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This approximation now can be use to do the same thing

R2(2h) =
3y(x)− 4y(x− 2h) + y(x− 4h)

4h
. (I.8)

Now also a tailor series expansion for y(x− 4h) is needed

y(x− 4h) = y(x)− 4hf ′(x0) + 8h2f ′′(x0)− 64

6
h3f ′′′(x0) +O(h4). (I.9)

substitution of the Taylor series expansions in I.7 and I.8 yields

R2(h) =
−2hf ′(x0)− 2

3h
3f ′′′(x0) +O(h4)

2h

= hf ′(x0)− 1

3
h2f ′′′(x0) +O(h3)

(I.10)

R2(2h) =
4hf ′(x0)− 16

3 h
3f ′′′(x0) +O(h4)

4h

= f ′(x0)− 4

3
h2f ′′′(x0) +O(h3).

(I.11)

To cancel the second term a combination of these solutions can be used

R3(h) =
4R2(h)−R2(2h)

3

=
21y(x)− 32y(x− h) + 12y(x− 2h)− y(x− 4h)

12h

(I.12)



Appendix J

Verification single motions

In section 7.4 the prediction method is verificated for sailing straight forward.
For other uncoupled 1 DOF motions the verification can be done in exactly
the same way. The results for the motions sway and yaw are discussed in
this appendix.

J.1 Testing pure sway

The motion will be simulated by applying a known sinusoidal force

Yknown = Y0 + YA sinωt. (J.1)

Together with the inertial forces,they make up the ’known’forces in the pre-
diction method. The input values for these known forces can be found in
table J.1. The initial conditions of the simulation are displayed in table J.2.
The coefficient sets that are used in testing pure sway motion resemble the

Table J.1: Input values for known lateral forces

.
Y0 [N] YA [N] ω [rad/s] m [kg]

100000 7000000 0.01 320415000

Table J.2: Initial conditions used in the simulation for testing sway.

u0 [m/s] u̇0 [m/s2] v0 [m/s] v̇0 [m/s2] r0 [rad/s] ṙ0 [rad/s2]

0 0 5 0 0 0

sets used in straight sailing and are displayed in table J.3

First the coefficients are determined using the prediction method with a
differentiation time step of dt = 1 s. The coefficients found are displayed in
table J.4
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Table J.3: Coefficients that are used for testing pure sway motion.

Set Yv̇ [kg] Yv [kg/s] Yvv [kg/m] Yvvv [kg s/m2]

1 -100000 -20000 - -

2 -100000 -20000 -8000 -

3 -100000 -20000 -8000 -500

Table J.4: Predicted coefficients for differentiation time step dt = 1.

Set Yv̇ [kg] Yv [kg/s] Yvv [kg/m] Yvvv [kg s/m2]

1 −99 980.53 −19 999.95 - -

2 −99 980.75 −19 999.82 −8 000.02 -

3 −99 980.64 −20 000.18 −7 999.88 −500.01

In table J.5 the relative errors of the found coefficients are displayed. It can
be seen that the found coefficients approximate the original coefficients very
well. It should be noticed that the error for the inertial coefficient Yv̇ are
of higher order than the other coefficients. This is due to smaller size of
v̇ compared to v. Because v̇ is smaller, the round-off error is a larger part
of the total error. To show what the influence of the differentiation time
step is, the same tests are done for a differentiation time step dt = 10 s.
The results of the prediction are displayed in table J.6. It can be seen that
these coefficients are less accurate than with a differentiation time step of
1 second. This is due to the truncation error in the differentiation method.
This can also be conclude from the size of the errors, which are displayed in
table J.7.

J.2 Testing pure yaw

The last 1 DOF motion that needs testing is yaw. The input for the known
moments can be found in J.8. The initial conditions of the simulation are
displayed in table J.9. The coefficients that are used in the simulation of
pure yaw are displayed in J.10. For these test larger coefficients and are
used because the mass moment of inertia IzG is much larger than the mass
and because the values for r are in reality much smaller than the values of

Table J.5: Relative error of predicted coefficients for differentiation time
step dt = 1.

Set εYv̇ [%] εYv [%] εYvv [%] εYvvv [%]

1 −0.019 5 −0.000 2 - -

2 −0.019 2 −0.000 9 0.000 2 -

3 −0.019 4 0.000 9 −0.001 5 0.002 6
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Table J.6: Predicted coefficients for differentiation time step dt = 10.

Set Yv̇ [kg] Yv [kg/s] Yvv [kg/m] Yvvv [kg s/m2]

1 −76 960.77 −19 939.23 - -

2 −77 032.18 −19 739.30 −8 029.42 -

3 −76 775.90 −20 195.63 −7 851.42 −515.86

Table J.7: Relative error of predicted coefficients for differentiation time
step dt = 10.

Set εYv̇ [%] εYv [%] εYvv [%] εYvvv [%]

1 −0.019 5 −0.000 2 - -

2 −0.019 2 −0.000 9 0.000 2 -

3 −0.019 4 0.000 9 −0.001 5 0.002 6

Table J.8: Input values for known moments

N0 [N] NA [N] ω [rad/s] IzG [kg m2]

100000000 700000 0.01 2.0507E+12

Table J.9: Initial conditions used in the simulation for testing yaw

u0 [m/s] u̇0 [m/s2] v0 [m/s] v̇0 [m/s2] r0 [rad/s] ṙ0 [rad/s2]

0 0 0 0 0.01 0
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u and v.

Table J.10: Coefficients that are used for testing pure yaw motion.

Set Nṙ [kg m2] Nr [kg m2/s] Nrr [kg m2] Nrrr [kg m2 s]

1 −1.00 · 10+12 −10 000 000.00 - -

2 −1.00 · 10+12 −10 000 000.00 −8 000 000.00 -

3 −1.00 · 10+12 −10 000 000.00 −8 000 000.00 −7 000 000.00

Table J.11: Predicted coefficients for yaw motion with differentiation time
step dt = 1.

Set Nṙ [kg m2] Nr [kg m2/s] Nrr [kg m2] Nrrr [kg m2 s]

1 −1 0.00 · 10+11 −9 999 992.70 - -

2 −1 0.00 · 10+11 −10 000 000.32 −8 000 137.09 -

3 −1 0.00 · 10+11 −10 001 157.87 −7 980 274.76 −7 096 090.51

Table J.12: Relative error of predicted coefficients for differentiation time
step dt = 1.

Set εNṙ [%] εNr [%] εNrr [%] εNrrr [%]

1 −3.589 7 · 10−06 −7.297 7 · 10−05 - -

2 −2.703 4 · 10−06 3.248 2 · 10−06 0.001 7 -

3 −5.534 1 · 10−05 0.011 6 −0.246 6 1.372 7
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Table J.13: Predicted coefficients for yaw motion with differentiation time
step dt = 10.

1 −1.00 · 10+12 −9 998 775.05 - -

2 −1 0.00 · 10+11 −10 009 683.27 −7 927 103.95 -

3 −1.00 · 10+12 −9 985 986.00 −8 299 292.12 −5 348 112.72

Table J.14: Relative error of predicted coefficients for differentiation time
step dt = 10.

Set εNṙ [%] εNr [%] εNrr [%] εNrrr [%]

1 0.000 2 −0.012 2 - -

2 −0.000 8 0.096 8 −0.911 2 -

3 0.000 4 −0.140 1 3.741 2 −23.598 4
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Appendix K

Non-dimensionalize
coefficients

In this report, non-dimensional coefficients are denoted by putting a prime
′ above a symbol. Forces are non-dimensionalized by 1

2ρLppdU
2, moments

are non-dimensionalized by 1
2ρL

2
ppdU

2, velocities are non-dimensionalized

by characteristic velocity U , accelerations are non-dimensionalized by U2

L
and angular velocity is non-dimensionalized by U

L . Using these definitions,
the non-dimensional hydrodynamic coefficients in the following sections are
derived. The values used for non-dimensionalization can be found in table
K.1.

Table K.1: Values used for non-dimensionalization.

U 7.97382 m/s
Lpp 320 m
d 20.8 m
ρ 1025 kg/m3

K.1 Non-dimensional X coeffcients

X ′u̇ =
Xu̇

1
2ρL

2
ppd

Xu̇ ∼ [kg] (K.1)

X ′uu =
Xuu

1
2ρLppd

Xuu ∼
[

kg

m

]
(K.2)

X ′uuu =
XuuuU
1
2ρLppd

Xuuu ∼
[

kg s

m2

]
(K.3)

X ′vv =
Xvv

1
2ρLppd

Xvv ∼
[

kg

m

]
(K.4)
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X ′rr =
Xrr

1
2ρL

3
ppd

Xrr ∼ [kg m] (K.5)

X ′vr =
Xvr

1
2ρL

2
ppd

Xvr ∼ [kg] (K.6)

X ′uvv =
XuvvU
1
2ρLppd

Xuvv ∼
[

kg s

m2

]
(K.7)

X ′rvu =
XrvuU
1
2ρL

2
ppd

Xrvu ∼
[

kg s

m

]
(K.8)

X ′urr =
XurrU
1
2ρL

3
ppd

Xurr ∼ [kg s] (K.9)

K.2 Non-dimensional Y coeffcients

Y ′v̇ =
Yv̇

1
2ρL

2
ppd

Yv̇ ∼ [kg] (K.10)

Y ′uv =
Yuv

1
2ρLppd

Yuv ∼
[

kg

m

]
(K.11)

Y ′ur =
Yur

1
2ρL

2
ppd

Yur ∼ [kg] (K.12)

Y ′uur =
YuurU
1
2ρL

2
ppd

Yuur ∼
[

kg s

m

]
(K.13)

Y ′uuv =
YuuvU
1
2ρLppd

Yuuv ∼
[

kg s

m2

]
(K.14)

Y ′vvv =
YvvvU
1
2ρLppd

Yvvv ∼
[

kg s

m2

]
(K.15)

Y ′rrr =
YrrrU
1
2ρL

4
ppd

Yrrr ∼ [kg m s] (K.16)

Y ′rrv =
YrrvU
1
2ρL

3
ppd

Yrrv ∼ [kg s] (K.17)

Y ′vvr =
YvvrU
1
2ρL

2
ppd

Yvvr ∼
[

kg s

m

]
(K.18)

Y ′|v|v =
Y|v|v

1
2ρLppd

Y|v|v ∼
[

kg

m

]
(K.19)

Y ′|r|v =
Y|r|v

1
2ρL

2
ppd

Y|r|v ∼ [kg] (K.20)
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Y ′|v|r =
Y|v|r

1
2ρL

2
ppd

Y|v|r ∼ [kg] (K.21)

Y ′|r|r =
Y|r|r

1
2ρL

3
ppd

Y|r|r ∼ [kg m] (K.22)

K.3 Non-dimensional N coeffcients

N ′ṙ =
Nṙ

1
2ρL

4
ppd

Nṙ ∼ [kg m2] (K.23)

N ′uv =
Nuv

1
2ρL

2
ppd

Nuv ∼ [kg] (K.24)

N ′ur =
Nur

1
2ρL

3
ppd

Nur ∼ [kg m] (K.25)

N ′uur =
NuurU
1
2ρL

3
ppd

Nuur ∼ [kg s] (K.26)

N ′uuv =
NuuvU
1
2ρL

2
ppd

Nuuv ∼
[

kg s

m

]
(K.27)

N ′vvv =
NvvvU
1
2ρL

2
ppd

Nvvv ∼
[

kg s

m

]
(K.28)

N ′rrr =
NrrrU
1
2ρL

5
ppd

Nrrr ∼
[
kg m2 s

]
(K.29)

N ′rrv =
NrrvU
1
2ρL

4
ppd

Nrrv ∼ [kg m s] (K.30)

N ′vvr =
NvvrU
1
2ρL

3
ppd

Nvvr ∼ [kg s] (K.31)

N ′|v|v =
N|v|v

1
2ρL

2
ppd

N|v|v ∼ [kg] (K.32)

N ′|r|v =
N|r|v

1
2ρL

3
ppd

N|r|v ∼ [kg] (K.33)

N ′|v|r =
N|v|r

1
2ρL

3
ppd

N|v|r ∼ [kg] (K.34)

N ′|r|r =
N|r|r

1
2ρL

4
ppd

N|r|r ∼ [kg m2] (K.35)
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Appendix L

Dimension-full coefficients

Table L.1: Table of al the coefficients based on low aspect ratio lift theory
found in straight sailing.

Xu̇ −2.401 6 · 10+07 Yv̇ 0.000 0 Nṙ 0.000 0
Xuu −7.504 6 · 10+04 Yuv 0.000 0 Nuv 0.000 0
Xuuu −6.840 0 · 10−02 Yur 0.000 0 Nur 0.000 0
Xvv 0.000 0 Yuur 0.000 0 Nuur 0.000 0
Xrr 0.000 0 Yuuv 0.000 0 Nuuv 0.000 0
Xvr 0.000 0 Yvvv 0.000 0 Nvvv 0.000 0
Xuvv 0.000 0 Yrrr 0.000 0 Nrrr 0.000 0
Xrvu 0.000 0 Yrrv 0.000 0 Nrrv 0.000 0
Xurr 0.000 0 Yvvr 0.000 0 Nvvr 0.000 0

Y|v|v 0.000 0 N|v|v 0.000 0

Y|r|v 0.000 0 N|r|v 0.000 0

Y|v|r 0.000 0 N|v|r 0.000 0

Y|r|r 0.000 0 N|r|r 0.000 0
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Table L.2: Table of al the coefficients based on low aspect ratio lift theory
found with 10/10 zig-zag manoeuvre.

Xu̇ −2.217 4 · 10+07 Yv̇ −2.776 2 · 10+08 Nṙ −1.432 1 · 10+12

Xuu −7.627 7 · 10+04 Yuv −1.656 8 · 10+06 Nuv −1.025 3 · 10+08

Xuuu 1.228 4 · 10+02 Yur 8.952 9 · 10+06 Nur −1.018 5 · 10+10

Xvv −1.723 2 · 10+06 Yuur 3.767 8 · 10+06 Nuur −4.345 2 · 10+08

Xrr −1.923 8 · 10+10 Yuuv 3.336 0 · 10+04 Nuuv −3.355 1 · 10+06

Xvr −3.913 6 · 10+08 Yvvv 7.882 0 · 10+06 Nvvv −1.042 9 · 10+09

Xuvv 1.087 0 · 10+05 Yrrr 2.908 9 · 10+13 Nrrr −3.623 3 · 10+15

Xrvu 2.452 0 · 10+07 Yrrv 5.726 8 · 10+11 Nrrv −7.114 6 · 10+13

Xurr 1.170 8 · 10+09 Yvvr 3.880 1 · 10+09 Nvvr −4.790 6 · 10+11

Y|v|v −8.519 4 · 10+05 N|v|v 8.718 5 · 10+07

Y|r|v 7.844 6 · 10+07 N|r|v −7.251 1 · 10+09

Y|v|r −6.138 7 · 10+07 N|v|r 5.858 1 · 10+09

Y|r|r 1.917 5 · 10+10 N|r|r −1.826 5 · 10+12

Table L.3: Table of al the coefficients based on low aspect ratio lift theory
found with 20/20 zig-zag manoeuvre.

Xu̇ −1.870 2 · 10+07 Yv̇ −2.895 7 · 10+08 Nṙ −1.485 6 · 10+12

Xuu −7.684 0 · 10+04 Yuv −2.563 7 · 10+06 Nuv −4.334 6 · 10+07

Xuuu 1.405 3 · 10+02 Yur −7.236 4 · 10+07 Nur −5.131 4 · 10+09

Xvv −7.029 5 · 10+06 Yuur 1.120 4 · 10+07 Nuur −9.581 1 · 10+08

Xrr −1.189 2 · 10+11 Yuuv 1.237 6 · 10+05 Nuuv −9.590 1 · 10+06

Xvr −1.877 3 · 10+09 Yvvv 3.234 4 · 10+06 Nvvv −4.557 5 · 10+08

Xuvv 7.458 4 · 10+05 Yrrr 1.257 7 · 10+13 Nrrr −1.485 5 · 10+15

Xrvu 2.000 6 · 10+08 Yrrv 2.396 4 · 10+11 Nrrv −2.788 1 · 10+13

Xurr 1.293 6 · 10+10 Yvvr 1.758 1 · 10+09 Nvvr −2.025 5 · 10+11

Y|v|v −2.446 8 · 10+05 N|v|v 4.572 9 · 10+07

Y|r|v −7.929 3 · 10+06 N|r|v 5.058 6 · 10+09

Y|v|r 4.172 2 · 10+06 N|v|r 3.680 4 · 10+09

Y|r|r 4.068 3 · 10+09 N|r|r 9.237 4 · 10+10
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Table L.4: Table of al the coefficients based on low aspect ratio lift theory
found with turning circle manoeuvre.

Xu̇ -1.4612E+07 Yv̇ -3.8379E+08 Nṙ -2.0162E+12
Xuu -2.0936E+05 Yuv 3.0439E+06 Nuv -2.8260E+08
Xuuu 1.6392E+04 Yur 2.9488E+09 Nur -2.8573E+11
Xvv -5.5480E+06 Yuur -5.0197E+08 Nuur 4.8034E+10
Xrr -1.2994E+11 Yuuv -2.7444E+06 Nuuv 2.4750E+08
Xvr -1.9385E+09 Yvvv 2.3503E+07 Nvvv -1.9338E+09
Xuvv 5.6639E+05 Yrrr 2.2680E+13 Nrrr -2.2065E+15
Xrvu 2.0131E+08 Yrrv 2.3569E+11 Nrrv -1.3638E+13
Xurr 1.3670E+10 Yvvr 4.5026E+09 Nvvr -3.5160E+11

Y|v|v -9.8272E+07 N|v|v 9.0904E+09

Y|r|v 1.3781E+10 N|r|v -1.4003E+12

Y|v|r -1.3781E+10 N|v|r 1.4003E+12

Y|r|r 1.1541E+12 N|r|r -1.1973E+14

Table L.5: Table of al the dimensionless coefficients based on low aspect
ratio lift theory found from combined 20/20 zig-zag and turning circle man-
oeuvres.

Xu̇ -2.7525E+07 Yv̇ -3.2044E+08 Nṙ -1.5933E+12
Xuu -5.7918E+04 Yuv -5.5188E+06 Nuv 1.6912E+08
Xuuu -1.8534E+03 Yur -3.9820E+08 Nur 1.7933E+10
Xvv -1.0773E+07 Yuur 4.3492E+07 Nuur -3.4254E+09
Xrr -1.9252E+11 Yuuv 4.5832E+05 Nuuv -3.4862E+07
Xvr -2.9194E+09 Yvvv 3.4281E+06 Nvvv -4.4663E+08
Xuvv 1.1710E+06 Yrrr 6.6249E+11 Nrrr -4.9357E+14
Xrvu 3.2026E+08 Yrrv 6.7571E+10 Nrrv -1.2857E+13
Xurr 2.1448E+10 Yvvr 9.7416E+08 Nvvr -1.3003E+11

Yv|v| -4.5915E+06 Nv|v| 3.7315E+08

Yr|v| -1.7279E+07 Nr|v| 8.8348E+09

Yv|r| -4.6686E+08 Nv|r| 4.0074E+10

Yr|r| 6.2813E+10 Nr|r| -3.9133E+12
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Table L.6: Table of al the dimensionless coefficients based on low aspect
ratio lift theory found from combined straight acceleration, 10/10 zig-zag,
20/20 zig-zag and turning circle manoeuvres.

Xu̇ -2.6176E+07 Yv̇ -3.0211E+08 Nṙ -1.6534E+12
Xuu -7.2916E+04 Yuv -1.6927E+06 Nuv -5.8827E+07
Xuuu -1.8179E+02 Yur 1.6781E+08 Nur -1.6987E+10
Xvv -5.9069E+05 Yuur -1.1768E+07 Nuur 1.7418E+08
Xrr -1.9800E+10 Yuuv 5.3396E+04 Nuuv -9.0786E+06
Xvr -2.8803E+08 Yvvv 1.1343E+07 Nvvv -1.2733E+09
Xuvv 2.3190E+04 Yrrr -1.3592E+12 Nrrr -1.1057E+15
Xrvu 2.3171E+07 Yrrv 1.0189E+11 Nrrv -3.1112E+13
Xurr 1.9238E+09 Yvvr 2.3559E+09 Nvvr -3.3945E+11

Yv|v| -9.4757E+06 Nv|v| 7.1738E+08

Yr|v| -6.9233E+08 Nr|v| 6.3018E+10

Yv|r| -1.3642E+09 Nv|r| 1.0399E+11

Yr|r| -8.4668E+09 Nr|r| 1.8599E+12
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