856 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 3, MARCH 1999
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order L, is overestimated an® = M + L, in Fig. 10 and when 615-621, May 1990.

. . . . . . [8] B. L. Floch, M. Alard, and C. Berrou, “Coded orthogonal frequency
the order is overestimated witR = 19 in Fig. 11. In Fig. 10, we division multiplex,” Proc. IEEE vol. 83, pp. 982—996, June 1995.

see the beneficial effects of having a larger prefix, whereas Fig. 1/b] P. Melsa, R. C. Younce, and C. E. Rohrs, “Impulse response shortening
shows the graceful degradation when the channel is overestimated. for discrete multitone transceiverdEEE Trans. Communvol. 44, pp.

Experiment 2: In this experiment, we consider the effect of the _ 1662-1672, Dec. 1996.

. . - . 0] T. Pollet and M. Moeneclaey, “The effect of carrier frequency offset on
cycle chosen on the resulting channel error in estimating the tw{}- the performance of band limited single carrier and OFDM signals,” in

ray channel above. Fig. 12 considers the performance of the OC proc. GLOBECOM London, U.K., Nov. 18-22, 1996, pp. 719-723.
approach fo = 100, P = 19, M = 15, SNR= 20 dB, and 120 M [11] H. Sari, G. Karam, and |. Jeanclaude, “An analysis of orthogonal
symbols for cycles 1.. 6, whereas Fig. 13 considers similarly the  frequency-division multiplexing for mobile radio applications,” in
performance using the TC approach with cycles 1 and.Z. Cycle Prof. Vehic. Technol. Conf.Stockholm, Sweden, June 8-10, 1994,

. . pp. 1635-1639.
selection seems to have an effect on the channel error, but asymptoig |~ sari, G. Karam, and I. Jeanclaude, “Transmission techniques for

performance analysis is required to determine its precise role. digital terrestrial TV broadcasting/EEE Commun. Magpp. 100-109,
Experiment 3: Now, we look at the probability of bit error for Feb. 1995. ' _ _ o
an OFDM system. In Fig. 14, we plot the RMS symbol estimatioft3] E. Serpedin and G. B. Giannakis, “Blind channel identification and

error, and in Fig. 15, we plot the probability of bit error (assuming g?;;glzgggge::;ggvgOiglaggnégg;igio?cﬁgcatfggé','fsg TEranCs ’

Gray coding in selection of the 16 QAM symbols) estimated over  31st Conf. Inform. Sci. Systlohns Hopkins Univ., Baltimore, MD, vol.
500 Monte Carlos of 500 M data for an OFDM system with= 15 Il, Mar. 19-21, 1997, pp. 792-797.
andP = 19, with and without 15, 11) two symbol-error correcting [14] M. K. Tsatsanis and G. B. Giannakis, “Transmitter induced cyclosta-

_ ; e tionarity for blind channel equalizationlEEE Trans. Signal Processing
Reed-Solomon (RS) equivalent code for the artificial chahnel vol. 45, pp. 1785-1794, July 1997.

[1.2,1, -1, 1]/‘/§ We used the standard OFDM ZF and IVIMSE[lS] J.-J. van de Beek, M. Sandell, and P. @Girjgsson, “ML estimation
structures [12] to equalize thé, = 4 channel above. Next, we of time and frequency offset in OFDM systemd$EEE Trans. Signal
consider the same channel add = 15 and P = 17 to observe Processing vol. 45, pp. 180-1805, July 1997.

the effects of channels longer than the cyclic prefix. We estimate tH&] L. Vandendorpe, “MMSE equalizers for multitone systems without guard

channel as before but look at MMSE equalization with and WithOLﬂ}_?] témfhte':]bzr?thﬂo'Fzggf ! mgsvesti' S:nqszftl'oﬁg_ﬁhézgi'n OFDM

the use of impulse response shortening [9] and18Sl1) coding. transmission schemes: Sub-channel equalization or more powerful chan-
We used an eight-tap, zero-delay shortening filter derived from the nel coding,” inProc. GLOBECOM Singapore, Nov. 14-16, 1995, pp.
estimated channel. In Fig. 16, we plot the RMS symbol estimation 2069-2074.

error, and in Fig. 17, we plot the estimated probability of error. For

comparison purposes, in Figs. 15 and 17, we plot the MMSE uncoded

and coded solutions for the case whetw) = 6(n) as well as

when there is no attempt at equalization. In Fig. 15, we see that On the Equivalence of Blind Equalizers

the performance of the system using equalization with our channel Based on MRE and Subspace Intersections
estimate approaches the performance of the case viiede= 6(n).

From Fig. 17, we see that impulse response shortening may be a David Gesbert, Alle-Jan van der Veen, and A. Paulraj
beneficial techniqgue when combined with our channel estimate since
it reduces the the error floor present in the unshortened scenaridAbstract—Iwo classes of algorithms for multichannel blind equalization
Performance of impulse response shortening varies with the char®{él thg tfr?umagy refer_entced et9“a|('§esrl)(MRti) dmte):thod bé’ G\Ssg;”elt

. . f an € subspace Intersection metho y van der ve al.
fand may be improved by phanglng shortening parameters. Furtﬁ!ﬁhough these methods seem, at first sight, unrelated, we show here that
improvements may be optalned using vector MMSE or vector M_Mst%rtain variants of the SSI and the MRE methods both optimize a new
decision feedback equalizers at the expense of further complexity [6nd criterion, which is referred to as maximum coherencend, thus, are

equivalent.
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Fig. 1. (a) Equalizer with delay and (b) superequalizer, combining the outputs of several equalizers at different delays.

or otherwise. Second, it was recognized that channel oversamplitige channel length. In the noise-free casgejs then given by

either temporally (fractionally spaced equalizers) or in space (antenna 1

arrays), leads to a multichannel data representation that offers several x; = Z hesi g (1)

new leverages for solving the blind equalization problem and, thus, i—o

engi,nrﬁeznlt; appllgablllty. . . Clt()nsider a finite block of data, and define thel{ P x N block-
gebraic perspective, oversampling leads to a Iow-ra?oe litz data matrix

model for the output vector signal. This has been extensively ex- P

ploited in the so-called second-order statistics and algebraic methods

for the single-input, multiple-output (SIMO) identification problem

[1]. At least three classes can be identified. The first tries to estimate @ = | Xim1 X;

the channels, viz., e.g., [2]-[4], the second considers the estimation of .

channel inverses (equalizers) [5]-[7], and the third attempts to recover

the transmitted symbols directly from a (typically small) batch of Xi—m+1

output samples without resorting to channel/equalizer estimates [J%]'is the block length, whereas can be interpreted as the memory

[©]. _ _ of an equalizer acting on the rows &f”). Letn = L+ m — 1.
Categories 2 and 3 have the advantage of bypassing the chamigl, (1), X has a factorization ag") = HS, where™H is an

estimation step, and this can result in increased robustness. The di,;gﬁyp % n channel matrix, and”) is anL +m — 1 x N signal

symbol-estimation methods [8], [9] have sometimes been called rOWatrix, viz.

span methods as they exploit the row-span information of the data

matrix to find the vector of unknown symbols. Following a seemingly

different strategy, MRE techniques [6] estimate a collection of H= . . .

channel equalizers by forcing them to produce the same (unknown) 0 he --- hr_,

output sequence up to fixed equalization lags. The goal of thigq .

correspondence is to demonstrate that these two methods are, in fact, - ) -

identical with small differences arising only due to variations in the Si Sip1 T+ SipN—1

implementation. SO=1 - U B )
In this correspondence, we first provide a new perspective of . ) .

the row-span method of [9] by showing that the symbol estimates LSizngt 7o T R

produ.ced by this technique can be reggrded as the outputs of liNgar il assume that is tall mMP > L+m—1) andS® is wide
equalizer averaged across all equalization lags. We show that th@g{_m_1 < N) s that this is a low-rank factorization. This requires

equalizers optimize anaximal coherencdMC) criterion. Finally, ¢ 1easta/P > 2 and a sufficiently largen and V. We assume that
we show the equivalence between the MC criterion and a particulgrhas full column rank: therefore. we can recover any ro§%t by

member n the class of MREt criteria. . ) taking linear combinations of the rows af"). Finally, the matrices
Notation: For a vectorx, x' is its transposex” its conjugate- () are supposed to have full row rank.

transpose, anffx|| its £,-norm. A sequence (row vector) with entries
x; is denoted byx = [z;].

X; Xi41 X4 N—1

he --- hi_ 0

B. Equalizers
An equalizer with delay: acting onX” tries to reconstruct the

Il. DATA MODEL k + 1st row of S

i *‘\’(l): Si—k  Si— -

A. Data Matrices Wy [sick  Sickg1 -]

A digital symbol sequencés;] is transmitted through a medium See Fig. 1(a). Sincé” hasn rows, there is a total ofi possi-
and received by an array dff > 1 sensors. The received signalsdle delays, and hence, there aredifferent equalizersw, (k =

are sampled® > 1 times faster than the symbol rate, which, herd). -+ n — 1). Note, in particular, thatv; X =[so s, -], and
is normalized toI’ = 1. Hence, during each symbol period, a totahence

o_f MpP _measurements are avalla}ble, Whlgppc?n be sta_ckecMiR) Wi = wi ), i k=0, n—1. 3)
dimensional vectors; asx; = [zj, ---, ;" |°. Assuming an FIR

channel, we can mode}; as the output of adZ P-dimensional vector  If m is large enough, thent® is rank deficient, leading to
channel with impulse responfi&, h;, ---, h;_1], whereL denotes nonuniqueness for the equalizéns; }. Any vector from the left null
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space oft () may be added. The null space component is removedgive. Nonetheless, even with noise perturbations, we find exactly the
we require the equalizer to have minimum norm. We can also defis@me output sequence as that produced by the algorithm in [8]. The
the equalizer to act on a minimal basis of the row spa’dt rather corresponding principal left singular vector Bf can be interpreted
than X'?) itself. Thus, we introduce the SVD’s as the superequalizer that returns this sequence.
YO — sy ® =01 _In particular, it is proven in [9] that it..; is the principal left
e ’ T ’ singular vector o’z andn = L + m — 1, then (without noise)
If X% has rankn, thenU; hasn orthonormal columns}y ) has
n orthonormal rows, an@,; is a diagonal matrix containing the
nonzero singular values. The rows¥6f” form an orthonormal basis wherea is some nonzero scalar that makes the output sequence have
for the row span oft). A “normalized” equalizer acting o) norm 1. Because of the normalization, the largest singular value
is calledt;, which is related tow; via t; = X,U;w;. Similarly to of Vr is bounded by,/n. This bound is attained wheti,; =
regular equalizers, we have (fark =0, ---, n — 1) [to --- t;_1], where each component by itself is an equalizer on the
VO —(s s normalized signals [viz. (4)], returning a multipte of [so s1 ---].
: = [50 51 - ] . .
In fact, all scalinga; will be the same.
and Thus, tss; is a superequalizer in the sense of Section II-C. The
th("i’ :tzv("'). (4) corresponding equalizer on unnormalized daia is denoted by
w,,; and related tot,,; via

tiVr=oafso s1 -+ sn—i]

C. Superequalizers Wesi = [Wh - wE_4], Wi = Ui . ©)
Define
x© v B. Maximal Coherence Criterion
Xr = : Vr = : . (5) The principal left singular vectar,,; of ¥ can also be expressed
X0 y (-1 in terms of a criterion on the unnormalized received data. Indeed,

“Superequalizers” are long vectors that collect several equalizers whee €an be written as
different delays, each reconstructing the same sequenaca - --]. tes; = arg max u Ryu
They act on the dat&+ or on the normalized datti, respectively lluflz=1

* * * * * * ; = S Vo i iri i i

W= Wl e Wh_d], £ =65 - th_y]. where Ry Vr V. Define the (empirical) correlation matrices

R; Jj = rjt)(i)()t’(j)*
It is interesting to consider the superequalizer as combining the out- -

. . .. Ro, 0 s Ro, n—1
puts of the regular equalizers, forming an average over all admissible - . )
delays. (By itself, it can also be interpreted as an ordinary equalizer Rx =Xo Xy = : :
of lengthn +m — 1 at delayn. — 1.) See Fig. 1(b). Note that there is [ Rn—1,0 -+ Rn1,n-1
an issue of how to weight the outputs of each equalizer to combigad
them in an optimal fashion. [Ro. o 0

Ry = .
I1l. BLIND EQUALIZATION 0 Ro—in

A. Subspace Intersection Method ThenRx = RY*RvRy/*, where

The problem of blind equalization is, for given a data mafixto Ré/j 0
find a factorizationt = 'HS, whereS meets the required Toeplitz RL? _
structure. Since a Toeplitz matrix is generated by a single vector 0 12
in a linear way, this translates to findirg= [so s1 --- sn—1] 0 RS
such thats lies simultaneously in rowt(®), row(x("), ---, and and B2 = s

row (X(*~1) where “row(-)" stands for the row span. The goal of . . L j2e

subspace intersection methods (SSI's) such as in [8] and [9] is to find! follows that w"Rxw = u"Ryu for u = R,"" w. Now,

the single vectos, which is in the intersection of alt subspaces. deénote byw..; the corresponding superequalizer provided by the
Numerically, there are several ways to compute the intersectior! m_ethod [related to..; as |n_(6)_]. By substitutionw .., is found

The algorithm proposed in [8] constructs the union of the complemdf} Ptimize the constrained criterion

of all row spans and takes the complement again. The problem with v . — arg max w'Rxw=arg max J.; (7)

this is that the complementary spaces can be highly dimensional W Row=1 wrRow=1

(order N each). The “minimum noise subspace” (MNS) techniqu@here J..; is given by

[10] is a method to prune the dimensions of each complementary 5

space without changing the resulting union too much, thus greatly T = i Wiy
reducing the complexity. Although it was proposed in a different e — '
context, it could be translated to apply to the current situation, but ) )
the pruning would still incur a loss in performance. and the constraint can be written as
It was proven in [9] that since the rows &*) form a minimal nl 2
and “orthonormal” basis for rowt(?), the exact intersection can W Row = Z HW?X“) ‘ =1 ®
=0

also be obtained by constructing the mafrix in (5) and looking for

the right singular vector corresponding to tlaggestsingular value Thus, the subspace intersection solution is also obtained by maxi-
of V. This computation has a complexity that is much smaller thamizing the power of the sum of all equalizer's outputs, subject to
the algorithm in [8] and smaller than what the MNS technique woulidhe constraint that the sum of the powers is kept constem. SSI
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method maximizes the coherence of the equalizer's outjdeed, was chosen for expository reasons. With noise, the SSI method on

in the noise-free case, all equalizers returngameoutput sequence normalized datd’z and on original dataXr are slightly different.

[s0 51 -] up to a common scaling. Note that this is true only in th&he reason is that with noise, ead” is always full rank, whereas

case of the constraint specified in (8). V(@ is presumably obtained from a truncated SVD, resulting in an
approximate:-dimensional basis for the row span.tf® . If we omit

C. The MRE Method

The idea behind the mutually referenced equalizer (MRE) meth
for blind equalization [6] is to exploit the relations in (3) by finding
a vector ofn equalizersw = [wg --- w,,_;]* that simultaneously
minimizes all differencegw; X —w; X®)||2. This can be written
as a least-squares probléras shown in (8a) at the top of the page.
To avoid trivial solutions,w should be constrained, e.g., by fixing [1]
one of its entries or its norm. Another suitable constraint is one that
keeps the sum of output powers to a constaritRow = 1. The
motivation for this particular choice is that it avoids trivial null space
SO|Uti0nSW?.3((i) = 0 Vi, which is necessary in the noise-free case.

Thus, we obtain [3]

min
wH*Rogw=1

Winre 1= arg Jmre

(4]

n—1 n—1

5% i s

1=0 k=0

©)

']7717‘6 :
(5]
We elaborate and find

[6]

% qs ok

J””,e =W ‘%mre‘%vnrew

(n—=1)Ro,0
—Rio

—Ro1

_BU,nfl
(’H—l)R]y] .

(7]

*

=2w

- Rn—] ,0 (n -1 )Rn_1 ,n—1 [8]

It thus follows that -
9
Jmre + 2Js0i = 2nW Row.
Under the constrain*Row = 1, we finally obtain

Jssi-

[20]
JHLH: = 271 -

min
wH*Rogw=

max
wH*Rgogw=1
This means thatv,.,.. = W..i.

Hence, we conclude that the SSI method and the extended MRE
method under the output power constraint are identical. Note that the
MRE method can use several other constraints; however, only the
one presented here guarantees the equivalence of the two methods.

D. Remarks

The SSI method here is slightly different from the version in [9].
There, the sequence was extended with additional tail symbols, which
changed the definition of such that only a single matri¥ (*)
was needed so that only a single data matrix has to be normalized,
leading to computational savings. This implementation of the SSI
method is asymptotically identical to the one presented here, which

1The equation is reminiscent of the cross-relation method in [4], but this
connection is only optical. Here, we estimate equalizers and not the channel,
as in [4]. More importantly, the CR method does not cross-relate delays of the
full data matrices but rather thef P scalar subchannels so that the superscript
(i) in () has a different meaning.

the truncation, i.e., defin& ") to contain allm M P right singular
ggctors of ¥ then the solution is exactly equal to the SSI method
on Vr.
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