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Abstract

Flow induced vibrations (FIV) is a known problem in nuclear reactors. The interaction between the
turbulent flow of the coolants and the fuel rod bundles generates vibrations which are undesirable.
These vibrations can be a major cause of fatigue failures, stress corrosion cracking and fretting wear
of materials, which lead to stand-still costs. Analytical models for FIV are not feasible for complex
geometries. This is especially true, when a strong interaction between fluid and structure forces is
involved. The dynamic nature and a strong coupling between the two phase generates a need to study
FIV by the use of numerical approaches. To take into account the interaction between the fluid and
the structure one has to couple the solvers for both the phases. Coupling is achieved by mapping the
forces and displacements between the interfaces of fluid and structure domains; also known as the
Partitioned coupling. Recent works have made it possible to reduce the coupling errors and make them
more efficient through the use of better algorithms.

Due to the wide range of the scales involved, vibrations due to turbulent fluctuations of the flow are
particularly challenging to solve. A common approach to this problem is to use high fidelity solvers for
fluids such as DNS or LES which are computationally expensive for long and complex domains. Attempts
have been made for use of cheaper URANS models to capture the modes of the resulting structural
vibration by providing an initial perturbation to the structure. However, URANS models compute the
time averaged velocity and pressures. The models do not calculate the effect of pressure fluctuations
due to turbulent flow fluctuations on the structure. As a result, URANS does not provide information
on the amplitudes of the vibrations of the structure due to turbulent fluctuations.

In the current study, the primary objective is to reduce computational costs, and to still capture the
complete dynamic behavior of the structure through the use of URANS models. This is performed by the
modeling of pressure fluctuations from the turbulent kinetic energy calculated from the URANS models.
The modelled pressure fluctuations (𝑝ᖣ) are added to the mean pressure (𝑝), which are then mapped
over to the fluid structure interface to generate these vibrations. The method is applied to several
test cases related to the field of nuclear energy production and results compared to DNS results and
experimental results. The results obtained show that the method is capable of simulating FIV caused
due to random pressure fluctuations in a turbulent flow. Form the test cases it was concluded that
the method has an advantage of lower cost than LES/DNS, but still has the potential of modelling the
amplitude of vibrations by turbulent pressure fluctuations.
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1
Introduction

Nuclear energy has one of the highest energy density per unit mass and volume when compared to
all the available sources of energy. This means, that the capacity extractable or usable energy per
unit mass or volume of nuclear fuel is the highest. The high energy density of nuclear power makes
it a very lucrative and clean way of generating electricity. Significant progress has been made in the
field of nuclear science and its application in power generation. However, the risks of handling these
potentially hazardous chemicals also should be properly dealt with. The incident at Chernobyl is a
constant reminder about the need for nuclear safety. With ever growing demand for power, and the
steadily increasing average temperatures on earth; the burden on the fossil fuels has to be reduced.
Considering the still developing technologies for complete sustainable solutions, to meet our immediate
power demands nuclear power will play an important role in the near future. This also brings the
question regarding Nuclear safety. To ensure the safety of nuclear reactors, it is required that all
the aspects are under control, and the behaviour of every system is properly studied for all possible
conditions. One such reactor component is the fuel rod assembly. In the past, there have been cases of
failures in nuclear reactors caused due to the vibrations induced during flow of coolant or moderators.
Although extensively studied, it is difficult to predict the flow of a fluid within a reactor. The effect of
this flow on the multiple fuel rods that are stacked in a bundle is also unknown.

In the current era of rapidly developing nuclear technologies, the emphasis is also on improving
nuclear safety by developing methods which can help industries to better predict the vibrations gen-
erated in a system due to fluid flow. The vibrations resulting due to interaction of flow with structural
components are known as flow induced vibrations (FIV). Nuclear reactor cores are composed of slender
fuel rods that are constantly cooled by flow of coolants around them (refer figure 1.1). The fuel rod
assemblies consist of tightly packed group of fuel rods, with pitch (distance between the rod centres)
to diameter ratios (𝑃/𝐷) as low as 1. The flow of coolants across such tightly packed rods are usually
turbulent in nature, and the turbulence increases with increasing flow rates. These flows under the
right conditions can lead to the pressure fluctuations which cause vibration of the rods.

In reactors such as the Sodium cooled, or the Lead cooled fast reactors, the coolant flows across the
fuel rods or cylindrical pipes are of higher density compared to Light or Heavy Water. When the density
of coolants are small compared to the fuel rods, the effect of these pressure fluctuations are minimal,
similarly higher densities of coolants can lead to high displacements of fuel rods. The main phenomenon
behind this called the Added Mass Effect. This phenomenon leads to a strong interaction between the
fluid and the solid or structural components, which have to be taken into consideration during reactor
designing. This problem can be potentially dangerous, causing unforeseen damage to the reactors, like
fretting wear and damage due to fatigue. The dynamic behaviour prediction of structural components
due to external fluid flow becomes more important in Fast reactors, since damages can be more severe.

The first step to understand the problem of FIV is to study the initiation of vibrations due to fluid
flow across structural components. Vibrations of any nature in a structure are induced because of
an external excitation. Turbulent flow across the structures are the source of random pressure and
velocity signals, which provide this excitation. The pressure fluctuations due to turbulent flow externally
induced vibrations on the structures, which are known as Turbulent Induced Vibrations (TIV). Pressure
fluctuations can be either near field or far field, which also depends on the geometry of the flow domain.
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2 1. Introduction

(a) An illustration of a reactor core.

(b) An illustration of a fuel rod assembly.

Figure 1.1: The figures show the components of a nuclear reactor as an example for a fluid-structure problem. The reactor
core houses fuel rod assemblies, through which a coolant fluid circulates. It can be observed that the fuel rods in each of these
assemblies are placed very close to each other.

The effects of the near and far field pressure fluctuations cause TIV in the case of axial flows, around
densely packed rod bundles. To understand these random fluctuations, it is necessary to understand
the basics of turbulence and how the effects can be estimated.

1.1. Research Question
The study of TIV is crucial to understand the development of vibrations in a nuclear reactor. Hence, it is
of importance to develop tools which can accurately predict TIV. State of the art simulations for TIV are
mainly performed using high fidelity CFD (Computational Fluid Dynamics) solvers such as DNS (Direct
Numerical Simulations) or LES (Large Eddy Simulations). These CFD (Computational Fluid Dynamics)
codes are coupled to a suitable CSM (Computational Solid Mechanics) solver for simulating vibrations
on structures due to fluid flow. However, these simulations can be expensive due to high demands of
memory and computational power. This brings the main objective of the study into perspective.
Is it possible to simulate 7urbulence Induced Vibrations using low fidelity solvers such as
8nsteady�RANS models"

To find the answer to the question a literature review was performed to study upon all the aspects of
Flow induced vibrations, Fluid Structure interaction and Turbulence Modeling. The study also involves
exploring other methods which have been developed to simulate TIV. All the aspects of the literature
review have been compiled in chapter 2 to chapter 4. Later, a new approach to simulate TIV will be
discussed in chapter 5. Finally, after answering the above mentioned questions, the results of the study
are put forth and the conclusions from the same are drawn in chapter 6 and chapter 7.



2
Flow Induced Vibrations

Safety of Nuclear reactors is of paramount importance to prevent environmental and financial damage.
In nuclear power plants, flow induced vibration (FIV) may cause safety issues such as fatigue problems,
stress corrosion cracking, possible failure modes and fretting wear. This may eventually leads to nuclear
safety issues and substantial standstill costs due to unplanned outage. The focus of this report is on
the damage caused due to the internal forces exerted by the fluid flow on the structural components
within a nuclear reactor. In the past there have been recorded cases of damage or shutdowns in
reactors due to vibrations caused in the structural components. The origin of these vibrations is due
to the interaction between the flow of the fluid (moderator or coolant) and the reactor components.
This phenomenon is commonly termed as Flow Induced Vibrations (FIV). In this current chapter, more
light will be shed on the details of research being carried out in this field and on the ways of predicting
this phenomenon.

2.1. History of FIV research
FIV has been a topic of research in many fields. Many practical problems related to FIV have been ob-
served in industrial fields such as mechanical systems, civil engineering, aeroplanes, ships and nuclear
power plants. The drag direction vibration of a thermocouple well in the Fast Breeder Reactor at Monju
in Japan, is one such example. This was caused due to systematic vortex shedding as stated in the
book by the Japanese Society of Mechanical Engineers (JSME) [1]. Two main conferences related to
FIV were held in 1972 and 1979 by the initiative of Prof. Naudascher of University of Karlsruhe, Ger-
many. FIV phenomena can be classified into two main types: steady flow induced and unsteady flow
induced. Since the year 1990, The Yayoi research seminar in University of Tokyo, Japan has been held
every year to present the current developments in FIV research related to nuclear reactor applications.
Major meetings related to FIV are also conducted by the American Society of Mechanical Engineers
(ASME) the International Symposium on Fluid-Structure Interactions, Aeroelasticity and Flow-Induced
Vibration & Noise every 4 years. In Europe, the International Conference of Flow-Induced Vibrations
is also conducted in every 4 years.

2.2. Types of induced vibrations
Flow induced vibrations or FIV can cause accelerated degradation or damage to structural components
reacting with the flow of the fluid involved. Most component structural designs do not consider the
dynamic forces of the fluid flow on structural components. This can lead to early problems in reactors
and also lead to major safety concerns. After decades of work, there has been significant development
in ways of predicting the effects of FIV by usage of vibration models. Predicting dynamic behaviour of
structures by wrong vibration models can lead to an un-optimal design. FIV can lead to fretting wear
and fatigue failures in components even before their estimated design life, causing maintenance issues
and frequent shut downs. FIV can be roughly divided into five fields [1] -

• Vibration induced by Cross-flow.

3



4 2. Flow Induced Vibrations

• Vibration induced by parallel flow or external axial flow.

• Vibration of piping conveying fluid, due to pressure fluctuation, and thermal excitation.

• Fluid-Structure Interaction.

• Vibration of Rotating structures in flow.

Vibrations caused in the nuclear reactor rod bundles and other heat exchanger applications are mainly
due to crossflow and parallel flow induced vibrations. Due to the higher efficiency of parallel flow type
heat exchangers, majority of Nuclear reactors are of parallel flow type. Therefore, vibrations due to
parallel flow would be dealt with more in detail.

2.3. Classifications andmechanisms of vibrational re-
sponse

To predict the vibrations due to FIV, the modelling approach used is very important. A wrong modelling
approach would quite possibly lead to wrong results, and ultimately to a faulty design. Figure 2.1
shows some of the basic modelling approaches for FIV. Depending on the problem, the modelling of
the fluid flow across the solid body can be used to predict the flow and the dynamic forces acting on
the structure can be calculated.

Figure 2.1: Classification of FIV mechanisms [1].



2.4. Vibrations induced by parallel flow 5

By coupling characteristics of a fluid flow to the material behaviour of the solid, it is then possible
to simulate FIV. The response of the structural components is modeled for different conditions; like
Vortex Induced vibration, Fluid-elastic instability and vibrations due to random pressure fluctuations.
After the response is modelled for each type, the responses can then be super imposed to predict the
final behaviour of the structure in relation to the flow. This has been explained by the figures 2.2a
and 2.2b.

(a) Various fluid-structure mechanisms for external
flows.

(b) Superimposition of the response mechanisms to
form the complete response behaviour.

Figure 2.2: An example on determining the response behaviour of structure due to external flow of a fluid [1].

The case depicted above shows that for a typical cross flow induced vibrations, there are three major
types of vibration models. In a parallel flow conditions, vibrations due to vortex shedding are usually
absent. Flow induced vibrations are mainly initiated due to the random pressure fluctuations generated
due to turbulent flow. Once the vibrations are induced, higher turbulence can then lead towards an
acoustic resonance of the structure with mean pressure of the flow and can even further develop
towards fluid elastic instability.

2.4. Vibrations induced by parallel flow
When nuclear fuel bundles and steam generators are subjected to parallel flow, instabilities such as
flutter can happen at high flow velocities. In parallel flow conditions, the critical flow velocities required
for fluid elastic instabilities to occur, are higher than for cross flow conditions. This means, vibrations
due to fluid flow are lower for parallel flow, when compared to cross flow for the same mass flow rate
of fluid. In a parallel flow, vibrations are caused due to two main types of phenomenon.

The first type of vibrations are caused due to random pressure fluctuations, which are caused due
to turbulent flow around the structure. Initiation of turbulence is mainly caused due to geometry of
the duct and/or due to the wall friction of the duct. Introduction of turbulence within in the flow is the
main origin of pressure fluctuations at fluid structure interface. Since the vibration on the structure
is forced due to external pressure fluctuations, it is generally known as Externally Induced Excitation
(EIE). When, EIEs are generated due to turbulence, they are known as Turbulence induced vibrations,
which will be covered in more detail in Chapter 4.

As the velocities of fluid across the structures keeps on increasing, the inertial and viscous forces of
fluid begins to dominate over the random pressure forces, and the effect of turbulence on the vibrations
is then reduced. The velocity threshold at which the these forces are start to dominate depends on the
the material properties of the fluids and structures, and also on the internal forces of the structures
(due to stiffness of the structure). This velocity threshold is also known as the critical velocity. The
instabilities caused due to the interaction between these inertial and viscous forces of the fluids and the
structures, are known as Fluid Elastic Instabilities. A simplified explanation of this phenomenon can be
found in section 2.5. Since, these instabilities are dependent on the interaction between the fluid and
structural forces, the interaction also decides the strength of coupling between the two phases.
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2.5. Fluid Elastic Instabilities
Fluid Elastic Instabilities are generated when dynamic forces from the fluid flow and the dynamic forces
from the structure start interacting with each other leading to self excited vibrations. In many cases
fluid elastic instabilities amplifies the vibrations as the flow velocity increases. The phenomenon that
couples these interacting forces are the Added Mass Effect and the Stiffness ratio between the solid and
the fluid materials. The concept of Added Mass is explained in more detail by the following example of
piston-cylinder system.

Added Mass Effect
Figure 2.3 depicts the domain and the terminology used in the equations mentioned below. The piston
is connected to a spring-damper system. The mass of the spring-damper system is assumed to be
negligible compared to the mass of the piston. The cylinder consists of a fluid which is then pushed by
the spring-mass system out of the outlet Γ፨. The dimensions and other characteristics of the domain
have been shown in the mentioned figure.

Figure 2.3: The domain for the piston-cylinder system [2]. The ፮ shown in the figure refers to the displacement of the piston.
The boundaries of the fluid domain are given by ጁᑚ , ጁᑠ and ጁᑨ for the inlet, outlet and the walls of the fluid domain (ᑗ)
respectively.

For an inviscid and incompressible fluid, equations 2.1 and 2.2 define the one dimensional momentum
and continuity equations

𝜕𝑣
𝜕𝑥 = 0 (2.1)

𝜌፟
𝜕𝑣
𝜕𝑡 + 𝜌፟

𝜕𝑣𝑣
𝜕𝑥 = −𝜕𝑝𝜕𝑥 (2.2)

in Ω፟. The boundary conditions for the flow at outlet Γ፨ and the fluid-structure interface Γ። are

𝑝 = 𝑓(𝑡) on Γ፨ (2.3)

𝑣 = d𝑢
d𝑡 on Γ። (2.4)

The boundary condition on the wall Γ፰ is not taken into consideration since this is a one dimensional
problem. The equation of the structure is given by

𝑚d
ኼ𝑢
d𝑡ኼ + 𝑐

d𝑢
d𝑡 + 𝑏𝑢 = 𝐻𝑝። (2.5)

The mass of the piston is indicated by 𝑚, the damping constant is denoted as 𝑐 and the spring stiffness
factor is 𝑏. Then the pressure on the fluid-structure interface Γ። is given by 𝑝።.

The fluid velocity is eliminated from the equations 2.1 and 2.2, giving
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𝜕ኼ𝑝
𝜕𝑥ኼ = 0 in Ω፟ (2.6)

𝑝 = 𝑓(𝑡) on Γ፨ (2.7)

𝜕𝑝
𝜕𝑥 = −𝜌፟

dኼ𝑢
d𝑡ኼ on Γ። (2.8)

The boundary conditions on Γ። is obtained by substituting equations 2.3 and 2.4. The solution of the
equations 2.6 and 2.7 and 2.8 is given by

𝑝(𝑥, 𝑡) = 𝑓(𝑡) − 𝜌፟(𝐿 + 𝑥)
dኼ𝑢
d𝑡ኼ (2.9)

Substituting in Eq. 2.5 results in

𝑚d
ኼ𝑢
d𝑡ኼ + 𝑐

d𝑢
d𝑡 + 𝑏𝑢 = 𝐻(𝑓(𝑡) − 𝜌፟𝐿

dኼ𝑢
d𝑡ኼ ) (2.10)

which can be rewritten as

(𝑚 +𝑚ፚ)
dኼ𝑢
d𝑡ኼ + 𝑐

d𝑢
d𝑡 + 𝑏𝑢 = 𝐻𝑓(𝑡) (2.11)

where the term, 𝑚ፚ = 𝜌፟𝐻𝐿 is the Added-Mass or the virtual mass.

The virtual or Added mass leads to a higher deceleration of the piston during its acceleration and
deceleration. Due to this a higher resisting force is applied in the equal and opposite directions, chang-
ing the overall natural frequency of the system. The natural frequency at which the spring vibrates
changes according to the density of the fluid displaced by the piston. Degroote [2] in his paper formu-
lates the expression for the natural frequency of the spring mass system.

The natural frequency of the piston cylinder system, changes from 𝜔 to �̃� due to the added mass
𝑚ፚ = 𝜌፟𝐻𝐿

𝜔 = √ 𝑏𝑚 and �̃� = √ 𝑏
𝑚 +𝑚ፚ

(2.12)

The change in the natural frequency here can hence be clearly observed. The density of the surrounding
fluid is a very important factor on the interacting forces between the solid and fluid. To measure the
effect of added mass on the dynamic behaviour of a solid the Density Ratio

Density Ratio = 𝜌፬፨፥።፝
𝜌፟፥፮።፝

is a non dimensional number that gives a good estimation of the coupling strength. The lower the value
of Density Ratio, the higher is the dynamic interaction or stronger the coupling between the forces of
the solid and fluid. Density Ratio is one of the parameters defining the strength of coupling between
interacting forces.

Effect of Stiffness on the coupling
In the case of structures like beams, the strength of coupling also depends on the stiffness of the beam.
Stiffness of a structure is a function of the material properties of the structure and the geometry of
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the structure. In an article by Liu et al. [3], FIV was simulated with various rod configurations. The
simulations was carried out with three main non-dimensional parameters.

𝑅𝑒 = 𝜌𝑣፨𝐷፡
𝜇 (2.13)

𝑈 = 𝑣፨𝐿√
𝜌𝐴፭
𝐸𝐼 (2.14)

𝛽 = 𝜌𝐴፭
𝜌𝐴፭ + 𝜌𝐴፞

(2.15)

where 𝑅𝑒, 𝑈, and 𝛽 are the Reynolds number, dimensionless flow velocity and mass ratio respectively.
𝑣፨ and 𝐷፡ are the average flow velocity and hydraulic diameter; 𝐿, 𝐴፞ and 𝐴፭ are the length, effective
cross sectional area of each beam (rod) and the total cross sectional area.

Here the effect of the stiffness on the flow has been used in the non-dimensional flow velocity
parameter 𝑈. This parameter has been obtained from the dynamic equation of the beam considering
Euler-Bernoulli beam theory [4]. A lower stiffness means a more flexible structure which deforms
readily when subjected to external fluid forces. Such problems are strongly coupled and hence require
a robust and stable coupling algorithms.
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Flow induced vibration is an unsteady phenomenon. Flow exerts pressure forces on the structural
components, which respond by exerting an equal and opposite force. The response of the structure is
then dependent on the fluid properties and the flow behaviour. These forces are in a constant interaction
which leads to vibrations on a structure. In section 2.5, it was seen on how the structural response
of a solid is dependent on the interacting fluid. Dynamic behaviour of some structural components
due to the fluid can be calculated analytically by making assumptions such as, negligible viscosity, a
steady state flow or the fluid being incompressible. However, these assumptions do not hold when the
forces acting on the fluid and structures are strongly inter-dependent. To deal with such complexities,
simulating the problems by numerically solving the governing equations is a novel approach. Numerical
methods used in such cases require coupling of Computational Fluid Dynamics (CFD) solvers to solid
CSM solvers (Computational Solid Mechanics solvers) to calculate the effects of the dynamic forces of
the fluid on the solid.

FIV in nuclear reactors, involve strong coupling between fluids and structures. The density ratios in
these cases can vary from as high as ≈ 8 (steel - water) to ≤ 1 (steel - Lead Bismuth Eutectic). These
lead to strong coupling cases and hence need a robust and efficient coupling method. In this chapter
we will explore all the various coupling schemes that are put to use to solve such problems and then
choose one of the coupling schemes suitable for the application.

3.1. Methods for solving Fluid Structure problems
To solve a fluid structure problem numerically, a monolithic or a partitioned approach can be used.
Monolithic solvers solve the fluid and the structure equations simultaneously. This makes them ideal
to solve fully coupled problems of fluid and structure problems. These solvers do not need to couple
different solvers and hence avoid the errors due to the numerical schemes implemented for coupling
the fluid and solid solvers independently. However, monolithic solvers are problem specific, they cannot
be directly used for different types of problems and lose greatly on modularity of the solvers. Therefore,
monolithic solvers are not economical to solve problems with weak or moderately strong coupling.

The second type of coupling method is the partitioned coupling method. These solvers employ the
use of coupling algorithms to couple two black-box solvers. Partitioned coupling algorithms perform
active data exchange and mapping the solvers, through one-way or two-way data exchange and con-
stantly adapt the solution to changing boundary conditions. Such methods involve introduction of a
coupling error in the simulation which depends on the numerical scheme employed. Since the coupling
schemes act as an add-on to a pre-existing set of solvers, it is a more flexible approach for the current
application. There are several coupling algorithms that have been developed in the past years and a
few of them have been discussed in this chapter.

To give an idea of how the methods work, we can consider an example of a coupled system involving
a piston-cylinder problem, where the piston (the mass) is attached to a spring (refer figure 3.1). The
piston is connected to spring-mass system, with the piston as the main mass. When a small displace-
ment is provided to the piston, it compresses the gas inside pressuring the cylinder. To balance the

9
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Figure 3.1: Domain of a piston and cylinder problem [5]. The piston (main mass) is connected to a spring, and the cylinder
contains a fluid that is compressed due to inward motion of the piston.

force, the pressurised cylinder exerts a counterforce on the piston. This creates a fluid-solid interaction
between them. Figure 3.2a, explains the workflow of monolithic coupling. It can be observed that
monolithic coupling solver solves all the system equations simultaneously. Partitioned solvers employ
different solvers to solve the problems separately, and rely on a coupling algorithm to exchange and
map data between the solvers at the interface. The coupling is done both in space and time, which
can be seen in figure 3.2b.

(a) Monolithic approach of solving an FSI problem.

(b) Partitioned approach to solving an FSI problem.

Figure 3.2: Approaches to solving FSI problems [5].

Due to the flexibility and ease of use, partitioned solvers are more popular compared to monolithic
solvers, and are widely used in commercial packages. New methods for coupling black-box solvers are
currently being studied to produce accurate and stable methods for fully coupled problems.

3.2. Coupling algorithms
Partitioned coupling algorithms have been widely used in many solvers. Most of the CFD solvers have a
segregated and a coupled methods of solving a flow problem. Segregated methods solve velocity and
pressure terms separately and iterate for convergence, whereas coupled solvers solve for the complete
Navier-Stokes equation. A similar analogy can be applied to couple fluid and solid solvers. Temporal
coupling or Coupling in time forms the basis of this discussion. Partitioned coupling algorithms are
mostly classified into two types based on the coupling, namely Basic or Weak Coupling schemes or also
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known as the One-way Coupling; and the Sub-Iterated or Strong Coupling schemes also known as the
Two-way Coupling.

3.2.1. Basic coupling
For weakly coupled problems, the interaction is dominated by either the structure or the fluid medium.
For instance, in the case of an aluminium cantilever beam vibrating in air, the natural frequency of the
beam is hardly affected due to the flow of air around the beam. This is due to its weak pressure forces,
or low added mass effects. This can be classified as an example of a weakly coupled Fluid-structure
problem.

To solve such cases, the coupling can be performed by one direction (or one-way) data exchange
between the solvers (solid to fluid), rather than both directions. This sort of coupling is known as Basic
or Weak coupling. The coupling scheme calculates of the values of the next time step directly based
on the values of the previous time step without any iterations. Therefore, sometimes these schemes
are also known as Explicit Coupling.

(a) Explicit Parallel coupling scheme (Jacobi). (b) Explicit Serial scheme (Gauss-Seidel).

Figure 3.3: fig: Basic partitioned Coupling schemes [5] for weakly coupled problems. Note that the data exchange between
both the coupling method is performed only once every time-step.

In explicit coupling, the data exchange is done only once with each time step and is performed
only in one way. Basic coupling is easy to implement and is an efficient coupling method due to lower
calculation time. Two main types of explicit coupling schemes are parallel and serial coupling schemes.
When the interaction between the fluid and solid is strong, explicit schemes are unstable and require
smaller time steps to keep the coupling stable. Therefore, to solve strong coupling problems, explicit
coupling are seldom used.

3.2.2. Sub-Iterated coupling
Sub-iterating schemes are put to use when there is a strong dynamic coupling between the fluid and
solid. As the name suggests, these schemes use sub-iterations within each time step. The data is
mapped and exchanged between the solvers multiple times within a time step to achieve convergence.
Figure 3.4 shows the exchange of data during every iteration. Due to the multiple sub-iterations within
one time step, the scheme is also known as Implicit Coupling.

(a) Sub-iterated Parallel coupling scheme. (b) Sub-iterated (Structure to Fluid) Serial coupling
scheme.

Figure 3.4: fig: Sub-Iterate Coupling schemes [5]. The dotted lines in the diagrams depict multiple data exchanges within each
time-step to converge to a solution. The parallel and serial coupling schemes have been explained in detail in

Sub-iterating in each time-step increases the computational time required for the solution to converge
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per time-step. However implicit coupling methods is more stable than explicit coupling. This allows for
larger time-steps than explicit coupling. This makes implicit methods more efficient when dealing with
strong coupling cases.

Implicit coupling schemes can be further subdivided based on their coupling algorithms. Two of the
commonly used coupling algorithms are

• Parallel Coupling (Jacobi Scheme)

• Serial Coupling (Gauss-Seidel Scheme)

These coupling schemes are covered more in detail in the following sections. Apart from the mentioned
schemes, some new iterative methods will also be discussed which are proven to be efficient for solving
strongly coupled problems, namely the Quasi-Newton and Block-Quasi Newton Methods.

3.3. Jacobi iteration
The Jacobi iteration scheme is a popular scheme to solve a set of equations iteratively. The scheme
involves a guess to initialize all the variables, followed by the calculation of residuals. Using these
residuals of the previous iteration, the values for the next iteration is calculated. The iterative process
continues till the value of residuals fall below the required tolerance (refer to figures 3.3a and 3.4a). The
complete method in equation 3.1. 𝑈 and 𝑊 are the structural and fluid domain variables respectively.
𝐴፬ and 𝐴፟ are the matrices for solving the fluid and solid equations, while 𝐴፬፟ and 𝐴፟፬ are the coupling
matrices between fluid to structure and structure to fluid respectively.

Jacobi (parallel) scheme: [𝐼 − Δ𝑡 (𝐴፬ 0
0 𝐴፟) ] (

𝑈፤ዄኻ
𝑊፤ዄኻ) = (

𝑈፤
𝑊፤) + Δ𝑡 (

0 𝐴፬፟
𝐴፟፬ 0 )(

𝑈፤
𝑊፤) (3.1)

where the superscript 𝑘 signifies the 𝑘፭፡ iteration in solving the equations. As, values of 𝑈 and 𝑊 for
the next iteration are updated after solving the complete set of equations, this method is also known
as the Parallel Iteration Scheme. Mathematically this scheme is represented in the following manner,
consider a set of equations,

𝐴𝑥 − 𝑏 = 0 (3.2)

then, for 𝑘፭፡ iteration Jacobi equation can be written as,

𝑥፤። =
1
𝑎።።
[
፧

∑
፣ኻ
(𝑎።፣𝑥፤ዅኻ፣ ) + 𝑏።] (3.3)

which in matrix form would be,

𝑥፤ = 𝐷ዅኻ(𝐿 + 𝑈)𝑥፤ዅኻ + 𝐷ዅኻ𝑏 (3.4)

where, 𝐴 = 𝐷 − 𝐿 − 𝑈, 𝐷 is the diagonal matrix, 𝐿 is the lower triangular matrix and 𝑈 is the upper
triangular matrix. Therefore, the coupling equations for the solid and fluid solvers by Jacobi method
are represented as,

𝑊፤ዄኻ = 𝐹(𝑈፤) (3.5)

𝑈፤ዄኻ = 𝑆(𝑊፤) (3.6)

where, 𝑊፤ are the fluid properties at 𝑘፭፡ iteration and 𝑈፤ are the solid properties at 𝑘፭፡ iteration.
𝑆(𝑊፤) and 𝐹(𝑈፤) represents the functions for the structural solver and the fluid solver respectively.
The structure solver is a function of the flow properties (𝑊) and the fluid solver is a function of the
structural properties (𝑈).
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3.4. Gauss-Seidel
The Gauss-Seidel iteration scheme is a popular iteration scheme to solve a system of equations. In
this scheme, the initial value of the variables are estimated for the first equation and updated in the
successive equation. The residuals are calculated after the complete system of equations are updated.
The calculated residuals are used to calculate the estimate for the next iteration. Therefore, this type
of iteration method is also known as the serial scheme. Generally the Gauss-Seidel method is found to
be more efficient than the Jacobi scheme. The whole equation can be written down in the following
manner, the terms mentioned below have the same meanings as for equation 3.7.

Gauss-Seidel (serial) scheme: [𝐼 − Δ𝑡 (𝐴፬ 𝐴፬፟
0 𝐴፟ ) ] (

𝑈፤ዄኻ
𝑊፤ዄኻ) = (

𝑈፤
𝑊፤) + Δ𝑡 (

0 0
𝐴፟፬ 0)(

𝑈፤
𝑊፤) (3.7)

Mathematically this can be shown by considering the same set of equations as shown in equation 3.2.
Then for 𝑘፭፡ iteration the Gauss-Seidel iteration can be shown as,

𝑥፤። =
1
𝑎።።
[
።ዅኻ

∑
፣ኻ
(𝑎።፣𝑥፤፣ ) −

፧

∑
፣።ዄኻ

(𝑎።፣𝑥፤ዅኻ፣ ) + 𝑏።] (3.8)

in matrix formulation, the equation can be written as,

𝑥፤ = (𝐷 − 𝐿)ዅኻ𝑈𝑥፤ዅኻ + (𝐷 − 𝐿)ዅኻ𝑏 (3.9)

with 𝐷, 𝐿, 𝑈 having the same meaning as equation 3.4. Therefore, for coupling of solid and fluid solvers
a similar approach is used by solving the fluid equations first and updating the obtained result in the
structure equations.

𝑊፤ዄኻ = 𝐹(𝑈፤) (3.10)

𝑈፤ዄኻ = 𝑆(𝑊፤ዄኻ) (3.11)

∴ 𝑊፤ዄኻ = 𝑆𝑜𝐹(𝑊፤) (3.12)

where 𝑘, 𝐹(𝑈፤) and 𝑆(𝑊፤) are the iteration level, function for the fluid solver and function for the
structural solver respectively. The function 𝑆𝑜𝐹(𝑈፤) is equivalent to a nested function 𝑆(𝐹(𝑈፤)). An
interesting fact to be observed is that in equation 3.12, the value at the next iteration level of the
coupling is a function of itself in the at the previous time step. This property of the coupling scheme
is known as the Fixed Point Iteration property. Figures 3.3b and 3.4b show how the equations are
solved in the basic and sub-iterated types of serial coupling. A general coupling loop of a Gauss-Seidel
iteration is given in the following manner [2],

while |𝑟፤| ≥ tolerance

�̃�፤ = 𝑥፤ዅኻ + 𝑟፤

𝑥፤ = 𝑆𝑜𝐹(�̃�፤)
𝑟፤ = 𝑥፤ − �̃�፤

where 𝑟፤ is the residual at the 𝑘፭፡ iteration.
To make the convergence of the G-S scheme more stable an under-relaxation factor quite often

used. The under-relaxation factor reduces large jumps in the values of the next iterations due to large
residuals. This greatly reduces fluctuations in the convergence of the residual, although at the expense
of decrease in convergence rates. Under-relaxation factors are employed in the equation as follows,

�̃�፤ = 𝑥፤ዅኻ + 𝜔𝑟፤ (3.13)

where,𝜔 is the under-relaxation factor. Instead of using a constant under-relaxation factor an ad-
justable under-relaxation factor can also be used which can adjust itself according to the convergence
rate of the residual.
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3.4.1. Aitkens under-relaxation
The Aitkens under-relaxation method is an adaptive method, in which the information from the residuals
of consecutive iterations are used to predict the under-relaxation factors for the next iteration. This
is a useful method to increase the efficiency of the Gauss-Seidel scheme. This method calculates the
steepest descent to the minimise the number of iterations required for the solution to converge and
adapts the under-relaxation factor accordingly. The Aitkens under-relaxation scheme is as follows [2],

𝜔፤ = −𝜔፤ዅኻ (𝑟፤ዅኻ)ፓ(𝑟፤ − 𝑟፤ዅኻ)
(𝑟፤ − 𝑟፤ዅኻ)ፓ(𝑟፤ − 𝑟፤ዅኻ)

(3.14)

where, 𝜔፤ is the under-relaxation factor for the 𝑘፭፡ iteration, and 𝑟፤ is the residual for the 𝑘፭፡ iteration.

3.4.2. Stability of Gauss-Seidel coupling
The Gauss-Seidel method is a first order coupling method, which means, it does not involve the use
of derivatives (Jacobian or Hessian). Due to this, the coupling scheme can get unstable even with low
under-relaxation factors. Stability of the Gauss-Seidel method depends on the following parameters,

• Time-step:
The Gauss-Seidel method tends to get unstable with smaller time steps. This causes a problem
when fluid or solid solvers require small time-steps for each individual solver to remain stable and
reduce errors. One way around this problem is by sub-cycling, which allows for higher coupling
time-steps, but this can compromise the accuracy of the solution.

• Under-relaxation factor:
A lower under-relaxation factor reduces the fluctuations in the residual of the solution leading to a
better convergence. Low under-relaxation factors can increase the required number of iterations
for the solver to converge, making it less efficient.

• Initial Guess or pre-conditioner:
A good initial guess for the coupling scheme can greatly improve the efficiency and stability of
the coupling method. These can be obtained by calculating the approximate initial guess roughly,
which would form the base for the iterations. A bad initial guess could even lead to divergence
of the coupling scheme.

• Material properties of solid and fluid:
For strong coupling simulations involving dense, incompressible fluids, the Gauss-Seidel method
can get unstable. One way of making the simulation more stable is by assuming the fluid to be
compressible. The compressibility of the fluid can be can be controlled by writing user-defined
functions, which would then govern the density of the fluid. This method is can be helpful when
dealing with simulations having low density ratios.

3.5. Quasi-Newton Methods
The Gauss-Seidel coupling method and Jacobi method are first order methods to find the Zero of the
residual function, since there is no involvement of derivatives. Quasi Newton methods are second-order
methods. Apart from the values of the residual calculated, these also rely on calculating the derivatives
of residual function to attain faster convergence. To explain the significance of this, we consider the
following set of equations to solve for a quantity 𝑝.

�̃�፤ = 𝑝፤ዅኻ + Δ𝑝፤

𝑝፤ = 𝑆𝑜𝐹(�̃�፤)
𝑅(𝑝፤) = 𝑝፤ − �̃�፤

For 𝑅(𝑝) = 0, Linearising the residual function gives,

(𝜕𝑅𝜕𝑝 )Δ𝑝
፤ዄኻ = −𝑅(𝑝፤)

∴ Δ𝑝፤ዄኻ = −(𝜕𝑅𝜕𝑝 )
ዅኻ
𝑅(𝑝፤)

(3.15)
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here, the residual function for the solution of 𝑝 is given by 𝑅(𝑝). To find a 𝑍𝑒𝑟𝑜 of this residual function
the Jacobian would be given by 𝒥 = (ᎧፑᎧ፩). The main reason on why Gauss-Seidel method is a first-

order method is because it considers the Jacobian to be an identity matrix (𝐼), (ᎧፑᎧ፩)
ዅኻ
= −𝐼. So the

𝑘፭፡ iteration to solve for 𝑝 would be given by [5],

�̃�፤ = 𝑝፤ዅኻ − ( − 𝐼)𝑅(𝑝), …Gauss-Seidel method (3.16)

�̃�፤ = 𝑝፤ዅኻ − ( − 𝜔𝐼)𝑅(𝑝), …G-S with fixed under-relaxation (3.17)

�̃�፤ = 𝑝፤ዅኻ − ( − 𝜔፤𝐼)𝑅(𝑝), …G-S with Aitkens under-relaxation (3.18)

However, if the value of the Jacobian is calculated it leads to faster convergence and the method
is known as the standard Newton-Raphson scheme. Theoretically, the Newton-Raphson scheme has
Quadratic convergence. This means that the convergence rate of this scheme is proportional to the
square of the number of iterations. This makes the Newton-Raphson method an efficient coupling
scheme.

If the residual functions were to be known, the Jacobian for the function could be calculated,
which would lead to faster convergence. But in practice, these functions are unknown, which makes it
impossible to calculate the exact Jacobian. However, an approximate a Jacobian for the function can be
calculated from the data available of previous iterations and time steps. This technique of calculating
the approximate Jacobian to solve the function, is called the Quasi-Newton method.

Calculating the approximate Jacobian for a function from a set of data requires more computational
work. This increases the cost of every iteration that is performed at each time step. Several methods
have been developed for estimating the approximate Jacobian. Some of the most recent and state of
the art methods would be introduced in this section.

The methods such as the IQN-ILS, MS-IQN-ILS, ML-IQN-ILS and the IQN-MVJ methods are recently
developed methods which provide efficient ways of approximating a Jacobian.

3.5.1. IQN-ILS
The Interface Quasi Newton- with estimation of Inverse Jacobian through Least Squared method, is a
state of the art second-order coupling method. As the name suggests the IQN-ILS method uses the
least square method to estimate the inverse Jacobian. Although methodically different, the idea behind
IQN-ILS method is similar to Broyden’s method [6]. From equation 3.15 it is clear that, computing the
inverse Jacobian of the function explicitly is not necessary. If the product of the residual −𝑅(𝑝፤) and
the inverse Jacobian (𝒥ዅኻ) is calculated the problem should be solved.

To compute the inverse Jacobian through least squares, the data of the residuals 𝑟፤ and the variables
𝑝፤ from previous iterations need to be stored. The residual vectors would then be in the following
manner,

𝑟፤ , 𝑟፤ዅኻ, … , 𝑟ኻ, 𝑟ኺ (3.19)

for the corresponding values of 𝑝,

𝑝፤ , 𝑝፤ዅኻ, … , 𝑝ኻ, 𝑝ኺ (3.20)

After each coupling iteration the difference of the residuals can be calculated and stored in another set
of vectors,

Δ𝑟፤ዅኻ = 𝑟፤ − 𝑟፤ዅኻ (3.21)

𝑉፤ = [Δ𝑟፤ዅኻ Δ𝑟፤ዅኼ … Δ𝑟ኻ Δ𝑟ኺ] (3.22)

Information on the residual differences from the previous 𝑞 time steps can also be re-used, to make
the estimation more accurate.The matrices then would be given by,

𝑉፤ = [𝑉፤ 𝑉፧ … 𝑉፧ዅ፪ዄኼ 𝑉፧ዅ፪ዄኻ] (3.23)
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a similar matrix can be formed for corresponding values of 𝑝

𝑊፤ = [𝑊፤ 𝑊፧ … 𝑊፧ዅ፪ዄኼ 𝑊፧ዅ፪ዄኻ] (3.24)

the optimal values of 𝑞 is problem dependent. The vector Δ𝑟 = 0 − 𝑟፤ is approximated as a linear
combination of the known Δ𝑟።. Then,

Δ𝑟 ≈ 𝑉፤𝑐፤ (3.25)

∴ 𝑐፤ = (𝑉፤ፓ𝑉፤)
ዅኻ
𝑉፤ፓΔ𝑟 (3.26)

This implementation can get unstable if the number of columns in 𝑣 are high. Therefore, it is safer to
do a 𝑄 − 𝑅 decomposition of the matrix 𝑉 such that,

𝑉፤ = 𝑄፤𝑅፤ (3.27)

where 𝑄 is an orthogonal matrix and R is an upper triangular matrix. Since, 𝑉 is being updated every
iteration, these matrices also have to be recalculated every iteration. then the set of vectors 𝑐፤ can be
calculated as follows,

𝑅፤𝑐፤ = 𝑄፤ፓΔ𝑟 (3.28)

the corresponding values of Δ�̃� can be calculated as follows,

Δ�̃� = 𝑊፤𝑐፤ (3.29)

from eq 3.15 and 3.29 we have,

Δ𝑟 = Δ�̃� − Δ𝑝 (3.30)

∴ Δ𝑝 = 𝑊፤𝑐፤ − Δ𝑟 (3.31)

where Δ𝑟 = −𝑟፤. All this can be summed up into an algorithm to make the IQN-ILS coupling scheme.
The memory usage of the IQN-ILS solver depends largely on the size of the matrix 𝑉፤. The greater
the number of time-steps that are re-used, the more memory it requires.

Degroote [2][7], in his articles explains that the regular Gauss-Seidel scheme is unstable only for a
certain fraction of Fourier modes depending on the boundary conditions and the time-step. Therefore,
a fully accurate Jacobian is not required for the convergence of the coupling scheme. Therefore, The
IQN-ILS method performs quite well when used to approximate the Jacobian.

3.5.2. ML-IQN-ILS
The Multi-Level IQN -ILS scheme is an improvement over the standard IQN-ILS technique explained
in the previous section. The ML-IQN-ILS uses more than one grid level each with a different number
of grid points. The coupled solution is first calculated on the coarser grid for a low-rank approximation
of the Jacobian. Then using these approximations, the coupling iterations are performed on the finer
grid. This is repeated till the solution of the finest grid level is achieved.

Finding the approximation on the coarser grids provides a preconditioning for the finer grid levels.
This reduces the cost of computation of the Jacobian on the finer grids, increasing the convergence
rates. In figure 3.5 this process can be clearly observed.

The coupling mesh at the interface of the two meshes remains the same and the interpolation
between the fluid and solid grid is done accordingly. Therefore the Jacobian obtained from the coarser
grid can be directly used in the the coupling algorithms in the finer grid without any mapping.

The ML-IQN-ILS method is an efficient method for solving strongly coupled problems. The CPU
time required for convergence in this method is lower than than the regular IQN-ILS, due to the lower
coupling time for the coarser grid, and the lower number of iterations required for the finer grid.

3.5.3. Manifold Mapping
In the article by Blom et al. [8], they have developed a method of mapping the solution from a coarse
mesh to a fine mesh using manifold Mapping. Manifold mapping is chosen over other space mapping
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Figure 3.5: On the left side of the figure, the coarse and the fine fluid mesh of the fluid domain are shown, the corresponding
coarse and the fine meshes of the solid are shown in the right side of the figure. The Multilevel IQN-ILS, first couples the coarse
grid, then the Jacobian is passed on to a fine grid [2].

methods, since it has proven convergence to the right solution. This makes the technique robust to be
used for Fluid structure problems.

This method makes use of minimization or optimization techniques to converge to a solution in the
coarse mesh and then maps it on the finer mesh. In the article Blom [8] has compared this method
to the IQN-ILS and other space mapping methods for a Benchmark test case by Turek and Hron [9],
proving that the manifold mapping method reduces the time of convergence by 40%.

3.5.4. MVQN
The Multi-Vector Quasi Newton method is a state of the art method that has been presented in the
article by Bogaers et al. [10]. The MVQN method estimates the approximate Jacobian for the Quasi-
Newton method, which is updated at every iteration and contains the information of all the previous
time-steps.

In this particular method, the Jacobian is first approximated using the generalised secant method,
given by,

𝐽፧ዄኻፅ Δ𝐷፧ዄኻፅ = Δ𝐹፧ዄኻፅ (3.32)

where Δ𝐷፧ዄኻፅ is the interface displacement vector and Δ𝐷፧ዄኻፅ is the interface force vector. The subscript
𝐹 signifies the fluid field variables.The approximation is made with the data from the first time-step.
When information of the previous time-steps are used, the approximation is found to be better. This
has been done in the LS method as discussed in 3.5.1. The information from previous time-steps can
be reused to predict the Jacobian by LS which is defined by the user. The Multi-Vector update method
however makes use of the information from multiple time steps without appending any additional
information. The multi-vector update method works as follows,

𝐽፧ዄኻፅ,፤ዄኻ = ̃𝐽፧ዄኻፅ,፤ዄኻ + 𝐽፧ፅ (3.33)

where ̃𝐽፧ዄኻፅ,፤ዄኻ denotes the Jacobian update approximation. Therefore, a secant equation for ̃𝐽፧ዄኻፅ,፤ዄኻ can
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be constructed,

̃𝐽፧ዄኻፅ,፤ዄኻΔ𝐷፧ዄኻፅ = (Δ𝐹፧ዄኻፅ − 𝐽፧ፅΔ𝐷፧ዄኻፅ ) (3.34)

This method is similar to Broyden’s method [6]. Bogaers [10] has compared the performance of this
coupling scheme to other Quasi-Newton schemes and shown that the performance of the method is
better than the IQN-ILS method by 40-50% when there is a reuse of 4 time-steps. The main remarks
that have to be taken care of while using this method are,

• Remark 1: The convergence tolerance of the individual solvers have to be lower than the FSI
coupling tolerance.

• Remark 2: The inverse of matrices is advised to be done by matrix factorization method rather
than the standard inversion.

• Remark 3: The number of vectors in Δ𝐷 and Δ𝐹 should never exceed the number of DOFs.

Till now a complete list of coupling schemes has been put forward and it has also been observed that
the higher order coupling schemes such the IQN-ILS, ML-IQN-ILS, Manifold Mapping and the MVQN
are all capable of efficiently solving strong coupling problems. But the lower order schemes are also
capable of solving strong coupling problems, when they are used with a pre-conditioner.

3.6. Simulating Turbulence Induced Vibrations through
FSI

In the previous sections the state of the art coupling algorithms for partitioned solvers have been
discussed. As already discussed before, partitioned solvers are the best suited methods for the current
application. To simulate TIV, the FSI simulation is initiated by the fluid solver followed by the structural
solver. The data calculated from the fluid solver are then mapped over the solid mesh spatially and
then solved with a suitable temporal scheme. The displacement, velocity and the forces at the solid
and fluid mesh interface, are taken as the key coupling parameters.

Since the application involves strongly coupled problems, more emphasis was given on implicit cou-
pling methods. First-order coupling methods such as the Jacobi and the Gauss-Seidel coupling schemes
were studied. Second-order Quasi-Newton methods like the IQN-ILS, ML-IQN-ILS and MVQN were also
studied. Theoretically second-order coupling schemes are proven to be more stable and have higher
convergence rates compared to first-order coupling method. Based on the ease of implementation two
coupling methods were selected, namely the Gauss Seidel and the IQN-ILS coupling methods. Due to
the simplicity of the code, the Gauss Seidel method is easy to implement and is proven to be capable for
solving strongly coupled FSI problems. The Gauss Seidel scheme has been already implemented in the
commercial package Star-CCM+. The IQN-ILS method has already been implemented in OpenFOAM.
In Chapter 6, the performance of Gauss Seidel coupling scheme has also been validated for strongly
coupled problems. The fluid and the solid solvers used are treated as black-box solvers solving the
specific fluid and solid equations.



4
Turbulence Induced Vibrations

In the previous few chapters, an overview was provided on the classification of flow induced vibrations
and how the simulations can be performed through fluid structure coupling. To initiate the vibrations on
a structure, a proper fluid solver needs to be identified. Since the flow is turbulent in nature, the type
of fluid solvers used can range from high fidelity solvers such as Direct Numerical Simulation (DNS)
to low fidelity solvers such as RANS. But, before pitching into the topic of turbulence models , it is
important to have a basic idea of turbulence. Turbulence in a literary sense means chaotic or random
behaviour or in other words unpredictable in nature. However, is turbulence really unpredictable? Or
is it possible to estimate the behaviour of the randomness? This chapter on turbulence will provide an
insight into these questions and would try to shed some light on the characteristics of turbulent flows.
With the help of statistics and other mathematical tools, it is possible to generate a mathematical model
for turbulent flows, known as Turbulence Model. Further, in this chapter we would discuss the methods
to model the random pressure fluctuations that are generated during a typical turbulent flow.

Turbulence is a random process, modelling turbulence accurately is dependent on the geometry
and the flow of the fluid. Similar to the modelling of FIV, turbulence modelling also needs an in depth
knowledge of the methods and the assumptions that are involved while modelling turbulence.

4.1. Turbulence - Order in Chaos
Turbulence may seem chaotic, but the statistical behaviour of a turbulent flow can be calculated.
Involvement of statistics has improved the understanding of turbulence. Figures 4.1a and 4.1b from
the book An Album of Fluid Motion [11] shows that the flow velocities and Reynolds number involved in
these flows are very different from each other. Therefore, naturally one would expect a very different
flow pattern. However, by visually looking at the wake region of these objects, it can clearly be seen
that there are similarities between both flows.
It can be clearly observed that the large-scale vortex structures in both the flows here have the similar
large scale geometry. After observing more closely the differences between the flows become evident
at the smaller scales. This is also also observed in many other practical examples such as the jet flows
or even wall bounded flows. This shows that turbulence although seemingly chaotic can be quantified
in numbers and made deterministic. To discuss about turbulence in a more quantified manner a few
terms need to be introduced to bring more clarity.

4.1.1. Energy cascade concept
In figure 4.1 it can be seen that the structure of turbulence is the same in both the sub-figures, even
though the Reynolds number vary by orders of magnitude. Richardson [12] in his book introduces
the concept of the energy cascade in turbulent flows, which is the base of all the turbulence models.
According to this concept, the turbulent kinetic energy is created in the form of larger eddies, or the
macro-structure, which are unstable (characterised by a large local Reynolds number). Later the un-
stable eddies break down into smaller eddies cascading (distributing) their energy. The smaller eddies
keep on breaking down further into even smaller eddies till they dissipate (low Reynolds number). The
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(a) Wake behind a plate at 45° angle of attack at a tur-
bulent Reynolds number of 4300.

(b) Wake behind a grounded tankship at an angle of 45°
at a Reynolds number of approximately ኻኺᎹ.

Figure 4.1: Scale similarities between two different flows at different Reynolds number. The vortex formation in wake region of
these objects can be clearly seen. The shapes of the large scale vortices in the wake region appear very similar.

turbulent kinetic energy is then dissipated due to the dominance of viscous forces. Figure 4.2 shows
how a Reynolds number of eddies varies depending on the size of the eddies.

Figure 4.2: Calculation of Reynolds number of an eddy [13]. Here, ፥ and ፮ signify the length-scale and the velocity scale of the
largest eddies.

The rate of this energy dissipation by viscosity (𝜖), is equal to the rate of energy transfer at large scales.
This equation can be written down as

𝜖 ∼ 𝑢ኽኺ
𝑙ኺ

(4.1)

where, 𝑙ኺ and 𝑢ኺ are the length scales and velocity scales of the macro-structure. For smaller scales,
energy dissipation rate is dominated by viscous dissipation. Therefore, the parameters involved in the
same are the kinematic viscosity (𝜈) and the energy dissipation rate (𝜖). The smallest turbulent scales
can be defined by these parameters. By equating the dimensions we can calculate the smallest scales,
which were calculated by Kolmogorov in 1941, and are therefore known as Kolmogorov scales. These
are given by

𝜂 = (𝜈
ኽ

𝜖 )
ኻ/ኾ

(4.2)

𝑢᎔ = (𝜖𝜈)
ኻ/ኾ

(4.3)

𝜏᎔ = (
𝜈
𝜖 )

ኻ/ኼ
(4.4)

where, 𝜂 and 𝑢᎔ is the length scale and the velocity scale of the smallest eddies. 𝜏᎔ is the time scale
of the smallest eddies. The large eddies are commonly known as the energy containing range. The
smallest eddies in the flow are known as the dissipative range. The range of eddy scales that are
between these scales are known as the inertial sub-range. For the smallest eddy scales, viscous forces
are dominant. Therefore, at the smallest scales Reynolds number is always ≪ 1.
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4.1.2. Statistical Approach to turbulence
A measured velocity signal at a certain point of a turbulent flow would be a stochastic signal. To
analyse such fluctuating velocity and pressure signals, a statistical approach is necessary. Since these
stochastic signals fluctuate about a mean value, an average of this signal can be obtained to define
the flow for a statistically steady or an unsteady (time dependent) equation. The most commonly used
averaging procedures are Time averaging and Ensemble averaging.

Time averaging, is when a stochastic signal is averaged with respect to a small duration of time.
This expression can be written as,

𝑢ፓ = 1
𝑇 ∫

ዅᑋᎴ

ዄᑋᎴ
𝑢(𝑡 + 𝜏)𝑑𝜏 (4.5)

where 𝑇 is the time interval considered for averaging. Apart from time averaging, ensemble averaging is
another method for averaging. Ensemble averaging is the done with respect to the number of repeated
samples taken of the same data. The sampling is done over multiple experiments. This can be written
down as

𝑢ፍ = 1
𝑁

ፍ

∑
ᎎኻ

𝑢(𝑥, 𝑡; 𝛼) (4.6)

where 𝑁 is the total number of samples considered. Both these averaging methods are well suited for
defining a flow equation in their average sense. Henceforth, the averaging method which is used in
this report would be the time averaged method. Turbulent flows consist of velocity fluctuations and
average velocity. Once the average velocity of the flow has been calculated, the fluctuations in the
velocity field and pressure can then be determined as follows,

𝑢ᖣ = 𝑢 − 𝑢 (4.7)
𝑝ᖣ = 𝑝 − 𝑝 (4.8)

where, 𝑢ᖣ and 𝑝ᖣ are the velocity and the pressure fluctuations for the turbulent flow at a given point.
Since fluctuations are always taken about a mean value, an important property of these fluctuations
comes into play. The average of a fluctuating quantity is always equal to Zero, which means 𝑢ᖣ = 0
and 𝑝ᖣ = 0. In later sections it will be clear that these averaging methods and properties can be used
to model the turbulence from a standard Navier-Stokes Equation.

4.2. Turbulence Induced Vibrations
As discussed earlier, in Section 2.4, Turbulence Induced Vibrations are caused due to external excitation
of the structural components due to random pressure fluctuations acting on the fluid-structure interface.
The random pressure fluctuations are caused due to turbulent flow of the fluid around the structures.
The effect of pressure fluctuations is more detrimental for axial flow across a closely packed fuel rod
bundle in nuclear reactors. In such cases the forces exerted on the structure by the turbulent pressure
and velocity fluctuations (𝑝ᖣ & 𝑣ᖣ) are more dominant.

Simulating TIV in a FSI simulation is possible if high fidelity fluid solvers, such as, LES or DNS are
used. These fluid solvers do not average the pressure fluctuations. Hence, these can be mapped on
the structural mesh, which generates a signal similar to that in TIV. In the following sections a more
detailed explanation is given on why high fidelity models are better at simulating TIV as compared to
low fidelity models such as RANS or URANS models.

4.3. Modelling Approach to calculate Turbulent quan-
tities

Fluid motion is completely defined by the Navier-Stokes (NS) equations which are mainly the mass
(continuity), momentum and energy balance equations. Due to the non-linearity of these equations,
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solving the Navier-Stokes equations analytically is very difficult; so much so that a prize money of a
million-dollars has been announced for the one who solves the N-S equations. For now, the only known
method to accurately and efficiently solve these equations for complex geometries and cases are by
the use of numerical methods. In section 4.1.1 it has been seen that turbulent scales can vary in many
orders of magnitude. The time and length scales of the largest eddies can range from kilometers to
micro or nanometers. Computationally, this is a nightmare to solve. The computational power and
memory requirement to solve the complete NS equations for a turbulent flow is significantly larger
than a simple laminar flow. Although the computational power have been ever increasing, it is still not
possible to economically solve the complete Navier-Stokes equations. Therefore, it becomes necessary
to model the turbulence rather than solving using a brute force approach.

It becomes easier to study the behaviour of a turbulent flow through numerical methods. Current
state of the art solvers can solve NS equations for turbulent flows in many ways. Some of the most im-
portant ones are the Direct Numerical Solvers(DNS), the Large Eddy Simulation (LES) and the Reynolds
Averaged Navier Stokes (RANS) equations.

4.3.1. Direct Numerical Solver (DNS)
As the name suggests the Direct Numerical Solver uses the brute force method to resolve all the scales
encountered in the turbulent flow. It involves solving the complete NS equations for all the scales
involved in the flow. DNS is the most expensive, but also the most accurate way of solving the N-S
equations. To get a proper solution, DNS demands high grid refinement, and Courant numbers as low
as ≈ 0.01 to solve for the smallest eddy length scales (Kolmogorov scales). Since, there is no modelling
involved, the velocities are directly calculated as stochastic signals rather than averaged values. This
makes the solution of DNS to be ideal for simulating Turbulence Induced Vibrations, since the data
obtained need not be post-processed and can be directly mapped and transferred to the solid solver.
DNS is highly used in the fields of research to validate theories and for generating benchmark data for
other studies. However, due to its high computational costs, DNS is uneconomical for most practical
applications.

4.3.2. Large Eddy Simulations (LES)
Large Eddy Simulation or LES is a novel method that was first introduced in 1963 by Smagorinsky [14].
The idea behind the model is to solve the NS equations only for the largest of the eddies which the
mesh grid is capable of resolving, and the rest of the smaller scales can be calculated using subgrid
scale models. The order of the sub-grid filtering of the smaller scale eddies are calculated from the
energy spectrum, where the smaller eddies become isotropic in nature. Smagorinsky [14] in his article
gave his model for the smaller scale eddies and therefore, setting up the base for the LES models.

Although, LES is computationally more efficient than DNS, assumptions that are made during the
modelling of the smaller scale eddies can lead to differences in results provided by LES, when compared
to DNS. Moreover, when large or very complex geometries are involved, LES still is very expensive to
compute. Similar to DNS, LES also solves the equations to obtain a stochastic signal for the velocities
and pressures, therefore they can also be used in Fluid Structure interaction problems. For Nuclear
reactor applications, the length scales of the complete fluid domain can be in the order of a few meters,
which are very huge compared to standard CFD problems. Due to this reason the mesh size of the
domain in case of LES can become very large. Therefore, a lot of time and memory is required to solve
the problem. For most FSI cases LES is be an expensive option.

4.3.3. Reynolds Averaged Navier Stokes (RANS)
Reynolds Averaged Navier Stokes or RANS is another method to solve for NS equations for turbulent
flows. Unlike the LES and the DNS methods, RANS models do not provide much data on the turbulent
velocity or pressure fluctuations in the flow field, since they only calculate the average values of the
velocity and the pressure fields. To get a better understanding, let us consider a NS equation for an
incompressible turbulent flow. The continuity equation would be given by-

𝜕𝑢።
𝜕𝑥።

= 0 (4.9)
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from eq 4.7 we know that

𝑢። = 𝑢። + 𝑢ᖣ። (4.10)

substituting eq 4.10 in eq 4.9 and averaging the whole equation w.r.t. time we get,

𝜕𝑢።
𝜕𝑥 = 0 (4.11)

This is the Reynolds Averaged equation for continuity. Similarly, the momentum equation for the
incompressible flow is given by,

𝜕𝑢።
𝜕𝑡 +

𝜕𝑢።𝑢፣
𝜕𝑥፣

= 𝜕
𝜕𝑥፣

[ − 1𝜌𝑝𝛿።፣ + 𝜈(
𝜕𝑢።
𝜕𝑥፣

+
𝜕𝑢፣
𝜕𝑥።

)] (4.12)

substituting eq 4.10 in eq 4.12 and averaging it we get,

𝜕𝑢።
𝜕𝑡 +

𝜕𝑢።𝑢፣
𝜕𝑥፣

= 𝜕
𝜕𝑥፣

[ − 1𝜌𝑝𝛿።፣ − 𝑢
ᖣ
።𝑢ᖣ፣ − 𝜈(

𝜕𝑢።
𝜕𝑥፣

+
𝜕𝑢፣
𝜕𝑥።

)] (4.13)

Eq 4.13 is the Reynolds Averaged Momentum Equation. When the eq 4.11 and eq 4.13 are analysed,
it is seen that unlike the normal NS equations which had 4 equations and 4 unknowns, this particular
set of equations has 6 equations and 11 unknowns. This creates a closure problem, where the number
of unknowns are greater than the number of equations. Hence, to solve for all the unknowns more
equations are necessary. The extra set of equations is provided by modelling the 𝑢ᖣ።𝑢ᖣ፣ term in the

eq 4.13. The 𝜌𝑢ᖣ።𝑢ᖣ፣ term in the equation is known as the Reynolds Stress also symbolized by 𝜏።፣.
One of the earliest models of the Reynolds Stress was provided by Boussinesq [15], known as the
Boussinesq approximation. This model was key in development of many the turbulence models which
are being used today in commercial and open-source CFD solvers. Popular turbulence models such as
the 𝑘 − 𝜖, 𝑘 − 𝜔 and the 𝑆 − 𝐴, 1 − 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙 are all based on the Boussinesq hypothesis.

Boussinesq Approximation
The Boussinesq approximation models the Reynolds Stress 𝜏።፣ as being proportional to the mean strain
rate tensor (𝑆∗።፣) and is written as follows,

𝜏።፣ = 2𝜌𝜈፭(𝑆∗።፣) +
2
3𝜌𝐾𝛿።፣ (4.14)

𝑢ᖣ።𝑢ᖣ፣ = 𝜈፭(
𝜕𝑢።
𝜕𝑥፣

+
𝜕𝑢፣
𝜕𝑥።

) + 23𝐾𝛿።፣ (4.15)

where,𝛿።፣ is the Kronecker Delta and 𝐾 is the turbulent kinetic energy where

𝐾 = 1
2𝑢

ᖣ
፤𝑢ᖣ፤ (4.16)

another term which is required to be noticed here is 𝜈፭. This term is known as the Eddy Viscosity.
There are many methods which are used to model the eddy viscosity of a turbulent flow. The very
first method was the Prandtl’s mixing length hypothesis [15] which proposed that the eddy viscosity
is proportional to the product of the square of the mixing length (𝑙፦) and the velocity gradient in the
wall normal direction,

𝜈፭ = 𝑙ኼ፦|
𝜕𝑢
𝜕𝑦 | (4.17)

The mixing length hypothesis solves the closure problem theoretically. This model is also known as a
Zero Equation Model. But estimation of the mixing length is specific to the geometry and the type of
flow. The 𝑘−𝜖 model developed by Jones and Launder [16], was the first model which did not require
a standard value for solving the equations. It solves for the transport equations of the turbulent kinetic
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energy (𝐾) and the energy dissipation rate (𝜖). This property made the 𝑘−𝜖 model popular to be used
in commercial CFD packages. The eddy viscosity is then calculated using eq 4.18

𝜈፭ = 𝐶᎙
𝐾ኼ
𝜖 (4.18)

where 𝐶᎙ = 0.09 is a constant, the value of which has been experimentally determined. There are
also other constants involved which are determined through experimental validation. The 𝑘 − 𝜖 model
is popular for high Reynold’s number flows since it is robust. The downside of this model being that
the prediction near the wall is not very good. This is usually compensated by usage of wall functions,
which model the boundary layers. The 𝑘 − 𝜔 model proposed by Wilcox [17], is an improvement over
the standard 𝑘 − 𝜖 model and does not require wall functions. The 𝑘 − 𝜔 model is not suitable for
geometries with sudden changes in gradients, such as sudden separation. The turbulent viscosity is
modelled through 𝑘 − 𝜔 model by,

𝜈፭ = 𝐶Ꭶ
𝐾
𝜔 (4.19)

where, 𝜔 = 𝜖
𝐾

Since the 𝑘−𝜖 and the 𝑘−𝜔 models have two extra equations to solve (for 𝑘 and 𝜖 or 𝑘 and 𝜔), these
equations are also known as the Two Equation Models. Also there are other models which have been
developed based on these two models like the 𝑘 − 𝜖 𝑅𝑁𝐺 model and the 𝑘 − 𝜔 𝑆𝑆𝑇 model. These
models try to eliminate a few of the problems that the standard models tend to face, making them
more accurate.

The main disadvantage of the models based on Boussinesq approximation is that they assume
turbulence to be isotropic in nature for all the length scales. This assumption is not true for many
cases. In many simulations it is observed that these models over predict the values of turbulent kinetic
energy in many regions or they tend to stabilize the results for an unsteady turbulent case when sudden
changes in velocity gradients are observed.

Reynolds Stress Model
The Reynolds stress model solves the closure problem without the Boussinesq hypothesis. It does not
consider the turbulence to be isotropic in nature, and therefore, is expected to give a more accurate
result than the models based on the Boussinesq hypothesis. This model directly calculates the Reynolds
stress from the transport equations. The method was first brought up by Launder [18] in 1975. This
model involves calculating the Reynolds stress 𝜌𝑢ᖣ።𝑢ᖣ፣ from transport equations. The exact transport
equations can be written as follows [19]:

𝜕
𝜕𝑡 (𝜌𝑢

ᖣ
።𝑢ᖣ፣) +

𝜕
𝜕𝑥፤

(𝜌𝑢፤𝑢ᖣ።𝑢ᖣ፣) = −
𝜕
𝜕𝑥፤

[𝜌𝑢ᖣ፤𝑢ᖣ።𝑢ᖣ፣ + 𝑝ᖣ(𝛿፤፣𝑢ᖣ። + 𝛿።፤𝑢ᖣ፣)]

+ 𝜕
𝜕𝑥፤

(𝜇 𝜕
𝜕𝑥፤

𝑢ᖣ።𝑢ᖣ፣) − 𝜌(𝑢ᖣ።𝑢ᖣ፤
𝜕𝑢፣
𝜕𝑥፤

+ 𝑢ᖣ፣𝑢ᖣ፤
𝜕𝑢።
𝜕𝑥፤

)

− 𝜌𝛽(𝑔።𝑢ᖣ፣𝜃 + 𝑔፣𝑢ᖣ።𝜃) + 𝑝ᖣ(
𝜕𝑢ᖣ።
𝜕𝑥፣

+
𝜕𝑢ᖣ፣
𝜕𝑥።

) − 2𝜇 𝜕𝑢
ᖣ
።

𝜕𝑥፤
𝜕𝑢ᖣ፣
𝜕𝑥፤

− 2𝜌Ω፤(𝑢ᖣ፣𝑢ᖣ፦𝜖።፤፦ + 𝑢ᖣ።𝑢ᖣ፦𝜖፣፤፦) + 𝑆፮፬፞፫

(4.20)

which can be summarised to give the following equation,

Local Time derivative+𝐶።፣ = 𝐷ፓ,።፣+𝐷ፋ,።፣+𝑃።፣+𝐺።፣+𝜙።፣−𝜖።፣+𝐹።፣+User-defined source term (4.21)

where, 𝐶።፣ is the Convection-term, 𝐷ፓ,።፣ is the Turbulent-diffusion term and 𝐷ፋ,።፣ is the Molecular-
diffusion term, 𝑃።፣ is the Production term, 𝐺።፣ is the Buoyancy term, 𝜙።፣ the Pressure strain term, 𝜖።፣
the Dissipation term and 𝐹።፣ is the Production due to rotation.

Of these terms, 𝐶።፣ , 𝐷ፋ,።፣ , 𝑃።፣ and 𝐹።፣ do not need modelling, the remaining terms 𝐷ፓ,።፣ , 𝐺።፣ , 𝜙።፣ and
𝜖።፣ require modelling to close all the set of equations involved. Each of the terms use different mod-
eling approaches to close the equations. In total the Reynolds Shear Stress Model solves a set of 11
equations.
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The Reynolds stress model has the following advantages over the models based on Boussinesq
hypothesis,

• The models based on Boussinesq hypothesis assume the turbulence to be isotropic, whereas the
Reynolds Stress models solves for all the components for transport of Reynolds stress.

On the downside, the model also has drawbacks,

• Compared to other turbulence models like 𝑘−𝜖 or 𝑘−𝜔, this model is significantly more expensive.

• Like every RANS models, it calculates the averaged values which does not simulate the actual
turbulent condition for FSI problems.

In conclusion, RANS models are more efficient in terms of computational costs compared to LES or
DNS models due to lower requirements of computational power and memory. But they compromise on
the accuracy since, modelling of turbulence makes use of coefficients and physical assumptions such
as isotropy which are specific only to some kind of flows. The accuracy can be increased in many cases
by careful tuning of these models according to the flow. Moreover, RANS models calculate the time
averaged values of turbulent flows (pressure and velocity). This information when used in FSI models
does not provide accurate results, since they lack complete information of the pressure fluctuations on
the solid and fluid interface, which might be the cause of instabilities. Since RANS models are efficient,
it would be of great advantage if these models can be modified and made suitable for FSI simulations.

4.4. Applications of URANS models and FSI for simu-
lating TIV

Unlike the standard RANS models which are steady state models, URANS (Unsteady Reynolds Averaged
Navier Stokes) involves time dependent quantities for velocities and pressures. This means that the
development of turbulent flow from its initial state can be observed. If the time steps in an URANS
model are sufficiently small, the mean velocities would show a behaviour similar to velocity fluctuations
which averages out as the simulation progresses. While simulating the development of a turbulent flow
using URANS models, it can trigger instabilities which causes vibrations in structural components. But
these vibrations do not provide sufficient data about the dynamic behaviour of the system. Therefore,
an initial external excitation can give the necessary behaviour.

In an article by Ridder [20], the author has simulated an experiment performed by Chen and
Wambsganss [21] of a turbulent flow of water, parallel to a brass rod, in an enclosed steel tube. An
initial perturbation is given to the brass beam in the form of an initial displacement after which the
beam is allowed to vibrate freely. The frequency of this vibration has been measured. The perturbation
is provided by calculating each mode of the beam, and accordingly providing the initial displacements.
Using this method, all the structural modes and the damping ratio of the beam within the fluid are
calculated. The natural frequencies and damping ratios provide information on the added-mass effect
of the fluid on the structure.

Ridder, used URANS (𝑘 − 𝜔 𝑆𝑆𝑇) models to simulate this behaviour with good accuracy in terms
of natural frequency and damping ratio. He used URANS to calculate the natural frequencies of the
induced vibrations due to turbulent flows. The domain of the simulation consists of a flexible beam
of brass in turbulent flow of water. Figure 4.3 describes the domain of the experiment. The resulting
frequencies were calculated after simulating this case as a standard FSI problem with an URANS model.
The results are shown in Table 4.1.

Average water velocity [𝑚/𝑠] 10 20 30
Experimental natural frequency [𝐻𝑧] 27.9 27.7 27.5
Computed results in the article [20] [𝐻𝑧] 26.7 26.4 26.1
Experimental modal Damping ratio 0.013 0.021 0.030
Computed modal damping ratio [20] 0.015 0.024 0.032

Table 4.1: Table summarizing the results of the simulations carried out by Ridder [20]
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Figure 4.3: Domain of the Chen-Wambsganss experiment. The beam has fixed-fixed boundary condition (Dirichlet boundary
conditions) at both the ends. ፃᑠᑥ  ኺ.ኺኼኾ፦ and ፃᑔ  ኺ.ኺኻኼ፦, the length of the domain ፋ  ኻ.ኻዃ፦.

As shown in table 4.1, Ridder concludes that the natural vibration frequency of a solid beam in the
turbulent flow can be captured by providing an external excitation. Ridder also tried to explain the
discrepancies in the frequencies by trying to attain similar natural frequencies by applying a pre-stress
to the beam in the lengthwise direction, increasing its natural frequency. More detailed analysis of
this case will be covered again in Chapter 6. Similar results was also observed for another case study
mentioned in the article by Ridder [20], involving a denser fluid and different boundary conditions.

However, the article [20] fails to answer several questions for instance,

• How the magnitude of initial perturbations are calculated.

• Does the perturbation taking into account the stability of the system

• How important is the role of the turbulence models that are chosen for the simulation.

The major drawback in the usage of URANS models is the lack of flow generated instabilities in
parallel flow conditions due to absence of turbulent fluctuating fields 𝑢ᖣ።&𝑝ᖣ. URANS models calculate
time-averaged values for velocities and pressure, completely damping out the velocity fluctuations by
the introduction of turbulent viscosity term (𝜈፭). The only information about turbulent fluctuations are
available in terms of turbulent kinetic energy (𝑘) and the energy dissipation rate (𝜖). In an FSI simula-
tion, the 𝑘 and 𝜖 quantities are not used when calculating the traction at the fluid-structure interface,
rather only the time averaged quantities 𝑝 and 𝑢 are used due to which, the effect of turbulence is
not taken into consideration. Therefore, these models are unable to simulate the instabilities that are
caused by an actual flow. To solve this issue, a new approach would be discussed in Chapter 5, which
can simulate the amplitudes of the vibrations with model which uses the turbulent quantities in URANS
models.

In conclusion, it can be said that use of URANS in prediction of frequencies provides a good initial
prediction on the system behaviour. It is possible to calculate to isolate each mode and therefore
calculate the modal damping ratios more precisely. However, no comments can be made on the stability
and the amplitudes of the system when using an external perturbation to stimulate the vibrations. To
analyse this method, a complete study has been performed by comparing the computed frequencies
with the experimental values in some other test cases in Chapter 6.



5
Modeling Pressure Fluctuations

from Unsteady-RANS models

U-RANS models are widely popular in the industries as one of the cheapest and efficient ways of
computing turbulent fluid flow properties. They employ a Reynolds averaging procedure to compute
time averaged quantities of the flow such as velocity, pressure, and the temperature. The lower
requirement of memory and computational power of these models make them ideal for computations
involving large and complex geometries. Due to its averaging procedure, U-RANS models compute
very little information on the fluctuating quantities 𝑢ᖣ።&𝑝ᖣ (refer equation 4.7 and equation 4.8) of a
fluid flow. The computed data related to turbulent quantities are the turbulent kinetic energy (𝐾), the
energy dissipation rates (𝜖) and Reynolds shear stress tensor. Section 4.4 discussed about the study
by De Ridder et al. [20] on ways to compute the dynamic properties of the structure by providing an
initial perturbation or excitation to the solid. The perturbations were in the form of displacements to
excite each mode of the structure to compute the natural frequencies and the damping ratios in the
given flow characteristics. In a study by Eline et al. [22] they have used a similar concept to test the
feasibility of U-RANS models by validating the results with experimental data.

The aforementioned studies involved an external excitation source which is provided as an initial
condition. The modal frequencies and the damping ratios of the structure can be calculated from the
resulting vibrations of the perturbation. However, the vibrations damp out when the flow reaches
a steady state, and hence, the transition of the vibrations from an externally excited instability to a
fluid-elastic instability cannot be simulated. Due to this, no information can be extracted on the critical
velocities of the system, at which the system becomes unstable.

One approach to solve this issue is to model the turbulent pressure fluctuations from the mean
flow quantities and later impose them on the solid. This would give an improved model to compute
the dynamic properties of the structure and also the stability of the system. The 𝐾 and 𝜖 values from
U-RANS models estimate the turbulence in a given region of the fluid domain, but the values are time-
averaged which are not used in simulations with fluid structure coupling. This chapter would discuss
a new approach to model a turbulent pressure field from the 𝐾 and 𝜖 values. The modeled turbulent
pressure field, is mapped on to the fluid-structure interface to simulate TIV.

The first step in the modeling of the turbulent pressure field is to model the turbulent velocity field,
which is later used to calculate the turbulent pressure field. A similar approach has also been used by
Senthooran [23] in his work, where modeling of the velocity and pressure fluctuations were performed
using the 𝐾 and 𝜖 values from a RANS (𝑘 − 𝜖 Launder-Sharma) model. Figures 5.1 and 5.2 explain the
difference between the working of a standard U-RANS model and the pressure fluctuation model. The
pressure fluctuation model is an additional step that is applied to a standard U-RANS model. Every step
involved in the modeling of pressure fluctuations will be explained in detail. For a better understanding
of this model. It is advised to keep figure 5.2 as a reference while following the chapter.

27
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Fluid Solver U-RANS tur-
bulence model

𝑝, 𝑣, 𝐾, 𝜖

output

Figure 5.1: Flowchart depicting workflow of a standard flow solver with use of Unsteady-RANS model. The blue box indicates
the output of the flow solver.
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𝜎፧ , 𝜓፧
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Figure 5.2: Flowchart depicting workflow of the flow solver with use of Pressure Fluctuation model. The blue boxes indicate the
outputs of the flow solver.

5.1. Modeling the velocity fluctuations
The velocity fluctuations are modelled by expanding the function representing the velocity fluctuations
with the use of Fourier series. The Fourier series is a good approximation of the velocity field due to its
relation to the eddy length scales, and the periodic nature of the fluctuations. The velocity fluctuation
field is modeled as a sum of velocity fluctuations caused due to all the eddy length scales, namely the
largest eddy length scales to the Kolmogorov length scales. Since, the range of eddies in a turbulent
regime is a continuous field, it is discretized into a selected number of modes or wave numbers. This
is shown by

𝑢ᖣ(x, 𝑡) =
ፍ

∑
፧ኻ

𝑢፧cos[k፧ .(x− 𝑡u) + 𝜓፧ + 𝜔፧𝑡]𝜎፧ (5.1)

where 𝑢፧ , 𝜓፧ , 𝜎፧ , 𝜔፧ and u are the amplitude, phase, unit direction vector of the 𝑛፭፡ mode associated
with the wave vector 𝑘፧, the characteristic angular frequency and the convection velocity respectively.
The fluctuating velocity field can be modeled if all the unknown quantities can be calculated.

5.1.1. Calculating the wave vector and the direction vector
The wave vector (𝑘፧) in a 1-dimensional sense is defined as the inverse of the eddy length scale. Since
these eddies are in a 3-dimensional space, the wave number has to be mentioned in the form of a
wave vector. Similarly, the direction vector (𝜎፧) of the velocity fluctuations is a unit vector which gives
each component of velocity amplitude (𝑢፧) in a 3-dimensional space. Both these quantities namely,
𝑘፧ & 𝜎፧, are related to each other through the continuity equation.

For an incompressible flow, the continuity equation is given by equation 4.9, now applying equa-
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tion 4.10 to the continuity equation, we get,

𝜕𝑢።
𝜕𝑥።

+ 𝜕𝑢
ᖣ
።

𝜕𝑥።
= 0 (5.2)

Subtracting equation 5.2 and equation 4.11 we get,

𝜕𝑢ᖣ።
𝜕𝑥።

= 0 (5.3)

to satisfy this condition we apply equation 5.3 to equation 5.1. We find that the necessary condition
for satisfying both the equations is,

𝑘፧ .𝜎፧ = 0, n = 1,…,N (5.4)

this implies that the wave vector 𝑘፧ is orthogonal to the unit vector 𝜎፧ for any given mode. Assuming
that the vector 𝜎፧ lies in a plane (𝑘ᖣኻ, 𝑘ᖣኼ) which is perpendicular to the wave vector 𝑘፧. Then the
coordinate transform between the components of vector 𝑘፧ and the new coordinate system orthogonal
to vector 𝑘፧ would be,

[
𝑘ᖣኻ
𝑘ᖣኼ
𝑘ᖣኽ
] = [

cos𝜙፧ sin𝜙፧ 0
−cos𝜃፧sin𝜙፧ cos𝜃፧cos𝜙፧ sin𝜃፧
sin𝜃፧sin𝜙፧ −sin𝜃፧cos𝜙፧ cos𝜃፧

] [
𝑘ኻ
𝑘ኼ
𝑘ኽ
] (5.5)

where, 𝜙፧ , and 𝜃፧ are the polar angles of vector 𝑘፧. The unit vector 𝜎፧ can be expressed as,

𝜎፧ = 𝑘ᖣኻcos𝛼፧ + 𝑘ᖣኼsin𝛼፧ (5.6)

where 𝛼፧ is the angle between 𝑘ᖣኻ and 𝜎፧. By using equations 5.5, 5.6 and 5.4, we get the following
expressions.

𝑘፧ = (sin𝜃፧cos𝜙፧)𝑘ኻ + (sin𝜃፧sin𝜙፧)𝑘ኼ + (cos𝜃፧)𝑘ኽ (5.7)

𝛼፧ = tanዅኻ( −
1

cos𝜃፧
) (5.8)

For simplicity, the turbulence is assumed to be isotropic. Therefore, an isotropic and homogeneous
random field can be obtained by using probability density functions [23] for the random variables
𝜙፧ , 𝜓፧ and𝜃፧,

P(𝜙፧) =
1
2𝜋

P(𝜓፧) =
1
𝜋

P(𝜃፧) =
1
2sin(𝜃፧)

(5.9)

The probability density functions ensure isotropy with respect to wave vector 𝑘፧. The randomness of
the fluctuating values is accomplished by employing a random value generator, to generate random
values (𝑋). These random values can be then used to calculate the values of 𝜙፧ , 𝜓፧ and 𝜃፧ as a
function of 𝑋 and the use of the probability density functions in eq 5.9. The characteristic angular
frequency 𝜔፧ is calculated by,

𝜔፧ = 𝜖ኻ/ኽ𝑘ኼ/ኽ፧ (5.10)

5.1.2. Estimating the Energy Spectrum
The amplitude 𝑢፧ of the fluctuations, is a function of its wave number. The smaller wave numbers,
in the range of 𝑘፥ (the large eddy length scales) form the energy containing range. Therefore, the
amplitudes of velocity fluctuations pertaining to this range of wave numbers are higher. In the inertial
subrange the energy contained by each mode decreases proportional to 𝑘ዅ/ኽ [15, 24]. Later for the
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Figure 5.3: Typical energy spectrum for a turbulent flow plotted against wavenumber, k [25].

Kolmogorov wave numbers (𝑘ፍ), the energy is the least. Hence, the amplitudes are calculated using
the Energy Spectrum as a function of wave numbers and time. Von-Karman has suggested a model
for calculation of the energy spectrum, 𝐸(𝑘, 𝑡), assuming local isotropy [24]. It is as follows,

𝐸(𝑘, 𝑡) = 2ኻ/ዀ𝐸(𝑘፞)
(𝑘/𝑘፞)

ኾ

[1 + (𝑘/𝑘፞)
ኼ
]
ᎳᎹ
Ꮈ
exp[ − 2𝜈𝑘ኼ𝜏᎔] (5.11)

where 𝜏᎔ is the Kolmogorov time scale for smallest eddies given by 𝜏᎔ = √𝜈/𝜖, 𝑘፞ is the wavenumber
where 𝐸(𝑘, 𝑡) is maximum, given by 𝐸(𝑘፞). It is the length scale at which contains the maximum energy.
The variable 𝑡ኺ is the initial time. The value 𝐸(𝑘፞) is approximated using the following equation [24],

𝐸(𝑘፞) = 𝐴
2𝐾
3𝑘፞

(5.12)

where 𝐴 is a constant of the order unity and 𝐾 is the total turbulent kinetic energy. It is important to
note that the estimation of energy spectrum in equation 5.11 is divided into 3 main regions. To get a
better perspective also refer to figure 5.3

• Energy containing range : In the energy containing range the wave numbers are small, i.e.
𝑘፥ < 𝑘፞ << 𝑘ፍ. In this particular region the energy spectrum function (𝐸(𝑘, 𝑡)) is proportional
to 𝑘ኾ [24] which is clearly observed in equation 5.11. Also at smaller wave numbers the effect
of viscosity is negligible, since the exponential term exp[ − 2𝜈𝑘(𝑡 − 𝑡ኺ)] becomes approximately
equal to one for small wave numbers. Thus ignoring the effect of viscosity.

• Inertial Sub-range : According to Kolmogorov’s theory, in the inertial subrange, i.e. 𝑘፞ <<
𝑘።፧፞፫፭።ፚ፥, the energy spectrum 𝐸(𝑘) is proportional to 𝑘ዅ/ኽ. In the equation 5.11, it can be
observed that for ፤

፤ᑖ >> 1, the value of 𝐸(𝑘) becomes proportional to (
፤
፤ᑖ )

ዅ/ኽ
.

• Energy Dissipation range : During the energy dissipation range (𝑘፞ <<< 𝑘ፍ), the viscosity effects
become predominant and the energy contained is dissipated. Equation 5.11 tries to incorporate
the effect of this in the term exp[−2𝜈𝑘ኼ𝜏᎔]. In this region the value of [−2𝜈𝑘ኼ𝜏᎔] becomes very
large, therefore the value of the exponent term approaches zero.
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The model of energy spectrum in equation 5.11 is more suitable for high Reynolds number flows, since
at high Reynolds numbers, 𝑘ፍ >> 𝑘፞.

In the model for 𝐸(𝑘) given in equation 5.11, there are two unknowns (𝐴 and 𝑘፞) which are
necessary to be calculated for the model to be used further.

Calculation of 𝐴 and 𝑘፞
To calculate 𝑘፞ and 𝐴, it is necessary to satisfy the basic definition of energy spectrum. Then using
those conditions, the values of both the unknowns can be calculated. Now, in the inertial sub-range,
the value of the energy spectrum is given by [24],

𝐸(𝑘፧) = 𝐴𝜖ኼ/ኽ(𝑘፧)ዅ/ኽ (5.13)

Since, viscosity effects are negligible in the inertial subrange, we can ignore the exponential term in
the equation 5.11 and equating it to equation 5.13, we get,

𝐴𝜖ኼ/ኽ𝑘ዅ/ኽ፞ (𝑘፧𝑘፞
)
ዅ/ኽ

= 2ኻ/ዀ𝐸(𝑘፞)
(𝑘፧/𝑘፞)

ኾ

[1 + (𝑘፧/𝑘፞)
ኼ
]
ᎳᎹ
Ꮈ

(5.14)

Also, in inertial sub-range 𝑘፧/𝑘፞ >> 1. By applying this condition and substituting the value of equa-
tion 5.12 in the above equation, we get

𝑘፞ = 2ዅኻ/ኾ(
3
2)

ኽ/ኼ 𝜖
𝐾ኽ/ኼ (5.15)

Therefore, by using the above equation, the first unknown 𝑘፞ can be calculated. Now, by definition
the turbulent kinetic energy can be calculated using the following equation,

𝐾 = ∫
ጼ

ኺ
𝐸(𝑘) d𝑘 (5.16)

Substituting equation 5.11 into equation 5.16, then dividing the equation by 𝐾,

2𝐴 2ኻ/ዀ
3𝑘፞

∫
ጼ

ኺ

(𝑘፧/𝑘፞)ኾ

[1 + (𝑘፧/𝑘፞)ኼ]
ኻ/ዀ exp[ − 2𝜈𝑘𝜏᎔]d𝑘፧ = 1 (5.17)

Let, 𝑘፧ = 𝑘፞tan(𝜉) then we get,

2𝐴 2ኻ/ዀ
3 ∫

/ኼ

ኺ

sinኾ𝜉
cosኻ/ኽ𝜉 exp[ − 2𝜈𝑘

ኼ
፞ tan

ኼ𝜉 𝜏᎔]d𝜉 = 1 (5.18)

Now, substitute 𝜂 = sinኼ𝜉 and solve the above equation. We get,

2ኻ/ዀ𝐴
3 ∫

ኻ

ኺ

𝜂ኽ/ኼ
(1 − 𝜂)ኼ/ኽ exp[ − 𝛽

𝜂
(1 − 𝜂)𝜏᎔]d𝜂 = 1 (5.19)

where, 𝛽 = 2𝜈𝑘ኼ፞ Therefore, the value of 𝐴 can be calculated using the following equation,

𝐴 = 3 [2ኻ/ዀ∫
ኻ

ኺ

𝜂ኽ/ኼ
(1 − 𝜂)ኼ/ኽ exp[ − 𝛽

𝜂
(1 − 𝜂)𝜏᎔]d𝜂]

ዅኻ

(5.20)

Since, the value of 𝑘፞ is known from equation 5.15,the value of 𝐴 can be obtained from equation 5.20.
After the unknown parameters are computed, the value of 𝐸(𝑘፧) is computed for all the modes

using equation 5.11. The number of modes has to be selected by the user depending on the resolution
of the energy spectrum that is required. A higher number of modes gives a better approximation of
the energy spectrum, however, it also increases the computational time required for its calculation.
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5.1.3. Calculating the Amplitude
The amplitude 𝑢፧ defines the magnitude of fluctuation at each mode or wave number. To estimate the
amplitude of each mode, we make use of the definitions of turbulent kinetic energy by equating the
equations 5.1 and 5.16. In their discrete forms the equations would be as follows

3
2

፤ᑅ
∑
፣፤ᑝ

፤ᑅ
∑
።፤ᑝ

𝑢።𝑢፣cosΘ።cosΘ፣ =
፤ᑅ
∑
፣፤ᑝ

𝐸(𝑘፣)𝛿𝑘፣ (5.21)

where, Θ፧ = k፧ .(x− 𝑡u) + 𝜓፧ + 𝜔፧𝑡, and 𝛿𝑘፣ is given by,

𝛿𝑘፣ = 𝑘ኻ(exp[Δ𝑘] − 1)𝑒[(፣ዅኻ)ጂ፤] with,

Δ𝑘 = log𝑘ፍ − log𝑘ኻ
𝑁 − 1

Now, from equation 5.21,

𝐸(𝑘፣)𝛿𝑘፣ =
3
2𝑢፣cosΘ፣

፤ᑅ
∑
።፤ᑝ

𝑢።cosΘ። (5.22)

𝐸(𝑘፣)𝛿𝑘፣
cosΘ፣

= 3
2𝑢፣

፤ᑅ
∑
።፤ᑝ

𝑢።cosΘ። (5.23)

squaring both sides,

[
𝐸(𝑘፣)𝛿𝑘፣
cosΘ፣

]
ኼ

= 9
4𝑢

ኼ
፣ [

፤ᑅ
∑
።፤ᑝ

𝑢።cosΘ።]
ኼ

(5.24)

Substituting equation 4.16,

[
𝐸(𝑘፣)𝛿𝑘፣
cosΘ፣

]
ኼ

= 3
2𝑢

ኼ
፣𝐾 (5.25)

Therefore, the amplitude of any mode, can be calculated using,

𝑢፧ =
𝐸(𝑘፣)𝛿𝑘፣
cosΘ፣

[ 23𝐾 ]
ኻ/ኼ

(5.26)

From 𝜔፧and 𝑘፞ the convective velocity is calculated by,

|𝑢| =
𝜔፧
𝑘፞

(5.27)

𝑢 =
|𝑢|
√3

[1 1 1] (5.28)

with the calculation of 𝑢, all the ingredients required to calculate the turbulent velocity field have been
calculated. Substituting all the calculated values in equation 5.1 the velocity fluctuation, 𝑢ᖣ፧ can be
calculated.

5.2. Calculating pressure fluctuation field
Since the velocity field has been computed, the next step of the model is to compute the pressure
fluctuation field, 𝑝ᖣ. The pressure fluctuation is computed using the Poisson’s equation [26]. To to
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derive the equation, we first consider the Navier-Stokes equation 4.12 and substitute equation 4.10.
Therefore we get,

𝜕(𝑢። + 𝑢ᖣ።)
𝜕𝑡 +

𝜕(𝑢። + 𝑢ᖣ።)(𝑢፣ + 𝑢ᖣ፣)
𝜕𝑥፣

= 𝜕
𝜕𝑥፣

[ − 1𝜌(𝑝 + 𝑝
ᖣ)𝛿።፣ + 𝜈(

𝜕(𝑢። + 𝑢ᖣ።)
𝜕𝑥፣

+
𝜕(𝑢፣ + 𝑢ᖣ፣)

𝜕𝑥።
)] (5.29)

Then equation 5.29 is subtracted from the RANS momentum equation 4.13, to get the following equa-
tion,

𝜕ኼ𝑝ᖣ
𝜕𝑥።𝜕𝑥።

= −𝜌[2𝜕𝑢።𝜕𝑥፣
𝜕𝑢ᖣ፣
𝜕𝑥።

+ 𝜕ኼ
𝜕𝑥።𝜕𝑥፣

(𝑢ᖣ።𝑢ᖣ፣ − 𝑢ᖣ።𝑢ᖣ፣)] (5.30)

The method discussed above is most suited for 2-equation models, where the assumption of isotropy
holds true. An important fact to note here is that the energy spectrum considered in this case is
modelled using some standard models which are available to approximate the energy carried by the
different length scales. There is a fair amount of flexibility on the type of model being used to best fit
the amplitude of the velocity fluctuations.

Overall, this gives a good insight on the methods which can be employed to model pressure fluc-
tuations from Unsteady-RANS models. For future work, this model can also be adopted for Reynolds
Stress models, which would bring about all the properties required for generation of instabilities at the
FSI interface without the assumption of isotropy.

5.3. Application of Pressure Fluctuation model in FSI
In section 4.4 it has already been discussed that simulation of TIV is not possible by a standard
Unsteady-RANS model due to the absence of 𝑢ᖣ።&𝑝ᖣ. However, if the pressure fluctuation model is
applied to the solver, the pressure and velocity fluctuations in the field can also be calculated. There-
fore, in case of an FSI simulation the pressure fluctuation model can be coupled to the solid solver. In
this case the force acting at the fluid structure interface is taken as the summation of the forces exerted
by the pressure fluctuations (𝑝ᖣ) and the time averaged pressure (𝑝). The pressure fluctuations act as
an external excitation due to which the flow solver can induce TIV on the solid solver.

In an FSI simulation, the fluid solver takes the displacements and the velocities of the mesh interface
as the input and gives the traction as its output. The traction is calculated using the mean pressure
(𝑝), and the wall shear stress (𝜏). To employ the pressure fluctuation solver into the simulation, the
calculated pressure fluctuations (𝑝ᖣ) would be added to the mean pressure, to get the total traction on
the body due to pressure. This is given by,

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐹𝑜𝑟𝑐𝑒 = ∫(𝑝 + 𝑝ᖣ) 𝑑𝐴 (5.31)

This would ensure that the forces due to random pressure fluctuations are also transferred to the
solid solver, leading to an external excitation condition. It is important to note that the mean pressure
computed from the Unsteady-RANS model is not summed up to the modelled pressure fluctuation field
while solving the fluid equations. The fluctuations are calculated as a post-processing method to the
solver, with no direct interaction with the fluid solver.

5.4. Implementation of the Pressure Fluctuationmodel
The pressure fluctuation model which has been discussed in the current chapter has been implemented
in the open-source CFD package OpenFOAM extend-3.2. The implementation required a detailed study
of internal architecture of OpenFOAM. It was successfully achieved by writing the codes in various
libraries and implementing the changes into a pre-existing solver. For this purpose the pimpleFoam
unsteady solver was chosen. PimpleFoam solver is a widely utilised as a standard solver for unsteady
simulations of turbulent flows. The detailed implementation of the code is provided in the Appendix of
this report.

The modified pimpleFoam solver with the pressure fluctuation model is named as pimpleFluct. The
same changes are also implemented in the FOAM-FSI solver, which is an FSI solver developed by David
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S. Blom from TU Delft. The FOAM-FSI solver couples Deal.II [27], an open-source FEM library to
OpenFOAM extend-3.2 which is a FV library. The pimpleFluct code is also incorporated into the FOAM-
FSI solver giving it the capability to perform FSI simulations. All the FSI and fluid simulations performed
in this report have been performed by the use of the pimpleFluct solver that has been implemented by
me during the course of this thesis work.



6
Applications of URANS in FSI to

simulate TIV

In the previous Chapters a lot has been discussed on the feasibility of URANS in simulating TIV. Till
now, two main approaches were discussed on the application of URANS. The first approach was dis-
cussed in section 4.4, which computed the dynamic properties of the structure by providing an initial
perturbation or excitation to the solid. The second approach was discussed in Chapter 5, which in-
volved the modelling of the turbulent pressure fluctuations from the mean flow quantities and later
impose them on the solid. In the current chapter both approaches are put to the test. The results
are validated by comparing the results of an experimental case or comparing the results with other
numerical benchmarks.

For the validation of the first approach, three test cases were chosen. All the three test cases are
application based experimental cases; therefore a proper comparison of results is possible. The first
case is a laminar case, which is aimed at testing the ability of the coupling method to solve strongly
coupled problems. The second and the third cases are aimed at simulating the TIV and calculating the
dynamic properties of the structure for nuclear reactor applications. URANS models were used in both
the test cases.

To validate the second approach, first the model itself is validated by performing a simulation of a
plane channel flow, for which DNS results are already available. The DNS database is was generated
by Abe et al. [28] for cases with 𝑅𝑒Ꭱ 180, 395, and 640. The comparison between the DNS results
and the modeled results shows the degree of inaccuracy that the model can generate. This would give
an idea of the deviation that can be observed in the FSI simulation and whether the deviations are
acceptable or not. Finally the model is tested by performing an FSI simulation on a modified case of
a numerical benchmark case. The simulation is performed with standard URANS without modelling,
and also performed with the use of the proposed pressure fluctuation model. The results of both the
simulations are then compared.

6.1. Simulating TIV through an initial perturbation
The study is set to attain two main objectives. The first objective is to study the accuracy and efficiency
of using FVM-FEM coupling and to validate the use of Gauss Seidel coupling scheme to solve strongly
coupled FSI problems. To achieve the first objective, Vattenfall-I FSI test case [29] is performed with the
aforementioned methods. The second objective of the study is to validate the use of URANS turbulence
models to simulate flow induced vibrations, and to predict the dynamic behaviour of structure. To
achieve the second objective, two test cases are performed, the Vattenfall-II test case by the Vattenfall
Group in Sweden [30], and the experimental case by Chen and Wambsganns [21]. These test cases
focus on simplistic models of fuel rods in nuclear reactors. Nuclear reactor applications are the main
driving force behind the selection of the test cases.

35
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6.1.1. Vattenfall Case-1
Vattenfall Research and Development in Sweden has performed an experiment where a vertical slender
rod/beam with a roller boundary condition and a clamped side is displaced and then released, after
which its vibrations and damping under the influence of the surrounding fluid are investigated by Vu
and Truc [31]. Water is pumped in longitudinal direction of the beam through the channel. The bulk
Reynolds number based on the bulk velocity and half channel height is maintained to 𝑅𝑒 = 3600,
which is laminar in nature. The centre of the rod is given an initial displacement 𝛿 = 10 𝑚𝑚 after
which it is released to vibrate freely. The displacement of the rod is measured using a laser. This case
is well suited to test the influence of the added mass on the structure, refer figure 6.1.

Figure 6.1: Domain of Vattenfall experiment [31]. Here, ፋ  ኻ. ፦, ፇ  ዂኺ ፦፦, ፡  ዂ ፦፦ and ፥  ኼኺ ፦፦. The fluid inlet
velocity ፯  ኻ ፦/፬ and the initial beam displacement at the center ᎑  ኻኺ ፦፦. The steel beam has a fixed - pinned boundary
condition at the inlet and the outlet respectively. The flow is laminar in nature.

The stainless steel rod has a length of 𝐿 = 1.5 𝑚, and a density of 𝜌፬፭፞፞፥ = 8000 𝑘𝑔/𝑚ኽ, a modulus
of elasticity of 𝐸 = 193 𝐺𝑃𝑎 and a moment of inertia, 𝐼 = 8.53×10ዅኻኺ 𝑚ኾ. To ensure the use of correct
boundary conditions for the beam in the simulations, an initial simulation was performed by vibrating
the beam in vacuum (solid only simulation). The results of the simulation are compared to analytically
calculated results. For a fixed-pinned beam, the following analytical model can be used to calculate
the natural frequency of the first mode.

𝑓 = 1
2𝜋[

15.418
𝐿ኼ ]√𝐸𝐼𝜌

where 𝐸 is the Young’s Modulus, 𝐼 is the area moment of inertia, 𝜌 is the mass per unit length and
𝐿 is the length of the beam. The analytical approximation of the beam’s natural frequency results
in 12.37 𝐻𝑧 for the first mode, which is in close agreement with the natural frequency of 12.34 𝐻𝑧
calculated through the simulation. The density ratio (𝜌፬፭፞፞፥/𝜌፰ፚ፭፞፫) for the experimental case is 8. A
mesh and time convergence study is performed for the solid solver to check their influence on the final
solution. The Gauss-Seidel coupling method (refer section 3.4) was employed using FEM-FVM coupling
in STAR-CCM+. The FE discretization scheme is a numerical method for finding the approximate solution
for a PDE (Partial Differential Equation) by dividing the domain into smaller elements. The structure
equations are solved without segregation of its variables which is more efficient than FVM. However,
FE discretization method is not conservative in nature. On the other hand, FV discretization schemes
are conservative in nature, which reduces the number of equations required to solve in the case of
fluid equations (Navier-Stokes equations). This makes FV methods an efficient method to use in fluid
solvers. The case was simulated and then compared to the experimental results. Because the density
ratios are comparable to the conditions in the nuclear reactors, the case would give an insight if the
coupling scheme is stable for the given conditions.

Mesh and Time convergence study for the structural solver
The simulation with FE discretization for structural equations, is performed in STAR-CCM+. The mesh
refinement was varied, from 100 to 650 divisions in the longitudinal direction. The effect of change in
the mesh refinement on the calculation of modal frequency is observed in the Figure 6.2a.
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(a) Displacement of beam center vs Time graph showing
the effect of mesh refinement on natural frequency.

(b) Displacement of beam center vs Time graph showing
the effect of time step on the computed natural frequency
of the solid beam.

Figure 6.2: Mesh convergence study with mesh refinement and time steps as the variables.

Case Number of divisions Frequency [Hz]
disp_100e 100 12.34
disp_150e 150 12.34
disp_300e 300 12.34
disp_650e 650 12.34

Table 6.1: Effect of mesh refinement on the calculated natural frequency of the beam through FE discretization method. It is
observed that FEM discretization for structural solver is not sensitive to mesh refinement.

Table 6.2 compiles the results that were obtained during the study. A similar study was also per-
formed by varying the time steps. The time steps for the simulation was varied from 0.1 𝑚𝑠 to 10 𝑚𝑠.
The results have been shown in Figure 6.2b. Table 6.2 compiles the results that were obtained during
the study.

From the study it can be observed that the mesh sensitivity of FE discretization method is negli-
gible. The results virtually are not affected by the change in the number of mesh cells. In the time
convergence study it was observed that the increasing the time steps lead to an increase in the %
error of calculating the natural frequency. There was no significant numerical damping observed with
the increase in time steps.

Eline et al. [22] has studied of the effect of mesh refinement and time steps on the calculated
natural frequency by the use of FVM solvers. From the study it was observed that mesh refinement
had a significant effect on the calculated natural frequency. An error as high as 64% was observed for
a coarse mesh. From the time convergence study performed by Eline et al. for FVM, it was observed
that the large time steps lead to significant numerical damping of the amplitudes. The damping effects
decrease with use of smaller time steps.

From comparing the time convergence studies by Eline et al. [22] and the current study, it is
observed that the FVM solvers are extremely mesh sensitive in comparison to FEM solvers. Also the
time step used in case of the FEM solver was a 100 times larger than that used in FVM solver. FVM
solver is also more sensitive to time steps used. In effect, the use of the FEM solver was found to be
more over 10× efficient than the use of the FVM solver for the solid solver.

FSI simulation setup, and Results
The FSI simulation was carried out in 3-D for both discretization schemes to get a better comparison
of results with the experimental setup. The inlet velocity of the water is 1 𝑚/𝑠.

A fixed-pinned boundary condition is provided at the inlet and the outlets of the beam respectively.
The solid beam is provided an initial displacement of 10 𝑚𝑚 at the center of the beam. This is carried
out by applying an external force and carrying out a steady state simulation for the beam. Later, the
force is removed to allow the beam to vibrate freely. The simulation is then coupled with the fluid



38 6. Applications of URANS in FSI to simulate TIV

Result Natural Frequency [Hz] Error percentage
Analytical 12.37 –
dt_0.1ms 12.49 0.97
dt_1ms 12.26 0.89
dt_5ms 12.15 1.78
dt_10ms 11.76 4.93

Table 6.2: Effect of time-steps on the calculated natural frequency of the beam through FE discretization method. It is observed
that increasing the time steps increases the error percentage of the estimation of natural frequency.

Figure 6.3: Comparison between displacements of the beam center in the experimental and simulation results as a function of
time in the Vattenfall-I case study. The simulation results from STAR-CCM+ are close to the experimental values with an error
percentage of 3.6%.

domain to replicate the conditions observed in the experiment. The simulation is carried out with FEM-
FVM coupling. A hexahedral mesh is used for the fluid and the solid part. It is worth mentioning that for
the fluid solver, a central differencing scheme with skew correction is used for the spatial discretization.
A second order backward scheme is used as the temporal discretization for both the solvers with a time
step of 1 𝑚𝑠. The Gauss-Seidel coupling scheme is used to couple the structure and the fluid solver.
An average of 40 iterations was required to attain convergence of coupling iterations. The coupling
scheme is therefore found to be stable for the current application.

The vibrations of the beam were seen to be damp due to the added-mass effect of water. The natural
frequency of the beam was obtained by performing FFT (Fast Fourier Transforms) on the displacement
signal obtained from the simulation. The response of the beam in comparison to the experimental
measurements have been shown in Figures 6.3 and the results have been compiled in the Table 6.3.
It’s observed that the error percentage between the results is 3.6% which is within the acceptable error
limit.

6.1.2. Vattenfall Case-2
The Vattenfall-II case is an application based case which involves simulation of vibrations induced on a
steel rod due to turbulent flow of water around it. The experimental setup is shown in figure 6.4. The
case simulates the vibrations on a fuel rod in a nuclear reactor surrounded by flow of turbulent water.

The length of the steel rod is 1.486 𝑚 with a cylindrical cross-section. The outer diameter of
the tube, 𝐷፨ = 8 𝑚𝑚 with a thickness of, 𝑡 = 0.6 𝑚𝑚. The inlet side of the tube is fixed (Zero
displacement and no rotation) and of the outlet side the tube is pinned (zero displacement, but free to
rotate in transverse direction). The domain consists of a wide inlet followed by a sudden constriction
of the cross-sectional area. The sudden decrease in the area of the fluid flow leads to a turbulent flow
in the water. The constricted area again opens up into a wide area. The mass flow rate of water is
10 𝑘𝑔/𝑠. Using the hydraulic diameter as the length scale, the Bulk Reynolds number for the flow is
calculated to be 𝑅𝑒 ≈ 1.2 × 10ዀ which falls in the turbulent regime. The pressure fluctuations due
to the turbulent flow around the tube results in vibrations of the steel tube. This simulation aims to
capture the dynamic behavior of the steel tube in the given conditions and to compare it with the
experimental results.

It can be observed for a fact that for large domains like the case of Vattenfall-II, to perform an LES,
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Result Natural Frequency (𝐻𝑧) error %
Experiment result 10.57 –
Eline et al. [22] (FVM-FVM) 11.21 7.68
Simulation result (FEM-FVM) 10.96 3.6

Table 6.3: Comparison between experimental values and simulated results of Vattenfall-I case study.

the number of cells required is in the order of 10 cells. This increases the computational costs of the
simulation. Therefore, the use of U-RANS models is being validated in this particular case study. The
main objective of this current study is to test the effect of different turbulence models on the dynamic
behaviour of the structure.

Figure 6.4: Domain of Vattenfall experiment case-2. The dimensions shown in the figure are in ፦፦. The blue box in the figure
is the external box of the experimental setup, and the grey regions are solid blocks to constrict the flow of water and generate
turbulence. The fluid (water) is flowing in the confined white region within the blue box. The tube (beam) is shown as the circle
in the center of the white region (fluid domain). The tube at the inlet side is fixed and pinned at the outlet.

Simulation set-up
In the framework of this test case, an assessment with two URANS models is performed. The models
used were the 𝑘 − 𝜔 𝑆𝑆𝑇 and the 𝑅𝑆𝑀 (Reynolds Shear-stress Model). The two models present
two different assumptions for turbulence, the former assumes the isotropic condition, and the latter
assumes the anisotropic behaviour of turbulence. We will compare the variation in the results for the
two turbulence models with respect to experimental measurements by the Vattenfall Research and
Development, Sweden [30]. The density ratio of the present configuration 𝜌፬/𝜌፟ = 8. A time step
of 1 × 10ዅኽ 𝑠 was used to simulate the case, with a hexahedral trimmed mesh for the fluid and a
hexahedral mesh for the structure. A second order temporal scheme was used during the simulation.
The first cell thickness of the mesh has a wall 𝑦ዄ ≤ 5. The simulation considers a FE discretization for
the structure solver and FV for the fluid solver. Similar to the previous case, the Gauss Seidel coupling
algorithm was used to couple the two solvers. Table 6.4 gives the exact specifications of the material
properties which were used in the experiment. The initial perturbation provided in this case is imposed
in form of a uniform body force, which is applied initially and then removed. The sudden removal of the
force triggers the vibrations. Due to the uniform loading, mainly the first mode of the tube is excited.

Results and Discussions
Table 6.5 compiles the experimental the simulation results of this case. The displacements from the
vibration of the beam were measured in two directions of the Cartesian coordinates (𝑥 and 𝑦) forming
the cross sectional plane of the domain. The natural frequency of the vibration was calculated by
performing FFT (Fast Fourier Transforms) of the displacement signal in both the directions. As it can
be observed, URANS is capable of predicting the natural frequencies of the vibrating tube in a turbulent
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Fluid Properties (Water)
Density (𝜌፟) 1000 𝑘𝑔/𝑚ኽ
Kinematic Viscosity (𝜈፟) 1 × 10ዅዀ 𝑚ኼ/𝑠
Turbulent Intensity at inlet 1%
Structural Properties (Steel)
Density (𝜌፬) 8055 𝑘𝑔/𝑚ኽ
Elasticity Modulus 193 𝐺𝑃𝑎
Poisson Ratio 0.285

Table 6.4: Material properties in the Vattenfall case-II experiment.

flow close to the experimental results. The behaviour of a solid tube in case of URANS resembles that
of a freely vibrating beam. The cases when performed using URANS leads to a high initial displacement
of the tube which eventually damps out and reaches a steady state. Whereas, in the experimental case
the vibrations are self sustaining in nature. Hence, the critical flow velocities (refer section 2.4) for TIV
cannot be accurately predicted using this flow solver.

An important fact to observe is that the simulation of vibrations by providing an initial perturbation
is not self-sustaining and vibrations are eventually damped out due to the added-mass effect.

Results Inlet volume flow rate [𝑙/𝑠]
Modal frequency
(first mode) [𝐻𝑧]
X-dir Y-dir

Experiment results 10 8.29 9.52
𝑘 − 𝜔 𝑆𝑆𝑇 10 9.67 9.96
𝑅𝑆𝑀 10 9.93 9.96

Table 6.5: Comparison table of the results between the simulations for Vattenfall case-2 experiment. It is seen that the change
in the turbulence model does not have any effect on the behaviour of the beam. Also the calculated frequency is similar for X
and Y-directions.

The comparison table 6.5 shows the results obtained from each of the simulations. It can be observed
in the table that the frequencies in the x-direction and the y-direction are similar each other. Moreover,
the x-direction frequency deviates from the experimental results by approximately 10%. In the y-
direction however, the frequency prediction is more accurate. The first reason for the difference from
the experimental results is the geometry. Since the geometry of the cross-section is symmetric about
the X and the Y-axis, the modal frequency of structure in both the directions would be expected to be the
same. The second reason of the errors may be due to non conformal meshes. Non conformal meshes
usually involve errors in the mapping of data between the meshes. These errors can significantly
influence the mapping of forces from the fluid to the structure domain therefore causing the deviations.
Moreover, RANS models are unable to calculate pressure fluctuations at the interface. The simulated
vibrations are not self sustained, which affects the dynamics significantly.

The second observation to be noted in the results is that the modal frequencies obtained from the
structure solver are not directly dependent on the type of URANS model used. The 𝑘−𝜔 𝑆𝑆𝑇 model is
based on the Boussinesq approximation of isotropic turbulence, and the Reynolds Shear Stress model
(𝑅𝑆𝑀) is based on calculating the turbulent quantities using transport equations for the Reynolds stress.
Both the models eventually produced similar results. This fact leads to a conclusion that the calculations
of time or ensemble averaged turbulent values do not have a direct role to play in FSI simulations. The
main values used for the FSI simulation are the time averaged quantities of pressure (𝑝), calculated
from RANS equations.

6.1.3. Flexible brass beam in turbulent water
Flexible beam in turbulent water flow is an experimental case by Chen and Wambsganns [21]. The
case involves an annular flow domain along a cylindrical brass beam. The hydraulic diameter of the
fluid domain is 𝐷፡ = 0.0127 𝑚. The outer-wall is a rigid steel cylinder, the natural frequencies and the
damping ratios are then measured for three constant inlet velocity conditions, 10 𝑚/𝑠, 20 𝑚/𝑠 and
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30 𝑚/𝑠. The bulk Reynolds number for the flows can be calculated using

𝑅𝑒 =
𝑢𝐷፡
𝜈፟

The 𝑅𝑒 for 𝑢 = 10 𝑚/𝑠 is calculated to be 1.21 × 10ዀ which is in the turbulent regime. The beam is
clamped (fixed) on both the ends. The beam has a core diameter of 𝐷 = 0.0127 𝑚 and the annulus
has an outer diameter of, 𝐷፨ = 0.0254 𝑚. The length of the cylinder is 𝐿 = 1.19 𝑚. The geometry of
the domain can be visualised in Figure 6.5. The main objective of the test case is to investigate the
effect of flow rate on the natural frequency of the structure. For this case, three inlet velocities are
used, 10 𝑚/𝑠, 20 𝑚/𝑠 and 30 𝑚/𝑠.

(a)
(b)

Figure 6.5: Geometry of the domain for the flexible brass beam in water experiment. The domain length ፋ  ኻ.ኻዃ ፦. The outer
diameter ፃᑠ  ኺ.ኺኼኾ̉, and the inner diameter ፃᑔ  ኺ.ኺኻኼ ፦. The solid brass rod in fixed on both the sides.

Fluid Properties (Water)
Density (𝜌፟) 1000 𝑘𝑔/𝑚ኽ
Kinematic Viscosity (𝜈፟) 1 × 10ዅዀ 𝑚ኼ/𝑠
Structural Properties (Brass)
Density (𝜌፬) 8400 𝑘𝑔/𝑚ኽ
Elasticity Modulus 107 𝐺𝑃𝑎
Poisson Ratio 0.331

Table 6.6: Material properties used in flexible beam in water experiment.

Natural Frequency [Hz]
Velocity 10 m/s 20 m/s 30 m/s
Experimental [21] 27.9 27.7 27.5
Computed 25.9 25.5 25.0

Modal Damping Ratio
Velocity 10 m/s 20 m/s 30 m/s
Experimental [21] 0.013 0.021 0.030
Computed 0.018 0.022 0.031

Table 6.7: Compiled results for experimental results and the simulated results. The frequencies of vibrations are seen to increase
with the flow velocity. However, the damping ratio decreases linearly with an increase in the flow velocity.

Simulation Set-up
The FSI simulation was performed with water inlet velocities 10 𝑚/𝑠, 20 𝑚/𝑠 and 30 𝑚/𝑠. The
𝑘 − 𝜔 𝑆𝑆𝑇 turbulence model was used for the three inlet conditions. The turbulence intensity at the
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Figure 6.6: Plots comparing the results obtained from experimental and simulation values. The plots depict the change of the
natural frequency and the damping ratio of the brass beam as a function of flow velocity.

inlet of the domain is set to 5% with a turbulent length scale of 0.1 𝑐𝑚. The material properties of
fluid and the structure are shown in Table 6.6. A hexahedral mesh is used to mesh the fluid and the
solid domains. The first cell thickness of the wall 𝑦ዄ ≥ 30. Since the first cell of the mesh is in the log
layer, 𝑦ዄ treatment (wall functions) were used for the fluid domain. The density ratio of the present
configuration 𝜌፬/𝜌፟ = 8.4. A time step of 1 × 10ዅኽ 𝑠 was used to simulate the case. A second order
temporal scheme was used during the simulation. Similar to the Test Case 𝐼𝐼, the structure solver
used FE discretization, and the fluid solver used FV discretization scheme. The Gauss Seidel coupling
scheme is used as the coupling algorithm.

An impulse force of 0.2 𝑚/𝑠ኼ was applied for a period of 0.1 𝑠, at a central patch of the beam. The
impulse force has a Gaussian distribution curve as a function of time. The vibrations imposed due to
the impulse force were analyzed using FFT (Fast Fourier Transforms). The damping ratios of the beam
were calculated using a least square method. The simulation was performed till a steady state was of
the solid was attained.

Results and Discussion
Initial simulation of a freely vibrating beam in vacuum was performed to calculate its natural frequency.
The natural frequency of the beam in vacuum was calculated to be 28.49 𝐻𝑧 analytically and 28.57 𝐻𝑧
through simulation. The experimental measurements [21] show that the beam had a natural frequency
of 28 𝐻𝑧 in quiescent water. A simulation in quiescent water with similar boundary conditions was per-
formed, and the frequency was calculated to be 26 𝐻𝑧. This suggests that the boundary conditions
of the beam in simulation do not completely match the boundary conditions of the beam in the ex-
periment. A higher frequency of the beam is possible if the structure is pre-stressed. However, the
paper by Chen and Wambsganns [21] does not mention any changes related to boundary conditions,
therefore, a deviation in the results of about 10% can be observed. Figure 6.6 and table 6.7 show a
comparison and the trend of the frequencies obtained as a function of velocity.

It can be observed that the natural frequency of vibration decreases by 0.4 𝐻𝑧, as the average
velocity increases by 10 𝑚/𝑠. The similar trend has also been observed in the experimental results for
natural frequencies. Damping ratios in both the cases are a linear function of the flow velocity.

6.2. Simulating TIV through Pressure Fluctuationmod-
elling

The second study is performed to validate the pressure fluctuation model which has been derived in
Chapter 5. The study involves two test cases; the first case is a fluid only simulation to validate the
results of pressure fluctuation model with DNS results. For this a DNS of turbulent plane channel flow
was chosen.

After the case is validated, the second case is performed, which is a coupled FSI case. The FSI case
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is a numerical test case which is performed to check whether the fluid solver can generate TIV on the
solid body. The results of this case are compared to a standard U-RANS model (𝑘 − 𝜔).

6.2.1. Plane Channel Flow test case
The turbulent plane channel flow is a widely researched upon numerical and experimental case. This
case provides a lot of information on turbulent flows, instability and their mechanisms. A DNS test case
performed by Abe et al. [28] of a turbulent plane channel flow case was chosen for this case. A picture
of the mesh and the domain dimensions of the fluid domain are shown in figure 6.7. The flow has a
friction Reynolds number, 𝑅𝑒Ꭱ = 640 . To simulate the case, the standard 𝑘 −𝜔 turbulence model was
used with the pressure fluctuation model. The resulting pressure fluctuation field is later analysed and
compared to the DNS database.

Figure 6.7: Fluid domain for turbulent plane channel flow. The length of the domain, ፋ  ኻኼ.᎑, and ፇ  ኼ᎑. Here ᎑ is the
half channel height.

Simulation set-up
The plane channel flow simulation is performed in the CFD package OpenFOAM extend-3.2. The inlet
and the outlet of the domain were given a cyclic boundary condition. The flow was forced by applying an
external pressure gradient with a first order time stepping scheme, and the results were then compared
after a steady state was achieved. The simulation was performed for a total time of 150 seconds, for
the flow to reach a stable state. The time step utilized in was 1 𝑚𝑠. The flow was performed with
standard 𝑘 − 𝜔 model, without the use of wall functions for the mean velocities 𝑢. A forcing term is
used to let the flow accelerate to the required 𝑅𝑒Ꭱ. The forcing term was calculated from the definition
of 𝑢Ꭱ.

𝑢Ꭱ = [
𝜏፰ፚ፥፥
𝜌፟

]
ኻ/ኼ

where, 𝑢Ꭱ is the friction velocity and Τ፰ፚ፥፥, the wall shear stress. Since this is a 2-Dimensional simu-
lation, a hexahedral mesh with a single cell thickness in the Z-direction. The first cell thickness used
with a wall 𝑦ዄ ≤ 5.

The set-up of the pressure fluctuation model requires input of some parameters such as, the number
of modes (𝑛𝑀𝑜𝑑𝑒𝑠), the integration constant for 𝜂(𝑖𝑛𝑡𝐶𝑜𝑛𝑠𝑡)(refer equation 5.20 for 𝜂) , and the time
at which the pressure model will begin to calculate the turbulent fluctuation fields (𝑠𝑡𝑎𝑏𝑇𝑖𝑚𝑒). The
values of 50, 1000, and 80 𝑠 were provided to each of the parameters respectively. The value of
𝑠𝑡𝑎𝑏𝑇𝑖𝑚𝑒 is chosen to ensure that the calculations for pressure fluctuations are started only after the
flow is developed; this ensures stability of the solver. The results from the simulations are compared
to the results in the article by Abe et al. [28]. The results have been compared at the two different
positions in the wall normal direction at a length of 6.375𝛿 from the left end of the domain.

• Near the bottom Wall 𝑦ዄ ≈ 4(Point A).

• At the centre of the channel (Point B).



44 6. Applications of URANS in FSI to simulate TIV

Results and Discussions
Figure 6.8a and figure 6.8b show the pressure fluctuations and the velocity fluctuations that have been
modelled from the turbulence models for the complete domain. Similarly, the pressure and velocity
fluctuations for all the components at Point B (half channel height), have also been shown in figures 6.9.
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(a) Modeled pressure fluctuations from turbulence model.
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(b) Modeled velocity fluctuations from turbulence model.

Figure 6.8: Instantaneous picture of the modeled turbulent quantities through the pressure fluctuation model. The quantities of
the pressure ፩ᖤ and velocity field ፮ᖤ are not scaled, they have units ፦Ꮄ/፬Ꮄ and ፦/፬ respectively.

It can be observed from the figures and the graphs that the velocity and the pressure fluctuations
show a random behaviour. Achievement of the random behaviour in the flow was the first objective of
the pressure fluctuation modelling. The second objective of the study was to determine whether the
values of pressure fluctuations that are modeled using this method are comparable to the DNS results.

To analyze the modeled pressure fluctuations, a spectral analysis of the turbulent pressure field by
taking the complete time signal at 𝑦ዄ = 10 was performed. The resulting power spectrum is compared
to results from the DNS database of Abe et al. [28]. Figure 6.10 shows the power spectrum of the
turbulent pressure field 𝑝ᖣ signal. Looking at the figure, the power spectrum of the modelled pressure
fluctuations can be divided into two main regions.

• The first region is the power spectrum in the range 10ዅኻ ≤ 𝑘𝛿 ≤ 10ኼ. In this range it can be very
clearly observed that the power spectrum from the modelled pressure fluctuations is very similar
to the power spectrum from the DNS database. This range of 𝑘 is the energy containing range
and contribute majorly to the magnitude of the pressure fluctuations.

• The second region is the power spectrum of the modelled pressure fluctuations in the range
𝑘𝛿 > 10ኼ. In this region, it is observed that the spectrum is greatly overestimated when compared
to the DNS database. This region consists of smaller length scale eddies which contribute very
little towards the energy contained by the turbulent pressure fluctuations.

Due to the direct dependence of pressure fluctuations calculated on the energy spectrum model
(refer equation 5.11), it can be concluded that in the first region of the energy spectrum model provides
a good estimate. This region mainly consists of the the larger eddy scales and inertial subrange
(𝑘 ≈ 𝑘፞ << 𝑘፤፨፥). However, in the deviation the in the second region suggests that the energy
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Figure 6.9: Pressure and Velocity fluctuations at a single point at the half channel height in time. The ’+’ symbol indicates that
the values of the pressure and velocity fluctuations have been normalized by the wall friction velocity ፮ᒙ.

spectrum model does not provide good estimation for smaller eddy length scales (𝑘፤፨፥). Therefore,
the model needs a better approximation of energy spectrum for wavenumbers 𝑘 ≈ 𝑘፤፨፥ to produce a
better correlation with DNS results.

Table 6.8 compares the different characteristics of the flow. For a proper comparison all the data
has been normalized with friction velocity, 𝑢Ꭱ. It can be observed from the table that near the wall, the
RMS of total pressure (𝑝ፑፌፒ) from the pressure fluctuation model and the standard URANS model are
observed to be underestimated in comparison to DNS results. At the centre, the 𝑝ፑፌፒ is overestimated
for the pressure fluctuation model and the remains underestimated for the standard URANS model.
A reverse trend can be observed in the case of turbulent kinetic energy. At Point A (𝑦ዄ ≈ 4), the
values of 𝐾 are overestimated compared to DNS and the values at Point B it’s underestimated. The
second observation is that the 𝑝ፑፌፒ at near the wall and at half channel height are nearly the same
for the pressure fluctuation model and the standard URANS model. This observation brings in light the
diffusive effects of 2-equation RANS models that are based on Boussinesq hypothesis. The deviation in
the value of 𝐾 could also be due to the inaccuracy of near wall calculations where viscous forces tend
to dominate. Moreover, since the model assumes isotropy, the transport of eddies due to pressure-
strain interactions are neglected. This assumption can underestimate the shear stresses and leads to
lower values of pressure fluctuations. The RMS (Root Mean Squared) values of near wall pressure
fluctuations 𝑝ፑፌፒ are 50% lower when compared to DNS results. But taking into account the 𝑝ፑፌፒ
from the standard URANS model, it can be observed that the pressure fluctuation model is a much
better approximation for an FSI simulation. Apart from the RANS models, the results obtained are
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Figure 6.10: The figure depicts the comparison of power spectrum of the turbulent pressure fluctuations of the DNS database [28]
and the Pressure Fluctuation Model as a function of ፤᎑ at ፲Ꮌ  ኻኺ. Where ፤ is the wavenumber and ᎑ the channel height.

𝑅𝑒Ꭱ = 640
Case Position 𝑝፫፦፬ TKE
DNS results [28]

Point A
2.36 0.0239

Pressure Fluctuation Model 1.41 0.09
𝑘 − 𝜔 model 0.000228 0.09
DNS Results [28]

Point B
0.746 0.771

Pressure Fluctuation Model 1.47 0.622
𝑘 − 𝜔 model 0.000221 0.622

Table 6.8: Comparison between the RMS of total pressure ፩ᑉᑄᑊ and the Turbulent Kinetic Energy (TKE) of the flow obtained
from DNS database, U-RANS model with pressure fluctuation model and the standard URANS model. The total pressure can be
defined as ፩  ፩ ዄ ፩ᖤ.

also sensitive to factors such as the mesh, discretization schemes, and time steps. It can be hence
be concluded that the intensity of pressure fluctuations are dependent on proper values of Turbulent
Kinetic energy 𝐾 to obtain a good correlation between the pressure fluctuation model and DNS results.

In a fluid structure interaction problem, we are more concerned with the near wall pressure fluctu-
ations as the traction forces on the structure are calculated through these pressure fluctuations. It was
observed that the modelled turbulent pressure fluctuations are under-estimated near the wall. Due to
the lower values of the turbulent pressure field, we can also expect a more conservative result obtained
from a coupled simulation, when compared to a high fidelity fluid solver.

6.2.2. Steel flap in turbulent Water flow
The steel flap in a turbulent water case is a variation of the numerical benchmark test case by Turek and
Hron [9]. This is a 2-dimensional, numerical test case consisting of a cantilever steel flap with the same
orientation as the fluid flow. The fluid flow (water) around the flap is turbulent in nature. This turbulent
flow causes pressure fluctuations on the flap, causing vibrations. This case is to test the feasibility of
pressure fluctuation modelling for simulating Turbulent Induced Vibrations (TIV). Figure 6.11 gives a
clear picture of the mesh and the domain size that was used for the simulating TIV.

Simulation set-up
The simulation was performed by coupling the FVM code OpenFOAM and the FEM code Deal.II. Since
the mesh used is non conformal, the mesh interpolation was carried out using the Thin-plate-spline
radial basis function. The left boundary of the mesh is considered as a velocity inlet, the right boundary
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Figure 6.11: Mesh and domain of the Steel Flap in Turbulent Water test case. The length of the fluid domain (in blue) ፋ  ኼ. ፦,
height of the fluid domain ፇ  ኾኺ ፦፦, length of the flap (in black) ፥  ኻ.ኽ ፦ and the width of the flap ፡  ኺ.ኼ ፦፦. The left
end of the steel flap is provided a fixed boundary condition, and the right end of the flap is free resulting in a cantilever beam.

Fluid Properties (Water)
Density (𝜌፟) 1000 𝑘𝑔/𝑚ኽ
Kinematic Viscosity (𝜈፟) 1 × 10ዅዀ 𝑚ኼ/𝑠
Structural Properties (Steel)
Density (𝜌፬) 7850 𝑘𝑔/𝑚ኽ
Elasticity Modulus 210 𝐺𝑃𝑎
Poisson Ratio 0.33

Table 6.9: Material properties used in flexible steel flap in water experiment.

is the pressure outlet. The top and bottom boundaries of the domain are considered as walls with no-
slip condition. The solid on the other hand is a cantilever beam, depicted by the mesh in black color
in figure 6.11. The left boundary of the domain is given the Dirichlet boundary condition with zero
displacement in all the directions. The other surface patches of the mesh are free to move. Only the
patch of the fluid mesh in contact with the solid beam is free to move, with the relative velocity and
displacement at the interface being zero. All the other boundaries in the fluid domain are fixed. The
mesh of the structure and the fluid are composed of quadrilateral mesh cells, since the simulation is
a 2-Dimensional case. A time step of 1 𝑚𝑠 was used in the simulation, with a second order temporal
scheme.

The coupling algorithm used in this case, was the IQN-ILS (Interface Quasi Newton with Inverse
Jacobian estimate by Least Squared Method). The inlet velocity of water is 3 𝑚/𝑠 and the bulk Reynolds
Number is 1.2 × 10ዀ, considering the inlet velocity as the bulk velocity and the channel height as the
length scale. The working fluid used here is water and the solid is steel, the properties of the same
have been mentioned in table 6.9. Since the Reynolds number is sufficiently high the flow of water is
turbulent. Due to high turbulence, the pressure fluctuations provide external excitation on the solid
body. The FSI simulation was performed using a standard U-RANS model (standard 𝑘 − 𝜔). The first
case was performed without the use of pressure fluctuation modelling, and the second simulation was
performed with the use of pressure fluctuation modelling. The final results are then compared and
analysed.

Case Natural Frequency [Hz] RMS Amplitude [×10ዅኽ 𝑚]
Analytical (in vacuum) 91.67 –
Standard 𝑘 − 𝜔 (in water) 76.9 0.014
Pressure Fluctuation Model (in water) 76.25 0.379

Table 6.10: Comparison of the calculated natural frequencies of the system by FFT (Fast Fourier Transforms) of the beam
displacement at the free end with respect to time. The analytical calculations are performed to calculate the natural frequency
of a cantilever beam in vacuum. Due to the added-mass effect of the water, the natural frequency of the steel flap is seen to
decrease by approximately 16%. The main observation can be made in the comparison of the RMS amplitudes of the beam.
The amplitude resulting from pressure fluctuation model are ኽኺ× higher compared to the standard ፤ ዅ Ꭶ model.
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Figure 6.12: Comparison between the displacements of the free end of the beam obtained from the FSI test case, with and
without the pressure fluctuation model. The vibrations from the ፤ ዅ Ꭶ are seen to damp out, whereas, the vibrations from the
pressure fluctuation model are self-sustained.

Results and Discussions
Figure 6.12 shows the comparison between the vertical displacements of the free-end (refer figure 6.11)
of the cantilever beam for both the cases. It can be observed that in the standard case, when the pres-
sure fluctuation model is not used, there is a large initial displacement observed due to the developing
flow along the beam. After the flow is fully developed, the beam vibrations are significantly damped
out, and displacement amplitudes of in the order of 10ዅ 𝑚 can be observed. This behaviour is also
observed in the study by Eline et al. [22]. However, when the pressure fluctuation model is used, it can
be observed the vibrations induced on the beam do not damp out, and there is a continuous random
excitation due to externally applied pressure fluctuations.

These external excitations on the beam simulate the effect of TIV. The amplitudes of the vibration
in this case are 2 orders of magnitude higher than the initial test case performed. The frequency of
the vibrations have been analysed and is tabulated in table 6.10. It can be observed that both the
methods predict a similar natural frequency of the beam which is also in accordance with the studies
performed by Eline et al. [22] and De Ridder [20]. With the pressure fluctuation model, it is observed
that the amplitude of the vibrations is an order of magnitude higher compared to a standard U-RANS
model.

By use of a standard U-RANS models in FSI simulations one cannot predict the amplitudes of
structural vibrations due to excessive damping. However, with the use of pressure fluctuation modelling
it is possible to estimate the amplitudes of vibrations of the structures. Furthermore, it is also possible
to estimate the critical velocity of the system which leads to fluid-elastic instability.

Although the model succeeds at generating the required behaviour of the structure, it is yet to be
validated with experimental cases. Further focus would be given to validating this method to solve
application based problems in the future.



7
Conclusions

In this thesis work, an elaborate study was made on the causes of FIV (Flow Induced Vibrations) and
TIV (Turbulence Induced Vibrations) on slender structures in nuclear reactor applications. The closely
packed slender rods are subjected to pressure fluctuations due to turbulent flow of coolants around
them, which can develop into periodic pressure pulsations, leading to fluid elastic instabilities. The
initiation of FIV is usually due to externally induced excitation. The most common source of these
excitation are turbulent pressure fluctuations. The current study was focused on the ways to simulate
TIV for axial flow conditions. Literature study showed that the state of the art methods of simulating
Turbulence induced vibrations use high fidelity fluid solvers such as DNS or LES [3]. But the usage of
high fidelity is an expensive method which is not feasible for industrial use. The task of reducing the
computational expenses brought forth the main question during the course of the thesis, Is it possible
to simulate 7urbulence Induced Vibrations using low fidelity solvers using RANS models"

Focusing on the research question, studies were then based on the use of URANS for simulating
TIV by partitioned coupling of fluid and structure solvers. Two methods for this were explored within
the thesis, the first method is to externally induced vibrations through an initial perturbation consisting
of an impulse or a uniform body force. The second method is to model pressure fluctuations from the
turbulent quantities calculated in the U-RANS solver and mapping the fluctuating pressure field onto
the structure solver, triggering the vibrations.

For simulating TIV through initial perturbations, three experimental cases were simulated and com-
pared to experimental results.

• Test case-I: The Vattenfall-I case, was a simple laminar case, which validated the use of use of
the Gauss-Seidel coupling scheme and the use of FEM-FVM coupling. No stability issues were
observed with use of Gauss-Seidel coupling scheme. It was also concluded that FEM discretization
is more efficient for solid solvers and can lead to a faster convergence compared to an FVM-FVM
coupling.

• Test case-II: In the Vattenfall-II experimental case, the simulation of turbulence vibrations was
performed using two different URANS model. Since, the use of the FVM-FEM combination resulted
in a computationally cheaper solution; it was preferred over using the FVM-FVM combination. The
URANS models used for the test case were the 𝑘 − 𝜔 𝑆𝑆𝑇 and the 𝑅𝑆𝑀 (Reynolds Shear-stress
Model). From the results we conclude that the natural frequencies, mainly the first modes of the
structures, can be predicted accurately.

• Test case-III: The simulation of the Flexible brass beam in turbulent water case was performed to
validate the effects of the varying inlet velocities on the natural frequency of the structure. Three
inlet velocities 10 𝑚/𝑠, 20 𝑚/𝑠, and 30 𝑚/𝑠 were selected to validate the test case. Although
a deviation of 10% was observed in the values of natural frequencies, the trend of the natural
frequency dependence on the flow velocities were similar. The natural frequencies are observed
to be a linear function of the flow velocity with a negative slope. Whereas, the damping ratios
was found to be an increasing linear function of the inlet velocity. Hence, it can be concluded
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that the behaviour of the beam is accurately predicted in comparison to the experiments through
the use of URANS models.

An important conclusion from Test cases 𝐼𝐼 and 𝐼𝐼𝐼, is that the URANS models do not have direct
influence on an FSI simulation for simulating TIV. In FSI simulations with standard URANS models,
the traction on the structure is calculated with the use of the time or ensemble averaged quantities.
Therefore, only the time or ensemble averaged effect of turbulent fluctuations on the flow are taken
into account. However, for simulating structural vibrations a detailed variation of the turbulent fluctu-
ations over time is needed. Hence, the URANS models can only predict the natural frequencies and
modal damping ratios accurately. However, The turbulence models are incapable of simulating external
excitation on the structure solver. This results in the damping out of the vibrations that are initiated
through the external perturbation.

In chapter 4, the second method is explored which involved modeling of turbulent pressure fluctua-
tions. These pressure fluctuations act as an external excitation causing the solid beam to vibrate. The
model focuses on the usage of isotropic turbulence assumption. To validate the method, an initial sim-
ulation of a turbulent plane channel flow was performed with 𝑅𝑒Ꭱ = 640 and compared to DNS results
by Abe et al. [28]. The RMS value of pressure fluctuations modelled near the wall are under-estimated
when comparable to the DNS results. These modelled pressure fluctuations in an FSI simulation will
lead to lower amplitudes of vibrations compared to high fidelity solvers while simulating TIV.

After validating the model with a fluid only test case, the FSI simulation of TIV was performed
as the next step. For this a 2-dimensional numerical test case was chosen. The test case was of a
cantilever steel flap in turbulent water flow, with the flow being along the longitudinal axis of the beam.
This test case was performed using a U-RANS model, with and without the use of pressure fluctuation
model. The results of these two cases were then compared to check the feasibility of the results. It
was observed from the results that the standard U-RANS model without pressure fluctuation model
damps the vibrations of the beam, whereas, the in the other case, the modelled pressure fluctuations
continue to generate vibrations of the beam, and the beam is seen to vibrate in a random fashion, as
expected in a turbulent flow.

The above discussions shows the possibility of the usage of U-RANS models with the usage of a
pressure fluctuation model to simulate TIV. The initial results obtained from section 6.2.2 show that
the inclusion of a pressure fluctuation modeling within the fluid solver can simulate the behaviour of
solid similar to that observed in TIV.

7.1. Recommendations
This pressure fluctuation method should be further validated with experimental test cases to check the
accuracy of this method and to refine the solver further. Models with for energy spectrum estimation
with anisotropic turbulence should also be looked into. The anisotropic model can then be used in
conjunction with Reynolds Shear stress turbulence model (𝑅𝑆𝑀), which can then be validated with the
experiments and DNS results.



A
pimpleFluct Solver - Main Code

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
App l i c a t i o n

p imp leF luc t

Desc r i p t i on
Large time−step t r a n s i e n t so l ve r f o r incompress ib le , f low using the PIMPLE
(merged PISO−SIMPLE ) a lgor i thm .

Turbulence model l ing i s gener ic , i . e . laminar , RAS or LES may be se lec ted .

Mode l l ing pressure and v e l o c i t y f l u c t u a t i o n s us ing RANS models .
\*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

#include ” fvCFD .H”
#include ”Random.H”
#include ” vec to r .H”
#include ” v e c t o r L i s t .H”
#include ” c rea teFunc t ions .H”
#include ” s ing lePhaseTransportModel .H”
#include ” turbulenceModel .H”

/ / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /

int main ( int argc , char *argv [ ] )
{
# include ” setRootCase .H”
# include ” createTime .H”
# include ” createMesh .H”
# include ” c r e a t e F i e l d s .H”
# include ” c rea teMoreF ie lds .H”
# include ” randomValueGenerator .H”
# include ” i n i t C o n t i n u i t y E r r s .H”

/ / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /

Info<< ” \ nS ta r t i ng ␣ t ime␣ loop \n” << endl ;

while ( runTime . run ( ) )

51



52 A. pimpleFluct Solver - Main Code

{
# include ” readTimeContro ls .H”
# include ” readPIMPLEControls .H”
# include ” CourantNo .H”
# include ” se tDe l taT .H”

runTime++;

Info<< ”Time␣=␣ ” << runTime . timeName ( ) << n l << endl ;

/ / −−− Pressure−v e l o c i t y PIMPLE co r r e c t o r loop
for ( int oCorr = 0; oCorr < nOuterCorr ; oCorr++)
{

i f ( nOuterCorr != 1)
{

p . s t o r eP r e v I t e r ( ) ;
}

# include ”UEqn .H”

/ / −−− PISO loop
for ( int co r r = 0; co r r < nCorr ; co r r++)
{

# include ”pEqn .H”
}

turbulence−>co r r e c t ( ) ;
}

runTime . wr i t e ( ) ;

/ / −−− Pressure F l u c t ua t i on Mode l l ing Ca l c u l a t i o n s
i f ( runTime . va lue ( ) >= stabTime )
{

# include ” v e l o c i t y F l u c t .H”
}
else
{

pTurb . i n t e r n a l F i e l d ( ) = 0;
pTurb . boundaryF ie ld ( ) = 0;

}
Info<< ” ExecutionTime␣=␣ ” << runTime . elapsedCpuTime ( ) << ”␣s ”

<< ”␣␣ClockTime␣=␣ ” << runTime . elapsedClockTime ( ) << ”␣s ”
<< n l << endl ;

}

Info<< ”End \n” << endl ;

return 0;
}

/ / ************************************************************************* / /
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B.1. velocityFluct.H

s c a l a r tCur ren t = runTime . va lue ( ) ;
s c a l a r dtValue = runTime . de l taTVa lue ( ) ;
s c a l a r tO ld = runTime . s tar tT ime ( ) . va lue ( ) ;

/ /−−−−−−−−−− Ex t r a c t F i e l d s from the turbu lence model −−−−−−−−−−−−−−−−−−−−−−−−

tmp<vo l S c a l a r F i e l d > eps = turbulence−>eps i l on ( ) ;

nTimes = ( ( tCur ren t − tO ld ) / dtValue )+1; / / number of sub−t imeSteps

modesList = l inSpace (1 ,nModes , nModes ) ;

tmp<vo l S c a l a r F i e l d > ke = turbu lence −> k ( ) ;

tmp<vo l S c a l a r F i e l d > omega_ = eps ( ) / ke ( ) ;

/ /−−−−−−−− Compute the l a rge eddy and kolmogorov wave numbers −−−−−−−−−−−−−−

kappaKol = 2* p i *Foam : : pow( eps ( ) / Foam : : pow(nu , 3 ) ,0 .25 ) ;

lEddy = Foam : : pow( ke ( ) , 1 . 5 ) / eps ( ) ;

kappaEddy = 2* p i / lEddy ;

tKo l = Foam : : sq r t (nu / eps ( ) ) ;

/ /−−−−−−−−−− I t e r a t i o n s f o r beta −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#inc lude ” be ta I t e r .H”

/ /−−−−−−−−−− c e l l −wise loop f o r c a l c u l a t i n g v e l o c i t y f l u c t u a t i o n s −−−−−−−−−−

In fo << ” Enter ing ␣ c e l l w i s e ␣ loop ” << endl ;
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f o r A l l (mesh .C ( ) , c e l l I )
{

#inc lude ” c e l l C a l c .H”
}
In fo << ” uF luc t ␣ : : ” << uF luc t . average ( ) << endl ;

/ /−−−−−−−−−− Solve f o r pressure F l u c t ua t i on s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#inc lude ” so lveTurbPress .H”

In fo << ” Pressure␣ F l u c t ua t i on ␣Average : : ␣ ”<< pTurb . average ( ) << endl ;

B.2. betaIter.H

dimens ionedScalar tCur rent_
(

” tCur rent_ ” ,
dimensionSet (0 ,0 ,1 ,0 ,0 ,0 ,0) ,
tCur ren t

) ;
d imens ionedScalar tOld_
(

” tOld_ ” ,
dimensionSet (0 ,0 ,1 ,0 ,0 ,0 ,0) ,
tO ld

) ;

kappaE = Foam : : pow( ke () ,−1.5)
* eps ( )
* Foam : : pow(1 .5 ,1 . 5 )
* Foam : : pow(2 ,( −17/4));

In fo <<”Avg kappE ”<< kappaE . average ( ) << endl ;
beta = 2 * nu * Foam : : pow( kappaE , 2 ) ;
In fo << ” Beta Value : : ” << beta . average ( ) << endl ;
A = 3 / 7.12719 / i n t f V o l ( beta , dEta , tKo l , d imlessVar ) ;
In fo << ”A : : ” << A . average ( ) << endl ;

B.3. cellCalc.H
/ / p o s i t i o n vec tor
vec tor posVec = cent res [ c e l l I ] ;

/ / dKappa
dKappa = (Foam : : log ( kappaKol [ c e l l I ] )

−Foam : : log ( kappaEddy [ c e l l I ] ) ) / ( nModes−1);

i f ( dKappa >0){
/ / kappa (1 ,nModes )
kappa = Foam : : exp ( ( modesList−1)*dKappa)*kappaEddy [ c e l l I ] ;

/ / kappa (1 ,nModes )
i f ( kappaE [ c e l l I ] <= kappaEddy [ c e l l I ] )
{

dKappa = (Foam : : log ( kappaKol [ c e l l I ] )
− Foam : : log ( kappaE [ c e l l I ] ) )
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/ (nModes−1);
kappa = Foam : : exp ( ( modesList−1)*dKappa)*kappaE [ c e l l I ] ;

}

s c a l a r C = 1;
s c a l a r D = 1;
f o r ( i n t i = 0 ; i < nModes ; i++ )
{

C = kappa [ i ] / kappaE [ c e l l I ] ;
D = 1 + C*C;
s c a l a r k_ = −2*nu . va lue ()* tKo l [ c e l l I ]*Foam : : pow( kappa [ i ] , 2 ) ;
eKappa [ i ] = A[ c e l l I ] * 2 * ke ( ) [ c e l l I ] * 7.12719 / 3 / kappaE [ c e l l I ]

* Foam : : pow(C ,4 ) / Foam : : pow(D,2 .8334) * Foam : : exp ( k_ ) ;
X[ i ] = randX [ c e l l I ] [ i ] ;

}

theta = Foam : : acos (1−(2*X ) ) ;
alpha = Foam : : atan (−1/Foam : : cos ( theta ) ) ;
p s i = 2* p i *X ; / / p r ev i ous l y l a b e l l e d phi
phase = p i *X ;
v e c t o r L i s t UcVec = ve c t o r L i s t (nModes ) ;

f o r ( i n t i = 0 ; i < nModes ; i++ )
{

kappaVec [ i ] = vec tor (
kappa [ i ] * Foam : : s i n ( theta [ i ] ) * Foam : : cos ( p s i [ i ] ) ,
kappa [ i ] * Foam : : s i n ( theta [ i ] ) * Foam : : s i n ( p s i [ i ] ) ,
kappa [ i ] * Foam : : cos ( theta [ i ] )

) ;

omega[ i ] = Foam : : pow( eps ( ) [ c e l l I ] , ( 1 / 3 ) ) * Foam : : pow( kappa [ i ] , ( 2 / 3 ) ) ;

sigma [ i ] = vec tor (
(Foam : : cos ( alpha [ i ] ) ) * Foam : : cos ( p s i [ i ] )
− Foam : : cos ( theta [ i ] ) * Foam : : s i n ( p s i [ i ] ) * Foam : : s i n ( alpha [ i ] ) ,

(Foam : : cos ( alpha [ i ] ) ) * Foam : : s i n ( p s i [ i ] )
+ Foam : : cos ( theta [ i ] ) * Foam : : cos ( p s i [ i ] ) * Foam : : s i n ( alpha [ i ] ) ,

(Foam : : s i n ( alpha [ i ] ) * Foam : : s i n ( theta [ i ] ) )
) ;

UcVec [ i ] = 0.57735* vec tor (
omega[ i ] / kappaE [ c e l l I ] ,
omega[ i ] / kappaE [ c e l l I ] ,
omega[ i ] / kappaE [ c e l l I ]

) ;
}

/ / In fo << ” sigma ” << sigma << endl ;

Uc = omega/ kappaE [ c e l l I ] ; / / convect ion v e l o c i t y
s c a l a r L i s t zeta = s c a l a r L i s t (nModes ) ;
s c a l a r maxKRatio =0;

/ / In fo << ” sigma ” << sigma << endl ;
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f o r ( i n t j = 0; j < nModes ; j++ )
{

zeta [ j ] = ( posVec − UcVec [ j ]*( tCurrent−tO ld ) ) & kappaVec [ j ] ;
uAmp[ j ] = kappa [0]

* Foam : : exp ( s c a l a r ( j ) * dKappa )
* (Foam : : exp ( dKappa ) − 1)
* eKappa [ j ]
/ abso lu te ( Foam : : cos ( zeta [ j ]

+ phase [ j ]
+ ( tCurrent−tO ld )
*omega[ j ]
)

)
* 0.8165
* Foam : : sq r t (1/ ke ( ) [ c e l l I ] ) ;

}

/ / S t a r t i n g to c a l c u l a t e the ampi l tude f o r the f l u c t u a t i n g s i gna l
u f l u c t = vec tor : : zero ;

f o r ( i n t i = 0; i < 3; i ++)
{

f o r ( i n t k = 0; k < nModes ; k++)
{

zeta [ k ] = ( posVec − ( tCurrent−tO ld )
* UcVec [ k ] ) & kappaVec [ k ] ;

u f l u c t [ i ] = u f l u c t [ i ]
+ uAmp[ k ]
* sigma [ k ] [ i ]
* Foam : : cos ( zeta [ k ]

+ phase [ k ]
+ ( tCurrent−tO ld )
*omega[ k ]
) ;

}
uF luc t [ c e l l I ] [ i ] = u f l u c t [ i ] ;

}
}
e l se {

uF luc t [ c e l l I ] . rep lace (0 ,0.8165*Foam : : sq r t ( ke ( ) [ c e l l I ] ) ) ;
uF luc t [ c e l l I ] . rep lace (1 ,0.8165*Foam : : sq r t ( ke ( ) [ c e l l I ] ) ) ;
uF luc t [ c e l l I ] . rep lace (2 ,0.8165*Foam : : sq r t ( ke ( ) [ c e l l I ] ) ) ;

}

B.4. solveTurbPress.H

uF luc tSqr . component ( symmTensor : : XX) = uF luc t . component ( vec tor : : X)
* uF luc t . component ( vec to r : : X ) ;

uF luc tSqr . component ( symmTensor : : XY) = uF luc t . component ( vec tor : : X)
* uF luc t . component ( vec to r : : Y ) ;

uF luc tSqr . component ( symmTensor : : XZ) = uF luc t . component ( vec to r : : X)
* uF luc t . component ( vec to r : : Z ) ;

uF luc tSqr . component ( symmTensor : : YY) = uF luc t . component ( vec tor : : Y)
* uF luc t . component ( vec to r : : Y ) ;
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uF luc tSqr . component ( symmTensor : : YZ) = uF luc t . component ( vec to r : : Y)
* uF luc t . component ( vec tor : : Z ) ;

uF luc tSqr . component ( symmTensor : : ZZ ) = uF luc t . component ( vec to r : : Z )
* uF luc t . component ( vec tor : : Z ) ;

phiTurb = ( fvc : : i n t e r p o l a t e ( uF luc t ) & mesh . Sf ( ) ) ;
s c a l a r p I t e r = 0;
convec t i vePh i = fvc : : i n t e r p o l a t e (myForce ) & mesh . Sf ( ) ;
ad jus tPh i ( phiTurb , uF luct , pTurb ) ;

wh i le ( p I t e r < 1)
{

f vS ca l a rMa t r i x pTurbEqn
(
fvm : : l a p l a c i a n ( pTurb ) == −2*fvc : : d i v ( f vc : : d i v ( phiTurb ,U) )

− f vc : : d i v ( f vc : : d i v ( uF luc tSqr ) )
+ fvc : : d i v ( convec t i vePh i )

) ;
pTurbEqn . setReference ( pRefCe l l , pRefValue ) ;
pTurbEqn . so lve ( ) ;
p I t e r += 1;

}
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